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We study a three-mode truncation of the equation u, + uu, +8u,,, +u,, +u, ., =0. This simple mod-
el allows us to understand analytically the role played by dispersion in the appearance of well-defined
traveling pulses. In the absence of dispersion, that is, for §=0, the solutions obtained from the truncated
model are in quantitative agreement with the known results for the Kuramoto-Sivashinsky equation for

small horizontal periodicity.

PACS number(s): 47.10.+g, 47.20.—k, 03.40.Gc

I. INTRODUCTION

The nonlinear equation u,+wuu, +6u,,  +tu, , +tu,..
=0 arises in problems that have a long-wavelength oscil-
latory instability, such as fluid flow along an inclined
plane for large surface tension [1]. It corresponds to a
special case of the equation that describes the Eckhaus
instability of traveling waves [2], surface waves in a con-
vecting fluid (3], and flow along an inclined plane for
moderate surface tension [4]. In the absence of disper-
sion, that is, for §=0, this is the well-studied Kuramoto-
Sivashinsky (KS) equation, which has become the main
example of phase turbulence [5]. Our aim is to provide
some understanding of the time evolution of the solution
of this equation in periodic intervals, particularly of the
role played by dispersion in the appearance of well-
defined traveling pulses. We do so considering a three-
mode truncated system that is adequate for a small
periodicity interval L. The solutions of the KS equation
for small L have been described in detail in [6]. Different
types of final states are possible, steady states and travel-
ing waves among them. When dispersion is included, the
solution is significantly changed. Several numerical stud-
ies have shown that for periodic boundary conditions and
for sufficiently high dispersion, most initial conditions
evolve into a final state consisting of a row of equally
spaced, sharply defined pulses of the same height that
travel as a whole [7]. The number of pulses that appear
depends on the box size and on initial conditions. The
sharpness and similarity of the pulses have been used by
different authors, who have constructed approximate
solutions to this equation as a superposition of single
traveling pulses. The dynamics contained in the full
equation is then reflected by the interaction between
them [8,9]. Other analytical approaches have dealt with
perturbations around the known solutions of the
Korteweg—de Vries equation [10]. In the two approaches
just mentioned, the final state is assumed.

Numerical studies have shown that for a given periodi-
city interval L, the final state consists of few modes, the
linearly unstable ones having much larger amplitudes
than the linearly stable ones [10]. Therefore, we expect
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that the main features of the final state can be explained,
keeping just a few stable modes when studying a truncat-
ed model. Similar criteria for truncation have been used
in different problems [11]. In this article we study analyt-
ically the two- and three-mode truncated system, which is
adequate for small box size. The results obtained from
this truncated system for the Kuramoto-Sivashinsky
equation are in good qualitative and quantitative agree-
ment with the results for the small periodicity interval
obtained from the integration of the partial differential
equation, which gives us some confidence in the results
obtained when dispersion is included. Although in this
case the long-time solution exhibits only one pulse, the
results obtained for large 6 are also valid for multiple-
pulse solutions generated as periodic repetitions of a sin-
gle pulse.

II. MATHEMATICAL FORMULATION
Our starting point is the equation
u, ‘tuu, +0u,, tu, +u.,,=0, (1)
subject to periodic boundary conditions

u'™0,0)=u""(L,r), n=0,1,2,3,

where u " denotes the nth derivative of u with respect to
X, with initial condition

u(x,0)=uy(x) .

We recall that for L =27 all initial conditions evolve into
u(x,t)=0 [9]. This is clearly seen by multiplying (1) by u
and integrating between O and L. This yields

%% fOLudeZ foLujdx— fOLufxdx . @)

For periodic solutions of zero average in the interval
[0,L] we know that

L L? rL
f uldx 5—2f uldx ;
0 4 0
therefore,
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li Lo <
2 ot oud_

=1

L
o fo uldx , (3)

so that for L <27 all initial conditions die away.
We now expand the solution for u in the Fourier series

un,= 3 a, (e,

n=-—o
where k, =2n /L and the coefficients satisfy
a_,(t)=a, .

Here @ denotes the complex conjugate of a, and, since we
have chosen solutions with zero average, a,=0. Replac-
ing the series expansion in the equation, we obtain the
following system for the time evolution of the Fourier
amplitudes:

ik, =
a, +(k}—k?—idk})a, + 2" lgo(a,an_,+c7,a,,+,)=0.
4)
Including only the first three modes, we obtain the system
a,+(u,—idk*a, +ik(a@,a, +a,a;)=0, (5
a,+(u,—8i8k>)a, +ik (a2 +2a,a;)=0, (6)
dy+(puy—27i8k*)ay+3ika,a,=0 , (7

where k =27 /L and u, =k, —k?2. The condition L >2
implies that at least the first mode is linearly unstable,
that is, u; <0. It is convenient to introduce the variables

Z=a,a,,
, a,a,
X +iY= R
a,
. ‘7%‘13
U+iv=
a,

In these variables, the system of six (three complex) cou-
pled equations is simplified to five real coupled equations
and an additional decoupled equation for the phase. We
obtain

Z=-2u,Z +2k(ZY +VX —UY) , (8)
X=—pu,X —6k38Y —2k XY—V+%(Y2V+XYU) ,
9)
Y=—u,Y+685k’X —kZ
+2k XZ—U+%(X2U+XYV) , (10)
U= —(u,+p;)U—248k3V +3kZY —k(3VX — UY)
—%(YU2+3YV2+2UVX) , (11)
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V=—(u,+p;)V+248k3U—3kZX +k (3XU +YV)
+§(3U2X+ V2X +2UVY) . (12)

The missing equation yields an equation for the phase 6,
of a; in terms of the variables Z, X, Y, U, and V:

6,=8k"— kX — S (XU+YV) (13)

One can readily check the system defined by (8)-(12) is
contracting if u; +pu,+pu; > 0; in fact, one has

dlnZ L 8X , dY L 3U , oV
+ —+-——=+——=+——==—2u,tu,+ .
omz " ax Toy Tau Ty T 2ttt
The solution for u (x,t) in terms of these variables is writ-

ten as

u(x,2)=2V'Z coss+2X cos2s —2Y sin2s

+ j% cos3s — 5% sin3s , (14)
where s =kx +6,. We see that the fixed points of the
system for the new variables correspond to traveling
waves u(x —ct), with ¢=—6,/k. An analogous set of
variables can be defined for a truncation of any order due
to the particular form of the nonlinearity of the original
equation. The problem that we address now is the time
evolution of the reduced system and the nature of the
solutions of u in the two opposite cases §=0 and & >>1.
Before analyzing the three-mode system we study the
large 6 behavior of the two-mode system, which is
simpler analytically. The argument that we follow is
nonetheless analogous to the one needed when more
modes are included.

III. TWO-MODE SYSTEM

We consider a small box so that only the first Fourier
component is linearly unstable. In a first approximation
we shall keep only one linearly stable mode, the least
stable, that is, a,. We obtain then the two-mode system
setting U=V =0. This system is contracting if
pyt+u,>0. There exist two fixed points, the origin
(0,0,0), which is unstable for L > 27 (or k <1), and an ad-
ditional point (X, Y, Z,) given by

68k %y _
2ty 0k

N o 368k *u i,
k? (2u;+p,)

Z,=

This system also arises in a different context in the op-
posite case u;>0, pu,<0, which implies a completely
different behavior of the solutions [12,13]. For large §
the fixed point is stable if 2u;+pu,>0; that is, if
L <2V37, or, in terms of k, if k2> 1. We shall assume
that L lies in the range in which this fixed point is stable,
so we consider only k? in the interval (4,1) and recon-
struct u (x,t) in the final state. All the initial conditions
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tested in the numerical integrations of this system led to
the fixed point. For large 8 we obtain

u(x,1)=28Vz,F(s) , (15)
where
F(s)=coss +0 cosl2s ,

o=V —u,/1y and zo=—36k*uwu,/(2u;+u,)*. The
behavior of u(x,t) for large ¢ and & is entirely described
by F(s). The function F (s) defined on the interval [0,27]
with periodic boundary conditions has exactly one max-
imum if 40 <1 and two maxima if 40 > 1. Therefore,
F(s) has exactly one bump for 3 <k?<1 and two bumps
for %<k2<%. In the latter case the central bump at
s =7 is much smaller than the bump at s =0. The ratio
between the height of these two bumps [measured from
the minimum value attained by F(s)] is given by
[20+(1/80)+1]/[20 +(1/80)—1], which is a decreas-
ing function of o. For k2=§ this ratio is obviously
infinity, and as k2 decreases from 2 to 1 this ratio de-
creases monotonically to 4.38 at k2=§. Even in this, the
worst case, u (x,t) exhibits a sharp bump. The speed ob-
tained from (13) is now

61

c=—(8k?>—X,)=—8k? |1 - ———
0 2uy+py

The solution for u (x,¢) when §=0 is given instead by
172

u(x,t)=%\/—,ul,u2 coss + sin2s | , ¢=0.

2]

In Fig. 1 we show the solution u (x,?) for §=0 and for
6=3 after the system has reached a fixed point. For §=0
the solution is steady; for =3 the pulse travels to the left
with speed ¢ =1.169. The role of dispersion in the two-
mode system is the appearance of a traveling well-defined
pulse whose amplitude increases with 8.

9.0
7.5
6.0
45}
3.0

0.0
-1.5
-3.0 [
—-4.5
-6.0

0

FIG. 1. Wave form u(x,t) obtained from a numerical in-
tegration of the two-mode system, shown once the fixed point is
reached. In all figures the dotted line shows the final state for
6=0. For §=0 the solution is steady; for §=3 it travels to the
left with speed 1.169.
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IV. THREE-MODE SYSTEM

A. The fixed points

We have studied the three-mode system (8)—(12) nu-
merically and analytically for large 8. Let us consider the
range of L in which the origin is unstable and the map
contracting, namely 27 <L <2V'7m, or equivalently,
1< k?<1. Here too, all the initial conditions tested led
to fixed points of the system until a value of L, at which
the fixed points lost stability through a Hopf bifurcation.

The fixed points (X, Y, Z,) of the system are found in
a simpler way from the complex version (5)-(7), making
use of the fact that at the fixed point

a,=inba,, n=12,3.

Replacing this form for a, in (5)-(7) we obtain a quadra-
tic equation with complex coefficients for Z;:

aZi+BZ,+y=0, (16)
where
a=k*f+2f)—4nk*|fI?,
B=k’g—2k*h(fg+gf),
y=—hlgl*,
with
f=—3(uy;—27i8k3+3i6,) "1,
g=—2i6,—u,+8idk*,
h=p,—idk*+i6, .

Equation (16) is a coupled system for Z, and 6,, which
can be easily solved numerically. Once Z, and 91 have
been found, the additional components of the fixed point
are obtained from

X0+iY0=————2kZZOf te

, Ug+iVo=ikfZy(Xy+iY,) .

17)

First we notice from Eqgs. (8)-(12) that when 6=0, if
Z,,Xy, Yy, Uy, Vy is a fixed point with speed cj, then
Zy,— Xy, Yy, Uy, — V, is also a fixed point, but with speed
—c¢y. If a fixed point for §=0 has vanishing speed 6,=0,
then, since a, 3, and y are real in this case, we obtain
X,=V,=0.

The solution of Eq. (16) shows that when 8=0 for
27 < L <3.67 there is a single fixed point that has 6,=0,
which is the case described above. At L =3.67 it loses
stability and a new fixed point appears; in fact, two fixed
points appear, which are related by the symmetry just de-
scribed. One of them leads to right-traveling waves, the
other to left-traveling waves. This new fixed point corre-
sponds to the rotating waves described in [6]. Then, at
L =4.017, it too loses stability through a Hopf bifurca-
tion, the value of which is slightly below the value 4.097
reported in [6] as the first point where pulsing waves were
observed. When 8+#0, for low values of & we find one or
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FIG. 2. Solution for u (x,t) obtained from the integration of
the three-mode system, after reaching the fixed point. For §=0
the solution is steady; for §=3 it is traveling to the left with
speed 0.199.

three fixed points as occurs with §=0. For larger 6 only
one fixed point exists (fixed points with Z <0 are discard-
ed). In Figs. 2 and 3 we show the solution u(x,¢) for
8=0 and 3 after the system has reached a fixed point. At
L =3, the solution of the KS equation is steady (¢ =0),
the solution with =3 traveling to the left with speed
0.199. At L =3.87 we obtain traveling waves to the left
or the right, depending on initial conditions, for the KS
equation. For §=3 the wave travels to the right. The
speed for §=0is ¢ =10.369, and =3 it is ¢ =1.516. In
Fig. 4 we show |u| vs (L /7)? for the complete branch of
fixed points between L =2 and 4w, where we can ob-
serve the fast growth of |u| with § and the difference in
the structure of fixed points as a function of 8. The fixed
points for 60 lose stability through a Hopf bifurcation
as L is increased. For §=1 the loss of stability of the
unique fixed point occurs at L =4.547. In Fig. 5 the
speed is shown for the solution branches shown in Fig. 4.
We have not investigated beyond this, since at L =41 a

13.0 T T T r
1.2} L=3.87 ]

9.4} .

5.8

T
PRt

22i/\ 1

0.4 6=0 7

1.4} N_fT ]

_32f ]

-5.0 A —
0

FIG. 3. Solution for u (x,t) for a different value of L obtained
from the integration of the three-mode system, after reaching
the fixed point. Now for §=0 the solution may travel to the
right or the left with speed 0.369. For §=3 it travels to the
right with speed 1.516.
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FIG. 4. The norm |u| as a function of (L /m)? for the com-

plete branch of fixed points between L =2m and L =4, for
three different values of 8.

new two-pulse solution bifurcates from u =0, a solution
that is not included in our system.

B. Large & behavior

From Eq. (16) we find that for large & the fixed point
for Z, and 6, is of the form

Z,=82, 6,=—564,
A is a root of the quartic equation
4(#1A4A9+,“2A1A9+H3A1A4)2
+ A5(2u3A4+pyA9) 20 A4+, 4,)=0,,
and
z___A_'g(ZMAf*'NzAl)
k? (uAg—p34;)

’

where we have defined 4, = A —nk>. The quartic equa-
tion for A has two complex roots, which we discard, and
two real roots. One of the real roots yields z <0 and is
discarded also. We are left then with a single solution, as
mentioned above. Then from Egs. (17) we see that X, is
of order 8, Y, is of order 1, U, is of order 82, and V is of
order 8. Therefore, in the expression for u (x,¢) [Eq. (14)]

0.5
0.4 |
03f
02}
0.1

—04
—0.2
~0.3
—04f
-05

10
(L/m)2

FIG. 5. The frequency of the branches of fixed points shown
in Fig. 4.
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FIG. 6. The solid line indicates the values of o and 7 for Eq.
(18) as L increases. The dashed lines are the boundaries be-
tween regions corresponding to different numbers of humps.

for large r we may neglect sin(s) and sin(2s). For large §
we then have

u(x,1)=~28V'z [cos(s)+o cos(2s)+7cos(3s)] ,

—_ (18)
c=—8[k’*—a(1+7)V z,] ,
with
o= XO_ =kzl/22
V'zZ, e
and
U
T:&O—_k222 1
Z, e Ag

We have defined here b =34, and e =6k’z2—64, A,.
Next, we analyze the behavior of u(x,t) for large ¢,
which, as in the two-mode truncation, is entirely specified
by a single function F(s), which is now given by
F(s)=cos(s)+o0 cos(2s)+7cos(3s). A simple analysis
shows that F(s) has one bump if o <[37(1—37)]'/? when
7> L orif 0 <(1+97)/4 when 7< . It has two bumps
if o > (1+97)/4 for any 7 and it has three bumps if 7> %
and [37(1—37)]'""2<0o <(1+97)/4. In the present case
the values of o and 7 are such that the final state has ei-
ther one sharp bump or three bumps, of which two are
small. In Fig. 6 the o-7 plane is shown, where the solid
line corresponds to the values of o and T as L increases.
For low values of L (27 <L <11.52 approximately), the
final state lies in the region where only one hump devel-
ops (see Fig. 2). As L increases beyond 11.52, two small
bumps develop (see Fig. 3). The ratio between the height
of the large hump to the height of the small humps is
~19.13 for L =11.52, which shows that the main hump
is sharply defined.

V. CONCLUSION

We have studied a three-mode truncation of an equa-
tion that describes the evolution of systems with a long-
wavelength oscillatory instability. This truncation has
enabled us to understand the evolution of the system
from an arbitrary initial condition to a final state consist-
ing of a solitarylike traveling wave. The introduction of a
convenient set of variables that enables us to express ex-
plicitly the solution as a Fourier series expansion in the
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variable s =kx +0,, simplifies the problem to the study
of the time evolution of the coefficients of the expansion.
We find that the system evolves into a fixed point due to
the combined action of diffusion and instability. This
occurs even in the absence of dispersion, that is, for §=0,
but the final state for u (x,¢) in this case does not develop
a localized feature. For the KS equation the results ob-
tained from the truncated system are in quantitative
agreement with known results. The steady solution that
bifurcates from u =0 at L =27 and the bifurcation from
this branch of right- or left-rotating waves L =~3.67 cor-
respond to fixed points of the system of equations for the
amplitudes of the expansion of u in traveling waves. This
expansion allows us to obtain an explicit expression for
the speed of the traveling wave. As dispersion increases,
a localized pulse develops; the amplitude of this pulse,
for large 6, increases linearly with §; since # =0, as & in-
creases the pulse becomes sharper. The stability of the
fixed point depends both on dispersion and on the box
size. The fixed point loses stability through a Hopf bifur-
cation. Based on the quantitative agreement obtained
with the KS equation for 0 <L <4, we expect that the
results including dispersion are correspondingly accurate
in this range. However, the results obtained for large &
have a wider range of applicability. Multipulse solutions
that bifurcate from « =0 can be constructed as periodic
repetitions of the single pulse. If a,,a,,a; are the main
components of the single pulse, then a,,a,,,a;, will be
the main components of the n pulse (this is confined by
the numerical simulations of [10]), so that the asymptotic
form of u (x,t) and ¢ for large & are valid for these types
of multipulse solutions after replacing k by nk. There ex-
ist other multipulse solutions that do not bifurcate from
u =0, about which we cannot make any statement. An
important point is to determine the stability of the n
pulse solutions: A three-mode truncation is adequate
only for small L, and all the unstable modes for a given L
must be included to obtain reliable information on their
stability. Based on the results for the three-mode trunca-
tion, we anticipate that in a higher-order truncation
several fixed points may exist, all of which give rise to
uniformly traveling waves, the number of humps of the
final state depending on the precise value of the fixed
point. As in the three-mode case, and as is indicated
from the numerical results [7], these fixed points are
stable or not depending on the value of the box size L; the
fact that different initial conditions lead to different final
states is possibly due to the fact that several fixed points
may be locally stable at the same time, each with its own
basin of attraction. One may conjecture that once the
fixed points lose stability, the solution will wander in the
neighborhood of the fixed points, leading to the creation
and destruction of pulses depending on the proximity to
fixed points that correspond to different numbers of
humps. More precise statements will be made [14] from
the analysis of the five-mode truncated system, which
presents a wider variety of possibilities.
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