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9 Optimal error estimation for H(curl)-conforming p-interpolation

in two dimensions ∗

Alexei Bespalov † Norbert Heuer ‡

Abstract

In this paper we prove an optimal error estimate for the H(curl)-conforming projection
based p-interpolation operator introduced in [L. Demkowicz and I. Babuška, p interpolation
error estimates for edge finite elements of variable order in two dimensions, SIAM J. Numer.
Anal., 41 (2003), pp. 1195–1208]. This result is proved on the reference element (either
triangle or square) K for regular vector fields in H

r(curl,K) with arbitrary r > 0. The
formulation of the result in the H(div)-conforming setting, which is relevant for the analysis
of high-order boundary element approximations for Maxwell’s equations, is provided as well.
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1 Introduction

This paper concerns the H(curl)-conforming interpolation of regular vector fields by high or-
der polynomials on the reference triangle or square and the corresponding interpolation error
estimation. To the best of our knowledge, the first paper related to this subject is the paper
by Suri from 1990 [23]. In that paper error estimates (in terms of both the mesh parameter
h and the polynomial degree p) were derived for classical Raviart-Thomas (RT) and Brezzi-
Douglas-Marini (BDM) interpolation operators on the reference square Q (note that in 2D
these H(div)-conforming so-called face elements and the H(curl)-conforming edge elements of
the Nédélec type are isomorphic). The estimates obtained were not optimal with respect to p
and later, in [22], they were improved to ε-suboptimal p-estimates for sufficiently regular vec-
tor fields u (namely, for u ∈ H

r(div, Q) with r > 1
2). These results were further extended by

Ainsworth and Pinchedez in [1] (to meshes with hanging nodes, weighted Sobolev regularity
of approximated functions, exponential convergence on graded meshes) and in [2] (to Brezzi-
Douglas-Fortin-Marini elements with non-uniform distribution of polynomial degrees). In 3D
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the corresponding results were obtained by Monk in [19] and by Ben Belgacem and Bernardi in
[7]. All mentioned papers deal with quadrilateral or hexahedral elements and the proofs therein
essentially rely on expansions in terms of orthogonal (namely, Legendre) polynomials. An ap-
plication of this approach to triangular or tetrahedral elements does not seem to be feasible.
Another drawback of classical interpolation operators for edge (or face) elements is the lack of
stability (with respect to p) for low-regular fields.

A breakthrough in H(curl)-conforming p-interpolation analysis, i.e., the construction of an
interpolation operator which works equally well on both triangular and quadrilateral elements
and also for low-regular fields, was achieved relatively recently by Demkowicz and Babuška
in [14]. These authors have introduced and analyzed H1- and H(curl)-conforming projection-
based p-interpolation operators satisfying the commuting diagram property (de Rham diagram).
This property and the corresponding p-interpolation error estimates have immediate applications
to the analysis of high-order finite element (FE) discretizations of the time-harmonic Maxwell’s
equations. In particular, they are critical to prove the discrete compactness property (which
implies the convergence of FE approximations for Maxwell’s equations) and also useful for the
error analysis (see [11, 10]). Moreover, the interpolation operators in [14] were constructed
to allow polynomial degrees to vary from one element to another. This has been done by
assigning to each element an “internal” polynomial degree and a sequence of (possibly lower)
“edge” degrees. Such a construction of interpolation operators is essential for the analysis of
exponentially convergent hp-approximations and hp-adaptive schemes. In [15] these results have
been extended to the 3D case.

The error estimates presented in [14] for both p-interpolation operators are suboptimal.
Furthermore, the error estimate of the H(curl)-conforming interpolation is available only for
low-regular vector fields in H

r(curl,K) with r ∈ (0, 1) (here K is either the reference triangle or
square). Though these drawbacks are not essential for the convergence analysis of FE approxi-
mations, the corresponding improvements would be advantageous for the error analysis. In this
paper we show that an optimal estimate for the error of the H1-conforming p-interpolation can
be obtained in the H1-semi-norm. Using this result we then prove an optimal error estimate for
the H(curl)-conforming p-interpolation operator applied to a vector field u ∈ H

r(curl,K) with
arbitrary r > 0. In the proof we rely on a regular splitting of u ∈ H

r(curl,K) into a curl-free
component and a complementary vector field of extra smoothness. This splitting is possible to
recent results related to the regularized Poincaré-type integral operators in [13].

The paper is organized as follows. In the next section we introduce necessary notation and
formulate some auxiliary results. In Section 3 we quote [14] to briefly sketch the definition and
properties of the H1- and H(curl)-conforming projection-based p-interpolation operators. Opti-
mal error estimates for both interpolation operators are proved in Section 4 (see Theorems 4.1
and 4.2). The paper is concluded with Section 5 where we mention some simple extensions of
our results including the H(div)-conforming p-interpolation and hp-estimates.

Throughout the paper, C denotes a generic positive constant which is independent of p and
involved functions.
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2 Notation and auxiliary results

We will present all technical details only for the equilateral reference triangle T = {x2 > 0, x2 <√
3(x1 + 1), x2 < (1 − x1)

√
3}. The case of the reference square Q = (−1, 1)2 (for which the

arguments are essentially the same) is briefly discussed in Section 5. A generic side of the triangle
T will be denoted by ℓ.

We will use the standard definitions for the Sobolev spaces Hr (r ≥ 0) of scalar functions
on the interval I = (−1, 1) and on the triangle T (see, e.g., [18]). The norms in these spaces are
denoted by ‖ · ‖Hr(I) and ‖ · ‖Hr(T ), respectively. On the interval I we will also need the Sobolev

spaces H̃r(I) for r ∈ (0, 1) which are defined by interpolation. We use the real K-method of
interpolation (see [18]) to define

H̃r(I) =
(

L2(I),Ht
0(I)

)

r
t
,2

(1/2 < t ≤ 1, 0 < r < t).

Here, Ht
0(I) (0 < t ≤ 1) is the completion of C∞

0 (I) in Ht(I) and we identify H1
0 (I) and H̃

1(I).
Note that the Sobolev spaces Hr also satisfy the interpolation property, e.g.,

Hr(I) =
(

L2(I),H1(I)
)

r,2
(0 < r < 1)

with equivalent norms. Furthermore, the Sobolev spaces Hr and H̃r on any edge ℓ ⊂ ∂T are
defined by using the definitions of the corresponding spaces on the interval I.

Throughout the paper, we use boldface symbols for vector fields. The spaces (or sets) of
vector fields are denoted in boldface as well (e.g., Hr(T ) = (Hr(T ))2), with their norms and inner
products being defined component-wise. The standard notation will be used also for differential
operators ∇ = (∂/∂x1, ∂/∂x2), div = ∇ ·, curl = ∇×, and for the Laplace operator ∆ = div∇.

The L2-inner product and the corresponding L2-norm on T are denoted by (·, ·)0,T and ‖·‖0,T ,
respectively. We will use the semi-norm in H1(T ) which is defined as

|u|H1(T ) = ‖∇u‖0,T .

Furthermore, we will use the space

H
r(curl, T ) := {u ∈ H

r(T ); curlu ∈ Hr(T )}, r ≥ 0,

and its analog H
r(div, T ) in the div-setting. In both cases the spaces are equipped with their

graph norms. For r = 0 we drop the superscript in the above notations: H0(curl, T ) = H(curl, T )
and H

0(div, T ) = H(div, T ).
We will also need the space H1/2(∂T ) which can be defined as the trace space of H1(T ) on

∂T with norm
‖u‖H1/2(∂T ) = inf

U |∂T=u
‖U‖H1(T ).

Let us introduce the needed polynomial sets. By Pp(I) we denote the set of polynomials of
degree ≤ p on the interval I, and P0

p (I) denotes the subset of Pp(I) which consists of polynomials
vanishing at the end points of I. In particular, these two sets will be used for the edges ℓ ⊂ ∂T .
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Further, Pp(T ) is the set of polynomials on T of total degree ≤ p. The corresponding
set of polynomial (scalar) bubble functions on T is denoted by P0

p (T ). When considering the
reference square Q we will denote by Pp(Q) the set of polynomials of degree ≤ p in each variable
separately. Finally, PNed

p (T ) denotes the polynomial set associated with the second Nédélec

family of edge elements on T , i.e., P
Ned
p (T ) = (Pp(T ))

2 (see [21]). The subset of P
Ned
p (T )

which consists of vector-valued polynomials with vanishing tangential trace on the boundary ∂T
(vector bubble-functions) will be denoted by P

Ned,0
p (T ).

To simplify the presentation we have assigned only one (“internal”) polynomial degree to the
reference element. Following [14] the results extend to the polynomial spaces on T with separate
polynomial degrees (of possibly lower order) assigned also to traces on the edges of ∂T .

When proving interpolation error estimates in Section 4 we will need some auxiliary results,
which are collected in the next three sub-sections.

2.1 Polynomial extensions from the boundary

The problem of polynomial extension from the boundary ∂T can be formulated as follows: given
a continuous function f defined on ∂T such that f |ℓ ∈ Pp(ℓ) for any ℓ ⊂ ∂T , find a polynomial
Φ ∈ Pp(T ) satisfying Φ|∂T = f . The existence of such an extension, which is stable (with respect
to p) as a mapping H1/2(∂T ) → H1(T ), has been proved in [3, Theorem 7.4]. In general (i.e.,
for p > 2), the extension is not uniquely defined. To ensure the uniqueness, we will search for
discrete harmonic extensions: given a continuous piecewise polynomial f of degree p on each
side ℓ ⊂ ∂T , find a polynomial F := Epf ∈ Pp(T ) such that F = f on ∂T and

(∇F,∇ϕ)0,T = 0 ∀ϕ ∈ P0
p (T ). (2.1)

Then for any polynomial extension Φ ∈ Pp(T ) such that Φ|∂T = f there holds

|Φ|2H1(T ) = |(Φ − Epf) + Epf |2H1(T ) = |Φ− Epf |2H1(T ) + |Epf |2H1(T ) ≥ |Epf |2H1(T ).

Hence, applying the mentioned result of [3], we have

|Epf |H1(T ) ≤ C ‖f‖H1/2(∂T ) (2.2)

with a positive constant C independent of p and f .

Remark 2.1 (i) The same result as above holds for the reference square Q (see [3, Theo-
rem 7.5]).

(ii) If f is a continuous piecewise linear function on ∂T and F := E1f ∈ P1(T ), then F = Epf
for any p > 1. Indeed, F ∈ P1(T ) ⊂ Pp(T ), F = f on ∂T , and for every ϕ ∈ P0

p (T ) there holds

(∇F,∇ϕ)0,T = −(∆F,ϕ)0,T = 0.
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2.2 Polynomial approximation of scalar functions

In this sub-section we provide two p-approximation results for scalar functions with Sobolev
regularity in one and two dimensions. The first result is a careful revision of [6, Theorem 3.2],
where an additional log1/2p -term in the error bound appears.

Lemma 2.1 Let I = (−1, 1) and f ∈ Hr(I) with some r > 1
2 . Then there exists a polynomial

fp ∈ Pp(I) such that fp(±1) = f(±1) and

‖f − fp‖H̃1/2(I) ≤ C p−(r−1/2) ‖f‖Hr(I). (2.3)

Proof. We outline a proof following the ideas of [5, 6]. Let f ∈ Hr(I), r > 1/2. Then f can
be expanded as

f(x) =
∞
∑

i=0

aiTi(x),

where Ti(x) is the Chebyshev polynomial of degree i on I.
Setting

Ppf(x) :=

p
∑

i=0

aiTi(x) ∈ Pp(I),

one has for any s ∈ (12 ,min {1, r}) (see [6, Theorem 3.2, Remark 3.2])

‖f − Ppf‖Hs(I) ≤ C p−(r−s) ‖f‖Hr(I). (2.4)

Moreover, it is easy to show that (2.4) holds for s = 0:

‖f − Ppf‖2L2(I) ≤ ‖(f − Ppf)(cos ξ)‖2L2(0,π) ≃
∞
∑

i=p+1

|ai|2

≤ Cp−2r
∞
∑

i=p+1

|ai|2(1 + i2)r ≤ Cp−2r‖f‖2Hr(I).

Analogously, applying the Schwarz inequality we prove that

|(f − Ppf)(±1)|2 ≤
( ∞

∑

i=p+1

|ai|
)2

≤
∞
∑

i=p+1

(1 + i2)−r
∞
∑

i=p+1

|ai|2(1 + i2)r

≤ Cp−2(r−1/2)‖f‖2Hr(I). (2.5)
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Now we will adjust the polynomial Ppf at the end points of I. First, using the same idea as in
the two-dimensional case (see [5, pp. 759–760]), we find two polynomials ψ+

p , ψ
−
p ∈ Pp(I) such

that
ψ−
p (−1) = 1, ψ−

p (1) = 0, ψ+
p (−1) = 0, ψ+

p (1) = 1,

and
‖ψ±

p ‖Hs(I) ≤ Cps−1/2, s ∈ (0, 1). (2.6)

Then we set

fp(x) := Ppf(x) + (f − Ppf)(−1)ψ−
p (x) + (f − Ppf)(1)ψ

+
p (x), x ∈ I.

It is easy to check that fp ∈ Pp(I) and fp(±1) = f(±1). Furthermore, making use of (2.4)–(2.6),
we obtain for any s ∈ {0} ∪ (12 ,min {1, r})

‖f − fp‖H̃s(I) ≃ ‖f − fp‖Hs(I)

≤ ‖f − Ppf‖Hs(I) + max
x=±1

|(f − Ppf)(x)|
(

‖ψ−
p ‖Hs(I) + ‖ψ+

p ‖Hs(I)

)

≤ Cp−(r−s)‖f‖Hr(I).

The inequality in (2.3) now follows via interpolation between H0(I) and H̃s(I) for some s ∈
(12 ,min {1, r}). ✷

In 2D the following approximation result holds (see [4, Lemma 4.1]).

Lemma 2.2 Let K be the reference triangle or square. Then there exists a family of operators
{πp}, p = 1, 2, . . . , πp : H

k(K) → Pp(K) such that for any f ∈ Hk(K), k ≥ 0 there holds

‖f − πpf‖Hs(K) ≤ Cp−(k−s)‖f‖Hk(K), 0 ≤ s ≤ k.

Moreover, πp preserves polynomials of degree p, i.e., πpf = f if f ∈ Pp(K).

2.3 The regularized Poincaré integral operators

In [13], Costabel and McIntosh studied a regularized version of the Poincaré-type integral opera-
tor acting on differential forms in R

n. They proved, in particular, that this operator is bounded
on a wide range of functional spaces including the whole scale of Sobolev spaces Hr(Ω) (r ∈ R)
on a bounded Lipschitz domain Ω which is starlike with respect to an open ball. Moreover,
the essential property of the classical Poincaré map to preserve polynomials is retained by its
regularized version. Thus, the results of [13] have immediate applications to the analysis of
high-order edge elements (see, e.g., [17, 8] and the proof of Theorem 4.2 below).

Let us formulate some results of [13] in two particular cases. Namely, we will define two
Poincaré-type integral operators: one operator acts on scalar functions, and the other one acts on
curl-free vector fields. In both cases the functions and vector fields are defined on the reference

6



element (either triangle or square) K. Denoting by B an open ball in K, let us consider a
smoothing function

θ ∈ C∞(R2), supp θ ⊂ B,

∫

B

θ(a) da = 1, a = (a1, a2).

Then the first regularized Poincaré-type integral operator R : C∞(K̄) → (C∞(K̄))2 (i.e., the
operator acting on scalar functions) is defined as Rψ = (R1, R2), where

R1(x) := −
∫

B

θ(a) (x2 − a2)

1
∫

0

tψ(a+ t(x− a)) dt da,

R2(x) :=

∫

B

θ(a) (x1 − a1)

1
∫

0

tψ(a+ t(x− a)) dt da.

The second operator acting on vector fields is defined as follows:

A : (C∞(K̄))2 → C∞(K̄),

Au(x) :=

∫

B

θ(a)

2
∑

i=1

(xi − ai)

1
∫

0

ui(a+ t(x− a)) dt da,

where u = (u1, u2).
The following properties of the operators R and A are easy to check directly (see also [13,

Proposition 4.2]):

(R1) R is a right inverse of the curl operator, i.e.,

curl(Rψ) = ψ ∀ψ ∈ Hr(K), r ≥ 0;

(A1) if u is curl-free, then A is a right inverse of the gradient, i.e.,

∇(Au) = u ∀u ∈ H
r(curl0,K) = {u ∈ H

r(K); curlu = 0 in K}, r ≥ 0.

Furthermore, the operators R and A satisfy the following continuity properties (see [13,
Corollary 3.4]):

(R2) the mapping R defines a bounded operator Hr(K) → H
r+1(K) for any r ≥ 0;

(A2) the mapping A defines a bounded operator Hr(K) → Hr+1(K) for any r ≥ 0.

We will use the operators R and A to prove the following auxiliary lemma.

7



Lemma 2.3 Let u ∈ H
r(curl,K), r > 0. Then there exist a function ψ ∈ Hr+1(K) and a

vector field v ∈ H
r+1(K) such that

u = ∇ψ + v. (2.7)

Moreover,

‖v‖Hr+1(K) ≤ C ‖curlu‖Hr(K) and ‖ψ‖Hr+1(K) ≤ C ‖u‖Hr(K). (2.8)

Proof. Since curlu ∈ Hr(K), we use the operator R to define the vector field v := R(curlu) ∈
H

r+1(K) (see property (R2)). Then

u = (u−R(curlu)) +R(curlu) = (u−R(curlu)) + v. (2.9)

The vector field (u−R(curlu)) ∈ H
r(K) is curl-free due to property (R1). Therefore, applying

the operator A to this vector field and using properties (A1) and (A2), we find a function
ψ := A(u−R(curlu)) ∈ Hr+1(K) such that ∇ψ = u−R(curlu). Therefore, the decomposition
of u in (2.9) can be written in the form given by (2.7). The inequalities in (2.8) are obtained by
using the continuity properties of the operators R and A:

‖v‖Hr+1(K) = ‖R(curlu)‖Hr+1(K) ≤ C ‖curlu‖Hr(K)

and

‖ψ‖Hr+1(K) = ‖A(u−R(curlu))‖Hr+1(K) ≤ C
(

‖u‖Hr(K) + ‖R(curlu)‖Hr(K)

)

≤ C ‖u‖Hr(K).

The last inequality relies on specific mapping properties of the scalar curl operator (see, e.g., [8]).
This finishes the proof. ✷

3 Interpolation operators

In [14] two projection-based interpolation operators have been introduced and analyzed. These
are the H1-conforming interpolation operator Π1

p : H
1+r(T ) → Pp(T ) and the H(curl)-conform-

ing interpolation operator Πcurl
p : H

r(T ) ∩H(curl, T ) → P
Ned
p (T ) (here, r > 0 in both cases).

Let us briefly sketch the definitions of both operators and summarize their properties (see [14]
for details).

Let g ∈ H1+r(T ), r > 0. To define the interpolant Π1
p g, one starts with the standard linear

interpolation of g at the vertices of T :

g1 ∈ P1(T ), g1 = g at each vertex of T .

Then, for each edge ℓ ⊂ ∂T , we define a polynomial g2,ℓ by using the projection

g2,ℓ ∈ P0
p (ℓ) : ‖(g − g1)|ℓ − g2,ℓ‖H̃1/2(ℓ) → min . (3.1)

8



Extending g2,ℓ by zero onto the remaining part of ∂T (and keeping its notation), using the
polynomial extension Ep from the boundary (see Section 2.1), and summing up over all edges
we define

gp2 :=
∑

ℓ⊂∂T

Ep(g2,ℓ) ∈ Pp(T ). (3.2)

Finally, we define the polynomial bubble gp3 by projection in the H1-semi-norm

gp3 ∈ P0
p (T ) : |(g − g1 − gp2)− gp3 |H1(T ) → min . (3.3)

Then the interpolant Π1
p g is defined as the sum

Π1
p g := g1 + gp2 + gp3 ∈ Pp(T ). (3.4)

Note that, due to the finite dimensionality of g1, there holds for r > 0

‖g1‖H1+r(T ) ≃
∑

ν: vertices of T

|g(ν)| ≤ C ‖g‖C(T̄ ) ≤ C ‖g‖H1+r(T ). (3.5)

Now we proceed to the H(curl)-conforming interpolation operator. Given a vector field
u ∈ H

r(T ) ∩H(curl, T ) with r > 0, the interpolant u
p = Πcurl

p u ∈ P
Ned
p (T ) is also defined as

the sum of three terms:
u
p = u1 + u

p
2 + u

p
3.

Here, u1 is the Witney (lowest order) interpolant

u1 =
∑

ℓ⊂∂T

(

∫

ℓ

n× u dσ
)

φℓ,

where n = (n1, n2) denotes the outward normal unit vector to ∂T , n × u = n1u2 − n2u1 with
u = (u1, u2), and φℓ are the standard basis functions (associated with edges ℓ) for PNed

1 (T ).
For any edge ℓ ⊂ ∂T one has

∫

ℓ

n× (u− u1) dσ = 0.

Hence, there exists a scalar function ψ, defined on the boundary ∂T , such that

∂ψ

∂σ
= n× (u− u1), ψ = 0 at all vertices.

Then, for each edge ℓ, the restriction ψ|ℓ is projected in the H̃1/2(ℓ)-norm onto the set of
polynomials P0

p+1(ℓ)

ψ2,ℓ ∈ P0
p+1(ℓ) : ‖ψ|ℓ − ψ2,ℓ‖H̃1/2(ℓ) → min .

9



Extending ψ2,ℓ by zero from ℓ onto ∂T (and keeping its notation) and using the polynomial
extension Ep+1 from the boundary we define ψℓ

2,p+1 := Ep+1(ψ2,ℓ) ∈ Pp+1(T ). Then we set

u
p
2 =

∑

ℓ⊂ ∂T

u
p
2,ℓ ∈ P

Ned
p (T ), where u

p
2,ℓ = ∇ψℓ

2,p+1.

The interior interpolant up
3 is a vector bubble function that solves the constrained minimization

problem
u
p
3 ∈ P

Ned,0
p (T ) :

‖curl(u− (u1 + u
p
2 + u

p
3))‖0,T → min,

(u− (u1 + u
p
2 + u

p
3),∇φ)0,T = 0 ∀φ ∈ P0

p+1(T ).

These interpolation operators satisfy the following properties.

1◦. For r > 0 the operators Π1
p : H

1+r(T ) → H1(T ) and Πcurl
p : H

r(T ) ∩ H(curl, T ) →
H(curl, T ) are well defined and bounded, with corresponding operator norms independent
of the polynomial degree p (cf. [14, Propositions 1, 2]).

2◦. The operators Π1
p and Πcurl

p preserve scalar polynomials in Pp(T ) and polynomial vector

fields in P
Ned
p (T ), respectively.

3◦. For r > 0 the following diagram commutes (see Proposition 3 in [14]):

H1+r(T )
∇−→ H

r(T ) ∩H(curl, T )
curl−→ L2(T )





y
Π1

p+1





y
Πcurl

p





y
Π0

p−1

Pp+1(T )
∇−→ P

Ned
p (T )

curl−→ Pp−1(T ),

(3.6)

where Π0
p : L2(T ) → Pp(T ) denotes the standard L

2-projection onto the set of polynomials
Pp(T ).

4 Interpolation error estimates

First, we consider the H1-conforming p-interpolation operator. We prove that an optimal esti-
mate can be obtained for the interpolation error measured in the H1-semi-norm.

Theorem 4.1 Let g ∈ H1+r(T ), r > 0. Then there exists a positive constant C independent of
p and g such that

|g −Π1
p g|H1(T ) ≤ C p−r ‖g‖H1+r(T ). (4.1)

Proof. Let g ∈ H1+r(T ) with r > 0. Using the operator πp (see Lemma 2.2) and the polynomial
extension Ep from the boundary, we define the following polynomial bubble function on T :

ϕp := πpg − Ep(γtr(πpg)).

10



Hereafter, γtr denotes the standard trace operator, γtrf = f |∂T . Then, making use of the
definition of the interpolant Π1

p g (see (3.2)–(3.4)), we have

|g −Π1
p g|H1(T ) ≤ |(g − g1 − gp2)− gp3 |H1(T ) ≤ |(g − g1 − gp2)− ϕp|H1(T )

≤ |g − πpg|H1(T ) +
∣

∣

∣
g1 + gp2 − Ep(γtr(πpg))

∣

∣

∣

H1(T )

≤ ‖g − πpg‖H1(T ) +

∣

∣

∣

∣

Ep
(

γtr(g1) +
∑

ℓ⊂∂T

g2,ℓ − γtr(πpg)
)

∣

∣

∣

∣

H1(T )

. (4.2)

Here we also used the fact that g1 = E1(γtr(g1)) = Ep(γtr(g1)) for any p ≥ 1 (see Remark 2.1
(ii)). The extension operator Ep satisfies (2.2). Therefore, applying the continuity property of
the trace operator γtr : H

1(T ) → H1/2(∂T ), we find

∣

∣

∣

∣

Ep
(

γtr(g1) +
∑

ℓ⊂∂T

g2,ℓ − γtr(πpg)
)

∣

∣

∣

∣

H1(T )

≤
∥

∥

∥
γtr(g1) +

∑

ℓ⊂∂T

g2,ℓ − γtr(πpg)
∥

∥

∥

H1/2(∂T )

≤ C

(

∥

∥

∥
γtr(g1) +

∑

ℓ⊂∂T

g2,ℓ − γtr(g)
∥

∥

∥

H1/2(∂T )
+

∥

∥

∥
γtr(g − πpg)

∥

∥

∥

H1/2(∂T )

)

≤ C

(

∥

∥

∥

∑

ℓ⊂∂T

g2,ℓ − γtr(g − g1)
∥

∥

∥

H1/2(∂T )
+ ‖g − πpg‖H1(T )

)

.

Using this estimate in (4.2) we obtain

|g −Π1
p g|H1(T ) ≤ C ‖g − πpg‖H1(T ) +C

∥

∥

∥

∑

ℓ⊂∂T

g2,ℓ − γtr(g − g1)
∥

∥

∥

H1/2(∂T )
. (4.3)

The first term on the right-hand side of (4.3) is estimated by applying Lemma 2.2:

‖g − πpg‖H1(T ) ≤ C p−r ‖g‖H1+r(T ). (4.4)

To estimate the second term on the right-hand side of (4.3) we use localization to the edges
of the triangle, the definition of the edge interpolants g2,ℓ (see (3.1)), and the p-approximation
result in H̃1/2(ℓ) on each edge (see Lemma 2.1). One has

∥

∥

∥

∑

ℓ⊂∂T

g2,ℓ − γtr(g − g1)
∥

∥

∥

H1/2(∂T )
≤ C

∑

ℓ⊂∂T

‖g2,ℓ − (g − g1)|ℓ‖H̃1/2(ℓ)

≤ C p−r
∑

ℓ⊂∂T

‖(g − g1)|ℓ‖H1/2+r(ℓ).
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Hence, applying the trace theorem for individual edges (see [16, Theorem 1.4.2]) and estimating
the norm of g1 as in (3.5), we prove

∥

∥

∥

∑

ℓ⊂∂T

g2,ℓ − γtr(g − g1)
∥

∥

∥

H1/2(∂T )
≤ C p−r ‖g − g1‖H1+r(T ) ≤ C p−r ‖g‖H1+r(T ). (4.5)

Now the desired error bound in (4.1) immediately follows from (4.3)–(4.5). ✷

In the following theorem we prove an optimal error estimate for the H(curl)-conforming
p-interpolation operator Πcurl

p .

Theorem 4.2 Let u ∈ H
r(curl, T ), r > 0. Then there exists a positive constant C independent

of p and u such that
‖u−Πcurl

p u‖H(curl,T ) ≤ C p−r ‖u‖Hr(curl,T ). (4.6)

Proof. Given u ∈ H
r(curl, T ) (r > 0), we use Lemma 2.3 to decompose u as follows:

u = ∇ψ + v, ψ ∈ Hr+1(T ), v ∈ H
r+1(T ). (4.7)

Moreover (see (2.8)),

‖v‖Hr+1(T ) ≤ C ‖curlu‖Hr(T ) ‖ψ‖Hr+1(T ) ≤ C ‖u‖Hr(T ). (4.8)

Then, applying the interpolation operator Πcurl
p and using its commutativity with Π1

p+1 (see
(3.6)), we write

Πcurl
p u = Πcurl

p (∇ψ) + Πcurl
p v = ∇(Π1

p+1ψ) + Πcurl
p v. (4.9)

Since Πcurl
p is a bounded operator preserving polynomials (see properties 1◦, 2◦ of Πcurl

p ), one
has for some fixed ε ∈ (0, 1) and for any polynomial vp ∈ (Pp(T ))

2:

‖v −Πcurl
p v‖H(curl,T ) = ‖v − vp −Πcurl

p (v − vp)‖H(curl,T )

≤ C inf
vp∈(Pp(T ))2

(

‖v − vp‖Hε(T ) + ‖curl(v − vp)‖L2(T )

)

≤ C inf
vp∈(Pp(T ))2

‖v − vp‖H1(T ).

Hence, applying Lemma 2.2 componentwise and using the first inequality in (4.8), we estimate

‖v −Πcurl
p v‖H(curl,T ) ≤ C p−r ‖v‖H1+r(T ) ≤ C p−r ‖curlu‖Hr(T ). (4.10)

On the other hand, applying Theorem 4.1 and the second inequality in (4.8) we obtain

‖∇ψ −∇(Π1
p+1ψ)‖H(curl,T ) = |ψ −Π1

p+1ψ|H1(T ) ≤ C p−r ‖ψ‖H1+r(T ) ≤ C p−r ‖u‖Hr(T ). (4.11)

Combining (4.10) and (4.11) we prove (4.6) by making use of decompositions (4.7), (4.9) and
the triangle inequality. ✷
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5 Concluding remarks

The main result of the paper – an optimal error estimate for the H(curl)-conforming projection
based p-interpolation operator Πcurl

p introduced by Demkowicz and Babuška in [14] – is proved
for the second Nédélec family of edge elements on the reference triangle T (see Theorem 4.2).
Below we discuss some simple extensions of this result.

The first Nédélec family of edge elements and the case of the reference square. Using ap-
propriate polynomial spaces and the same constructions as in Section 3, one can define the
H(curl)-conforming p-interpolation operator for the first Nédélec family of edge elements in-
troduced in [20], and also for both the first and the second families on the reference square
Q = (−1, 1)2. Moreover, properties 1◦– 3◦ of the operator Πcurl

p formulated in Section 3 will
remain valid in all these cases (see [14, Section 6]). Thus, the proof of Theorem 4.2 carries over
without modifications to all the cases mentioned here.

H(div)-conforming p-interpolation operator. As mentioned in the introduction, the H(curl)-
conforming p-interpolation operator is critical for the convergence and error analysis of the
high-order FEM with edge elements for Maxwell’s equations in two dimensions. However, when
a boundary integral formulation of Maxwell’s equations (e.g., the electric field integral equation)
is discretized by the high-order boundary element methods, similar interpolation operators are
required in the H(div)-conforming setting for RT- or BDM- surface elements (see [9, 8]). For
the sake of completeness we will formulate here the main results related to the operator Πcurl

p

in the H(div)-setting. This can be easily done by rotation due to the isomorphism of the curl
and the div operators in 2D (and, as a consequence, the isomorphism of the first (resp., second)
Nédélec family of edge elements and the RT- (resp., BDM-) elements).

Let K be either the equilateral reference triangle T or the reference square Q. We will focus
the presentation on RT-elements only (in the case of BDM-elements all formulations below are
essentially the same). Let PRT

p (K) be the RT-space of order p ≥ 1 on the reference element K
(see, e.g., [12]), i.e.,

P
RT
p (K) = (Pp−1(K))2 ⊕

( x1
x2

)

Pp−1(K).

Then the H(div)-conforming p-interpolation operator Πdiv
p : H

r(K) ∩ H(div,K) → P
RT
p (K)

(r > 0) can be defined as the “rotated” H(curl)-conforming interpolation in the same way as in
Section 3. It satisfies the following properties:

1◦. For r > 0 the operator Πdiv
p : H

r(K) ∩ H(div,K) → H(div,K) is bounded with corre-
sponding operator norm being independent of the polynomial degree p.

2◦. The operator Πdiv
p preserves polynomial vector fields in P

RT
p (K).

3◦. For r > 0 the following diagram commutes (cf. (3.6)):

H1+r(K)
curl−→ H

r(K) ∩H(div,K)
div−→ L2(K)





y
Π1

p





y
Πdiv

p





y
Π0

p−1

Pp(K)
curl−→ P

RT
p (K)

div−→ Pp−1(K).
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where curl = (∂/∂x2, −∂/∂x1).

The following theorem provides an optimal estimate for the interpolation error.

Theorem 5.1 Let u ∈ H
r(div,K), r > 0. Then there exists a positive constant C independent

of p and u such that
‖u−Πdiv

p u‖H(div,K) ≤ C p−r ‖u‖Hr(div,K).

hp-estimates. The projection-based interpolation operators Πcurl
p and Πdiv

p preserve piece-
wise polynomial vector fields and provide conforming approximations in H(curl) and H(div),
respectively. Therefore, using the standard Bramble-Hilbert argument and scaling, Theorems 4.2
and 5.1 extend to the corresponding optimal hp-estimates on sequences of quasi-uniform meshes
of triangles and/or parallelograms satisfying the standard shape regularity assumptions.
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the p-version finite element method in two dimensions, SIAM J. Numer. Anal., 28 (1991),
pp. 624–661.
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