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ABSTRACT 

 

In this thesis, we propose a novel simulation approach to solve for optimal decision 

policies in real option problems under general Markovian dynamics. Our algorithm is 

implemented for the classical commodity mine of Brennan & Schwartz [The Journal of 

Business, 58(2), 135-157, 1985] under a wide variety of underlying dynamics such as 

stochastic variance, jumps, and regime-dependent parameters. In our numerical analysis, 

the method provides an accurate approximation of the critical prices when the underlying 

price follows a standard geometric Brownian motion. Moreover, the optimal policies 

produced by our algorithm are more profitable than those delivered by the widely-used 

Least-Squares Monte Carlo Method when the commodity follows more general dynamics. 

Finally, the algorithm allows to easily obtain the critical prices under regime-dependent 

dynamics, which are not accessible for backward methods based on forward simulation 

schemes.  
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RESUMEN 

 

En esta tesis se propone un novedoso enfoque de simulación para resolver las políticas de 

decisión en problemas de opciones reales bajo dinámicas Markovianas generales. El 

algoritmo es implementado para la clásica mina de Brennan & Schwartz [The Journal of 

Business, 58(2), 135-157, 1985] bajo una amplia variedad de dinámicas, tales como 

varianza estocástica, saltos, y parámetros dependientes del régimen de operación. En 

nuestro análisis numérico, el método entrega una estimación precisa de los precios críticos 

cuando el precio del commodity sigue un movimiento Browniano geométrico estándar. 

Además, las políticas óptimas producidas por el algoritmo son más rentables que aquellas 

entregadas por el ampliamente utilizado Least-Squares Monte Carlo Method cuando el 

commodity sigue dinámicas más generales. Finalmente, el algoritmo permite obtener los 

precios críticos bajo dinámicas dependientes del régimen de operación, las cuales no son 

abordables por métodos backward basados en esquemas de simulación forward. 
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1 ARTICLE BACKGROUND 

 

1.1 Introduction  

 

The term real option was introduced by Myers (1977) to refer to investment opportunities 

or “options” to be realized in future scenarios depending on the unveiled information. The 

tools that have been developed to address such options are grouped into what is known as 

Real Option Valuation (ROV).   

 

Despite some weaknesses still hinder it from being the usual method for practitioners (see 

e.g. Lambrecht, 2017), ROV has been widely studied to capture the value of flexibilities 

in several contexts. Applications include the option to expand/contract production 

capacity, to switch from one operation regime to another, to postpone an investment, 

among others. All these options may be recognized in investment such as Research & 

Development, natural resources exploitation, production and manufacturing scheduling, 

etc. For a summary of the foundation research in the field (from the 80’s and 90’s) we 

refer to Dixit & Pindyck (1994), and Trigeorgis (1996). Additionally, for a contemporary 

review of real options research, we refer to the work of Trigeorgis & Tsekrekos (2018), 

who catalog papers published from 2004 to 2015 in internationally-renowned Operations 

Research journals.  

 

Among the vast range of applications, a classical real option is related to production 

activities which allow transitions among different operating regimes, depending on a 

stochastic process such as an input/output price, supply/demand, or any other economic 

indicator. This general framework may be formulated as an optimal switching problem 

and includes activities such as the exploitation of an exhaustible natural resource (Brennan 

& Schwartz, 1985), electricity generation and tolling agreements (Deng & Xia, 2005), and 

natural gas storage (Carmona & Ludkovski, 2010). In spite of impressive advances in the 

field of valuation of such investment projects under complex multifactor processes, little 
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work has been done to understand the decision policies required to value and optimally 

operate over time. Defined in terms of switching boundaries, such policies are commonly 

delivered as a byproduct, leading to inaccuracy, suboptimality, and difficulties when it is 

operationalized in the real world.  

 

The remainder of this chapter is organized as follows. Section 1.2 formulates the 

hypothesis and Section 1.3 states the pursued objectives. Section 1.4 addresses a literature 

review and outlines some alternatives to deal with the optimal switching problem. Main 

results and conclusions of this thesis are presented in Section 1.5, while Section 1.6 

provides perspectives for future research. The following chapter contains the main article 

of this thesis. 

 

1.2 Hypothesis 

 

The hypothesis of this thesis is that decision policies for the optimal switching problem 

may be addressed directly by means of a simulation-based algorithm. Given the flexibility 

provided by Monte Carlo simulation, one may expect to deal with different sources of 

uncertainty in the underlying stochastic process (e.g. stochastic variance, jumps, and 

regime-dependent parameters). 

 

1.3 Main Objectives  

 

The main objective of this thesis is to develop a simulation-based algorithm to directly 

address the decision policy for the optimal switching problem. The algorithm must be 

accurate, robust and easy-to-compute in order to efficiently deal with the problem and also 

the drawbacks arising under the currently used methods. 
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In order to accomplish this goal, the following three specific objectives are pursued. First, 

characterize the optimal switching problem in order to better understanding the switching 

boundaries. A first approach is given by American options. This is an optimal stopping 

problem that may be generalized as an optimal switching one, and the underlying exercise 

policy has been widely analyzed. Second, formulate a simulation-based algorithm from 

the knowledge about switching boundaries. Finally, implement and evaluate the 

performance of the algorithm. To achieve this, the classical commodity mine of Brennan 

& Schwartz (1985) is studied, under different specifications for the commodity price 

dynamic (e.g. stochastic variance, jumps, and regime-dependent parameters). Moreover, 

the algorithm will be compared with those methods widely used in literature. 

 

1.4 Literature Review 

 

The solution of the optimal switching problem is given by a system of variational 

inequalities, which are derived from the Dynamic Programming Principle. Chapter 5 of 

Pham (2009) provides a comprehensive characterization of the problem and its solution.  

 

Closed-form solutions for the optimal switching problem can only be found in special 

cases, which generally considers a one-dimensional geometric Brownian motion (GBM) 

to model the underlying process and infinite decision horizons. For instance, Brennan & 

Schwartz (1985) propose an exhaustible mine with three regimes (open, closed, or 

abandoned), which is valued under a riskless strategy. A closed-form solution is provided 

when both the resource inventory and the concession time are infinite. A simpler model 

with just two regimes was then extensively studied, which is known as the starting and 

stopping problem. Dixit (1989) considers a firm under an operating and an idle state, 

which is valued through the same approach used by Brennan & Schwartz (1985). The 

problem is then addressed by Brekke & Øksendal (1991; 1994), who add resource 

depletion at a rate proportional to the remaining reserves, and Duckworth & Zervos 

(2001), who provide a mathematical framework to value the investment under a more 
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general setup (e.g. general payoff functions). A general specification for the two-regime 

case was also studied by Ly Vath & Pham (2007), who propose a viscosity solution 

approach. Finally, recent works have been focused on formulating a Backward Stochastic 

Differential Equation (BSDE) to solve the optimal switching problem under two or more 

regimes (Hamadène & Jeanblanc, 2007; Djehiche & Hamadène, 2009; Djehiche, 

Hamadène, & Popier, 2009). 

 

Analytical solutions (decision policies included) are quite restricted for real-world 

applications. For instance, the underlying asset could be driven by complex multifactor 

processes (Gibson & Schwartz, 1990; Sørensen, 2002; Cortazar & Schwartz, 2003; 

Casassus & Collin-Dufresne, 2005; Cortazar & Naranjo, 2006). Moreover, the longer the 

decision horizon the more critical the dimensionality of the process since a single risk 

factor would not allow to properly model future uncertainty. Finally, these closed-form 

solutions do not answer important questions such as how to manage the investment as 

time decays. Even though the problem may be approximated by numerical methods, such 

as finite difference schemes, the curse of dimensionality arise as the problem becomes 

complex (e.g. underlying dynamics with stochastic variance, jumps, etc.). 

 

To overcome the above limitations, the current literature is focused on probabilistic 

methods, which allow addressing complex specifications for both the production activity 

and the underlying stochastic process, like the Quantization Method (QM) of Bally & 

Pagès (2003), and the Least-Squares Monte Carlo Method (LSM) proposed by Longstaff 

& Schwartz (2001). On the one hand, QM is a generalized (and sophisticated) version of 

decision trees. According to Glasserman (2003), the quantization procedure seems to be 

computationally demanding. Therefore, neither the maximized value nor the decision 

policy would be easy-to-compute. To the best of our knowledge, Gassiat et al. (2012) are 

among the few who have addressed the method for the optimal switching problem. Despite 

formulating the method under a general setup, they just compare numerical results against 

explicit formulae under a one-dimensional GBM.  
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On the other hand, LSM has been the most widely applied to the optimal switching 

problem (Deng & Xia, 2005; Cortazar et al., 2008; Carmona & Ludkovski, 2008; Carmona 

& Ludkovski, 2010; Aïd et al., 2014). They propose a backward dynamical programming 

algorithm using Monte Carlo simulation and least-squares regressions in order to compute 

the maximized value. Even though accurate values are delivered, both the simulation of 

the stochastic process and the use of regressions could generate undesirable noise in the 

estimation of the switching boundaries. Moreover, the precision of these boundaries seems 

to be subordinated to the choice of appropriate regression functions (Andersen & Broadie, 

2004; Carmona & Ludkovski, 2008). Although literature recommends functions that 

resemble the expected shape of the dependent variable, we do not know a priori what these 

functions are, and one must heuristically propose them. 

 

Considering the above, decision policies by themselves are an interesting field of research. 

A first approach to deal with them is given by the widely-studied early exercise boundary 

for American options (Kim, 1990; Kallast & Kivinukk, 2003; Chiarella & Ziogas, 2005; 

Chockalingam & Muthuraman, 2011; Kim, Jang, & Kim, 2013). A promising method to 

solve that exercise boundary was proposed by Cortazar et al. (2015) and then extended by 

Cortazar et al. (2016). In the first paper, the authors derive an analytical fixed-point 

iteration to compute the exercise boundary under a one-dimensional GBM and the Heston 

model (stochastic variance). The second paper extends the methodology to general 

Markovian dynamics by means of a simulation-based scheme. 

 

1.5 Main Conclusions 

 

This thesis proposes the Simulated-Fixed Point Iteration Method for Real Options (SFPI-

RO), a novel simulation-based method to directly address the optimal decision policy for 

real options modeled as an optimal switching problem. Starting from an initial guess of 

the decision policy (a set of switching boundaries), the method iterates until optimality is 

reached through the Newton-Kantorovich Method. The algorithm replicates the spirit of 
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Cortazar et al. (2016), taking advantage of the flexibility provided by Monte Carlo 

simulation to deal with different sources of uncertainty (e.g. stochastic variance, jumps, 

and regime-dependent parameters).   

 

SFPI-RO is implemented for the classical copper mine of Brennan & Schwartz (1985), 

where the decision policy is defined in terms of four critical prices triggering transitions 

among three possible regimes: open, closed, and abandoned. The method provides an 

accurate approximation of the switching boundaries when the underlying price follows a 

standard GBM. Moreover, the optimal policies produced by the algorithm are more 

profitable than those delivered by the widely-used least-squares Monte Carlo method 

when the commodity follows underlying dynamics with stochastic variance and jumps. 

Finally, the algorithm allows to obtain the critical prices under regime-dependent 

dynamics, which are not accessible for backward methods based on forward simulation 

schemes. 

 

1.6 Further Research  

 

The next step is to generalize the applicability of SFPI-RO. The formulation provided in 

this thesis assumes that the switching boundaries may be expressed in terms of one critical 

state variable, which satisfies a functional form with respect to the remaining variables. 

Under the model of Brennan & Schwartz (1985), this assumption is reasonable, and the 

critical variable is given by the commodity price. However, it is not known a priori under 

which conditions it is still valid. Therefore, further research should be focused on better 

understanding the switching boundaries in order to extend the methodology proposed in 

this thesis. 

 

In the short term, feasible extensions consider the introduction of new features and 

operational constraints to the model of Brennan & Schwartz (1985), as well as new 

dynamics for the commodity price process. The flexibility provided by Monte Carlo 
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simulation allows that new features are easily addressed. For example, one may consider 

delays between the decision making and the realization of it, in the same way as in 

Carmona & Ludkovski (2008). Moreover, we could analyze other production activities 

such as electricity generation (Deng & Xia, 2005; Carmona & Ludkovski, 2008), natural 

gas dome storage and hydroelectric pumped storage (Carmona & Ludkovski, 2010), 

among others. 
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2 OPTIMAL DECISION POLICY FOR REAL OPTIONS UNDER GENERAL 

MARKOVIAN DYNAMICS 

 

2.1 Introduction 

 

A classical real option1 is related to production activities which allow transitions among 

different operating regimes, depending on a stochastic process such as an input/output 

price, supply/demand, or any other economic indicator. In spite of impressive advances in 

the field of valuation of such investment projects under complex multifactor processes 

(Cortazar et al., 2008; Carmona & Ludkovski, 2008; Gassiat et al., 2012), little work has 

been done to understand the optimal decision policies required to value and optimally 

operate over time. Defined in terms of switching boundaries, such policies are commonly 

delivered as a byproduct, leading to inaccuracy, suboptimality, and difficulties when it is 

operationalized in the real world. Instead, we formulate a novel method to directly deal 

with the required optimal decision policies for a wide variety of problems and underlying 

stochastic dynamics. 

 

The valuation problem may be formulated as an optimal switching one and closed-form 

solutions can only be found in special cases, which generally considers a one-dimensional 

geometric Brownian motion (GBM) to model the underlying process, and infinite decision 

horizons (see e.g. Brennan & Schwartz, 1985; Dixit, 1989; Brekke & Øksendal, 1991, 

1994; Duckworth & Zervos, 2001; Ly Vath & Pham, 2007; Zervos et al., 2018). However, 

these cases are quite restricted for real-world applications. For instance, the underlying 

                                                 
1 Real options refer to investment opportunities to be realized in future scenarios depending on the unveiled 

information. They include the option to expand/contract production capacity, to switch from one operation 

regime to another, to postpone an investment, among others. For a summary of the foundation research in 

the field (from the 80’s and 90’s) we refer to Dixit & Pindyck (1994), and Trigeorgis (1996). Additionally, 

for a contemporary review we refer to Trigeorgis & Tsekrekos (2018), who catalog papers published from 

2004 to 2015 in internationally-renowned Operations Research journals. 
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asset could be driven by complex multifactor processes (Gibson & Schwartz, 1990; 

Sørensen, 2002; Cortazar & Schwartz, 2003; Casassus & Collin-Dufresne, 2005; Cortazar 

& Naranjo, 2006). Moreover, the longer the decision horizon the more critical the 

dimensionality of the process since a single risk factor would not allow to properly model 

future uncertainty. Finally, these closed-form solutions do not answer important questions 

such as how to manage the investment as time decays. Even though the problem may be 

approximated by numerical methods, such as finite difference schemes, the curse of 

dimensionality arise as the problem complexity rises (e.g. complex multifactor processes). 

 

To overcome the above limitations, the current literature is focused on probabilistic 

methods, which allow addressing complex specifications for both the production activity 

and the underlying stochastic process, like the Quantization Method of Bally & Pagès 

(2003), and the Least-Squares Monte Carlo Method proposed by Longstaff & Schwartz 

(2001). On the one hand, Quantization Method is a generalized (and sophisticated) version 

of decision trees. According to Glasserman (2003), the quantization procedure seems to 

be computationally demanding. Therefore, neither the maximized value nor the decision 

policy would be easy-to-compute. To the best of our knowledge, Gassiat et al. (2012) are 

among the few who have addressed the method for the optimal switching problem. Despite 

formulating the method under a general setup, they just compare numerical results against 

explicit formulae under a one-dimensional GBM.  

 

On the other hand, the Least-Squares Monte Carlo Method (LSM) has been the most 

widely applied to the optimal switching problem (Deng & Xia, 2005; Cortazar et al., 2008; 

Carmona & Ludkovski, 2008; Carmona & Ludkovski, 2010; Aïd et al., 2014). They 

propose a backward dynamical programming algorithm using Monte Carlo simulation and 

least-squares regressions in order to compute the maximized value. Even though accurate 

values are delivered, both the simulation of the stochastic process and the use of 

regressions could generate undesirable noise in the estimation of the switching boundaries. 

Moreover, the precision of these boundaries seems to be subordinated to the choice of 
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appropriate regression functions (Andersen & Broadie, 2004; Carmona & Ludkovski, 

2008). Although literature recommends functions that resemble the expected shape of the 

dependent variable, we do not know a priori what these functions are, and one must 

heuristically propose them. 

 

Considering the above, in this paper we propose a novel simulation-based method that 

computes the optimal decision policy for a wide variety of problems and underlying 

dynamics. Starting from an initial guess of the switching boundaries, we iterate until 

optimality is reached through the Newton-Kantorovich Method, as done by Cortazar et al. 

(2015) and Cortazar et al. (2016) for the optimal exercise boundary of American options. 

Our algorithm is implemented for the classical commodity mine of Brennan & Schwartz 

(1985) under a wide variety of underlying dynamics such as stochastic variance, jumps, 

and regime-dependent parameters. In our numerical analysis, the method provides an 

accurate approximation of the switching boundaries when the underlying price follows a 

standard GBM. Moreover, the optimal policies produced by our algorithm are more 

profitable than those delivered by the widely-used Least-Squares Monte Carlo Method 

when the commodity follows underlying dynamics with stochastic variance and jumps. 

Finally, the algorithm allows to obtain the critical prices under regime-dependent 

dynamics, which are not accessible for backward methods based on forward simulation 

schemes. 

 

The remainder of this paper is organized as follows. Section 2.2 outlines our method from 

the mathematical formulation of the optimal switching problem. Section 2.3 formulates 

the method to solve the switching boundaries under the commodity mine proposed by 

Brennan & Schwartz (1985). Then, numerical results are presented in Section 2.4. First, 

the algorithm is validated when the commodity follows a one-dimensional GBM. We 

compare our results with those delivered by a finite difference approach and the Least-

Squares Monte Carlo Method. Then, the method is extended to general Markovian 

dynamics, which includes stochastic variance, jumps, and regime-dependent parameters. 
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Finally, Section 2.5 proposes extensions and further research lines, and Section 2.6 

provides concluding remarks. 

 

2.2 Optimal Switching Problem 

 

In this section, we formulate the optimal switching problem using the notation of Pham 

(2009). We then formulate our method using the notion of continuation and switching 

regions. 

 

2.2.1 Mathematical Formulation 

 

Consider a system operating in a set of possible regimes 𝕀𝕀𝑚𝑚 = {1, … ,𝑚𝑚} over a time 

interval [0,𝑇𝑇]. The system is driven by a diffusion process 𝐗𝐗 ∈ ℝ𝑛𝑛, which is solution to  

 

 𝑑𝑑𝐗𝐗𝑢𝑢 = 𝑏𝑏(𝐗𝐗𝑢𝑢) 𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝐗𝐗𝑢𝑢) 𝑑𝑑𝐖𝐖𝑢𝑢,          𝑢𝑢 ∈ [𝑡𝑡,𝑇𝑇],   𝐗𝐗𝑡𝑡 = 𝐱𝐱 ∈ ℝ𝑛𝑛 (2.1) 

 

where 𝐖𝐖 ∈ ℝ𝑛𝑛 is a 𝑛𝑛-dimensional Wiener process on a filtered probability space 

(Ω,ℱ,𝔽𝔽 = (ℱ𝑡𝑡)𝑡𝑡≥0,𝑃𝑃), 𝑏𝑏 and 𝜎𝜎 are ℝ𝑛𝑛 and ℝ𝑛𝑛×𝑛𝑛 valued–functions, respectively. One 

may assume 𝑏𝑏 and 𝜎𝜎 are also functions of the regime at time 𝑢𝑢.  

 

A payoff rate function 𝜓𝜓𝑖𝑖: ℝ𝑛𝑛 → ℝ is defined for each regime 𝑖𝑖. Furthermore, the 

transition from regime 𝑖𝑖 to regime 𝑗𝑗 involves a fixed cost 𝑘𝑘𝑖𝑖𝑖𝑖, which satisfies the following 

triangular condition 

 

 𝑘𝑘𝑖𝑖𝑖𝑖 < 𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑘𝑘𝑘𝑘 ,          𝑘𝑘 ≠ 𝑖𝑖, 𝑗𝑗, (2.2) 
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implying that the one-step transition from 𝑖𝑖 to 𝑗𝑗 is cheaper than any 2-step alternative. 

Furthermore, we assume that 𝑘𝑘𝑖𝑖𝑖𝑖 = 0 to avoid arbitrage opportunities by switching back 

and forth. 

 

Let 𝛼𝛼 = (𝜏𝜏𝑛𝑛, 𝜄𝜄𝑛𝑛)𝑛𝑛≥1 be an operation strategy where {𝜏𝜏𝑛𝑛}𝑛𝑛≥1 is an increasing sequence of 

switching times, and 𝜄𝜄𝑛𝑛 ∈ 𝕀𝕀𝑚𝑚 is the current regime from time 𝜏𝜏𝑛𝑛 until time 𝜏𝜏𝑛𝑛+1. 

Accordingly, the process indicating the regime value over time, given an initial regime 

𝜄𝜄0 = 𝑖𝑖 at time 𝑡𝑡, is 

 

 𝐼𝐼𝑢𝑢 = �𝜄𝜄𝑛𝑛𝟙𝟙[𝜏𝜏𝑛𝑛,𝜏𝜏𝑛𝑛+1)(𝑢𝑢)
𝑛𝑛≥0

,          𝑢𝑢 ∈ [𝑡𝑡,𝑇𝑇] (2.3) 

 

where 𝜏𝜏0 = 𝑡𝑡, and 𝟙𝟙𝐴𝐴(𝑥𝑥) is the indicator function on 𝐴𝐴.  

 

Thereby, the expected discounted profit at time 𝑡𝑡 is expressed as 

 

𝐻𝐻(𝑡𝑡, 𝐱𝐱, 𝑖𝑖;𝛼𝛼) = 𝔼𝔼 �� 𝜓𝜓𝐼𝐼𝑢𝑢(𝐗𝐗𝑢𝑢) 𝑒𝑒−𝜌𝜌(𝑢𝑢−𝑡𝑡)
𝑇𝑇

𝑡𝑡
𝑑𝑑𝑑𝑑 − � 𝑘𝑘𝜄𝜄𝑛𝑛−1,𝜄𝜄𝑛𝑛  𝑒𝑒−𝜌𝜌(𝜏𝜏𝑛𝑛−𝑡𝑡)

𝑡𝑡≤𝜏𝜏𝑛𝑛≤𝑇𝑇

� (2.4) 

 

where 𝜌𝜌 is a positive discount rate and the expectation is conditioned on the initial values 

𝐱𝐱 and 𝑖𝑖 at time 𝑡𝑡. The goal of a decision maker is to find the operation strategy 𝛼𝛼 that 

maximize the discounted expected profit in (2.4). Then, the optimal value function is 

defined as 

 

 𝑣𝑣(𝑡𝑡, 𝐱𝐱, 𝑖𝑖) = sup
𝛼𝛼∈𝒜𝒜

𝐻𝐻(𝑡𝑡, 𝐱𝐱, 𝑖𝑖;𝛼𝛼) ,          𝑡𝑡 ∈ [0,𝑇𝑇],   𝐱𝐱 ∈ ℝ𝑛𝑛,   𝑖𝑖 ∈ 𝕀𝕀𝑚𝑚 (2.5) 

 

where 𝒜𝒜 denote the set of all possible switching strategies. From the Dynamic 

Programming Principle, one may derive the well-known system of variational inequalities 
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in (2.6) for which 𝑣𝑣𝑖𝑖 = 𝑣𝑣(𝑡𝑡, 𝐱𝐱, 𝑖𝑖) is a solution, where ℒ is the generator of the diffusion 

process 𝐗𝐗. 

 

 min �𝜌𝜌𝑣𝑣𝑖𝑖 −
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

− ℒ𝑣𝑣𝑖𝑖 − 𝜓𝜓𝑖𝑖 , 𝑣𝑣𝑖𝑖 − max
𝑖𝑖≠𝑗𝑗

�𝑣𝑣𝑗𝑗 − 𝑘𝑘𝑖𝑖𝑖𝑖�� = 0, 

𝑡𝑡 ∈ [0,𝑇𝑇],   𝐱𝐱 ∈ ℝ𝑛𝑛,   𝑖𝑖 ∈ 𝕀𝕀𝑚𝑚 
(2.6) 

 

2.2.2 Switching Boundaries and Optimality  

 

From (2.6), for any regime 𝑖𝑖 ∈ 𝕀𝕀𝑚𝑚 we note that the space [0,𝑇𝑇] × ℝ𝑛𝑛 splits into a 

continuation (𝒞𝒞𝑖𝑖) and a switching (𝒮𝒮𝑖𝑖) region. We define such regions as sets (𝑡𝑡, 𝐱𝐱) ⊂

[0,𝑇𝑇] × ℝ𝑛𝑛 where the optimal decision is to stay in regime 𝑖𝑖 and to switch from regime 𝑖𝑖 

to any other, respectively. Let 𝒮𝒮𝑖𝑖𝑖𝑖 ⊂ 𝒮𝒮𝑖𝑖 be the subset where the optimal transition is to 

regime 𝑗𝑗. We have the following definitions 

 

 
𝒞𝒞𝑖𝑖 = �(𝑡𝑡, 𝐱𝐱) ∈ [0,𝑇𝑇] × ℝ𝑛𝑛 ∶ 𝜌𝜌𝑣𝑣𝑖𝑖 −

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

− ℒ𝑣𝑣𝑖𝑖 − 𝜓𝜓𝑖𝑖 = 0�, (2.7) 

   

 𝒮𝒮𝑖𝑖 = �(𝑡𝑡, 𝐱𝐱) ∈ [0,𝑇𝑇] × ℝ𝑛𝑛 ∶ 𝑣𝑣𝑖𝑖 = max
𝑗𝑗≠𝑖𝑖

�𝑣𝑣𝑗𝑗 − 𝑘𝑘𝑖𝑖𝑖𝑖��, (2.8) 

   

 𝒮𝒮𝑖𝑖𝑖𝑖 = �(𝑡𝑡, 𝐱𝐱) ∈ [0,𝑇𝑇] × ℝ𝑛𝑛 ∶ 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑗𝑗 − 𝑘𝑘𝑖𝑖𝑖𝑖�. (2.9) 

 

Denote by 𝜕𝜕𝒮𝒮𝑖𝑖𝑖𝑖 the boundary of the switching region 𝒮𝒮𝑖𝑖𝑖𝑖. Under continuity of the solution 

to (2.6), the optimality condition for 𝜕𝜕𝒮𝒮𝑖𝑖𝑖𝑖 is given by the following equality 

 

 𝑣𝑣(𝑡𝑡, 𝐱𝐱, 𝑖𝑖) = 𝑣𝑣(𝑡𝑡, 𝐱𝐱, 𝑗𝑗) − 𝑘𝑘𝑖𝑖𝑖𝑖 ,          (𝑡𝑡, 𝐱𝐱) ∈ 𝜕𝜕𝒮𝒮𝑖𝑖𝑖𝑖 ,   𝑖𝑖 ≠ 𝑗𝑗 ∈ 𝕀𝕀𝑚𝑚 (2.10) 
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where 𝑣𝑣(𝑡𝑡, 𝐱𝐱, 𝑖𝑖) is the expected cash flow when the transition to regime 𝑗𝑗 at time 𝑡𝑡 is 

avoided. Since (𝑡𝑡, 𝐱𝐱) is on 𝜕𝜕𝒮𝒮𝑖𝑖𝑖𝑖, note that the value function 𝑣𝑣(𝑡𝑡, 𝐱𝐱, 𝑖𝑖) is given by the 

operation strategy over the adjacent region to 𝒮𝒮𝑖𝑖𝑖𝑖.  

 

Let us outline a novel approach to address the optimal switching problem from the above 

notion of switching boundaries. Consider a set of switching regions (not necessarily 

optimal), one may derive the operation strategy 𝛼𝛼 according to the following sequence 

 

 𝜏𝜏0 = 𝑡𝑡,     𝜄𝜄0 = 𝑖𝑖 

𝜏𝜏1 = inf{𝑢𝑢 ≥ 𝜏𝜏0:𝐗𝐗𝑢𝑢 ∈ 𝒮𝒮𝑖𝑖},     𝜄𝜄1 = 𝑗𝑗 ∶  𝐗𝐗𝜏𝜏1 ∈ 𝒮𝒮𝑖𝑖𝑖𝑖 ⊂ 𝒮𝒮𝑖𝑖 

⋮ 

𝜏𝜏𝑛𝑛 = inf�𝑢𝑢 ≥ 𝜏𝜏𝑛𝑛−1:𝐗𝐗𝑢𝑢 ∈ 𝒮𝒮𝜄𝜄𝑛𝑛−1� ,     𝜄𝜄𝑛𝑛 = 𝑗𝑗 ∶  𝐗𝐗𝜏𝜏𝑛𝑛 ∈ 𝒮𝒮𝜄𝜄𝑛𝑛−1,𝑗𝑗 ⊂ 𝒮𝒮𝜄𝜄𝑛𝑛−1 

(2.11) 

 

and compute the expected discounted profit 𝐻𝐻(𝑡𝑡, 𝐱𝐱, 𝑖𝑖;𝛼𝛼) at each point over the switching 

boundary 𝜕𝜕𝒮𝒮𝑖𝑖𝑖𝑖. If equation (2.10) is hold, then the switching boundary is optimal. If not, 

we propose an iterative method to update it until equality in (2.10) is achieved. 

 

Let (𝑆𝑆,𝐙𝐙) be a partition of the diffusion process 𝐗𝐗 ∈ ℝ𝑛𝑛 such that 𝑆𝑆 ∈ ℝ and 𝐙𝐙 ∈ ℝ𝑛𝑛−1. 

The process starts from 𝐱𝐱 = (𝑠𝑠, 𝐳𝐳) at time 𝑡𝑡 ∈ [0,𝑇𝑇]. Consider the following operator 

 

 Φ(𝑡𝑡, 𝑠𝑠, 𝐳𝐳, 𝑖𝑖, 𝑗𝑗;𝛼𝛼) = 𝐻𝐻(𝑡𝑡, 𝑠𝑠, 𝐳𝐳, 𝑖𝑖;𝛼𝛼) − 𝐻𝐻(𝑡𝑡, 𝑠𝑠, 𝐳𝐳, 𝑗𝑗;𝛼𝛼) + 𝑘𝑘𝑖𝑖𝑖𝑖 (2.12) 

 

Fixing 𝑡𝑡 and 𝐳𝐳, the equation Φ(𝑡𝑡, 𝑠𝑠, 𝐳𝐳, 𝑖𝑖, 𝑗𝑗;𝛼𝛼) = 0 may be solved for 𝑠𝑠 and then characterize 

the optimal switching boundary as  

 

 𝜕𝜕𝒮𝒮𝑖𝑖𝑖𝑖 = ��𝑡𝑡, 𝑠𝑠𝑖𝑖𝑖𝑖∗ (𝑡𝑡, 𝐳𝐳), 𝐳𝐳� ∈ [0,𝑇𝑇] × ℝ × ℝ𝑛𝑛−1� (2.13) 
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where 𝑠𝑠𝑖𝑖𝑖𝑖∗ (𝑡𝑡, 𝐳𝐳) is the solution to (2.12). A key assumption in this first formulation is that 

𝑠𝑠𝑖𝑖𝑖𝑖∗ (𝑡𝑡, 𝐳𝐳) is indeed a function of (𝑡𝑡, 𝐳𝐳), which holds in the model we study later. 

 

Based on Cortazar et al. (2016), the equation Φ(𝑡𝑡, 𝑠𝑠, 𝐳𝐳, 𝑖𝑖, 𝑗𝑗;𝛼𝛼) = 0 may be solved using 

the Newton-Kantorovich method. Starting from an initial guess 𝑠𝑠𝑖𝑖𝑖𝑖
(0) at some state (𝑡𝑡, 𝐳𝐳), a 

new approximation is computed according to  

 

 
𝑠𝑠𝑖𝑖𝑖𝑖

(𝑘𝑘+1) = 𝑠𝑠𝑖𝑖𝑖𝑖
(𝑘𝑘) − �

𝜕𝜕Φ(𝑡𝑡, 𝑠𝑠, 𝐳𝐳, 𝑖𝑖, 𝑗𝑗;𝛼𝛼)
𝜕𝜕𝜕𝜕

�
𝑠𝑠=𝑠𝑠𝑖𝑖𝑖𝑖

(𝑘𝑘)
�

−1

∙ Φ�𝑡𝑡, 𝑠𝑠𝑖𝑖𝑖𝑖
(𝑘𝑘), 𝐳𝐳, 𝑖𝑖, 𝑗𝑗;𝛼𝛼� (2.14) 

 

Our method shall be referred as the Simulated-Fixed Point Iteration Method for Real 

Options (SFPI-RO). Note that the implementation of the algorithm depends on: (1) the 

hypothesis of 𝑠𝑠𝑖𝑖𝑖𝑖∗  as a function of (𝑡𝑡, 𝐳𝐳), and (2) an expression to easily compute 𝜕𝜕Φ 𝜕𝜕𝜕𝜕⁄ . 

 

2.3 SFPI-RO Method and the Model of Brennan and Schwartz (1985) 

 

In this section, we formulate the SFPI-RO Method to address the optimal decision policy 

for the commodity mine of Brennan & Schwartz (1985).  

 

Let us consider a mine of an exhaustible natural resource, which operates under a 

concession expiring at time 𝑇𝑇. The possible regimes for the operation are closed, open, 

and abandoned (permanent closure), which are labeled as 𝑖𝑖 = {0, 1, 2}, respectively. Note 

that the mine value depends on the commodity price 𝑆𝑆, the reserves level, 𝑄𝑄, and time, 𝑡𝑡. 

In addition, one may consider dependency on 𝐘𝐘 ∈ 𝐷𝐷 ⊆ ℝ𝑛𝑛−2, a vector of (𝑛𝑛 − 2) latent 

state variables for the commodity price process. Thus, the process 𝚾𝚾 = (𝑆𝑆,𝐘𝐘,𝑄𝑄) ∈ ℝ𝑛𝑛 

drives the system. 
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From Brennan & Schwartz (1985), the mine value 𝐻𝐻(𝑡𝑡, 𝐱𝐱, 𝑖𝑖;𝛼𝛼) = 𝐻𝐻𝑖𝑖(𝑡𝑡, 𝐱𝐱) is given by 

 

𝐻𝐻𝑖𝑖(𝑡𝑡, 𝐱𝐱) = 𝔼𝔼��(𝑞𝑞(𝑆𝑆𝑢𝑢 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆𝑢𝑢)) 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

− �𝑓𝑓 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=0}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

− � 𝑘𝑘𝜄𝜄𝑛𝑛−1,𝜄𝜄𝑛𝑛  𝑒𝑒−𝑅𝑅𝜏𝜏𝑛𝑛
𝑡𝑡≤𝜏𝜏𝑛𝑛≤𝑇𝑇

� 

𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠) = 𝑡𝑡1𝑞𝑞𝑞𝑞 + max{𝑡𝑡2𝑞𝑞(𝑠𝑠(1 − 𝑡𝑡1) − 𝑎𝑎), 0} 

(2.15) 

 

where 𝑞𝑞 is the extraction rate, 𝑎𝑎 is the deflated cost rate of production when open, and 𝑓𝑓 

is the deflated cost rate of maintaining the mine when closed. While the mine is open, the 

tax structure includes a royalty and an income tax at rates 𝑡𝑡1 and 𝑡𝑡2, respectively. The 

authors also consider a property tax rate 𝜆𝜆𝑖𝑖 on the market value of the mine, depending on 

the operating status (𝑖𝑖 = 0, 1). As point out by them, 𝜆𝜆𝑖𝑖 may represent the arrival rate of a 

Poisson process governing the possible expropriation of the mine. Hence, we define a 

discount factor 𝑅𝑅𝑢𝑢 = ∫ 𝜌𝜌𝐼𝐼𝑣𝑣𝑑𝑑𝑑𝑑
𝑢𝑢
𝑡𝑡 , where 𝜌𝜌𝑖𝑖 = 𝑟𝑟 + 𝜆𝜆𝑖𝑖 is a regime-dependent rate and 𝑟𝑟 is the 

real risk-free rate. 

 

To simplify notation, we reformulate 𝐻𝐻𝑖𝑖(𝑡𝑡, 𝐱𝐱) as in (2.16), where 𝐴𝐴𝑖𝑖(𝑡𝑡, 𝐱𝐱) is an expected 

cash-flow linearly related to the commodity price process while 𝐵𝐵𝑖𝑖(𝑡𝑡, 𝐱𝐱) is not.  

 

𝐻𝐻𝑖𝑖(𝑡𝑡, 𝐱𝐱) = 𝔼𝔼��𝑚𝑚𝑢𝑢𝑆𝑆𝑢𝑢𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

� − 𝔼𝔼��𝑛𝑛𝑢𝑢𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

+ � 𝑘𝑘𝜄𝜄𝑛𝑛−1,𝜄𝜄𝑛𝑛𝑒𝑒
−𝑅𝑅𝜏𝜏𝑛𝑛

𝑡𝑡≤𝜏𝜏𝑛𝑛≤𝑇𝑇

� 

= 𝐴𝐴𝑖𝑖(𝑡𝑡, 𝐱𝐱) − 𝐵𝐵𝑖𝑖(𝑡𝑡, 𝐱𝐱) 

(2.16) 

 

The decision policy is then defined in terms of four critical prices: 𝑆𝑆02(𝑡𝑡,𝐘𝐘,𝑄𝑄), 

𝑆𝑆01(𝑡𝑡,𝐘𝐘,𝑄𝑄), 𝑆𝑆12(𝑡𝑡,𝐘𝐘,𝑄𝑄), and 𝑆𝑆10(𝑡𝑡,𝐘𝐘,𝑄𝑄), each one related to a possible regime transition. 
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These critical prices satisfy equations (2.17) – (2.20)2 and trigger regime transitions 

according to Figure 2.1 for a given state (𝑡𝑡,𝐘𝐘,𝑄𝑄). 

 

 𝐻𝐻0(𝑡𝑡, 𝑆𝑆02,𝐘𝐘,𝑄𝑄) = −𝑘𝑘02 (2.17) 

   

 𝐻𝐻0(𝑡𝑡, 𝑆𝑆01,𝐘𝐘,𝑄𝑄) = 𝐻𝐻1(𝑡𝑡, 𝑆𝑆01,𝐘𝐘,𝑄𝑄) − 𝑘𝑘01 (2.18) 

   

 𝐻𝐻1(𝑡𝑡, 𝑆𝑆12,𝐘𝐘,𝑄𝑄) = −𝑘𝑘12 (2.19) 

   

 𝐻𝐻1(𝑡𝑡, 𝑆𝑆10,𝐘𝐘,𝑄𝑄) = max{𝐻𝐻0(𝑡𝑡, 𝑆𝑆10,𝐘𝐘,𝑄𝑄) − 𝑘𝑘10,−𝑘𝑘12} (2.20) 

 

 

 
 

Figure 2.1 Switching conditions for the model of Brennan and Schwartz (1985) 

 

                                                 
2 Note that the optimal decision is to abandon instead of close at 𝑆𝑆10 when 𝐻𝐻0(𝑡𝑡, 𝑆𝑆10,𝐘𝐘,𝑄𝑄) − 𝑘𝑘10 < −𝑘𝑘12. 

Therefore, the closure region is empty, and we conveniently set 𝑆𝑆10 = 𝑆𝑆12, even though 𝑆𝑆10 is undefined.  

 2 

 0  1 

𝑆𝑆𝑡𝑡 > 𝑆𝑆01 

𝑆𝑆𝑡𝑡 ≥ 0 

𝑆𝑆𝑡𝑡 ≥ 𝑆𝑆10              𝑆𝑆02 ≤ 𝑆𝑆𝑡𝑡 ≤ 𝑆𝑆01 
𝑆𝑆12 ≤ 𝑆𝑆𝑡𝑡 < 𝑆𝑆10 
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In order to implement SFPI-RO, the following proposition gives an expression for the 

mine delta (a proof is provided in Appendix A). 

 

Proposition 1. If 𝑆𝑆 exhibits constant returns to scale, then the partial derivative of the 

mine value with respect to 𝑆𝑆𝑡𝑡 = 𝑠𝑠 is given by 

 

 
Δ =

𝜕𝜕𝐻𝐻𝑖𝑖(𝑡𝑡, 𝐱𝐱)
𝜕𝜕𝜕𝜕

=
𝔼𝔼�∫ 𝑚𝑚𝑢𝑢𝑆𝑆𝑢𝑢𝑑𝑑𝑑𝑑

𝑇𝑇
𝑡𝑡 �

𝑠𝑠
=
𝐴𝐴𝑖𝑖(𝑡𝑡, 𝐱𝐱)

𝑠𝑠
 (2.21) 

 

From (2.14) and Proposition 1, critical prices defined in equations (2.17) – (2.20) may be 

computed with the following iteration method at a given state (𝑡𝑡,𝐘𝐘,𝑄𝑄), where we denote 

𝐴𝐴𝑖𝑖�𝑡𝑡, 𝑆𝑆𝑐𝑐
(𝑘𝑘),𝐘𝐘,𝑄𝑄� = 𝐴𝐴𝑖𝑖�𝑆𝑆𝑐𝑐

(𝑘𝑘)� and 𝐵𝐵𝑖𝑖�𝑡𝑡, 𝑆𝑆𝑐𝑐
(𝑘𝑘),𝐘𝐘,𝑄𝑄� = 𝐵𝐵𝑖𝑖�𝑆𝑆𝑐𝑐

(𝑘𝑘)�: 

 

 
𝑆𝑆02

(𝑘𝑘+1) = 𝑆𝑆02
(𝑘𝑘) ∙

𝐵𝐵0�𝑆𝑆02
(𝑘𝑘)� − 𝑘𝑘02

𝐴𝐴0�𝑆𝑆02
(𝑘𝑘)�

, (2.22) 

   

 
𝑆𝑆01

(𝑘𝑘+1) = 𝑆𝑆01
(𝑘𝑘) ∙

𝐵𝐵0�𝑆𝑆01
(𝑘𝑘)� − 𝐵𝐵1�𝑆𝑆01

(𝑘𝑘)� − 𝑘𝑘01

𝐴𝐴0�𝑆𝑆01
(𝑘𝑘)� − 𝐴𝐴1�𝑆𝑆01

(𝑘𝑘)�
, (2.23) 

   

 
𝑆𝑆12

(𝑘𝑘+1) = 𝑆𝑆12
(𝑘𝑘) ∙

𝐵𝐵1�𝑆𝑆12
(𝑘𝑘)� − 𝑘𝑘12

𝐴𝐴1�𝑆𝑆12
(𝑘𝑘)�

, (2.24) 

   

𝑆𝑆10
(𝑘𝑘+1) =

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆12

(𝑘𝑘+1) if 𝐻𝐻0�𝑆𝑆10
(𝑘𝑘)� − 𝑘𝑘10 < −𝑘𝑘12

𝑆𝑆10
(𝑘𝑘) ∙

𝐵𝐵1�𝑆𝑆10
(𝑘𝑘)� − 𝐵𝐵0�𝑆𝑆10

(𝑘𝑘)� − 𝑘𝑘10

𝐴𝐴1�𝑆𝑆10
(𝑘𝑘)� − 𝐴𝐴0�𝑆𝑆10

(𝑘𝑘)�
otherwise.

 (2.25) 
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To operationalize the method, we address a discrete version of the problem, where the 

number of regime transitions is bounded. Let 𝑥𝑥 be the number of switching opportunities 

per year, implying that transitions are allowed every 𝛥𝛥𝛥𝛥 = 1 𝑥𝑥⁄  years and thus the reserves 

level is restricted to multiples of 𝛥𝛥𝛥𝛥 = 𝑞𝑞𝑞𝑞𝑞𝑞. Let 𝒫𝒫 be a discretization of the space 

[0,𝑇𝑇] × 𝐷𝐷 × [0,𝑄𝑄∗], where 𝑄𝑄∗ is the initial state of reserves. We use a time-grid given by 

𝒯𝒯 = {0 = 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁𝑁𝑁 = 𝑇𝑇}, where 𝑡𝑡𝑘𝑘 is an increasing sequence of multiples of 𝛥𝛥𝛥𝛥, and 

the reserves grid is defined as 𝒬𝒬 = �0 = 𝑄𝑄0,𝑄𝑄1, … ,𝑄𝑄𝑁𝑁𝑁𝑁 = 𝑄𝑄∗�, where 𝑄𝑄𝑘𝑘 is an increasing 

sequence of multiples of 𝛥𝛥𝛥𝛥. Since states attainable by 𝐘𝐘 are stochastic, one may bound 

the process within a feasible range and then discretize such interval.  

 

The set of critical prices is defined for each 𝑝𝑝 = (𝓉𝓉,𝔂𝔂,𝓆𝓆) ∈ 𝒫𝒫 and it is obtained by linear 

interpolation otherwise. As an initial guess, we derive an expression of the critical prices 

at time 𝑇𝑇 − 𝛥𝛥𝛥𝛥 as in Appendix B. We do so since the optimal decision is to abandon under 

any scenario at time 𝑇𝑇, for both the open and the closed mine, and therefore the critical 

prices go to infinity. The same behavior arises when the mine is exhausted (𝑄𝑄 = 0). 

 

Starting from the nodes along 𝑄𝑄 = 𝛥𝛥𝛥𝛥 and 𝑡𝑡 = 𝑇𝑇 − 𝛥𝛥𝛥𝛥, the resulting set of initial prices 

�𝑆𝑆02
(0), 𝑆𝑆01

(0), 𝑆𝑆12
(0), 𝑆𝑆10

(0)� is refined simultaneously through equations (2.22) – (2.25). To 

estimate 𝐴𝐴𝑖𝑖�𝑆𝑆𝑐𝑐
(𝑘𝑘)� and 𝐵𝐵𝑖𝑖�𝑆𝑆𝑐𝑐

(𝑘𝑘)� at each 𝑝𝑝 = (𝓉𝓉,𝓎𝓎,𝓆𝓆) ∈ 𝒫𝒫, a set of 𝑀𝑀 trajectories of 𝑆𝑆 and 

𝐘𝐘 are simulated with an initial value (𝑆𝑆𝑐𝑐
(𝑘𝑘),𝔂𝔂), starting at time 𝑡𝑡 = 𝓉𝓉, and initial reserves 

level 𝑄𝑄 = 𝓆𝓆. Simulation stops once: (1) drop below abandonment price, (2) concession 

expires (𝑡𝑡 = 𝑇𝑇), or (3) the mine is exhausted (𝑄𝑄 = 0).  

 

Finally, for each node 𝑝𝑝 ∈ 𝒫𝒫 the algorithm iterates until convergence is achieved. For 

example, one may consider the stopping criterion in (2.26), where 𝜖𝜖 > 0.  
 

 
max

𝑐𝑐 ∈ {02,01,12,10}
�
𝑆𝑆𝑐𝑐

(𝑘𝑘+1) − 𝑆𝑆𝑐𝑐
(𝑘𝑘)

𝑆𝑆𝑐𝑐
(𝑘𝑘) � ≤ 𝜖𝜖 (2.26) 
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2.4 Numerical Results 

 

SFPI-RO is implemented for the mine of Brennan & Schwartz (1985). First, we validate 

the method under a one-dimensional GBM. As a reference, we numerically address (2.6) 

by means of a Finite Difference Method (FDM). Then, we introduce a general stochastic 

variance model with jumps in price and variance to exhibit the performance of our method 

under different sources of uncertainty. We compare our results with those delivered by the 

Least-Squares Monte Carlo Method (LSM). Finally, we address a regime-dependent 

model to highlight the versatility of our algorithm when methods like LSM are not 

applicable. The source code was developed in MATLAB and executed on an Intel laptop 

i5-8250U 6GB with 3.40 GHz.  

 

2.4.1 SFPI-RO under Geometric Brownian Model 

 

Consider a mine with finite reserves, 𝑄𝑄∗ = 150 million pounds, finite concession time, 

𝑇𝑇 = 30 years, and 𝑥𝑥 = 4 switching opportunities per year. The deflated spot price under 

the risk-free measure follows a one-dimensional GBM given by  

 

 𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= (𝑟𝑟 − 𝑑𝑑)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡 (2.27) 

 

where 𝑟𝑟 = 2% is the real risk-free rate, 𝑑𝑑 = 1% is the convenience yield, and 𝜎𝜎 = √0.08 

is the price volatility. The remaining parameters are obtained from Table 1 of Brennan & 

Schwartz (1985).  

 

In what follows we provide a series of results in order to show the performance of the 

algorithm.  
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2.4.1.1 Critical Prices delivered by SFPI-RO 

 

Figure 2.2 and Figure 2.3 show the critical prices delivered by SFPI-RO (black lines) and 

the switching regions obtained with FDM3 as a colored background. Moreover, we display 

the critical prices delivered by LSM4 (blue lines). We show cross-sections of the decision 

policy across the time-to-maturity axis (𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡) in Figure 2.2 and across the reserves 

axis in Figure 2.3. SFPI-RO considers 𝑀𝑀 = 250,000 paths for each critical price, and a 

convergence threshold 𝜖𝜖 = 1%. Moreover, we define a mesh 𝒫𝒫 with 26 time-nodes and 33 

reserves-nodes (#𝒫𝒫 = 858 nodes). Appendix E provides results under different 

specification of 𝒫𝒫 (changing the number of nodes in both the time and reserves axis). 

 

Note that SFPI-RO provides smooth critical prices which closely approximate the 

reference delivered by FDM. From the management perspective, non-noisy estimations 

are an important feature in order to avoid arbitrary correction procedures before 

operationalizing the decision policy. In fact, any correction attempt could add new sources 

of error, leading to suboptimal decisions. Therefore, our method can help to easily 

operationalize an optimal operation strategy. On the other hand, critical prices delivered 

by LSM are slightly suboptimal and even noisy for some cross-sections. This is to be 

expected since LSM was developed to accurately address the optimal value and not the 

decision policy. 

 

                                                 
3 See Appendix C for further details on FDM. When implementing the method, we consider 64 time-steps 

per year to discretize the time-axis. Furthermore, we use 25,000 points to discretize the price-axis between 

0 and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 , which is defined as the 99th percentile of 𝑆𝑆𝑇𝑇 when 𝑆𝑆0 = 𝑎𝑎. 
4 See Appendix D for further details on LSM. We consider 400,000 prices paths with 64 time-steps per year 

when implementing the method. Moreover, as regression functions we use polynomials of order 1 to 3, and 

three European options on the commodity price, strike price at multiples of the production cost rate 𝑎𝑎 

(0.50 𝑎𝑎, 𝑎𝑎, and 1.50 𝑎𝑎), and time to maturity 1 𝑥𝑥⁄  (time between consecutive transition opportunities).  
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Figure 2.2 Cross-sections across the 𝜏𝜏-axis [year] of critical prices under a one-dimensional GBM  

We compare the critical prices delivered by SFPI-RO (black lines) and LSM (blue lines) with the decision policy delivered by 

FDM (colored background) when the mine is initially open (top row) and closed (bottom row). As a reference, the cost rate of 

production is 𝑎𝑎 = 0.50 $/pound. 
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Figure 2.3 Cross-sections across the 𝑄𝑄-axis [MM pound] of critical prices under a one-dimensional GBM 

We compare the critical prices delivered by SFPI-RO (black lines) and LSM (blue lines) with the decision policy delivered by 

FDM (colored background) when the mine is initially open (top row) and closed (bottom row). As a reference, the cost rate of 

production is 𝑎𝑎 = 0.50 $/pound. 
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Regarding the estimation accuracy, Table 2.1 displays the overall RMSE and the 

computational runtime when varying the number of nodes in the domain discretization, 

#𝒫𝒫, and the number of simulated paths, 𝑀𝑀. The first one is measured by calculating the 

RMSE of the four critical prices delivered by SFPI-RO, with respect to its FDM 

counterpart. Since SFPI-RO mesh is incomplete, the critical prices are interpolated for the 

missing points.  
 

Table 2.1 Overall RMSE and runtime for SFPI-RO under a one-dimensional GBM 
 

𝑀𝑀 
Overall RMSE [× 10−5] when #𝒫𝒫 = Runtime [min] when #𝒫𝒫 = 

56 143 357 858 56 143 357 858 

25,000 30.9450 6.1238 1.5972 1.0993 5.90 17.40 54.99 160.71 

50,000 28.8757 5.5252 1.2560 0.8050 7.71 25.85 70.64 185.36 

100,000 29.0744 5.3613 1.0768 0.6960 10.04 33.73 86.97 275.66 

250,000 29.2625 5.2223 0.9948 0.5796 22.71 53.75 132.39 392.77 

 

We note that the algorithm converges almost monotonically while increasing #𝒫𝒫 and 𝑀𝑀. 

For low values of #𝒫𝒫, discretization error is large enough to control the accuracy of the 

method. In fact, the expected benefit of more price paths (in terms of lower RMSE) 

becomes significant as #𝒫𝒫 increases. As a reference, the overall RMSE of the reported 

LSM critical prices is 52.0381 × 10−5, which is higher than those provided by our 

method. 

 

In terms of computational runtime, the marginal time required increases quickly while 

increasing #𝒫𝒫 and 𝑀𝑀. However, the reader may explore alternatives to optimize the 

performance of the algorithm if required. In fact, one could parallelize the method in the 

same way as Cortazar et al. (2016) in order to speed it up. Moreover, if the runtime is still 

a drawback, it is possible to combine the advantages of both LSM and SFPI-RO. It is well-

known that LSM is faster. For instance, our implementation with 400,000 and 800,000 
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price paths takes around 18.4 and 37.9 minutes, respectively. But the method delivers 

imprecise and noisy estimates of the switching boundaries as observed in Figure 2.2 and 

Figure 2.3. Then, our proposal is to obtain a rough estimate of the critical prices with 

LSM, run our method starting from these boundaries and deliver an accurate output faster. 

 

2.4.1.2 Valuation under Critical Prices delivered by SFPI-RO 

 

In this section, we simulate price paths to estimate the mine value under the decision 

policy obtained with SFPI-RO. Our purpose is to establish the performance of the critical 

prices delivered by the method when valuing the mine, under the four grid-specifications 

defined in the previous section (increasing #𝒫𝒫 and 𝑀𝑀 = 250,000). We consider 50 

replications with 50,000 price paths per replication and initial price. Results are 

summarized in Table 2.2 for an initially open mine while we omit results for an initially 

closed one since we observe the same behavior. Column (1) presents the mine value 

obtained by simulating price paths under the FDM decision policy. Columns (2) and (3) 

display the mine value obtained by LSM and the RMSE with respect to FDM results. 

From column (3) to (6) the simulated values under the SFPI-RO decision policy are 

exhibited, for each of the four grid specifications. Finally, we present the RMSE for the 

previous estimates from Column (7) to (10), with respect to the simulated value under the 

FDM decision policy.  

 

Note that SFPI-RO provides accurate mine values for the four grid specifications. The 

benefit of refining the mesh #𝒫𝒫 is insignificant at least from #𝒫𝒫 = 357 nodes, which is to 

be expected from the accuracy reported for the critical prices. Nevertheless, the method 

provides reasonably good results even when using just #𝒫𝒫 = 56 nodes to compute the 

critical prices. In fact, valuation error is less than 1% in that case, decreasing as the initial 

price increases. Therefore, SFPI-RO shows to be robust as an approximation procedure. 
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Regarding LSM, note that we show the method is indeed a good estimator of the mine 

value. However, SFPI-RO is even more accurate under the four grid-specifications, 

although the value difference tends to zero as the initial price increases. The last statement 

is to be expected since the optimal strategy tends to no-switches (continuous operation) as 

the initial price increases. Hence, an accurate set of switching boundaries is irrelevant for 

such cases.  

 

The above results highlight the usefulness of our method. In addition to being convenient 

for a manager when operationalizing an investment strategy in the real world, SFPI-RO 

also leads to a robust and accurate valuation tool.
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Table 2.2 Values [MM$] for an initially open mine under a one-dimensional GBM 

 

Initial 
Price 

[$/pound] 

FDM LSM 
SFPI-RO 

Simulated Value [MM$] when #𝒫𝒫 = RMSE when #𝒫𝒫 = 
Sim. 

Value 
[MM$] 

Sim. 
Value 

[MM$] 
RMSE 56 nodes 143 nodes 357 nodes 858 nodes 56 nodes 143 nodes 357 nodes 858 nodes 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
0.3 1.2143 1.1437 0.0798 1.2042 1.2133 1.2141 1.2138 0.0125 0.0045 0.0039 0.0041 
0.4 4.0807 4.0341 0.0532 4.0674 4.0787 4.0809 4.0801 0.0159 0.0050 0.0034 0.0032 
0.5 7.8445 7.8184 0.0307 7.8286 7.8456 7.8476 7.8446 0.0186 0.0099 0.0100 0.0031 
0.6 12.4646 12.4423 0.0314 12.4499 12.4629 12.4640 12.4643 0.0170 0.0041 0.0022 0.0026 
0.7 17.4903 17.4714 0.0239 17.4768 17.4887 17.4904 17.4908 0.0167 0.0045 0.0018 0.0026 
0.8 22.8291 22.8133 0.0203 22.8186 22.8290 22.8296 22.8293 0.0130 0.0041 0.0020 0.0025 
0.9 28.3748 28.3622 0.0252 28.3655 28.3736 28.3747 28.3753 0.0116 0.0033 0.0020 0.0023 
1.0 34.0283 34.0292 0.0220 34.0220 34.0283 34.0290 34.0289 0.0085 0.0027 0.0019 0.0019 



28 
 

 

2.4.2 SFPI-RO under General Dynamics 

 

Consider the 2-dimensional affine jump-diffusion process proposed by Duffie et al. 

(2000). Denote the price process by 𝐗𝐗 = (𝑌𝑌 𝑉𝑉)T, where 𝑌𝑌 = ln(𝑆𝑆) and 𝑉𝑉 are the log-

price and the variance process, respectively. Assuming a constant real risk-free rate 𝑟𝑟 and 

convenience yield 𝑑𝑑, the dynamic of 𝐗𝐗 under the risk-free measure is given by 

 

𝑑𝑑 �𝑌𝑌𝑡𝑡𝑉𝑉𝑡𝑡
� = �

𝑟𝑟 − 𝑑𝑑 − 𝜆𝜆𝜆𝜆��� − 1
2𝑉𝑉𝑡𝑡

𝜅𝜅(𝜃𝜃 − 𝑉𝑉𝑡𝑡)
�𝑑𝑑𝑑𝑑 + �𝑉𝑉𝑡𝑡 �

1 0
𝜌𝜌𝜌𝜌 �1 − 𝜌𝜌2𝜎𝜎� 𝑑𝑑𝐖𝐖𝑡𝑡 + 𝑑𝑑𝐉𝐉𝑡𝑡 (2.28) 

 

The variance is modeled as a mean-reverting process where 𝜃𝜃 is the long-term level, 𝜅𝜅 is 

the mean-reverting rate, and 𝜎𝜎 is the volatility-of-variance. Moreover, 𝜌𝜌 is the correlation 

coefficient, 𝐖𝐖𝑡𝑡 ∈ ℝ2 is an uncorrelated Wiener process, and 𝐉𝐉𝑡𝑡 ∈ ℝ2 is a pure jump 

process with three components:  

 

(i) Jump in log-price only, which size is normally distributed with mean 𝜇𝜇𝑦𝑦 and 

variance 𝜎𝜎𝑦𝑦2, and arrives according to a Poisson process at rate 𝜆𝜆𝑦𝑦. 

(ii) Jump in variance only, which size is exponentially distributed with mean 𝜇𝜇𝜐𝜐, 

and arrives according to a Poisson process at rate 𝜆𝜆𝑣𝑣. 

(iii) Simultaneous and correlated jumps in 𝑌𝑌 and 𝑉𝑉 with arrival intensity 𝜆𝜆𝑐𝑐. 

Jump in variance has an exponentially distributed size with mean 𝜇𝜇𝑐𝑐𝑐𝑐. 

Conditional on the size of the jump in variance (𝑧𝑧𝑣𝑣), the jump size in log-price 

is normally distributed with mean (𝜇𝜇𝑐𝑐𝑐𝑐 + 𝜌𝜌𝐽𝐽𝑧𝑧𝑣𝑣) and variance 𝜎𝜎𝑐𝑐𝑐𝑐2 . 
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Finally, 𝜆𝜆𝜆𝜆��� correspond to the jump compensator term for the log-price process under the 

risk-free measure, which is given by  

 

 
𝜆𝜆𝜆𝜆��� = 𝜆𝜆𝑦𝑦 �exp �𝜇𝜇𝑦𝑦 +

1
2
𝜎𝜎𝑦𝑦2� − 1� + 𝜆𝜆𝑐𝑐 �

exp �𝜇𝜇𝑐𝑐𝑐𝑐 + 1
2𝜎𝜎𝑐𝑐𝑐𝑐

2 �
1 − 𝜌𝜌𝐽𝐽𝜇𝜇𝑐𝑐𝑐𝑐

− 1� (2.29) 

 

We implement SFPI-RO using this model in order to highlight the ability of the algorithm 

to address price dynamics with different sources of uncertainty. First, we consider 

stochastic variance only (SV model) to then add a general jump process (SVGJ model) in 

order to evaluate the performance of the method as complexity increases. The SV model, 

initially proposed by Heston (1993), is obtained by letting 𝜆𝜆𝑦𝑦 = 𝜆𝜆𝑣𝑣 = 𝜆𝜆𝑐𝑐 = 0, while the 

SVGJ model is obtained by letting 𝜆𝜆𝑦𝑦, 𝜆𝜆𝑣𝑣,𝜆𝜆𝑐𝑐 > 0.  

 

Numerical implementation uses 𝑀𝑀 = 250,000 paths for each critical price, and a 

convergence threshold 𝜖𝜖 = 1%. We address the case with finite reserves (𝑄𝑄∗ = 150 million 

pounds), infinite concession time, 𝑥𝑥 = 4 transition opportunities per year, and the same 

parameters introduced by Brennan & Schwartz (1985), for both the operation of the mine 

and the price dynamics (except for those related to the price variance). Moreover, the 

algorithm uses 11 nodes along the Q-grid, between 0 and 𝑄𝑄∗, and 10 nodes uniformly 

distributed in  [0, 1.50] for the variance-axis. Since the variance process is mean-reverting, 

𝑉𝑉 = 1.50 is large enough to guarantee that the most likely variance levels are 

appropriately covered.  
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2.4.2.1 SV Model 

 

Rather than considering constant variance equal to 0.08, one may model stochastic 

variance with long-term mean 𝜃𝜃 = 0.08. We address the case (𝜅𝜅,𝜎𝜎) = (2.5, 0.40), and 

𝜌𝜌 = {−0.07, 0.00, +0.70}. Figure 2.4 shows cross-sections of the critical prices for 4 

levels of variance (0.02, 0.08, 0.32, and 1.28), where the three correlation cases are 

overlaid. 

 

Once again, SFPI-RO provides well-behaved switching boundaries for the three 

correlation levels in terms of smoothness, convergence, etc. Regarding optimality, one 

may conceptually validate the results from the price process features. For instance, as the 

initial variance increases, the continuation region for a closed mine (area bounded by 𝑆𝑆02 

and 𝑆𝑆01) wides considerably. When 𝑉𝑉 = 1.28 it is even convenient to keep closed when 

there is only one reserve unit left to extract (gap between 𝑆𝑆02 and 𝑆𝑆01 when 𝑄𝑄 goes to 

zero). One may expect this behavior since a high variance level could trigger a very 

favorable price in the short-term, which could even pay the cost of keeping closed 

(maintenance cost) while waiting. Moreover, we also note that the abandoning price for 

both an open and a closed mine (𝑆𝑆12 and 𝑆𝑆02) decreases as 𝜌𝜌 increases. It is well-known 

that the correlation coefficient 𝜌𝜌 induces skewness on the price distribution: 𝜌𝜌 > 0 is 

related to positive skewness (fat right tail) and 𝜌𝜌 < 0 to negative skewness (fat left tail). 

Therefore, it is natural that the optimal abandonment strategy is riskier under positive 

correlation since greater correlation gives greater weight to high prices. 
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Figure 2.4 Cross-sections across the 𝑉𝑉-axis of critical prices under the SV model  

Color legend for critical prices: 𝑆𝑆02 = red; 𝑆𝑆01 = blue; 𝑆𝑆12 = black; 𝑆𝑆10 = green 
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Additionally, we compare the values delivered under the SFPI-RO decision policy with 

results obtained with LSM5 in order to numerically confirm the optimality of our method. 

Table 2.3 shows values for an initially open mine when varying the correlation 

coefficient. We report the SFPI-RO and LSM values with the corresponding standard 

deviation (50 replications with the same 50,000 price paths per initial state are 

considered). Also, we report the difference between both values, indicating the 𝑝𝑝-value 

for an upper-tailed t-test according to: (*) for 𝑝𝑝 < 10%, (**) for p < 5%, and (***) for p < 

10%. 

  

The results show that SFPI-RO delivers higher values than LSM for almost every case. 

As expected, when 𝜌𝜌 = {−0.70, 0.00} we observe the same behavior exhibited under 

GBM in Section 2.4.1.2: value difference decreases as the initial price increases. 

However, when 𝜌𝜌 = +0.70 we do not clearly observe such a behavior. Probably, this 

effect is due to the model itself is more volatile when correlation is positive and therefore 

one may expect higher and more dispersed errors when LSM is computing linear 

regressions. From the previous results, one may conclude SFPI-RO provides profitable 

decision policies, empirically confirming the optimality of our method at least when 

compared with LSM. 

 

 

 

 

 

                                                 
5 For LSM we use the same setup considered in Section 2.4.1 but redefining the regressions functions. We 

use polynomials of 𝑆𝑆 and 𝑉𝑉 up to order 2 (considering cross products) and three European Options under a 

GBM with constant variance equal to 𝑉𝑉. Although in this case one may choose options under the SV model, 

this would suppose a time demanding algorithm since there is no analytical expressions for the option value. 

Moreover, we set 𝑇𝑇 = 75 years in order to address the infinite decision horizon (the mine has 15 years of 

production under the parameters of Brennan & Schwartz, 1985). 
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Table 2.3 Values [MM$] for an initially open mine under the SV model  

(Initial Variance: 𝑉𝑉0 = 0.08) 

 

Initial Price 
[$/pound] 

Correlation coefficient 𝜌𝜌 = −0.70 
SFPI-RO LSM Difference 

Value 
[MM$] 

Standard 
Deviation 

Value 
[MM$] 

Standard 
Deviation Average [MM$] 

0.3 1.0629 0.0427 0.9951 0.0489 0.0678 (***) 
0.4 3.9677 0.0714 3.9232 0.0750 0.0445 (***) 
0.5 7.7942 0.0667 7.7622 0.0691 0.0320 (***) 
0.6 12.4797 0.0896 12.4575 0.0921 0.0222 (***) 
0.7 17.6554 0.0965 17.6371 0.0982 0.0184 (***) 
0.8 23.0571 0.1321 23.0453 0.1331 0.0118 (**) 
0.9 28.5895 0.1381 28.5763 0.1398 0.0133 (***) 
1.0 34.2459 0.1566 34.2435 0.1693 0.0024  

 

Initial Price 
[$/pound] 

Correlation coefficient 𝜌𝜌 = 0.00 
SFPI-RO LSM Difference 

Value 
[MM$] 

Standard 
Deviation 

Value 
[MM$] 

Standard 
Deviation Average [MM$] 

0.3 1.2047 0.0473 1.0556 0.0512 0.1490 (***) 
0.4 4.0797 0.0864 3.9560 0.0899 0.1236 (***) 
0.5 7.8514 0.0998 7.7544 0.1067 0.0970 (***) 
0.6 12.4285 0.1018 12.3726 0.1105 0.0559 (***) 
0.7 17.4634 0.1202 17.4254 0.1363 0.0380 (***) 
0.8 22.8659 0.1459 22.8291 0.1443 0.0369 (***) 
0.9 28.3952 0.1650 28.3680 0.1810 0.0272 (***) 
1.0 34.0399 0.2149 34.0255 0.2234 0.0144  

 

Initial Price 
[$/pound] 

Correlation coefficient 𝜌𝜌 = +0.70 
SFPI-RO LSM Difference 

Value 
[MM$] 

Standard 
Deviation 

Value 
[MM$] 

Standard 
Deviation Average [MM$] 

0.3 1.3336 0.0913 0.9622 0.2739 0.3714 (***) 
0.4 4.1661 0.1009 3.7974 0.4444 0.3687 (***) 
0.5 7.8700 0.1590 7.4699 0.4199 0.4001 (***) 
0.6 12.3323 0.1163 12.0323 0.4537 0.3000 (***) 
0.7 17.2874 0.1611 17.0551 0.3417 0.2323 (***) 
0.8 22.6086 0.1695 22.4004 0.5625 0.2082 (***) 
0.9 28.1188 0.2037 27.8811 0.5671 0.2377 (***) 
1.0 33.7497 0.2376 33.5685 0.6946 0.1812 (**) 
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2.4.2.2 SVGJ Model 

 

Given the flexibility provided by Monte Carlo simulation, the general process in (2.28) 

may be easily addressed by SFPI-RO. Consider (𝜅𝜅,𝜎𝜎,𝜌𝜌) = (2.50, 0.40, 0.00) and jumps 

according to parameters in Table 2.4. Under the previous values, the expected price jump 

size per year is 12.5%, while the expected variance jump is 0.05 per year. 

 

Table 2.4 Model specification under the SVGJ model 

 

Jump in log-price only Jump in variance only Simultaneous and correlated 
jumps 

𝜆𝜆𝑦𝑦  0.50 𝜆𝜆𝑣𝑣  0.50 𝜆𝜆𝑐𝑐  0.50 
𝜇𝜇𝑦𝑦 0.10 𝜇𝜇𝜐𝜐 0.05 𝜇𝜇𝑐𝑐𝑐𝑐 0.05 
𝜎𝜎𝑦𝑦 0.10   𝜇𝜇𝑐𝑐𝑐𝑐 0.10 

    𝜎𝜎𝑐𝑐𝑐𝑐 0.10 
    𝜌𝜌𝐽𝐽 0.50 

 

Figure 2.5 shows the critical prices delivered by SFPI-RO while Table 2.5 displays the 

performance of these boundaries when valuing an initially open mine. For LSM we use 

the same code considered for stochastic variance without jumps.  

 

Regarding the critical prices, the stability of the algorithm is maintained (e.g. smoothness, 

convergence, etc.). In terms of mine values, SFPI-RO again delivers higher values than 

LSM for almost every case. Moreover, compared with the case of stochastic variance 

without jumps, the results exhibit the same behavior in terms of standard deviation, while 

LSM exhibit considerably more volatile estimates. As observed for the positive correlation 

case in the previous section, it seems that as more volatile the model, more difficult is to 

accurately estimate the critical prices through LSM. In this case, the model dispersion is 

considerably broadened when adding different types of jumps in both the price and the 

variance process.  
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With the above results, the versatility and stability of SFPI-RO when different sources of 

uncertainty are treated at the same time are highlighted. 

 

 
 

Figure 2.5 Critical prices under the SVGJ model 

 



36 
 

 

Table 2.5 Values [MM$] for an initially open mine under the SVGJ model  

(Initial Variance: 𝑉𝑉0 = 0.08) 

 

Initial Price 
[$/pound] 

Stochastic Variance with General Jumps 
SFPI-RO LSM Difference 

Value 
[MM$] 

Standard 
Deviation 

Value 
[MM$] 

Standard 
Deviation Average [MM$] 

0.3 2.6697 0.0915 2.0511 0.6942 0.6185 (***) 
0.4 6.0125 0.1314 5.2523 1.3515 0.7602 (***) 
0.5 10.0068 0.1569 9.0759 1.5914 0.9309 (***) 
0.6 14.5188 0.1581 13.8741 1.5370 0.6446 (***) 
0.7 19.5454 0.2105 18.6059 2.3526 0.9395 (***) 
0.8 24.7212 0.2274 23.8186 2.7389 0.9026 (**) 
0.9 30.0948 0.2159 29.1874 3.1336 0.9074 (**) 
1.0 35.6375 0.2718 34.8249 2.9981 0.8126 (**) 

 

2.4.3 SFPI-RO under Regime-Dependent Dynamics 

 

As the last example of the scope of SFPI-RO, consider a firm which is a major player in 

the commodity market and therefore the price could be affected by the operating status of 

the firm through changes in supply. Then, we say the diffusion process is controlled by 

the operation strategy and the price parameters exhibit regime-dependency.  

 

The problem could be addressed by approximating the system of variational inequalities 

(e.g. finite differences), but dimensionality drawbacks arise under multifactor processes. 

On the other hand, simulation-based methods like LSM could not solve the optimal 

switching problem under the above specification. When introducing regime-dependent 

parameters in the price process, the forward simulation used by LSM is not feasible 

because a decision policy is not known a priori. Instead, our method provides a simple 

and robust solution since we simulate under a given set of critical prices (even though they 

are not optimal). Thereby, our method allows us to widen the set of configurations for 

which the optimal switching problem may be solved in a straightforward fashion. 
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As an illustration, one may consider a price process with stochastic variance, such that 

variance is more volatile when the firm is closed. We use the same values of 𝑟𝑟, 𝑑𝑑, and 𝜃𝜃. 

For the variance process, we consider (𝜅𝜅,𝜎𝜎, 𝜌𝜌) = (2.50, 0.40, 0.00) when the operation is 

closed, while (𝜅𝜅,𝜎𝜎,𝜌𝜌) = (5.00, 0.10, 0.00) when it is open. Figure 2.6 shows the critical 

prices delivered by SFPI-RO. Furthermore, Figure 2.7 shows the evolution of the mine 

for a given trajectory of the price and variance process. Given the delivered critical prices, 

we obtain the evolution of the reserves in the mine and the cumulated wealth for that 

simulated path. We show the operating status over time as a colored background. 

 

From Figure 2.6, note that the regions bounded by 𝑆𝑆12 and 𝑆𝑆10 for an open mine and by 

𝑆𝑆02 and 𝑆𝑆01 for a closed one are considerably large. Therefore, we conclude the closed 

regime is particularly valuable for the proposed price dynamic. In fact, Figure 2.7 shows 

that we can benefit from closed periods since variance could disperse more under that 

regime and then push the price to a higher value more quickly. 
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Figure 2.6 Critical prices under the regime-dependent SV model 
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Figure 2.7 Evolution of the mine under the regime-dependent SV model 
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2.5 Extensions and Further Research 

 

The next step is to generalize the applicability of SFPI-RO. According to Section 2.2.2, 

the algorithm assumes that the switching boundaries may be expressed in terms of one 

critical state variable, which satisfies a functional form with respect to the remaining 

variables. Under the model of Brennan & Schwartz (1985), this assumption is reasonable, 

and the critical variable is given by the commodity price. However, it is not known a priori 

under which conditions it is still valid. Therefore, further research should be focused on 

better understanding the switching boundaries in order to extend the methodology 

proposed by us. 

 

As a first approach, Zervos et al. (2018) propose an interesting study about a similar model 

to that of Brennan & Schwartz (1985). They provide a comprehensive characterization of 

the critical prices under an infinite decision horizon and infinite reserves. Their explicit 

solution to (2.6) is given when the maintenance cost is zero6, the closing (𝑘𝑘10) and opening 

cost (𝑘𝑘01) are positive, and the abandoning costs satisfy 𝑘𝑘02 = 𝑘𝑘12 = 𝐾𝐾 ∈ ℝ. According 

to their solution, the critical prices take eight qualitatively different forms and two of them 

exhibit the behavior in Figure 2.8 when the system is open. 

 

 

 
 
 

Figure 2.8 A special case for critical prices when the system is open 

We refer to Case II.3 and Case III.2 defined by Zervos et al. (2018) 

                                                 
6 As pointed out by the authors, when the maintenance cost is constant, the problem may be reformulated in 

terms of a zero-maintenance cost case. 

Open 𝑆𝑆 

Abandon Keep open Close Keep open 

𝑆𝑆12 𝑆𝑆10𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑆𝑆10
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
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Note that the requirement of functionality does not hold. Instead, under such a case we 

would expect an upper and a lower critical price for the regime transition (0 → 1) at a 

given state (𝑡𝑡, 𝐳𝐳). Hence, we face an important challenge: how to embrace the cases 

analyzed by Zervos et al. (where decision horizon, reserves level, and the number 

switching opportunities per year are infinite), in order to deal with a general formulation 

with additional state variables and finite reserves level, decision horizon, and number of 

switching opportunities. The answer will be the start point to formulate the algorithm 

when 𝑆𝑆10 is no longer a function of the remaining state variables. 

 

Nevertheless, feasible extensions consider the introduction of new features and 

operational constraints to the mine of Brennan & Schwartz (1985), as well as new 

specifications for the commodity price process. The flexibility provided by Monte Carlo 

simulation allows that new features are easily addressed. For example, delays between the 

decision making and the realization of it could be considered, in the same way as in 

Carmona & Ludkovski (2008). 

 

Finally, notice also that what has been developed up to now assumes a price process that 

exhibits constant returns to scale. Under this assumption, we derive an expression for the 

mine delta, but it would be interesting to explore other models. For example, a classical 

mean-reverting process (Schwartz, 1997) is given by 

 

 𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝛼𝛼(𝜅𝜅 − log 𝑆𝑆𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡 (2.30) 

 

which does not satisfy the aforementioned assumption. Accordingly, formulae  (2.22) – 

(2.25) are no longer valid to run SFPI-RO. 
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2.6 Concluding Remarks  

 

We propose the Simulated-Fixed Point Iteration Method for Real Options (SFPI-RO), a 

novel simulation-based method to directly address the optimal decision policy for real 

options modeled as an optimal switching problem. Starting from an initial guess of the 

decision policy (a set of switching boundaries), we iterate until optimality is reached 

through the Newton-Kantorovich Method.  

 

Our algorithm is implemented for the classical copper mine of Brennan & Schwartz 

(1985), under different Markovian Dynamics for the commodity price process. In our 

numerical analysis, the method provides an accurate approximation of the switching 

boundaries when the underlying price follows a standard GBM. Moreover, the optimal 

policies produced by our algorithm are more profitable than those delivered by the widely-

used Least-Squares Monte Carlo method when the commodity follows underlying 

dynamics with stochastic variance and jumps. Finally, the algorithm allows to obtain the 

critical prices under regime-dependent dynamics, which are not accessible for backward 

methods based on forward simulation schemes. 

 

Our results show that SFPI-RO is a useful tool to solve the optimal switching problem 

under a wide variety of underlying stochastic dynamics. The algorithm is easy to 

implement and exhibits stability, robustness, and convergence when estimating critical 

prices under different sources of uncertainty. In addition to being convenient for a 

manager when operationalizing an investment strategy in the real world, SFPI-RO also 

leads to a robust and accurate valuation tool. 

 

We conclude this section by noting that our method could also be adapted to handle other 

real option features, such as operational delays (Carmona & Ludkovski, 2008), and other 

production activities like electricity generation (Deng & Xia, 2005; Carmona & 

Ludkovski, 2008) or gas dome storage (Carmona & Ludkovski, 2010). 
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A Proof of Proposition 1 

 

From Brennan & Schwartz (1985), the mine value is given by 

 

 
𝐻𝐻(𝑡𝑡, 𝐱𝐱, 𝑖𝑖;𝛼𝛼) = 𝔼𝔼��(𝑞𝑞(𝑆𝑆𝑢𝑢 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆𝑢𝑢)) 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡

− �𝑓𝑓 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=0}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

− � 𝑘𝑘𝜄𝜄𝑛𝑛−1,𝜄𝜄𝑛𝑛  𝑒𝑒−𝑅𝑅𝜏𝜏𝑛𝑛
𝑡𝑡≤𝜏𝜏𝑛𝑛≤𝑇𝑇

� 

𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠) = 𝑡𝑡1𝑞𝑞𝑞𝑞 + max{𝑡𝑡2𝑞𝑞(𝑠𝑠(1 − 𝑡𝑡1) − 𝑎𝑎), 0} 

𝑅𝑅𝑢𝑢 = �(𝑟𝑟 + 𝜆𝜆𝐼𝐼𝑣𝑣)𝑑𝑑𝑑𝑑
𝑢𝑢

𝑡𝑡

 

(A.1) 

 

Let 𝑆𝑆 be a diffusion process for the commodity price such that exhibits constant returns to 

scale and the initial state is 𝑆𝑆𝑡𝑡 = 𝑠𝑠. When all cash-flows parameters (i.e. 𝑠𝑠, 𝑎𝑎, 𝑓𝑓, and 𝑘𝑘𝑖𝑖𝑖𝑖) 

and the critical prices are rescaled by a factor 𝛽𝛽, the mine value is rescaled by the same 

factor. Therefore, we say 𝐻𝐻 is homogenous of degree 1 and Euler’s theorem for 

homogenous functions yields (A.2) for the mine delta. 

 

 
Δ =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐻𝐻 − 𝑎𝑎𝐻𝐻𝑎𝑎 − 𝑓𝑓𝐻𝐻𝑓𝑓 − ∑ 𝑘𝑘𝑖𝑖𝑖𝑖𝐻𝐻𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗

𝑠𝑠
 (A.2) 

 

Note that the above expression does not consider derivatives with respect to critical prices. 

From the formulation of the optimal switching problem, 𝐻𝐻 depends on critical prices 

through the regime indicator function 𝐼𝐼𝑢𝑢. When a critical price 𝑆𝑆𝑐𝑐 changes in 𝑑𝑑𝑆𝑆𝑐𝑐, it would 

be required a price path within 𝑆𝑆𝑐𝑐 + 𝑑𝑑𝑆𝑆𝑐𝑐 at some time to modify 𝐼𝐼𝑢𝑢 and, consequently, the 

mine value for that path. Since 𝑑𝑑𝑆𝑆𝑐𝑐 is close to zero, this is almost impossible even for just 
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one price path. Therefore, one may assume that the mine value stays constant under 

differential changes in critical prices. 

 

Regarding the remaining derivatives, the following is hold given 𝑓𝑓 and �𝑘𝑘𝑖𝑖𝑖𝑖� a set of 

constant parameters 

 

 
𝑓𝑓𝐻𝐻𝑓𝑓 = −𝔼𝔼��𝑓𝑓 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=0}𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡

� (A.3) 

   

 
�𝑘𝑘𝑖𝑖𝑖𝑖𝐻𝐻𝑘𝑘𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

= −𝔼𝔼� � 𝑘𝑘𝜄𝜄𝑛𝑛−1,𝜄𝜄𝑛𝑛  𝑒𝑒−𝑅𝑅𝜏𝜏𝑛𝑛
𝑡𝑡≤𝜏𝜏𝑛𝑛≤𝑇𝑇

� (A.4) 

 

Moreover, 𝐻𝐻𝑎𝑎 is expressed as 

 

𝐻𝐻𝑎𝑎 =
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝔼𝔼��𝑞𝑞(𝑆𝑆𝑢𝑢 − 𝑎𝑎) 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

��

−
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝔼𝔼��max{𝑡𝑡2𝑞𝑞(𝑆𝑆𝑢𝑢(1 − 𝑡𝑡1) − 𝑎𝑎), 0} 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

�� 

 

The first derivative is given by 

 

𝜕𝜕(∙)
𝜕𝜕𝜕𝜕

= −𝔼𝔼��𝑞𝑞𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

� 
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On the other hand, let 𝜑𝜑𝑆𝑆𝑢𝑢(𝑠𝑠) be the ℱ𝑡𝑡-conditional density function of 𝑆𝑆𝑢𝑢. Thus, the 

second derivative is given by 

 

𝜕𝜕(∙)
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝔼𝔼��max{𝑡𝑡2𝑞𝑞(𝑆𝑆𝑢𝑢(1 − 𝑡𝑡1) − 𝑎𝑎), 0} 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

�� 

        =
𝜕𝜕
𝜕𝜕𝜕𝜕

��𝔼𝔼�max{𝑡𝑡2𝑞𝑞(𝑆𝑆𝑢𝑢(1 − 𝑡𝑡1) − 𝑎𝑎), 0} 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}�𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

� 

        =
𝜕𝜕
𝜕𝜕𝜕𝜕

��� � 𝑡𝑡2𝑞𝑞(𝑠𝑠(1 − 𝑡𝑡1) − 𝑎𝑎) 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}

∞

𝑎𝑎 (1−𝑡𝑡1)⁄

𝜑𝜑𝑆𝑆𝑢𝑢(𝑠𝑠)𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

� 

 

From de Leibniz integral rule, we have 

 

        = ��
𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑡𝑡2𝑞𝑞(𝑠𝑠(1 − 𝑡𝑡1) − 𝑎𝑎) 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}

∞

𝑎𝑎 (1−𝑡𝑡1)⁄

𝜑𝜑𝑆𝑆𝑢𝑢(𝑠𝑠)𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

 

        = −�� � 𝑡𝑡2𝑞𝑞 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}

∞

𝑎𝑎 (1−𝑡𝑡1)⁄

𝜑𝜑𝑆𝑆𝑢𝑢(𝑠𝑠)𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

 

        = −�� � 𝑡𝑡2𝑞𝑞 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1} 𝜑𝜑𝑆𝑆𝑢𝑢(𝑠𝑠)𝑑𝑑𝑑𝑑
∞

𝑎𝑎 (1−𝑡𝑡1)⁄

�𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

 

        = −��𝔼𝔼�𝑡𝑡2𝑞𝑞 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1} 𝟙𝟙{𝑆𝑆𝑢𝑢≥𝑎𝑎 (1−𝑡𝑡1)⁄ }�� 𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

 

        = −𝔼𝔼�� 𝑡𝑡2𝑞𝑞 𝟙𝟙{𝑆𝑆𝑢𝑢≥𝑎𝑎 (1−𝑡𝑡1)⁄ } 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

� 
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Finally, 

 

 
𝐻𝐻𝑎𝑎 = −𝔼𝔼��𝑞𝑞�1 − 𝑡𝑡2𝟙𝟙{𝑆𝑆𝑢𝑢≥𝑎𝑎 (1−𝑡𝑡1)⁄ }� 𝑒𝑒−𝑅𝑅𝑢𝑢  𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡

� (A.5) 

 

Replacing into (A.2), the delta of the mine value is given by  

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝔼𝔼�∫ 𝑆𝑆𝑢𝑢𝑞𝑞(1 − 𝑡𝑡1)�1 − 𝑡𝑡2𝟙𝟙{𝑆𝑆𝑢𝑢≥𝑎𝑎 (1−𝑡𝑡1)⁄ }�𝑒𝑒−𝑅𝑅𝑢𝑢𝟙𝟙{𝐼𝐼𝑢𝑢=1}𝑑𝑑𝑑𝑑

𝑇𝑇
𝑡𝑡 �

𝑠𝑠
 (A.6) 
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B Initial Guess for Critical Prices under the Model of Brennan and Schwartz 

(1985) 

 

In this section, we provide an initial guess for the critical prices, i.e., �𝑆𝑆02
(0), 𝑆𝑆01

(0), 𝑆𝑆12
(0), 𝑆𝑆10

(0)�. 

Let 𝑥𝑥 be the number of switching opportunities per year, implying that 𝛥𝛥𝛥𝛥 = 1 𝑥𝑥⁄  years is 

the time between consecutive opportunities. We consider the behavior of the mine at time 

𝑇𝑇 − 𝛥𝛥𝛥𝛥, assuming that the cash-flows of the period [𝑇𝑇 − 𝛥𝛥𝛥𝛥,𝛵𝛵] are paid at the beginning. 

 

1. Initial critical price 𝑆𝑆02. If −𝑘𝑘02 ≥ −𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥, then the closure option is 

not optimal and to compute the critical price we compare opening against abandonment. 

Therefore, the initial critical price 𝑆𝑆02
(0) solves 

 

 −𝑘𝑘01 + 𝑞𝑞𝑞𝑞𝑞𝑞(𝑆𝑆02 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆02)𝛥𝛥𝛥𝛥 − 𝑘𝑘12𝑒𝑒−𝜌𝜌1𝛥𝛥𝛥𝛥 = −𝑘𝑘02 (B.1) 

 

On the other hand, if −𝑘𝑘02 < −𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥, the abandoning option is worthless at 

any time7, and the critical price is defined as 𝑆𝑆02 = 0 (even when the critical price is 

undefined, 𝑆𝑆02 = 0 guarantees that the abandoning option will never be exercised).  

 

 

 

 

 

 

                                                 
7 Let 𝜏𝜏 be the remaining concession time. We note that the closed mine value 𝐻𝐻0 is an increasing function 

with respect to 𝜏𝜏. Then 

−𝑘𝑘02 < −𝑓𝑓𝛥𝛥𝑡𝑡 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝑡𝑡 ≤ 𝐻𝐻0(𝜏𝜏 ),          ∀𝜏𝜏 ≥ 𝛥𝛥𝛥𝛥 

In other words, if the abandoning option is worthless at 𝜏𝜏 = 𝛥𝛥𝑡𝑡, it is also worthless at 𝜏𝜏 > 𝛥𝛥𝛥𝛥. Thus, the 

assignment 𝑆𝑆02 = 0 at 𝜏𝜏 = 𝛥𝛥𝑡𝑡 should be extended for all 𝜏𝜏 > 𝛥𝛥𝛥𝛥. 
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2. Initial critical price 𝑆𝑆01. As pointed out earlier, the closure option is not optimal 

when −𝑘𝑘02 ≥ −𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥, and we conveniently set 𝑆𝑆01 = 𝑆𝑆02. On the other hand, 

if −𝑘𝑘02 < −𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥, we compare the opening option against the keep closed 

option. Thus, the critical price 𝑆𝑆01
(0) is given by the solution to 

 

−𝑘𝑘01 + 𝑞𝑞𝑞𝑞𝑞𝑞(𝑆𝑆01 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆01)𝛥𝛥𝛥𝛥 − 𝑘𝑘12𝑒𝑒−𝜌𝜌1𝛥𝛥𝛥𝛥 = −𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥 (B.2) 

 

3. Initial critical price 𝑆𝑆12 and 𝑆𝑆10. If the mine is open at 𝑡𝑡 = 𝑇𝑇 − Δ𝑡𝑡, an 

approximation of the mine value is given by 𝑞𝑞𝑞𝑞𝑞𝑞(𝑆𝑆 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)𝛥𝛥𝛥𝛥 − 𝑘𝑘12𝑒𝑒−𝜌𝜌1𝛥𝛥𝛥𝛥 

(running cash-flows plus discounted abandoning cost at expiration). On the other hand, if 

the mine is closed or abandoned, the discounted cash-flows are −𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥 

(maintenance cost plus discounted abandoning cost at maturity) and −𝑘𝑘12 (immediate 

abandoning cost), respectively.  

 

If −𝑘𝑘12 ≥ −𝑘𝑘10 − 𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥, then the closure option is worthless, 𝑆𝑆10
(0) = 𝑆𝑆12

(0) and 

𝑆𝑆12
(0)  is given by the solution to 

 

 𝑞𝑞𝑞𝑞𝑞𝑞(𝑆𝑆12 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆12)𝛥𝛥𝛥𝛥 − 𝑘𝑘12𝑒𝑒−𝜌𝜌1𝛥𝛥𝛥𝛥 = −𝑘𝑘12 (B.3) 

 

On the other hand, if −𝑘𝑘12 < −𝑘𝑘10 − 𝑓𝑓𝛥𝛥𝛥𝛥 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥, the abandonment option is 

worthless, and we conveniently set 𝑆𝑆12 = 07F

8. Moreover, 𝑆𝑆10
(0) solves the following 

equation 

 

𝑞𝑞𝑞𝑞𝑞𝑞(𝑆𝑆10 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆10)𝛥𝛥𝛥𝛥 − 𝑘𝑘12𝑒𝑒−𝜌𝜌1𝛥𝛥𝛥𝛥 = −𝑘𝑘10 − 𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑘𝑘02𝑒𝑒−𝜌𝜌0𝛥𝛥𝑡𝑡 (B.4) 

                                                 
8 By the same argument given in footnote 7, the abandonment option is worthless for the whole domain of 

the problem and so also the assignment 𝑆𝑆12 = 0. 
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C Finite Difference Method 

 

From (2.6). the optimal value 𝑣𝑣𝑖𝑖 of the optimal switching problem is given by 

 

 min �𝑟𝑟𝑣𝑣𝑖𝑖 −
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

− ℒ𝑣𝑣𝑖𝑖 − 𝜓𝜓𝑖𝑖 , 𝑣𝑣𝑖𝑖 − max
𝑗𝑗≠𝑖𝑖

�𝑣𝑣𝑗𝑗 − 𝑘𝑘𝑖𝑖𝑖𝑖�� = 0 

𝑡𝑡 ∈ [0,𝑇𝑇],   𝑥𝑥 ∈ ℝ𝑛𝑛,   𝑖𝑖 ∈ 𝕀𝕀𝑚𝑚 
(C.1) 

 

and it is solvable in a backward fashion by the following scheme 

 

 𝑡𝑡 = 𝑇𝑇  ∶                                        𝑣𝑣𝑖𝑖 = ℎ𝑖𝑖( ∙ ) 

𝑡𝑡 < 𝑇𝑇  ∶                         𝑟𝑟𝑣𝑣𝑖𝑖 −
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

− ℒ𝑣𝑣𝑖𝑖 − 𝜓𝜓𝑖𝑖 = 0, 

𝑣𝑣𝑖𝑖 ≥ max
𝑗𝑗≠𝑖𝑖

�𝑣𝑣𝑗𝑗 − 𝑘𝑘𝑖𝑖𝑖𝑖� 

(C.2) 

 

where ℎ𝑖𝑖( ∙ ) is a terminal payoff function, which we assume equal to the abandoning cost 

−𝑘𝑘𝑖𝑖2. Note that we start at the concession expiration and then we move backward in time. 

At each time, we solve the differential equation for each regime and then compare the 

continuation against switching to obtain the optimal decision and the corresponding value.  

 

Consider a commodity mine under the model of Brennan & Schwartz (1985). The 

commodity price process satisfies a one-dimensional geometric Brownian motion, the 

initial reserves level is 𝑄𝑄∗, and the concession time is 𝑇𝑇. Let 𝑣𝑣 = 𝑣𝑣1(𝑡𝑡, 𝑆𝑆,𝑄𝑄) and 𝑤𝑤 =

𝑣𝑣0(𝑡𝑡, 𝑆𝑆,𝑄𝑄) the value of an open and a closed mine. Then, the differential equation in (C.1) 

for 𝑣𝑣 and 𝑤𝑤 becomes   
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(𝑟𝑟 + 𝜆𝜆1)𝑣𝑣 − 𝑣𝑣𝑡𝑡 − (𝑟𝑟 − 𝑑𝑑)𝑆𝑆𝑣𝑣𝑆𝑆 + 𝑞𝑞𝑣𝑣𝑄𝑄 −
1
2
𝜎𝜎2𝑆𝑆2𝑣𝑣𝑆𝑆𝑆𝑆 − 𝑞𝑞(𝑆𝑆 − 𝑎𝑎) + 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆) = 0 (C.3) 

  

 (𝑟𝑟 + 𝜆𝜆0)𝑤𝑤 − 𝑤𝑤𝑡𝑡 − (𝑟𝑟 − 𝑑𝑑)𝑆𝑆𝑤𝑤𝑆𝑆 −
1
2
𝜎𝜎2𝑆𝑆2𝑤𝑤𝑆𝑆𝑆𝑆 + 𝑓𝑓 = 0 (C.4) 

 

A finite difference scheme is implemented considering a discretization of 𝑡𝑡, 𝑆𝑆, and 𝑄𝑄, such 

that 𝑡𝑡𝑖𝑖 = 𝑖𝑖 ∙ 𝛥𝛥𝛥𝛥, 𝑆𝑆𝑗𝑗 = 𝑗𝑗 ∙ 𝛥𝛥𝛥𝛥, and 𝑄𝑄𝑘𝑘 = 𝑘𝑘 ∙ 𝛥𝛥𝛥𝛥 = 𝑘𝑘 ∙ (𝑞𝑞𝑞𝑞𝑞𝑞), where 𝑖𝑖 = {0, … ,𝑁𝑁𝑡𝑡 = 𝑇𝑇 𝛥𝛥𝛥𝛥⁄ }, 

𝑗𝑗 = {0, … ,𝑁𝑁𝑆𝑆 = 𝑆𝑆max 𝛥𝛥𝛥𝛥⁄ }, and 𝑘𝑘 = {0, … ,𝑁𝑁𝑄𝑄 = 𝑄𝑄∗ 𝛥𝛥𝛥𝛥⁄ }. In the sequel, we refer only to 

function 𝑣𝑣, but the results are the same for 𝑤𝑤.  

 

At each point over the discretized space, the mine value function is defined as 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 =

𝑣𝑣(𝑖𝑖 ∙ 𝛥𝛥𝛥𝛥, 𝑗𝑗 ∙ 𝛥𝛥𝛥𝛥,𝑘𝑘 ∙ 𝛥𝛥𝛥𝛥). Moreover, the derivatives of 𝑣𝑣 are approximated as follows 

 

 𝑣𝑣𝑡𝑡 =
𝑣𝑣𝑖𝑖+1,𝑗𝑗,𝑘𝑘 − 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘

𝛥𝛥𝛥𝛥
 (C.5) 

   

 𝑣𝑣𝑆𝑆 =
𝑣𝑣𝑖𝑖,𝑗𝑗+1,𝑘𝑘 − 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘

2 𝛥𝛥𝛥𝛥
 (C.6) 

   

 
𝑣𝑣𝑆𝑆𝑆𝑆 =

𝑣𝑣𝑖𝑖,𝑗𝑗+1,𝑘𝑘 − 2𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘

(𝛥𝛥𝛥𝛥)2  (C.7) 

   

 𝑣𝑣𝑄𝑄 =
𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘−1

𝛥𝛥𝛥𝛥
 (C.8) 
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Replacing into equation (C.3), the PDE is formulated as a system of linear equations9  

 

 𝛽𝛽𝑗𝑗 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘                                                                 𝑗𝑗 = 0 

𝛼𝛼𝑗𝑗 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘 + 𝛽𝛽𝑗𝑗 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝛾𝛾𝑗𝑗 ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗+1,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘             𝑗𝑗 = 1, … ,𝑁𝑁𝑆𝑆 − 1 

�𝛼𝛼𝑗𝑗 − 𝛾𝛾𝑗𝑗� ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘 + �𝛽𝛽𝑗𝑗 + 2𝛾𝛾𝑗𝑗� ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘         𝑗𝑗 = 𝑁𝑁𝑆𝑆 

(C.9) 

 

where the coefficients are defined as 

 

𝛼𝛼𝑗𝑗       =  
𝑗𝑗
2

(𝑟𝑟 − 𝑑𝑑)𝛥𝛥𝛥𝛥 −
1
2
𝜎𝜎2𝑗𝑗2𝛥𝛥𝛥𝛥 

𝛽𝛽𝑗𝑗       =  1 +
𝑞𝑞𝑞𝑞𝑞𝑞
𝛥𝛥𝛥𝛥

+ (𝑟𝑟 + 𝜆𝜆1)𝛥𝛥𝛥𝛥 + 𝜎𝜎2𝑗𝑗2𝛥𝛥𝛥𝛥 

𝛾𝛾𝑗𝑗       =  −
𝑗𝑗
2

(𝑟𝑟 − 𝑑𝑑)𝛥𝛥𝛥𝛥 −
1
2
𝜎𝜎2𝑗𝑗2𝛥𝛥𝛥𝛥 

𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘  =  𝑣𝑣𝑖𝑖+1,𝑗𝑗,𝑘𝑘 + �
𝑞𝑞𝑞𝑞𝑞𝑞
𝛥𝛥𝛥𝛥

� 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘−1 + 𝑞𝑞(𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑎𝑎)𝛥𝛥𝛥𝛥 − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑗𝑗𝑗𝑗𝑗𝑗)𝛥𝛥𝛥𝛥 

 

 

 

 

                                                 
9 When 𝑆𝑆 = 0, equation (C.3) is formulated as 

(𝑟𝑟 − 𝜋𝜋 + 𝜆𝜆1)𝑣𝑣 − 𝑣𝑣𝑡𝑡 + 𝑞𝑞𝑣𝑣𝑄𝑄 + 𝑞𝑞𝑞𝑞 = 0 

On the other hand, when 𝑆𝑆 → ∞, the optimal strategy is to keep always open until one of the following 

events happen: (1) reserves are exhausted, or (2) concession time is over. Furthermore, both the price process 

and the cash-flows rate when open are linear with respect to 𝑆𝑆. Then, it shall be assumed 𝑣𝑣𝑆𝑆𝑆𝑆 = 0 as 𝑆𝑆 → ∞ 

and, consequently, equation (C.3) is approximated as 

(𝑟𝑟 + 𝜆𝜆1)𝑣𝑣 − 𝑣𝑣𝑡𝑡 − (𝑟𝑟 − 𝑑𝑑)𝑆𝑆𝑣𝑣𝑆𝑆 + 𝑞𝑞𝑣𝑣𝑄𝑄 − 𝑞𝑞(𝑆𝑆 − 𝑎𝑎) + 𝜏𝜏𝜏𝜏𝜏𝜏 = 0 

Finally, since 𝑗𝑗 = 𝑁𝑁𝑆𝑆 + 1 is an unavailable point, we use a backward approximation for the first derivative 

at 𝑗𝑗 = 𝑁𝑁𝑆𝑆 

𝑣𝑣𝑆𝑆 =
𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘

𝛥𝛥𝛥𝛥
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In the same way, we have the following system of linear equations for the closed mine 

 

 𝛽𝛽𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘                                                                 𝑗𝑗 = 0 

𝛼𝛼𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑘𝑘 + 𝛽𝛽𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝛾𝛾𝑗𝑗 ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗+1,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘            𝑗𝑗 = 1, … ,𝑁𝑁𝑆𝑆 − 1 

�𝛼𝛼𝑗𝑗 − 𝛾𝛾𝑗𝑗� ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑘𝑘 + �𝛽𝛽𝑗𝑗 + 2𝛾𝛾𝑗𝑗ℎ� ∙ 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘       𝑗𝑗 = 𝑁𝑁𝑆𝑆 

(C.10) 

 

where the coefficients are defined as 

 

𝛼𝛼𝑗𝑗       =  
𝑗𝑗
2

(𝑟𝑟 − 𝑑𝑑)𝛥𝛥𝛥𝛥 −
1
2
𝜎𝜎2𝑗𝑗2𝛥𝛥𝛥𝛥 

𝛽𝛽𝑗𝑗       =  1 + (𝑟𝑟 + 𝜆𝜆0)𝛥𝛥𝛥𝛥 + 𝜎𝜎2𝑗𝑗2𝛥𝛥𝛥𝛥 

𝛾𝛾𝑗𝑗       =  −
𝑗𝑗
2

(𝑟𝑟 − 𝑑𝑑)𝛥𝛥𝛥𝛥 −
1
2
𝜎𝜎2𝑗𝑗2𝛥𝛥𝛥𝛥 

𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘  =  𝑤𝑤𝑖𝑖+1,𝑗𝑗,𝑘𝑘 − 𝑓𝑓 

 

The above finite difference formulation shall be referred as the standard scheme, and it is 

solved according to (C.2). Unless stated otherwise, when we refer to results obtained with 

FDM we consider this scheme, letting 𝑁𝑁𝑆𝑆 =  25,000 and 𝑁𝑁𝑡𝑡 = 64 ∙ 𝑇𝑇 (64 time-steps per 

year). Moreover, the 𝑆𝑆-axis is truncated at a price level 𝑆𝑆max defined as 

 

 𝑆𝑆max = max{25 ∙ 𝑎𝑎,  99th percentil of 𝑆𝑆(𝑇𝑇)} (C.11) 

 

where 𝑎𝑎 is the production cost rate. 

 

As an alternative to this standard version, one may propose the following formulations, 

depending on how the PDE at 𝑗𝑗 = 𝑁𝑁𝑆𝑆 is addressed: 
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Alternative 1: Backward scheme. Instead of assuming the behavior of 𝑣𝑣 as 𝑆𝑆 → ∞ (see 

footnote 9), we use the following backward approximations for 𝑣𝑣𝑆𝑆 and 𝑣𝑣𝑆𝑆𝑆𝑆 at 𝑗𝑗 = 𝑁𝑁𝑆𝑆 

 

 𝑣𝑣𝑆𝑆 =
𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘

𝛥𝛥𝛥𝛥
 (C.12) 

   

 
𝑣𝑣𝑆𝑆𝑆𝑆 =

𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 − 2𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘 + 𝑣𝑣𝑖𝑖,𝑗𝑗−2,𝑘𝑘

(𝛥𝛥𝛥𝛥)2  (C.13) 

 

Then, the equation for 𝑣𝑣 at 𝑗𝑗 = 𝑁𝑁𝑆𝑆 is approximated as 

 

 
�

1
2
𝛼𝛼𝑗𝑗 +

1
2
𝛾𝛾𝑗𝑗� ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗−2,𝑘𝑘 + (−2𝛾𝛾𝑖𝑖) ∙ 𝑣𝑣𝑖𝑖,𝑗𝑗−1,𝑘𝑘 + �

1
2
𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗 +

5
2
𝛾𝛾𝑗𝑗�

∙ 𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝛿𝛿𝑖𝑖,𝑗𝑗,𝑘𝑘,     𝑗𝑗 = 𝑁𝑁𝑠𝑠 
(C.14) 

 

When closed, the derivatives of the mine value are approximated in the same way. 

 

Alternative 2: Limiting scheme. As pointed out in footnote 9, we expect the optimal 

operating policy is to keep always open an already open mine when 𝑆𝑆 → ∞. Under such 

a strategy, the mine value is given by 

 

 
𝑣𝑣∗(𝑡𝑡, 𝑆𝑆,𝑄𝑄) = 𝔼𝔼��(𝑞𝑞(𝑆𝑆𝑢𝑢 − 𝑎𝑎) − (𝑡𝑡𝑡𝑡𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙) 𝑒𝑒−𝜌𝜌1𝑢𝑢 𝑑𝑑𝑑𝑑

𝜃𝜃

𝑡𝑡

� 

= 𝑞𝑞𝑞𝑞(1 − 𝑡𝑡1)(1 − 𝑡𝑡2)�
1 − e−(𝑑𝑑+𝜆𝜆1)𝜃𝜃

𝑑𝑑 + 𝜆𝜆1
�

− 𝑞𝑞𝑞𝑞(1 − 𝑡𝑡2)�
1 − e−(𝑟𝑟+𝜆𝜆1)𝜃𝜃

𝑟𝑟 + 𝜆𝜆1
� 

(C.15) 
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where 𝜃𝜃 = min{𝑇𝑇, 𝑡𝑡 + 𝑄𝑄 𝑞𝑞⁄ } is the instant when one of the following events occur: (1) 

reserves are exhausted, or (2) concession time is over. Note that the tax structure tends to 

(𝑡𝑡𝑡𝑡𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑡𝑡1𝑞𝑞𝑞𝑞 + 𝑡𝑡2𝑞𝑞(𝑠𝑠(1 − 𝑡𝑡1) − 𝑎𝑎) when 𝑆𝑆 → ∞. 

 

Assuming 𝑁𝑁𝑆𝑆 𝛥𝛥𝛥𝛥 is large enough, the mine value when open is arbitrary set at the limiting 

value provided in (C.15). 

 

 𝑣𝑣𝑖𝑖,𝑁𝑁𝑆𝑆,𝑘𝑘 = 𝑣𝑣∗(𝑖𝑖 𝛥𝛥𝛥𝛥,𝑁𝑁𝑆𝑆 𝛥𝛥𝛥𝛥,𝑘𝑘 𝛥𝛥𝛥𝛥) (C.16) 

 

If the mine is initially closed, the optimal decision at 𝑆𝑆 =  𝑁𝑁𝑆𝑆 𝛥𝛥𝛥𝛥 is to open immediately 

and the closed mine value is given by 

 

 𝑤𝑤𝑖𝑖,𝑁𝑁𝑆𝑆,𝑘𝑘 = −𝑘𝑘01 + 𝑣𝑣∗(𝑖𝑖 𝛥𝛥𝛥𝛥,𝑁𝑁𝑆𝑆 𝛥𝛥𝛥𝛥, 𝑘𝑘 𝛥𝛥𝛥𝛥) (C.17) 
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D Least-Squares Monte Carlo Method 

 

The Dynamic Programming Principle for the optimal switching problem is formulated as 

 

 
𝑣𝑣𝑖𝑖(𝑡𝑡, 𝐱𝐱) = sup

𝛼𝛼∈𝒜𝒜
𝔼𝔼 �� 𝜓𝜓𝐼𝐼𝑢𝑢(𝐗𝐗𝑢𝑢) 𝑒𝑒−𝜌𝜌(𝑢𝑢−𝑡𝑡)

𝜃𝜃

𝑡𝑡
𝑑𝑑𝑑𝑑 − � 𝑘𝑘𝜄𝜄𝑛𝑛−1,𝜄𝜄𝑛𝑛  𝑒𝑒−𝜌𝜌(𝜏𝜏𝑛𝑛−𝑡𝑡)

 𝑡𝑡≤𝜏𝜏𝑛𝑛≤𝜃𝜃

+ 𝑣𝑣(𝜃𝜃,𝐗𝐗𝜃𝜃, 𝐼𝐼𝜃𝜃) 𝑒𝑒−𝜌𝜌(𝜃𝜃−𝑡𝑡)� 

𝑡𝑡 ∈ [0,𝑇𝑇],   𝜃𝜃 ∈ [𝑡𝑡,𝑇𝑇],   𝑥𝑥 ∈ ℝ𝑛𝑛,   𝑖𝑖 ∈ 𝕀𝕀𝑚𝑚 

(D.1) 

 

Consider a discretization of the time interval [0,𝑇𝑇] such that such that 𝑡𝑡𝑛𝑛 = 𝑛𝑛 𝛥𝛥𝛥𝛥, where 

𝛥𝛥𝛥𝛥 is the time between consecutive switching opportunities and 𝑛𝑛 = {0, … ,𝑁𝑁𝑡𝑡 = 𝑇𝑇 𝛥𝛥𝛥𝛥⁄ }. 

Under the triangular condition for switching costs, the DPP becomes in the following 

backward formulation (see Section 4 in Gassiat et al., 2012) 

 

 𝑡𝑡 = 𝑇𝑇  ∶                               𝑣𝑣𝑖𝑖(𝑇𝑇, 𝐱𝐱) = ℎ𝑖𝑖( ∙ ) 

𝑡𝑡 < 𝑇𝑇  ∶             𝑣𝑣𝑖𝑖(𝑡𝑡𝑛𝑛, 𝑥𝑥) = max
𝑗𝑗∈𝕀𝕀𝑚𝑚

�−𝑘𝑘𝑖𝑖𝑖𝑖 + 𝔼𝔼�C𝑗𝑗�𝑡𝑡𝑛𝑛,𝑋𝑋𝑡𝑡𝑛𝑛��� 
(D.2) 

 

where ℎ𝑖𝑖( ∙ ) is a terminal payoff function, which we assume equal to the abandoning cost 

−𝑘𝑘𝑖𝑖2, and 

 

 
C𝑗𝑗�𝑡𝑡𝑛𝑛, 𝐱𝐱𝑡𝑡𝑛𝑛� = � 𝜓𝜓𝑗𝑗(𝐗𝐗𝑢𝑢)𝑒𝑒−𝜌𝜌𝑗𝑗(𝑢𝑢−𝑡𝑡𝑛𝑛)

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
𝑑𝑑𝑑𝑑 + 𝑣𝑣𝑗𝑗�𝑡𝑡𝑛𝑛+1,𝐗𝐗𝑡𝑡𝑛𝑛+1�𝑒𝑒

−𝜌𝜌𝑗𝑗𝛥𝛥𝛥𝛥 (D.3) 

 

is the discounted cash-flow of continuation under regime 𝑗𝑗, when the initial state is 𝐱𝐱𝑡𝑡𝑛𝑛.  
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To be precise, one may approximate the profit from 𝑡𝑡𝑛𝑛 to 𝑡𝑡𝑛𝑛+1 (stochastic integral term) 

when simulating the process. But, when 𝛥𝛥𝛥𝛥 is small enough, it may be reduced to a 

deterministic term given by 

 

 
� 𝜓𝜓𝑗𝑗(𝐗𝐗𝑢𝑢)𝑒𝑒−𝜌𝜌𝑗𝑗(𝑢𝑢−𝑡𝑡𝑛𝑛)
𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
𝑑𝑑𝑑𝑑 ≃ 𝜓𝜓𝑗𝑗�𝐱𝐱𝑡𝑡𝑛𝑛�𝛥𝛥𝛥𝛥 (D.4) 

 

Consider a commodity mine under the model of Brennan & Schwartz (1985). The 

commodity price process satisfies a one-dimensional geometric Brownian motion, the 

initial reserves level is 𝑄𝑄∗, and the concession time is 𝑇𝑇. Let 𝑣𝑣 = 𝑣𝑣1(𝑡𝑡, 𝑆𝑆,𝑄𝑄) and 𝑤𝑤 =

𝑣𝑣0(𝑡𝑡, 𝑆𝑆,𝑄𝑄) the value of an open and a closed mine. Since the time is discretized, there is a 

finite number of feasible states of reserves, say 𝒬𝒬 = {0, 𝑞𝑞𝑞𝑞𝑞𝑞, … ,𝑄𝑄∗}, where 𝑞𝑞 is the 

extraction rate.  

 

Moreover, the continuation value C𝑗𝑗 becomes 

 

C0�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄� = −� 𝑓𝑓 𝑒𝑒−𝜌𝜌0(𝑢𝑢−𝑡𝑡𝑛𝑛)
𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
𝑑𝑑𝑑𝑑 + 𝑣𝑣0�𝑡𝑡𝑛𝑛+1, 𝑠𝑠𝑡𝑡𝑛𝑛+1,𝑄𝑄� 𝑒𝑒−𝜌𝜌0𝛥𝛥𝛥𝛥 

C1(𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄) = � 𝜓𝜓1(𝑠𝑠𝑢𝑢)𝑒𝑒−𝜌𝜌1(𝑢𝑢−𝑡𝑡𝑛𝑛)
𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
𝑑𝑑𝑑𝑑 + 𝑣𝑣1�𝑡𝑡𝑛𝑛+1, 𝑠𝑠𝑡𝑡𝑛𝑛+1,𝑄𝑄 − 𝑞𝑞𝑞𝑞𝑡𝑡�𝑒𝑒−𝜌𝜌1𝛥𝛥𝛥𝛥 

C2(𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄) = 0 

(D.5) 

 

where 𝜓𝜓1(𝑠𝑠) = 𝑞𝑞(𝑠𝑠 − 𝑎𝑎) − 𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠).  

 

For a numerical valuation of the mine value, we simulate a set of price paths and then 

recursively compute 𝑣𝑣 and 𝑤𝑤 from time 𝛵𝛵 to 0 according to (D.2). Moreover, we compute 

the mine value for every state of reserves at every time step. Since 𝐶𝐶1�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄� depends 

on 𝑣𝑣1�𝑡𝑡𝑛𝑛+1, 𝑠𝑠𝑡𝑡𝑛𝑛+1,𝑄𝑄 − 𝑞𝑞𝑞𝑞𝑞𝑞�, the algorithm goes from 𝛥𝛥𝛥𝛥 to 𝑄𝑄. 
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The conditional expectation in (D.2) may be approximated with a regression of realized 

values of C𝑗𝑗�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄� on the information available up to 𝑡𝑡𝑛𝑛, i.e., 𝑠𝑠𝑡𝑡𝑛𝑛. Then, under a one-

dimensional diffusion process, we have 

 

 
𝔼𝔼�C𝑗𝑗�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄�� ≃ 𝔼𝔼��C𝑗𝑗�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄�� = �𝛼𝛼𝑘𝑘𝐵𝐵𝑘𝑘(𝑠𝑠𝑡𝑡𝑛𝑛)

𝑀𝑀

𝑘𝑘=1

 (D.6) 

 

where {𝐵𝐵𝑘𝑘(𝑠𝑠)} is a basis of 𝑀𝑀 functions and 𝛼𝛼𝑘𝑘 are the regression coefficients. After that, 

the optimal decision is made considering the regression expectation 𝔼𝔼��C𝑗𝑗�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄�� for 

each regime 𝑗𝑗 according to (D.2). When the optimal transition is defined, the value 

𝑣𝑣𝑗𝑗�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄� at each simulated trajectory is computed with the realized value 

C𝑗𝑗�𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛 ,𝑄𝑄�. If the expected value is used instead of the realized value, we induce an 

upward positive bias as pointed out by Longstaff & Schwartz (2001).  

 

The most relevant decision is about regressor functions. This is a subject of extensive 

literature and it is possibly what determines the estimation accuracy. Discussions about 

this choice may be revised in Cortazar et al. (2008), Carmona & Ludkovski (2008), and 

Carmona & Ludkovski (2010). In our implementation, the first three powers of 𝑆𝑆, and 

three European options were used10. Our choice of regressors is based on the usual 

practice, adding functions with financial sense in the spirit of those proposed by Andersen 

& Broadie (2004). European options are used because we intuit these may resemble the 

shape of the dependent variable in the linear regression.  

 

                                                 
10 European option on the commodity, maturity at 𝛥𝛥𝛥𝛥, and strike price in {0.5𝑎𝑎, 𝑎𝑎, 1.5 𝑎𝑎}, where 𝑎𝑎 is the 

production cost. 
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E Extended Version of SFPI-RO under Geometric Brownian Model 

 

We solve the commodity mine considered by Brennan & Schwartz (1985) with finite 

reserves, 𝑄𝑄∗ = 150 million pounds, finite concession time, 𝑇𝑇 = 30 years, and 𝑥𝑥 = 4 

switching opportunities per year. Our implementation considers 𝑀𝑀 = 250,000 paths for 

each critical price, convergence tolerance 𝜖𝜖 = 1%, and the four grid specifications 

illustrated in Figure E.1. We exhibit the critical prices estimated with SFPI-RO in Figure 

E.2 to Figure E.5. We show cross-sections of the decision policy across the time-to-

maturity axis (top row) and across the reserves axis (bottom row). Note that Figure E.5 

replicates the critical prices shown in Section 2.4.1.1, but adding the nodes estimated by 

the algorithm. 

 

 
 

Figure E.1 Four mesh specifications for the reserves and time axis 
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Figure E.2 Cross-sections of critical prices under a one-dimensional GBM (mesh with #𝒫𝒫 = 56 nodes) 

Color legend for critical prices: 𝑆𝑆02 = red; 𝑆𝑆01 = blue; 𝑆𝑆12= black; 𝑆𝑆10 = green 
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Figure E.3 Cross-sections of critical prices under a one-dimensional GBM (mesh with #𝒫𝒫 = 143 nodes) 

Color legend for critical prices: 𝑆𝑆02 = red; 𝑆𝑆01 = blue; 𝑆𝑆12= black; 𝑆𝑆10 = green 
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Figure E.4 Cross-sections of critical prices under a one-dimensional GBM (mesh with #𝒫𝒫 = 357 nodes) 

Color legend for critical prices: 𝑆𝑆02 = red; 𝑆𝑆01 = blue; 𝑆𝑆12= black; 𝑆𝑆10 = green 
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Figure E.5 Cross-sections of critical prices under a one-dimensional GBM (mesh with #𝒫𝒫 = 858 nodes) 

Color legend for critical prices: 𝑆𝑆02 = red; 𝑆𝑆01 = blue; 𝑆𝑆12= black; 𝑆𝑆10 = green 
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