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Abstract In applied population dynamics the choice of

stochastic per capita growth function has implications for

population viability analyses, management recommenda-

tions, and pest control. This model choice is often based on

statistical criteria, mathematical tractability or personal

preferences, and general ecological guidelines are either

too vague or entirely missing. To identify such guidelines,

it is important to understand how exogenous and endoge-

nous factors interact at the individual level and re-emerge

at the aggregated population level. We therefore study

different types of resource competition (contest vs.

scramble competition) and different types of exogenous

fluctuations (food and weather fluctuations) at the indi-

vidual level in a simple individual-based simulation model.

We statistically fit the resulting time series to find out (1)

which functional form of the growth function (‘hyperbolic’

or ‘exponential’) better describes contest and scramble

competition and (2) whether the pattern of population

fluctuations resulting from the simulations can be assigned

to vertical, lateral or nonlinear perturbations in the sto-

chastic growth function (a classification scheme suggested

by Royama 1992, Analytical Population Dynamics,

Chapman and Hall, London). We found that the same type

of competition can result in ‘hyperbolic’ or ‘exponential’

functional forms, depending on the type of exogenous

fluctuations. So it is the interplay between exogenous

variability and endogenous resource competition that

affects model performance. In contrast to the widespread

assumption of vertical (additive) perturbations, our findings

highlight the importance of (non-additive) lateral and

nonlinear perturbations and their combinations with verti-

cal perturbations. The choice of the stochastic growth

function should therefore consider not only statistical cri-

teria but also ecological guidelines. We derive such eco-

logical guidelines from our analysis.

Keywords Environmental noise � Model aggregation �
Population dynamics � Stochastic growth rate � Time series

analysis

Introduction

One of the more challenging tasks in applied population

dynamic theory, including time series analyses, is to

determine how natural populations will respond to chang-

ing environmental conditions such as climate change. It

requires an understanding of how endogenous and exoge-

nous factors affect density dependent population growth

and dynamics and is closely related to issues of model

choice and aggregation (Pascual and Levin 1999). Exoge-

nous factors such as weather conditions or food supply

generate fluctuations in the reproduction or survival of

individuals and thus generally impose stochasticity on
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population growth (e.g., Lande 1993; Johst and Wissel

1997; Ripa and Heino 1999; Bjørnstad and Grenfell 2001;

Ellner et al. 2002; Brännström and Sumpter 2006).

Endogenous factors such as intra-specific competition for

resources impose density dependence on population growth

and result in a density-dependent per capita growth rate

RðNÞ (called R-function e.g., Royama 1992; Abrams 2009).

The ways in which endogenous and exogenous factors may

interact are manifold and have implications for the result-

ing stochastic population dynamics and for the sensitivity

of a particular species to environmental change (e.g.,

Lundberg et al. 2002; Johst and Drechsler 2003; Coulson

et al. 2004; Greenman and Benton 2005; Owen-Smith

2011). Therefore, an understanding of these interactions

and how they re-emerge in aggregated stochastic growth

models is pivotal to forecasting the consequences of cli-

mate change to biodiversity (e.g., Saether et al. 2000;

Stenseth et al. 2002).

Royama (1992) classified and generalized stochasticity

in the R-functions by introducing three categories of

exogenous perturbations: vertical, lateral and nonlinear

perturbations. Vertical perturbations affect the maximum

growth rate such that the relative position of the RðNÞ-
curve shifts up and down along the R-axis (i.e., ‘vertically’)

if environmental conditions change. Lateral perturbations

affect equilibrium population size (carrying capacity)

without altering maximum growth rate such that the RðNÞ-
curve is scaled along the N-axis (i.e., ‘laterally’). Nonlinear

perturbations affect the intensity of competition via the

curvature of the stochastic R-function (see ‘‘Lateral, ver-

tical and nonlinear perturbations’’ for details). Despite the

widespread assumption of vertical perturbations in time

series analyses, it is largely unknown to which extent lat-

eral and nonlinear perturbations impact dynamics as well

and improve statistically inferred growth functions.

Moreover, the type of competition (scramble or contest)

may impact the functional form of the growth function

(e.g., Royama 1992; Brännström and Sumpter 2005). There

are arguments that ‘exponential’ forms (sensu Royama

1992) such as the Ricker equation (see ‘‘Functional form’’)

better describe scramble competition and ‘hyperbolic’

forms (sensu Royama 1992) such as the Maynard Smith

and Slatkin (MSS) equation (see ‘‘Functional form’’) better

describe contest competition (Royama 1992); but there are

also arguments that one functional relationship can

describe the whole range from scramble to contest com-

petition (e.g., Hassell 1975; Anazawa 2010).

Which functional form (‘hyperbolic’ or ‘exponential’

functions) should be chosen in combination with which

perturbation (lateral, vertical or nonlinear) for which situ-

ation is therefore often equivocal (for Soay sheep e.g., this

debate is summarized in Coulson et al. 2008). Modellers

frequently choose models according to individual

preferences, based on statistical criteria, or to obtain

mathematical tractability. However, model choice has

implications for population viability analyses, management

recommendations, and pest control. Given that all param-

eters are the same, ‘exponential’ functions give rise to

more violent fluctuations than ‘hyperbolic’ functions in the

presence of exogenous fluctuations. Moreover, the choice

of perturbation (lateral, vertical or nonlinear) in the sto-

chastic R-function may be critical in determining the effect

of exogenous influences (e.g., Lindström et al. 2005; Ber-

ryman and Lima 2006; Lima et al. 2008a, b; see also

Brännström and Sumpter 2006). Thus, on the one hand,

model choice is often problematic but has, on the other

hand, essential consequences for model predictions (see

e.g., Higgins et al. 1997; Ripa and Heino 1999; Sibly et al.

2007). As one way out of this dilemma it has been pro-

posed to exploit the joint statistical properties inherent to

many time series and to investigate how well statistical

measures (e.g., noise colour) of a single, very general

stochastic population growth model comprise the various

details of different population dynamics (e.g., different

competition types). This approach works well for fore-

casting quasi-extinction risk (Holmes et al. 2007). Another

way is to use more specific but still sufficiently general,

aggregated stochastic growth functions based not only on

statistical criteria but also on ecological guidelines.

However, as described above, firm ecological guidelines

for the choice of the stochastic growth function are still

lacking and it is even unclear whether such guidelines can

be derived at all. We therefore investigate whether and to

what extent different types of resource competition

(scramble vs. contest competition) interact differently with

the same type of exogenous fluctuations and how these

interactions subsequently re-emerge in the aggregated

stochastic R-function. In the style of time series analyses,

we perform a statistical analysis of the density dependent

stochastic population growth resulting from an individual-

based simulation model (IBM, for a general overview of

individual-based modelling see e.g., Grimm and Railsback

2005). Figure 1 illustrates our approach.

We consider four types of resource competition in the

IBM (pure scramble and contest competition as well as

competition that falls between these two extremes) in

combination with two typical exogenous factors influenc-

ing individual performance: (1) variation in a limiting

resource affecting the reproductive output and survival of

adults competing for it (referred to as food fluctuations)

and (2) variation in a non-limiting factor affecting directly

the survival of young (referred to as weather fluctuations).

We study which aggregated (statistically inferred) sto-

chastic R-function results from which type of competition

and environmental variation assumed in the IBM (e.g.,

when does an MSS function with lateral perturbations
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result from the IBM simulations or when does a Ricker

function with vertical perturbations result, and so on).

This allows us to investigate whether it is possible to

detect the type of competition and/or the type of exogenous

fluctuations via the form of the (statistically inferred)

aggregated stochastic R-function. We hypothesize that

scramble competition in the IBM should result in ‘expo-

nential’ Ricker functions and contest competition in

‘hyperbolic’ MSS functions (Royama 1992). With respect

to the type of exogenous fluctuations, we hypothesize that

food fluctuations should arise as lateral perturbations

influencing the carrying capacity of population dynamics,

and weather fluctuations should arise as vertical perturba-

tions affecting the maximum growth rate at low population

densities.

We will answer two basic questions: (1) Is it possible to

differentiate competition types (scramble vs. contest com-

petition) in stochastic environments by the functional form

(MSS vs. Ricker) of the statistically inferred aggregated

stochastic R-function? (2) Is it possible to assign exogenous

influences (food and/or weather fluctuations) to specific

perturbations in this R-function (vertical, lateral or

nonlinear) or does this assignment also depend on com-

petition type?

To examine and understand how exogenous and

endogenous factors interact at the individual level and re-

emerge at the aggregated population level we keep our

individual-based approach as simple as possible. Based on

this understanding it is possible to formulate general eco-

logical guidelines for model selection, which can be used

in addition to statistical criteria to support time series

analyses and applied population dynamics.

Methods

Individual-based model (IBM)

Birth and death of individuals according to food supply

We assume a resource F (we are mainly thinking about

food) consisting of Ft units (items or packets) available in

time step t to be distributed among Nt individuals, with Nt

being the size of the population (non-negative integer

values) in time step t. Resource dynamics are not explicitly

considered, however, units Ft may fluctuate over time (see

below). During the resource partitioning individuals get

resources in single units and those that have received suf-

ficient resources to satisfy their demand fMaxð Þ are removed

from the process of resource partitioning. When all indi-

viduals have obtained fMax units or Ft is exhausted then

resource distribution in time step t ceases. At the end of this

process, the n-th individual in the population will have

received 0� fn� fMax units of the resource. Those indi-

viduals receiving fn� fMin, the quantity needed to keep an

individual alive (fMin - maintenance cost), give birth in

proportion to the fraction of the maximum demand that is

met

bn ¼ BMax

fn � fMin

fMax � fMin

; fn� fMin ð1Þ

where bn is the number of offspring born to the n-th indi-

vidual rounded down to the nearest whole number and

BMax is the maximum possible per capita birth rate. The

total number of offspring Y in time step t is the sum of all

bn of Nt individuals. Survival of these offspring occurs with

probability s. To include demographic stochasticity the

number of actually surviving offspring is drawn from a

binomial distribution with mean sY. After reproducing,

parents die with probability d0. Those individuals receiving

fn\fMin die of starvation without reproducing. Thus, both

reproduction and survival of adults are density dependent.

Surviving offspring and adults become the population

entering the next time step (a flow chart of the simulation

model is given in Fig. 1). The individual-based model and

Fig. 1 Scheme of our approach including the relations between

individual-based simulation model (IBM) and aggregated (statisti-

cally inferred) stochastic R-function
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resulting population dynamics in constant or just slightly

variable environments have been analysed in Johst et al.

(2008).

Resource competition among individuals

In the IBM we simulate four basic resource partitioning

schemes exemplifying pure contest and scramble compe-

tition and two strategies in between these extremes. Note

that a variety of possibilities exist for defining these ‘‘in-

between’’ strategies. To check the impact of different

choices on the results we chose two different strategies.

Scramble competition (S-model) is characterized by

random resource partitioning and represents competition

between socially equivalent individuals. The single units of

the available resource are given to individuals drawn at

random from the population.

Contest competition (C-model) is characterized by social

dominance. Some successful (dominant) animals (at max-

imum F=fMax rounded down) get all the resources they

require for survival and reproduction fMaxð Þ and the

unsuccessful animals get nothing. For example, at the

parameter set p2 (given in the caption of Table 1) 25

individuals get fMax F=fMax ¼ 1000=40 ¼ 25ð Þ.
Mixed competition (CS-model) is a mix of the two pure

strategies of the C- and S-model. To generate this mix a

constant number of dominant individuals (we assumed 5

individuals) gets all the resource needed (C part), the rest

of the resource is then distributed randomly among the

other individuals (S part). Note that selecting a different

number of dominant individuals (i.e., more or less than 5)

would vary the proportion of contest versus scramble

competition within mixed competition. Selecting 25 dom-

inant individuals 25 ¼ F=fMaxð Þ the CS-model equals the

C-model (pure contest competition) and, selecting zero

dominant individuals, the CS-model equals the S-model

(pure scramble competition). Thus, choosing less (more)

dominant individuals does not change the conclusions but

makes the results just more similar to those of pure

scramble (contest) competition.

Intermediate competition (I-model) is another way to

describe competition in between the pure strategies (C- and

S-model). Again food is given to individuals drawn at

random from the population but contrary to the S-model,

individuals have the ability to monopolise resources and

can consume more than one food item at once. The number

of items per individual is drawn from a Poisson distribution

with mean = f 0:5
Max. Similar to the CS-model, the I-model

includes the limits of pure scramble (mean = f 0
Max) and

pure contest (mean = f 1
Max) by adapting the exponent.

Types of exogenous fluctuations influencing individual

performance

We distinguish two types of exogenous fluctuations; (1)

fluctuations in resource availability (referred to as food

fluctuations), which influence the reproduction (according

to Eq. (1)) and survival of adults via intra-specific

Table 1 Summary of the general results of model selection

Fluctuations

Model

Set Food fluctuations Weather fluctuations Food and weather fluctuations

C-model p1

p2

p3

MSS L ? NL

MSS L ? NL

MSS L ? NL

MSS V ? L

MSS V ? L

MSS V ? L

MSS L ? NL ? V

MSS L ? NL ? V

MSS L ? NL ? V

S-model p1

p2

p3

Ricker L ? NL

Ricker L ? NL

Ricker L ? NL

MSS V ? L

Ricker V ? NL

MSS V ? L

Ricker L ? NL* ? V

Ricker L ? NL ? V

Ricker L ? NL* ? V

CS-model p1

p2

p3

Ricker L ? NL

MSS L ? NL

MSS L ? NL

MSS V ? L

Ricker V ? L

Ricker V ? NL

Ricker L ? NL* ? V

Ricker L ? NL ? V

Ricker L ? NL ? V

I-model p1

p2

p3

MSS L ? NL

MSS L ? NL

MSS L ? NL

Ricker V ? L

Ricker L ? NL

MSS V ? L

MSS L ? NL* ? V

Ricker L ? NL ? V Ricker L ? NL* ? V

The influence of the type of exogenous fluctuations (columns) and the type of competition (rows) in the IBM on the functional form and

perturbation type of the (statistically inferred) stochastic R-function for three different parameter sets (reference parameter set p2: BMax ¼ 8,

fMin ¼ 10, fMax ¼ 40, d0 ¼ 0:3, F ¼ 1000, �s ¼ 0:5; parameter set p1: p2 but fMin ¼ 5; parameter set p3: p2 but fMax ¼ 100). Perturbation type: V

stands for vertical, L for lateral and NL for nonlinear perturbations in the R-function (see ‘‘Lateral, vertical and nonlinear perturbations’’). The

types of competition (C-, S-, CS-, or I-model) are explained in Methods Sect. ‘‘Resource competition among individuals’’. MSS stands for a

‘hyperbolic’ and Ricker for an ‘exponential’ functional form of the R-function (see ‘‘Functional form’’). The asterisk indicates which covariate

(weather or food*) was used for the nonlinear perturbations
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competition for a limiting resource F, and (2) fluctuations

in the subsequent survival of young (referred to as weather

fluctuations). These two types were chosen as they repre-

sent basically different exogenous influences: one influence

acts via competitive interactions of individuals for a lim-

iting resource and the other one acts independently of it.

Separately and in combination they result in the following

three types of exogenous fluctuations.

(a) Exogenous fluctuations in the limiting resource (food

fluctuations) were simulated by letting the food Ft vary

randomly over time. For simplicity, we assumed a uniform

distribution of Ft between F � rFF, where F is the mean

food supply and r its variation range. As differences in

‘hyperbolic’ versus ‘exponential’ model performance could

not be detected in constant or slightly variable environ-

ments (Johst et al. 2008) we used a rather high level of

variability rF ¼ 0:5ð Þ. Our conclusions do not depend on

the specific value of this variability.

(b) Exogenous fluctuations in the survival of young

(weather fluctuations) were simulated by randomly varying

the survival probability of offspring Y in each time step t

(i.e., s becomes st; e.g., through varying yearly weather

conditions) such that the mean number of surviving off-

spring at time t is then stY. For simplicity, we assume a

uniform distribution of st between st ¼ �s� rs �s, where �s ¼
0:5 is the mean survival and rs the variation range (for

demonstration purposes we use maximum variability of st

between zero and one i.e., rs ¼ 1). Note that we also tested

Gaussian distributions, which did not alter our general

conclusions.

(c) Combined exogenous fluctuations (food and weather

fluctuations) were simulated by including fluctuations in

both the limiting resource [as described in (a)] and survival

of offspring [as described in (b)].

R-functions

Time-discrete per capita R-functions are defined as:

RðNt�1Þ ¼ lnðNt=Nt�1Þ ¼ RMax þ ~f ððNt�1=KÞaÞ
¼ RMax þ f ða� ðln Nt�1 � ln KÞÞ ð2Þ

RMax is the maximum per capita change over a discrete

time step, Nt refers to individual numbers at time t, and K is the

equilibrium density or carrying capacity of the environment.

The parameter a alters the curvature of the R-functions, with

small values giving rise to greater convexity d2R=dN2 [ 0ð Þ
and large values greater concavity d2R=dN2\0ð Þ. Note that

this parameter is multiplicative at logarithmic scale ln(Nt).

The variety of functional relationships suggested for Eq. (2)

can be classified into two basic functional forms (Royama

1992).

Functional form

For comparison with the IBM simulations, we first use a

‘hyperbolic’ (sensu Royama 1992) functional form: Nt

Nt�1
¼

eRMax

1þðeRMax�1ÞðNt�1=KÞa called MSS equation as it has been

introduced by Maynard Smith and Slatkin (1973). Loga-

rithmic transformation according to Eq. (2) results in:

RðNt�1Þ ¼ RMax � ln½1þ ðeRMax � 1Þðexpða� ðln Nt�1

� ln KÞÞ� ð3Þ

Second, we use an ‘exponential’ (sensu Royama

1992) functional form known as generalized Ricker

equation: Nt

Nt�1
¼ expð RMax � ð1� ðNt�1=KÞaÞ. Logarithmic

transformation according to Eq. (2) results in:

RðNt�1Þ ¼ RMax � RMax expð a� ðln Nt�1 � ln KÞÞ ð4Þ

Lateral, vertical and nonlinear perturbations

Following Royama (1992), environmental stochasticity Et

influencing these R-functions can be classified as vertical,

lateral or nonlinear exogenous perturbations (see also Lima

et al. 2008a, b).

(a) Vertical perturbations describe situations in which

environmental influences affect the density-independent

term RMax and there is no interaction between Et and

population density. Thus, Eq. (2) results in

RðNt;EtÞ ¼ RMaxðEtÞ þ f ða� ðln Nt � ln KÞÞ ð5Þ

i.e., environmental influences are additive at a log-scale.

(b) Lateral perturbations describe situations in which

the environmental factor affects the carrying capacity K.

Then, environmental influences are non-additive and

Eq.(2) can be generally written as

RðNt;EtÞ ¼ RMax þ f ða� ðln Nt � ln KðEtÞÞÞ: ð6Þ

(c) Nonlinear perturbations describe situations in which

the environmental factor influences the nonlinear curvature

a of the R-function. Environmental influences are again

non-additive and Eq. (2) can be written as

RðNt;EtÞ ¼ RMax þ f ðaðEtÞ � ðln Nt � ln KÞÞ ð7Þ

Note that a population may be subject to all these types

simultaneously.

Statistical fitting of the stochastic R-functions resulting

from the IBM simulations

We evaluated the effectiveness of the functional forms

(Eqs. (3), (4)) in describing the observed relationships

between growth rate and density by fitting them to the

simulated data points of the stochastic R-function
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generated by 50 simulation runs. The perturbation type

(lateral, vertical, nonlinear) was included by shifting Eqs.

((3), (4)) along the y-axis (i.e., vertically according to

Eq. (5)) or x-axis (i.e., laterally according to Eq. (6)), or by

varying the nonlinear curvature a of these equations

(according to Eq. (7)). Equations (3) and (4) were then fit

by nonlinear regression using the nls library in the program

R and computing the AIC = -2 9 log(likelihood) ? 2 9

(number of parameters) (Bates and Watts 1988). The sto-

chastic R-function was selected according to lower AIC

values indicating a more parsimonious model. The use of

the AIC is justified because the number of parameters is

different among the competing models: instead of com-

paring only lateral, vertical or nonlinear perturbation

effects on each type of competition model (Eqs. (3), (4)),

we were also interested in testing if one type of exogenous

fluctuations (food or weather) can influence more than one

parameter simultaneously (e.g., combined lateral and ver-

tical perturbations).

Results

Figure 2 shows the ‘true’ stochastic R-functions resulting

from the IBM simulations. These R-functions differ with

respect to the type of competition (see ‘‘Resource compe-

tition among individuals’’) and the type of exogenous

fluctuations (see ‘‘Types of exogenous fluctuations influ-

encing individual performance’’). Comparably low fluctu-

ations arise from demographic stochasticity inherent to the

IBM simulations (dark grey points). One of the character-

istics of all R-functions is the constant plateau at low

population densities. This exhibits the range of density

independent population growth: all individuals obtain suf-

ficient resources to satisfy their maximum demand fMax,

and therefore population growth at maximum rate RMax is

possible. This is also outlined in the analytical consider-

ations ESM 1 of the Electronic Supplementary Material

(ESM) for pure scramble and contest competition. As the

analytical formulas derived in ESM 1 are simplified rep-

resentations of the dynamics of the IBM and are valid only

in the corresponding density ranges, predictions of the

impact of exogenous fluctuations (food or weather fluctu-

ations) on the combination of perturbations in the statisti-

cally inferred R-function as a whole (i.e., RðNÞ covering

the whole density range) are not possible. The same is true

for predictions on the functional form of the R-function

directly from Fig. 2. In the style of time series analyses, we

therefore perform a statistical analysis of the density

dependent stochastic population growth resulting from the

IBM simulations. We study which combination of pertur-

bations in the aggregated stochastic R-function results from

which type of competition (scramble, contest and types in-

between) in which environment (food and/or weather

fluctuations). ESM 2/Table S1 shows detailed results of the

statistical analysis, including the sensitivity analysis.

Table 1 summarizes these results and gives an overview of

which model performed best (that is showed the lowest

AIC) in which situation.

‘Exponential’ or ‘hyperbolic’ functions

‘Hyperbolic’ MSS functions (Eq. (3)) and ‘exponential’

Ricker functions (Eq. (4)) performed differentially in

describing the simulated data. Table 1 shows that for pure

contest competition (C-model) all types of exogenous

fluctuations and parameter sets were better described by

MSS functions. For pure scramble competition (S-model) 7

out of 9 scenarios were better described by Ricker func-

tions. For competition in between pure contest and

scramble competition (CS- and I-model), MSS functions

better described food fluctuations and Ricker functions

generally better described weather and combined food and

weather fluctuations.

Lateral, vertical or nonlinear perturbations

Food fluctuations generally emerged as combined lateral

and nonlinear perturbations, irrespective of the type of

resource competition (Table 1). These perturbations were

implemented into MSS functions, except for pure scramble

competition, for which a generalized Ricker function per-

formed better.

Weather fluctuations emerged as combinations of vertical

and lateral perturbations (9 out of 12 scenarios). The

remaining 3 scenarios resulted in combined vertical and

nonlinear perturbations (Table 1). For pure contest competi-

tion (C-model), weather fluctuations emerged as a combina-

tion of vertical and lateral perturbations implemented into an

MSS function. For the other types of competition, MSS and

Ricker functions did similarly well to describe weather fluc-

tuations depending on the parameter set (Table 1).

The combination of food and weather fluctuations re-

emerged in all cases as a combination of lateral, vertical

and nonlinear perturbations (Table 1). This result did not

depend on which covariate (weather or food) was used for

the nonlinear perturbations (ESM 2/Table S1). For all types

of resource competition, Ricker functions fitted best with

exception of the C-model for which MSS functions fitted

best.

Discussion

Using a simple individual-based simulation model (IBM)

in combination with a statistical fit of the resulting time
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series, we studied the impact of different exogenous factors

(food and/or weather fluctuations) at the individual level in

interaction with different types of individual competition

(contest, scramble and competition in between these two

extremes) on the resulting aggregated (statistically infer-

red) stochastic R-function. We focus on functional form

(i.e., ‘hyperbolic’ MSS or ‘exponential’ Ricker functions,

Eqs. (3), (4)) and on perturbation type (i.e., lateral, vertical

and nonlinear perturbations, Eqs. (5)–(7)). Exogenous

influences are simulated through stochastic fluctuations of

particular parameters in the IBM and resource competition

types through different partitioning schemes among the

individuals (see ‘‘Resource competition among individu-

als’’). We keep our IBM as simple as possible to under-

stand how exogenous and endogenous factors interact and

re-emerge in an aggregated population model.

Our results clearly show that in variable environments

the performance of an aggregated growth function to

describe the resulting dynamics depends on the synergistic

effects of the type of individual competition for resources

a b c

g h i

j k l

d e f

Fig. 2 Stochastic per capita population growth rates RðNt�1Þ ¼
lnðNt=Nt�1Þ resulting from the IBM simulations versus the natural

logarithm of population size. Different scenarios of environmental

fluctuations (columns) and resource competition (rows) are shown

(for details see ‘‘Resource competition among individuals’’, ‘‘Types

of exogenous fluctuations influencing individual performance’’; for

parameters see caption of Table 1). Light gray points show growth

rates including demographic and environmental stochasticity. Dark
gray points refer to a constant environment with demographic

stochasticity inherent to the IBM. The scales of the vertical axes differ

among the panels
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(C-, S-, CS- or I-model), the resource requirements (fMin

and fMax) and the nature of exogenous fluctuations (food

and/or weather fluctuations). This is now discussed in more

detail.

Function choice (‘hyperbolic’ or ‘exponential’

functions)

Although in constant or only weakly variable environments

‘hyperbolic’ MSS and ‘exponential’ Ricker functions per-

formed equally well in describing different types of com-

petition (Johst et al. 2008), we found that in more variable

environments the function choice generally depends on the

type of competition and the nature of exogenous fluctua-

tions. The strength of environmental variability at which

the different performance of the two functional forms

becomes apparent may vary with the type of competition,

the resource requirements and the type of exogenous

influences. Therefore, no clear thresholds can be given.

Nevertheless, it can be argued that in variable environ-

ments the MSS function was generally more appropriate

for describing pure contest competition (C-model) whereas

the Ricker function was generally more appropriate for

describing pure scramble competition (S-model) in accor-

dance with arguments based on the competition type alone

(Royama 1992). This result is independent of the type of

exogenous fluctuations (food and/or weather fluctuations).

If competition cannot be adequately described as pure

contest or scramble competition but is in between these two

extremes, both MSS and Ricker functions were appropriate

depending on the type of exogenous fluctuations (Table 1).

Both the CS- and the I-model behave similar to a ‘hyper-

bolic’ contest model for food fluctuations (Table 1, com-

pare also Fig. 2g, j with Fig. 2a), but like an ‘exponential’

scramble model for combined weather and food fluctua-

tions (Table 1, compare also Fig. 2i, l with Fig. 2f). In the

case of pure weather fluctuations, both MSS and Ricker

functions were appropriate depending on the resource

requirements (see different parameter sets in Table 1).

These results demonstrate that arguments for using a cer-

tain functional form to describe competition in between

pure contest and pure scramble competition depend not

only on the competition type but also on the interplay

between endogenous and exogenous (respectively deter-

ministic and stochastic) factors.

There is growing evidence, also from other analyses,

that deterministic skeleton and environmental variation can

interact (e.g., Coulson et al. 2004; Benton et al. 2006;

Boyce et al. 2006). However, mechanistic explanations for

this interaction are still needed. Based on our IBM, we can

give an ecological mechanistic explanation for this inter-

action and how it shapes our results. Food fluctuations

operate only when food supply is limiting, i.e., at high

densities and low food supply, respectively. Then the CS-

model behaves similarly to the pure contest model: a small

part of the population gets all the resource needed

fn ¼ fMaxð Þ, the rest (which is in the CS-model scrambling

for the resources) gets nothing fn ¼ 0ð Þ. Therefore when

food fluctuates, the CS-model (and similarly the I-model)

behaves like a ‘contest’ model (compare Fig. 2g, j with

Fig. 2a). Weather fluctuations operate via external mor-

tality effects and not via competitive interactions between

the individuals. Thus, they operate across all densities but

their relative impact changes: At low to intermediate

densities, a few individuals get all they need and even the

rest of the population scrambling for resources gets suffi-

cient food for reproduction. Subsequently, a large number

of offspring is produced by scramble competition and

weather fluctuations affect their survival. At larger densi-

ties, weather fluctuations have less impact as the number of

offspring is low (similar to pure scramble competition,

compare Fig. 2h with Fig. 2e). Thus, with weather fluctu-

ations the scramble part dominates the dynamics and the

CS-model behaves more similar to an S-model.

Perturbation choice (lateral, vertical or nonlinear

perturbations)

In contrast to function choice which was determined by the

synergistic effects of both endogenous and exogenous

(respectively deterministic and stochastic) factors, pertur-

bation choice was mainly determined by the exogenous

factors alone.

Lateral perturbations performed well in all cases that

consider food fluctuations at the individual level (generally

imbedded in an MSS function, except for pure scramble

competition where it is a Ricker function). Recent analyses

of ecological time series have revealed the importance of

considering lateral perturbations whenever a limiting

resource such as food is influenced by climate (Berryman

and Lima 2006; Lima and Berryman 2006; Lima et al.

2006, 2008a, b; Andreo et al. 2009; Estay et al. 2009;

Previtali et al. 2009). Our results confirm this and our

hypothesis that lateral perturbations represent food fluctu-

ations much better than other perturbation types. However,

the best representation was a combination of lateral and

nonlinear perturbations (Table 1) suggesting that besides

the effect on the equilibrium density (carrying capacity) an

extra effect on the curvature of the aggregated R-function is

generated.

This extra effect can be understood by considering the

constant plateau at low population densities (Fig. 2, see

also Johst et al. 2008). As explained above, this plateau is

characteristic to all types of resource competition and

exhibits the range of density independent population

growth at which all individuals get what they need fMaxð Þ.
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Density dependent population growth sets in at population

sizes larger than Ndd ¼ F=fMax. Thus, fluctuations in F

(food) affect not only equilibrium density (carrying

capacity K) but also this onset value Ndd of density

dependence (see also Analytical considerations in ESM 1).

As a consequence, there is an extra effect of food fluctu-

ations on the nonlinear curvature of the aggregated R-func-

tion. Nevertheless it is important to state that in ecological

time series there are often few or no data points at very low

population densities. In case of food fluctuations (i.e., fluctu-

ations in a limiting resource) simple models including only a

lateral perturbation can then be the best option.

Contrary to our expectations, weather fluctuations in the

IBM did not re-emerge as pure vertical perturbations but as

combined vertical and lateral perturbations or combined

vertical and nonlinear perturbations (Table 1). Although

weather fluctuations operate via an external mortality of

young and therefore independent of population density,

their relative impact can be stronger (weaker) at lower

(higher) densities. As the aggregated R-function has to

cover the whole range of densities, weather fluctuations at

the individual level can re-emerge as complex fluctuations

at the population level such that population growth and

equilibrium density are affected not only by (additive)

vertical perturbations but also by (non-additive) lateral or

nonlinear perturbations in the per capita growth rate. This

suggests that unequivocal conclusions from a single per-

turbation type (e.g., lateral perturbations) in a statistically

inferred R-function resulting from time series analyses to

the actual exogenous factor at the individual level (e.g.,

food or weather fluctuations) are not possible.

Based on these results, some general ecological guide-

lines for model selection can be formulated. These guide-

lines can be used to save time and reduce the number of

trials required to find the right, ecologically reasonable

model structure.

Ecological guidelines for model choice of the stochastic

growth function

Fluctuations of limiting exogenous factors (e.g., food

fluctuations) should be described by a combination of lat-

eral and nonlinear perturbations imbedded into ‘hyper-

bolic’ functions (except for pure scramble competition

which requires ‘exponential’ functions). Fluctuations of

non-limiting exogenous factors (e.g., weather fluctuations)

should be described by a combination of vertical and lat-

eral/nonlinear perturbations imbedded into ‘exponential

functions’ (except for pure contest competition which

requires ‘hyperbolic’ functions). If both non-limiting and

limiting exogenous factors fluctuate (e.g., food and weather

fluctuations), combinations of vertical, lateral and nonlin-

ear perturbations should be considered imbedded into

‘exponential’ functions (except for pure contest competi-

tion which requires ‘hyperbolic’ functions).

Conclusions

Model choice for the stochastic per capita growth function

in population dynamics and time series analysis should

carefully consider two different aspects: function choice

(i.e., the question of the deterministic functional form) and

perturbation choice (i.e., the question of the stochastic

‘lateral, vertical or nonlinear’ perturbation type).

In general, our results suggest that for competition in

between pure contest and scramble which is common in

nature the question concerning the functional form cannot

be answered without considering the type of environmental

variability (i.e., whether non-limiting or limiting exoge-

nous factors fluctuate). Our results highlight that even

‘simple’ exogenous fluctuations at the individual level

(food and weather fluctuations) can re-emerge as complex

fluctuations of the per capita growth rate at the population

level with combinations of lateral, vertical and nonlinear

perturbations. This has strong implications for time series

analyses of empirical data. In contrast to the widespread

assumption of vertical perturbations in time series analyses,

our findings highlight the importance of lateral and non-

linear perturbations and suggest that these (non-additive)

perturbations should be considered on an equal footing

with vertical (additive) perturbations.
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