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Abstract

In this thesis, we study the geography of complex surfaces of general type with respect to the

topological fundamental group. The understanding of this general problem can be coarsely

divided into geography of simply-connected surfaces and geography of non-simply-connected

surfaces.

The geography of simply-connected surfaces was intensively studied in the eighties and

nineties by Persson, Chen, and Xiao among others. Due to their works, we know that the

set of Chern slopes c2
1/c2 of simply-connected surfaces of general type is dense in the interval

[1
5
, 2]. The last result which closes the density problem for this type of surfaces happened in

2015. Roulleau and Urzúa showed the density of the Chern slopes in the interval [1, 3]. This

completes the study since accumulation points of c2
1/c2 belong to the interval [1

5
, 3] by the

Noether’s inequality and the Bogomolov-Miyaoka-Yau inequality for complex surfaces.

The geography of non-simply-connected surfaces is well understood only for small Chern

slopes. Indeed, because of works of Mendes, Pardini, Reid, and Xiao, we know that for

c2
1/c2 ∈ [1

5
, 1

3
] the fundamental group is either finite with at most nine elements, or the

fundamental (algebraic) group is commensurable with the fundamental (algebraic) group

of a curve. Furthermore, a well-known conjecture of Reid states that for minimal surfaces

of general type with c2
1/c2 < 1

2
the topological fundamental group is either finite or it is

commensurable with the fundamental group of a curve. Due to Severi-Pardini’s inequality

and a theorem of Xiao, Reid’s conjecture is true, at least in the algebraic sense for irregular

surfaces or surfaces having an irregular étale cover. Keum showed with an example in his

doctoral thesis that Reid’s conjecture cannot be extended over 1
2
.

For higher slopes essentially there are no general results. In this thesis, we prove that

for any topological fundamental group G of a given non-singular complex projective surface,

the Chern slopes c2
1(S)/c2(S) of minimal non-singular projective surfaces of general type S

with π1(S) ' G are dense in the interval [1, 3]. It remains open the question for non-simply-

connected surfaces in the interval [1
2
, 1].
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1 Introduction

1.1 Surfaces and Moduli

Our principal objects of study are smooth projective surfaces over the complex numbers.

Our focus is on the classification of surfaces. For instance, in the case of curves, we know

that they are parametrized by their genus (number of holes). If the genus of a curve is zero,

then the curve is the projective line; if the genus is one, the curve is a complex torus; and

if the genus is at least two, the curve is a connected sum of tori. For surfaces S (smooth

projective) the most common biregular invariants are:

• The first Chern number c2
1(S) := c2

1(Ω∗S) = K2
S, where Ω∗S is the dual of the sheaf of

differentials on S,

• The second Chern number c2(S) := c2(Ω∗S),

• The geometric genus pg(S) := h2(S,OS),

• The irregularity q(S) := h1(S,OS),

• The plurigenera Pn(S) := h0(S,OS(nKS)),

• The holomorphic Euler characteristic χ(OS) := 1− q(S) + pg(S).

The numbers c2
1, c2 and χ are related (and so q, pg) by the Noether’s formula 12χ = c2

1 + c2,

[No1877]. The use of the plurigenera allows us to divide the surfaces into four big birational

classes. This classification is known as Enriques classification:

(1) Pn vanish always;

(2) Pn ∈ {0, 1}, but, Pn = 1 for some n;

(3) Pn grows linearly in n;

(4) Pn grows quadratically in n.
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The surfaces in the class (1) are birational to P1 × C, where C is a curve. If C ∼= P1 the

surfaces are called rational, otherwise they are called ruled.

The surfaces in the class (2) are divided into four subclasses, depending on the values of

q and pg. If pg = q = 0 they are called Enriques surfaces, if pg = 0 and q = 1 these surfaces

are called Bi-elliptic, if pg = 1 and q = 0 the surfaces are called K3, and finally, if pg = 1

and q = 2 we have Abelian surfaces.

The surfaces in class (3) are called elliptic surfaces, because, for any surface S in that

class there exists a fibration f : S → C with generic fibers of genus one.

In class (4), the surfaces are known as surfaces of general type. These surfaces are

analogous of the curves of genus at least two. There is no uniform classification for them.

In this thesis, we are interested on minimal surfaces S of general type, i.e., surfaces of

general type which does not contain curves E ' P1 such that E2 = −1. Since out of the class

(1) there is a unique minimal model in a birational class, it is enough to classify minimal

surfaces. To classify minimal surfaces one uses moduli spaces.

For curves, the space of parametersMg classifying curves, which is a coarse moduli space,

is well known for each genus g. Indeed, if the the genus is zeroM0 is a point, if the genus

is one M1 is isomorphic to the affine line A1, and if the genus is at least two Mg is a not

empty quasi-projective irreducible variety of dimension 3g − 3, see [DM69].

In the case of surfaces of general type, by Bombieri [Bom73], we know that for every n ≥ 5,

the complete linear system |nKS| induces a birational morphism ψ|nKS | : S → S ′ ⊆ PPn(S)−1,

given by x 7→ [s0(x) : · · · : sPn−1(x)] where {si} forms a basis for the space of sections

H0(S,OS(nKS)). The image surface S ′ has degree n2c2
1(S). By Kawamata-Viehweg vanishing

( e.g. [Kaw82, Vie82]) and Riemann-Roch Theorem, we have that Pn(S) = n(n−1)
2

c2
1(S)+χ(S).

Furthermore, if we take another basis for H0(S,OS(KS)) the image S ′′ of S by the map

ψ|nKS |, using this new basis, is projectively equivalent to S ′. Therefore, the possible space of

parameters for surfaces is given as a quotient of a closed subscheme of the Hilbert scheme

with Hilbert polynomial Pn = n(n−1)
2

c2
1 + χ by the linear projective group PGLPn(C), which
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parametrizes all surfaces (up to isomorphism) of degree n2c2
1 in PPn−1. Thus, the space of

parameters depends on the invariants c2
1 and χ, or equivalently on c2

1 and c2. Gieseker [G77],

showed that the space of parameters for minimal surfaces of general type with c2
1 and c2 fixed,

denoted byMc21,c2
, is a quasi-projective variety.

There are two general problems about Mc21,c2
. First, give a complete answer to the

question: for which values of c2
1 and c2 the space Mc21,c2

is not empty? This is called the

problem of geography. Second, describe the quasi-projective variety Mc21,c2
for fixed c2

1

and c2. This is known as the moduli problem.

For instance, for M1,11 the geographical problem is solved by means of the classical

Godeaux surface, which is the quotient of {x4
0 + x4

1 + x4
2 + x4

3 = 0} ⊆ P3 by the free automor-

phism of order 5, σ[x0 : x1 : x2 : x3] = [x0, ζx1, ζ
2x2, ζ

3x3] where ζ is a primitive 5th roof of the

unity. For the same spaceM1,11, M. Reid conjectured that it has five irreducible components,

each one parametrizing surfaces with fundamental group π1 ∈ {1,Z/2Z,Z/3Z,Z/4Z,Z/5Z}.

1.2 Geography of surfaces of general type

We are looking for the pairs of integers (c2, c
2
1) for which the moduli space Mc21,c2

is not

empty. Firstly, we must have in mind the inequalities which bound the possibilities for the

pairs (c2, c
2
1), together with the Noether relation c2

1 + c2 = 0 mod 12. Such inequalities are

given in Theorem 1.1.

Theorem 1.1. Let S be a minimal surface of general type. Then,

CI: c2
1, c2 ≥ 1,

NI: 1
5
(c2 − 36) ≤ c2

1,

BMYI: c2
1 ≤ 3c2.

Here we have labeled by CI the Castelnuovo inequality, NI the Noether inequality and by

BMYI the Bogomolov-Miyaoka-Yau inequality.
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NI was proved by Max Noether in [No1877]. The line c2 − 36 = 5c2
1 is called the Noether

line. Thanks to the work of Horikawa, see [Ho76], we know that every surface with Chern

numbers in the Noether line are simply-connected. Bogomolov in [Bog77] shows the inequality

c2
1 ≤ 4c2, whereas a year latter Miyaoka and Yau in [Miy77, Yau78] proved independently

BMYI. The line c2
1 = 3c2 is called the Bogomolov-Miyaoka-Yau line. Due to Miyaoka and

Yau, we have that every surface with Chern numbers in the Bogomolov-Miyaoka-Yau line are

free compact quotients of the unitary ball B of C2 by an infinite discrete group. In particular,

those surfaces are not simply-connected.

If we draw the region bounded by the CI, NI and BMYI, inequalities together with the

relation c2
1 + c2 = 0 mod 12, we obtain a picture as in Figure 1.

Figure 1: Region of Geography.

Persson in [P81] coined the term "geography". The problem of geography is almost

resolved due to the works of Persson and Chen. They proved the following theorems. See for

example [BHPV04, Chap. VII, Sect. 8]

Theorem 1.2. [P81, Theo.2.] Let x, y be positive integers satisfying

1

5
(x− 36) ≤ y ≤ 2x and 2y 6= x− k,

where k = 2, or k is odd and 1 ≤ k ≤ 15 or k = 19. Then there exists a minimal surface
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S of general type such that c2
1(S) = y and c2(S) = x. Moreover, every of such surfaces is a

genus two fibration, and simply-connected π1(S) = {1}.

Theorem 1.3. [Ch87, Theo. 1.] there exists a simply-connected surface of general type with

x = c2
1(S) and y = c2(S). Let x, y be positive integers satisfying(

352

716

)
x+ C1x

2
3 ≤ y ≤

(
18644

6904

)
x− C2x

2
3

and x > C, where C1, C2, C are constants (C a large constant). Then there exists a simply-

connected surface of general type with x = c2
1(S) and y = c2(S).

Due to the proved difficulty of studying the problem of simply-connected geography pair

by pair, we will turn into the study Chern slopes c2
1/c2. By the inequalities of Theorem 1.1

the Chern slopes c2
1/c2 can be wrapped asymptotically in [1/5, 3].

Persson and Chen constructions can be used to prove that every rational point in [1
5
, 2]

and [352
716
, 18644

6904
] ⊆ [1

2
, 2.7005] can be approximated by Chern slopes numbers c21

c2
of simply-

connected surfaces of general type. A natural question here is: Are there any restrictions for

the Chern slopes of minimal surfaces of general type with no condiction on the fundamental

group? This question can be easily answered, and it was replayed by Sommese [Som84].

Theorem 1.4. [Som84, Sect. 2.] Every rational point in [1
5
, 3] occurs as the slope of some

minimal surface of general type.

1.3 Geography of surfaces of general type with fixed fundamental

group

1.3.1 Simply-connected surfaces

By 1977, Bogomolov conjectured that simply-connected surfaces of general type have Chern

slopes less than or equal to 2, i.e., c2
1/c2 ≤ 2. It was known as the Watershed conjecture

of Bogomolov. Such assertion is false. For example, Moishezon-Teicher constructed coun-

terexamples in [MT87]. Similarly, by the work of Chen, there are simply-connected surfaces
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of general type with a Chern slope near 2.7005. Later, for spin surfaces (simply-connected

surfaces with canonical class divisible by 2), Persson, Peters and Xiao [PPX96] obtained the

following density results.

Theorem 1.5. • For any rational number r ∈ Q ∩ [1
5
, 2), there exists a minimal spin

surfaces S such that c2
1(S) = rc2(S).

• The Chern slopes c2
1(S)/c2(S) of minimal spin surfaces S are dense in the interval

[2, 2.703]

Urzuá, in [U10], found a sequence of simply-connected surfaces with Chern slope c2
1/c2 =

71
26
≈ 2.730796, which was the record at that moment. Finally, Roulleau and Urzúa in [RU15]

via cyclic coverings found very special families of simply-connected surfaces Xp, such that

{c2
1(Xp)/c2(Xp)}p is a dense set in [1, 3]. More precisely:

Theorem 1.6. [RU15, Theo. 5.6, Theo. 6.3]

• For any r ∈ [1.375, 3], there are minimal Spin surfaces of general type S with c2
1(S)/c2(S)

arbitrarily close to r.

• For any r ∈ [1, 3], there are minimal simply-connected surfaces of general type S with

c2
1(S)/c2(S) arbitrarily close to r.

In summary, the geography in terms of Chern slopes is done for simply-connected surfaces

of general type.

Theorem 1.7 (Persson, ..., Roulleau-Urzúa). For any r ∈ [1
5
, 3], there are minimal simply-

connected surfaces of general type S with c2
1(S)/c2(S) arbitrarily close to r.

1.3.2 Geography of non-simply-connected surfaces

By the Lefschetz hyperplane theorem, we know that the fundamental group of any nonsin-

gular projective variety is the fundamental group of some nonsingular projective surface.

Groups that are fundamental groups of varieties are abundant. Serre proved, for example,
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that any finite group is realizable [S58]. See the survey [A95] for more on that topic, and see

the book [ABCKT96] for Kähler manifolds.

A natural question is: Are there any restriction for the Chern slope c2
1/c2 when we fix

a non-trivial group G ∼= π1? In more generality, this question has been studied for 4-

manifolds (cf. [KL09]) with a particular focus on symplectic 4-manifolds (see e.g. [G95],

[BK06, BK07, Park07]). For example, Park showed in [Park07] that the set of Chern slopes

c2
1/c2 of minimal symplectic 4-manifolds S with π1(S) ∼= G is dense in the interval [0, 3], for

any presented group G.

Due to the works of Mendes-Lopes and Pardini [MP07, MP06], we deduce that if S is

a surface of general type with c2
1(S) < 1

3
c2(S) and π1(S) finite, then the order of π1(S) is

at most 9. Moreover, if S is a surface of general type having no irregular étale cover, with

3c2
1(S) ≤ c2(S) − 8 and π1(S) is finite, then |π1(S)| ≤ 5. The equality is attained if S is a

Godeaux surface.

At this point is important to mention Reid’s conjecture.

Conjecture 1.8 (Miles Reid’s Conjecture). Let S be a minimal surfaces of general type such

that c21(S)

c2(s)
< 1

2
, then π1(S) is either finite or is commensurable with the fundamental group

of a curve, i.e., there is an étale cover S ′ of S and a fibration f : S ′ → C such that

1→ K → π1(S ′)→ π1(C)→ 1

with |K| <∞.

Reid’s conjecture is sharp. Indeed, Keum on his doctoral thesis [K88] constructed a surface

S of general type such that c2
1(S) = 4, c2(S) = 8, pg(S) = q = 0 and π1(S) ' Z4 o (Z/2Z)2.

As in the case of simply-connected surfaces the first results are for low slopes and at least

conjecturally, we have information for surfaces with 1
5
≤ c2

1/c2 ≤ 1
2
. But, what about high

slopes? In this thesis, we solved question for any realizable group and slopes in the interval

[1, 3].
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Theorem 1.9. Let G be the (topological) fundamental group of a non-singular complex projec-

tive surface. Then the Chern slopes c2
1(S)/c2(S) of minimal non-singular projective surfaces

of general type S with π1(S) ∼= G are dense in the interval [1, 3].

The ideas and general tools to prove the Theorem 1.9 will be described in the next section.

The one dimensional geography for surfaces of general type with fixed fundamental group

can be represented as in Figure 2.

As evidence, not all of the interval [1
5
, 3] has total freedom for π1. To know what is the

largest sub-interval with that property is a problem that remains open for future research.

Figure 2: Geography of c2
1/c2 and fundamental groups.

1.4 Idea and elements to prove Theorem 1.9

We will construct surfaces Sp of general type with lim
p→∞

c2
1(Sp)/c2(Sp) = lim

p→∞
c2

1(Xp)/c2(Xp),

and π1(Sp) ∼= G for each prime number p, where the surfaces Xp are the built in [RU15].

Let us explain a key example firstly. Let us choose some surface Y of general type such

that π1(Y ) ∼= G and KY being nef, i.e., KY · D ≥ 0 for each divisor D on Y . Next, since

Xp is simply-connected, we take the product Xp × Y to get a variety of dimension 4 with

the property π1
∼= G. By the Lefschetz hyperplane theorem and Bertini Theorem, for an

effective divisor D on Xp×Y , there exist a smooth 3-foldM ⊂ Xp×Y such that π1(M) ∼= G.
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Iterating the last argument, we can find a surface S ⊂ M inside Xp × Y with π1(S) ∼= G.

Then, the first important question is, how can we have some control for the expressions c2
1(S)

and c2(S)? The answer depends on the election of divisor D to construct the 3-fold M and,

consequently, the surface S. It is based on Catanesse’s trick.

Proposition 1.10. [Cat00, Sect. 1.] Consider the 4−fold X × Y , where X, Y are minimal

surfaces of general type. Take Γ, B very ample divisors on X and Y respectively. Let S be

the complete intersection surface on X × Y defined by the linear system |Γ�B|. Then, due

to Lefschetz hyperplane theorem π1(S) ∼= π1(X)× π1(Y ). Also, we have

c2
1(S) = c2

1(X)B2 + c2
1(Y )Γ2 + 8c(Γ, B)− 4Γ2B2,

and

c2(S) = c2(X)B2 + c2(Y )Γ2 + 4c(Γ, B) + 4Γ2B2,

where

c(Γ, B) =
7

2
Γ2B2 +

3

2
(Γ ·KX)B2 +

3

2
(B ·KY )Γ2 +

1

2
(Γ ·KX)(B ·KY ).

We note that both numbers c2
1(S) and c2(S) are depending of the Chern number of X

and Y . In our case, if Γp is a very ample divisor on Xp, and called Sp the resulting surface

of applying Theorem 5.36 on each surface Xp, the limit of c2
1(Sp)/c2(Sp) depends only on

c2
1(Xp), c2(Xp),Γ

2
p and Γp ·KXp .

By the work of Roulleau and Urzúa mentioned above, we know that c2
1(Xp) and c2(Xp)

have polynomial expressions of degree 4 in p, see [RU15, Pag. 302]. This way, the naive

idea is to find a very ample divisor Γp in each Xp, such that both formulas Γ2
p and Γp ·KXp

are polynomials of degree at most 3 in p. It is a difficult task because of the condition of

very ampleness, so we must change the requirement for the divisors Γp. However, there are

additional difficulties: does the Catanesse’s trick still work for another kind of divisor? What

type of divisor can be used?
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As we noted, the answers have to be interlaced in some way, because the type of divisor

used must be good enough so that it allows us to use Bertini and Lefschetz theorems, and

have control on the numbers Γ2
p and Γp ·KSp .

The lef line bundles are the appropriate replacement of very ample divisors to solve the

questions above. These type of line bundles were introduced by De Cataldo and Migliorini

in [CM02]. The name lef is the contraction of Lefschetz effettivamente funziona. De Cataldo

and Migliorini in several papers have justified the name. For instance they proved that the

Hard Lefschetz theorem holds for a line bundle L if and only if L is lef, see [CM02, Prop.

2.2.7] . Here we consider a sophisticated version of the Lefschetz hyperplane theorem for

homotopy groups due to Goreski and MacPherson, [GM88], see Theorem 4.16, which allows

to use lef divisors instated of ample divisors. Under this framework, we improve Catanesse’s

trick by the use of the lef line bundles. Also we find a special one of them Lp in each Xp, such

that L2
p and Lp ·KXp are polynomials of order 3 in p. Therefore, we construct a collection

of surfaces Sp (by a generalized Catanesse’s trick) such that π1(Sp) ∼= πi(Y ) ∼= G (by the

generalized Lefschetz theorem for lef divisors), and populating densely the interval [1, 3] (as

RU surfaces).

We believe that both questions below have a positive answer. Our belief are based on the

proof of Theorem 1.9.

Problem A. Given a realizable group G, i.e., there exists a non-singular complex pro-

jective variety Y such that π1(Y ) ∼= G. Are the Chern slopes c2
1(S)/c2(S) dense in [1, 3] with

KS ample?

Let us recall that a variety X is said to be (Brody) hyperbolic if any holomorphic mor-

phism C → X is constant, i.e., they have no entire curves. In particular, they have no

rational nor elliptic curves.

Problem B. Let Y be a Brody hyperbolic nonsingular projective surface. Are then

Chern slopes of Brody hyperbolic nonsingular projective surfaces S with π1(S) isomorphic

to π1(Y ) dense in [1, 3]?
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Notes on terminology

Let X be a smooth variety. We denote by Pic(X) the free abelian group generated by all

the codimension one subvarieties of X modulo linear equivalence.

Let X be a variety and let L be an invertible sheaf. We denote Ln the n−fold product

L⊗n.

Let X and Y be two varieties. Let F be a sheaf on X. Let f : X → Y be a morphism,

we denote by Rif∗(F) for i ≥ 1, the i−th higher direct image of F via f .

We denote as usual by Σn,m : Pn × Pm → P(n+1)(m+1)−1 the Segree embedding.

Let X be a connected topological space. We denote by π1(X) the topological fundamental

group of X and by πi(X) for i ≥ 2 the higher homotopy groups of X. Similarly, we denote

by πalg1 (X) the étale fundamental group of X.

Given a variety X and a divisor D on it, we denote by H i(X,O(D)) the i−th cohomology

group of D and hi(X,D) = dimCH
i(X,O(D)).

Given a smooth variety X, we denote by KX its canonical divisor.

Let x be real number. We denote by dxe smallest integer value that is bigger than or

equal to x, and bxc greatest integer less than or equal to x.
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2 Semi-small morphisms, lef line bundles

2.1 Semi-small morphisms

The following definition can be found in several places, e.g. [GM88, p.151], [Mig95, Def. 4.1]

or [CM02, Def.2.1.1].

Definition 2.1. Let X be a smooth variety, and let Y be a normal variety. For a proper

surjective morphism f : X → Y , we define

Y k
f = {y ∈ Y | dim f−1(y) = k}.

We say that f is semi-small if dim(Y k
f ) + 2k ≤ dimX for every k ≥ 0. (Note that dim(∅) =

−∞.) If no confusion can arise, the subscript f will be suppressed.

Proposition 2.2. Let f : X → Y be a semi-small morphism, then dim(X) = dim(Y ).

Proof. By generic flatness, see [Gro65, Theo. 6.9.2, and Coro. 6.1.2 ], there is a Zariski dense

open subset U ⊆ Y such that for any y ∈ U we have:

dim f−1(y) = dim(X)− dim(Y ) =: kgen.

In particular, since f is semi-small we have that dim(Y kgen)+2kgen = dim(Y )+2 dim(X)−

dim(Y ) ≤ dim(X), then dim(X) ≤ dim(Y ). But, since f is proper and surjective we have

that dim(Y ) ≤ dim(X). Therefore, dim(X) = dim(Y ).

Remark 2.3. • Let n = dimX = dimY . If f is a semi-small morphism, then Y k = ∅ if

k > dn
2
e, and for any 0 ≤ k ≤ bn

2
c the inequality dim(Y k) ≤ n − 2k holds. Therefore,

f is a generically finite map due to dim(Y 0) = n.

• If f : C1 → C2 is a proper morphism between curves, then f is a finite if and only if f

is semi-small.
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• A morphism f : T1 → T2 between three-folds is semi-small if and only if f does not

contract subvarieties S of T1 with 1 ≤ codimT1(S) ≤ bn
2
c to a point.

• More generally, if f : X → Y is semi-small with dim(X) ≥ 3, then f does not contract

subvarieties S of X with 1 ≤ codimX(S) ≤ dn
2
e. In particular, the blow-up in a point

of a smooth projective variety of dimension at least three is not semi-small.

Proposition 2.4. Let X be a smooth variety, and let Y be a normal variety. For a proper

surjective morphism f : X → Y . Then, f is semi-small if and only if dim(X ×Y X) ≤

dim(X).

Proof. Suppose that f is a semi-small morphism, then for every y ∈ Y k,

dim(Y k) + 2k = dim(Y k) + dim(f × f)−1(y, y) ≤ dim(X),

therefore, dim(f×f)−1(Yk×Yk) ≤ dim(X). On the other hand, X×Y X =
⊔
k(f×f)−1(Yk×

Yk), thus dim(X ×Y X) = maxk((f × f)−1(Yk × Yk)) ≤ dim(X).

Conversely, suppose that dim(X ×Y X) ≤ dim(X). Then, (f × f)−1(Yk × Yk) = 2k +

dim(Y k) ≤ dim(X ×Y X) ≤ dim(X), so f is semi-small.

Lemma 2.5. Let X be a smooth surface, and let Y be a normal surface. If f : X → Y is a

proper surjective morphism, then f is semi-small.

Proof. It is clear that dim(Y 1) = 0 and dim(Y 0) = 2, since f is surjective. Then the

inequality dim(Y k) + 2k ≤ dim(X) holds for any k ≥ 0.

Proposition 2.6. Let f : X → Y and g : Z → W be two semi-small morphisms. Then the

product morphism f × g : X × Z → Y ×W is a semi-small morphism.

Proof. Let n = dim(X) and m = dim(Z). Since f and g are semi-small, then we have

that dim(Y k) ≤ n − 2k for any k ≥ 0, dim(Z l) ≤ m − 2l for any l ≥ 0, and dim(Y 0) =

n, dim(W 0) = m. We also have (Y ×W )q =
⋃
i+j=q

Y i ×W j, and so

dim(Y ×W )q ≤ max
i+j=q

dim(Y i ×W j) ≤ n+m− 2i− 2j = n+m− 2q.

Hence f × g is semi-small.
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Proposition 2.7. Let X, Y, Z be smooth projective varieties of the same dimension. Assume

that f : X → Y is semi-small, and that g : Y → Z is finite morphism. Then, h = g ◦f : X →

Z is semi-small.

Proof. Since g is a finite, we have Zk
h = g(Y k

f ) for each k ≥ 0, and so dim(Zk
h) = dim(Y k

f ).

Thus dim(Zk
h) + 2k ≤ dim(X), and so h is semi-small.

2.2 Lef line bundles

Definition 2.8. ([CM02, Def. 2.1.3]) Let X be a smooth projective variety, and let M be

a line bundle on X. We say that M is lef if there exists n > 0 such that |nM | is generated

by global sections, and the morphism ψ|nM | associated to |nM | is semi-small onto its image.

The exponent of M is the smallest n so that M is lef. We denote it by exp(M).

Proposition 2.9. Let X be smooth variety. If L is an ample divisor on X, then L is lef. If

moreover L is very ample, then exp(L) = 1.

Proof. Since L is ample there is an integer n > 0 such that nL is a very ample divisor on X. It

follows that nL is generated by global sections and the induced morphism ψ|nL| : X → P(|nL|)

is an immersion, then ψ|nL| is an isomorphism onto its image. Therefore, L is a lef divisor on

X.

Proposition 2.10. Let f : X → Y be semi-small between smooth projective varieties, and

let L be very ample on Y . Then f ∗(L) is lef with exp(f ∗(L)) = 1.

Proof. Let ψ|L| : Y → P(|L|) be the map defined by the linear system |L|. It is clear that,

ψ∗|L|(O(1)) ∼= L, thus f ∗(ψ∗|L|(O(1))) ∼= f ∗(L) is globally generated by {f ∗(si)}ni=0, where

{si}ni=0 is a basis of H0(Y, L). Due to the fact that f is semi-small, ψ|L| is an immersion and

using Proposition 2.7, we have ψ|L| ◦f is semi-small. Since ψ|f∗(L)| = ψ|L| ◦f , we obtain f ∗(L)

is semi-small with exp(f ∗(L)) = 1.

A useful Bertini type theorem for lef line bundles is the following. (See [CM02, Prop.

2.1.7] or [Mig95, Lemma 4.3].)
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Theorem 2.11. Let X be a nonsingular projective variety of dimension at least 2. Let M

be a lef line bundle on X. Assume that M is globally generated and with exp(M) = e. Then

any generic member Y ∈ |M | is a nonsingular projective variety, and the restriction M |Y is

lef on Y with exp(M |Y ) ≤ e.

Corollary 2.12. Let f : X → Y be a semi-small morphism between smooth projective vari-

eties and let L be an ample line bundle on Y . If m is the smallest positive integer such that

mL is very ample. Then, M = f ∗(L) is a lef line bundle on X with exp(M) ≤ m.

Proposition 2.13. Let D be a lef divisor on a variety X with exp(D) = m. Then there

exists an ample divisor L on a variety Y and a projective semi-small morphism ψ : X → Y

such that ψ∗(L) ∼= mD.

Proof. Consider ψ : = ψ|mD| : X → ψ(X) ⊆ P(|mD|) and denote Y : = ψ(X). The morphism

ψ is projective and semi-small on Y . Let L : = ι∗(O(1)) where ι : Y → P(|mD|) is the closed

immersion. Therefore, ψ∗(L) ∼= mD.

Definition 2.14. Let N be a divisor on a variety X, we say that N nef if D.N ≥ 0 for any

divisor D on X.

Let X, Y be two varieties and let f : X → Y be a proper morphism. Given any curve C

on X, the 1-cycle f∗(C) is defined as follows: if C is contracted by f , put f∗(C) = 0; if f(C)

is a curve, put f∗(C) = deg(f |C)C, where f |C : C → f(C) is the restriction of f to C. Note

that if f : S → S ′ is a morphism between surfaces, for any divisor D′ on S ′ and any curve C

of S, we have that f∗(C) ·D′ = deg(f |C)f(C) ·D′. More generally;

Proposition 2.15 (Projection formula). Let X, Y be two varieties, and let f : X → Y be a

surjective proper morphism. Let D1, . . . , Dr be divisors on X with r ≥ dim(Y ). Then,

f∗(D1) · · · f∗(Dr) = deg(f)(D1 · · ·Dr)

Proof. See [Deb01, Prop. 1.10].

Corollary 2.16. Let L be a lef divisor on a variety X, then L is nef.

Proof. It follows by Proposition 2.15.
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3 Algebraic Surfaces

For us a surface S is a smooth complex projective variety of dimension 2.

3.1 Basic facts on Surfaces

Let S be a surface. We denote the Picard group of S by Pic(S). This group is the free abelian

group of line bundles on S module isomorphism, or equivalently the free abelian group of

divisors on S modulo linearly equivalence.

There exists a Z−bilinear and symmetric map (•, •) : Pic(S) × Pic(S) → Z. It is the

intersection map and it is defined as follows:

Theorem 3.1. Given D and D′ two divisors on S, the pairing

(D,D′) = χ(OS)− χ(OS(−D))− χ(OS(−D′)) + χ(OS(−D)⊗OS(−D′)),

where χ is the Euler characteristic, is symmetric and Z−bilinear.

Proof. See e.g. [Bea96, Theo. I.4], [BHPV04, Chap. II, Sect. 10, pags. 83-84], or [Har77,

Chap. V, Theo 1.1].

Notation 3.2. Given D,D′ two divisors on a surface S, we denote (D,D′) the pairing of

the above theorem just by D · D′. By the sake of simplicity we will write χ(D) instead of

χ(OS(D)). Thus,

D ·D′ = χ(OS)− χ(−D)− χ(−D′) + χ(−D −D′).

The following relation is important in the theory of surfaces.

Theorem 3.3 (Noether’s formula). Let S be a surface, then

12χ(OS) = c2
1(S) + c2(S),

where c2
1(S) = K2

S is the self-intersection of the canonical class of S and c2(S) = e(S) denote

the topological Euler characteristic for S.
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Proof. See for example [Har77, Appen. A, Exam. 4.1.2]. The first proof of this classical

theorem was given by Noether on [No1886]. Nowadays it is seen as a consequence of the

sophisticated Hirzebruch-Riemann-Roch theorem.

Note that by Hirzebruch-Riemman-Roch Theorem we have that

c2(S) =
2∑
j=0
k+l=j

hk(S,Ωl)

and by Hodge decomposition

2∑
j=0
k+l=j

(−1)k+lhk(S,Ωl) =
4∑
i=0

(−1)ibi(S) = e(S),

where bi(S) = dimH i(S,R).

In order to understand surfaces or varieties, in general, it is useful to have a lower bound

for the dimension of vector spaces of sections for a given line bundle, and the next theorem

is a tool to obtain such bounds.

Theorem 3.4 (Riemann-Roch for Surfaces). Let S be a surface and let D be a divisor on S,

then

χ(D) = χ(OS) +
1

2
(D2 −D ·KS).

Corollary 3.5. Let D be a divisor on a surface S, then

h0(S,D) + h0(S,KS −D) ≥ χ(OS) +
1

2
(D2 −D ·KS).

Proof. It follows from Serre duality, and the equality

h0(S,D) + h0(S,KS −D) = χ(OS) +
1

2
(D2 −D ·KS) + h1(S,D).
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Lemma 3.6 (Riemann-Roch for Curves). Let C be a smooth projective curve, and let D be

a divisor on C, then

h0(C,D)− h0(C,KC −D) = deg(D) + 1− g(C),

where g(C) = h1(C,OC) is the geometric genus of C.

Proof. See [Har77, Chap. IV, sect. 1, Theorem 1.3.]

Now we recall an important general formula to compute the canonical divisor of a given

non-singular hypersurface on a smooth variety X.

Proposition 3.7 (Adjunction formula). Let X be a smooth variety and let Y be a smooth

divisor of X. Then KY ∼ KX ⊗OX(Y )⊗OY .

Example 3.8. Let X := Xd1,...,dr be a complete intersection surface on Pr+2. Then KX ∼

OPr+2(−(r + 3))⊗OPr+2(
∑

i di)⊗OX ∼ OX(
∑

i di − (r + 3)).

Given any irreducible smooth curve C on a surface S we can estimate its genus in terms

of K2
S and KS · C, the formula to do that is known as the genus formula.

Proposition 3.9 (The Genus Formula). Let C be an irreducible smooth curve on a surface

S. Denote by g(C) := g the geometric genus of C. Then,

2g − 2 = C2 + C ·KS.

Example 3.10. • Let C be a smooth curve of degree d on P2, then 2g(C)− 2 = d2− 3d,

so g(C) = (d−1)(d−2)
2

.

• Let C be a curve on P1×P1 of type (a, b) on Pic(P1×P1), then g(C) = ab− a− b+ 1.

3.2 Birational Transformations

Definition 3.11. Two surfaces S, S ′ are birational if there exist a rational map ε : S 99K S ′

which has an inverse or equivalently if there are X,X ′ closed subsets such that ε : S \X →

S ′ \X ′ is an isomorphism.
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Definition 3.12. Given a surface S and a point p in S, we can construct a new surface

Ŝ and a morphism ε : Ŝ → S, such that E := ε−1(p) ∼= P1 and ε : Ŝ \ E → S \ {p} is an

isomorphism. The pair (Ŝ, ε) is called the blow-up of S at the point p, and the surface Ŝ is

denoted by Blp(S), and the divisor E is called the exceptional divisor of ε. See for example

[Bea96, Chap. II, Sect. 1].

Proposition 3.13 (Properties of Blp(S)). Let S be a surface and let p ∈ S. Then

1. Pic(Ŝ) ∼= f ∗(Pic(S))⊕ ZE,

2. f ∗(D) · f ∗(D′) = D ·D′, f ∗(D) · E = 0, where D,D′ ∈ Pic(S),

3. E2 = −1,

4. Given C an irreducible curve on S, then f ∗(C) = Ĉ +mE, where m = multp(C), and

Ĉ is the strict transform of C,

5. KŜ = f ∗(KS) + E and K2
Ŝ

= K2
S − 1.

Proof. Statements 1,2,3 and 5 can be found in [Bea96, Lemma II.3.] and statement 4 in

[Bea96, Lemma II.2] or statements 1 and 2 can be found in [Har77, Chap. V, Prop. 3.2],

statement 3 in [Har77, Chap. V, Prop. 3.1] and statement 5 in [Har77, Chap. V, Prop.

3.3].

Theorem 3.14. Let f : S ′ → S be a birational map of surfaces, then f is the composition of

a finite number of blow-ups and blow-downs.

Proof. See [Bea96, Theo.II. 11]

Definition 3.15. We say that a surface S is minimal if there are no (−1)-curves, i.e. there

is no curves E ' P1 such that E2 = −1.

Proposition 3.16. For any surface S ′ there exists a birational map f : S ′ → S, where S is

minimal surface.
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Proof. See [Bea96, Prop. II.16]

Theorem 3.17 (Castelnouvo’s Contractibility Criterion). Let S be a surface and let E be a

(−1)−curve on S. Then E is an exceptional divisor.

Proof. See [Bea96, Theo. II. 17]

Definition 3.18. Let D be a divisor on X, we denote by |D| its complete linear system

|D| := {L ∼ D,L ≥ 0}.

The base locus of D is by definition BS(|D|) =
⋂
L∈|D|

L. We say that D is base point free if

its base locus is empty, i.e, BS(|D|) = ∅.

For any effective divisor D on S, we can define a map ψ|D| : S 99K P(H0(S,D)∗) as follows.

Let s0, . . . , sd be a basis for H0(S,D), then define ψ|D|(x) := [s0(x), . . . , sd(x)]. It is clear

that ψ|D| is not well-defined at points x ∈ X such that s0(x) = · · · = sd(x) = 0. On the

other hand, if L ∈ |D|, then L is the zero locus of a section s =
∑
aisi ∈ H0(S,D), and

conversely any section s ∈ H0(S,D) define a divisor L = {s = 0} ∈ |D|. Thus, the map ψ|D|

is a morphisms (well-defined map) if and only if D is base point free. We can identify P(|D|)

with P(H0(S,D)∗).

Let S be a surfaces and D a divisor on S such that h0(S,D) ≥ 2. A divisor T on S is said

to be fixed by the linear system |D| if T belong to all D′ ∈ |D|. The maximal divisor F fixed

by the linear system |D| is called the fixed part of |D|. There is a bijection between |D| and

|D− F |. The divisor M := D− F is called the moving part of |D|. If x ∈ BS(|D|) \ F , then

x ∈ M . Therefore, we have that M2 ≥ |BS(|M |)|. The image of ψ|D| : = Y , i.e., ψ|D|(S),

is contained in P(|D|) ∼= P (|M |), such dimension can be one or two under our hypothesis.

Let S ε→ S be the birational map such that ψ̂ := ψ|D| ◦ ε : S → P(|D|) is defined everywhere.

Let Z := ψ̂(S) and suppose that dim(Z) = 1. Then by the Stein factorization ψ̂ can be

factorized as ψ̂ = σ ◦ τ , with τ : S → W is fibre-connected morphism where W is a smooth

curve, and σ is a finite morphism. In the last case we say that |D| is composed with a pencil,
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and the pencil is rational if g(W ) = 0, otherwise the pencil is irrational, the last case only

happens if D is base point free, see [Zar12, pag. 25-26].

Proposition 3.19. As above, Suppose that D ∈ Pic(S) is such that h0(D) ≥ 2 and is

composed with a pencil. Let T be a fiber of τ . Then:

1. If g(W ) = 0, then D ∼ F + aT , where h0(D) = h0(aT ) = h0(P1,O(a)) = a+ 1

2. If g(W ) ≥ 1, then D ∼ F + τ ∗(Ea), where Ea is divisor of degree a on W .

3.3 Kodaira Dimension

Given any variety X there is an important notion of dimension which help us in the process

of classification. Such dimension is called Kodaira dimension, and it is defined as follows:

(See for example [Bea79, Chap. VII], [BHPV04, Chap. I, Sect. 7], or [Laz17, Vol. I, Chap.

2, Sect. 1.A])

Definition 3.20 (Kodaira dimension). Let X be any smooth variety and denoted by KX its

canonical divisor, the Kodaira dimension of X is by definition

kod(X) :=


−∞ , if H0(X,nKX) = 0,∀n ∈ N

min
k∈N

{
h0(X,nKX)

nk
is bounded

}
, if ∃n >> 0, H0(X,nKX) 6= 0.

Or equivalently

kod(X) :=

 −∞ , if H0(X,nKX) = 0,∀n ∈ N

max
k∈N

{
dim(ψ|nKX |(X))

}
, if ∃n >> 0, H0(X,nKX) 6= 0.

Where ψ|nKX | : X 99K P(|nKX |) is the map defined by the linear system |nKX |.

kod(X) ∈ {−∞, 0, 1, 2, . . . , dim(X)}.

Definition 3.21. Let X be a variety. If kod(X) = dim(X), then we say that X is of general

type.

27



Proposition 3.22. Let X, Y be smooth varieties, then

kod(X × Y ) = kod(X) + kod(Y ).

Proof. See for example [BHPV04, Chap. I, Theo. 7.3].

Classification of Curves

Let C be a curve. Then kod(C) ∈ {−∞, 0, 1}. We have the following table describing

the topological type of curves according to their Kodaira dimension.

kod(C) g(C) Curve C

−∞ 0 P1 Riemann Sphere

0 1 Torus

1 ≥ 2 General Type

Table 1: Classification of curves

3.4 Enriques classification

The process of classifying surfaces is much more complicated than the classification of curves.

The particular parameter to classify is the Kodaira dimension, but as we will see, the diffi-

culties grow as the Kodaira dimension of the surfaces grows.

3.4.1 kod(S) = −∞

Definition 3.23. A surface S is called rational if is birational to P2.

For any n > 0, denote by Fn := PP1(OP1 ⊕ OP1(n)) the n−th Hirzebruch surface, and

denote F0 := P1 × P1.
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Proposition 3.24 (Properties of Fn).

1. Let f be the class of a fiber, Fn → P1, and let h be the class of OFn(1) on Pic(Fn).

Then, Pic(Fn) = Zf ⊕ Zh, where f 2 = 0, h2 = n, f · h = 1.

2. For any n > 0, there exists an unique smooth curve C ⊂ Fn, such that C2 = −n, and

C ∼ h− nf ∈ Pic(Fn).

3. Fn ∼= Fm if and only if m = n.

4. KFn ∼ −2h+ (n− 2)f and K2
Fn = 8.

Proof. See [Bea96, Prop. IV.10 ].

Another construction of the Hirzebruch surfaces Fn’s, via blow-ups and blow-downs.

We start with P2. Set F1 := Blp(P2) the blow-up of P2 at some point p. Let E be the

corresponding exceptional divisor (red line), and let F be a fiber (blue line) passing through

p′ (image of p via the blow-up).

Then we do a blow-up of F1 at p′. Set S := Blp(F1)
f→ F1. Let D the exceptional divisor

of f (black line on S). Then, the divisor E ′ = f ∗(E) +D (red line) has self-intersection −2,

and F ′ = f ∗(F ) + D (blue line on S) has self-intersection −1. So, we can do a blow-down

on S to contract the (−1)−curve F ′. Thus, we get a surface birrational to P2 with only one

curve with negative self-intersection, a (−2)−curve, it is F2. This process can be iterated to

obtain all Hirzebruch surfaces Fn. (See Image 3.4.1).
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Figure: Construction of the Hirzebruch Surfaces Fn

Proposition 3.25. Let S be a ruled surface over C, then q(S) = g(C), pg(C) = 0 and

K2
S = 8(1− g(C)).

See [Bea96, Prop. III.21 ] or [Har77, Cap. V, Cor. 2.11].

Proposition 3.26. Any minimal rational surface is isomorphic either to P2 or or Fn for

n 6= 0.

Proof. See [Bea96, ] or [BHPV04, Chap. V, Prop. 4.3]

Corollary 3.27. Let S be any rational surfaces, then, q(S) = pg(S) = 0.

Definition 3.28. A surfaces S is called ruled (non–rational) if S is birational to P1 × C,

where C is a curve with g(C) ≥ 1.
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3.4.2 kod(S) = 0

For proof of the followings results, you can consult [Bea79, Chap. VIII]

If S is a surface such that kod(S) = 0, then its plurigenus satisfies Pn(S) = 0 or 1 for all

n, and there exist some n0 such that Pn0(S) = 1. In particular, pg(S) = 0, 1.

Proposition 3.29. Let S be a minimal surface such that kod(S) = 0. Then, K2
S = 0 and

χ(S) ≥ 0.

Corollary 3.30. Let S be a minimal surfaces with kod(S). Then q(S) ∈ {0, 1, 2}

The possible values for q(S) are bounded by the expressions χ(OS) = 1−q(S)+pg(S) ≥ 0,

and since pg(S) = p1(S) is either 0 or 1. Hence q(S) ∈ {0, 1, 2}. Furthermore, note that

if pg(S) = 0 and q(S) = 2, then χ(OS) = 1 − q(S) + pg(S) = −1, which is absurd by

the theorem 3.29. The alternative pg(S) = q(S) = 1 is neither allowed, as we state in the

following proposition.

Proposition 3.31. Let S be a minimal surface with kod(S) = 0. Then it is impossible that

pg = q = 1.

Finally, for minimal surfaces with kod(S) = 0 we present the behavior (definition) in each

possible case.

Definition 3.32. Let S be a minimal surfaces such that kod(S) = 0, then S belong to one

of the following types:

1. pg = q = 0, we say that S is a "Enriques" surface.

2. pg = 0, q = 1, we say that S is a "Bielliptic" surface.

3. pg = 1, q = 0, we say that S is a "K3" surface.

4. pg = 1, q = 2, we say that S is an "Abelian" surface.

Example 3.33.

31



(Enriques) Let X = {x4
0 + x4

1 − x4
2 − x4

3 = 0} ⊆ P3. Thus, X is a K3 surface, since π1(X) = 0 due

to Lefschetz hyperplane theorem, so q(X) = 0 and KX ∼ OX by adjunction formula.

Consider σ[x0 : x1 : x2 : x4] = [x0 : ix1,−x2 : −ix3], where i2 = −1. Clearly σ4 = idX ,

and σ(X) ⊂ X. Moreover, σ has no fixed points on X. Consider S := X/σ, then S is a

Enriques surface, since χ(OX) = 2 (is a K3) we have that χ(OS) = 1−q(S)+pg(S) = 1

(see, [Bea96, Lemma VI.3]), thus q(S) = pg(S). Finally, since S is a quotient of X

by a finite group, the surface X is an universal cover of S, thus π1(S) is finite, so

q(S) = rank
(

π1(S)
[π1(S),π1(S)]

)
= 0.

(Bielliptic) A Bielliptic surface S is a surface S ∼= (E × F )/G, where E and F are elliptic curves

and G is a finite group of translations of E acting on F such that F/G ∼= P1.

Theorem 3.34 (Bagnera-de Franchis). Every Bielliptic surface belong to one of the

followings types:

(a) (E × F )/G, where G ∼= Z/2Z, acting on F by x 7→ −x.

(b) (E ×F )/G, where G ∼= Z/2Z⊕Z/2Z, acting on F by x 7→ −x, x 7→ x+ ε, ε ∈ F2,

where F2 = { points of order 2 on F}.

(c) (E × Fi)/G, where G ∼= Z/4Z, acting on Fi by x 7→ ix, i2 = −1, where Fi =

C/(Z⊕ Zi).

(d) (E × Fi)/G, where G ∼= Z/4Z⊕ Z/2Z, acting on Fi by x 7→ ix, x 7→ x+ 1+i
2
.

(e) (E × Fρ)/G, where G ∼= Z/3Z ⊕ Z/3Z, acting on F by x 7→ ρx, ρ3 = 1, where

Fρ = C/(Z⊕ Zρ).

(f) (E × Fρ)/G, where G ∼= Z/3Z⊕ Z/3Z, acting on Frho by x 7→ ρx, x 7→ 1−ρ
3
.

(g) (E × Fρ)/G, where G ∼= Z/6Z, acting on F by x 7→ −ρx.

(K3) (a) Consider the complete intersection surfaces Sd1,...,dr := {Fd1 = · · · = Fdr = 0} ⊆

Pr+2, then S4, S2,3 and S2,2,2 are K3 surfaces,

(b) let C be a sextic on P2 and consider S as the double cover of P2 with branch locus

C. Then, S is a K3 surface.

32



(Abelian) (a) Let C1, C2 be two elliptic curves, then A = C1 × C2 is an abelian surface.

(b) Let S be a surface with q(S) = 2, then its Albanese variety, Alb(S) is an abelian

surface (see [Bea96, Chap. V.]). Recall, that for any varietyX its Albanese variety

is defined by

Alb(X) := H0(X,Ω1
x)
∗/H,

where H is the image of the morphism,

ι : H1(X,Z)→ H0(X,Ω1
X)∗, ι(γ)(ω) =

∫
γ

ω ∈ C.

3.4.3 kod(S) = 1

Definition 3.35. A minimal surface S is called elliptic if there exists a curve C and a

fibration f : S → C such that the generic fiber is an elliptic curve.

Theorem 3.36. Every minimal surface with kod(S) = 1 is an elliptic fibration.

Proof. See [Bea96, Theo. IX.2]

Example 3.37.

1. Let C1 be an elliptic curve and let C2 be a curve of genus ≥ 2. Then, S = C1×C2 has

kod(S) = 1.

2. Consider the family of elliptic curves Ft := {y2 = x3 + A(t)x+B(t)} where t ∈ C and

A(t), B(t) ∈ C[t]. The curve Ft is non-singular if 4A3(t) + 27B2(t) 6= 0. Compatifying

we obtain a fibration φ : S → P1 with generic fiber F a smooth curve of genus one.

The canonical class of S is KS ∼ (χ(S) − 2)F . If we consider A4n(t) and B6n(t) be

polynomials of degree 4n and 6n, respectively. The polynomial 4A3
4n(t) + 27B2

6n(t) has

degree 12n. Thus, the fibration φ has 12n singular fibers. So, χ(OS) = 12n
12

= n.

Therefore, for n ≥ 3, the surface S has Kodaira dimension 1. If n = 0, 1, S is a rational

surface, and if n = 2 the surfaces S is a K3.
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3.4.4 kod(S) = 2

Definition 3.38. A surface S with kod(S) = 2 is called of general type.

Proposition 3.39. Let S be a minimal surface of general type, then K2
S ≥ 1 and χ(OS) ≥ 1.

Proof. Let H be smooth very ample divisor on S. then HKS > 0, since nKS is effective for

n >> 0. Consider the short exact sequence

0→ OS(nKS −H)→ OS(nKS)→ OH(nKS)→ 0,

then taking long exact sequence of cohomology, h0(S, nKS) ≤ h0(H,nKS|H)+h0(S, nKS−H),

but h0(S, nKS) grows as n2 and h0(H,nKS|H) at most as n, thus exists E ∈ |nKS −H| for

n >> 0. So, E ·KS = (nKS − H)KS = nK2
S − H ·KS ≥ 0, then nK2

S ≥ H ·KS > 0. For

Castelnouvo’s inequality χ(OS) ≥ 1, see [Bea96, Theo. X.4]

The followings two theorems are profound and essential in order to study the "Geography

of Surfaces."

Theorem 3.40 (Noether inequality 1875). Let S be a minimal surface of general type over

any algebraically closed field k. Then,

2χ(OS)− 6 ≤ c2
1(S)

or equivalently
1

5
(c2(S)− 36) ≤ c2

1(S)

Theorem 3.41 (Bogomolov-Miyaoka-Yau inequiality 1977). Let S be a minimal surface of

general type, then

c2
1(S) ≤ 9χ(OS)

or equivalently

c2
1(S) ≤ 3c2(S).

The proofs of the last two inequalities can be found on [BHPV04, Chap. VII, Theo. 3.1

and Theo. 4.1].
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Example 3.42.

(Compl. int) Let S = Sd1,...,dr ⊂ Pr+2 be a complete intersection surface. If r + 3 <
∑

i di, then

S is of general type. By adjointion formula KS = OS(
∑

i di − (r + 3)), so K2
S =

(
∑
di − (r + 3))2d1 · · · dr. Taking the short exact sequence

0→ OPr+2(−
∑
i

di)→ OPr+2(
∑
i

di − (r + 3))→ OS(
∑
i

di − (r + 3))→ 0,

and long exact sequence of cohomology we get

H0(Pr+2,OPr+2(
∑
i

di − (r + 3))) ∼= H0(S,OS(
∑
i

di − (r + 3))),

so h0(S,OS(n(
∑

i di − (r + 3)))) =
(
n
∑
i di+(1−n)(r+3)−1
n
∑
i di−n(r+3)

)
∼ n2. Therefore, kod(S) = 2.

In particular, for hypersurfaces S = Sd on P3, we obtain K2
S = (d− 4)d2 and χ(OS) =

1 + pg(S) = 1 +
(
d−1
d−4

)
= (d−3)(d−2)(d−1)+6

6
. Hence,

K2
S ≤ 6χ(OS) or equivalently c2

1(S) ≤ c2(S).

More generally;

Proposition 3.43. If S is a complete intersection surfaces of general type. Then,

c2
1(S) ≤ 2c2(S).

Proof. See [P87, pag. 207].

(Godeaux) Let S = {x5
0 +x5

1 +x5
2 +x5

3} be the Quintic surface on P3. The group G := Z/5Z acts on

S, as follow. Let ζ be a primitive 5-th root of the unity. We define the automorphism

σ by σ[x0, x1, x2, x3] = [x0, x1, ζ
2x2, ζ

3x3], easily we can see that σ is an automorphism

with no fixed points. Define the smooth surface S ′ := S/G, the surface S ′ is known

as the Godeaux surface. This surface has the smallest possible values for K2
S and

χ(S). Notice that by Riemann-Hurwitz 5e(S ′) = e(S) and 5χ(S ′) = χ(S). Now, since

KS ∼ OS(1) then K2
S = 5 and by Lefschetz hyperplane theorem π1(S) = {1}, and
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pg = h0(P3,O(1)) = 4 so χ(S) = 1 + 4 = 5. Then χ(S ′) = 1, so 12 = 1 + e(S ′) by

Noether’s formula. Therefore, K2
S′ = 1 and e(S ′) = 11, then S ′ is of general type.

A classical question of the surface theory was: there exists a surface S of general type

with rational invariants?, i.e., q(S) = pg(S) = 0. It was answered in a positive way

by Godeaux in [Godeaux31], presenting the example explained above. Nowadays, any

smooth minimal projective surface S satisfying c2
1(S) = 1, q(S) = pg(S) = 0, and

π1(S) ∼= Z/5Z is called a Godeaux surface.

(Product of curves) Let C1 and C2 be two smooth projective curves of genus g1 and g2 respectively. If

g1, g2 ≥ 2, then S = C1 × C2 is a surface of general type, because kod(S) = kod(C1) +

kod(C2) = 1 + 1 = 2. We can compute all the invariant of S. Note that Ω1
S =

p∗(ΩC1)⊕q∗(ΩC2) , where p, q are the projections to C1 and C2 respectively. Thus, KS =

p∗(KC1) ⊗ q∗(KC2), hence, K2
S = 2deg(KC1)deg(KC2) = 8(g1 − 1)(g2 − 1). Similarly,

we compute q(S) = g1 + g2 and pg(S) = g1g2. Then, χ(S) = 1 − g1 − g2 + g1g2 =

(g1 − 1)(g2 − 1). Therefore, c2(S) = 4(g1 − 1)(g2 − 1) and c2
1(S)/c2(S) = 2. Moreover,

it implies:

Proposition 3.44. IfMc21,c2
denote the coarse moduli space of minimal surfaces S of general

type with c2
1(S) = c2

1 and c2(S) = c2. Then,M8ab,4ab 6= ∅ for all a, b ≥ 1.

The next result will be important in Chapter 5, Section 5.2, in order to study the funda-

mental groups of surfaces of general type with small c2
1.

Proposition 3.45. Let S be a minimal surface of general type, let M the moving part of

KS. Then, K2
S ≥ M2 and if ψ|KS |(S) = S ′ ⊂ Ppg−1 is a surface, we have that M2 ≥

(deg(ψ|KS |)) deg(S ′).

Proof. We writeK2
S = K(F+M) = KS ·F+KS ·M = KS ·F+(F+M)M = KS ·F+F ·M+M2,

then since KS is nef we have K2
S ≥ M2. Now let ψ|KS | : S 99K S ′ ⊂ Ppg−1, where S ′ is a

surface. Let ε : Ŝ → S be the blow-up such that ψ|KS | ◦ ε is well-defined. Then, ε∗M2 =

deg((ψ|KS |)) deg(S ′) and by Proposition 3.13 we get that M2 ≥ deg((ψ|KS |)) deg(S ′).
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Proposition 3.46. Let S be an irreducible surface contained in Pn but no in any hyperplane.

Then deg(S) ≥ n− 1. If the surface S is not ruled, then deg(S) ≥ 2n− 2.

Proof. Let Ŝ β→ S be a desingularization of S, let H be a hyperlane on the projective space

Pn, and denote by ι : S → Pn the inclusion. We denote by |Ĥ| = |(β ◦ ι)∗H|. A generic curve

C ∈ |Ĥ| is smooth. Considering the short exact sequence

0→ OŜ → OŜ(Ĥ)→ OC(Ĥ|C)→ 0,

and by taking long exact sequence of cohomology we have that n ≤ h0(C, Ĥ|C). We have two

cases to analyze, case 1) KŜ ·H ≥ 0, case 2) KŜ ·H < 0. On case 1), by the genus formula

3.9 we have that 2g(C)− 2 = C2 + Ĥ ·KŜ ≥ Ĥ2 > 0. Then by Clifford’s lemma, see [Har77,

Chap. IV, Theo. 5.4], we obtain h0(C) ≤ Ĥ2/2 + 1, so deg(S) = H2 ≤ 2n− 2. For the case

2), again by the genus formula we get the equality 2g(C)− 2 = Ĥ2− Ĥ ·KŜ < Ĥ2, therefore

by Riemann-Roch Theorem 3.4, we have h0(C, Ĥ|C) = Ĥ2 + 1− g(C), thus n− 1 ≤ deg(S).

We summarize the information about classification of surfaces in the following table.

kod(C) pg(S) q(S) Minimal Surfaces

−∞
0 0

P2 or

Fn for n 6= 1

0 ≥ 0 PC(E) where E is a rank 2 bundle on C

0

0 0 Enriques Surfaces

0 1 Bielliptic Surfaces

1 0 K3 Surfaces

1 2 Abelian Surfaces

1 ≥ 0 ≥ 0 Elliptic fibration

2 ≥ 0 ≥ 0 ?

Table 2: Enriques’ Classification
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4 Lefschetz type theorems

This chapter is more about algebraic topology than about algebraic geometry. However, the

principal results (Lefschetz’s Theorems) are standard tools in algebraic geometry to under-

stand the topology of algebraic varieties. Lefschetz proved the classical Lefschetz Theorem 4.1

in [Lef24]. Lefschetz’s tool was to use a hyperplane section pencil (Lefschetz pencil). Latter,

Andreotti and Frankel in [AF59] proved the Lefschetz Theorem using differential topology.

More precisely, they used Morse theory. This method has been developed further, and it has

allowed obtaining generalizations of the Theorems 4.1 and 4.10. For instance, Goresky and

MacPherson in [GM88] present six generalizations [GM88, Part. II, Chap. 1, Theorem 1.1,

Theorem 1.1∗, Theorem 1.2, Theorem 1.2∗, Theorem 1.3, Theorem 1.3∗], all of them based

on a generalized Morse Theory.

The first part of the next exposition is based on the book Morse theory wrote by Milnor

[MSW69]. The second part is based on the book "Stratified Morse Theory" wrote by Goresky

and MacPherson [GM88]. We will focus specially in the proof of the Theorem "Relative

Lefschetz Theorem with Large Fibres", [GM88, Part. II, Chap. 5, sect. 5.1]. It will be key

to obtain our Theorem 5.37.

4.1 Classical Lefschetz Theorems

This section is based in the results presented by Milnor in [MSW69, Part I].

Theorem 4.1 (Lesfchetz Hyperplane Theorem). Let X be a smooth projective complex va-

riety of dimension n and let D be an ample effective divisor on X. Then, the restriction

homomorphism

ri : H i(X,Z)→ H i(D,Z)

is an isomorphism if i ≤ n− 2 and is surjective if i = n− 1.

We follow the proof presented by Andreotti and Frankel in [AF59]. The idea is to use an

appropriate Morse function f from a manifold M to the real numbers R, to determine the

homotopy type of M in terms of the critical points of f and their index.
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Definition 4.2. Let f : M → R be a C∞ function. A critical point of f is a point p ∈ M ,

such that dfp = 0, and q = f(p) is called a critical value of f . A critical point p of f is non-

degenerate if its Hessian matrix Hessp(f) =
(

∂f(p)
∂xi∂xj

)
is non-degenerate, where x1, x2, . . . , xn

is a local system coordinate around p.

Example 4.3. 1. The function f(x, y) = x3 − 3xy2, has a degenerate critical point in

p = (0, 0). It is easy to see, since df = (3x2−3y2,−6xy) and Hess(f) =

 6x −6y

−6y −6x

.

2. The function f(x1, . . . , xn) =
n∑
i=1

x2
i has only one critical point p = (0, 0, . . . , 0), and

this point is non-degenerate, because df = 2(x1, . . . , xn) and Hess(f) = 2In×n

3. The function f(x, y) = sin( 1
x
)y is such that every point of the form ( 1

(n+1)π
, 0) for

n 6= −1 is a critical point. However, none of these points are degenerate, because f has

differential equal to df =
(
−ycos( 1

x
)

x2
, sin( 1

x
)
)
with Hessian matrix

Hess(f) =

y (2xcos( 1
x
)− sin( 1

x
))

x4
−
cos( 1

x
)

x2

−
cos( 1

x
)

x2
0

 .

The determinant of Hess(f) is equal to
cos2( 1

x
)

x4
6= 0 for x =

1

(n+ 1)π
,(n 6= −1).

Definition 4.4. A function C∞ function f : M → R is said to be a Morse function if only

has finitely many number of critical points, all the critical values are different and every

critical point is non-degenerate.

The unique Morse function on the above Examples 4.3 is the second one; the other two

have either a degenerate critical point or infinitely many critical points.

Definition 4.5. Let f : M → R be a Morse function, and let p be one critical point of f .

The index of f at p is the number λp of negative eigenvalues of Hessp(f).
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Now, we state a theorem that summarizes how we can decompose a manifold M in

terms of cells, which are parametrized by the index of the critical points of a Morse function

f : M → R.

Theorem 4.6. Let f : M → R be a Morse function. For any a ∈ R we define Ma :=

f−1((−∞, a]). Suppose that the set Ma is compact. Then:

1. Let a, b ∈ Im(f) such that a < b, f−1([a, b]) is compact and with no critical points

between them. Then, Ma is a deformation retract of Mb.

2. Let p be a critical point of f with index λp = λ, and c = f(p). Then, for 0 < ε << 1, the

set Mc+ε has the homotopy type of Mc−ε with a cell of dimension λ (λ− cell) attached.

3. M has the homotopy type of a CW-complex, with one cell of dimension λp for each

critical point p of f .

Proof. See [MSW69, Chap. 3].

Example 4.7. Let T be a torus, and we consider the height function f , i.e., if we suppose

T ⊆ R3 the function f : T → R is defined by f(x, y, z) = z. The points p0, p1, p2, p3 are the

critical points of f . Now, we denote by vi = f(pi) the critical value associated to the critical

point pi, see Figure 3.

Figure 3: Morse theory for the standard torus.

40



Taking appropriate coordinates, we can write f in a small neighborhood p0 as f(x, y, z) =

x2 +y2 +1, f in a small neighborhood p1 as f(x, y, z) = x2−y2 +1, f in a small neighborhood

p2 as f(x, y, z) = −x2 +y2 +1, and f in a small neighborhood p3 as f(x, y, z) = −x2−y2 +1.

Then, the index of each critical point are λp0 = 0, λp1 = λp2 = 1, and λp3 = 2. Therefore, the

torus T has the type of homotopy of a CW -complex formed by one cell of dimension 0, two

of dimension 1 and one of dimension 2, respectively. See Figure 4.

Figure 4: Decomposition in Cells

Theorem 4.8 (Andreotti-Frankel). Let Y ⊂ CN be a complex smooth affine submanifold of

real dimension 2n. Then, Y has the same homotopy type as a CW-complex with dimension

at most n. Therefore,

H i(Y,Z) = Hi(Y,Z) = 0

for any i > n.

Proof. See [MSW69, Theo. 7.1].

By Theorem 4.6 part 3, it suffices to find a proper Morse function such that every critical

point has an index λ ≤ n. The adequate function is a square distance function (see Example

4.3,2). These classes of functions are the most important examples of Morse functions.

Lemma 4.9. 1. Let M ⊂ Rr be a closed submanifold. Then, for almost all c ∈ Rr, the

squared distance function

φc(x) = ||x− c||2 =
∑
i

(xi − ci)2

is a Morse function (restricted to M).
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2. Let Y ⊂ CN be a closed complex submanifold of dimension n. Let c ∈ R2N , then for

any critical point p of the squared distance function φc, we have that

indexp(φc) = λp ≤ n.

Proof. For (1) see [MSW69, Chap. 6, Theo. 6.6], and for (2) see [MSW69, Chap. 7, Proof

of Theo. 7.2, pag. 40-41].

Proof of Theorem 4.8. Choose a point c ∈ R2N such that the squared distance function φc

is a Morse function. It can be done by Lemma 4.9 part 1, and by part 2, we have that the

index of every critical point p has index ≤ n.

Therefore, by Theorem 4.3 part 3, Y has the homotopy type of a CW-complex of dimen-

sion ≤ n.

Proof of the Theorem 4.1. Since the divisor D is ample, then mD is very ample for some

m >> 0. Thus, there exists an embedding X → PN , such that X ∩H = mD, so X \D =

X \ mD = X \ (X ∩ H) is an affine subset of CN . Then by Theorem 4.8 we have that

Hi(X,D) = 0 for any i < n. On the other hand by Lefschetz duality, see for example

[Hat05, Theo. 3.43] , Hi(X,D) = H2n−i(X,D). Then taking long exact sequence of relative

cohomology we obtain the result.

Theorem 4.10 (Lesfchetz Hyperplane Theorem for Homotopy groups). Let X be a smooth

projective complex variety of dimension n and let D be an ample effective divisor on X. Let

ι : D → X be the immersion morphism. Then, the induced homomorphism

ι∗ : πi(D)→ πi(X)

is an isomorphism if i ≤ n− 2 and is surjective if i = n− 1.

We want to give a proof in all detail of the Theorem 4.10, to make a step-by-step com-

parison with the work done by Goresky-MacPherson in demonstrating its generalizations. In

particular for the "Relative Lefschetz Theorem with Large Fibers" Theorem 4.16.
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Definition 4.11. Let X be CW-complex and A subcomplex of X, we say that the pair

(X,A) is a CW-pair.

Lemma 4.12. Let (Y,A) a CW-pair, if Y \ A only has cell of dimension at least k. Then,

πi(Y ) ∼= πi(A) for any i < k.

Proof. See [Hat05, Cor. 4.12].

Proof of Theorem 4.10.

Step 1. Embed X \D into an affine space.

As in the proof of the Theorem 4.1, we can show that X \ D ⊆ CN ∼= R2N , for some

N >> 0.

Step 2. Define an adequate function and compute the index λ of its critical points.

Define the function

f(x) =


1

φc(x)
, x ∈ X \D

0, x ∈ D

Where c ∈ R2N \ X. Then, away of D, the critical points of f(X) and φc(X) are

the same since dfp = (φc(p))
−2(−∂φc(p)

∂xi
) and Hessp(f) = (φc(p))

−2(−∂2φc(p)
∂xj∂xi

), so the

eingenvalue of the Hessian matrix of f at a critical p is the eingenvalue of the Hessian

matrix of φc at p with reversed sing. Therefore, the index of λfp ≥ 2n− λφcp ≥ 2n− n,

by Lemma 4.9.

Step 3. Show that X has the homotopy type of Xε attached with cells of dimension ≥ n.

We consider X as a CW-complex where D is a subcomplex. Let U be a neighborhood

of D such that D is a deformation retract of U . Let ε << 1, such that the set
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Xε := f−1[0, ε] ⊆ U . Then, by Theorem 4.6 X has the type of homotopy of Xε

attached cell of dimension ≥ n. Hence,

πi(X) ∼= πi(Xε ∪ Cells of dimension ≥ n)

Step 4. Show That the pair (X,Xε) is n-connected.

By Lemma 4.12, putting Y = X and A = Xε, we get that πi(X) ∼= πi(Xε) for i < n,

since X \Xε only has cell of dimension ≥ n.

Step 5. Show that πi(X,D) ∼= πi(Xε, D) for all i ≤ n− 1.

For that, we take both long exact sequences of homotopy for (X,D) and (Xε, D) and

compare step by step.

. . . πi(D) πi(Xε) πi(Xε, D) πi−1(D) . . . π0(Xε)

. . . πi(D) πi(X) πi(X,D) πi−1(D) . . . π0(X)

∼=

Therefore, we have that πi(X,D) ∼= πi(Xε, D) for all i ≤ n− 1.

Step 6. Show that πi(X,D) ∼= {1} for i ≤ n− 1.

By the nested inclusions D ⊂ Xε ⊂ U ⊂ X and since D is a deformation retract of U ,

we obtain the commutative diagram

πi(Xε, D) {1} ∼= πi(U,D)

πi(X,D).

∼=

Therefore, we get the desired isomorphism πi(X,D) ∼= {1} for i ≤ n−1 or equivalently

πi(D) ∼= πi(X) for i ≤ n− 2 and ι∗ : πn−1(D)→ πn−1(X) is a surjection.
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Remark 4.13 (Some applications).

1. Ample divisors are connected. Let D be an ample divisor on a smooth complex

projective variety X with dimension at least 2. Then, by Theorem 4.1 we have

H0(X,Z) ∼= H0(D,Z), so H0(D,Z) ∼= Z.

2. Complete intersection surfaces on PN are regular, i.e, q = 0. Let S be a complete

intersection surfaces on PN , then S can be write as S = {H1 = H2 = · · · = HN−2 =

0}, where each Hi is a smooth hypersurface. Thus, by Theorem 4.10 we know that

π1({Hi = 0}) ∼= π1(PN) ∼= {1}.Then, by induction we get that

π1(S) ∼= π1({H1 = H2 = · · · = HN−1 = 0}) ∼= π1(PN) ∼= {1}.

Therefore, q(S) = 0.

We finish this subsection presenting a Weak Lefschetz Theorem for lef line bundle.

Theorem 4.14. Let X be a smooth projective variety and let L be a lef line bundle on X.

If E ∈ Γ(X,L) is a non-singular divisor of X. Then, the morphism ι∗ : Hr(X) → Hr(E)

induced by the inlcusion ι : E → X, is an isomorphis if r < dim(X)− 1 and it is injective if

r = dim(X)− 1.

Proof. See [CM02, Prop. 2.1.5]

4.2 Relative Lefschetz Theorem with Large Fibres

Definition 4.15. Let X be a topological space and (I,≤) a partial ordered set. We say that

X is (I,≤)-stratified if there is a collection {Si}i∈I of disjoint locally closed subsets Si ⊂ X

such that:

(i) X =
⋃
i∈I

Si,

(ii) Si ∩ Sj 6= ∅ if and only if Si ⊂ Sj if and only if i ≤ j.
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If X and Y are two (I,≤)-stratified spaces a map f : X =
⋃
i∈I

Ri → Y =
⋃
i∈I

Si is called

stratified if f is continuous and f(Ri) ⊂ Si for all i ∈ I.

The last definition can be found in [GM88, Part. I, Chap. 1, Sect. 1].

Theorem 4.16 (Relative Lefschetz Theorem with Large Fibres). Let X be an smooth pro-

jective variety of dimension n. Let f : X → PN a proper morphism, and let H be a linear

subspace of PN with codimension c. Define φ(k) := dim((PN \H)kf ).

Then the induced homorphism

πi(f
−1(H))→ πi(X)

is an isomorphism if i < n̂, and it is surjective if i = n̂, where

n̂ = n− 1− sup
k
{2k − n+ φ(k) + inf(φ(k), c− 1)}.

Corollary 4.17. If H is a hyperplane in Theorem 4.16 and f : X → PN is semi-small into

its image, then πi(f−1(H)) ∼= πi(X) if i < n− 1.

Proof. The case f(X) ⊂ H is trivial. In the computation of n̂ we can ignore the values

φ(k) = −∞. Then we compute n̂ = n − 1 since dim(f(X)) = n, the codimension of H

is c = 1, and we have the inequality φ(k) ≤ dim((f(X))kf ). The last inequality is because

(PN \H)kf = (f(X) \ (f(X) ∩H))fk ⊂ f(X)kf .

The proof the Theorem 4.16 that we will outline here is given by Goresky and MacPherson

in [GM88, Part II. Chap. 5, Sect. 5.1].

Before to start the outline, we will present some necessary definitions and lemmas.

Lemma 4.18. Let Z ⊂ PN be a stratified space, and let H be a linear subspace of PN of

codimension c. Let G ⊂ PN be a complementary space of H, i.e., a linear subspace such

that G ∩ H = ∅ and dim(G) = c − 1. For instance, if H = {x0 = · · · = xc−1 = 0}, then

G = {xc = · · · = xN = 0}. Let h : PN → R, given by

h([x0 : · · · : xN ]) :=

∑c−1
i=0 xixi∑N
i=0 xixi

.
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Then, for every critical point p of h|Z the index λ := λ
h|Z
p satisfies:

dim(Z)− λ ≤ c− 1.

Proof. See [GM88, Part. II, Sect. 4.4.].

Definition 4.19. Let f : X → Z be a semi-small stratified map and h : Z → R be a proper

Morse function. If p ∈ Z is a non-degenerate critical point p ∈ Sα for some stratum Sα ⊂ Z,

we define the convexity defect of h at the point p by Γh(p) := dim(Sα)− λp.

Lemma 4.20. Consider f : X → Z and h : Z → R as in the definition above. Suppose

that the interval [a, b] contains no critical values of h except v = h(p) ∈ (a, b). Denote

X≤t := X ∩ f−1(h−1(−∞, t]). Then, the pair (X≤a, X≤b) is (n− Γh(p))-connected.

Proof. By [GM88, Part II, Sect. 4.2, Prop. 4.3] the pair (X≤a, X≤b) is (n − (∆(p) +

Γh(p)))−connected, where ∆(p) is the normal defect of h at p, see [GM88, Part II, Sect.

4.2]. But, by [GM88, Part II, Sect. 4.5, Prop. 4.5.1m] and the semi-smallness condition of

f , we have that ∆(p) = 0.

The following is a sketch of a proof of Theorem 4.16.

Proof of Theorem 4.16. Since we are interested in apply the theorem for semi-small mor-

phisms, so we will assume that the map f : X → PN is semi-small into its image. In this

case, the integer n̂ = n− 1− infk(φ(k), c− 1).

Let us denote Z := f(X) ⊂ PN .

Step 1. Stratify Z and X such that π is an stratified morphism.

For each non-negative integer define Zk := {z ∈ Z| dim(f−1(z)) = k}. Then, X can be

stratified by Xk := f−1(Zk), so f is an stratified morphism.
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Step 2. Define an appropriate function in order to use stratified Morse theory.

Let G ⊂ PN be a complementary space to H. define h : PN → R by

h([x0 : · · · : xn]) : =

∑c−1
i=0 xixi∑n
i=0 xixi

,

as in Lemma 4.18. Then, the function f satisfies that:

1. 0 ≤ h(x) ≤ 1,

2. h−1
(0) = H and , h−1

(1) = G,

3. h is analytic.

Step 3. Show that we can replace H for Hε := h
−1

[0, ε].

The morphism h ◦ f : X → R has finitely many critical points. Thus, we can choose

0 < ε << 1 such that the interval (0, ε] contains no critical values of h ◦ f . Therefore,

by [GM88, Part. II, Sect.5.A, Prop. 5.A.1. ], the inclusion

ι : X ∩ f−1(H) ↪→ X ∩ f−1(Hε)

yields isomorphisms on all the homotopy groups πi.

Step 4. Approximate h by a Morse function h.

By [GM88, Part I, Sect. 2.2] or [Pig80], we can approximate h by a C∞ function h,

such that h|Hε = h|Hε and,

1. 0 ≤ h(x) ≤ 1, h−1(0) = H and, h−1(1) = G,

2. h−1([0, ε]) = Hε,

3. the function h is a stratified Morse function for the strata Zk of Z with different

critical values on Z ∩ h−1(ε/2, 1) and,
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By Lemma 4.18, for each critical point p ∈ Z of h we have that

Γh(p) = dim(Zk)− λ
h|Zk
p ≤ min(dim(Zk), c− 1),

where p ∈ Zk.

We have built the function Morse function h ◦ f : X → R. As in steps 3,4 and 5 of

the proof of Theorem 4.10, we will use Morse theory applied to h ◦ f to estimate the

connectivity of the pair (X,X ∩ f−1(Hε)).

Step 5. Estimate the connectivity of the pair (X1−θ, X ∩ f−1(Hε)), for 0 < θ << 1, where

X1−θ := X ∩ f−1(h−1[0, 1− θ]).

First, we can write n̂ = infk(n(Zk)), where

n(Zk) = n− 1− (2 dim(π−1(z))− (n− dim(Zk)) + min(dim(Zk), c− 1))),

it is clear because φ(x) = dim(Zk) and 2 dim(f−1(z)) + dim(Zk) ≤ n if z ∈ Zk. Let

v1, . . . , vk be the critical values of h ◦ f in the interval [ε, 1− θ] with f(h(pi)) = vi, and

let ε = ε0 < ε1 < · · · < εk−1 < εk = 1−θ, such that vi ∈ (εi−1, εi). By the Lemma 2, the

pair (Xεi , Xεi+1
) is m̂i = n− 1− Γ(pi) connected, for all 0 ≤ i ≤ k − 1, where pi ∈ Zk.

But by Step 4, we have the inequality Γ(pi) ≤ min(d(Zk), c−1). Hence, taken infimum

over all the index i, we have m̂i ≥ n̂. So, πi(X1−θ, X ∩ f−1(Hε)) = {1} for all i ≤ n̂.

Step 6. Go from X1−θ to X.

The idea is the following.

First show that the pair (X∩f−1h−1[1−θ, 1], X∩f−1h−1(1−θ)) is such that X[1−θ,1] :=

X ∩ f−1h−1[1− θ, 1] is homeomorphic to the disk bundle over a vector bundle of X ∩

f−1h−1(1) := X1 and X1−θ := X ∩ f−1h−1(1 − θ) is homeomorphic to the boundary

sphere bundle over X1 with fibre CN−c+1.

Then, prove that the long exact sequence of homotopy for the pair (X[1−θ,1], X1−θ)

πi(X1−θ) πi(X[1−θ,1]) πi(X[1−θ,1], X1−θ) πi−1(X1−θ)
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coincides with long exact sequence of homotopy for the boundary sphere bundle,

X1−θ → h−1(1),

πi(S2N−2c+1) πi(X1−θ) πi(f
−1(1)) πi−1(S2N−2c+1)

So we get that

πi(X[1−θ,1], X1−θ) ∼= πi(S2N−2c+1),

but πi(S2N−2c+1) ∼= {1} if i < 2N−2c+1, see [Hat05, Coro. 4.9]. We only have to show

that n̂ ≤ 2N − 2c+ 1. But, since dim(X) = n and f is semi-small then X0 = f−1(Z0)

has dimension n. Therefore, n̂ ≤ n− (c− 1) = n− c+ 1 ≤ N − c+ 1 ≤ 2N − 2c+ 1.
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5 Geography of Surfaces of General type

5.1 Geography of simply-connected Surfaces of General type

5.1.1 Persson and Chen’s Results

Persson in [P81] showed the following theorems which imply the density of Chern slopes of

minimal simply-connected surfaces of general type in the interval [1
5
, 2].

Theorem 5.1. [P81, Prop. 3.23] Given x, y positive integers satisfying the inequality

1

5
(x− 36) ≤ y ≤ 1

2
(x− 8),

then there exists a minimal simply-connected surface of general type S, such that c2
1(S) = y

and c2(S) = x.

Theorem 5.2. [P81, Theo. 3] Let x, y be positive integers such that the inequality

1

2
(x− 8) ≤ y ≤ 2x− 9

4
(x+ y)

2
3

holds, then there exists a minimal simply-connected surface of general type S with c2
1(S) = y

and c2(S) = x.

Corollary 5.3. The set Chern slopes c2
1/c2 of minimal simply-connected surfaces of general

type is dense in the interval [1
5
, 2].

Bogomolov conjectured that any simply-connected surface of general type satisfy that

c2
1/c2 < 2. However, Xiao in [X85a] found various examples of such surfaces with c2

1/c2 ≥ 2.

Following the ideas of Xiao, Chen in [Ch87] show the following theorem.

Theorem 5.4. [Ch87, Theo. 1] Let x, y be positive integers satisfying the inequality

352

89
x+ 140.2x

2
3 < y <

18644

2129
x− 365.7x

2
3 ,

for x > C, where C is a large constant. Then, there exists a simply-connected minimal

surfaces of general type S with c2
1(S) = y and χ(OS) = x.
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Using Noether’s formula 12χ = c2
1 + c2 is easy to deduce the density of Chern slopes of

simply-connected surfaces of general type in the set (352
716
, 18644

6904
) ⊆ [0.49, 2.7005].

The idea behind the last theorems is to use double covers of rational surfaces allowing

some special type of singularities in the branch locus.

Latter, Persson, Peters and Xiao [PPX96] obtained the following density results.

Definition 5.5. A surface S is called a spin surface if it is simply-connected and its canonical

class is divisible is divisible by 2.

Theorem 5.6. • For any rational number r ∈ Q ∩ [1
5
, 2), there exists a minimal spin

surfaces of general type S such that c2
1(S) = rc2(S).

• The Chern slopes c2
1(S)/c2(S) of minimal spin surfaces of general type S are dense in

the interval [2, 2.703]

Urzuá, in [U10] using cyclic coverings of P2, found a sequence of simply-connected surfaces

with Chern slope c2
1/c2 = 71

26
≈ 2.730796, which was the record at that moment.

Finally, Roulleau and Urzúa in [RU15] complete the work showing the density in the

interval [1, 3]. In the next section, we will explain the proof of such result.

5.1.2 Roulleau-Urzúa’s surfaces

In this section, we recall some surfaces of general type Xp from [RU15, Section 6] which are

key in the main result of this thesis.

Definition 5.7. An arrangement of curves is a collection of curves {C1, . . . , Cr} on a non-

singular surface S. An arrangement C on S is said to be simple crossing if any two curves

Ci, Cj ∈ C intersect transversely.

A k−point of an arrangement C is a point locally of the form (0, 0) ∈ {(x− ξ1y) . . . (x−

ξky) = 0} ⊂ C2
x,y where ξi 6= ξj for i 6= j, we denote by tk the number of k−points on C. If C

only have 2-point it is called simple normal crossing.
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Let p ≥ 5 be a prime number, and let α > 0, β > 0 be integers. Let n = 3αp. Let H be

the blow-up at the twelve 3-points of the dual Hesse arrangement of 9 lines

(x3 − y3)(y3 − z3)(x3 − z3) = 0

in P2.

As defined in [RU15, Sect. 3 and 5] we will consider the diagram of varieties and mor-

phism, where i ∈ {0, 1,∞, ζ}.

Yn Zn H P2

P1

σn ϕn τ

π′i

The three singular fibers of π′i are denoted by Fi,1, Fi,2, Fi,3. Each Fi,j consists of four P1’s:

one central curve Ni,j with multiplicity 3, and three reduced curves transversal to Ni,j at one

each point. We write Ni =
∑3

j=1 Ni,j. LetM the nine P1’s from the dual Hesse arrangement,

and N be the twelve exceptional P1’s from its twelve 3-points. We have N =
∑

iNi, and

Fi,1 + Fi,2 + Fi,3 = M + 3Ni

We consider the very special arrangement of 4n2−12
3

elliptic curves H′n = E0 +E1 +E∞+Eζ
in H. Let E ′i be β2p2 general fibers of π′i (defined also in [RU15, Section 3]), and let A2d =

L1 + . . . + L2d be the strict transform of an arrangement of 2d general lines in P2, where

3 ≤ 2d ≤ p. We define a0 = a1 = bi = 1 for 1 ≤ i ≤ d, and a∞ = aζ = bi = p − 1 for

d+ 1 ≤ i ≤ 2d. Then

OH
( ∑
i=0,1,ζ,∞

3aiEi +
∑

i=0,1,ζ,∞

3aiE ′i +
∑

i=0,1,ζ,∞

ai(Fi,1 + Fi,2 + Fi,3) +
2d∑
i=1

3biLi

)
is isomorphic to

Lp0 where

L0 := OH
(

3p(3α2 + β2)
( ∑
i=0,1,ζ,∞

aiFi
)

+ 3dL
)
,
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and all symbols have been defined in [RU15, Section 5]. For each i, we denote the strict

transform of Ei, E ′i , Lj, Fi,j in Zn by the same symbol, where ϕn : Zn → H is the blow-up of

H at all the (n2−3)(n2−9)
3

4-points in H′n. Then

OZn
( ∑
i=0,1,ζ,∞

3aiEi +
∑

i=0,1,ζ,∞

3aiE ′i +
∑

i=0,1,ζ,∞

ai(Fi,1 + Fi,2 + Fi,3) +
2d∑
i=1

3biLi
)

is Lp1 where L1 := ϕ∗n(L0) ⊗ OZn(−6E), and E is the exceptional divisor of ϕn. Again, we

denote the strict transform of Ei, E ′i , Lj, Fi,j, M , Ni, N in Yn by the same symbol, where

σn : Yn → Zn is the blow-up at all the 4(n2 − 3) 3-points in H′n. Then we have

OYn
( ∑
i=0,1,ζ,∞

3aiEi +
∑

i=0,1,ζ,∞

3aiE ′i +
∑

i=0,1,ζ,∞

3aiNi +
2d∑
i=1

3biLi

)
' Lp

where L := σ∗n(L1)⊗OYn(−2M − 6G).

With this data, we construct a p-th root cover of Yn branch along

A :=
∑

i=0,1,ζ,∞

Ei +
∑

i=0,1,ζ,∞

E ′i +
∑

i=0,1,ζ,∞

Ni +
2d∑
i=1

Li.

Let f : Xp → Yn be the corresponding morphism for the p-th root cover, as in [RU15, Section

5]. The nonsingular projective surface Xp is simply-connected [RU15, Prop.6.1], and minimal

[RU15, Prop.6.2].

Let us write

A =
∑
j

νjAj =
∑

i=0,1,ζ,∞

3aiEi +
∑

i=0,1,ζ,∞

3aiE ′i +
∑

i=0,1,ζ,∞

3aiNi +
2d∑
i=1

3biLi

where Aj are the irreducible curves in A. Hence νj is equal to either 3ai or 3bk for some i, k.

The arrangement A has only 2-points, and its number is

t2 = 108α2β2p4 + 18β4p4 + 72dα2p2 − 25d+ 24dβ2p2 + 2d2.

Definition 5.8. Given the pair (S, C), where S is a smooth surface and C = {C1, . . . , Cd} is

a simple crossing arrangement on S. The log Chern numbers of (S, C) are:
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c2
1(S, C) = c2

1(S)−
d∑
i=1

C2
i +

∑
k≥2

(3k − 4)tk + 4
d∑
i=1

(g(Ci)− 1)

and

c2(S, C) = c2(S)−+
∑
k≥2

(k − 1)tk + 2
d∑
i=1

(g(Ci)− 1).

By [RU15, Prop.4.1], the log Chern numbers of A are

c̄2
1 = n4 + 2t2 − 10d− 48 and c̄2 =

n4

3
+ t2 − 4d− 12.

As in [RU15, Section 5], the Chern numbers of Xp are

c2
1(Xp) = p c̄2

1 − 2
(
t2 + 2

∑
j

(g(Aj)− 1)
)

+
1

p

∑
j

A2
j −

∑
i<j

c(qi,j, p)Ai · Aj

and

c2(Xp) = p c̄2 −
(
t2 + 2

∑
j

(g(Aj)− 1)
)

+
∑
i<j

l(qi,j, p)Ai · Aj

where 0 < qi,j < p with νi + qi,jνj ≡ 0 (mod p),

c(qi,j, p) := 12s(qi,j, p) + l(qi,j, p),

and s(qi,j, p) and l(qi,j, p) are the numbers that we recall below.

Definition 5.9. Let q, p be coprime integers such that 0 < q < p.

(1) The associated Hirzebruch-Jung continued fraction is

p

q
= e1 −

1

e2 − 1

...− 1
el

:= [e1, . . . , el]

We denote its length as l(q, p) := l.

(2) The Dedekind sum associated to the pair (q, p) is defined as

s(q, p) :=

p−1∑
i=1

(( i
p

))((iq
p

))
,

where ((x)) := x− bxc − 1
2
.
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For the particular multiplicities a0 = a1 = bi = 1 for 1 ≤ i ≤ d and a∞ = aζ = bi = p− 1

for d + 1 ≤ i ≤ 2d we chose, we have to consider only the numbers c(p − 1, p) = 2p−2
p

and

c(1, p) = p2−2p+2
p

, and l(p− 1, p) = p− 1 and l(1, p) = 1. Therefore,∑
i<j

c(qi,j, 4p)Ai · Aj =
(2p− 2)

p
t2,1 +

(p2 − 2p+ 2)

p
t2,2

and ∑
i<j

l(qi,j, 4p)Ai · Aj = (p− 1)t2,1 + t2,2

where t2,1 and t2,2 are the number of 2-points corresponding to the singularities 1
p
(1, p − 1)

and 1
p
(1, 1) respectively. Hence

t2,1 = 6β4p4 + 36α2β2p4 + 36dα2p2 − 13d+ 12dβ2p2 + d2

and

t2,2 = 12β4p4 + 72α2β2p4 + 36dα2p2 − 12d+ 12dβ2p2 + d2.

By plugging in the formulas for Chern numbers, we obtain that

c2
1(Xp) = (81α4 + 144α2β2 + 24β4)p5 + l.o.t.

and

c2(Xp) = (27α4 + 144α2β2 + 24β4)p5 + l.o.t.,

where l.o.t. (lower order terms) is a Laurent polynomial in p of degree less than 5. In this

way, we obtain that

limp→∞
c2

1(Xp)

c2(Xp)
=

27x4 + 48x2 + 8

9x4 + 48x2 + 8
=: λ(x)

where x := α/β. We note that λ
(
[0,∞+]

)
= [1, 3]. This allows to prove the following theorem

(see [RU15, Theorem 6.3]).

Theorem 5.10. For any number r ∈ [1, 3], there are simply-connected minimal surfaces of

general type X with c2
1(X)/c2(X) arbitrarily close to r.

Proposition 5.11. Let Γp := f ∗(L), where as before L is the pull-back in Yp of a general

line in P2. Then we have Γ2
p = p and Γp ·KXp = −3p+ (p− 1)(2d+ 36α2p2 − 12 + 12β2p2).
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Proof. As f is a generically finite morphism of degree p, we have Γ2
p = p. Let us consider L

generic, so that f ∗(L) is a nonsingular curve. We note that L·Ni = 0 for all i, L·
∑2d

i=1 Li = 2d,

L ·
∑

i=0,1,ζ,∞ Ei = 36α2p2 − 12, and L ·
∑

i=0,1,ζ,∞ E ′i = 12β2p2. Therefore, the morphism

fΓp : Γp → L = P1 is totally ramified at 2d + 36α2p2 − 12 + 12β2p2 points, and so, by the

Riemann-Hurwitz formula and adjunction, we obtain the desired equality for Γp ·KXp .

We finish this section with a proof that the best lower bound for Chern slopes in this

construction is indeed 1. As it was shown above, the values of the bi’s do not contribute in the

asymptotic final result. We also point out that it is enough to have either
∑

i=0,1,ζ,∞ ai = p

or
∑

i=0,1,ζ,∞ ai = 2p by considering 0 < ai < p and multiplying by units modulo p. In fact,

we can and do take a0 = 1, a1 = a, aζ = b, and a∞ = c with 1 + a+ b+ c = mp for m either

equal to 1 or 2.

Through the formulas obtained above, we have

lim
x→0

c2
1(Xp)

c2(Xp)
=

12− 1
p
C

6 + 1
p
J

where C := c(−a, p) + c(−b, p) + c(−c, p) + c(−ba−1, p) + c(−ca−1, p) + c(−cb−1, p), J :=

l(−a, p) + l(−b, p) + l(−c, p) + l(−ba−1, p) + l(−ca−1, p) + l(−cb−1, p), and all the q’s in these

expressions are taken modulo p with 0 < q < p. For example, for generic a, b, c one can prove

that C/p and J/p tend to 0 as p approaches infinity, and so the limit of the Chern slopes is

2 (see [U10] for these generic behaviours).

Since c(q, p) = 12s(q, p) + l(q, p), it is enough to show that

6S + J ≤ 3p+ 3− 6

p

any p, where S := s(−a, p) + s(−b, p) + s(−c, p) + s(−ba−1, p) + s(−ca−1, p) + s(−cb−1, p).

The proof will use the following numerical lemma.

Lemma 5.12. Let 0 < q < p be coprime integers. Let p
q

= [e1, . . . , el]. Then
∑l

i=1(ei − 1) ≤

p− 1.
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Proof. We do induction on p. Say for all coprime pairs (q′, p′) with p′ < p we have that the

statement is true. We write p
q

= [e1, . . . , el]. Then e1 = [p/q] + 1, and q
r

= [e2, . . . , el] with

(r, q) coprime and q < p. Hence
l∑

i=1

(ei − 1) = [p/q] +
l∑

i=2

(ei − 1) ≤ [p/q] + q − 1

by the induction hypothesis. Therefore, we should prove that [p/q] + q ≤ p. Let q 6= 1

(otherwise we are done). Let 1 ≤ r < q be the unique integer such that [p/q]q+ r = p. Then

[p/q] + q ≤ p is equivalent to q−r
q−1

+ q ≤ p. But q−r
q−1
≤ 1 if r ≥ 1, and q + 1 ≤ p.

Proposition 5.13. We have 6S + J ≤ 3p+ 3− 6
p
.

Proof. Let 0 < q < p integers where p is a prime number. Then (see e.g. [U10, Example

3.5])

12s(q, p) =
q + q−1

p
+

l∑
i=1

(ei − 3)

where p
q

= [e1, . . . , el] and q−1 is the integer between 0 and p such that qq−1 ≡ 1 modulo p.

Hence 6s(q, p) + l = q+q−1

2p
+ 1

2

∑l
i=1(ei − 1). We note that always q+q−1

2p
≤ p−1

p
. We now run

this equality for each of the terms in S and in L, and use Lemma 5.12 to conclude that

6S + J ≤ 3p− 3 + 6
(p− 1)

p
= 3p+ 3− 6

p
.

All in all, joining the works of Persson, Roulleau, and Urzúa, we obtain the full density

of Chern slopes for simply-connected surfaces of general type in the interval [1, 3].

Theorem 5.14 (Persson-Roulleau-Urzúa). For any r ∈ [1
5
, 3], there are minimal simply-

connected surfaces of general type S with c2
1(S)/c2(S) arbitrarily close to r.

5.2 Geography of surfaces with fixed non-trivial fundamental group

5.2.1 Lower Chern Slopes

In this section, we present a survey of different works of Beauville, Ciliberto, Mendes-Lopes,

Pardini and Xiao, which allows us to deduce information about the algebraic fundamental
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group of surfaces of general type with low Chern Slopes c2
1/c2.

Definition/ Theorem 5.15 (Grothendieck). The algebraic fundamental group πalg1 (X) of a

complex projective variety X is the pro-finite completion of the (topological) fundamental

group π1(X), i.e., πalg1 (X) := π̂1(X) = lim
←
π1(X)/N , where the limit runs over all normal

subgroups N E π1(X) with finite index.

Example 5.16. 1. If π1(X) is finite, then both algebraic and topological fundamental

group coincide.

2. If C is a curve of genus one, then π1(C) ∼= Z× Z and πalg1 (C) ∼= ΠpZ/pZ× ΠpZ/pZ.

Definition 5.17. A group G is called residually finite if the natural homomorphism G →

Ĝ = lim
←
G/N is injective.

In general, fundamental groups of surfaces are not residually finite. See for example

[Tol93] and [CK92].

For surfaces of general type with pg = 0 and c2
1 ≤ 7 there exists a almost complete list

that yields the information available in the literature comparing the algebraic and topological

fundamental groups of such surfaces. See [BCR11, Table 1]

For us a fibration is a surjective morphism f : S → C with connected fibers from a

smooth surface to a smooth curve. The fibration is said to be relatively minimal if S has no

(−1)-curves contained in fibers of f .

Definition 5.18. Let F =
∑n

i=1 ciCi be a fiber of f , where Ci are irreducible curves. We

say that F is a multiple fiber of index m = gcd(c1, . . . , cn) if m > 1.

Let f : S → C be a fibration, we denote by g(C) the genus of the curve C and g the genus

of a generic fiber F . The relative canonical sheaf of f is ωS/C = ωS ⊗ f ∗(ω⊗−1
C ), and so the

relative canonical class is KS/C = KS − f ∗(KC).
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Theorem 5.19. Let S be a surface and let f : S → C be a fibration. Then the sheaf f∗(ωS/C)

is locally free of rank g and of degree χ(OS) − (g(C) − 1)(g − 1). If f is not locally trivial,

then deg(f∗(ωS/C)) > 0.

Proof. See [X85b, Theo. 1.1].

Definition 5.20. The slope of f (non-locally trivial) is λ(f) := K2
S/C/χf , where χf :=

deg f∗(ωS/C). Note that

K2
S/C = K2

S − 8(g(C)− 1)(g − 1)

and

χf = χ(OS)− (g(C)− 1)(g − 1).

Let f : S → C be a fibration with a multiple fibers F1, . . . , Ft, we can find an étale cover

C → C such that the induce fibration f : S → C has no multiple fibers, as follows. Let t be

the number of multiple fibers of index m. Take p1, . . . , pk points of multiple fibers of index

m, with k ≤ t. We take pk+1, . . . , pam points with non-multiple fibers and such that am is

the smallest multiple of m greater than or equal to k. Let D =
∑am

i=1 pi be a divisor on C,

hence there exist a line bundle L such that Lm = OC(D). We consider the corresponding

mth-cover gm : Cm → C, see [U10, Sect. 2]. Let Sm be the normalization of Ŝm := S×C Cm.

We have the commutative diagram

Sm S

Cm C

fm

αm

f

αm

where the fibration fm : Sm → Cm has no multiple fibers of index m. Note that for every

multiple fiber of index m′ 6= m the fibration fm has m multiple fibers of index m′, but since

f has finitely many multiple fibers we can iterate the last process a finite times and obtain

a diagram

S S

C C

f

α

f

α
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where α : C → C is a finite degree cover, the fibration f : S → C has no multiple fibers

and the morphism α : S → S in an étale cover. Note that α has a high degree, so by

Riemann-Hurwitz’s Theorem, the genus of C, is high too.

Let f : S → C be a fibration with g(C) ≥ 1 and let F be a generic fiber of f , then the

inclusion F → S yields a sequence of groups

πalg1 (F )
α→ πalg1 (S)→ L→ 1,

moreover, we have that Im(α) is a normal subgroup of πalg1 (S) and L = πalg1 (S)/Im(α) is a

quotient of πalg1 (C−{p1, . . . , pt}), where Fi = f ∗(pi) is a multiple fiber. In particular if f has

no multiple fibers L ∼= πalg1 (C). See [Xi87b, Sect. 2]. We know by [X91, Sect. 1], that the

last results are also true in the case of π1, the topological fundamental group.

Theorem 5.21. [Xi87a, Theo. 1] Let f a fibration as above, if

λ(f) < 4 or equivalently K2
S < 4χ(OS) + 4(g(C)− 1)(g − 1).

Then Im(α) is trivial if f is non-hyperelliptic, and trivial or Z/2Z if f is hyperelliptic.

Reid in [Re79, Theo. 1] showed that if S is a minimal surface of general type with

c2
1(S) < 1

3
c2(S), then either πalg1 (X) is finite or there is an étale Galois cover Y → S, having a

fibration f : Y → C, where g(C) ≥ 1, which induces an isomorphism f∗ : πalg1 (Y )
∼=→ πalg1 (C).

Reid in [Re79, Conjec. 4], also presented the following conjecture in the algebraic (étale)

case weakening the condition c2
1(S) < 1

3
c2(S) for c2

1(S) < 1
2
c2(S). It suggests a possible

treatment for the topological fundamental group, Conjecture 5.22. The conjecture is sharp

in the sense that exists surfaces with c2
1 = 1

2
c2 and π1 neither finite nor commensurable with

the fundamental group of a curve, see Theorem 5.30.

Conjecture 5.22 (Reid’s Conjecture). Let S be a minimal surfaces of general type such that
c21(S)

c2(s)
< 1

2
, then π1(S) is either finite or is commensurable with the fundamental group of a

curve, i.e., there is an étale cover S ′ of S and a fibration f : S ′ → C such that

1→ K → π1(S ′)→ π1(C)→ 1

with |K| <∞.
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Due to the Severi’s inequality proved by Pardini in [Par05], Conjecture 5.22 can be proved

for irregular minimal surfaces of general type or having an irregular étale cover.

In fact, the Severi inequality asserts that if S is a smooth minimal surfaces of maximal

Albanese dimension, i.e., such that its Albanese map a : S → Alb(S) is generically finite onto

its image, then c2
1(S) ≥ 4χ(OS), and hence if S is a minimal irregular surface of general type

with c2
1(S) < 4χ(OS) then the Albanese map a : S → C is a pencil, whose general fiber will

be denote by F . Then the inclusion F → S induce a homomorphism α : πalg1 (F )→ πalg1 (S).

Note that c2
1(S) < 4χ(OS) < 4χ(OS) + 4(g(C) − 1)(g − 1), implies that λ(a) < 4, so by

Theorem 5.21 the Im(α) is either trivial or Z/2Z. If a has no multiple fiber we have the

exact sequence of groups

1→ Im(α)→ πalg1 (S)→ πalg1 (C)→ 1,

if a has multiple fibres there exists a base change C → C such that we have a commutative

diagram

S S

C C

a

g

a

g

where g : S → S is an étale Galois cover and a has no multiple fibres, so

1→ Im(α)→ πalg1 (S)→ πalg1 (C)→ 1,

is an exact sequence of groups. If S has an irregular étale cover S ′, the surface S ′ holds

c2
1(S ′) < 4χ(OS′), then the same argument runs for S ′, and so we are done.

For minimal surfaces S of general type with no irregular étale covers and such that

c2
1(S)/c2(S) < 1

3
or equivalently c2

1(S) < 3χ(OS), through several works [Bea79, Xi87a,

MP07, CMR07], we have a good view of the fundamental group π1(S) when it is finite,

indeed, we can deduce that under such hypothesis π1(S) has at most nine elements, see

Corollary 5.26.
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Theorem 5.23. [Bea79, Theo. 5.5] Let S be a minimal surface of general type, such that

the inequality c2
1(S) < 3pg(S)− 7 holds. Then, the canonical map ψ|KS | : S 99K Ppg(S)−1 is a

degree-2 rational application on a ruled surface S ′.

We need the following lemma,

Lemma 5.24. Let S be a minimal surface of general type, suppose that the linear system

|KS| is composed with a pencil. Then, the inequality c2
1(S) ≥ 3pg(S)− 6 holds.

Proof of the theorem 5.23. First, since S is a minimal surface of general type such that

c2
1(S) < 3pg(S) − 7 by Lemma 5.2.1 the canonical map ψ|KS | : S 99K S

′ ⊂ Ppg(S)−1 has

as image a surface S ′. Using Proposition 3.45 we get that

deg(ψ|KS |)(pg(S)− 2) < deg(ψ|KS |) deg(S ′) < c2
1(S) < 3pg(S)− 7,

thus deg(ψ|KS |) := d ≤ 2. If we assume that S ′ is not ruled and d = 2, then by Proposition

3.46, we have that 4(pg(S)− 2) < 3pg(S)− 7, which is a contradiction. So, only reminds to

prove that ψ|KS | is not a birational map. In the case that it was true, then there exists a chain

of blow-ups ε : Ŝ → S such that ψ|KS | ◦ ε : Ŝ → S ′ is defined everywhere. When can write

the canonical divisor of Ŝ as KŜ ∼ Z + M̂ , where Z is the fixed part of K|Ŝ| and its moving

part is M̂ , so ψ|KŜ | = ψ|M̂ |. By Bertini’s Theorem any generic curve C ∈ |M̂ | is irreducible

and smooth. Then, by adjunction formula, see 3.7, we get KC ∼ (KŜ + M̂)|C = (Z + 2M̂)|C ,

therefore 0 ≤ deg(M̂ |C) ≤ g(C)−1, so the map ψ|M̂ |C | is birational. Then, by [Bea79, Lemma

5.1] we have that h0(C, M̂ |C) ≤ 1
3
(deg(M̂ |C+4)), and by genus formula 2g(C)−2 = C2 = M̂2,

so deg(M̂2) ≤ 1
2
M̂2, therefore h0(C, M̂ |C) ≤ 1

3
(M̂2 + 4).

Now by the (usual) short exact sequence

0→ OŜ → OŜ(M̂)→ OC(M̂ |C)→ 0,

and taking the long exact sequence of cohomology we obtain h0(Ŝ, M̂) ≤ 1 + h0(C,CM̂),

and since pg(S) = h0(Ŝ,KŜ) = h0(Ŝ, M̂), then
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pg(S) ≤ 1 +
1

3
(M̂2 + 4)

= 1 +
1

3
(deg(ψ|KS |(S)) + 4)

≤ 1

3
(K2

S + 7),

so 3pg(S)− 7 ≤ K2
S, but it is a contradiction.

Now, suppose that S is a surfaces of general type with no irregular étale covers, and

satisfying that c2
1(S) < 3χ(OS). If Y → S is an étale cover with Galois group G, such that

|G| ≥ 11. Thus, c2
1(Y )− 3χ(OY ) = |G|(c2

1(S)− 3χ(OS)) ≤ −11, so since χ(OY ) = 3 + pg(Y ),

we obtain the inequality c2
1(Y ) < pg(Y )−7. By Theorem 5.23, the last inequality implies the

canonical map ψ := ψ|KY | is 2-to-1 to a ruled surface Ŷ , but, since q(Y ) = 0 the surface Ŷ

is rational. Note that any automorphism g of rational surface Ŷ always have a fixed point,

by the Lefschetz fixed-point theorem. In other way, we obtain an étale morphism between

rational surfaces Y → Y/(g) and it is impossible. We want to show that every non-trivial

element of G has order two. In fact, since the ψ : Y 99K Ŷ is 2-to-1, we can blow-up and

obtain a generic 2-to-1 morphisms ψ̂ : Y → Ŷ . Hence, G act in Ŷ via gŷ = gψ̂(y) where

ψ(y) = ŷ. Now if σ is the involution on Y moving two fibres of ψ̂, and because g always has

a fixed point on Ŷ we can take an element y ∈ Y such that gψ̂(x) = ψ̂(x). So, due to G act

freely on Y we have that

g2y = gσ(y) = σ(gy) = σ(σ(y)) = y.

Therefore G ∼= (Z/2Z)r.

We thus get the following possibilities, first G ∼= (Z/2Z)r for r ≥ 4 and second |G| ≤ 10.

If G ∼= (Z/2Z)4, we thus get c2
1(Y ) < 3(χ(OY ) − 5), and since χ(OS) ≥ 2, we get that

χ(OY ) ≥ 32. Consequently, by the following Xiao’s Theorem;

Theorem 5.25. [Xi87b, Theo. 1] Let g ≥ 2 be an integer and let Y be a regular minimal

hyperelliptic surface of general type such that

c2
1(Y ) <

4g

g + 1
(χ(OY )− 9

8
g − 2).
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Then Y has a unique pencil of hyperelliptic curves of genus ≤ g. Such a pencil has no

base point. Moreover, if χ(OY ) > (2g − 1)(g + 1) + 2, it is enough to assume c2
1(Y ) <

4g
g+1

(χ(OY )− g − 2)

We deduce that Y has an unique pencil |F | of hyperelliptic curves of genus g ≤ 3. By the

uniqueness of the pencil |F |, the group G act on it. From this we can see G as a subgroup of

Aut(P(|F |)) ∼= Aut(P1). However, neither (Z/2Z)4 nor (Z/2Z)3 are subgroups of PGL(2,C).

We conclude that there is a subgroup H / G with order |H| ≥ 4 fixing every element of |F |.

We may now use the genus formula to conclude that 4 divides g− 1, but g ≤ 3. Thus, g = 1

but it makes a contradiction because Y is of general type.

If |G| = 10, and c2
1(S) < 3χ(OS) − 1. By Theorem 5.23 and the last discussion, we can

conclude that the group G is isomorphic to (Z/2Z)r, but it is a contradiction.

In closing, all the discussion above can be sum up in the following theorem.

Theorem 5.26. [MP07, Theo. 4.3, Prop. 4.4] Let S be a minimal surface of general

type such that c2
1(S) < 1

3
c2(S), and with no irregular étale covers: If πalg1 (S) is finite, then

|πalg1 (S)| ≤ 9. More over if |π1(S)| = 9, then χ(OS) = 1 and c2
1(S) = 2, i.e., S is a numerical

Campedelli Surface.

Corollary 5.27. Let S be a minimal surface of general type with finite fundamental group

π1(S). If c2
1(S) < 1

3
c2(S), then |π1(S)| ≤ 9. More over if |π1(S)| = 9, then χ(OS) = 1 and

c2
1(S) = 2. More over if |π1(S)| = 9, then S is a numerical Campedelli Surface.

Proof. Since πalg1 is the profinite completion of π1 and π1 is finite, we have πalg1 = π1. So by

Theorem 5.26, we must prove that S has no irregular étale covers. By the sake of contradic-

tion, suppose that Y → S is an irregular étale cover of S. The condiction q(Y ) > 0 implies

that π1(Y ) has a copy of Z, but, the profinite completion of Z is Ẑ = ΠpZ/pZ, then πalg1 (Y )

is infinite. However, πalg1 (Y ) is normal subgroup of πalg1 (S), which make a contradiction.

Refining the last argument we can deduce that if S satisfies the hypothesis of Theorem

5.26 and c2
1(S) ≤ 3χ(OS)− 2, then |πalg1 (S)| ≤ 5.
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Theorem 5.28. [MP06, Theo. 1.1] Let S be a minimal surface of general type such that

c2
1(S) ≤ 3χ(OS) − 2 not having any irregular étale cover. Then |πalg1 (S)| ≤ 5. Moreover,

|πalg1 (S)| = 5 if and only if S is a numerical Godeaux surface, i.e., χ(OS) = c2
1(S) = 1.

The last work (until now) in this way, is [CMR07], where they proved by different methods

to the last ones the theorem;

Theorem 5.29. [CMR07, Theo. 1.1] Let S be a minimal surface of general type such that

c2
1(S) = 3χ(OS)− 1, and |πalg1 (S)| = 8. Then, χ(OS) = 1. More over if |π1(S)| = 8, then S

is a numerical Campedelli Surface.

Finally, we finish this section with Keum’s example, see [K88, Chap. III, Theo. 1]. It

is a minimal surface of general type such that c2
1 = 4 and c2 = 8, and fundamental group is

π1 = Z4 o (Z/2Z)2, which is not commensurable with the fundamental group of any curve.

It shows the sharpness of Conjecture 5.22.

Theorem 5.30 (Keum’s example). There is a surface S of general type such that c2
1(S) =

4, c2(S) = 8, pg(S) = 0 and π1(S) = Z4 o (Z/2Z)2.

Idea of the proof. We start with two elliptic curves E1, E2. We consider the abelian surface

A = E1 × E2, and an automorphism θ : A→ A, which induces an involution with non fixed

points on the Kummer surface K := Kum(A). Then the surface Y := K/θ is an Enriques

surface.

Construct a divisor B on Y , such that B2 = −8, such that there is some divisor D on Y

holding that 2D ∼ B, |KY +D| = ∅, and with eight rational disjoint curves no meeting any

other component.

Let X be double cover of Y with branch locus B. Then, K2
X

= −4, χ(OX) = 1, pg(X) = 0

and X has only eight (−1)−curves. Let S be the blow-down of X at these eight exceptional

curves. Then, K2
S = 4, c2(S) = 8 and pg(S) = 0. Moreover, π1(S) ∼= Z4 o (Z/2Z)2, see [K88,

Prop. 3.14].
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Observation 5.31. The semidirect product Z4 o (Z/2Z)2 is defined as follows. Let φ :

(Z/2Z)2 → Aut(Z4) ∼= GL4(Z) be the homomorphism defined by

φ((0, 0)) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , φ((1, 0)) =


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ,

φ((1, 0)) =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , φ((1, 1)) =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

So, the operation on Z4 o Z/2Z is the following one

((a, b, c, d), (u, v)) · ((a′, b′, c′, d′), (u′, v′)) = ((a, b, c, d)φ(u,v)(a
′, b′, c′, d′), (u+ u′, v + v′)),

therefore, x2 ∈ Z4 for any x ∈ Z4 o Z/2Z.

Proposition 5.32. π1(S) ∼= Z4 o (Z/2Z)2 is not commensurable with the fundamental group

of any smooth projective curve C.

Proof. Suppose that G := π1(S) is commensurable with the fundamental group of a curve

C. It means, that there exists an étale cover S ′ of S such that

1→ K → π1(S ′)→ π1(C)→ 1,

where |K| <∞. We divide the proof into three cases, depending on the genus g(C) of C.

g(C) = 0. In this case, K ∼= π1(S ′), since π1(C) ∼= {1}. Then, [π1(S) : π1(S ′)] = ∞, which is a

contradiction.

g(C) = 1. We have the short exact sequence,

1→ K → π1(S ′)
f→ Z2 → 1,
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since π1(C) ∼= Z2. Let a, b be generators of Z2 and denote by x, y be some elements

on π1(S ′) such that f(x) = a, f(y) = b. Note that x, y have infinite order. Denote x, y

its images into G, then x2, y2 ∈ Z4 and none is trivial. Let z /∈ 〈x2, y2〉Z, consequently

kz /∈ 〈x2, y2〉Z for any k ∈ Z. Let ẑ be the image of z on π1(S), then, there are infinitely

many different lateral classes kz mod π1(S ′), so [π1(S) : π1(S ′)] = ∞, which makes a

contradiction.

g(C) ≥ 2. We have the short exact sequence of groups

1→ K → π1(S ′)
f→ 〈a1, . . . , ag, b1, . . . , bg|[a1, b1] · · · · · [ag, bg] = 1〉 → 1,

where [ai, bi] = aibia
−1
i b−1

i , since

π1(C) ∼= 〈a1, . . . , ag, b1, . . . , bg|[a1, b1] · · · · · [ag, bg] = 1〉

Let xi, yi ∈ π1(S ′), such that f(xi) = ai, f(yi) = bi for i = 1, . . . , g. Denoted by x̂i, ŷi

the images of xi, yi on G, then x̂i2, ŷi2 ∈ Z4. Therefore, a2
i a

2
j = a2

ja
2
i for i, j = 1, . . . , g,

b2
kb

2
l = b2

l b
2
k for k, l = g+ 1, . . . 2g and a2

i b
2
j = b2

ja
2
i for i = 1, . . . , g and j = g+ 1, . . . , 2g.

But this produce a contradiction, because there are no other independent relation on

π1(C) than Πg
i=1[ai, bi], see [Bob, Chap. 3, Sect. 3, Example. 2]. In fact, if there is

some relation would mean that some composition of curves ai, bi can be contracted to a

point p ∈ C, on C every pairs of points are equivalents then such relation is a multiple

(power) of Πg
i=1[ai, bi].

5.2.2 Higher Chern Slopes

Key Construction and new density theorem

In this section, we generalize the construction used in [Cat00, Section 1] in the context

of lef line bundles, which will be used for the main theorem.
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Proposition 5.33. Let X and Y be non-singular projective surfaces. Let p : X × Y → X

and q : X × Y → Y be the canonical projections. Let Γ and B be lef line bundles on X and

Y respectively. Assume that exp(Γ) = exp(B) = 1. Then p∗(Γ) ⊗ q∗(B) is a lef line bundle

on X × Y of exponent 1.

Proof. This is elementary, we briefly give an argument. LetM := p∗(Γ)⊗q∗(B). Let s0, . . . , sl

be a basis of H0(X,Γ), and let t0, . . . , tb be basis of H0(Y,B). Since H0(X,Γ)⊗H0(Y,B) '

H0(X × Y,M) (see e.g. [Bea96, Fact III.22, i]), then M is generated by the global sections

sitj with 0 ≤ i ≤ l and 0 ≤ j ≤ b. The morphism ψ|M | : X×Y → P(|M |) is Σl,b◦(ψ|Γ|×ψ|B|),

where Σl,b is the Segre embedding. Therefore ψ|M | is semi-small into its image as ψ|Γ| × ψ|B|
is semi-small by Proposition 2.6. It follows that M is lef and exp(M) = 1.

Proposition 5.34. Let X be a non-singular projective variety with dim(X) ≥ 3. Let M be

a lef line bundle on X with exp(M) = 1. If E ∈ |M |, then π1(E) ∼= π1(X).

Proof. It follows by Theorem 4.16 and Theorem 2.11.

Corollary 5.35. Let X be a non-singular projective variety with dim(X) ≥ 4. Let M be a

lef line bundle with exp(M) = 1. Then a generic member E ∈ |M | is nonsingular projective

variety, and ME := M |E is lef. Moreover, if F ∈ |ME|, then π1(F ) ∼= π1(X).

Proof. The first part is just Theorem 2.11. If F ∈ ME, then by Corollary 5.35 we obtain

that π1(F ) ∼= π1(E) ∼= π1(X)

Theorem 5.36. Let X and Y be a non-singular projective surfaces with nef canonical class,

and K2
X > 0. Let B be a very ample lne bundle on Y and let Γ be a lef line bundle on X

with exp(Γ) = 1.

Then there exist a non-singular projective surface S ⊂ X×Y with the following properties

1. π1(S) ' π1(X)× π1(Y ).

2. The morphisms p|S : S → X and q|S : S → Y have degrees deg(p|S) = B2 and

deg(q|S) = Γ2.
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3. We have

c2
1(S) = c2

1(X)B2 + c2
1(Y )Γ2 + 8c(Γ, B)− 4Γ2B2

and

c2(S) = c2(X)B2 + c2(Y )Γ2 + 4c(Γ, B) + 4Γ2B2

where

c(Γ, B) =
7

2
Γ2B2 +

3

2
(Γ ·KX)B2 +

3

2
(B ·KY )Γ2 +

1

2
(Γ ·KX)(B ·KY ).

4. KS is big and nef.

Proof. We first construct a surface S ⊂ X × Y which satisfies (1) and (2). Let M :=

p∗(Γ)⊗ q∗(B). Then, by Proposition 5.33, we have that M is lef with exp(M) = 1. We take

general sectioins E,E ′ of M , and define S := E ∩ E ′. Note that since exp(M) = 1, then M

is base point free, and due to the ampleness of B the line bundle M has enough sections. So,

by Bertini’s theorem S is non-empty and non-singular. By Theorem 5.35, we have that E is

a non-singular projective 3-fold and ME is lef with exp(ME) = 1. Since S = E ′|E is smooth,

we have by Theorem 4.14 that H0(S,Z) ∼= H0(E,Z) ∼= Z, and thus S is a non-singular

projective surface. Finally, by Corollary 5.35 we get π1(S) ∼= π1(X) × π1(Y ). We also have

that the degree of p|S is ((p∗(Γ) ⊗ q∗(B))|Y )2 = B2. Similarly the morphism q|S has degree

Γ2.

Now we prove (3). By the adjunction formula applied twice, and since KX×Y ∼ p∗(KX)+

q∗(KY ), we obtain

KS ∼ p|∗S(KX + 2Γ) + q|∗S(KY + 2B).

To compute K2
S, we first consider two curves C and C ′ in X, Y respectively, we have

p|∗S(C).q|∗S(C ′) = p∗(C).q∗(C ′)E · E ′ = (C × C ′)M2 = (M |C×C′)2 = 2(Γ · C)(B · C ′).
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This extends to find the intersection p|∗S(D).q|∗S(D′), for divisors D,D′ in X, Y respec-

tively. Thus,

K2
S =(p|∗S(KX + 2Γ) + q|∗S(KY + 2B))2

=B2(KX + 2Γ)2 + 2p|∗S(KX + 2Γ).q|∗S(KY + 2B) + Γ2(KY + 2B)2

=B2(KX + 2Γ)2 + 4(Γ · (KX + 2Γ)).(B · (KY + 2B)) + Γ2(KY + 2B)2

=K2
XB

2 +K2
Y Γ2 + 24Γ2B2 + 12((Γ ·KX)B2 + (B ·KY )Γ2) + 4(Γ ·KX)(B ·KY ).

To calculate χ(S), we use the following exact Koszul complex. Since S is a complete

intersection of two sections of M and X × Y is non-singular, then we have, see e.g. [FL85,

Pags. 76-77]

0→ OX×Y (−2M)→ O⊕2
X×Y (−M)→ OX×Y → OS → 0.

Then by the additivity of the Euler characteristic and the Künneth formula, see e.g.

[Cut18, Theo. 17.23],

Hn(X × Y,M) =
⊕
i+j=n

H i(X,Γ)⊗Hj(Y,B),

we obtain

χ(OS) = χ(OX×Y ) + χ(OX×Y (−2Γ− 2B))− 2χ(OX×Y (−Γ−B))

= χ(OX)χ(OY ) + χ(OX(−2Γ))χ(OY (−2B))

− 2χ(OX(−Γ))χ(OY (−B))

= χ(OX)χ(OY )

+ (χ(OX) +
1

2
(Γ2 + 2(Γ ·KX)))(χ(OY ) +

1

2
(4B2 + 2(B ·KY )))

− 2(χ(OX) +
1

2
(Γ2 + Γ ·KX))(χ(OY ) +

1

2
(B2 +B ·KY ))

= χ(OX)B2 + χ(OY )Γ2 + c(Γ, B),

where

c(Γ, B) =
7

2
Γ2B2 +

3

2
(Γ ·KX)B2 +

3

2
(B ·KY )Γ2 +

1

2
(Γ ·KX)(B ·KY ).
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Finally we show (4). Let C be an irreducible curve on S. Let a = deg p|C and b = deg q|C .

Then, by the projection formula for generically finite morphisms, see Proposition 2.15, we

have

C ·KS = C · p|∗S(KX + 2Γ) + C · q|∗S(KY + 2B) (1)

= ap(C) · (KX + 2Γ) + bq(C) · (KY + 2B). (2)

We note that KX , KY , and Γ are nef, and B is very ample, and so C ·KS ≥ 0. Using the

formula for K2
S above and by the same previous reasons, we obtain K2

S > 0.

We now present our main result, which puts together all the ingredients elaborated until

now.

Theorem 5.37. Let Y be a non-singular projective surface with KY nef, and let r ∈ [1, 3] be

a real number. Then there are minimal nonsingular projective surfaces S with c2
1(S)/c2(S)

arbitrarily close to r, and π1(S) ' π1(Y ).

Proof. Let Xp be the collection of simply-connected surfaces described in Section 5.1.2. Let

Γp be the line bundle defined in Proposition 5.11. For any p we have that Γp is lef by

Proposition 2.10. (We note that Γp is not ample because of the resolution of singularities

involved in the construction of the surfaces Xp.) Let B be a very ample divisor on Y . Note

that we satisfy all the hypothesis in Theorem 5.36 with X = Xp and Γ = Γp. Therefore,

there are surfaces Sp := S such that all the conclusions in Theorem 5.36 hold. In particular,

we have π1(Sp) ' π1(Y ).

The formulas in Theorem 5.36 part (3) are

c2
1(Sp) = c2

1(Xp)B
2 + c2

1(Y )Γ2
p + 8c(Γp, B)− 4Γ2

pB
2

and

c2(Sp) = c2(Xp)B
2 + c2(Y )Γ2

p + 4c(Γp, B) + 4Γ2
pB

2,

where c(Γp, B) is an Theorem 5.36.
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By Proposition 5.11 we have that Γ2
p = p and Γp ·KXp is a polynomial in p of degree 3.

Thus c(Γp, B) is a polynomial in p of degree 3. By Section 5.1.2, the invariants c2
1(Xp) and

c2(Xp) are Laurent polynomials in p of degree 5. Therefore, by the formulas above, we have

lim
p→∞

c2
1(Sp)

c2(Sp)
= lim

p→∞

c2
1(Xp)

c2(Xp)
=

27x4 + 48x2 + 8

9x4 + 48x2 + 8
=: λ(x)

where x := α/β, as in Section 5.1.2. In this way, just as in [RU15, Thereom 6.3], we obtain

the desired surfaces S = Sp with c2
1(S)/c2(S) arbitrarily close to r.

Corollary 5.38. Let G be the fundamental group of a non-singular projective surface. Then

the Chern slopes c2
1(S)/c2(S) of nonsingular projective surfaces S with π1(S) ' G are dense

in [1, 3].

Proof. Since π1 is invariant under birational transformations between non-singular projective

surfaces, then it is enough to consider surfaces with no (−1)-curves. If G is the fundamental

group of P1×C, where C is a non-singular projective curve, then, for example, we can take as

Y a surface in [RU15, Corollary 6.4] to apply Theorem 5.37. Otherwise, we have a non-ruled

surface with nef canonical class, and we can directly use Theorem 5.37.

5.3 Further directions

By the Lefschetz hyperplane theorem, the fundamental group of a non-singular complex

projective variety is the fundamental of some smooth projective surface. Thus, Corolary 5.38

involves the fundamental group any non-singular projective variety.

One may be tempted to use the result of Persson and Chen (Corollary 5.3, Theorem 5.4)

on density of Chern slopes of simply-connected minimal surfaces of general type in [1
5
, 2] as

an imput in Theorem 5.37, but the strategy does not work. It is not clear in that case how

to find a suitable Γm which makes things work. On the top of that, this cannot work in

full generality since, for example, by Theorem 5.26, we can deduce that: If S is a surface

of general type with c2
1(S) < 1

3
c2(S) and π1(S) finite, then the order of π1(S) is at most 9.
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In this way, the question of “freedom" of fundamental groups remains open for the interval

[1
3
, 1].

We want to present two conjectures in relation to geography of Chern slopes for surfaces

with ample canonical class, and for Brody hyperbolic surfaces. They could be proved through

the theorems in this section if we can show that the projection

q|Sp : Sp → Y

is a finite morphism (see Theorem 5.36). This depends on the line bundles Γp. Catanese

proves in [Cat00, Lemma 1.1] that q|Sp is a finite morphism if Γp is very ample. We note

that in [RU15] it is proved that Chern slopes c2
1/c2 of simply-connected minimal surfaces of

general type are dense in [1, 3], but canonical class for all the constructed surfaces was not

ample, because of the presence of arbitrarily many (−2)-curves.

Conjecture 5.39. Let G be the (topological) fundamental group of a non-singular complex

projective surface. Then Chern slopes c2
1(S)/c2(S) of minimal non-singular projective surfaces

of general type S with π1(S) isomorphic to G and ample canonical class are dense in [1, 3].

Conjecture 5.40. Let Y be a Brody hyperbolic non-singular projective surface. Then Chern

slopes of hyperbolic non-singular projective surfaces S with π1(S) isomorphic to π1(Y ) are

dense in [1, 3].

Note that, if we suppose that the morphism q|S of Theorem 5.36 is finite. Then by the

Formulas in (1) and (2) we obtain that ap(Γ)(KX + 2A) ≥ 0 and bq(Γ)(KY + 2A) > 0, thus

Γ ·KS > 0. Therefore, by Nakai-Moishezon criterion KS is ample. It shows Conjecture 5.39.

Conjecture 5.39 evidence the unpredictable behaviour of the minimal surfaces of general

type. In particular, it can help us to understand why there is not a characterization for

surfaces of general type.

Naturally the next two geographical questions arise.

(Q1): Are there any constraints for the Chern slope of surfaces of general type after fixing

the fundamental group?
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(Q2): What is the optimal subinterval of [1
5
, 3] with the full freedom for π1?

For the Question Q1, as we showed in this thesis there are restrictions. However, we do

not know which is the maximum length where we can find such restrictions. We believe that

following the ideas presented by Beauville, Mendes, Pardini, Reid, Xiao, we can extend the

length beyond [1
5
, 1

2
].

Question Q2 is related with the last question, in fact we believe that the optimal subin-

terval with full freedom of [1
5
, 3] is [1, 3] which say that the maximum length wanted in Q1

is [1
5
, 1]. The naive idea to resolved Q2 is find a new family of minimal simply-connected

surfaces of general type with Cher slopes dense in [r, 3] with r < 1, and such that we can find

suitable line bundles in order to apply Theorem 5.37. The problem of find such families of

surfaces is challenging and interesting, since we have remarked before the traditional methods

follow by Persson and Chen does not work.
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