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A new formalism to calculate the in-medium chiral condensate is presented. At lower densities, this approach 
leads to a linear expression. If we demand a compatibility with the famous model-independent result, then the 
pion-nucleon sigma term should be six times the average current mass of light quarks. QCD-like interactions may 
slow the decreasing behavior of the condensate with increasing densities, compared with the linear extrapolation, 
if densities are lower than twice the nuclear saturation density. At higher densities, the condensate vanishes 
inevitably. 

The behavior of chiral condensates in a medium 
has been an interesting topic in nuclear physics 
[1]. A popular method to calculate the in-medium 
quark condensate is the Feynman-Helmann the- 
orem. The main difficulty, however, is the as- 
sumptions we have to make on the derivatives of 
model parameters with respect to the quark cur- 
rent mass. 

To bypass this difficulty, we will apply a similar 
idea as in the study of strange quark mat ter  [2- 
5] by defining an equivalent mass. A differential 
equation which determines the equivalent mass 
will be derived. At lower densities, the new for- 
malism leads to a linear decreasing condensate. 
A comparison with the result in nuclear mat ter  
implies that  the pion-nucleon sigma term should 
be six times the average current mass of light 
quarks. At higher densities, it turns out that  the 
decreasing speed of the condensate with increas- 
ing densities is lowered, compared with the linear 
extrapolation. 

The QCD Hamiltonian density can be schemat- 
ically written as 

H Q C D  = H k  + E m i o q i q i  + HI, (1) 
i 

where Hk is the kinetic term, mi0 is the current 
mass of quark flavor i, and H~ is the interacting 
part  of the Hamiltonian. The sum goes over all 
flavors involved. 
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The basic idea of the mass-density-dependent 
model of quark mat ter  is that  the system energy 
can be expressed as in a noninteracting system, 
where the strong interaction implies a variation 
of the quark masses with density. In order not to 
confuse with other mass concepts, let us call such 
a density-dependent mass as an equivalent mass. 
It can be separated into two parts, i.e., 

m i  = m io  + m i ,  (2) 

where the first term is the quark current mass and 
the second part  is a flavor independent interact- 
ing part. Therefore, we will have a Hamiltonian 
density of the form 

Hoqv = H~ + ~ mi¢iqi. (3) 
i 

We require that  the two Hamiltonian densities 
g e q  v and HQCD should have the same expecta- 
tion value for any state 19), i.e., 

<mlHenvl~> : (glHQCD]~}. (4) 

Applying this equality to the state IrtB) with 
baryon number density nB and to the vacuum 
state 10), we have 

(He.~>~ - (He~)0 = <HQCD>~ -- (HQc0>O. (5) 

Here we use (A)nB~(nBIAInB) and (A)o=(OIA]O) 
for an arbi t rary operator  A. 
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We restrict ourselves to systems with uni- 
formly distributed particles where we can write 
(~lm(nB)qql~) = m(ns)(~lqql~}.  Accordingly 
we can solve Eq. (5) for mi, getting 

(6) 
?7tI ---- ~i (  (qiqi)ns -- (qiqi)o)' 

where ~I -- (Hi)n, - (H~)0 is the interacting en- 
ergy density. 

Therefore, considering the quarks as a free sys- 
tem, while keeping the system energy unchanged, 
they should acquire an equivalent mass corre- 
sponding to the current mass plus the common 
interacting part shown in Eq. (6). The equiva- 
lent mass is a function of the quark current mass 
and of the density. Note that  quark confinement 
implies the following natural requirement: 

lira mi : oc. (7) 
nB---~0 

Because the Hamiltonian density Heqv has the 
form of a system of free particles with equivalent 
masses mi, the energy density of quark matter  
can be expressed as 

2 2 kSdk c = ~ + rn~ 
i 

= 3 n B ~ m i F  ~ , (8) 
i 

where g = 3(colors)×2(spins) -= 6 is the degener- 
acy factor, and 

kf -- 7rSnB (9) 

is the Fermi momentum of the quarks. The func- 
tion F(x) is 

3 2 F(x) =_ ~[xv/~-  + 1 (2x 2 + 1) - sh-*(x)]/x3.(lO) 

For convenience, let us define the function f(x)  

f (x) - - xS  d[F(z) /x]/ dx 

= - zV/-~z 2 + l - s h - l ( x )  /x  3. (11) 
2 

On the other hand, the total energy density can 
also be expressed as 

g f k f o ¢  
Z k2 + mSiokSdk + ei 

E ~ -~'~2 j 0 
i 

= -~ffnB Z m i ° F  - -  +~I,  (12) 
i \ rnio / 

where Nf = 2 is the number of flavors, the first 
term is the energy density without interactions, 
and the second term is the interacting part. Be- 
cause nB/Nf is the baryon number density for 
each flavor, the Fermi momentum kfo here is 

kf0= ( - ~ r 2  n~ff ) 1/3 (13) 

It looks similar to the non-interacting system. 
However, the Fermi momentum k~ in Eq. (9) is 
bigger. It has been boosted because of the Fermi 
momentum dependence on density through the 
equivalent mass. In the appendix A, we will give 
a proof for the boosting of the Fermi momentum. 

Combining Eqs. (12) and (8) we identify 

£I ~i [ ( k f ) -  lrtiOF (~fo ~] (14)  
3nB = . miF  ~ Nf -- \ mio ] j ' 

The Hellmann-Feynman theorem gives 

<¢[0-~H(A)I¢> = ~ ( ~ [ H ( A ) I ~ ) ,  (15) 

where I ~) is a normalized eigenvector of the 
Hamiltonian H(A) which depends on a parameter 
A. 

On application, in Eq. (15), of the substitu- 
tions A -+ rni0 and H(A) -+ f d3xHQCD, one 
gets (t~] f d3xqiqi]t~) = o Om,o (t~] f d3xHQCD [~> 
for each flavor i. Applying this equality, re- 
spectively, to the state ]nB> (quark matter with 
baryon number density nB) and to the vacuum 
]0>, one obtains 

0e 
(qiqi)n, - (qiqi)o - Omio' (16) 

where c = (HQcD)nB - (HQCD)O is the total en- 
ergy density. Now let us substitute Eq. (8) into 
Eq. (16), carry out the corresponding derivative, 
and sum over the flavor index. We get 

i 

=3 BZf 
i 



G.X. Peng et al./Nuclear Physics B (Proc. Suppl.) 133 £004) 259-264 261 

with V = ~ i  O/Omio. Note that  V is a differen- 
tial operator in mass space. 

Comparing this equation with Eq. (6) we have 
(qq)  

V m  I : CI / (3nB)  -- 1. (18) (qq)0 
m1 f (kf/md 

Replacing ei / (3nn here by the right hand side 
of Eq. (14) we get a first order differential equa- 
tion for the interacting equivalent mass. 

Such a mass really exists, and we can prove that  
it can be expressed in terms of the interacting 
energy density ei formally as 

m i  = e i / ( 3 n B )  (19) ( )" 
In the flavor symmetric case, i.e., muo = redO = 

. . . .  too, we have m~ = m d  . . . . .  m, (q-~qu) = 
(qdqd) . . . . .  ((¢q), and V = O/Omo. In this case 

Om~ _ m F  (~f/m) -- ~ f F  (kfo/, o) _ 1, (20) 

Omo m l f  (kf/m) 

(qq) 1 
= 1 + - -  (21) 

((lq)o Nf(gtq)o m i '  

m F  ( ~ )  - m ° F  (kf---O-°~ \ m o . /  3Nf?ZBffI. (22) 

Since l i m ~ o  F(x)  = 1, Eq. (22) becomes at 
lower densities 

(23) m = mo + 3Nfn-----~" 

This means mi = e i / (3Nfns) ,  i.e., e i /mi = 
3NfnB. Substituting this ratio into Eq. (21), we 
get 

(qq)~______~B _ 1 nB (24) 

with 

1 2 2 
m~rf2 (25) 

n* = - ~ ( q q ) o -  6too ' 
(qq)n. 

where m~ ~ 140 MeV is the pion mass and f~ ~ (qq)o 
93.2 MeV is the pion decay constant. 

Since we have said nothing about the form of 
the interacting energy density, our result is model 

independent. Recalling that  there is a model- 
dependent result in nuclear matter ,  i.e., 

2 
- 1 -  p w i t h p * -  , (26) 

fl* O" N 

first proposed by Drukarev et al. [6], and later 
re-justified by many authors [7], we get, from the 
requirement n* = p*, the very interesting relation 
aN = 6m0, i.e., the pion-nucleon sigma term aN 
is six times the average current quark mass too. If 
one takes aN = 45 MeV [8-10] and mo = (m~0 + 
rod0)/2 = (5 + 10)/2 = 7.5 g e V  [11], we confirm 
this result. 

The chiral condensate at higher densities can 
be calculated from Eqs. (20)-(22) if we know 
the interacting energy density ei from a realis- 
tic quark model. In the following, we consider a 
simple example. 

Denoting the average distance between quarks 
by f,  the interaction between quarks by 
v(mo,nB),  and assuming that  each quark can 
only interact strongly with other No nearest 
quarks at any moment,  because of the saturation 
of strong interactions, the interacting energy den- 
sity ei can be linked to density by 

3 (27) ~I -~ -~ Nons  v(mo, ~). 

The average inter-quark distance f is linked to 

density through ~ = ~/n~/3. Here ~ is a geomet- 
rical factor related to the way in which we group 
the quarks together. In what follows, we have 
divided the system into sub cubic boxes, being 
then ~ = 1/31/3 . We will take No = 2 since a 
quark has a trend to interact strongly with other 
two quarks to form a baryon. The concrete value 
of No as well as the value of ~ have only a mar- 
ginal influence on the density behavior of the chi- 
ral condensate. 

Substituting Eq. (27) into Eqs. (21) and (22), 
we have, respectively, 

No nB v 
= 1 2Nf n* mi '  (28) 

m F  - -~ffF \m---o-/ = ~-~ffv(mo, nB). 
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If the parameter No diverges faster than kf or 
rt 1/3 at extremely higher densities, we have 

lim v(mo,~) = 0. (30) 
r t B  ---} ~ 

which is consistent with asymptotic freedom. 
To solve Eq. (20), we need an initial condition 

* Let us suppose it to be at m0 = m o. 

rn(m~, nB) = m(nB). (31) 

Usually, we will have 

v(mo,  B)lmo=   = (32) 

where v(S) is the inter-quark interaction for the 
special value m~ of the quark current mass m0. 

Eq. (20) is difficult to solve analytically. How- 
ever, this can be done at lower densities. 

Let's rewrite Eq. (19) as 

v(mo, 
m1 = . (33) 

~o f (kf°) + °v(m°'~) 0o 0mo 

At lower densities, the Fermi momentum kf 
is small, so the function F(x)  approaches to 
1. Accordingly, from Eq. (29) we get mi = 
2--~TV(mo, riB). Replacing the left hand side of Eq. 
(33) with this expression, and integrating the re- 
sulting equation under the initial condition given 
in Eq. (32), we have 

(too,  

= / ; f v ( ~ ) +  ~ ° [ 1 -  l__l_f (kf__~o~] dmo. (34) 
Nf \ m 0 / J  

In general, an explicit analytical solution for 
the condensate is not available, and we have to 
perform numerical calculations. For a given inter- 
quark interaction v(~), we can first solve Eq. (29) 
to obtain the initial condition in Eq. (31) for the 
equivalent mass, then solve the differential Eq. 
(20), and finally calculate the quark condensate 
through Eq. (28). 

There are various expressions for v(~) in litera- 
ture, e.g., the Cornell potential [12], the Richard- 
son potential [13], the so-called QCD potentials 
[14,15], etc. They are all flavor-independent. 
Let's take a QCD-like interaction of the form 

v(~) = a~ 4%(~)  (35) 
3 

The first term a~ is the long-range confining part. 
The second term incorporates perturbative ef- 
fects. To second order in perturbation theory, 
one has [14,15] 

4~r [ bl in ),(~) b 2 ]  
- 1 bo + (36) 

where [16] 

)~(~) = ln[(~A~-~)-2 + b] (37) 

and b0 = ( l l N c - 2 N f ) / 3 ,  bl = [34N~-Nf(13N2c - 
3)/Nc]/3, and b2 = (31No-lONf) / (9bo)+2VE for 
SU(Nc) and Nf flavors. 7E is the Euler constant. 

Besides these constants, there are three free pa- 
rameters, i.e. a, A~--~, and b. The QCD scale pa- 
rameter is usually taken to be A~-~- = 300 MeV. 
The value for the string tension a from potential 
models varies in the range 0.18--0.22 GeV 2 [17], 
and we take a = 0.2 GeV 2. As for the parameter 
b, we take three values i.e. 10, 20, and 30, in the 
reasonable range [16]. The value ofm~ in Eq. (32) 
is taken to be 7.5 MeV. The numerical results are 
plotted in Fig. 1. 

In Fig. 1, the straight line is the linear extrap- 
olation of Eq. (24). It does not depend on the 
form of the inter-quark interaction v(~), and so 
is 'model-independent'.  The other three lines are 
for m o =  7.5 MeV, but  for different b values. At 
lower densities, the chiral condensate decreases 
linearly with increasing densities. When the den- 
sity increases, being less than two times the nu- 
clear saturation density, the decreasing speed is 
slowed. However, for even higher densities, it can 
be shown that the condensate vanishes rapidly. 

It should be noted that if the Fermi momen- 
turn in Eqs. (8) had not been boosted, the main 
Eq. (21) is still valid while Eqs. (20) and (22), 
and accordingly Eqs. (23), (29), (33)-(34), and 
especially the important equation (24) and the re- 
lation between the pion-nucleon sigma term and 
the current quark masses would be different by a 
factor, as has been formulated in the first part of 
Ref. [18]. 
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Figure 1. Density dependence of the quark con- 
densate in quark matter. 

A. W h y  s h o u l d  t he  effect ive F e r m i  mo-  
m e n t u m  be  b o o s t e d  

In this appendix, we show that  the effective 
Fermi momentum in the equivalent mass ap- 
proach should be boosted to a higher value. 

We start from 

d(VE)  = T d ( V S )  - P d V  + , d ( V n ) ,  (38) 

which is the combination of the first and second 
laws of thermodynamics. Here n is the particle 
number density, E is the energy density, and S is 
the entropy density. Because the system is uni- 
formly distributed, the corresponding extensive 
quantities are, respectively, Vn,  V E ,  and VS.  , 
is the chemical potential. From this expression 
we can get 

dE (39) 
T = ~-~- n , 

P + E -  T S  - . n  = - V  d~v s,n = O' (40) 

d E  s . = , (41) 

At zero temperature, the entropy becomes zero, 
Eqs. (40) and (41) become, respectively, 

P = - E + , n ,  (42) 

dn = d E / , .  (43) 

In our equivalent mass model, the energy den- 
sity is given with the equivalent mass as 

g, fkf 
E - 27c2 ./, V /~  + m2p2dx (44) 

16~r 2 kf + m  2 ( 2 k ~ + m  2) 

-m4sh-1  ( - ~ - ) ] ,  (45) 

where the Fermi momentum kf satisfies kf -- 
\ /#2 _ m  2. The degeneracy factor g* is 
Nf (flavor) × 2 (spin) × 3 (color). 

OE dk oE dm Prom Eq. (45) we get dE = ~ f +  Om " 
Substituting this into Eq. (43) then gives 

dn - g*k~ dkf 
27T 2 

[ _ + k f -  | din. (46) 

If the mass does not depend on the density or 
Fermi momentum, the second term vanishes. One 
then has 

= (67r2n ~ 1/3 
kf \ g* 1 (47) 

Eq. (47) is the well-known expression for the 
non-interacting system. However, in the mass- 
density-dependent case where interactions are 
treated non-pertutbatively by defining an equiv- 
alent mass, the quark number density should be 
given by integrating over both sides of Eq. (46): 

g*k~ 
? 2  - -  

67c 2 

g* / I  m 2 s h - l ( k f / m ) "  m d m  (48) 
+ k f -  

Usually the equivalent mass is a big quantity, 
much larger than the current mass. Therefore, 
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the ratio k f / m  is small if the densities are not too 
high. Let us then expand the integrand of the 
second term on the right hand side of Eq. (48) 
with respect to k f / m ,  taking then the lowest or- 
der term. We get: 

g* k 3 g* . /  k3 '~f dm. (49) 

Because of quark confinement and asymptotic 
freedom, rn increases with decreasing kf. There- 
fore, the simplest parametrization should be 

C 
m = m 0  + ( 5 0 )  

with C being a constant. To be consistent with 
the linear confinement, the exponent Z is equal to 
1 1. However, to reproduce the presently accepted 
value for the pion-nucleon term (about 45 MeV), 
Z should be about 3/2. Substituting Eq. (50) into 
Eq. (49) then gives 

kf = ~ 1 - Z / 3  (51) 

Comparing Eqs. (47) and (51), it is obvious 
that, for the same density, the Fermi momentum 
of the interacting system is different from that of 
the non-interacting case. When taking Z = 3/2, 
Eq. (51) becomes Eq. (9). 
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