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Abstract1

Accurate modelling of redshift-space distortions (RSD) is challenging in the non-

linear regime for two-point statistics e.g. the two-point correlation function (2PCF).

We take a different perspective to split the galaxy density field according to the

local density, and cross-correlate those densities with the entire galaxy field. We

demonstrate that combining a series of cross-correlation functions (CCFs) offers im-

provements over the 2PCF as follows: 1. The distribution of peculiar velocities in

each split density is nearly Gaussian. This allows the Gaussian streaming model for

RSD to perform accurately for a wide range of scales. 2. The probability distribution

function of the density field at small scales is non-Gaussian, but the CCFs of split

densities capture the non-Gaussianity, leading to improved cosmological constraints

over the 2PCF. We can obtain unbiased constraints on the growth parameter fσ12

at the per-cent level, and Alcock-Paczynski (AP) parameters at the sub-per-cent

level with the minimal scale of 15h−1Mpc. This is a ∼30 per cent and ∼6 times

improvement over the 2PCF, respectively. 3. Baryon acoustic oscillations (BAO)

are contained in all CCFs of split densities. Including BAO scales helps to break the

degeneracy between the line-of-sight and transverse AP parameters, allowing inde-

pendent constraints on them. We test our methodology on N-body simulations and

apply it to the BOSS DR12 galaxy samples, obtaining constraints for the growth

rate of structure at different redshifts.

1This thesis uses verbatim text of a manuscript by the author published in the Monthly Notices
of the Royal Astronomical Society journal (Paillas et al., 2021).
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Resumen

El modelado de las distorsiones en el espacio de redshift (RSD) es un desaf́ıo en

el régimen no lineal para estad́ısticas de dos puntos, e.g. la función de correlación

de dos puntos (2PCF). Tomamos una perspectiva diferente y dividimos el campo de

densidad de galaxias de acuerdo a la densidad local y correlacionamos las densidades

con todo el campo de galaxias. Demostramos que la combinación de una serie de

funciones de correlación cruzada (CCF) ofrece mejoras sobre la 2PCF de la siguiente

manera: 1. La distribución de velocidades peculiares en cada densidad dividida es

casi Gaussiana. Esto permite que el modelo de transmisión gaussiana para RSD

funcione con precisión para una amplia gama de escalas. 2. La distribución de

probabilidad del campo de densidad a escalas pequeñas no es gaussiana, pero las CCF

de densidades divididas capturan la no gaussianidad, lo que conduce a restricciones

cosmológicas mejoradas sobre la 2PCF. Podemos obtener restricciones insesgadas en

el parámetro de crecimiento fσ12 a un nivel porcentual, y los parámetros de Alcock-

Paczynski (AP) a un nivel sub-porcentual usando una escala mı́nima de 15h−1Mpc.

Esto es una mejora de ∼ 30 por ciento y ∼ 6 veces sobre la 2PCF, respectivamente. 3.

Las oscilaciones acústicas de bariones (BAO) están contenidas en todos los CCF de

densidades divididas. La inclusión de escalas BAO ayuda a romper la degeneración

entre los parámetros AP transversales y a lo largo de la ĺınea de vision. Probamos

nuestra metodoloǵıa en simulaciones de N-cuerpos y la aplicamos a las muestras de

galaxias BOSS CMASS y LOWZ, obteniendo restricciones para la tasa de crecimiento

de la estructura en diferentes épocas.
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Chapter 1

Introduction

In our standard cosmological picture, the Λ cold dark matter (ΛCDM) model, our

present Universe seems to have evolved from a very homogeneous initial state, where

small-scale quantum fluctuations from the inflationary epoch gave rise to density

perturbations that grew over time due to gravitational instabilities. The rate of

growth of these overdensities has always been at contest with the expansion rate

of the Universe (Linder & Polarski, 2019). As such, precise measurements of this

growth rate of structure at different redshifts constitute valuable tests for ΛCDM,

as well as for alternative cosmological models, such as modifications to the theory

of gravity (Copeland et al., 2006; Linder & Cahn, 2007; Jennings et al., 2011; Joyce

et al., 2015; Koyama, 2016; Paillas et al., 2019).

It is often said that we are living in the era of precision cosmology, where large-

scale galaxy surveys have granted us information to achieve almost percent-level

constraints on the parameters that describe the global properties of our Universe. A

powerful method for constraining the growth rate of cosmic structure is through the

analysis of redshift-space distortions (RSD, Jackson, 1972; Kaiser, 1987). This effect

arises because we estimate distances to extra-galactic sources through their redshift.

In doing so, we assume that the recession velocity of these objects is only sourced

by the cosmological expansion. In practice, galaxies also exhibit peculiar velocities

1



CHAPTER 1. INTRODUCTION

that are induced by gravitational interactions with neighbouring structures. These

peculiar velocities perturb the cosmological redshifts, which produces distortions in

the clustering pattern of galaxies in redshift space1. Since peculiar velocities are

induced by gravity, an accurate modelling of this effect grants us the possibility to

estimate the rate at which structure is assembling (Kaiser, 1987).

As an example, Fig. 1.1 illustrates the effect that RSD would produce when

observing a distant overdense region in the Universe, such as a massive galaxy cluster.

The left-hand side panel shows the positions of the cluster galaxies in real space,

where the arrows represent their peculiar motions: galaxies in the outskirts are

attracted by the cluster’s gravitational pull, and are therefore falling towards the

centre of the overdensity in a more or less coherent way. The galaxies in the centre,

however, have already been through many interactions with nearby galaxies in this

crowded environment, and therefore exhibit roughly random motions. This is how

the cluster would look like if we knew precisely what are the distances to each galaxy

in this group. Note that in this example, the cluster is close to spherical in real space.

The easiest way to estimate distances to each galaxy is through their redshift. The

observer, who is looking from a very distant location from the bottom of the image,

measures a galaxy redshift by taking a spectrum of its light, and assumes that it is

sourced by the expansion of the Universe. Assuming a flat ΛCDM Universe at the

matter-dominated era, the comoving2 distance to the galaxy can be calculated as

dC(z) =
c

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

, (1.1)

where c is the speed of light, H0 is the Hubble constant, and Ωm and ΩΛ are the

present-day matter density and dark energy densities, respectively. This is all fine in

1Throughout this thesis, I will make the distinction between real space, which is the true,
unaltered distribution of galaxies in a cosmological volume, and redshift-space, which is a distorted
version of the galaxy distribution we see when mapping redshifts to distances.

2Comoving distances, dC , do not change as the Universe expands, as opposed to physical dis-
tances, dP , which scale as dP = dCa, where a is the scale factor of the Universe at a certain
epoch.
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theory. In practice, however, the galaxy peculiar motions along the observer’s line of

sight (LOS) will also contribute to the redshift. On large scales, the coherent motion

of galaxies falling towards the overdensity will make the cluster appear squashed

along the LOS in redshift space (shown in the right-hand side panel), an effect that

was first described by Kaiser (1987). On small scales, the random galaxy motions

will make the cluster look elongated along the LOS, which is commonly known as the

Fingers of God effect (FoG, Jackson, 1972). Even though this cartoon exaggerates

the physical scales and the degree of distortion that is produced in redshift space,

it serves to illustrate some of the recurring effects that we will find throughout this

thesis. We can imagine a similar situation around underdense regions in the Universe,

such as cosmic voids. On large scales, galaxies often would recede away from the

centre in a coherent way as the void expands and evacuates its matter towards the

void walls. The net effect is that an expanding void that is spherical in real space,

would appear elongated on large scales along the line of sight in redshift space (Cai

et al., 2016).

RSD has been widely used in observations to measure the growth rate of struc-

ture and test theories of gravity with galaxy redshift surveys such as BOSS (Alam

et al., 2017), eBOSS (eBOSS Collaboration et al., 2020), VIPERS (Pezzotta et al.,

2017), GAMA (Blake et al., 2013), the 6 degree Field Galaxy Survey 6dFGS (Beutler

et al., 2012), the Subaru FMOS galaxy redshift survey (Okumura et al., 2016) and

the WiggleZ Dark Energy Survey (Blake et al., 2011). These measurements have

achieved a 5-10 percent level of accuracy on the estimation of the growth rate of

structure at various redshifts. The next generation of spectroscopic redshift surveys

such the Dark Energy Spectroscopic Instrument (DESI, Levi et al., 2019) and Eu-

clid (Laureijs et al., 2011) promise even better parameter constraints, reaching the

percent-level of accuracy.

The extraction of cosmic growth rate information from observations requires ro-

bust theoretical frameworks that can model RSD across different scales. Great efforts

3



CHAPTER 1. INTRODUCTION

Real space
Line of sight

Redshift space

Coherent bulk motion
on large scales

Apparent contraction
on large scales

Random motion
on small scales

Apparent elongation
on small scales

Figure 1.1: An illustration of how do redshift-space distortions affect the observed geom-
etry of an overdensity, such as a galaxy cluster. The left-hand side panel shows the true
distribution of galaxies in real space, where arrows represent the galaxy peculiar motions.
On large scales, galaxies fall coherently towards the potential well, while on small scales
their motions are fairly random. Due to the perturbation of peculiar velocities to galaxy
redshifts, the cluster appears squashed along the line of sight on large scales, and elongated
on small scales.

have been made to improve the modelling of RSD in terms of measurements of the

two-point correlation function (2PCF, e.g. Sheth et al., 2001a; Reid & White, 2011;

Bianchi et al., 2016) or the power spectrum (e.g. Scoccimarro, 2004; Seljak & Mc-

Donald, 2011; Chen et al., 2020). The galaxy 2PCF, often denoted as ξ(r), is a

measure of the degree of clustering of a distribution of galaxies in a cosmological

volume. It is defined as the excess probability of finding a pair of galaxies separated

by a given distance r, with respect to a random distribution. The power spectrum

can be thought of as the Fourier space analog of the 2PCF. These two-point statistics

4



characterising the variance of the density field are able to capture all information if

the field is Gaussian, which is the case in the so-called ‘linear regime’, either at early

times in the Universe or at very large scales, where non-linear gravitational evolu-

tion has not yet taken place. In the non-linear regime, however, the density field

becomes non-Gaussian, so the variance of the field becomes an incomplete statistic.

In a non-Gaussian field, the 2PCF will not be able to extract all the information.

This is a major limitation for two-point statistics (Einasto et al., 2020).

Among the different theoretical frameworks, the streaming model (Peebles, 1980;

Fisher, 1995) has been widely used for modelling RSD in configuration space. This

model provides a mapping between the real and redshift-space correlation functions,

which, as we will see later, allows us to put constraints on the growth rate of struc-

ture. A crucial ingredient for the model to work accurately is the distribution of

pairwise3 velocities of the galaxies that are being analysed. This distribution is

known to be highly non-Gaussian at the quasi-linear and non-linear scales, making

it challenging to model (e.g. Scoccimarro, 2004). Extensive effort has been made to

model the pairwise velocity distribution (Kuruvilla & Porciani, 2018; Cuesta-Lazaro

et al., 2020). Reid & White (2011) have shown that, under the assumption of a

Gaussian pairwise velocity distribution, taking the true real-space 2PCF, and the

mean streaming velocity and velocity dispersion profiles from simulations, the pre-

dictions of the streaming model agree with direct redshift-space measurements at a

few percent level at a scale of s ∼ 25h−1Mpc, and fail at smaller scales. Kuruvilla &

Porciani (2018) have shown that dropping the Gaussian assumption, with the full dis-

tribution function, the model works perfectly for the two-dimensional redshift-space

correlation function. Alternatively, Tinker (2007) showed that the skewed PDF of

the pairwise velocity arises when combining halo pairs from environments with dif-

ferent densities. By splitting a sample of haloes into different quantiles according to

3In this context, the term pairwise indicates that a quantity is measured relative to another
another object. The galaxy pairwise velocity, for instance, refers to the relative peculiar velocity
vector for a given pair of galaxies.
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CHAPTER 1. INTRODUCTION

their local number density, they verified that the pairwise velocities at fixed density

are approximately Gaussian, and this helps to improve the accuracy of the streaming

model.

Alternative approaches for overcoming the limitation of two-point measurements

include higher-order statistics, such as the three-point correlation function and the

bispectrum (e.g. Sefusatti et al., 2006; Gil-Maŕın et al., 2012; Slepian & Eisenstein,

2015, 2017), non-linear transformation to re-Gaussianise the density field (Neyrinck

et al. 2009, 2011; Neyrinck 2011; Wang et al. 2011), density split statistics for weak

lensing analysis (Gruen et al., 2016, 2018; Friedrich et al., 2018), counts-in-cells statis-

tics (Szapudi & Pan, 2004; Klypin et al., 2018; Jamieson & Loverde, 2020; Mandal

& Nadkarni-Ghosh, 2020), and using the concept of separate Universe to model

density-dependent two-point statistics (Wagner et al. 2015; Chiang et al. 2015),

which, in essence, corresponds to a three-point quantity. These approaches usu-

ally provide complementary cosmological constraints by accessing information from

the non-Gaussian field.

More recently, there has been increasing attention in using RSD around cosmic

voids, taking the advantage of the milder density contrasts around them, which may

be better described by linear dynamics (Hamaus et al., 2014; Pollina et al., 2017).

Paz et al. (2013) employed the Gaussian streaming model for extracting velocity

profiles around voids; Hamaus et al. (2015) applied the Gaussian streaming model

for voids to constrain growth parameters, with the assumption that the density

and streaming velocity are linearly coupled. Cai et al. (2016) wrote down how the

redshift-space correlation function is mapped to its real-space version when only

streaming velocities are accounted for. When expanding it to the linear order, it

works well for small density perturbations, but by definition does not work when δ

is relatively large, i.e. near void centres. Nadathur et al. (2019b) derived expressions

for RSD around voids and convolved them with a Gaussian velocity distribution,

showing that it helps to improve the performance of the model, and stressed that the

6



Gaussian streaming model provides a poor fit to their data. These models, though

somewhat disputed at the details, have been applied to observational data, and in

some cases, have led to significant improvement for the constraints of AP and growth

parameters (e.g. Hamaus et al., 2017; Achitouv, 2019; Hawken et al., 2020; Correa

et al., 2020). Nevertheless, like other beyond-two-point statistics, RSD around voids

are an interesting development, but there is no obvious reason to include only voids

in the analysis.

The research presented in this thesis builds upon the idea of separate universes,

counts-in-cells and density split statistics for weak lensing. I will present a frame-

work to model RSD around different density environments. The method consists in

splitting random positions of the spherically smoothed galaxy density field in differ-

ent quantiles, and computing CCFs between these positions and the entire galaxy

field in redshift space. This is in essence density split in three dimensions (DS).

The CCF between regions in each quantile with the galaxy field corresponds to the

stacked galaxy number density around environments of different depths. DS can also

be seen as a generalisation of the void-galaxy CCF, as it naturally includes voids,

clusters and intermediate-density regions in a general framework to exploit their

combined constraining power on cosmology.

With the aforementioned setup, the main question I wish to address, which con-

stitutes the central idea of this thesis, is : does the combination of a series of CCFs

contain a different amount of cosmological information than the conventional 2PCF?

A closely related question is: does DS make the modelling more accurate for RSD

than the standard 2PCF? This work shows that with DS, the distribution of the

velocities in each density quantile are well-fit by a Gaussian function. This allows

the Gaussian streaming model to perform accurately at almost all scales. Perhaps

more importantly, the CCFs of split 3D density naturally captures the non-Gaussian

distribution of the density, and this leads to improved cosmological constraints over

two-point statistics.

7



CHAPTER 1. INTRODUCTION

I test this methodology on cosmological N-body simulations, showing that it

enables us to recover unbiased constraints for the growth rate of cosmic structure

when simultaneously modelling dynamical and geometrical distortions in the data.

I also show how to apply this framework to observational galaxy samples by using

the BOSS CMASS and LOWZ catalogues from SDSS DR12, providing estimates for

the growth rate of structure at z = 0.38 and z = 0.61.

The vast majority of the cosmological measurements and analyses presented in

this thesis were carried out using software that I designed and implemented from

scratch for this project. All of these codes and routines are made available at my

github repository4, in the hope that it can serve someone else in the future, and

also following the spirit of transparent and reproducible science.

4https://github.com/epaillas

8
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Chapter 2

Redshift-space distortions with

split densities

To compare the power of constraining cosmology between the 2PCF and DS using

RSD, we need to have adequate dynamical distortion models for both the 2PCF and

DS. I will employ the Gaussian streaming model (Fisher, 1995) for both of them.

In addition, we also need to account for the geometrical distortions, the Alcock-

Paczynski effect (Alcock & Paczynski, 1979). I will start by introducing these two

distortion effects. Then, I will describe the density split algorithm, which is the main

basis of the cosmological analysis of this thesis.

2.1 Dynamical distortions

To the linear order in velocity, the observed redshift of a distant galaxy is the

sum of two components, the cosmological redshift and the redshift due to its peculiar

velocity sourced by gravity. The observed redshift-space distance of a galaxy is then

s = r +
v‖
aH

ẑ, (2.1)

9



CHAPTER 2. REDSHIFT-SPACE DISTORTIONS WITH SPLIT DENSITIES

where r and s are real- and redshift-space distance vectors, v‖ is the peculiar velocity

along the line-of-sight direction ẑ; a is the scale factor of the Universe, H is the

Hubble parameter at a. With mass conservation, we have

[1 + ξs(s)] d3s = [1 + ξ(r)] d3r , (2.2)

where ξ(r) and ξs(s) denote the real and redshift-space correlation functions, which

measure the excess probability of finding a galaxy pair separated by a given scale.

The streaming model (Peebles, 1980) provides a mapping between the real-space

correlation function to the redshift-space anisotropic correlation function:

1 + ξs(s⊥, s‖) =

∫
[1 + ξ(r)]P(v‖, r)dv‖, (2.3)

where r2 = r2
‖ + r2

⊥ is the real-space separation and v‖ = aH(s‖ − r‖) is the pairwise

line-of-sight velocity, which has a probability distribution P(v‖, r). Note that for a

given r, the PDF for the line-of-sight velocities depends on the subtended angle from

the line of sight θ, as it has the contribution from both the radial and tangential

components. Assuming a Gaussian form for P(v‖, r), and that the density field is

also Gaussian, neglecting higher order terms, the mapping becomes:

1 + ξs(s⊥, s‖) =

∫
(1 + ξ(r))

1√
2πσ2

‖(r, µ)

exp

{
−
[
v‖ − vr(r)µ

]2

2σ2
‖(r, µ)

}
dv‖, (2.4)

where µ = r‖/r = cos θ, and vr(r) is the pairwise velocity along the radial direction,

also known as the mean streaming velocity. This was first derived by Fisher (1995),

and is usually referred to as the Gaussian streaming model (GSM) (see also the

derivations by Scoccimarro, 2004; Vlah & White, 2019, in Fourier space). Note that

the velocity dispersion σ‖(r, µ) depends on both r and µ. Eq. (2.3) can be used

10



2.1. DYNAMICAL DISTORTIONS

to predict the redshift-space correlation function, as long as the full distribution of

pairwise velocities and the real-space correlation function are fully known. However,

it is challenging to predict the distribution of pairwise velocities from first principles.

Eq. (2.4) may work but only if the Gaussian assumption holds. Exploring the validity

of this assumption is a focus for this study.

Another key ingredient for the GSM is the pairwise streaming velocity vr(r). In

linear theory, it can be expressed in terms of the correlation function (Peebles, 1980;

Sheth et al., 2001b)

vr(r) = −2

3

βaHrξ̄(r)

[1 + ξ(r)]
. (2.5)

Here ξ(r) is the galaxy real-space correlation function, β = f/b where f = d lnD/d ln a

is the linear growth rate, D is the growth factor, b is the linear galaxy bias, and

ξ̄(r) =
3

r3

∫ r

0

ξ(x)x2dx. (2.6)

The linear coupling between density and velocity is not adequate for the quasi-

nonlinear regime. From this point and throughout the thesis, my notations will not

use the usual subscript g to refer to quantities related to galaxies. I will use ξ(r) and

ξ̄(r) to refer to the galaxy correlation function and its cumulative version. I will use

the subscript m to refer to quantities about dark matter.

Modelling the exact coupling is another crucial step towards accurate modelling

for RSD with the GSM. I adopt the empirical function introduced in Juszkiewicz

et al. (1999), with one free parameter to model the coupling between the galaxy

density and velocity field:

vr(r) = −2

3
aHrβξ(r)

[
1 + νξ(r)

]
. (2.7)

In the expression above, ν is a free parameter. When ν = 0, the above goes back to

11



CHAPTER 2. REDSHIFT-SPACE DISTORTIONS WITH SPLIT DENSITIES

the linear model. ξ is defined by the following relation:

ξ(r) ≡ ξ(r)[1 + ξ(r)]. (2.8)

As I will describe in the following sections, I am also interested in the cross-correlation

between randomly positioned centres ranked by their local number density of galax-

ies, and the entire galaxy number density field. In such a case, the equations for

the streaming model outlined above still apply, but as there are no peculiar motions

for the random centres themselves, the pairwise velocity profile becomes the stacked

velocity profile, and the linear density-velocity coupling becomes

vr(r) = −1

3
aHrβξ(r), (2.9)

where ξ̄(r) from Eq. (2.6) now refers to the cumulative cross-correlation function

between fixed positions (e.g. voids or clusters) with the galaxy field, i.e. the stacked

density profile, and so it is the same as the cumulative galaxy density contrast ∆(r)

within r. This is commonly adopted in void RSD studies (e.g. Hamaus et al. 2014;

Cai et al. 2016; Achitouv et al. 2017; Hawken et al. 2020; Hamaus et al. 2017;

Nadathur et al. 2020). Again, I will go beyond the linear coupling by introducing

vr(r) = −1

3

aHrβξ(r)

1 + νξ(r)
, (2.10)

where ν is a free parameter and ν = 0 is the linear model. As we will see later, this

empirical expression will allow me to not only fit the velocity profiles around voids,

but also around high density regions.

Without causing confusion, I will use the same notations [v‖, vr, σ‖, ξ, ξ̄] to refer

to variables for both two-point correlation function (2PCF) and cross-correlation

function (CCF) throughout the thesis.

12



2.2. GEOMETRICAL DISTORTIONS

2.2 Geometrical distortions

In observations, when converting observed redshifts to distances using a cos-

mology that is different from the true underlying cosmology of the Universe, we

artificially induce geometrical distortions in the clustering of galaxies, an effect that

is also known as Alcock-Paczynski (AP) distortions (Alcock & Paczynski, 1979).

We can parametrise these distortions by rescaling the transverse and line-of-sight

separation vectors (Ballinger et al., 1996):

s⊥ = q⊥s
′
⊥ (2.11)

s‖ = q‖s
′
‖ , (2.12)

where the primes represent quantities in the fiducial cosmology. The scaling factors

are related to cosmological parameters via

q⊥ =
DM

D′M
(2.13)

q‖ =
H ′

H
, (2.14)

where DM and H are the comoving angular diameter distance and the Hubble param-

eter at a, respectively. The redshift-space correlation function can then be rescaled

as

ξs(s⊥, s‖) = ξs(q⊥s
′
⊥, q‖s

′
‖) . (2.15)

The dynamical and geometrical distortions act at the same time on the observed

redshift-space correlation function – the only observable at our disposal in this con-

text. Adjusting the dynamical distortion parameters (RSD) and geometrical distor-

tion parameters (AP) to fit for the observed redshift space clustering will in turn

allow us to constrain those parameters of interests (e.g. Sánchez et al., 2017a; Beutler

13



CHAPTER 2. REDSHIFT-SPACE DISTORTIONS WITH SPLIT DENSITIES

et al., 2017; Hou et al., 2018; Hamaus et al., 2020; Bautista et al., 2021).

2.3 Splitting densities

A crucial assumption for the Gaussian streaming model (Eq. 2.4) to work is that

the PDF of the pairwise velocity needs to be Gaussian. This is only true in the linear

regime, where non-linear gravitational evolution has not yet taken place significantly

(either at high redshift or at very large scales). Reid & White (2011) have shown

that this assumption can already lead to a 2 percent level bias for the quadrupole

at s = 25h−1Mpc. To improve the performance of the model, one obvious way is

to go beyond the Gaussian assumption by modelling the full distribution of pairwise

velocity. This is non-trivial from first principles and extra degrees of freedom are

usually introduced (Kuruvilla & Porciani 2018; Cuesta-Lazaro et al. 2020).

I take an alternative approach to analyse the data by splitting the galaxy field

into different density environments. The assumption is that the non-Gaussian PDF

of the pairwise velocity at small scales can be decomposed into many Gaussian PDFs

of different widths. This was elucidated in Tinker (2007), where it was shown that

the PDF of pairwise velocities at a specific density environment is indeed close to

Gaussian. The halo model was also adopted for the modelling in Tinker (2007).

Examples for the velocity PDFs for several overdense environments were shown, but

not for underdense environments. I will generalise this to low-density regions. I will

use cross-correlations instead of auto-correlation functions. In this case, the relevant

statistic is the distribution function of the velocity field, rather than the pairwise

velocities. The main steps for this method are summarised as follows:

1. start from a galaxy sample in real space and apply a spherical top-hat filtering

with a filter radius R on random positions.

2. rank order the filtered density contrasts ∆(r = R) (the same as ξ̄(R) as

noted in Chapter 2) and split them into n density bins. For this study, I adopt
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2.3. SPLITTING DENSITIES

R = 15h−1Mpc and n = 5.

3. cross-correlate the positions in each density bin, or quintile, with the entire

galaxy sample in redshift space to obtain the CCF ξi(s, µ|∆i), where i = 1, 2, 3...n1.

These are in essence a series of conditioned correlation functions, with the condition

being ∆i(r = R) satisfying the density splitting criteria. I will write ∆i instead of

∆i(r = R) without loss of clarity.

The CCFs ξi(r, µ|∆i) are the same as δi(r, µ|∆i), i.e. the stacked number densities

of galaxies around the centres of spheres within the i-th density bin. Therefore, the

CCF for the lowest density bin is similar to the void-galaxy cross-correlation function,

and the highest density bin is similar to the cluster-galaxy cross-correlation function.

The notation ∆(r) is also the same as ξ̄(r) from Eq. (2.6), with ξ(r) = δ(r), as

mentioned in Chapter 2.

Instead of the 2PCF, the series of CCFs will be our main observable to be used

to constrain cosmology. The streaming model and its Gaussian version can naturally

be applied to model these void-galaxy, cluster-galaxy cross-correlations, and in gen-

eral cross-correlations of different local densities with the galaxy field. In the GSM

(Eq. 2.4), one can simply replace ξ(r) by the real-space CCF (or the stacked density

profile), and the pairwise velocity profile vr(r) by the stacked velocity profiles around

different local densities. This can be seen by keeping the positions of the spherical

regions fixed in real-space, i.e. one of the two points in the pair has zero velocity

and thus the pairwise velocity becomes the radial velocity of a galaxy relative to

its real-space spherical centre. Note that although the mathematical form is the

same, the 2PCF is, fundamentally, a two-point statistic, while the cross-correlation

between a set of centres with the entire galaxy field is a first-moment measurement.

The number of density quantiles chosen in this work is a balance between different

factors. Firstly, a larger number of quantiles ensures that the distribution of densities

1Note that I have used s to denote the redshift-space distance vector in the earlier part of the
paper. Here I use the same symbol to denote the distance between the DS centres (in real space)
to galaxies (in redshift space). Their meanings are technically different.
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in each bin is narrow, which results in a distribution of radial velocities that is more

Gaussian, and thus a better performance for the GSM. Secondly, increasing the

number of bins also increases the size of the covariance matrix that is needed for

our likelihood analysis (see Sec. 3.2). A bigger covariance matrix will also require

a larger number of mock realizations in order to be accurately estimated. Since I

have 300 mocks at my disposal, 5 quantiles is a good compromise between these two

factors.
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Chapter 3

Validation on N-body simulations

Having listed the necessary ingredients to implement the RSD with split densities

pipeline, I will proceed to validate this framework using a set of N-body cosmological

simulations from which we can directly measure all necessary clustering statistics,

both in real and redshift space. This will serve as a theoretical ground to quantify

the accuracy of the GSM for these summary statistics and to study the cosmological

constraining power that this method can offer, which will allow me to apply it to an

observational galaxy sample in forthcoming chapters.

3.1 Performance of redshift-space distortions mod-

els

Following the steps described in the previous chapter, I will use mock galaxies to

measure the series of ξi(s, µ|∆i). I will also measure the 2PCF ξ(s, µ). I then use the

GSM to extract cosmological information from the above two measurements from

the same simulations. I will focus on asking: does the combination of the whole

series of CCFs, i.e. all ξi(s, µ|∆i), contain any different amount of cosmological

information than the conventional 2PCF? Before doing this, it is crucial to validate
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CHAPTER 3. VALIDATION ON N-BODY SIMULATIONS

the performance of RSD modelling with the Gaussian streaming model for CCFs

from split densities and the 2PCF. This is the focus of this section. I will describe

the mock galaxies catalogue (Sec. 3.1.1), followed by splitting densities with the mock

galaxies (Sec. 3.1.2). I then analyse the velocity distribution functions with the split

densities (Sec. 3.1.3), and cross-correlate each split density quintile with the entire

galaxy field and compare them with the Gaussian streaming model (Sec. 3.1.4). I

review and compare other RSD models for cross-correlations in Sec. 3.1.5.

3.1.1 Mock galaxies

I will use the Minerva simulation for the analysis (Grieb et al., 2016; Lippich

et al., 2019). It consists of a set of 300 N-body simulations that represent different

realisations of the same cosmology, which corresponds to the best-fitting flat ΛCDM

model to the combination of CMB data (Planck Collaboration et al., 2016) and SDSS

DR9 CMASS wedges, presented in Sánchez et al. (2013). The model is characterised

by a matter density parameter of Ωm = 0.285, a baryon physical density of ωb =

0.02224, a present-day Hubble rate of H0 = 69.5 kms−1Mpc−1, an amplitude of

density fluctuations of σ8 = 0.828 and an scalar spectral index of ns = 0.968. For each

box, a total of 10003 dark matter particles were evolved with GADGET (Springel,

2005) in a cosmological box of 1.5 h−1Gpc aside. The volume for each box is therefore

3.375(h−1Gpc)3. This will be the default volume that sets the statistical errors for

my predictions. Initial conditions were generated using second order-Lagrangian

perturbation theory (Jenkins, 2010), starting from z = 63.

Dark matter haloes and their associated substructures are identified using sub-

find (Springel et al., 2001). These haloes were populated at the z = 0.57 snapshots

of the simulations using the Halo Occupation Distribution method (HOD; Peacock

& Smith 2000; Benson et al. 2000; Berlind & Weinberg 2002; Kravtsov et al. 2004).

I adopt the HOD functional form presented in Zheng et al. (2007). The HOD pa-

rameters were calibrated to reproduce the clustering properties of the BOSS CMASS
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3.1. PERFORMANCE OF REDSHIFT-SPACE DISTORTIONS MODELS

DR9 galaxy sample for the same cosmology, as in Manera et al. (2013).

For each HOD catalogue I also construct a redshift-space analog by shifting the

positions of galaxies along the line of sight with Eq. (2.1) (taken to be the z-axis

of the simulation) using their peculiar velocities. In the remainder of the text, I

will refer to each of these 300 simulations populated with HOD galaxies as mock

realisations.

3.1.2 Splitting densities with mock galaxies
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Figure 3.1: The probability distribution for the integrated galaxy number density ξ̄,
smoothed by a top-hat window function of 15h−1Mpc. The different colors delimit the split
of the PDF into different quintiles, according to the value of ξ̄, ranging from underdensities
(DS1-2) to overdensities (DS4-5). The positions in each quintile will be cross-correlated
with the entire galaxy field in redshift space. These are the main observables I will employ
in this thesis. The inner subplot shows the PDF at a scale of 80h−1Mpc.

For each mock realisation, I place 1.3 × 106 (which is roughly the same as the
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CHAPTER 3. VALIDATION ON N-BODY SIMULATIONS

number of mock galaxies) random points in the cosmological volume of the simula-

tion, and measure the real-space integrated galaxy number densities ξ̄ within spheres

of radius r = 15h−1Mpc centred on those points. I then rank the centres according

to the value of ξ(r = 15 h−1Mpc) in increasing order, and split them into 5 bins

with equal number of centres, that I refer to as Density Split quintiles, labelling

them as DS1 to DS5 from low to high density. All of this is done using the den-

sity split package that can be found in my github repository1. The coloured

histogram in Fig. 3.1 shows the distribution of ξ(r = 15 h−1Mpc) around the ran-

dom positions in one of the mock realisations. DS1 is the lowest density quintile

and has a negative ξ, corresponding to voids. DS2-3 are also underdense, although

their density contrasts are shallower than voids. DS4 marks the transition towards

overdense regions, having a positive ξ. DS5 has the largest positive amplitude, cor-

responding to cluster-like regions. As has been shown by previous studies, the full

PDF of ξ(r = 15h−1Mpc) is highly non-Gaussian, with its peak corresponding to a

negative density, i.e. a major fraction of the volume is in voids, and a high-density

tail that extends to large positive values. It follows closely a lognormal distribution

(e.g. Coles & Jones, 1991; Colombi, 1994; Bernardeau & Kofman, 1995; Scoccimarro,

2004; Uhlemann et al., 2016; Repp & Szapudi, 2018; Einasto et al., 2020). These

features are expected, and are the result of the growth of structures via gravitational

evolution. While initial overdensities collapsed due to gravitational attraction into

small and highly overdense structures, initially underdense regions expanded and

ended up covering a large volume, but could only reach moderate underdensities, as

the density contrast is bound from below (i.e. δm = −1). The PDF and its evolution

in the non-linear regime follow spherical dynamics closely, and can be predicted ac-

curately (Uhlemann et al., 2016; Repp & Szapudi, 2018; Jamieson & Loverde, 2020).

On large scales where the density evolution is linear, the density PDF is expected to

be Gaussian. An example is shown by the inset of Fig. 3.1. At the smoothing scale

1https://github.com/epaillas/densitysplit
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of r = 80h−1Mpc, the distribution is much more symmetric and can be well fitted

by a Gaussian PDF.

3.1.3 Velocity distribution functions in different environ-

ments

With the above setup, I can measure the velocity distribution function at different

scales2.

On large scales, the PDFs of these radial velocities are expected to be Gaussian,

but it is the most interesting at small scales where non-linear evolution is prominent.

An example at r = 15h−1Mpc is presented in Fig. 3.2. We can see that the PDFs

for each quintile are well fitted by a Gaussian function of different widths (DS1-5 of

Fig. 3.2). The mean of the Gaussian, v̄r, is usually offset from zero. It monotonically

decreases from DS1 (v̄r = 131.2 km/s) to DS5 (v̄r = −63.9 km/s). This indicates that

the radial velocity is turning from outflow at DS1 to infall at DS5. This is expected,

because the local density increases from DS1 to DS5 i.e. DS1 is underdense, similar

to the case of voids; DS5 is overdense, corresponding to clusters; and DS2-4 are their

transition phases. This is clearly seen in the full radial velocity profiles around each

density quintile Fig. 3.3 (data points), where the outflow for DS1-2, and the infall

for DS5 continue up to large radii.

In contrary, at the same scale, the full pairwise velocity distribution, the quantity

relevant for modelling the redshift-space 2PCF, is highly skewed (bottom-right panel

of Fig. 3.2). The mean pairwise velocity is also highly negative, indicating that the

pairs are predominantly sampling the high density regions. This is expected, as

pair-counting at this small scale is heavily weighted by high density regions. This

2The relevant quantity that enters the streaming model equation is the line-of-sight velocity
distribution, which receives contributions from both the radial and tangential components, and
that is what I have used to plug into the GSM. For this part of the thesis, I choose to show the
velocity PDFs for the radial component to make them better correspond to the streaming velocity
profiles that I will show later. I have checked that line-of-sight velocity PDFs are qualitatively
similar to the PDFs of the radial components.
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Figure 3.2: Distributions of radial velocities in density splitting (DS) quintiles and pair-
wise velocities for the two-point correlation function (2PCF) (different panels as labelled),
measured from one of the mock realisations, at a scale of r = 15h−1Mpc. For DS, the
colours and legends (DS1-5) are matched to those in Fig. 3.1 to represent densities of differ-
ent depths, varying from voids (DS1) to clusters (DS5). The mean v̄r, standard deviation
σv and skewness of the distributions are shown on the upper left corner of each panel. The
skewness is the third standardised moment of a distribution, characterising the asymmetry
of the distribution about its mean. The solid lines show a Gaussian distribution with the
same mean and standard deviation as the data, after applying 3σ clippings. The PDFs
for velocities in each DS are well-fit by a Gaussian profile, with their mean v̄r varying
from positive in DS1 to negative in DS5, corresponding to outflow and infall around those
quintiles, respectively. The PDF for the pairwise velocities (2PCF) is significantly skewed
towards negative values, strongly deviating from the Gaussian distribution.

leads to a large velocity dispersion as the dominant feature of the pairwise velocity

distribution, which manifests itself as Fingers-of-God (FoG, Jackson, 1972) at those

scales in the redshift-space 2PCF. This is naturally avoided in DS, as we will see in

the next sub-section.

The non-Gaussianity of the PDF for the pairwise velocity violates the Gaussian
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Figure 3.3: Galaxy radial velocity profiles around regions corresponding to different den-
sity quintiles (DS1-5) and the pairwise radial velocity profiles (2PCF), as indicated in each
panel. The circles show measured velocities from the simulations. The dashed lines show
the predictions from linear theory (Eqs. 2.5 & 2.9), whereas the solid lines show the best-fit
results from our empirical model (Eqs. 2.7 & 2.10) using the redshift-space galaxy corre-
lation functions as observables. The linear coupling model fails to reproduce the observed
velocities on small scales for all cases, where non-Gaussianity becomes important. The
empirical model accurately captures density-velocity velocity coupling for DS1 and DS5
(voids and clusters), but it underestimates the velocity profiles for intermediate quintiles
and for the pairwise velocity profiles at small scales.

assumption necessary for modelling the 2PCF with the GSM. It is therefore unsur-

prising that the model becomes inaccurate for the 2PCF at small scales (e.g. Reid &

White, 2011). The Gaussian nature of the velocity PDFs for DS1-DS5 ensures that

such key condition for the GSM is met, thus promises a better performance, as I will

show in the next sub-section.

Perhaps more importantly, by splitting the non-Gaussian density PDF, and cross-

correlating local densities with the entire galaxy field, we will naturally capture the
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non-Gaussianity of the density field. This lays the foundation for a possible gain of

cosmological information over standard two-point statistics, as I will demonstrate in

Sec. 3.2.
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Figure 3.4: The line-of-sight velocity dispersion as a function of r (after integrating over
the µ dependence). These are direct measurements from the mock galaxies. Different
colours correspond to the different DS quintiles and to the pairwise galaxy velocities, as
indicated in the legend.

For completeness, I show the velocity dispersion profiles in Fig. 3.4. Note that

σ‖(r, µ) is necessarily a function of r and µ. Its variation with µ is relatively strong

for the pairwise velocities in the 2PCF and should not be neglected for the mod-

elling. After averaging over µ, all the σ‖’s in DS appear to be flattened on large

scales and converge to the same value. This offers possibilities to use a single free

parameter to capture their amplitudes on large scales (see Sec. 3.2). The dispersion

decreases with scale for DS1-4 as these are underdensities at small scales. Such a
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trend is the opposite for DS5, which corresponds to over-densities. For the 2PCF,

the dispersion decreases with scale until the 1-halo term kicks in at the smallest

scales (∼ 1h−1Mpc), which causes the velocity dispersion to increase sharply. This

is the main drive for the FoG for the 2PCF. The velocity distribution function is

expected to be highly non-Gaussian, as already seen at r = 15 h−1Mpc in Fig. 3.2.

3.1.4 Performance of the GSM for splitting densities & the

2PCF

With the promising behavior of the velocity PDFs in the different DS quintiles,

I will test the performance of the GSM in the simulation in this section. At this

stage, I will take all the ingredients of the model [i.e. ξ(r|∆i), vr(r|∆i), σ‖(r, µ, |∆i)

for DS and ξ(r), vr(r), σ‖(r, µ) for the 2PCF] from our mock galaxies. This allows

us to focus on testing the validity of the Gaussian assumption. I will relax some

of these model conditions in the next section for cosmological constraints. All of

the clustering measurements are carried out with the contrast package that is

available on my github repository3.

In simulations with periodic boundary conditions, the cross-correlation functions

can be estimated without the use of a random catalogue as

ξ(s, µ|∆i) =
D1D2(s, µ)

N1N2

Vbox

δV (s, µ)
− 1, (3.1)

where D1D2(s, µ) are the pair counts between DS centres and galaxies, N1 and N2

are the total number of DS centres and galaxies, respectively, Vbox is the volume of

the simulation box, and δV (s, µ) is the volume of a bin centred on (s, µ) with radial

thickness ds, which can be calculated analytically as

δV =
4π

3

(s+ ds/2)3 − (s− ds/2)3

Nµ

, (3.2)

3https://github.com/epaillas/contrast
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where Nµ is the total number of µ bins. For each DS quintile, I measure the

real-space quantities ξ(r|∆i), vr(r|∆i), σ‖(r, µ, |∆i), as well as the redshift-space

CCF ξs(s, µ|∆i) from our mock galaxies, taking the average over the 300 simulation

boxes. I use radial bins of 3h−1Mpc, 9h−1Mpc and 6h−1Mpc widths at scales of

0 − 39h−1Mpc, 39 − 84h−1Mpc and 84 − 150h−1Mpc, respectively, as well as µ

bins of a constant width of 0.02 between -1 and 1. I try to minimise the number of

radial bins while being able to sample important features in the correlation function

such as the BAO. This is necessary to make sure that the data vector is sufficiently

smaller than number of independent mocks used to construct the covariance matrix

(see also the discussions about covariance matrix in Sec. 5). I plug the model ingre-

dients into Eq. (2.3) to obtain the predicted redshift-space CCF. These are compared

with direct measurements in redshift space in Figs. 3.5 & 3.6. The CCF for DS1

resembles the void-galaxy CCF (see e.g. Paz et al., 2013; Paillas et al., 2017; Correa

et al., 2019). This is not a surprise, since the algorithms designed for identification

of spherical underdensities in the cited works use a top-hat filter for the definition of

the voids, in a similar fashion as I have done by using a top-hat filter for the density

splitting. DS5 shows an overdensity of galaxies near the centre, similar to the case

of cluster-galaxy CCF (e.g. Seldner & Peebles, 1977; Lilje & Efstathiou, 1988, 1989;

Croft et al., 1999; Yang et al., 2005; Zu & Weinberg, 2013; Mohammad et al., 2016).

It is striking to see that despite the big variation of distortion patterns for

DS across different density quintiles and scales, the agreement between the model

(dashed lines) and simulation (solid lines) is nearly perfect at all scales. In con-

trary, for the 2PCF, deviations between the model and simulation are obvious even

at scales of a few tens of h−1Mpc when µ is near unity, i.e. along the line of sight

direction (Fig. 3.6) .

The distortion patterns are similar between the CCFs and the 2PCF on large

scales, where both appear to be flattened. At scales s ' 30 h−1Mpc, however, the

CCF becomes elongated for DS1 and DS2, while the 2PCF remains flattened at
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Figure 3.5: Cross-correlations between centres of density quintiles in DS with the entire
galaxy sample in redshift space (labels as DS1-5), and the galaxy two point correlation
function (2PCF), averaged over the 300 mock galaxy catalogues. The colourbars indicate
the clustering amplitude, scaled by a factor of s2 to highlight large-scale features. The
solid lines show contours of constant amplitude in the simulation. The predictions from
the Gaussian streaming model (Eq. 2.4), with all its ingredients measured from simulations,
are shown in dashed lines. Contours for DS quantiles 2, 3 and 4 have been smoothed using
a Gaussian kernel with a Gaussian σ of 1, 2 and 1 pixels, respectively.

the same scale, with the exception of the FoG feature near µ = 1, which causes

deviations between the model and the simulation results. At even smaller scales, the

distortion of CCF for DS1 and DS5 becomes very weak, while the 2PCF is dominated

by the elongated FoG. The GSM clearly fails to capture the FoG feature (bottom-

right panel of Fig. 3.6). This again indicates that the dispersion is insufficient to

describe the non-Gaussian PDF of the pairwise velocities. In contrast, there is no
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Figure 3.6: Similar to Fig. 3.5, but showing clustering at small scales. The Gaussian
streaming model (in dashed contours) lays on top of the measurements from mock galaxies
(solid contours) for CCFs from all density quintiles (DS1-5). All the CCFs show no sign
of the Fingers-of-God effect. Deviations for the 2PCF from the same model can be seen
close to the line-of-sight direction, mainly due to the strong Fingers-of-God effect. At these
relatively small scales, linear theory is not as accurate, but its prediction agrees reasonably
well for DS1 and DS2 (underdense environments), as I have checked.

FoG feature in the CCF of the different DS quintiles, and this allows the GSM to

perform better at the same scale. This is expected, as the centres of the CCFs do

not usually correspond to a galaxy. The selection of centres based on the top-hat

smoothed density field at 15 h−1Mpc naturally averages out the FoG. This is also

consistent with the fact that the velocity PDF for each quintile of DS is very close

to Gaussian (Fig. 3.2).
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To characterize the performance of the GSM more quantitatively, I extracted

the monopole, quadrupole, and hexadecapole [ξ0,2,4(s)] of the correlation functions

inferred from the simulations following

ξ`(s) ≡
2`+ 1

2

∫ 1

−1

L`(µ)ξs(s, µ)dµ , (3.3)

where L`(µ) is the Legendre polynomial of order `. Fig. 3.7 shows a comparison

of the simulation results (symbols) and the corresponding model predictions (solid

lines). The agreement for ξ0,2,4(s) is excellent at all scales for the DS results, with

small deviations near the smoothing scale where the slopes of the multipoles are

steep. Instead, the multipoles of the standard 2PCF show noticeable deviations

from the theory predictions at scales below 20 h−1Mpc. This comparison becomes

clearer when quantifying the agreement by taking the fractional difference between

the model predictions and the simulations in terms of the 1-σ errors corresponding

to a volume of (1.5h−1 Gpc)3. We can see that the ratios at around ∼ 15 h−1Mpc

for DS may sometimes fluctuate beyond the 1-σ level, but overall stay within the

errors. For 2PCF however, the differences between the model and the results from

the simulations are noticeable at scales s < 30h−1Mpc for ξ2, and become stronger

at smaller scales.

These results for the 2PCF are similar to those reported in Reid & White (2011)

with similar mocks, where a few percent accuracy was achieved at ∼ 25 h−1Mpc for

the quadrupole (see also Chen et al., 2020). The performance of the GSM is better

for most density quintiles, and for almost all scales. The exceptions are: 1. for the

quadrupole in DS1 and DS5 at s ∼ 15 h−1Mpc (solid blue lines in the lower panels

corresponding to DS1 and DS5 in Fig. 3.7). This is likely due to taking ratios with

respect to ξ2(s) which crosses zero at those scales; 2. the monopole in DS1 also

fluctuates outside the 1σ error at s < 20 h−1Mpc (solid orange line at bottom panel

corresponding to DS1). This is possibly due to the sparsity of galaxies for DS1 at

29



CHAPTER 3. VALIDATION ON N-BODY SIMULATIONS

−1.0

−0.5

0.0

ξ 0
(s

)

DS1

−0.1

0.0

ξ 2
(s

)

−0.025

0.000

0.025

ξ 4
(s

)

0 10 20 30 40 50 60 70 80

s [h−1Mpc]

−5

0

5

∆
ξ l
/σ

ξ l

−0.5

0.0

ξ 0
(s

)

DS2

−0.05

0.00

ξ 2
(s

)
0.00

0.02

ξ 4
(s

)

0 10 20 30 40 50 60 70 80

s [h−1Mpc]

−5

0

5

∆
ξ l
/σ

ξ l

−0.4

−0.2

0.0

ξ 0
(s

)

DS3

−0.02

0.00

0.02

ξ 2
(s

)

−0.02

0.00

0.02

ξ 4
(s

)

0 10 20 30 40 50 60 70 80

s [h−1Mpc]

−5

0

5

∆
ξ l
/σ

ξ l

0.0

0.2

ξ 0
(s

)

DS4

−0.05

0.00

0.05

ξ 2
(s

)

−0.025

0.000

0.025

ξ 4
(s

)

0 10 20 30 40 50 60 70 80

s [h−1Mpc]

−5

0

5

∆
ξ l
/σ

ξ l

0

1

2

ξ 0
(s

)

DS5

−0.1

0.0

0.1

ξ 2
(s

)

−0.05

0.00

0.05

ξ 4
(s

)

0 10 20 30 40 50 60 70 80

s [h−1Mpc]

−5

0

5

∆
ξ l
/σ

ξ l

0

100

s2
ξ 0

[h
−

2
M

p
c2

]

2PCF

−100

0

s2
ξ 2

[h
−

2
M

p
c2

]

−25

0

25
s2
ξ 4

[h
−

2
M

p
c2

]

0 10 20 30 40 50 60

s [h−1Mpc]

−5

0

5

∆
ξ l
/σ

ξ l

Figure 3.7: Comparison of monopoles (ξ0, orange), quadrupoles (ξ2, blue) and hexade-
capole (ξ4, green) between models (lines) and simulations (data points with errors). The
first five main panels (DS1-5) show the CCF multipoles of each DS quintile, whereas the
last panel at the bottom right (labeled 2PCF) shows the multipoles for the galaxy two point
correlation function- Solid lines represent model predictions with the Gaussian streaming
model with all its ingredients measured from simulation. Dashed lines shows our best-fit
model with the free parameters that account for the density-velocity coupling and veloc-
ity dispersion. The error bars represent 1σ standard deviations for 1 simulation box of
(1.5h−1Gpc)3 from the 300 mock realisations. The bottom sub-panels show the deviation
between the model and the measurements from simulations, in units of the dispersion in
the simulation. The grey-shaded area shows the 1σ region. The amplitudes of the galaxy
2PCF multipoles have been scaled by a factor of s2 for clarity.

those scales.

As can be seen in Fig. 3.5, the BAO feature is clearly present in the CCF of all

quintiles at s ∼ 105 h−1Mpc, especially when µ ∼ 0, i.e. the direction perpendicular

to the line of sight. To better visualise this large-scale feature, Fig. 3.8 shows the
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Figure 3.8: Monopoles s2ξ0 of the redshift-space cross-correlation functions between
positions in different density quintiles (labeled as DS1-5) and the entire galaxy sample.
The BAO feature is seen as prominent peaks or dips around ∼ 105h−1Mpc for all quintiles.
The case for the two-point correlation function is labeled 2PCF. Data points with errors are
measurements from simulations. Solid lines are predictions from the Gaussian streaming
model, with all its ingredients measured from the simulation (see also Fig 3.5 for their 2D
versions).

monopoles of the CCFs of all DS and the standard 2PCF, rescaled by s2. The BAO

feature is clearly seen for all quintiles as a peak (DS4-5) or dip (DS1-3), with an am-

plitude proportional to that of the overall CCF. As we will see later, accessing this

information significantly improves the constraints on the geometrical (AP) distor-

tion parameters. While the information from the BAO feature has been commonly

used in RSD analyses of the galaxy 2PCF (e.g., Sánchez et al. 2017a; Beutler et al.

2017; Bautista et al. 2021), it has often been ignored in void RSD studies (but see

Zhao et al., 2020, for a demonstration of how voids can help to optimise the BAO
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measurement in a galaxy sample). This is partly due to the fact that many authors

choose to re-scale the void-galaxy profiles by the void radius (e.g. Cai et al., 2016;

Hamaus et al., 2020). This rescaling helps to boost the signal from the void ridge,

which is useful for gravitational lensing analyses around voids (e.g. Higuchi et al.,

2013; Krause et al., 2013; Melchior et al., 2014; Clampitt & Jain, 2015; Cautun et al.,

2018; Cai et al., 2017; Sánchez et al., 2017b; Raghunathan et al., 2020). It is also

convenient when applying the Alcock-Paczynski test for voids (Sutter et al., 2012).

However, it effectively washes out any BAO signal present on large scales.

3.1.5 Other RSD models suitable for split densities

The modelling of RSD around different density quantiles has no fundamental

difference from the modelling of the void-galaxy or cluster-galaxy CCFs (Lilje &

Lahav, 1991; Croft et al., 1999; Zu & Weinberg, 2013; Mohammad et al., 2016).

Hamaus et al. (2015) employed the Gaussian streaming model for modelling RSD

around voids and, together with the assumption that the density and streaming

velocity are linearly coupled, they found that the model is biased at the ∼10 percent

level for both AP and growth parameters, but their application of the model to

BOSS CMASS mock galaxies and real data seems to be consistent with their fiducial

cosmology (Hamaus et al., 2016). Accounting only for the streaming velocity, Cai

et al. (2016) derived the full expression for RSD around voids, and for spherical

density profiles in general (Eqs. 1-4 of their paper), which I summarise here 4:

1 + ξs(s) = [1 + ξr(r)]

[
1 + (1− µ2)

1

aH

v(r)

r
+ µ2 1

aH

∂v

∂r

]−1

. (3.4)

4(Cai et al., 2016) noted ξ as δ because the cross-correlation function is indeed the same as the
stacked density profile, which is usually written as δ(r). There was a typo where they should have
noted the redshift-space coordinate as s, rather than r, which was pointed out in Nadathur et al.
(2019b).
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The above can be applied to map between the real and redshift-space CCFs around

spherical regions. When expanding to the linear order, we have

ξs(s) = ξ(r)− (1− µ2)
1

aH

v(r)

r
− µ2 1

aH

∂v

∂r
. (3.5)

This takes the same form as expanding the Gaussian streaming model to the linear

order, keeping only the first derivative, i.e. neglecting terms that are related to

the velocity dispersion [e.g. Page 289 of Peebles (1980), Eqs. 24-25 of Fisher (1995),

Eqs. 16-17 of Reid & White (2011)]. When further assuming linear coupling between

the density and velocity, i.e. Eq. (2.9), we have

ξs(s) = ξ(r) +
1

3
f ξ̄(r) + fµ2[ξ(r)− ξ̄(r)]. (3.6)

This is the linear theory expression for CCFs (Kaiser, 1987; Cai et al., 2016)5.

All the above expressions account for only the streaming velocity. To include

velocity dispersion, Nadathur et al. (2019b) convolve Eq. (3.4) with the velocity

dispersion as

1 + ξs(s⊥, s‖) =

∫ {
1 + ξs

[
s⊥, s‖ − v‖/(aH)

]}

P(v‖, r)dv‖ , (3.7)

where ξs(s) takes the expression from Eq. (3.4), and P(v‖, r) is assumed to be Gaus-

5Note that, although Nadathur et al. (2019b) assume the linear coupling of Eq. (2.9), they
expand Eq. (3.4) and keep terms such as ξξ̄ and ξξ (ξ∆ and ξδ in their notation). This to us is
2nd order in mathematical term, and is no longer a linear model.

It was also noted in Nadathur et al. (2019b) and Nadathur et al. (2020) that the GSM does
not reduce to linear theory at the limit when the dispersion is small. However, it has been shown
in Fisher (1995) that the GSM naturally reduces to linear theory when allowing scale-dependent
velocity dispersion. I have also verified numerically that when σ‖ is very small, the GSM reduces to
the case where there is only streaming velocity, i.e. Eq (3.4). Further, if a linear coupling between
the density and velocity is assumed, i.e. a pure linear system, then the GSM does get back to it.
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sian with a zero mean, i.e.

P(v‖, r, µ) =
1√

2πσ‖(r, µ)
exp

[
−

v2
‖

2σ2
‖(r, µ)

]
. (3.8)

This is similar to the well-known Gaussian streaming model (i.e. Eq. 2.3), except that

the streaming velocity is explicitly taken off from the exponential part, and being

left to be accounted for by the Jacobian, i.e. the mapping from real to redshift-space

CCF in Eq. (3.4).6
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Figure 3.9: Similar to Fig. 3.7, showing multipoles for the cross-correlation functions
in the extreme DS quintiles (voids on the left and clusters on the right-hand side panels,
respectively). The data points and errors are measurements from the mock galaxy cata-
logues. The solid and dashed lines show predictions from the Gaussian streaming model
(Eq. 2.3) and Eq. (3.7) (with Eqs. 3.4 & 3.8), where all model ingredients are fully known.
The dotted lines show predictions from the Gaussian streaming model but with the linear
density-velocity coupling assumption (Eq. 2.9).

I used the simulations to compare the performance of the this prescription (i.e.

Eq. 3.7 with Eqs. 3.4 & 3.8) with the GSM for DS, taking all the ingredients of the

model from our mock galaxies, i.e. ξ(r|∆i), vr(r|∆i) and σ‖(r, µ|∆i). Fig. 3.9 presents

6We notice that the µ-dependence was missed out in the expression of P(v‖) in (Nadathur et al.,
2019b, 2020). Without the explicit µ-dependence for the dispersion term, the impact of σ‖ is slightly
weakened.
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this comparison for DS1 and DS5. We can see that, although small deviations

from the quadrupole can be spotted between 20-30 h−1Mpc, and from the measured

monopole in DS5 below 10 h−1Mpc, their overall predictions are very similar across

all scales for both DS1 and DS5.

Note that the solid and dashed lines are the most optimistic scenario where all

the ingredients of the model are assumed to be known. Many studies have assumed

linear coupling between the density and velocity (Eq. 2.9) (e.g. Hamaus et al., 2016;

Hamaus et al., 2017, 2020; Nadathur & Percival, 2019; Nadathur et al., 2020). To

test the accuracy of this assumption, I show in dotted lines the GSM with this

approximation, labeled as ‘Linear GSM’. We can see that for DS1, Linear GSM

shows larger deviation than GSM at small scales for the monopole, and slightly

underpredicts the quadrupole at intermediate scales, but the overall agreement with

the simulation is fairly good. This is expected, as DS1 is similar to the void-galaxy

cross-correlation function, where non-linearity around voids is thought to be weaker.

This does justify the linear coupling assumption for voids so far, as has been adopted

in the literature, but at the per cent-level precision promised by future surveys, it is

important to model this coupling relationship more accurately.

For DS5, however, the deviations between the linear models and the measure-

ments are much larger at a few tens of h−1Mpc. This is because the density contrast

for DS5 is larger, similar to the cluster-galaxy CCF, thus the growth of structure

is expected to be more non-linear. The failure of the linear coupling model is also

evident from Fig. 3.3, where the linear velocity profiles over predict the version from

the simulations at small scales. It is also worth nothing that even though DS2-4 are

transition stages between voids and clusters, thus having more moderate density con-

strasts, neither the linear nor the empirical density-velocity couplings are sufficient

to correctly describe their radial velocity profiles in Fig. 3.3. After having calculated

the radial velocity profiles directly from the dark matter distribution, I have found

that the velocities sampled by galaxies around DS centres are biased against that of
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dark matter at the level of tens of km/s. I believe that this is due to the sparsity

of our galaxy samples, as a galaxy number density that is too low might result in a

misestimation of the measured velocities. While this velocity bias is sub-dominant

for DS1 and DS5, it becomes relatively more severe for DS3 and DS4, which have

smaller velocity magnitudes at small scales. A galaxy sample with a higher number

density might be able to reduce this velocity bias and help reconcile the empirical

model with the measurements. Generally speaking, I believe that there is substantial

room for improving the prediction of velocity statistics for DS. In a sense, the free

parameters from the empirical model I introduced are absorbing some of the uncer-

tainties due to the assumptions in the modelling (e.g. the linear bias assumption).

It is likely that many of the developments for the calculation of pairwise velocity

statistics for the 2PCF (e.g. Vlah et al., 2016; Chen et al., 2020) will also be useful

for DS.

In summary, I have shown that:

1. given the same conditions, and assuming that the model ingredients are fully

known, the GSM and Eq. (3.7) lead to almost equivalent predictions. These results

differs from what was reported in Nadathur et al. (2019b, 2020) for voids, where

significant deviations for the GSM model were reported.

2. the assumption of a linear coupling between density and velocity is not accurate

for the statistical errors of our concern, i.e. a volume of (1.5h−1 Gpc)3.

I therefore will use the GSM model as default for our analysis. Eq. (3.7) should

perform similarly, as demonstrated in this section.

3.2 Constraining cosmology with density split RSD

I have demonstrated in the previous section that the GSM works well for all CCFs

in DS, and better than for the standard galaxy 2PCF. The main reason is that the

key condition for the model – the Gaussianity of the density and velocity field, is
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not valid at small scales for the 2PCF. This implies that the 2PCF is insufficient

to capture all the information in this non-Gaussian regime. With DS, however, the

Gaussianity condition continues to be valid. It is compelling to ask if the combination

of the whole series of cross-correlations, i.e. ξ(s, µ|∆1,2,3,4,5), contains any more

cosmological information than the 2PCF, ξ(s, µ). Using the same model (GSM) for

both the DS and 2PCF sets a common ground for us to make a fair comparison for

the cosmological information contained in these statistics.

Three ingredients are needed for extracting cosmological information with the

GSM using redshift-space auto- and cross-correlation functions:

• The real-space two-point correlation function ξ(r); or the conditioned correla-

tion functions ξ(r|∆i).

• The real-space pairwise velocity profile vr(r); or conditioned (stacked) velocity

profiles vr(r|∆i).

• The real-space pairwise velocity dispersion σ‖(r, µ); or the conditioned (stacked)

velocity dispersions σ‖(r, µ|∆i).

Significant efforts have been made to predict these three profiles. Among them,

the real-space 2PCF ξ(r) is the key. It can be predicted with the halo model, per-

turbation theory, or emulators with simulations (e.g. Peacock & Smith, 2000; Seljak,

2000; Zentner et al., 2005; Angulo & White, 2010; Zhai et al., 2019). Once ξ(r) is

known, it can be used to compute ξ(r|∆i) if the PDF of ∆ is known. There are

existing model frameworks that allow us to do this (Abbas & Sheth, 2005; Friedrich

et al., 2018; Gruen et al., 2016; Neyrinck et al., 2018). With spherical dynamics, Uh-

lemann et al. (2016) was able to predict the full PDF of ∆ accurately at 10h−1Mpc,

which would be sufficient for our purpose. The velocity profiles can be predicted also

from ξ(r) and ξ(r|∆i), once the coupling relationship between density and velocity

is known. In addition, when galaxies are used as tracers, a bias model is needed to

connect the clustering of galaxies to the clustering of dark matter.
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In this chapter, with the aim to compare the constraining power on cosmology

of the 2PCF versus DS, I will use the real-space 2PCF and CCF measured from the

simulations as my model inputs. I then employ the empirical model with one free

parameter to model the coupling between the densities and velocities, i.e. Eqs. (2.7)

& (2.10). I further adopt the shape of the velocity dispersion profiles from the

simulations, and allow their overall amplitudes to vary with one single free parameter

σv. I will also adopt a linear bias scheme, i.e. ξ(r) = b2ξm(r); and ξ(r|∆i) =

bξm(r|∆i), where ξm(r) is the two-point correlation function of matter (the condition

on the spherical top-hat density is the same one I introduced in Chapter 2).

There may be considerations for another bias parameter related to the densities

smoothed at 15 h−1Mpc, which I will call bDS, and this is also relevant to the dis-

cussion for the possible peculiar motions of these 15 h−1Mpc spheres (Cai et al.,

2016; Massara & Sheth, 2018). Indeed, if one measures the ratio between ξ(r|∆i)

and the matter 2PCF ξm(r), I find that on large scales, the result is consistent with

the product of bDS and the galaxy bias b, with bDS varying from ∼ −3 to ∼3 from

DS1 to DS5. However, bDS is irrelevant for this modelling, as it is only the ratio

between ξ(r|∆i) and ξm(r|∆i), which is the linear galaxy bias b, that matters. Like-

wise, the possible peculiar motion of those 15 h−1Mpc spheres does not seem to have

any meaningful impact on the mapping between real and redshift-space CCFs, as

evident by the success of the modelling for the redshift-space CCFs shown in Fig. 3.5

& Fig. 3.6.

Note that the density splitting and model ingredients for the GSM have been

obtained in real space. Even with the PDF of the density and all the ingredients of the

GSM model being predictable analytically, as mentioned above, we still have to face

the issue that density splitting may have to be done in redshift space in observation.

As the ranks of the smoothed densities by a 15 h−1Mpc top-hat filter may be affected

by redshift-space distortions, splitting density in redshift space will inevitably cause

mixing between quantiles from their real space version. This issue exists similarly
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for identifying voids in redshift space. There are at least three known approaches

to tackle this. 1. Nadathur et al. (2019b) and their later work use reconstruction

to re-install the positions of galaxies in real space, and perform void finding in the

reconstructed galaxy field. This seems to work well and one can do the same for DS

in principle. 2. Hamaus et al. (2020) uses the Abel transformation to reconstruct the

real-space profiles of voids from the projected profiles along the transverse direction.

Using this approach for DS, one may not need analytical predictions for the PDF

and real-space profiles. 3. Repp & Szapudi (2020) has also developed a method to

map counts-in-cells between real and redshift space. This may also be applied to

reinstall the real-space PDF of the smoothed galaxy number densities, and hence

allow the subsequent density splitting in real space. In Chapter 4, I will apply the

DS framework to an observational dataset, using reconstruction to remove RSD from

the galaxy samples.

Similarly, density splitting may also be affected by geometry distortions, the AP

effect. In principle, for each q⊥, q‖ combination, the smoothing radius should be

rescaled by q = q
2/3
⊥ q

1/3
‖ , and thus the density splitting would need to change at each

iteration of the MCMC. However, I have explicitly tested this effect by performing

the density splitting with different smoothing radii, using values that are within the

range of our priors for the AP parameters. I have found that the inferred real-space

profiles do not change significantly in shape or amplitude within the scale ranges

that are used in the fits, which means that using a fixed smoothing radius is a

good approximation under these conditions. One way around this issue for future

analysis with observational data would consist in predicting the real-space density

PDF, together with the real-space stacked density and velocity profiles, for any given

cosmology and without having to rely on simulations, thus effectively generating the

density splitting model ingredients on-the-fly for each step of the MCMC chain.

Our observables/data vectors would be the combination of all five ξ(s, µ|∆i) in

redshift space for DS, and ξ(s, µ) for the 2PCF. In practice, I use Eq. (3.3) to
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extract the monopole, quadrupole and hexadecapole contributions, and concatenate

the multipoles into a single vector:

ξ = (ξ0, ξ2, ξ4) . (3.9)

In this way, for DS our data vector is the concatenation of 3 multipoles and 5

quintiles, ξ1+2+3+4+5(s). For the 2PCF, it is simply the combination of 3 multipoles

ξ(s).

The model parameters for the DS fits are

θDS =
(
fσ12, bσ12, σv, q⊥, q‖, ν

1, ..., νn
)
, (3.10)

where n is the number of quintiles to be used in the analysis, f(z) is the growth rate

of structure parameter; σ12 is the rms mass fluctuation in spheres with a radius of

12 Mpc, expressed in h-independent units (see Sánchez, 2020, for a discussion on why

fσ12 is a more adequate parameter than the standard fσ8 parameter combination

to describe the information content of RSD), b is the linear galaxy bias, σv is the

amplitude parameter for the velocity dispersion (one free parameter σv is sufficient

to fit all quintiles simultaneously, as I have explicitly verified that the individual

DS quintiles show σ‖(r, µ) functions that converge at approximately the same value

on large scales), q‖ and q⊥ are the Alcock-Paczynski scaling parameters that vary

independently (Eq. 2.15) to re-scale the corresponding parallel and transverse dis-

tance separation vectors. As the ratio of these AP parameters is of cosmological

interest, I will also show the derived parameter q⊥/q‖. νi are the parameters spec-

ifying the density-velocity couplings from Eqs. (2.7) & (2.10). For DS, I use one ν

parameter per quintile, as the radial velocity profiles can have notoriously different

shapes depending on the environment. The analysis of the 2PCF requires the same
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parameters, with the exception of a single coupling parameter ν, that is

θ2PCF =
(
fσ12, bσ12, σv, q⊥, q‖, ν

)
. (3.11)

This means that the analysis of DS has additional degrees of freedom that could

potentially degrade its constraining power for cosmology.

Since the galaxy monopole was measured from a simulation with a fixed bσ12 in

the mock catalogues, I allow for DS a rescaling of its amplitude as

ξ(r|∆i) = bσ12
ξ(r|∆i)mock

(bσ12)mock
, (3.12)

and for the 2PCF as

ξ(r) = (bσ12)2 ξ(r)mock

[(bσ12)2]mock
, (3.13)

where the subscript ‘mock’ denotes the quantity measured from the simulations.

Note that for DS, linear galaxy bias b and the amplitude parameter σ12 enter

Eq. (3.12) linearly, rather than quadratically, as ξ(r|∆i) is a measure of density

profiles, and not a two-point statistic. This is also evident from Fig. 3.3 where the

density-velocity coupling in the linear regime for cases in DS follow Eq. (2.9) and

not Eq. (2.5).

I explore the parameter space by means of a Markov Chain Monte Carlo (MCMC)

procedure, using the emcee software7. I set flat, non-informative priors for all

parameters, as specified in Table 3.1. At each step of the chain, I concatenate

the model predictions for the monopole, quadrupole and hexadecapole from each DS

quintile (or a single measurement in the case of the 2PCF) into a single theory vector

7emcee.readthedocs.io/
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Figure 3.10: Cross-correlation coefficients for the covariance matrix defined by Eq. (3.16),
for the Density Split (left) and the 2PCF (right). The solid lines divide the regions where
each multipole contributes. The superindices in the DS covariance indicate the contributing
quintile. Significant contributions can be seen from the first (ξ1

l ) and fifth (ξ5
l ) quintiles,

respectively. There are no strong correlations among ξ0, ξ2 and ξ4 within each quintile, but
there is significant anti-correlation between the multipoles from the first and fifth quintiles
(voids and clusters) in DS.

ξtheory, and quantify its deviation from the measured data vector ξdata by computing

χ2 =
(
ξtheory − ξdata

)
C−1

(
ξtheory − ξdata

)T
, (3.14)

where C is the covariance matrix of the data vector. Then, the log-likelihood can be

expressed as

logL = −1

2
χ2 . (3.15)

The covariance matrix is estimated by measuring ξdata on all the mocks, as

C =
1

N − 1

N∑

k=1

(
ξdata
k − ξdata

)(
ξdata
k − ξdata

)
, (3.16)
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where N = 300, and ξdata is the mean data vector. As this covariance is measured

from a finite number of mocks, its inversion provides a biased estimator of the true

precision matrix. In order to account for this effect, I multiply C−1 by a correction

factor (Hartlap et al., 2007), given by

α =

(
1− Nb + 1

N − 1

)
, (3.17)

where Nb is the number of bins of the data vector, and N is the number of mocks

(see also Sellentin & Heavens, 2016, for an alternative approach to robustly estimate

the uncertainty in the covariance matrix). After including this correction factor, the

estimate of the precision matrix is unbiased, although it can still be affected by noise

due to the finite number of simulations that are used, which can propagate further

into the cosmological constraints (Percival et al., 2014). However, I have explicitly

verified that when using a theoretically-derived Gaussian covariance matrix that is

free of noise (Grieb et al., 2016), the inferred cosmological parameters from the 2PCF

are recovered to better than 1 per cent with respect to the case where the covariance

is estimated from the mocks. Currently, it is not possible to perform such a test

for DS, as I lack a method to generate a noise-free Gaussian covariance for the DS

multipoles. Nevertheless, I expect such a correction to be of similar order to the

2PCF case. An explicit verification of this is left for future work. Examples for

the full covariance matrices for DS1+5 and 2PCF are shown in Fig. 3.10. There

are significant anti-correlations between the multipoles in DS1 and DS5, as these

correspond to voids and peaks of the density field.

3.2.1 Parameter constraints

Before presenting the main cosmological constraints, I want to stress-test the

numerical accuracy of the model and our simulation set up. There are at least two

factors to consider: 1. with a large covariance matrix to invert, and a finite num-
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ber of simulation boxes (300), we want to reduce the size of the covariance matrix

where possible to make sure that it is invertible and accurate. 2. the precision of

constraints increases rapidly when the minimum scale included in the fits, smin, is de-

creased. Despite the excellent agreement between the GSM and the two-dimensional

correlation functions measured from the simulations (Figs. 3.5 & 3.6), I need to find

a balance between precision and accuracy, which is likely to depend on smin.
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Figure 3.11: Cosmological parameter constraints obtained by combining CCFs from
different DS quintiles (labeled in different colours and deliberately offset from each other
for clarity). The markers show the median value of the marginalised posterior distribution
for each parameter, while the error bars represent 68 per cent confidence levels. The
horizontal dashed lines show the values from the cosmology of the simulations. Note that
in order to reduce the size of the data vector, necessary to construct a reliable covariance
matrix that includes all quintiles, given the limited number of simulation boxes, ξ4’s are
not used for the fitting in this figure. This only causes a minor increase of the errors.

I start by running MCMC for a wide range of smin, different combinations of den-

sity quintiles and a fixed maximum fitting scale smax = 141h−1Mpc. The constraints
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on cosmological parameters after marginalising over all the nuisance parameters (i.e.

the velocity dispersion σv and the couplings νi) are shown in Fig. 3.11. We can

see that on scales smin ≥ 50h−1Mpc, using only DS1 (equivalent to the void-galaxy

CCF) yields almost the same constraints as DS1+5 (equivalent to the void-galaxy

CCF plus the cluster-galaxy CCF), or DS1+2+3+4+5. This is expected in the

Gaussian linear regime. At smin = 30 h−1Mpc, the combination of DS1+5 starts to

yield better constraints than DS1 alone, and DS1+2+3+4+5 is slightly better than

DS1+5. At smin = 20h−1Mpc, the combinaton DS1+5 leads to tighter constraints

than DS1 alone, indicating the value of combining the void-galaxy and cluster-galaxy

CCFs. Although at these scales the uncertainties obtained from the joint analysis

of DS1+2+3+4+5 (black points) are comparable to those obtained in the DS1+5

case, the results are clearly biased. Therefore, instead of the full combination, I

will use DS1+5 as our default case for DS, knowing that they can already yield

similar constraints as the case of DS1+2+3+4+5 in the range of scales where the

model is unbiased. These tests also inform us that with the volume that is being

simulated, (1.5h−1Gpc)3, the GSM provides unbiased constraints down to scales

s ' 15h−1Mpc. Therefore, I will set smin = 15h−1Mpc as the default case and

consider also the case of smin = 20h−1Mpc for comparison. Note that all data points

in Fig. 3.11 were obtained by fitting only the monopole and quadrupole. This is

the case for DS1, DS1+5 and DS1+2+3+4+5. The motivation behind this is that

I wanted to make a fair comparison between the different quantile combinations.

Since the covariance matrix of DS1+2+3+4+5 is prohibitively large when using all

3 multipoles, I stick to using monopole and quadrupole for all combinations, which

are thought to encapsulate most of the cosmological information of interest. This

criterion was only applied for this figure. Throughout the rest of the paper, DS1+5

always uses all 3 multipoles.

The posterior distributions of the parameters that contain cosmological infor-

mation are shown in Fig. 3.12 with smin = 15h−1Mpc and smin = 20h−1Mpc,
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Figure 3.12: Posterior distributions of the cosmological parameters inferred from two-
point correlation functions (2PCF) and cross-correlation functions from density splitting
(DS) (blue), with DS1+5 combined, using scales between 15-141h−1Mpc (left-hand side
side panel) and 20-141h−1Mpc (right-hand panel). Darker and lighter shades show the 68
and 95 per cent confidence levels around the best-fit values, respectively. The dashed lines
show values corresponding to the cosmology from the simulations.

respectively (see also Fig. A1 & A2 where all other parameters are presented).

For smin = 20h−1Mpc (right-hand side panel), the marginalised constraints for the

growth rate parameter at the 68 per cent CL are fσ12 = 0.445±0.049 for the 2PCF,

and fσ12 = 0.496±0.037 for DS. The result recovered from the DS 1+5 combination

represents a ∼ 33 per cent improvement in precision over 2PCF, even though this

case uses 60 per cent fewer sampling points than the full 2PCF. The advantage of

DS is stronger for AP parameters. While the 2PCF yields a constraint for the AP

ratio of q⊥/q‖ = 1.007 ± 0.029, DS has q⊥/q‖ = 1.012 ± 0.013, a 121% reduction of

the error, and reaching a ∼ 1% precision. Previous studies have already reported

that the multipoles of the void-galaxy CCF are particularly good at measuring this

ratio (Nadathur & Percival, 2019; Nadathur et al., 2020; Hamaus et al., 2020), which

is similar to having DS1. Here we can see that adding DS5, similar to the cluster-

galaxy CCF, helps to beat down the errors for AP parameters (Fig. 3.11). The
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galaxy bias parameter encapsulated in bσ12 is recovered at a precision of ∼ 2.3%

in DS, with bσ12 = 1.195 ± 0.028. This is slightly worse than 1.4% constraint from

2PCF. This perhaps indicates that on this scale, the constraints with DS are still

partially penalised by having the extra free parameter. It is also interesting to see

that the constraints on some parameter combinations from DS, such as fσ12 against

q⊥/q‖, show contours that are rotated with respect to the 2PCF, implying that there

is possibility for complementing the information from these two probes in galaxy

surveys, although this is beyond the scope of this work. A summary of the quoted

constraints with their corresponding precision and figures of merit can be found in

Table 3.1.

At smin = 15h−1Mpc, the parameters fσ12 and bσ12 are constrained to ∼ 6%

and ∼ 1% respectively for DS. All the AP parameters are down at the sub-per cent

level. The improvement for DS1+5 over 2PCF is much more significant (with the

exception of the growth rate), as shown on the left of Fig. 3.12 and in Table 3.1, with

reductions of errors on the fσ12 by 33%, bσ12 by 14%, and AP parameters typically

400-600% smaller. This is qualitatively expected. At smaller scales, the density

and velocity fields become even more non-Gaussian. Less information is extracted

from the two point statistics, and the cross-correlations between voids and peaks

with the galaxy field (DS1+5) seem capable of uncovering it (White, 1979; Saslaw &

Hamilton, 1984; Fry, 1985, 1986). However, note that the best-fit constraint for q⊥ is

2.4σ from the fiducial value, which is at the margin of being unbiased. Nevertheless,

it is also important to realise that the error on q⊥ is at the sub-per cent level, and is

a factor of ∼6 smaller than that recovered from the 2PCF. Even if I take the model

to be biased as the 3-σ level, and add this as the systematic error, the total error is

still significantly smaller (a factor of ∼2) than that from the 2PCF. It is likely that

with decreasing smin, the advantage of using DS for cosmological constraints over

the 2PCF will continue to increase. From the left-hand side panel of Fig. 3.12, the

rotation of the contours for DS relative to the 2PCF becomes very obvious. This
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again indicates the potential of even better cosmological constraints with DS and

the 2PCF combined.

The gain for the AP parameters q⊥ and q‖, as well as their ratio q⊥/q‖ with DS

over the 2PCF is more obvious than for the growth-rate parameter (fσ12). This is

likely because the CCFs in DS have relatively steep profiles around the scales of the

top-hat filter. In particular, DS1 and DS5 have very different slopes, sometimes of

the opposite sign from each other, while the 2PCF is relatively featureless at small

scales. This makes those CCFs more sensitively to the change of AP parameters via

Eq. (2.15), i.e. the derivatives of the CCFs with respect to the re-scaling parameters

q are larger.
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Figure 3.13: Left-hand side: parameter constraints with the 2PCF (green) and DS1+5
(blue) as a function of the minimum scale used in the fit. The error bars show the 1σ
spread around the best-fit values. The dashed-horizontal lines indicate values from the
cosmology of the simulation. Right-hand side: The ratio of the 1σ errors (from the left)
between DS and the 2PCF. The y-axis is shown in a logarithmic scale.

More generally, I also compare the constraining power between DS and the 2PCF

for a wide range of minimal scales smin, shown in Fig. 3.13. On large scales, where the

density field is nearly Gaussian, DS will not reveal information that is not already

contained in the 2PCF. In fact, DS is expected to deliver slightly worse constraints,
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since the fit is penalised by the inclusion of an extra nuisance parameter with respect

to the 2PCF (ν1 & ν5 versus ν). This is seen for the fσ12 parameter for smin >

30h−1Mpc, but the constraints for AP parameters are virtually the same between

the two cases for those large scales.

As the minimum fitting scale progressively gets smaller, the density and velocity

fields deviate from a Gaussian distribution, and the inclusion of the extra free pa-

rameter is compensated by the additional information that is captured by DS. This

happens at around smin = 30h−1Mpc. At smin = 20h−1Mpc, the constraints for the

growth parameter and AP parameters are all tighter with DS. This trend continues

towards smaller scales and the improvement for DS over the 2PCF continues until

smin < 15h−1Mpc, where the model for DS starts to show systematic biases larger

than the statistical errors for our sample.

3.2.2 Inclusion of BAO information in DS fits

As discussed earlier, the BAO information encoded at very large scales allows

us to constrain q⊥ and q‖ individually. This is demonstrated in Fig. 3.14, where I

compare the cases where the DS model fit is performed with and without including

scales between 80-141h−1Mpc, where the BAO feature is found. The exclusion of the

BAO scales leads to a strong degeneracy between q⊥ and q‖. Since the correlation

function in those intermediate scales is smooth and featureless, the model is not

particularly sensitive to the angle-averaged parameter combination q = q
2/3
⊥ q

1/3
‖ , and

can only constrain the AP ratio precisely. The inclusion of the BAO peak helps to

break this degeneracy, allowing constraints at the 0.8% and 1.4% level for q⊥ and q‖,

respectively. This information is valuable, as q⊥ and q‖ are defined in terms of the

comoving angular diameter distance DM(z) and the Hubble rate H(z), respectively,

which in turn allows us to put constraints on Ωm. On the other hand, the constraint

on fσ12 is virtually unchanged with the addition of scales of 80-141h−1Mpc. This is

expected, since fσ12 only benefits from the additional perturbation modes at those
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scales, which is a negligibly small fraction compared to those at small scales.
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Figure 3.14: Comparing cosmological constraints with cross-correlation functions from
DS, using scales between 20-80 h−1Mpc (red) and 20-141 h−1Mpc (turquoise). The latter
case includes scale of the BAO. The BAO feature in the cross-correlation function helps to
break degeneracies for the AP parameters (q⊥ and q‖) and improves their constraints, but
it has negligible impact on the growth parameter fσ12.

In summary, I have shown that when applying the same GSM model to the same

data with the same ranges of scale, DS tends to tighten the constraints for both

the growth parameter (fσ12) and AP parameters (q‖ and q⊥) over the 2PCF. The

improvement of DS over the 2PCF is relatively more significant for AP parameters.

I believe that there are two main reasons behind this:

(1) the density PDF becomes non-Gaussian at small scales. The 2PCF, which is

essentially a measure for the variance of the density field, becomes incomplete. The

combination of a series of CCFs in DS allows us to sample the non-Gaussian dis-
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tribution of the density PDF, hence recovering some information lost in the 2PCF.

This appears to be effective even with the combination of only DS1 and DS5, the

equivalent of voids plus clusters.

(2) the diverse and steep slopes of CCFs in DS near the top-hat smoothing scale

makes the use of DS more sensitive to AP parameters at small scales than for the

2PCF. This allows DS to break the degeneracy between AP parameters and the

growth parameter with just the small-scale information, and without employing the

BAO. On the other hand, the 2PCF needs the BAO scale to be included to break

such degeneracy. Therefore, when the BAO scale is not included in both cases,

i.e. with s < 80h−1Mpc, DS provides constraints on those cosmological parameters

many times better than the 2PCF, as I have checked explicitly. This suggests that

DS will be particularly powerful for RSD analysis with galaxy surveys covering a

relatively small volume where the BAO peaks are not well constrained.
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Chapter 4

Application to observations

This chapter will be dedicated to the application of the redshift-space distortions

with split densities method to an observational galaxy sample. Having validated

this framework on the Minerva cosmological simulations, and given the promising

prospects for precision cosmology using these clustering statistics, I wish to provide

a proof-of-concept of how to implement this methodology using galaxies from SDSS

DR12, highlighting the different sources of systematic errors that arise in observations

and add complexity to this clustering analysis.

4.1 The BOSS CMASS and LOWZ galaxy sam-

ples

The Sloan Digital Sky Survey1 (SDSS) has been pivotal for our understanding

of the Cosmos at the very large scales. It has granted us one of the most detailed

three-dimensional maps of the Universe ever made, with deep multi-color images of

one third of the sky, and spectra for more than three million astronomical objects.

The execution of SDSS has been separated in different stages and projects that

1https://www.sdss.org/
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Figure 4.1: Number density as a function of redshift for the LOWZ and CMASS galaxy
samples across the two Galactic caps.

aim to tackle different scientific questions. SDSS-III, for instance, consists of four

surveys executed on the same 2.5m telescope: the Apache Point Observatory Galac-

tic Evolution Experiment (APOGEE) the Baryon Oscillation Spectroscopic Sur-

vey (BOSS), the Multi-Object APO Radial Velocity Exoplanet Large-area Survey

(MARVELS), and the Sloan Extension for Galactic Understanding and Exploration

2 (SEGUE-2).

I use the final galaxy catalogues from BOSS, corresponding to SDSS DR12 (Alam

et al., 2015). The catalogue is divided into two spectroscopic galaxy samples, LOWZ

and CMASS, which cover a redshift range 0.15 < z < 0.75 and were selected based

on SDSS multicolour photometric observations (Gunn et al., 1998, 2006).

The CMASS sample is dominated by early type galaxies, and it is nearly com-

plete down to a stellar mass of M∗ ' 1011.3 M� for z > 0.45 (Maraston et al., 2013).

The LOWZ sample is primarily composed of red galaxies that live in massive haloes

(Parejko et al., 2013). Both samples were observed across the two Galactic hemi-
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spheres, referred to as the Northern and Southern galactic caps (NGC and SGC,

respectively). Fig. 4.1 shows how is the number density of each of these samples of

galaxies distributed across redshift.
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Figure 4.2: Footprint of the DR12 CMASSLOWZ galaxy sample across the northern
(red) and southern (blue) Galactic caps. The black lines show the plane of the Milky Way
across the sky.

I follow the procedure of DR12 clustering analyses and combine the LOWZ and

CMASS samples into a single catalogue that we call CMASSLOWZ. I further divide

this sample into two non-overlapping redshift bins of roughly equal volume, from

0.2 < z < 0.5 and 0.5 < z < 0.75. Fig. 4.2 shows how are these two subsets

distributed across the sky. The Milky Way disk is represented by the solid and

dashed black lines, while the NGC and SGC galaxy distributions are shown in red

and blue, respectively. As the main purpose of this chapter is to provide a proof

of concept of the application of the DS algorithm to observations, the analysis will

be restricted to the NGC. However, I plan to carry out a more detailed analysis

including the SGC in future work.
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Throughout this observational analysis, I will assume a flat ΛCDM model, adopt-

ing Ωm = 0.307 (Planck Collaboration et al., 2016) to convert redshifts to radial

comoving distances. This will facilitate the comparison with other studies in the

literature.

4.2 Density field reconstruction

As explained in Chapter 2, the DS algorithm relies on calculating cross-correlation

functions between split densities identified in real space, and redshift-space galaxies.

While real-space galaxy positions are always known in N-body simulations, this is not

the case in observations, where the galaxy samples are naturally observed in redshift

space. To overcome this, we use the method proposed in Nadathur & Percival (2019)

to reconstruct the approximate real-space galaxy positions by removing effects of

large-scale velocity flows. This way, we can identify the split density centres in the

reconstructed galaxy field, which works as a pseudo-real space, and calculate the

cross-correlation functions between those centres and the redshift-space galaxy field.

Let us place ourselves in a Lagrangian framework, in which the Eulerian position

x at time t can be described in terms on the initial Lagrangian position q and a

non-linear displacement field Ψ(q, t):

x(q, t) = q + Ψ(q, t) . (4.1)

The galaxy overdensity field δg(x, t), can be related to the displacement field by

(Nusser & Davis, 1994)

∇ ·Ψ +
f

b
∇ · (Ψ · r̂)r̂ = −δg

b
, (4.2)

where b is the linear bias parameter that relates the galaxy density field to the

underlying matter distribution. The full solution to Eq. 4.2 includes contributions

56



4.2. DENSITY FIELD RECONSTRUCTION

to the velocity flow coming from galaxy peculiar velocities at the corresponding

redshift, as well as additional non-linear evolution that can be traced back to earlier

epochs. In BAO analyses (e.g. Alam et al., 2017), in an attempt to undo all effects

of non-linear clustering to sharpen the BAO feature to the best extent possible, the

full displacement field obtained by solving Eq. 4.2 is used. In my analysis, I am

only concerned about removing the RSD coming from galaxy peculiar velocities at

a certain epoch, so the part of the solution I am interested in is

ΨRSD = −f(Ψ · r̂)r̂ . (4.3)

By shifting the redshift-space galaxy positions by −ΨRSD, I obtain a pseudo-real

space galaxy catalogue that can be used to apply the density split framework. To

apply reconstruction to the CMASSLOWZ galaxy sample, I use the revolver2

code (Nadathur & Percival, 2019), which solves Eq. 4.2 by using an iterative fast

Fourier transform procedure. To run the code, we need to provide the redshift-space

galaxy catalogue, as well as the corresponding random catalogue that can be used

to estimate the density in each region of the survey volume. As the code performs

calculations of the density field on a rectangular grid, we also need to specify a grid

size to optimize the efficiency of calculations, which I take to be 5123, following BOSS

reconstruction analyses (Alam et al., 2017). The galaxy density field δg is smoothed

with a Gaussian kernel of width Rs, in order to reduce the sensitivity of the algorithm

to small scale density modes, for which the assumptions of the equations that were

presented above are not valid. I adopt Rs = 10h−1Mpc, which has been shown

to be a robust smoothing scale for previous analysis concerning RSD around voids

(Nadathur & Percival, 2019).

In terms of the cosmological dependence of the algorithm, Eq. 4.2 shows that

reconstruction is sensitive to the linear growth rate of structure f and the linear bias

2https://github.com/seshnadathur/Revolver
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parameter b. In practice, the RSD solution that I am concerned about has a full

degeneracy between f and b. In other words, it is only sensitive to the linear growth

parameter β = f/b. Therefore, as the reconstructed galaxy field itself now depends

on β, all summary statistics that are derived from this catalogue, including the DS

CCFs, will inherit this cosmological dependence. This point will need to be taken

into consideration in the likelihood analysis presented in Sec. 4.4.

4.3 Clustering measurements

I calculate the CCFs between DS centres and galaxies using the Davis & Peebles

estimator (Davis & Peebles, 1983):

ξ(s, µ|∆i) =
D1D2(s, µ)

D1R2(s, µ)
− 1, (4.4)

whereD1D2(s, µ) are the pair counts between DS centres and galaxies, whileD1R2(s, µ)

are the pair counts between DS centres and randoms. I assign weights to each galaxy

in our catalogues before pair counting. The first weight is designed to minimize the

variance in the measurments (Feldman et al., 1994) and is given by

wFKP(x) =
1

1 + Pwn(x)
, (4.5)

where n(x) is the galaxy number density at a position x, and Pw = 104 h−3Mpc3.

Additionally, I assign weights for close pairs affected by fiber collisions, wcp, failures

in the redshift determination, wnoz, and additional systematic effects in observations,

wsys. The total weight for each galaxy is then given by

wtot = wFKPwsys(wcpwnoz − 1) . (4.6)
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I use radial bins of 5h−1Mpc and µ bins of a constant width of 0.02 between -1

and 1. To estimate the covariance matrix for our clustering measurements, I use

the Multidark-Patchy mocks described in Kitaura et al. (2016), a suite of 2048

mock galaxy catalogues that were designed to match the clustering, footprint and

observational systematics of the BOSS DR12 galaxy samples. These mocks were

generated using the MD-Patchy algorithm (Kitaura et al., 2016), and use the best-

fit ΛCDM cosmology to the Planck 2013 CMB measurements (Planck Collaboration

et al., 2014). While the MD-Patchy mocks were calibrated to accurately reproduce

the monopole and quadrupole of the redshift-space galaxy 2PCF, it is not guaranteed

that they will reproduce other observables, such as the void-galaxy or cluster-galaxy

CCFs, with the same level of precision. This point will be of important when con-

sidering potential sources of systematic errors in the analysis.

The DS method relies on measuring CCFs between centres in real space and

galaxies in redshift space. To generate a pseudo-real space galaxy catalogue from ob-

servations, we reconstruct the CMASSLOWZ galaxy density field using the method

discussed in Sec. 4.2. I apply the same procedure in the MD-Patchy mocks to gen-

erate a reconstructed mock catalogue that can be used for the covariance matrix

estimation and model predictions. As explained in Sec. 4.2, the reconstruction algo-

rithm has a dependence on the linear growth rate parameter β. Since I am interested

in providing constraints for the growth rate of cosmic structure, I need to incorporate

this cosmological dependence into the likelihood analysis. In practice, this means

that the measurements and the model predictions (which are based on the recon-

structed density field) should change for each value of β. Since it is computationally

unfeasible to run reconstruction and calculate the necessary clustering statistics for

all the parameter space that will be explored, I instead reconstruct the galaxy field

and perform clustering measurements for 30 fixed β values, and interpolate over

these profiles in the likelihood analysis.

For 30 linearly spaced β values in the range [0.162, 0.649], I run the following
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algorithm, both for the CMASSLOWZ sample as well as for the MD-Patchy mocks:

1. Remove RSD from galaxy positions by applying reconstruction on the redshift-

space galaxy density field.

2. Calculate top-hat filtered density contrasts ξ(r = R) around 1 million random

points within the survey volume using the reconstructed galaxy catalogues and

a filter radius R = 25h−1Mpc.

3. Rank the filtered density contrasts in increasing order and split them into 5

bins or quintiles.

4. Cross-correlate the positions in each quintile with the galaxy field in redshift

space to obtain ξ(s, µ|∆i).

5. Cross-correlate the positions in each quintile with the reconstructed galaxy

field to obtain the real-space monopole ξ(r|∆i).

As ξ(s, µ|∆i) now implicitly depends on β through reconstruction, the covari-

ance matrix should also inherit this dependence. However, I have explicitly checked

that this dependence is very weak, and therefore I only calculate the covariance ma-

trix for the fiducial cosmology. This procedure has been shown to be a very good

approximation for cosmological analyses (Kodwani et al., 2019).

Fig. 4.3 shows the PDF of the integrated galaxy density contrasts for the CMASS-

LOWZ NGC sample, using β = 0.389, at the two redshift bins. The distributions

look fairly smooth and closely resemble what we had seen for the tests in N-body

mock catalogues. I have chosen an slightly larger filter radius for the top-hat filter

than in the N-body case, as I have found that using R = 15h−1Mpc results in a

dominant fraction of spheres being completely empty at that scale, presumably due

to the larger mean galaxy separation for this joint sample. Dividing the filtered den-

sity contrasts in 5 bins results in 2 × 105 points per quintile, which is sufficient for
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Figure 4.3: PDF of integrated galaxy density contrasts around random positions, using a
top-hat smoothing filter of radius R = 25h−1Mpc. The left-hand side and right-hand side
panels show the measurement in the lower and higher redshift bins of the NGC CMASS-
LOWZ samples, respectively. The different colours show the division of the PDFs in
different density quantiles.

the demonstration of the application of the DS algorithm on this dataset, but can be

increased in the future if one wishes to reduce the noise in the measurements, given

that enough computational resources are available. Fig. 4.4 shows the monopole

of the redshift-space CCF for the same samples. Again, the profiles resemble the

simulation-based scenario very closely, although the profiles are slightly noisier at

large scales. The BAO features are clearly present in each of the quintiles as either

a peak or depression around 105h−1Mpc. The profiles from the lower and higher

redshift bins are qualitatively similar, although the amplitude of the monopoles at

large scales appear to be slightly lower in amplitude for the lower redshift sample.

Figs. 4.5 & 4.6 show the decomposition of the redshift-space CCF into multipoles

for the lower and higher redshift bins, respectively. We can see that all of the fea-

tures that were previously spotted in the N-body simulations are also present in

the CMASSLOWZ multipoles, such as the change of sign and slope for some of the

quadrupoles when going from small to large scales. The features in the hexadecapole
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Figure 4.4: Monopole of the redshift-space CCF for different DS quintiles. The markers
show measurements from the CMASSLOWZ NGC sample from 0.2 < z < 0.5 (left-hand
side panel) and 0.5 < z < 0.75 (right-hand side panel). The shaded regions represent 1-σ
errors estimated from the MD-Patchy mocks. The amplitude of the profiles are scaled by
the square of the separation distance to highlight features at larges scales.

are much more subtle now due to the lower signal to noise, so it is expected that

they won’t contain significant cosmological constraining power. Nevertheless, I will

include them in the analysis for the sake of completeness and consistency with the

previous analysis on minerva.

As discussed in Chapter 2, the redshift-space CCF prediction coming from the

Gaussian streaming model requires 2 ingredients: the real-space ξ(r|∆i) and the

line-of-sight velocity dispersion profile σv(s, µ|∆i). As we have run reconstruction

on both the observational sample and the MD-Patchy mocks, we have two ξ(r|∆i)

estimates at our disposal. For our model predictions, we use the one estimated from

the Patchy mocks, as it is less noisy due to the possibility of averaging this mea-

surement over multiple realizations of the survey. For the LOS velocity dispersion,

σv(s, µ|∆i), it is not possible to measure it from the observed galaxy sample nor

the MD-Patchy mocks. A possibility would be adopt the profiles measured from
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Figure 4.5: Each panel shows the multipoles of the redshift-space cross-correlation func-
tion of different DS quintiles at 0.2 < z < 0.5. The markers show measurements from
observations, while the shaded regions show the 1-σ error bars estimated from the MD-
Patchy mocks.

the minerva simulations presented in Sec. 3.1.1. However, the HOD samples that

were built for Minerva only match the clustering of the CMASS sample, and were

generated at an effective redshift that differs from that of the redshift slices we use

here. We instead assume a constant velocity dispersion profile, which is not a bad

approximation for large scales (see Fig. 3.4).

Figs. 4.7 & 4.8 show the multipole decomposition of ξ(s, µ|∆i) from one of the

realizations of the MD-Patchy mocks. The solid line shows the predicted multipoles

from the GSM, using the true fσ12 and bσ12 from the mocks, as well as the best-fit

ν and σv parameters, assuming there are no AP distortions in the measurement.

The agreement between model and data for DS1 is quite good across a wide range
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Figure 4.6: Same as Fig. 4.5, but showing multipoles from 0.5 < z < 0.75.

of scales, even down to ≈ 1h−1Mpc, showing the good performance of the model

at predicting the dynamics of underdense regions. The fit to the higher redshift

voids appears to be better than its lower redshift counterpart at small scales. We

notice that the DS1 quadrupole seems to be slightly under-predicted at large scales,

although this deviation is still consistent within the error bars. For DS5, the model

prediction is accurate for the monopole across most scale ranges, but the agreement

with the quadrupole severely breaks down around 30h−1Mpc, which corresponds to

a larger scale than what we had seen earlier with the N-body simulations. This

discrepancy could be due to the assumption of a constant LOS velocity dispersion

profile, which starts to have a pronounced slope around this scale. The intermediate

quintiles, on the other hand, break down on much larger scales, around 60h−1Mpc,

similar to what we had observed with the N-body mocks. This is likely due to
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the inability of the empirical model to accurately predict the streaming velocity for

intermediate quantiles, an issue that could be related to DM-galaxy velocity bias

for these samples, as discussed in Sec. 3.1.5. The hexadecapole has a low signal to

noise for all quintiles and redshift bins, with the model prediction essentially being

consistent with zero across most scales. The measured ξ4 for DS5 at 0.2 < z < 0.5

appears to be systematically offset from the model prediction across all scales. As

mentioned in earlier, the MD-Patchy mocks are not guaranteed to match all multipole

moments of the void-galaxy or cluster-galaxy CCF from the BOSS DR12 sample, as

they were not calibrated considering these summary statistics. In fact. going back to

Fig. 4.5, we see that the measured DS5 hexadecapole from the CMASSLOWZ sample

is consistent with zero. This potential artifact in the mocks could also explain the

small under-prediction of the voids quadrupole at large scales, which should be very

easy to fit with the GSM if the true cosmology is known.

As mentioned earlier, I have measured all the clustering statistics for a grid of

β for which I ran reconstruction. In order to highlight how this helps to constrain

this parameter, Fig. 4.9 shows the measured and predicted quadrupoles for DS1,

taken directly from the MD-Patchy mocks. The different coloured lines show the

quadrupole that is obtained when using a reconstructed catalogue that was generated

adopting a particular β value. We can see that the amplitude of the features in the

measured quadrupole increases for lower β values, while the opposite trend is seen

for the model prediction. As the model will only be a good fit to the measurement

for values of β that are close to the true cosmology (such as in Fig. 4.8), this helps to

put constraints on the parameter combinations that will be explored in the likelihood

analysis.
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Figure 4.7: Multipoles of the DS redshift-space CCFs from the MD-Patchy mocks. The
markers show the measurements from the mock catalogues, while the solid lines show the
predictions from the GSM, using the true cosmology from the simulations.

4.4 Likelihood analysis

The setup for the likelihood analysis is similar to the one described in Sec. 3.2.

The parameter space is given by

θDS =
(
fσ12, bσ12, σv, q⊥, q‖, ν

1, ..., νn
)
. (4.7)

As I measure ξ(r|∆i) from the MD-Patchy mocks, I allow for a rescaling of its

amplitude at each MCMC step as

ξ(r|∆i) = bσ12
ξ(r|∆i)mock

(bσ12)mock
, (4.8)
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Figure 4.8: Sames as Fig. 4.7, but showing results from 0.5 < z < 0.75.

where ‘mock’ denotes the quantity measured from the mock catalogues.

As an intermediate step between the likelihood analysis from N-body mocks and

the CMASSLOWZ sample, I first run the MCMC pipeline on the MD-Patchy mocks,

in order to verify if my model is able to recover the true cosmology of these mock

catalogues that not only match the clustering and number density of CMASSLOWZ,

but also try to mimic the observational systematics present in the sample. To do

so, I average the clustering measurements over multiple MD-Patchy realizations,

in a similar fashion as was done for the Minerva simulations. Motivated by the

agreement between the measured and predicted multipoles for the MD-Patchy data

in the previous chapter, I perform the analysis on the DS1+2+4+5 combined dataset.

I adopt a minimum fitting scale of smin = 0, 60, 60 and 30 h−1Mpc for each quintile,

respectively, whereas the maximum fitting scale is 150h−1Mpc for all quantiles.
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Figure 4.9: The measured (left) and predicted (right) quadrupole of the DS1 redshift-
space CCF from the MD-Patchy mocks. The different curves show the dependence of the
quadrupole with the adopted value of β in reconstruction. Only at those values close to
the true β, the model will be a good fit to the measured ξ2.

Fig. 4.10 shows the posterior distributions for the main model parameters for the

two redshift bins, obtained by fitting the MD-Patchy mocks. For 0.5 < z < 0.75,

the precision for fσ12 is around 2 per cent, and the true cosmology from the mocks

perfectly agrees with the model fit. For 0.2 < z < 0.5, the precision is close to 3 per

cent, but the true fσ12 lies more than 2-σ away from the best-fit value. This hints

at the possibility that there are different sources of systematic errors affecting these

independent redshift bins. The constraints for the AP parameters are below 1 per

cent for both redshift bins. While the posterior for q⊥ agrees with the expected value

of 1 to within 1-σ (there should be no AP distortions under this setup, where we used

the true simulation cosmology to map redshifts to distances), the best fit values for q⊥

are biased high with respect to the true value. However, we have to consider that the

precision for q⊥ is around 0.2 per cent, greatly exceeding the recovered precision by

most other cosmological probes in the literature. As we did not observe a strong level

of bias in the model for the constraints of fσ12 or the AP parameters when testing our

methodology on the N-body Minerva mocks, we also need to consider the possibility
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Figure 4.10: Parameter constraints obtained by running the likelihood analysis on the
MD-Patchy mocks. Blue and red colours show results for 0.2 < z < 0.5 and 0.5 < z < 0.75,
respectively. Darker and lighter shades show 1-σ and 2-σ confidence regions around the
best-fit values, respectively.

of potential imperfections in the MD-Patchy mocks playing a role here. The MD-

Patchy mocks were created using the augmented Lagrangian perturbation theory

simulation method (ALPT, Kitaura & Hess, 2013), and therefore are not guaranteed

to reproduce the correct dynamics on small scales for some of the clustering statistics

we have used in our likelihood analysis. This scenario seems likely, as I have verified

that I obtain a similar level of bias between model and data when using larger

minimum fitting scales smin, for which other sources of systematic errors, such as the

assumption of a constant LOS velocity dispersion profile, should be less important.

Another potential source of uncertainty is the use of reconstruction to remove RSD

from the galaxy catalogues, and in particular, the use of iterative reconstruction aided
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Figure 4.11: Similar to Fig. 4.10, but showing results for the CMASSLOWZ observational
sample.

by interpolation, as explained in Sec. 4.3. While I have verified with the minerva

simulations that the model predictions for the multipoles of the DS CCFs are still

very accurate when using a reconstructed instead of a real-space galaxy catalogue, I

have not yet examined how is the likelihood analysis in those mocks affected by this

implementation.

Having observed the level of agreement between model and data for the higher

redshift bin, and keeping in mind the systematic offset of the fit for the lower redshift

sample, I proceed to fit the model to the observational dataset, using the combined

DS1+2+4+5 measurements under the same setup presented above. Fig. 4.11 shows

the parameter constraints when fitting the model to the CMASSLOWZ sample.

For the lower redshift bin, I obtain fσ12 = 0.519 ± 0.006, which corresponds to a

precision of 1.2 per cent. For the AP parameters, I obtain q⊥ = 1.002 ± 0.001 and
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q‖ = 1.008± 0.002, which translates to a 0.1 and 0.2 per cent precision, respectively.

The higher redshift bin, on the other hand, yields fσ12 = 0.468 ± 0.008, which is

close to a 2 per cent precision, while the AP parameters are q⊥ = 1.0 ± 0.001 and

q‖ = 1.014± 0.003.

To obtain the final constraints for fσ12, I add the statistical error found in the

MCMC fit to the CMASSLOWZ sample, δfσ12,STAT, to the systematic error found

in the fit MD-Patchy mocks, fσ12,SYS defined as the difference between the best-fit

value and the true cosmology from the mocks, as

δfσ12,tot =
√
δfσ12,stat

2 + δfσ12,sys
2 . (4.9)

I plot my estimate of fσ12 against values reported in other studies at different

redshifts in Fig. 4.12. I also extrapolate the best-fit value from Planck (Planck

Collaboration et al., 2016) to different redshifts, assuming a ΛCDM model, for com-

parison. The precision of the constraint at zeff = 0.38 is similar to that of other

studies at a similar redshift, and is consistent with Planck at the 1-σ level. The size

of this error bar is largely driven by the systematic error that was found in the model

when fitting the MD-Patchy mocks. One could argue that since we did not see a

significant bias in the modelling when analyzing the data from N-body simulations,

it is not advisable to estimate the systematic uncertainty from the MD-Patchy mocks

alone, which do not necessarily reproduce the correct dynamics of the statistics I am

probing in this study. However, my calculations in the minerva simulations were

done at zeff = 0.54, so it is difficult to extrapolate those results to the low redshift

bin of CMASSLOWZ. A more thorough analysis, that unfortunately lies beyond the

timeline of this thesis, would be benefited from the construction of HOD catalogues

based from N-body simulations at a simulation snapshot that is closer to zeff = 0.38,

which would allow us to examine if the biased estimation for fσ12 at this redshift

is a failure of the RSD model, or if it as artifact of the mocks themselves. The
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measurement at zeff = 0.61, on the other hand, has a much higher precision than

other RSD studies around the same redshift, and predicts a higher rate of structure

formation. This estimate only agrees with Planck at the 2-σ level. Since all data

points in this figure adopt ΛCDM as their baseline model, their dispersion high-

lights how the different assumptions in the modelling, as well as the characteristics

of the surveys themselves, introduce different systematic uncertainties in the same

measured parameter.
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Figure 4.12: Comparison of the constraint on fσ12 between this work and previous
analyses in the literature, including the 6dFGS (Beutler et al., 2012), GAMA (Blake et al.,
2013), WiggleZ (Blake et al., 2011), VIPERS (Pezzotta et al., 2017) (Howlett et al., 2015)
and BOSS DR12 analyses (Gil-Maŕın et al., 2016; Alam et al., 2017; Nadathur et al.,
2019a).
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Discussion and conclusions

I have presented a new method to analyse the signature of RSD in clustering mea-

surements inferred from galaxy redshift surveys. Instead of the conventional 2PCF,

I propose using the combination of a series of CCFs. These are CCFs obtained by

splitting random positions according to the local galaxy density, and cross-correlating

those positions with the entire galaxy field, thus using the exact same galaxy sam-

ple as in the 2PCF. This method builds upon the idea of DS statistics from weak

lensing analysis (Gruen et al., 2016, 2018; Friedrich et al., 2018) and the density-

dependent halo clustering presented in Tinker (2007), and generalises the modelling

of RSD around voids to environments of different local densities. The algorithm can

be summarised as follows:

1. Smooth the real-space galaxy number density field with a spherical top-hat

window in a number of randomly selected locations, and split the positions

into quintiles according to the smoothed densities.

2. Cross-correlate positions from each quintile with the galaxy number density

field in redshift space, and model the RSD in their clustering pattern using the

GSM.

3. Use MCMC to jointly fit RSD and Alcock-Paczynski distortions for each quin-
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tile, and we combine their information to obtain cosmological constraints.

I have started by testing and validating the model using a suite of N-body mock

galaxy catalogues that mimic the number density and clustering properties of the

BOSS CMASS galaxy sample. The main conclusions from this framework validation

can be listed as follows:

- The velocity field within each quintile of split density is close to Gaussian, and

this meets the key condition necessary for the GSM, providing the physical

reason for it to perform well at small scales.

- The GSM can fit the CCFs for every DS quintile with a remarkable accuracy.

It appears to work well at small scales (below 20-30 h−1Mpc) where the same

model, when applied to 2PCF, has stronger deviations from simulation. I

have also shown that recent models for the void-galaxy CCF (Cai et al., 2016;

Nadathur et al., 2019b) have no fundamental difference from the Gaussian

streaming model, and can work equally well for DS.

- By comparing the parameter constraints obtained with combining different

DS quintiles, I find that most of the cosmological information is contained in

the cross-correlations between the lowest and highest density quintiles (voids

and clusters) with the galaxy field. Consequently, there is no major loss of

constraining power when discarding the intermediate quintiles.

- On large scales, where the density field is is nearly Gaussian, there is no ad-

ditional gain of information when using DS, compared to the traditional RSD

analysis using the galaxy 2PCF.

- On scales below ∼ 30h−1Mpc, the non-Gaussian features of the density and

velocity field start to become important, and DS outperforms the constraints

from the galaxy 2PCF for fσ12, yielding a ∼7 per cent constraint with smin =
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20h−1Mpc. It is approximately 30 per cent better in precision than the 2PCF.

DS is most sensitive to geometrical distortions and can constrain the AP dis-

tortion parameters at the sub-per cent level, and up to ∼ 6 times better than

the 2PCF with smin = 15 h−1Mpc.

Having tested the proposed methodology with N-body mocks, I applied the

density split algorithm to the combined BOSS CMASS and LOWZ sample from

SDSS DR12. I split the galaxy sample into two non-overlapping redshift bins, from

0.2 < z < 0.5 and 0.5 < z < 0.75. I removed the RSD from the galaxy samples

by using a density field reconstruction algorithm, and used the reconstructed galaxy

field as a pseudo-real space galaxy catalogue, which is necessary for the application

of the density split algorithm. The main conclusions from the observational analysis

can be summarised as follows:

- Reconstruction is able to accurately remove RSD from the observational galaxy

catalogues, and the multipoles of the DS CCFs closely resemble what was found

in the N-body simulations. The dependence of the reconstruction algorithm

on the linear growth parameter β helps to constrain this parameter in the joint

RSD and AP likelihood analysis.

- The multipoles of the redshift-space CCF of split densities can be accurately

predicted for the lowest density quantile (i.e. cosmic voids) across all scale

ranges, and down to ∼ 30h−1Mpc for the highest density quantile (i.e. cluster-

like regions). The intermediate quantiles are well-fit down to a scale of ∼
60h−1Mpc.

- Using a suite of N-body mocks that mimic the clustering, number density and

selection function of the CMASSLOWZ sample, I verified that the GSM is able

to recover the true fσ12 value from the mocks without bias and with a ∼ 2

per cent precision for 0.5 < z < 0.75. However, the estimate for 0.2 < z < 0.5
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is biased low with respect to the mocks cosmology. A possible explanation for

this offset is a potential artifact in the mock catalogues, which might be unable

to reproduce the dynamics that drive the main clustering statistics this study.

There are also uncertainties introduced by reconstructing the galaxy density

field, and the assumption of a constant line-of-sight galaxy velocity dispersion

profile in the modelling. I add this offset to the systematic error budget of the

DS method for this redshift bin.

- By jointly fitting RSD and geometrical distortions to the CMASSLOWZ data,

DS is able to constrain fσ12 at the 2 per cent level for 0.5 < z < 0.75, which

constitutes an unprecedented precision compared to other probes at a similar

redshift. This estimate is in a 2-σ tension with Planck, and lies above the

constraints from other RSD studies that use the same data. The DS constraint

at 0.2 < z < 0.5 has a similar precision as other RSD studies around the same

redshift (around 12 per cent), and the error is mainly driven by the systematic

offset between the model and data found in the mock analysis.

As seen both in the theoretical and observational analysis of this thesis, the

advantage of DS over the galaxy 2PCF is most significant for AP parameters. DS

can reduce the errors on q⊥ and q‖ by a few times compared to the 2PCF at smin ∼
15h−1Mpc. This is likely due to the diverse and steep slopes for the monopoles of

CCFs in DS near the smoothing scale of the top-hat filter. The constraints on AP

parameters can be translated into constraints on parameters of the standard ΛCDM

model. For example, varying only Ωm and σ12, and all other cosmological parameters

fixed in the model, I find the marginalised constraints with DS on Ωm and σ12 under

these somewhat strict assumptions to be a factor of ∼ 3 and ∼ 40% tighter over the

2PCF, respectively.

The sensitive response to cosmology of the tails of the density distribution has

already been suggested in previous papers (e.g. White, 1979; Saslaw & Hamilton,
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1984; Fry, 1985, 1986; Zorrilla Matilla et al., 2020). Given that the most significant

constraining power is coming from the extreme DS quintiles, it would be interesting to

address whether the voids and clusters that are identified with the DS method provide

tighter constraints than those identified with dedicated void-finding algorithms, such

as the Spherical Void Finder (Padilla et al., 2005) and the Watershed Void Finder

(van de Weygaert & Platen, 2011), or group-finding algorithms, such as redMaPPer

(Rykoff et al., 2014). The selection criteria for these regions could play an important

role in the modelling side.

RSD with split densities is general. Although it is similar to the combination of

void-galaxy and cluster cross-correlations, it does not depend on a specific void or

cluster finding algorithm, and can be predicted from first principles. It is essentially

a series of conditioned correlation functions, which can be predicted once the PDF

of the density field and the real-space correlation function are known (Abbas &

Sheth, 2005; Shi & Sheth, 2018; Neyrinck et al., 2018; Friedrich et al., 2018). Given

the success of models that allow us to predict the PDF of a smoothed density field

(Uhlemann et al., 2016; Repp & Szapudi, 2018; Jamieson & Loverde, 2020), and

the existing model framework for predicting CCFs, it is hopeful that the model

prediction can be achieved with even higher accuracy in future studies.

When analyzing the N-body mock catalogues, I found that at small scales, e.g.

below 15h−1Mpc, the GSM starts to be biased at the precision of interest. I suspect

that multiple reasons can lead to the complication at those small scales: 1. the

linear galaxy bias model starts to break down; .2 higher order terms in the streaming

model start to become important, especially for DS5 (cluster-galaxy CCF), where the

velocity dispersion and its derivative may start to be significant (Fisher, 1995; Reid

& White, 2011); 3. as a long positive tail in the density PDF is expected, splitting

the density with 5 quantiles may not be sufficient, as the highest density quantile

will have a wide range of densities, and this will violate the Gaussian condition for

the velocities.
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The linear coupling between the density and velocity is insufficient. Forthcoming

large-area surveys, such as Euclid (Laureijs et al., 2011) and DESI (Levi et al., 2019)

will generate data sets that will be several factors larger in volume than current sur-

veys, requiring per cent-level precision on the modelling side. It is certainly needed

to go beyond the linear coupling. I have tested employing spherical dynamics for

modelling the velocity profiles, finding some improvements over the linear coupling

model, as also elucidated by previous work for voids (e.g. Demchenko et al., 2016),

but the accuracy is still insufficient for this purpose. The empirical model for the

coupling allows me to apply the GSM to a relatively small scale, at the cost that the

cosmological constraints have been penalised by marginalising over nuisance parame-

ters. Given the potential gain of cosmological information at small scales, improving

the modelling for the velocity and density coupling model may be very rewarding.

Throughout this work, I have not yet attempted the combination of DS CCFs

with the 2PCF, nor have I involved the PDFs of the density field for cosmological

constraints. Given the apparent different orientations for contours of the posteriors

between DS and the 2PCF, e.g. Figs. A1 & A2, it is hopeful that their combi-

nation would offer even tighter constraints for cosmology. This can be explored

when a larger suit of N-body simulations is employed, allowing a more reliable and

accurate covariance matrix to be constructed; or having an accurate analytical co-

variance matrix (Grieb et al., 2016). Likewise, the 3D PDFs of the density field,

i.e. the counts-in-cells statistics, have been demonstrated to be complementary for

parameter constraints (e.g. Uhlemann et al., 2020), especially for breaking degen-

eracy between b and σ12 (e.g. Repp & Szapudi, 2020). It is compelling to combine

DS, the 2PCF, and counts in cells all together, which may one of the best ways to

extract cosmological information from the initial conditions at small scales without

explicitly employing higher order statistics. Developing the joint covariance for the

three different cosmological probes is planned as a continuation of this work.

78



Appendix

79



CHAPTER 5. DISCUSSION AND CONCLUSIONS

0.4 0.5

fσ12

0.6

0.8

1.0

ν 2

0.0

0.4

0.8

ν 1

400

500

σ
v

0.96

0.98

1.00

1.02

q ⊥

0.95

1.00

1.05

q ‖

0.95

1.00

1.05

1.10

q ⊥
/q
‖

1.16

1.20

1.24

bσ
12

1.20 1.25

bσ12

0.95 1.05

q⊥/q‖

0.94 1.00 1.06

q‖

0.97 1.00 1.03

q⊥

400 500

σv

0.0 0.4 0.8

ν1

0.5 1.0

ν2

smin = 15h−1Mpc

2PCF

DS1+5

Figure A1: Similar to Fig. 3.12, but showing the posterior distributions for all parameters
included in the fit, with the exception of the second nuisance parameter ν2 in DS. The
minimum fitting scale used was smin = 15h−1Mpc.
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