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ABSTRACT

Porous materials are solids containing void spaces, and their arrangement at the mi-

croscopic level confers them unique properties, with practical applications in areas such

as civil engineering and medicine. To understand these materials’ behavior, diverse mi-

cromechanical models have been proposed, in which typically there are prescribed dis-

placements or simple loading states, such as uniaxial compression or simple shear. How-

ever, the case of micromechanical models of porous materials where the pore pressure

produces the deformation, here denominated pressure-driven models, has been under-

studied, and it is the focus of this thesis. In this work, we develop a finite-deformation

variational framework for pressure-driven foams, which allows for various boundary con-

ditions: kinematic uniform displacements, periodic displacements, and uniform traction.

Then, we apply the model in numerical simulations in the context of lung micromechanics,

first with a spherical alveolar model and then with an image-based alveolar model. The

results show that the stress distributions are different for each kinematical constraint in

the spherical model, while in the image-based model, the distributions are independent of

the constraints. Besides, we compare the pressure-driven and deformation-driven models,

obtaining that between both cases, the hydrostatic stress distributions are shifted, while the

deviatoric stresses are the same. Interestingly, the pressure-driven and deformation-driven

simulations of the lung parenchyma can be related to mechanical ventilation and sponta-

neous breathing, respectively, and the results obtained give an insight into the differences

between both states.

Keywords: Open-cell Foam Material, Micromechanics of Porous Materials, Lung

Mechanics, Poromechanics, Pressure-driven Models.
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RESUMEN

Los materiales porosos son sólidos que contienen cavidades en su interior, y su dis-

tribución a nivel microscópico les confiere propiedades únicas, con aplicaciones prácticas

en áreas como ingenierı́a civil y medicina, entre otras. Para entender el comportamiento

de estos materiales, diversos modelos micromecánicos han sido propuestos, en los cuales

tı́picamente existen desplazamientos prescritos o condiciones de carga simples, como

compresión uniaxial o corte simple. Sin embargo, el caso de modelos micromecánicos

de materiales porosos en donde la presión produce la deformación ha sido poco estudi-

ado, y es precisamente el foco de esta tesis. Para lograr esto, desarrollamos una formu-

lación variacional en deformaciones finitas para materiales porosos, en donde la presión

produce la deformación, y que además permite varias condiciones de borde: desplaza-

mientos uniformes, desplazamientos periódicos y tracción uniforme. Luego, aplicamos el

modelo en simulaciones numéricas de tejido pulmonar, primero con un modelo alveolar

esférico, y luego con un modelo alveolar basado en imágenes. Los resultados muestran que

para el modelo esférico las distribuciones de tensión son diferentes para cada restricción

cinemática, mientras que en el modelo basado en imágenes las distribuciones obtenidas

son independientes de la restricción utilizada. Además, comparamos los modelos impul-

sados con presión con modelos con deformaciones prescritas equivalentes, obteniendo que

entre ambos casos la tensión hidrostática experimenta un desplazamiento de sus valores,

manteniendo la forma de la distribución, mientras que la tensión de von Mises no se ve

afectada. De forma interesante, los modelos impulsados por presión y con deformaciones

prescritas pueden ser relacionados con ventilación mecánica y respiración espontánea, re-

spectivamente, y los resultados obtenidos ayudan a entender las diferencias entre ambos

estados.

Palabras clave: Materiales porosos con celdas abiertas, Análisis micromecánico de

materiales porosos, Mecánica pulmonar, Poromecánica, Modelos impulsados por presión.
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1. INTRODUCTION

1.1. Motivation

Porous materials can be defined as solids containing fluid-filled space(s), and they

are ubiquitous in nature, with examples as varied as saturated rocks, wood, coral, plant

cells, and biological tissues. Throughout history, human beings have made use of them,

from civil engineering applications to everyday use, as in ingenious wooden artifacts in

the construction of the Egyptian pyramids, or simply cork, used since Roman times to

stopper wine bottles (Gibson & Ashby, 1997). More recently, the properties of this kind of

materials have motivated the development of new technologies to create them artificially,

so they can be used for isolation, cushioning, and absorption of energy from impacts,

among others. Their outstanding properties and multiple applications have driven the

study of their microscopic features, revealing a link between their global (or macroscopic)

behavior and the underlying microstructure.

In porous materials, the microstructure plays a key role, which affects not only local

mechanisms but also the material’s global behavior. At the microstructural level, the cav-

ities allow the classification of these materials as closed-cell (CCF) or open-cell (OCF)

foams; the former are defined as materials with isolated cavities embedded in it, while in

the latter these are interconnected (Gibson & Ashby, 1997; Ma et al., 2011), as shown

in Figure 1.1. Furthermore, the microstructural arrangement in CCFs and OCFs strongly

influences the mechanical response, which is dominated by mechanisms such as bending

of struts, buckling of cell walls, the formation of yield joints or folds, and fracture of cell

struts and cell walls (Altenbach & Öchsner, 2010; Deville et al., 2006; Genet et al., 2014;

Houmard et al., 2013). In this type of materials, cavities can be subject to the pressure ex-

erted by a fluid or gas. Examples of pressurized materials are the foams used to thermally

insulate the Space Shuttle external tank (Bednarcyk et al., 2008), where thermoelastic and

thermoinelastic effects are also present, the lung parenchyma, where the air entering in

the respiratory system produces the inner pressure (Koshiyama et al., 2019; Patte et al.,

1



(a) (b)

Figure 1.1. Examples of polymeric foams, with (a) closed-cells and (b)
open-cells. Taken from Altenbach and Öchsner (2010).

2021; Rausch et al., 2011; Sarabia-Vallejos et al., 2019), and porous elastomers, where

the presence of pressurized cavities has proven to affect the overall response, producing,

for instance, the shrinkage of elastomeric foams after demolding (Fen-Chong et al., 1999;

Idiart & Lopez-Pamies, 2012). Therefore, it is relevant to study the mechanical response

of porous materials with models that consider the microscopic properties, as the struc-

tural arrangement, the presence (or not) of pressure in the cavities, and the solid skeleton

behavior.

Given the key-role of the microstructure in porous materials, this thesis’s objective is

to develop a variational framework for the micromechanical analysis of CCFs and OCFs,

which will be tested in numerical examples using the Finite Element Method (FEM). In

particular, the variational framework will address the case of the micromechanical re-

sponse of pressurized foams, where the deformation is driven by the pore pressure of the

fluid in the cavities.

1.2. Microstructure in the mechanics of porous materials

Since the microstructure of porous materials (and in a general manner, of all kinds of

materials) is relevant in the context of mechanical models, several approaches have been

2



proposed to perform simulations across the scales, i.e., obtaining a global response that

is influenced by the heterogeneities present at the microscale. A first direct but ineffi-

cient method is to perform a simulation of the entire body, including all heterogeneities.

Since this approach directly incorporates all the information of the problem (geometry,

boundary conditions, microscopic properties), it is quite redundant and in practice un-

feasible due to its high computational cost and memory storage requirements. To solve

this issue, multiscale models based on homogenization theory have been developed in the

last decades. In the homogenization method, given that the lengths scales of the micro-

and macro-problems are sufficiently separated, the main objective is to estimate the ef-

fective macroscopic properties of an heterogeneous material, so it can be substituted with

an equivalent homogeneous one (Saeb et al., 2016). The microstructure’s influence is

reflected in the effective properties; hence, the model does not need to incorporate the

heterogeneities directly, and the computational cost is reduced considerably. One of the

most common homogenization techniques is based on variational principles and asymp-

totic expansions of strain and stress fields, which lead to a set of boundary value problems

at the micro- and macroscale (Saeb et al., 2016). Since the pioneering works of Hill (1972)

and Ogden (1974), who extended analytical homogenization to nonlinear composites and

finite deformation elasticity, many researchers have contributed to the development and

application of this techniques (Bakhvalov & Panasenko, 1989; Fish, 2013; Hashin, 1983;

Hollister & Kikuchi, 1992; Huet, 1990; Ponte Castañeda, 1991; Sanchez-Palencia, 1980;

Suquet, 1987; Willis, 1981), which are still used in diverse fields.

The homogenization models have proven to be an effective way to predict the macro-

scopic response of materials. However, its application to real 3D microstructures is lim-

ited, due to the assumptions of idealized microstructures and boundary conditions in which

they are based (Cao et al., 2014; Hannard et al., 2016; Shakoor et al., 2017). To address this

issue, numerical simulations have been conducted in the microscale, where the mechanical

problem is stated on a representative volume element (RVE) of the material’s underlying

microstructure. In order to preserve the microstructure of the material, the RVE can be

obtained by micro-computed tomography (micro-CT) (Bargmann et al., 2018), as seen,

3



Figure 1.2. The micromechanical problem is solved in an RVE of the ma-
terial. In the figure, an RVE of lung parenchyma is selected from micro-CT
images of the whole-lung. Taken from Sarabia-Vallejos et al. (2019).

for instance, in Figure 1.2 for the lung parenchyma. Then, the microstructural problem

is solved to obtain the stress and strain distributions within the RVE. Note that although

this approach omits the macroscopic information (as the geometry and boundary condi-

tions of the whole body), it allows to obtain information about local mechanisms, as stress

hotspots or relations between global and local strain (Kantzos et al., 2018; Rausch et al.,

2011).

The cavities in porous materials may contain fluid, and according to the assumptions

on the fluid response, different models have been proposed. If the fluid’s motion is be-

ing modeled, the Navier-Stokes equations or Darcy’s law can be considered (Collis et al.,

2017; Selvadurai & Suvorov, 2016), which can be used to study the flow through porous

materials. The models that consider the fluid dynamics give more information about the

mechanics but increase the mathematical complexity and incorporate new variables, lead-

ing to higher computational cost. So, if the focus is on the solid skeleton behavior and

dynamic effects can be neglected, certain models only incorporate the pressure of the fluid

(Idiart & Lopez-Pamies, 2012; Ma et al., 2011; Sarabia-Vallejos et al., 2019), which can

be used to analyze the effects of having pressurized versus vacuous cavities and how this

affects the overall response of the body, for example. Following this approach, in this work

the effects related to the fluid dynamics will be neglected, incorporating in the model only

4



the pressure of the fluid, which will have a fundamental role in the deformation of the

RVE, as discussed next.

So far, it has been established that in order to preserve the microstructure of the ma-

terial, RVEs can be constructed from micro-CT images. Additionally, to state the me-

chanical problem, it is necessary to determine the loading of the RVE. The case where

the loading conditions are based on a given macroscopic strain, or stress, has been widely

studied, both theoretically (De Souza Neto & Feijóo, 2006; Dormieux et al., 2002) and in

numerical simulations (Liu & Chen, 2015; Ma & Yang, 2018). The values for the given

quantities may come from multiscale analysis or represent arbitrary states, depending on

the study’s scope. Conversely, the case where the pore pressure drives the deformation

in the RVE, and the macroscopic strain and stress are variables of the problem, has been

understudied, and only by numerical methods, with a theoretical framework still missing.

In the next section, the basis for solving the pressure-driven problem will be set, which

consists of the continuum mechanics theory, which has been widely used in the context of

finite deformations.

1.3. Continuum Mechanics Theory

The formulation of continuum mechanics dates back to the 18th century and required

the efforts of renowned scientists, who laid its foundations and presented them in elegant

mathematical terms. In 1687 Isaac Newton (1642-1727) published “Principia”, which

contains Newton’s laws of motion and the law of gravitational attraction. Then, to extend

the laws of motion from a system of particles to the differential equations for a continuous

medium, it was necessary the interventions of figures such as the Bernoullis (John, James,

and Daniel), Leibniz, Euler, d’Alembert, Coulomb and Lagrange. In 1788, 101 years after

the publication of Newton’s “Principia”, Lagrange published “Mécanique Analitique”,

which unified the progress made and presented the formulation of mechanical problems in

terms of differential equations. Then, from 1823 to 1841, Augustin-Louis Cauchy (1789-

1857) developed almost entirely the finite-strain theory and introduced the general concept

5



and mathematical theory of the stress tensor (Soutas-Little, 2009; Tadmor et al., 2012).

From that point, several contributors have applied and extended the continuum mechanics

theory, relating it with the thermodynamic’s laws, non-linear materials, viscoelasticity,

among many other subjects.

1.3.1. Kinematics

To formulate the continuum mechanics theory in the context of porous materials, first

some definitions must be presented. Let Ω0 be the reference (or material) configuration,

which represents the state where no external loading is applied to the body (Tadmor et al.,

2012); and let X be the position of a particle in the reference configuration. Then, the

deformed (or spatial) configuration Ω can be described in terms of a one-to-one deforma-

tion mapping function ϕ that maps the reference position of every particle of the body

X ∈ Ω0 to its deformed position x ∈ Ω, such that x = ϕ(X). Then, the displacement

field is defined as u(X) := ϕ(X)−X . WithX and x defined, the deformation gradient

tensor F is expressed as

F (X) :=
∂ϕ

∂X
(X) =

∂x

∂X
= ∇0x. (1.1)

The jacobian of F (X) provides a local measure for volume changes, and it is defined as

J(X) := detF (X) > 0. (1.2)

Since F (X) is invertible, J(X) 6= 0, and as volume elements cannot have negative vol-

umes, J(X) < 0 is not physically possible, which justifies the last relation in Equation

(1.2). The jacobian J(X) can also be understood as a relation between infinitesimal vol-

ume elements, defined in the reference (dV ) and current (dv) configurations (Holzapfel,

2000),

dv = J(X)dV. (1.3)

6



The deformation gradient tensor F (X) has information not only about the stretch and

shear of the neighborhood of a material particle from the reference to deformed config-

urations, but also about rotations. However, it can be decomposed uniquely into a pure

stretch (and shear) tensor and a pure rotation tensor, according to the polar decomposition

theorem: any tensor F with positive determinant (detF > 0) can be uniquely expressed

as

F = RU = V R, (1.4)

called the right and left polar decompositions of F , whereR is a proper orthogonal trans-

formation, which represents a finite rotation, and U and V are the symmetric positive-

definite right and left stretch tensors, respectively (Tadmor et al., 2012).

1.3.2. Constitutive laws and stress measures

In mechanics, the behavior of different kinds of materials is represented by constitutive

laws. To achieve that, constitutive equations are used, which are functional relationships

that model the behavior of materials, establishing a connection between stress and other

fields of interest, such as strain and temperature (Holzapfel, 2000). In this thesis, hyper-

elastic materials will be studied, which do not have a viscous (or dissipative) behavior,

and for which there exist a Helmholtz free-energy function ψ, also known as strain energy

density function (SEF) when ψ = ψ(F ). Then, the stress is given by the derivative of the

SEF with respect to strain

P (F ) =
∂ψ

∂F
(F ), (1.5)

where P (X) is the first Piola-Kirchhoff stress tensor (which corresponds to the engi-

neering or nominal stress, the force per unit area in the reference configuration). The

Cauchy stress tensor is a measure of the true stress, the force per unit area in the deformed

configuration, and is related to the first Piola-Kirchhoff stress tensor P 1 by the relation

σ = J−1PF T , hence

σ = J−1 ∂ψ

∂F
(F )F T . (1.6)

1For clarity, the dependency of P (F ),S(F ),σ(F ),F (X),u(X), J(X) on F andX will be omitted.

7



Another stress measure is the second Piola-Kirchhoff stress tensor S

S = F−1P , (1.7)

and note that, contrary to P , σ and S are symmetric tensors. Both P and S are suitable

when the problem is formulated in the reference configuration, while σ is used when the

deformed configuration is selected.

1.3.3. Equilibrium

Now, the equilibrium will be expressed in terms of the principle of stationary potential

energy. To establish this variational principle, we assume the existence of an energy func-

tional, that for continuum mechanics problems is the total potential energy Πtot, defined as

the strain energy stored in the body plus the potential energy of external forces

Πtot(u) := Πint(u) + Πext(u). (1.8)

The potential energy stored in the body is

Πint(u) :=

∫
Ω0

ψ(F ) dV, (1.9)

while, as its name indicates, the potential energy of external forces Πext gathers the effect

of the different external forces, such as body force, prescribed traction, or pressure, among

others. For example, for the typical case of gravity loading

Πext(u) = −
∫

Ω0

ρ0g · u dV, (1.10)

where ρ0 is the density of the solid in the reference configuration, and g is the gravitational

acceleration.

Here, the variational problem has been formulated in terms of the displacement field

u (but it could also be developed in terms of the deformation mapping ϕ), and a displace-

ment that satisfies the Dirichlet boundary conditions (which impose a given value for the

displacement in a region of the boundary) is called admissible. With these definitions,

8



the principle of stationary potential energy is stated as: given the set of admissible dis-

placement fields for a conservative system, an equilibrium state will correspond to one for

which the total potential energy is stationary (Tadmor et al., 2012). Mathematically, if the

potential energy is stationary at u∗, this means

DδuΠtot(u
∗) :=

d

dη
Πtot[u

∗ + ηδu]

∣∣∣∣
η=0

= 0 ∀ δu, (1.11)

where δu is a small displacement field with δu = 0 on the boundaries with Dirichlet

conditions, so that u∗ + ηδu is kinematically admissible. Further manipulations show

that from (1.11) the differential equilibrium equations can be obtained (Holzapfel, 2000;

Tadmor et al., 2012).

Special attention is needed if there is an external force depending on the displacement,

for example, the pressure applied by a fluid. In the present work, this case is of particular

relevance because in porous materials the presence of fluid in the cavities produces a

pressure that is directly applied in the solid skeleton. Here, it will be mentioned the case

of pore pressure in closed cavities, and in Chapter 2, it will be detailed for the case of

pressure-driven RVEs of OCFs. Let p0 be the pore pressure produced by the fluid and

∂ΩN the deformed inner boundary (where the solid is in contact with the fluid). From

the perspective of the solid, the pore pressure is exerted in ∂ΩN with a traction vector

t = −p0n, which in terms of the virtual work corresponds to

δW p
ext(u, δu) := −

∫
∂ΩN

p0n · δu ds, (1.12)

with n the normal in the deformed configuration. However, as the inner boundary and

the direction of the traction are displacement-dependent, the existence of a potential that

could be included in the potential energy is not trivial. One of the cases where the pressure

has an associated potential occurs if the surface where the pressure is applied encloses a

certain region (Bonet & Wood, 1997). Let assume the cavities occupy a domain ΩF
0 in the

reference configuration that is enclosed by a region ∂ΩF
0 (think, for example, in an RVE

consisting in a central cavity surrounded by the solid skeleton, as depicted in Figure 1.3);

9



equivalently ΩF and ∂ΩF represent these regions in the deformed configuration. Then, the

associated potential is

Πp
ext(u) := −p0

∫
ΩF

dv = −p0

∫
ΩF

0

J dV, (1.13)

whose variation recovers the expression given by the external virtual work δW p
ext(u, δu),

as shown next. First, note that the derivative of Equation (1.13) is

DδuΠp
ext(u) = −p0

∫
ΩF

0

JF−T : ∇0δu dV = −p0

∫
ΩF

0

JF−Tij δui,j dV

= −p0

∫
ΩF

0

[
(JF−Tij δui),j − (JF−Tij ),jδui

]
dV

= −p0

[∫
∂ΩF

0

JF−TN · δu dS −
∫

ΩF
0

∇0 · (JF−T ) · δu dV

]
, (1.14)

where indicial notation (or Einstein notation) was used to make the derivation clearer, and

N is the normal in the reference configuration. The last expression can be simplified using

the Piola identity

∇0 · (JF−T ) = 0. (1.15)

Here it will be shown a classical geometric derivation of this identity (Holzapfel, 2000, p.

146), for an analytical derivation note that JF−T = cof F and refer to Evans (1998, Ch.

8.1.4.b). First, let B0 be any region of a continuous body in the reference configuration,

with boundary ∂B0; and let B and ∂B be their counterparts in the current configuration.

Then, using the divergence theorem and Nanson’s formula nds = JF−TNdS∫
B0
∇0 · (JF−T ) dV =

∫
∂B0

JF−TN dS =

∫
∂B
n ds (1.16)

=

∫
∂B
In ds =

∫
B
∇ · I dv = 0. (1.17)

Then, using Piola identity in Equation (1.14)

DδuΠp
ext(u) = −p0

∫
∂ΩF

0

JF−TN · δu dS, (1.18)
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which is expressed in the reference configuration, contrary to δW p
ext(u, δu), that is in

the deformed configuration. However, using Nanson’s formula, Equation (1.18) can be

rewritten as

DδuΠp
ext(u) = −p0

∫
∂ΩF

n · δu ds = p0

∫
∂ΩN

n · δu ds, (1.19)

where the sign changed because, although the boundary of the fluid domain ∂ΩF is also

the inner boundary of the solid ∂ΩN (see Figure 1.3), the normals with respect to the

fluid and the solid are opposite. Therefore, under the assumption of a closed cavity, the

variation of the potential Πp
ext(u), given by Equation (1.19), recovers the expression of the

virtual work δW p
ext(u, δu) (the change in the sign is produced by the minus in the principle

of virtual work: δWint − δWext = 0, for vanishing accelerations).

1.3.4. Mixed formulation for incompressibility

As mentioned, the internal potential energy corresponds to the integral of the strain

energy function; however, to model incompressible materials (which keep the volume

constant throughout a motion), a mixed formulation can be adopted. First, note that the

incompressibility constraint can be expressed as J = 1, which is included into the SEF of

the material by using a Lagrange multiplier p

ψ(F , p) = ψiso(F )− p(J − 1), (1.20)

where ψiso(F ) characterizes the isochoric response, and p corresponds to the hydrostatic

pressure (Holzapfel, 2000). Following Equation (1.5), the first Piola-Kirchhoff stress ten-

sor, in this case denoted as P̄ , corresponds to

P̄ (F , p) =
∂ψiso

∂F
(F )− pJF−T . (1.21)

To summarize the contents exposed, below is shown the formulation for the case of an

RVE consisting of an incompressible solid matrix with a pressurized interior cavity (that

could represent a CCF). Let ΩS
0 and ΩF

0 be the solid and fluid domain in the reference

11



Figure 1.3. 2D schematic of the ref. configuration of a closed-cell foam RVE.

configuration, respectively. The exterior boundary is ∂ΩE
0 , and the inner boundary (where

the solid is in contact with the fluid) is ∂ΩN
0 , see Figure 1.3 for a schematic. Let Vu and

Vp be suitable spaces for the fields u and p, respectively; and let V0
u and V0

p be the suitable

spaces for the admissible perturbation fields δu and δp. In absence of body forces, the

total potential energy is

Πtot(u, p) :=

∫
ΩS

0

[ψiso(F )− p(J − 1)] dV − p0

∫
ΩF

0

J dV, (1.22)

with p0 the pore pressure of the fluid. Then, the stationary conditions are

DδuΠtot(u, p) =−
∫

ΩS
0

(∇0 · P̄ ) · δu dV +

∫
∂ΩE

0

P̄N · δu dS

+

∫
∂ΩN

0

(P̄N + p0JF
−TN ) · δu dS = 0 ∀ δu ∈ V0

u, (1.23)

and

DδpΠtot(u, p) =

∫
ΩS

0

δp(J − 1) dV = 0 ∀ δp ∈ V0
p , (1.24)
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Figure 1.4. The displacement in the RVE can be decomposed into an affine
term, characterized by a constant deformation gradient tensor, plus a fluc-
tuation field. Different kinematical constraints on the fluctuation field can
be imposed; in this figure, periodic boundary conditions are illustrated.
Adapted from De Souza Neto and Feijóo (2006).

Then, the strong form of the problem is: Given p0, find u ∈ Vu and p ∈ Vp, such that

∇0 · P̄ (F , p) = 0 in ΩS
0 ,

P̄ (F , p)N = −p0JF
−TN on ∂ΩN

0 ,

J(F ) = 1 in ΩS
0 ,

F = I +∇0u in ΩS
0 .


(1.25)

This formulation has to be completed with the choice of boundary conditions for the ex-

terior of the RVE, ∂ΩE
0 . As in the pressure-driven case the stress and strain fields are a re-

action to the applied pressure, and hence there are no values given for the displacement or

pressure on the exterior boundary, further assumptions are required. In this work, instead

of imposing states like uniaxial compression or simple shear, we will enforce kinematical

constraints on the displacement field. These constraints are based on the ones classically

used in multiscale simulations, which will be detailed in the next section.
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1.3.5. Decomposition of the displacement and kinematical constraints

So far, the problem was stated in terms of the displacement field u; however, a com-

mon approach in mechanical models based on homogenization theory, is to express u as

a sum of an affine component and a fluctuation field

u (X) = ŪX + ũ(X), (1.26)

where the tensor Ū will be referred as the macroscopic strain, and ũ(X) is the fluctuation

field; this decomposition is illustrated in Figure 1.4. The problem has to be completed

with a constraint on the fluctuation term, among the most usual are (Perić et al., 2011;

Saeb et al., 2016):

(i) Taylor model: the fluctuation field vanishes

ũ(X) = 0 ∀X in Ω0, (1.27)

which leads to a constant deformation in Ω0, being the deformation gradient

tensor F = I + Ū . This is also known as the Voigt bound.

(ii) Kinematic uniform boundary condition (KUBC, or linear displacement bound-

ary condition): the fluctuation field vanishes only on the boundary of the RVE,

ũ(X) = 0 ∀X on ∂ΩE
0 . (1.28)

(iii) Periodic displacement boundary condition (PBC): used to represent that the RVE

is surrounded by identical cells, forming a periodic material. Here, it is assumed

that the boundary ∂ΩE
0 is periodic, so there exist pairs {X+,X−} that relate the

coordinates of two periodic faces, as illustrated in Figure 1.5. A geometrical in-

terpretation of this is that the surface whereX+ is defined, is equal to the surface

ofX−, but translated. Then, the fluctuation field is enforced to be periodic

ũ(X+) = ũ(X−) ∀ pairs {X+,X−}, (1.29)
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Figure 1.5. 2D schematic of a periodic RVE. In the external boundary there
are pairs {X+,X−} that relate the coordinates of two periodic faces. Here,
in blue a pair that relates two coordinates of the lateral faces, while in red
the upper and lower ones.

which implies that the tractions on the periodic boundaries be anti-periodic

(PN)+ = −(PN)− ∀ pairs {X+,X−}, (1.30)

where (PN)± = P (F (X±))N (X±).

(iv) Uniform traction boundary conditions (or stress uniform boundary conditions,

SUBC): the first Piola-Kirchhoff stress tensor is constant in the boundary, pro-

ducing a uniform traction T ,

T := PN = P cN ∀X on ∂ΩE
0 , (1.31)

where P c is a constant tensor.

(v) Reuss model: the stress is constant in Ω0,

P = P c in Ω0, (1.32)

where P c is a constant tensor.

For a given macroscopic strain, the first four constraints can be also understood as se-

lecting a proper space Vũ for the fluctuation field, such that ũ ∈ Vũ. Then, each constraint
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is identified with a definition of this space, which can be related as

VTaylor
ũ ⊂ Vkubc

ũ ⊂ Vpbc
ũ ⊂ V subc

ũ , (1.33)

where the superscript indicates the respective constraint (De Souza Neto & Feijóo, 2006).

This means the Taylor model gives the stiffest solution to the micromechanical problem,

followed in order of decreasing stiffness by the kinematic uniform, the periodic displace-

ment and the uniform traction models. These relations agree with the well-known influ-

ence of the constraints on the effective response of composites (Carniel et al., 2019; Kanit

et al., 2003; Terada et al., 2000); however, their implications in the micromechanical re-

sponse of pressure-driven OCFs is still understudied.

1.4. Thesis Structure

This thesis is divided into four chapters; the first one presented an introduction to the

micromechanical study of porous materials and detailed the basis for the variational frame-

work that will be adopted. The second chapter consists of the article in which this thesis

is based: “Pressure-driven micro-poro-mechanics: A variational framework for model-

ing the response of porous materials”; this paper presents a variational framework for

the micromechanical analysis of pressure-driven porous materials and then applies it in

numerical simulations of the lung parenchyma. Three appendices are included, which ex-

tend the scope of the article. The third chapter presents the conclusions of this thesis, and

the fourth one the future work, detailing possible improvements and applications of the

present work.
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2. PRESSURE-DRIVEN MICRO-PORO-MECHANICS: A VARIATIONAL

FRAMEWORK FOR MODELING THE RESPONSE OF POROUS MATERI-

ALS1

2.1. Introduction

Porous materials are ubiquitous in nature and engineering applications, and take shape

as saturated rocks, polymer foams, plant cells and biological tissues among others. One

kind of porous materials are open-cell foams (OCFs), which are defined as materials com-

posed of a matrix with interconnected cavities (Ma et al., 2011). This structural arrange-

ment strongly influences the mechanical response of OCFs, which is dominated by mech-

anisms such as bending of struts, buckling of cell walls, the formation of yield joints or

folds, and fracture of cell struts and cell walls (Altenbach & Öchsner, 2010). Due to

its permeability, cavities in OCFs can be subject to pressure exerted by a fluid or a gas,

which can drive the mechanical response of the material. Examples of pressurized mate-

rials are the foams used to thermally insulate the Space Shuttle external tank (Bednarcyk

et al., 2008), where thermoelastic and thermoinelastic effects are also present; the lung

parenchyma, where alveoli are subject to internal air pressure (Koshiyama et al., 2019;

Rausch et al., 2011; Sarabia-Vallejos et al., 2019); the brain tissue permeated by blood

and cerebrospinal fluid (Guo et al., 2020); and porous elastomers, where the presence of

pressurized cavities has proven to affect the overall response, producing, for instance, the

shrinkage of elastomeric foams after demolding (Fen-Chong et al., 1999; Idiart & Lopez-

Pamies, 2012).

The constitutive response of porous materials has been approached in engineering by

means of traditional poromechanics theory, focused on a macroscopic approach (Biot,

1941; Chapelle & Moireau, 2014; Coussy, 2004), and more recently including microme-

chanical effects (Dormieux et al., 2002). Computational micromechanical models have

been developed for many types of materials, but only few for OCFs, especially in the finite

1This chapter corresponds to the submitted article “Pressure-driven micro-poro-mechanics: A variational
framework for modeling the response of porous materials”, by Felipe Álvarez, Daniel Hurtado and Martin
Genet.
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deformation setting. To this end, a representative volume element (RVE) of the underly-

ing microstructure of the material must be constructed, based on which a microstructural

problem is solved to obtain the stress and strain distributions in the RVE. Then, the ef-

fective behavior can be obtained by averaging the stress and strain fields arising in the

RVE (Hashin, 1983; Hill, 1963; Suquet, 1987). In order to model OCFs, RVEs can be

constructed from micro-computed-tomography (micro-CT) images of the microstructure,

conferring the RVE a highly realistic geometry of the material, that allows to study the

material response at the micro level. This approach has been used, for example, in models

of polyurethane foams (Youssef et al., 2005), metallic foams (Kantzos et al., 2018) and

pulmonary alveoli (Roth et al., 2017), giving information about local deformation mecha-

nisms, such as regions of stress concentrations.

In addition to the creation of the RVE, micromechanical models of porous materi-

als necessitate the definition of suitable boundary conditions (BCs), and internal loads.

When experimental data is available, the boundary conditions in the RVE can be obtained

from sets of 3D images using Digital Volume Correlation, or with methods to relate the

conditions of the whole specimen to the conditions in the RVE, based on macroscopic

homogenized properties (Shakoor et al., 2017). However, in the lack of experimental data,

and to avoid obtaining homogenized quantities, further assumptions have to be made to

determine the boundary conditions of the RVE. One option is to use the classical bound-

ary conditions adopted in homogenization and multi-scale simulations (Fish, 2013; Hill,

1963; Hollister & Kikuchi, 1992; Saeb et al., 2016; Suquet, 1987), where the displace-

ment field is decomposed into an affine component and a fluctuation field, and according

to the boundary condition selected, different constraints are applied in the fluctuation term.

Five conditions are commonly adopted: i) Voigt bound model, where the displacement

field is assumed to be affine everywhere inside the RVE and the fluctuation field van-

ishes, ii) kinematic uniform boundary condition (KUBC), where the fluctuation vanishes

at the boundary but is otherwise unknown in the domain of the RVE, iii) periodic displace-

ment boundary condition (PBC), where the fluctuation field is periodic at the boundary,

iv) uniform traction boundary condition (SUBC), which can be interpreted as an integral
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constraint on the fluctuation field, and v) Reuss model, where the stress field is homoge-

neous everywhere inside the RVE. While the effect of these constraints on the coarse-scale

response of composites is known (Carniel et al., 2019; Kanit et al., 2003; Terada et al.,

2000), their implications in the distribution of stresses at the microscale in foams driven

by pore pressure is still understudied.

Micromechanical analysis of foams have been focused on the cases where the macro-

scopic strain, or the macroscopic stress, are imposed (De Souza Neto & Feijóo, 2006;

Perić et al., 2011). However, in porous materials the pore pressure can drive the de-

formation, with the macroscopic strain and stress being a response of the system. For

example, this case is present when the loading process of pressurized foams is decom-

posed into two steps: first, an initial configuration is obtained, where the deformation in

the RVE is produced only by the pore pressure, and then, the final deformed configuration

is obtained by applying the external loads. The pressure-driven case has been predom-

inantly approached by means of numerical simulations, with less developments from an

analytical perspective. To implement it, computational simulations have been conducted

imposing restrictions between the degrees of freedom of the boundaries on the discretized

system. Ma et al. (2011) developed a micromechanical model for fluid-filled closed-cell

composites with pore pressure and external loads, where first they obtained the response

with pore pressure only, imposing periodic boundary conditions by coupling constraint

equations and obtaining the macroscopic strain as a result of the simulation. In another

example, Ju et al. (2008) modeled balloon-expandable stents as cylindrical structures with

longitudinal and circumferential periodicity, subject to internal pressure. Similar to the

previous case, the elongation in the z-direction is unknown before finite element com-

putations, and it is excluded from the displacement constraint equations by the use of

multiple-point constraints. Despite the existence of these numerical constraints, which al-

low the pressure-driven model to be numerically solved, a general analysis of the boundary

conditions for the continuous mechanical problem of pressurized foams remains an open

avenue of research.
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In this paper, we present a variational framework for modeling the pressure-driven

response of RVEs of foam materials, in the setting of finite kinematics. The theoretical

analysis of the problem is completed with the choice of boundary conditions, which are

expressed as kinematical constraints in the fluctuation term of the displacement, among

which three options are compared: KUBC, PBC and SUBC. After the variational frame-

work is developed, the proposed model is used to study the micromechanical response in

the context of lung parenchyma simulations. Moreover, the numerical simulations will

help to understand the potential differences when the tissue microstructure is replaced by

an idealized representation. We conclude by analyzing the implications of the different

boundary conditions (KUBC, PBC and SUBC), and loadings (pressure, deformation), in

terms of the stress distributions obtained.

2.2. Micromechanical Model: Variational Framework

In the following, we develop a variational framework for finite-strain micromechanical

analysis of pressure-driven foam materials, i.e., porous materials for which the pore pres-

sure is known and the macroscopic strain is an unknown of the problem. Let ΩS
0 and ΩS be

the solid domain in the reference and current configurations, respectively, and let ΩF
0 and

ΩF represent the fluid domain in the reference and current configurations, respectively.

Then, the RVE domain in the reference configuration is Ω0 = ΩS
0 ∪ ΩF

0 . Similarly, the

current configuration is constructed as Ω = ΩS ∪ ΩF . Let ∂ΩE
0 and ∂ΩN

0 be the outer and

inner boundaries, respectively, in the reference configuration, and ∂ΩE and ∂ΩN be their

counterparts in the current configuration, see Figure 2.1a for a graphical representation.

Note that, in general, ∂ΩE
0 is only a subset of the total boundary of the RVE, because in

OCFs the pores intersect the RVE border. The deformation mapping ϕ : Ω0 → Ω maps

a point X in the reference configuration into its corresponding position in the current

configuration, denoted by x, such that ϕ(X) = x. Further, we define the deformation

gradient tensor field F as

F :=
∂ϕ

∂X
(X). (2.1)
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Without loss of generality, we decompose the displacement field u as a sum of an affine

transformation and a fluctuation field

u (X) = ŪX̂ + ũ, (2.2)

where Ū ∈ VŪ = Symn (space of (n × n) symmetric matrices), ũ : Ω0 → R3 is the

fluctuation field, and X̂ := X −X0, withX0 a point in the reference configuration. The

case where the macroscopic strain Ū is given has been widely studied, with a remarkable

theoretical approach adopted by De Souza Neto and Feijóo (2006) and Perić et al. (2011),

where they develop the variational formulation of the problem and analyze different kine-

matical constraints on the fluctuation term, needed to make the problem well-posed; in

contrast, note that here both Ū and ũ are unknowns of the problem. As Ū is a variable

of the problem, the affine transformation can capture a scaling, shear and/or rotation of

the RVE; however, we assume the pore pressure does not produce rotations, which is the

reason why Ū is symmetric. The explanation of this lies in the polar decomposition the-

orem, that states the deformation gradient can be decomposed uniquely as the product of

two tensors: an orthogonal one, that corresponds to a rotation, and a symmetric one, that

describes the deformation. Then, the purpose of enforcing Ū to be symmetric is to capture

only the component of deformation. For the fluctuation field, as done in Perić et al. (2011)

and De Souza Neto and Feijóo (2006), we study the implications of different kinematical

constraints, which corresponds to define suitable spaces Vũ such that ũ ∈ Vũ.

We model the mechanical behavior of the RVE using a variational aproach, where we

assume that the solid phase of the microstructure follows an incompressible hyperelastic

behavior that is driven by the pore pressure. Within this framework, we define the internal

energy of deformation by

Πint(Ū , ũ, p) =

∫
ΩS

0

ψ(F , p) dV, (2.3)

with

ψ(F , p) := ψiso(F )− p(J − 1) , F = I + Ū +∇0ũ, (2.4)
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(a) (b) (c)

Figure 2.1. (a) 2D schematic of the ref. configuration of a periodic foam-
like material RVE. In gray, the solid domain, while in blue and red, its
bounding and inner boundaries, respectively. The colors in (b) and (c)
are consistent with this definition. (b) Mesh of the spherical alveolar
model, representing a spherical alveolus in the parenchyma. (c) Mesh of
the image-based alveolar model, obtained by micro-CT images of rat lung
parenchyma. For further details, refer to section 2.3.

where p represents a Lagrange multiplier field needed to enforce the incompressiblity

condition in the formulation, ψ(F , p) is the strain energy density function of the incom-

pressible solid, ψiso(F ) characterizes its isochoric response and J := detF . The external

potential energy is defined as

Πext(Ū , ũ) = −p0V
F , (2.5)

where p0 is the pore pressure exerted by the fluid, and V F := |ΩF | the current fluid

volume. We note that, as the traction induced by the pore pressure on the inner boundary of

the solid depends on the current configuration, and therefore on the deformation mapping,

it cannot be always included in the potential energy as it may not derive from a potential

density. In our case, we can include it because the fluid domain is enclosed by a surface

(Bonet & Wood, 1997), composed by the inner boundary of the solid ∂ΩN
0 and the external

boundary of the pores. As in the present work we are not interested in the fluid response,

we impose the displacement to be zero (u = 0) in the external boundary of the pores, so
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in the stationarity conditions the only relevant term associated to p0 is

DδuΠext(u) =

∫
∂ΩN

0

p0JF
−TN · δu dS

=

∫
∂ΩN

0

p0JF
−TN · (δŪX̂ + δũ) dS, (2.6)

which is expressed as an integral on the solid inner boundary ∂ΩN
0 .

Based on the definitions above, we express the total potential energy as

Πtot := Πint + Πext. (2.7)

Then, from the Principle of stationary potential energy, we find the variational equations

needed for the RVE equilibrium, starting with the stationary condition of ũ

DδũΠtot(Ū , ũ, p) =

∫
∂ΩE

0

P̄N · δũ dS −
∫

ΩS
0

(∇0 · P̄ ) · δũ dV

+

∫
∂ΩN

0

(P̄N + p0JF
−TN ) · δũ dS = 0 ∀ δũ ∈ V0

ũ, (2.8)

where V0
ũ is a suitable space for the admissible perturbation field δũ, and P̄ is the first

Piola-Kirchhoff stress tensor

P̄ (F , p) :=
∂ψ

∂F
(F , p) =

∂ψiso

∂F
(F )− pJF−T . (2.9)

Then, from Equation (2.8) we can deduce

∇0 · P̄ = 0 in ΩS
0 , (2.10)

P̄N = −p0JF
−TN on ∂ΩN

0 , (2.11)

the missing relation for ∂ΩE
0 depends on the kinematical constraint for ũ, and it will be

analyzed in the next section.
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The stationarity with respect to Ū yields

DδŪΠtot(Ū , ũ, p) =

∫
ΩS

0

P̄ : ∇0(δŪX̂) dV +

∫
∂ΩN

0

p0JF
−TN · δŪX̂ dS = 0 ∀ δŪ ∈ VŪ ,

(2.12)

however, noting that Ū does not depend onX , the first term can be expressed as∫
ΩS

0

P̄ : ∇0(δŪX̂) dV =

∫
ΩS

0

P̄ : δŪ dV =

∫
ΩS

0

P̄ dV : δŪ , (2.13)

then,

DδŪΠtot(Ū , ũ, p) =

[∫
ΩS

0

P̄ dV +

∫
∂ΩN

0

p0JF
−TN ⊗ X̂ dS

]
: δŪ = 0 ∀ δŪ ∈ VŪ .

(2.14)

The macroscopic first Piola-Kirchhoff stress tensor in the solid domain is defined as

〈P̄ 〉 :=
1

|ΩS
0 |

∫
ΩS

0

P̄ dV, (2.15)

and replacing it in Equation (2.14)[
|ΩS

0 |〈P̄ 〉 +

∫
∂ΩN

0

p0JF
−TN ⊗ X̂ dS

]
: δŪ = 0 ∀ δŪ ∈ VŪ , (2.16)

which, due to the symmetry of Ū , implies the following equation

|ΩS
0 |
(
〈P̄ 〉 + 〈P̄ 〉T

)
= −

∫
∂ΩN

0

(p0JF
−TN ⊗ X̂) + (X̂ ⊗ p0JF

−TN ) dS, (2.17)

that can be interpreted as a relation between the macroscopic first Piola-Kirchhoff stress

tensor and the pressure applied on the inner boundary. However, as the deformation gra-

dient tensor depends on Ū and ũ, this relation is coupled with the rest of the equations,

and the macroscopic stress cannot be obtained a priori.

For the Lagrange multiplier p, the stationarity corresponds to

DδpΠtot(Ū , ũ, p) =

∫
ΩS

0

δp(J − 1) dV = 0 ∀ δp ∈ V0
p , (2.18)
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where V0
p̃ is a suitable space for the admissible perturbation field δp. This Equation implies

the incompressibility of the solid, that in terms of J(F ) is

J(F ) = 1 in ΩS
0 . (2.19)

2.2.1. Kinematical constraints

To complete the problem, a suitable space for the displacement fluctuation must be

selected. We will discuss three options commonly adopted:

(i) Kinematic uniform boundary condition (KUBC): The boundary displacement

fluctuation vanishes

Vũ = Vkubc
ũ := {ũ ∈ H1(ΩS

0 )| ũ(X) = 0 ∀X on ∂ΩE
0 }, (2.20)

Vp = Vkubc
p := L2(ΩS

0 ). (2.21)

(ii) Periodic displacement boundary condition (PBC): Used to describe materials

with periodic microstructure, here it is assumed that the boundary ∂ΩE
0 is peri-

odic, so there exists pairs {X+,X−} that relate the coordinates of two periodic

faces. In this case

Vũ = Vpbc
ũ := {ũ ∈ H1(ΩS

0 )| ũ(X+) = ũ(X−) ∀ pairs {X+,X−}}, (2.22)

Vp = Vpbc
p := {p ∈ L2(ΩS

0 )| p(X+) = p(X−) ∀ pairs {X+,X−}}. (2.23)

As in ∂ΩE
0 the fluctuation ũ is periodic, from the first term in Equation (2.8)∫

∂ΩE
0

P̄N · δũ dS = 0 ∀ δũ ∈ V0
ũ, (2.24)

and we see the periodicity in the fluctuation term implies the anti-periodicity of

the traction P̄N on the external boundary

(P̄N)+ = −(P̄N)− on ∂ΩE
0 , (2.25)
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where (P̄N)+ and (P̄N)− correspond to the traction in the periodic pairs X+

andX−, respectively.

(iii) Uniform traction boundary condition (also known as stress uniform boundary

conditions, SUBC): the traction is uniform in the boundary, with the first Piola-

Kirchhoff stress tensor constant. This condition can be enforced with a Lagrange

multiplier (Javili et al., 2017), adding a term in the external potential energy

Πext(Ū , ũ,λ) = p0V
F + λ :

∫
∂ΩE

0

ũ⊗N dS , (2.26)

where λ ∈ M3 is the Lagrange multiplier, with Mn the space of all (n × n)

matrices. Note that λ is outside the integral because it is a constant tensor, that

does not depend on X , however, this term could also be written as
∫
∂ΩE

0
λN ·

ũ dS. Then, the stationary condition of ũ yields

DδũΠtot(Ū , ũ, p,λ) =

∫
∂ΩE

0

(P̄N − λN ) · δũ dS −
∫

ΩS
0

(∇0 · P̄ ) · δũ dV

+

∫
∂ΩN

0

(P̄N + p0JF
−TN ) · δũ dS = 0 ∀ δũ ∈ V0

ũ, (2.27)

from which we obtain Equations (2.10), (2.11) and the uniform traction condi-

tion

P̄N = λN on ∂ΩE
0 . (2.28)

The stationarity with respect to Ū is equal to the developed in the previous

section, and with respect to λ is

DδλΠtot(ũ,λ) = δλ :

∫
∂ΩE

0

ũ⊗N dS = 0 ∀ δλ ∈ M3, (2.29)

which implies ∫
∂ΩE

0

ũ⊗N dS = 0. (2.30)

This suggests the definition of the space V subc
ũ as

V subc
ũ := {ũ ∈ H1(ΩS

0 )|
∫
∂ΩE

0

ũ⊗N dS = 0}. (2.31)
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Then, the spaces Vkubc
ũ , Vpbc

ũ and V subc
ũ can be related as

Vkubc
ũ ⊂ Vpbc

ũ ⊂ V subc
ũ . (2.32)

The first relation is direct, due to the vanishing of the boundary fluctuations in

the KUBC case. For the periodic case, the condition
∫
∂ΩE

0
ũ⊗N dS = 0 is

accomplished due to the periodicity of ũ and the anti-periodicity ofN .

For p, in this case

Vp = V subc
p = L2(ΩS

0 ). (2.33)

Previously, based on the polar decomposition theorem, we enforced Ū to be

symmetric. For the PBC and SUBC, we can additionally show that if the exter-

nal forces (due to the pore pressure, or body force if present) produce an angular

momentum different from zero, then Ū must be symmetric, as detailed in Ap-

pendix A.

Finally, we can express the strong form of the problem as: Given p0, find Ū ∈ VŪ , ũ ∈

Vũ and p ∈ Vp, such that

∇0 · P̄ (F , p) = 0 in ΩS
0 ,

P̄ (F , p)N = −p0JF
−TN on ∂ΩN

0 ,

J(F ) = 1 in ΩS
0 ,

F = I + Ū +∇0ũ in ΩS
0 ,

|ΩS
0 |
(
〈P̄ 〉 + 〈P̄ 〉T

)
= −

∫
∂ΩN

0

(p0JF
−TN ⊗ X̂)

+ (X̂ ⊗ p0JF
−TN ) dS.



(2.34)

Plus,

(P̄N)+ = −(P̄N)− on ∂ΩE
0 for PBC,

P̄ (F , p)N = λN on ∂ΩE
0 for SUBC, with λ ∈ M3 a variable of the problem.
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The case including body force is analogous, and is detailed in Appendix B.

2.3. Numerical Examples

The proposed variational framework can be applied to the study of different kinds of

pressurized foams. In this section, we will focus on the behavior of the lung tissue, a

pressurized biological foam, through two examples: first, a spherical alveolar model, rep-

resenting a single spherical alveolus inside a box, and then an image-based alveolar model,

obtained from micro-CT images of rat lung parenchyma (Concha & Hurtado, 2020). The

objective of these models is to observe how simplifications on the geometry affect the mi-

cromechanical response, such as the stress distribution within the RVE, or the presence

of local phenomena. In both cases two load patterns will be analyzed, first a pressure-

driven RVE, with a uniform pore pressure in the cavity and with the macroscopic strain as

a variable of the problem, i.e., the model described in the previous section, and then in a

deformation-driven setting, removing the pore pressure and applying an equivalent macro-

scopic strain (obtained from the solution to the first case). Both loading conditions intend

to represent, in an approximate way, physiological conditions in the pulmonary tissue.

The pressure-driven model resembles the tissue conditions under mechanical ventilation,

where the respiratory muscles are passive and the pressure generated by the ventilator

drives the air into the lungs (Mauri et al., 2017), and the deformation-driven mimics spon-

taneous breathing, where the respiratory muscles have an active role. In all cases, we will

compare the three kinematical constraints (KUBC, PBC and SUBC) in terms of the stress

distributions.

For the lung parenchyma mechanical behavior, we select an incompressible neo-Hookean

strain energy function, with an elastic modulus set to E = 95 kPa according to the values

reported by Perlman and Wu (2014), which is equivalent to µ = E
2(1+ν)

= 31.7 kPa, using

a Poisson ratio ν = 0.5. It is worth noting that other phenomenological strain energy func-

tions have been studied for the representation of the behavior of lung parenchyma in the

literature (Bel-Brunon et al., 2014; Birzle et al., 2019; Birzle & Wall, 2019). However, in
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this work we choose the neo-Hookean model to minimize the number of material parame-

ters and the non-linearity of the material model, and concentrate on the effect of boundary

conditions and microstructural geometry. The RVE is loaded using a positive pore pres-

sure ranging from p0 = 0 to 1.962 kPa. The numerical simulations were carried out using

the FEniCS library for finite element computations (Logg et al., 2012). To account for the

incompressible behavior of the solid phase, we considered a mixed FE formulation that

employs P2-P1 Taylor-Hood tetrahedral elements.

2.3.1. Spherical alveolar model

In the literature, the complex lung parenchyma microstructure has been simplified

using polyhedral representations (Concha et al., 2018; Fung, 1988; Koshiyama & Wada,

2015; Roth et al., 2017; Warren & Kraynik, 1997). However, as in this work the main

objective of the numerical simulations is to illustrate the application of the model described

in the previous section, and not necessarily present a detailed study of the tissue behavior,

here we will use a geometry consisting of a spherical cavity embedded in a homogeneous

matrix, that represents a large spherical alveolus. The mesh was constructed using GMSH

(Geuzaine & Remacle, 2009), with special care to make the external boundary periodic

(requisite for the PBC); specifically, it consists in a cube of edge size 122.5 µm (the same

size as the image-based RVE that will be studied) with an internal spherical cavity that

intersects the cube boundaries, as shown in Figure 2.1b. The cavity radius is such that the

porosity of the RVEs of the spherical and image-based alveolar models be similar, with

the porosity in the reference configuration defined as f0 := |ΩF
0 |/|Ω0|, which in this case

gives 63.24% (versus 63.22% for the image-based RVE of figure 2.1c). We remark that,

while both geometries have similar porosity, the single alveolus model considers a uniform

smooth cavity, which is clearly different from the intricate microstructure observed in

micro-CT images of alveolar tissue. A measure of this difference is the surface-to-volume

ratio, that if defined as the area of the inner surface ∂ΩN
0 divided by the volume of gas in

the RVE, gives a value of 0.0356 µm-1 for the spherical model and 0.1032 µm-1 for the

image-based case (see Section 2.3.2).
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To compare the performance of the different kinematical constraints, we use two scalar

stress measures: the hydrostatic stress, related with the first invariant of the Cauchy stress

tensor,

σhyd :=
1

3
trace(σ), (2.35)

and the von Mises stress,

σVM :=

√
3

2
σdev : σdev, (2.36)

that is related to shear stresses, and where the deviatoric component of the stress tensor is

σdev := σ − σhydI. (2.37)

From these definitions, we note that the hydrostatic and the von Mises stress quantify two

independent and orthogonal components of the Cauchy stress tensor.

Figures 2.2 and 2.3 show the hydrostatic and von Mises stress for a pore pressure of

1.962 kPa, respectively. As the Cauchy stress tensor is defined in the current configuration,

in these Figures the quantities are plotted in the deformed state. For the hydrostatic stress,

the RVE exhibits a response that depends on the kinematical constraint and the type of

loading. While for the KUBC there are peak values near the cube edges, in the SUBC there

are peaks near the sphere edges (where it intersects the cube faces), especially noticeable

in the deformation-driven case. For the von Mises stress, the distribution is independent

of the type of loading. However, it depends on the kinematical constraint: in the KUBC

there are smaller values, in the SUBC there are peaks in the sphere edges and the PBC

response is similar to the SUBC but without these peak values.

The stress distributions plotted in the current configuration allow observing the distri-

butions, if there are peak values and where they are located, however, for a more detailed

comparison, in Figure 2.4 the frequency distributions of the hydrostatic and von Mises

stress are presented. To facilitate the comparison, in these figures the curves were done

using the gaussian kde function available in SciPy (Virtanen et al., 2020), which

produce a kernel-density estimate using Gaussian kernels. The results show that for the
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Figure 2.2. Hydrostatic stress field in the spherical alveolar model, plotted
in the current configuration.

Figure 2.3. Von Mises stress field in the spherical alveolar model, plotted
in the current configuration.

hydrostatic stress, the three kinematical constraints produce different distributions, but

for each case, when the macrostrain is given instead of applying a pore pressure (i.e.,

deformation-driven instead of pressure-driven), there is a shift in the distributions, with

higher values but the same shape. For the von Mises stress, the distribution in the PBC and

SUBC are similar, in agreement with the observed in Figure 2.3, while the KUBC exhibits

lower and more concentrated values. Additionally, for the KUBC and PBC the distribution
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Figure 2.4. Spherical alveolar model, distributions for (a) hydrostatic
stress, and (b) von Mises stress. The values depend on the kinematical
constraint selected: KUBC (blue), PBC (red) and SUBC (green), and in
the type of loading: pressure-driven in solid lines, deformation-driven in
dashed lines. For each kinematical constraint, the removal of the pore pres-
sure and application of an equivalent macrostrain, produces a shift in the
hydrostatic stress, while the von Mises stress remains constant with the
KUBC and PBC, and has slight differences with the SUBC.

is indistinguishable for both loadings (pressure-driven in solid lines, deformation-driven

in dashed lines), while for the SUBC there is a slight difference between 10 and 15 kPa,

that is not noticeable in the plots of Figure 2.3.

2.3.2. Image-based alveolar model

For the image-based alveolar model, a cuboid RVE of edge size 122.5 µm is selected

from micro-CT images of rat lung parenchyma previously reported by our group (Concha

et al., 2018; Sarabia-Vallejos et al., 2019). The RVE preserves the morphological features

of the alveolated tissue; however, due to the natural heterogeneities the resulting mesh is

not periodic, hindering the straight use of PBC. To overcome this issue different meth-

ods have been proposed, for example Pahr and Zysset (2008) used a perfectly periodic

mirrored mesh of cancellous bone (obtained by reflecting successively the original mesh
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in the x, y and z directions). To avoid the need of matching meshes on opposite RVE

boundaries, Larsson et al. (2011) weakly imposed the fluctuation periodicity (and traction

anti-periodicity), and Nguyen et al. (2012) developed a method based on polynomial inter-

polation of the displacement in the boundaries. In this paper, following the straightforward

approach of the mirrored mesh, the original RVE (Figure 2.1c) is reflected, obtaining the

geometry shown in Figure 2.5, a cube of edge size 245 µm, which is easy to obtain but

that is not a completely realistic structure and has eight times the number of elements of

the original mesh.

Figure 2.5. The mesh of the image-based alveolar model obtained by
micro-CT images is not periodic (due to natural heterogeneities in the tis-
sue), so in order to apply the PBC the original mesh (in red) is reflected
successively in the x, y and z directions, obtaining a perfectly periodic
mesh (in gray).

Analogous to the spherical alveolar model, we plot the hydrostatic and von Mises

stress distributions, which are shown in Figures 2.6 and 2.7. In this case, we see that for

both measures, the stress values are similar with the KUBC, PBC and SUBC constraints,

except for some values in the exterior boundary, particularly around the upper right corner

of the deformed RVE, where a thin “bar” of tissue has higher stress values with the SUBC

and lower values with the KUBC.

Consistent with the plots of Figure 2.6, the results reported in Figure 2.8a show that

the hydrostatic stress distributions are similar for the three kinematical constraints. In

effect, in the pressure-driven case, the KUBC, PBC and SUBC models result in a peak
33



Figure 2.6. Hydrostatic stress field in the image-based alveolar model,
plotted in the current configuration.

Figure 2.7. Von Mises stress field in the image-based alveolar model, plot-
ted in the current configuration.

that occurs close to the pore pressure (1.96 kPa). Interestingly, in the deformation-driven

case, the shape of the stress distributions are similar to those observed in the pressure-

driven setting, only shifted towards the positive values with the peak occurring near 0 kPa.
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Regarding the von Mises stress, there are virtually no differences between the pressure-

and deformation-driven cases, see Figure 2.8b. Further, all distributions are unimodal,

with the KUBC and PBC giving similar values, and the SUBC slightly higher values.
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Figure 2.8. Image-based alveolar model, distributions for (a) hydrostatic
stress, and (b) von Mises stress. The Figure shows the results with
each kinematical constraint: KUBC (blue), PBC (red) and SUBC (green);
and type of loading: pressure-driven in solid lines, deformation-driven in
dashed lines. For both stress measures, the shape of the distributions is
similar for the different kinematical constraints. Also, the removal of the
pore pressure and application of an equivalent macrostrain, produces a shift
in the hydrostatic stress, while the von Mises stress remains similar.

While the focus of this work is on the micromechanical behavior, the macroscopic (av-

eraged) response constitutes a useful measure to compare the different kinematical con-

straints and to observe how they affect the global values. Then, in order to compare the

different cases studied at a macro-perspective, in Appendix C we show the values of the

macroscopic strain and stress.

2.4. Discussion

In this work, we propose a variational framework for the micromechanical response of

OCFs. We employ the framework in the analysis of the micromechanical behavior under
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pressure-driven conditions, where we consider a spherical alveolar and an image-based

alveolar models to assess the stress distributions. For each geometry considered, three dif-

ferent boundary conditions were studied. One key conclusion is that both the hydrostatic

and deviatoric stress distributions in the spherical alveolar model were highly dependent

on the boundary condition assumed for the micromechanical analysis, see Figure 2.4. In

effect, the peak values of the distributions did not coincide, and there was no clear trend

in terms of modality of the distribution. In contrast, when looking at image-based alveolar

model, all three boundary conditions resulted in virtually the same stress distribution, see

Figure 2.8. In particular, the hydrostatic distribution displayed a bimodal shape, whereas

the von Misses stress showed positively-skewed unimodal distribution. To facilitate a com-

parison between the spherical and image-based alveolar models, we have summarized the

stress distributions in terms of box and whisker plots, see Figure 2.9. We observe that in

the case of image-based alveolar model, all boundary conditions lead to consistent stress

distributions, which is not the case for the spherical model. We further note that the results

for the image-based model are consistent with stress distributions reported in previous

works, where alveolar geometries obtained from micro-CT images under varying levels

of alveolar pressure were analyzed (Sarabia-Vallejos et al., 2019). In those simulations,

boundary conditions were arbitrarily chosen, not based on theoretical grounds. The result-

ing hydrostatic and deviatoric stress distributions in that work are very similar in shape to

those shown in Figure 2.8. Interestingly, in this work we have shown that in anatomical

geometries, the conditions imposed on the boundary do not seem to play a key role in the

micromechanical response. A possible explanation for this behavior is the random un-

structured trabecular geometry of the alveolated pulmonary tissue, that quickly dissipates

stress localizations that may arise at the boundaries of the RVE due to different conditions,

see Figures 2.6 and 2.7. From these results, we conclude that, while two RVE may have

similar macroscopic properties such as global porosity, their microstructural stresses can

strongly differ. Further, stresses in randomly-structured RVEs do not seem affected by the

boundary conditions, whereas highly structured RVEs do.
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Figure 2.9. Comparison of the (a) hydrostatic and (b) von Mises stress
distributions for the pressure-driven RVE, with the spherical and image-
based alveolar models, in red and blue boxes, respectively. The boxes range
from the lower (Q1) to upper (Q3) quartile values of the stress, with a line at
the median. The whiskers extend from the boxes to show the range of the
data. The upper whiskers extend to the last value less than Q3 + 1.5 IQR,
while the lower whiskers to the first value greater than Q1−1.5 IQR, where
IQR = Q3 − Q1 is the interquartile range. The outliers are not shown for
clarity.

To understand the differences between formulations where either pressure or deforma-

tion is imposed, we consider models where boundary conditions are driven by a macro-

scopic deformation Ū under zero pore pressure. The results in both the spherical and

image-based alveolar models (Figures 2.4 and 2.8, respectively) show that the hydro-

static stress distributions are shifted between the pressure-driven and the deformation-

driven cases, while the von Mises stress distributions remain the same. Interestingly, in

the deformation-driven case we observe that boundary conditions do affect the spherical

model distribution of stress in a way similar to the pressure-driven case. However, the

results for the deformation-driven image-based model show that the choice of boundary

conditions does not influence the stress distribution, resembling the behavior observed

in the pressure-driven case. We remark that the shift in the hydrostatic stresses in finite

deformation poro-elasticity has been addressed by Idiart and Lopez-Pamies (2012), bor-

rowing ideas from Julien et al. (2011) and Vincent et al. (2009). In their work, Idiart &
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Lopez-Pamies showed that stresses in an incompressible elastomeric solid with pressur-

ized closed cavities can be expressed as

P̄ = P̃ − p0JF
−T , (2.38)

where P̃ corresponds to the first Piola-Kirchhoff stress tensor obtained from solving the

same microstructure subject to an equivalent macroscopic strain and zero pore pressure,

and p0 corresponds to the pressure applied in the closed cavities. In the current configura-

tion, Equation 2.38 is equivalent to adding a hydrostatic pressure term with magnitude p0

to the Cauchy stress tensor, which explains the shift in the hydrostatic stress distribution.

Since the cavity pressure effect only results in an isotropic tensor, the von Mises stress re-

mains the same under this transformation. In Idiart and Lopez-Pamies (2012), to find the

equivalent macroscopic strain, an additional equation is imposed, which is based on the

traction-free condition on the external boundary, and consists in making zero the average

of the first Piola-Kirchhoff stress tensor in the entire RVE (solid and fluid domain). Inter-

estingly, under the same assumptions (a closed-cell composite and extending P̄ to the fluid

domain) and with some algebraic manipulations, this equation can be related to the station-

ary condition Equation (2.16), which is generated by considering the macroscopic strain

as a variable of the problem. The relationship between pressure-driven and deformation-

driven formulations has profound consequences on the modeling of free-breathing versus

ventilated-breathing, for instance in the context of lung mechanical simulations (Hurtado

et al., 2020; Patte et al., 2020; Patte et al., 2019; Tawhai & Lin, 2010).

The present work can be expanded in several directions. First, we note that the

choice of a neo-Hookean strain energy function imposes an important limitation when

studying OCFs, which may exhibit a strongly non-linear mechanical behavior (for lung

parenchyma, see Bel-Brunon et al. (2014), Birzle et al. (2019), and Birzle and Wall

(2019)). In this work we chose a simple constitutive law to isolate its effect on the results,

allowing us to better focus on assessing the impact of boundary conditions and geometry

on the RVE stress distribution and response. Future contributions should incorporate other

constitutive relations that are specific to the material under analysis, and that may exhibit
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other type of mechanical behavior, e.g. viscoelastic and hysteretic response (West, 2012).

This, in turn, may necessitate an extension of the current variational framework, which has

been developed under the assumption of a material with hyperelastic response. Another

limitation is the lack of experimental validation of the results obtained from numerical

simulations. Micro-CT imaging combined with digital image correlation has been used to

assess the deformation fields arising in bone samples under compressive loading (Dick-

inson et al., 2011), allowing for the validation of FE simulations of bone microstructures

(Hambli, 2013). We note, however, that the validation of pressurized porous materials

may require more sophisticated setups that maintain the applied pressure in sealed sam-

ples, which may not be compatible with current micro-CT technologies.

Acknowledgements

This work was funded by the National Agency for Research and Development (ANID)

of Chile through the grant FONDECYT Regular # 1180832.

39



3. CONCLUSIONS

In this thesis, a variational framework for the micromechanical analysis of pressure-

driven porous materials is formulated. The proposed model is applied in numerical sim-

ulations in the context of lung micromechanics, first with a spherical alveolar model and

then with an image-based alveolar model. In the first case, the hydrostatic and von Mises

stress distributions are highly dependent on the kinematical constraints. Conversely, in the

image-based model, the stress distributions are the same for all constraints, and only slight

differences were observed in the stress values near the external boundary. Additionally,

these results show that even if two RVEs have similar macroscopic properties, such as

the global porosity, and the solid has the same strain energy function, the microstructural

stresses can differ. The stresses can even have an opposite sign (for the pressure-driven

simulations, the hydrostatic stress values are positive in the spherical model, while in the

image-based model, they are predominantly negative).

For the loading of the RVE, in addition to the pressure-driven setting, a set of deformation-

driven simulations were performed, with a given macroscopic strain (obtained as a result

of the previous case) and zero pore pressure. The results show that for each constraint, the

hydrostatic stress distribution is shifted between both loading settings, while the von Mises

stress values remain similar. Moreover, the pressure-driven and deformation-driven simu-

lations of the lung parenchyma can be related to mechanical ventilation and spontaneous

breathing, respectively, giving an insight into the differences between both states.
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4. PERSPECTIVES

In this thesis, the proposed model for pressure-driven foams is applied in the context of

lung parenchyma simulations; however, it can be used to understand and model different

kinds of foams with pressurized cavities. Examples of areas where the pore pressure plays

a key role, and our model could be of interest, are the shrinkage of expanded polystyrene

after demolding (Fen-Chong et al., 1999), cavitation and fracture of hydrogels (Kundu

& Crosby, 2009) and internal fracture of rubber materials when high-pressure gases are

suddenly decompressed (Yamabe et al., 2011).

For the lung parenchyma simulations, a neo-Hookean strain energy function was se-

lected. However, the tissue has a viscoelastic and nonlinear response (Bel-Brunon et al.,

2014; Birzle et al., 2019; Birzle & Wall, 2019), which is not captured correctly by a neo-

Hookean function. Additionally, other compounds also affect the mechanical response,

such as the pulmonary surfactant, that contributes to the hysteresis and alveoli stability

(West, 2012). Therefore, to find proper conclusions about the tissue response, future stud-

ies should incorporate these conditions.

This thesis’s main topic is pressure-driven RVEs; nonetheless, other states can be re-

lated to this condition. For example, thermo-mechanical simulations where a change in

the temperature produces the deformation, as done to obtain the effective thermal expan-

sion coefficients of composites (Akulichev et al., 2016; Karch, 2014). The framework

proposed here can be adapted to study this situation, keeping the macroscopic strain as a

variable of the problem and setting the temperature increment as the loading (instead of

the pore pressure, as discussed here). Then, from the displacements found, the coefficients

can be computed directly.
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A. BALANCE OF ANGULAR MOMENTUM AND SYMMETRY OF Ū

Rigid body motions consist of translations and rotations; they are not related to the

deformation of bodies and difficult the solution of mechanical problems. The existence

of this type of movements is related to the loading and boundary conditions imposed;

in particular, in this appendix rigid body rotations will be analyzed in the context of the

pressure-driven formulation presented in Chapter 2. For the kinematic uniform boundary

conditions (KUBC), the constraints on the fluctuation term ũ produce forces on ∂ΩE
0 that

are capable of balancing the system, so the body cannot present rotations (nor translations).

However, for the periodic (PBC) and uniform traction (SUBC) boundary conditions, if the

external forces produce an angular momentum different from zero, an additional constraint

is needed to prevent the system’s rotation. In this thesis, this constraint consisted of en-

forcing the macroscopic strain Ū to be symmetric. Then, this appendix’s objective is to

show that the symmetry of Ū is related to the balance of angular momentum.

To establish the relation between the symmetry of Ū and the angular momentum, here

it will be proved that for the PBC and SUBC, if Ū is not enforced to be symmetric, then

the momentum produced by the external forces (due to the pore pressure and body forces,

for example), must be zero. Note this is equivalent to say that with PBC and SUBC, if

the external forces produce an angular momentum different from zero, then Ū must be

symmetric. First, we will not enforce Ū to be symmetric, then using the equation of

balance of angular momentum and the properties of PBC and SUBC, we will conclude

that the momentum produced by external forces must be zero.

To start, we note that the integral of the first Piola-Kirchhoff stress tensor can be ex-

pressed as∫
ΩS

0

P̄ dV =

∫
∂ΩS

0

P̄N⊗X̂ dS =

∫
∂ΩE

0

P̄N⊗X̂ dS−
∫
∂ΩN

0

p0JF
−TN⊗X̂ dS, (A.1)

with ∂ΩS
0 = ∂ΩE

0 ∪ ∂ΩN
0 and where we replaced P̄N by the traction due to the pore pres-

sure p0 on ∂ΩN
0 , using Equation (2.11). Then, replacing (A.1) in the stationary condition
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with respect to Ū , Equation (2.16) (which is the same as Equation (B.9), in the case with

body force) [∫
∂ΩE

0

P̄N ⊗ X̂ dS

]
: δŪ = 0 ∀ δŪ ∈ M3. (A.2)

Now, as we do not enforce Ū to be symmetric, then Ū ∈ M3 and from Equation (A.2)∫
∂ΩE

0

T ⊗ X̂ dS = 0, (A.3)

where T = P̄N .

Let M ext be the momentum produced by external forces, then from the balance of

angular momentum ∫
∂ΩE

0

x× T dS +M ext = 0, (A.4)

but we can express the current coordinates x as a function of the reference coordinatesX

and the displacement, x = X + ŪX̂ + ũ, then∫
∂ΩE

0

X × T dS +

∫
∂ΩE

0

ŪX̂ × T dS +

∫
∂ΩE

0

ũ× T dS +M ext = 0. (A.5)

Now, we will show that for the periodic boundary conditions, the first three terms vanish.

First, note that due to the traction anti-periodicity∫
∂ΩE

0

X0 × T dS = X0 ×
∫
∂ΩE

0

T dS = 0, (A.6)

then, the first term can be expressed as∫
∂ΩE

0

X × T dS =

∫
∂ΩE

0

(X −X0)× T dS =

∫
∂ΩE

0

X̂ × T dS, (A.7)

which is equal to zero due to (A.3). For the second term, using index notation∫
∂ΩE

0

εijkŪimX̂mTj dS = εijkŪim

∫
∂ΩE

0

X̂mTj dS = 0, (A.8)

and we see that the last integral is zero due to (A.3). The third term is zero due to the

periodicity of ũ and the anti-periodicity of T .
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The procedure for the SUBC is similar, note that assuming a periodic domain and

using the uniform traction condition∫
∂ΩE

0

X0 × T dS = X0 ×
∫
∂ΩE

0

T dS = X0 × λ
∫
∂ΩE

0

N dS = 0, (A.9)

where
∫
∂ΩE

0
N dS = 0 due to the assumption of a periodic domain. Then, as done for the

PBC ∫
∂ΩE

0

X × T dS =

∫
∂ΩE

0

X̂ × T dS = 0, (A.10)

where the second term is zero due to (A.3). In index notation, the third term is rewritten

using the uniform traction condition∫
∂ΩE

0

εijkũiTj dS =

∫
∂ΩE

0

εijkũiλjmNm dS = εijkλjm

∫
∂ΩE

0

ũiNm dS = 0, (A.11)

where the last integral is zero due to the definition of V subc
ũ , Equation (2.31).

As the three first terms of Equation (A.5) are zero for the PBC and SUBC, the balance

of angular momentum states

M ext = 0, (A.12)

i.e., the moment produced by the external forces must be zero.
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B. MICROMECHANICAL ANALYSIS INCLUDING BODY FORCE

Suppose that, in addition to the pore pressure, a body force is present in the microme-

chanical analysis. In that case, the force equilibrium in the RVE requires special attention

because the external forces are likely to be not self-equilibrated, and additional constraints

may be needed. The most common example of a body force is gravity loading, in which

case the external potential energy is

Πext(Ū , ũ) =

∫
ΩS

0

ρ0g · (ŪX̂ + ũ) dV + p0V
F , (B.1)

where ρ0 is the density of the solid in the reference configuration, g is the acceleration due

to gravity, and p0 is the pore pressure.

Following a similar procedure as in the case without body force, the stationary condi-

tion of ũ yields

DδũΠtot(Ū , ũ, p) =

∫
∂ΩE

0

P̄N · δũ dS −
∫

ΩS
0

(∇0 · P̄ + ρ0g) · δũ dV

+

∫
∂ΩN

0

(P̄N + p0JF
−TN ) · δũ dS = 0 ∀ δũ ∈ Vũ. (B.2)

Which is analogous to Equation (2.8), but incorporating the term ρ0g. Then, in the strong

form the last equation implies

∇0 · P̄ + ρ0g = 0 in ΩS
0 , (B.3)

P̄N = −p0JF
−TN on ∂ΩN

0 . (B.4)

The missing relation for ∂ΩE
0 depends on the kinematical constraint for ũ, and as it does

not depend on the external loads, its analysis is equivalent to the one performed in Section

2.2.1.
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The stationarity with respect to Ū yields

DδŪΠtot(Ū , ũ, p) =

∫
ΩS

0

P̄ : ∇0(δŪX̂) dV −
∫

ΩS
0

ρ0g · δŪX̂ dV

+

∫
∂ΩN

0

p0JF
−TN · δŪX̂ dS = 0 ∀ δŪ ∈ VŪ , (B.5)

and as δŪ does not depend onX ,

DδŪΠtot(Ū , ũ, p) =

[∫
ΩS

0

P̄ dV −
∫

ΩS
0

ρ0g ⊗ X̂ dV

+

∫
∂ΩN

0

p0JF
−TN ⊗ X̂ dS

]
: δŪ = 0 ∀ δŪ ∈ VŪ . (B.6)

Using that X̂ = X −X0, and ifX0 is the centroid of the solid∫
ΩS

0

X̂ dV =

∫
ΩS

0

X dV −X0|ΩS
0 | = 0, (B.7)

so, if (ρ0g) is constant ∫
ΩS

0

ρ0g ⊗ X̂ dV = ρ0g ⊗
∫

ΩS
0

X̂ dV = 0. (B.8)

With this result, and in terms of the macroscopic stress 〈P̄ 〉, the Equation (B.6) can be

rewritten as [
|ΩS

0 |〈P̄ 〉 +

∫
∂ΩN

0

p0JF
−TN ⊗ X̂ dS

]
: δŪ = 0 ∀ δŪ ∈ VŪ , (B.9)

where it is interestingly to note that ifX0 is the centroid of the solid, then Equation (B.9)

is equal to the case without body forces. In summary, when the body force is added

the only term in the strong form of the problem that varies is the differential equilibrium

∇0 · P̄ + ρ0g = 0 in ΩS
0 .

When the gravity is included, the resultant force of external forces is likely to be

different from zero, and the traction P̄N on the external boundary ∂ΩE
0 must balances the
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system, i.e. ∫
∂ΩE

0

P̄N dS −
∫
∂ΩN

0

p0JF
−TN dS +

∫
ΩS

0

ρ0g dV = 0, (B.10)

where the second plus the third term is the resultant of the external forces, that is assumed

to be different from zero. In the KUBC case, as the fluctuation field ũ vanishes on the ex-

ternal boundary, the traction on ∂ΩE
0 will balance the system. However, as in the periodic

case (PBC) the traction is anti-periodic∫
∂ΩE

0

P̄N dS = 0, (B.11)

and the sum of external forces must be zero. So, to handle the case where the body

force and the pore pressure produce a non-zero total force, an additional constraint is

needed. A straightforward option is to fix a random point; however, the solution would be

highly dependent on this point. So, to reduce the arbitrariness of the solution, a Lagrange

multiplier s ∈ R3 can be used to enforce the average of ũ to be equal to zero in ∂ΩE
0 ,

adding the following term in the potential energy of external forces

Πext,s(ũ, s) = s ·
∫
∂ΩE

0

ũ dS, (B.12)

then,

DδũΠtot(Ū , ũ, p, s) =

∫
∂ΩE

0

(P̄N − s) · δũ dS +

∫
∂ΩN

0

(P̄N + p0JF
−TN ) · δũ dS

−
∫

ΩS
0

(∇0 · P̄ + ρ0g) · δũ dV = 0 ∀ δũ ∈ Vũ, (B.13)

which implies Equations (B.3), (B.4) and additionally

(P̄N − s)+ = −(P̄N − s)− on ∂ΩE
0 . (B.14)

The stationarity with respect to δs yields

DδsΠtot(Ū , ũ, p, s) = −δs ·
∫
∂ΩE

0

ũ dS = 0 ∀ δs ∈ Vs, (B.15)
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with Vs = V3, where Vn is the space of all vectors in Rn. Then,∫
∂ΩE

0

ũ dS = 0, (B.16)

so we define

Vpbc,s
ũ := {ũ ∈ H1(ΩS

0 )| ũ(X+) = ũ(X−) ∀ pairs {X+,X−} and
∫
∂ΩE

0

ũ dS = 0}.

(B.17)

And the strong form of the problem is similar to the periodic case, except for the definition

of Vũ and the anti-periodic traction in ∂ΩE
0 , which in this case is given by (B.14).

Note: From Equation (B.13) it can also be seen that,∫
∂ΩE

0

(P̄N − s) dS = 0, (B.18)

so,

s|∂ΩE
0 | =

∫
∂ΩE

0

P̄N dS, (B.19)

with |∂ΩE
0 | the area of ∂ΩE

0 . Then, (B.19) in (B.10)

s =
1

|∂ΩE
0 |

(∫
∂ΩN

0

p0JF
−TN dS −

∫
ΩS

0

ρ0g dV

)
, (B.20)

which means that s can be interpreted as a traction in the boundary ∂ΩE
0 that balances the

system.

For the uniform traction condition (SUBC), if the RVE is periodic∫
∂ΩE

0

P̄N dS =

∫
∂ΩE

0

λN dS = λ

∫
∂ΩE

0

N dS = 0, (B.21)

where P̄N = λN is the uniform traction condition, and the integral ofN on the external

boundary is zero due to its anti-periodicity. Therefore, if the external forces produce a non-

zero total force, an additional constraint is needed, that analogously to the PBC, can be, for

example, fix a random point or include the mentioned Lagrange multiplier s. Moreover,

with the SUBC the fluctuation term can have rigid body rotations, so additional constraints
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are needed, as detailed by Javili et al. (2017). Note that as the rotations are not periodic,

they cannot occur with the PBC.
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C. MACROSCOPIC AVERAGED RESPONSE

With the macroscopic strain Ū obtained from the pressure-driven simulation, we com-

pute a macroscopic deformation gradient tensor: F c = I +∇0(ŪX̂) = I + Ū , and we

plot its determinant in Figure C.1. For both spherical and image-based alveolar models,

the stiffest response is given by KUBC, followed by PBC and SUBC, which gives the

most compliant. For the KUBC the results are similar for the spherical and image-based

models, while for the PBC and SUBC, the strain levels are higher in the spherical alveolar

model.

The macroscopic Cauchy stress tensor in the solid is defined as

〈σ〉 :=
1

|ΩS|

∫
ΩS

σ dv, (C.1)

and we plot its hydrostatic and von Mises components in Figure C.2. The results show that

the hydrostatic stress is different for both models; the spherical geometry gives positive

values with a maximum of approximately 3 kPa (with slight differences depending on

the kinematical constraints), while the image-based model gives negative values, with a

response that is indistinguishable between the different kinematical constraints. Regarding

the von Mises stress, it is zero with the spherical alveolar model, while the image-based

model gives values with a maximum between 0.4 and 0.5 kPa.
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Figure C.1. To quantify the macroscopic deformation with the spherical
alveolar model (continuous lines) and the image-based alveolar model
(dashed lines), the determinant of F c is shown for the different kinematical
constraints studied: KUBC (blue), PBC (red) and SUBC (green). In both
cases, KUBC gives the stiffest response, PBC an intermediate value, and
SUBC the most compliant.
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Figure C.2. (a) Hydrostatic and (b) von Mises components of the macro-
scopic Cauchy stress in the solid, for the spherical alveolar model (contin-
uous lines) and image-based alveolar model (dashed lines), in the pressure-
driven case. The colors indicate the different kinematical constraints stud-
ied: KUBC (blue), PBC (red), and SUBC (green).
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