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Cuevas CA, Gonzalez AA, Inestrosa NC, Vio CP, Prieto MC.
Angiotensin II increases fibronectin and collagen I through the
�-catenin-dependent signaling in mouse collecting duct cells. Am J
Physiol Renal Physiol 308: F358–F365, 2015. First published No-
vember 19, 2014; doi:10.1152/ajprenal.00429.2014.—The contribu-
tion of angiotensin II (ANG II) to renal and tubular fibrosis has been
widely reported. Recent studies have shown that collecting duct cells
can undergo mesenchymal transition suggesting that collecting duct
cells are involved in interstitial fibrosis. The Wnt/�-catenin signaling
pathway plays an essential role in development, organogenesis, and
tissue homeostasis; however, the dysregulation of this pathway has
been linked to fibrosis. In this study, we investigated whether AT1

receptor activation induces the expression of fibronectin and collagen
I via the �-catenin pathway in mouse collecting duct cell line M-1.
ANG II (10�7 M) treatment in M-1 cells increased mRNA, protein
levels of fibronectin and collagen I, the �-catenin target genes (cyclin
D1 and c-myc), and the myofibroblast phenotype. These effects were
prevented by candesartan, an AT1 receptor blocker. Inhibition of the
�-catenin degradation with pyrvinium pamoate (pyr; 10�9 M) pre-
vented the ANG II-induced expression of fibronectin, collagen I, and
�-catenin target genes. ANG II treatment promoted the accumulation
of �-catenin protein in a time-dependent manner. Because phosphor-
ylation of glycogen synthase kinase-3� (GSK-3�) inhibits �-catenin
degradation, we further evaluated the effects of ANG II and ANG II
plus pyr on p-ser9-GSK-3� levels. ANG II-dependent upregulation of
�-catenin protein levels was correlated with GSK-3� phosphoryla-
tion. These effects were prevented by pyr. Our data indicate that in
M-1 collecting duct cells, the �-catenin pathway mediates the stimu-
lation of fibronectin and collagen I in response to AT1 receptor
activation.

pyrvinium pamoate; mouse collecting duct cell; tissue homeostasis

ANGIOTENSIN II (ANG II) plays a key role in the development
and progression of chronic kidney disease (CKD) (27). It has
been shown that increased levels of ANG II and renin in
renal tubules after subtotal nephrectomy are pathogenically
linked to the development of tubulointerstitial injury (10). In
particular, alterations in the ANG type 1 (AT1) receptor,
angiotensin-converting enzyme 2 (ACE-2), and the newly
described (pro)renin receptor precede the development of
renal fibrosis (41). Evidence from in vivo studies has shown
that AT1 receptor antagonists ameliorate renal tubulointerstitial
fibrosis caused by unilateral ureteral obstruction (17). Further-

more, in vitro studies indicate that ANG II activates renal cells
to produce profibrotic factors and extracellular matrix (ECM)
proteins (37, 48, 51). These profibrotic factors lead to tubulo-
interstitial injury and glomerulosclerosis due to excessive ac-
cumulation and deposition of ECM components (3, 49), which
are the final manifestations of CKD and renal failure (24). In
the kidney, a great number of ANG II effects are mediated
through the AT1 receptor, since it is widely expressed by
different cell types along the nephron (14). In fact, AT1

receptor-deficient mice show reduced renal interstitial fibrosis
(39); however, the mechanisms by which AT1 receptor stim-
ulates profibrotic factors and downstream pathways in tubu-
loepithelial cells remain undefined.

The Wnt/�-catenin signaling pathway is a multifunctional
network that plays an essential role in embryonic development,
organogenesis, and tissue homeostasis (31). The activation of
Wnt signaling inhibits the activity of glycogen synthase ki-
nase-3� (GSK-3�) which induces the accumulation of dephos-
phorylated �-catenin in the cytosol and its translocation into
the nucleus (43). These actions allow for enhanced interaction
of �-catenin with components of the high mobility group
family of transcription factors which activate gene expression
(9). Several models of intrarenal renin-angiotensin system
(RAS) overactivation, including obstructive uropathy (44) and
renal fibrosis (15, 16, 40), show dysregulation of Wnt/�-
catenin signaling in which �-catenin target genes such as
Twist, LEF1, and fibronectin are upregulated in a time-depen-
dent manner (39, 40). ANG II also exerts profibrotic effects in
mesangial cells, podocytes, and proximal tubule epithelial cells
in the kidney (1, 51). The collecting duct cells can also be
involved in tubulointerstitial fibrosis (2) and undergo epithelial
mesenchymal transition (18). However, it has not been deter-
mined whether AT1 receptor signaling interacts with the
�-catenin pathway to induce fibrosis in the collecting ducts. In
the present study, we test the hypothesis that the activation of
AT1 receptor stimulates fibronectin and collagen I via activa-
tion of the �-catenin-dependent signaling pathway in M-1
cortical collecting duct cells.

METHODS

Cell line culture and treatments. M-1 cortical collecting duct cells
(American Type Culture Collection; CRL-2038) were grown in
DMEM-F12 media supplemented with 10% FBS, 5 �M dexametha-
sone, 1� insulin-transferrin-selenium, and 100 U/ml penicillin/strep-
tomycin in a humid atmosphere of 5% CO2-95% room air at 37°C.
Cells were then treated with ANG II (10�7 M) for 16 h. An additional
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group of cells was treated with either an inhibitor of the Wnt signaling
pathway (pyrvinium pamoate; 10�9 M) or an AT1 receptor (cande-
sartan; 10�7 M) blocker. The dose of pyrvinium pamoate was based
on previous studies showing its effectiveness at nanomolar concen-
trations in reducing � catenin phosphorylation and proliferation in
tumor cells (22, 28, 38, 45). Additionally, it has been shown that
pyrivinium pamoate selectively potentiates the casein kinase alpha
activity with an EC50 of 10 nM (45).

Immunofluorescence in M-1 cells. Subconfluent M-1 cells (50–
60%) cultured in chamber slides (Nalge Nunc, Rochester, NY) were
fixed in cold methanol for 20 min, blocked with PBS-Tween (0.1%)
plus BSA (3%) for 1 h, and stained with rabbit anti-�-actin (Cat. no.
sc-130657; Santa Cruz Biotechnology, Santa Cruz, CA) at 1:200
dilutions, and detected with Alexa Fluor 488 conjugated to anti-rabbit
IgG (Invitrogen, Carlsbad, CA) at 1:1,000 dilution. Samples were
counterstained with 4=,6-diamidino-2-phenylindole (Invitrogen). Neg-
ative controls were obtained by omission of the specific primary
antibody.

Measurements of fibronectin, collagen I, cyclin D1, and c-myc
mRNAs by qRT-PCR. Quantitative real-time RT-PCR (qRT-PCR) was
performed using the TaqMan PCR system. Total RNA (20 ng) was
isolated using RNeasy Mini Kit (Qiagen, Valencia, CA). The following
primers and probes used to amplify the genes: Fibronectin: 5=-
TGCCGTGGTCCTAACAAATC-3= (sense), 5=-GTGAATGAGTTG-
GCGGTGAT-3= (antisense), and 5=-6-FAM-AGGCAGAAAACAG-
GTCTCGA (BQH1a-6FAM)-3= (fluorogenic probe); Collagen I: 5=-
GAGTACTGGATCGACCCTAA-3= (sense), 5=-GAGTAGGGAA-
CACACAGGTC-3= (antisense), and 5=-6FAM-CCATCAAGGTC-
TACTGCAACATGG-BHQ1-3= (fluorogenic probe); cyclin D1: 5=-

GCTGCAAATGGAACTGCTTC-3= (sense), 5=-GGGTGGGTTG-
GAAATGAACT-3= (antisense), and 5=-6-FAM-AGCATGCACA-
GACCTTTGTG (BHQ1a-6FAM)-3= (fluorogenic probe); and c-myc:
5=-TCAGTGGTCTTTCCCTAC-3= (sense), 5=-GTGTCTCCTCATG-
CAGCACT-3= (antisense), and 5=-6-FAM-TCCTGTACCTCGTC-
CGATTC (BHQ1a-6FAM)-3= (fluorogenic probe). Data were normal-
ized against �-actin mRNA levels using primer and probe sequences
as previously described (11).

Protein expression of �-smooth muscle actin, fibronectin, collagen
I, cyclin D1, c-myc, and �-catenin. Protein expression levels were
quantified after immunoblotting using a 1:1,000 dilution of the fol-
lowing specific antibodies: �-smooth muscle actin (�-SMA; Cat. no.
sc 53142 Santa Cruz Biotechnology), fibronectin, collagen I (Cat. no.
F3648, SAB4500363; Sigma, St. Louis, MO), activated �-catenin
(anti-ABC, Cat. no. 05-665; Millipore, Billerica, MA), p-�-catenin
(ser33/37/Thr41; Cat. no. 9561; Cell Signaling Technology, Danvers,
MA); and cyclin D1, c-myc, and �-actin (Cat. no. sc-717, sc-788, and
sc-130657, respectively; Santa Cruz Biotechnology). Primary anti-
bodies were followed by incubation with either donkey anti-rabbit or
anti-mouse IgG IRDye 800 CW (Li-cor Biosciences, Lincoln, NE) at
a 1:30,000 dilution. Densitometric analyses were performed by nor-
malization against �-actin.

Statistics analysis. Each experiment constituted an average of five
to six independent observations (each well represented an independent
observation). Experiments were performed in at least three different
cell passages. Cells were used until passages 10–12. Differences
between groups were assessed by one-way ANOVA followed by
Tukey’s test using the GraphPad Prism software v 5.0 (GraphPad
Software, San Diego, CA). P � 0.05 was considered statistically
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Fig. 1. ANG II induces myofibrolast-like phenotype and synthesis of �-smooth muscle actin (SMA) in M-1 cells. A: cultured M-1 cells showed myofibrolast-like
phenotype after ANG II treatment (48 h). Losartan (Los) prevented this effect. Cell morphology was assessed by immunofluorescence using �-actin antibody.
B: similarly, ANG II treatment induced �-SMA protein expression (24 h), a marker for myofibroblast. Losartan prevented this effect. *P � 0.05 vs. control
(n � 3, by t-test).
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significant. The results shown in plots and texts are expressed as
means 	 SD.

RESULTS

ANG II induces myofibroblast-like phenotype and �-SMA
protein levels in M-1 cells. To evaluate whether ANG II
treatment induces epithelial-mesenchymal transition, M-1 cells
were treated with ANG II (10�7 M). After 48 h, cells were
fixed in methanol and staining with �-actin antibody to visu-
alize the cell shape using immunofluorescence. Figure 1A
shows three representative fields demonstrating that the num-
ber of myofibroblast-like cells was augmented after 48 h of
ANG II treatment. As a marker of myofibroblast phenotype
induction, we quantified the protein levels of �-SMA by
Western blot. Figure 1B shows that protein abundance of
�-SMA was upregulated after 24 h of ANG II treatment (fold
change: 2.12 	 0.32 vs. control: 1.00 	 0.23, P � 0.05).
Pretreatment with losartan (10�6 M) prevented the ANG II-
dependent induction of myofibroblast-like phenotype and
�-SMA protein levels (fold change: 1.11 	 0.42 vs. control:
1.00 	 0.23, P � 0.212).

ANG II induces the expression of fibronectin and collagen I
via AT1 receptor in M-1 collecting duct cells. Figure 2A shows
that ANG II (10�7 M) treatment in M-1 cells induced signif-
icant increases in mRNA levels of fibronectin (fold change:
1.55 	 0.21 vs. control: 0.94 	 0.11, P � 0.05) and collagen
I (fold change: 1.46 	 0.20 vs. control: 0.87 	 0.17, P � 0.05).
Figure 2B displays similar results in protein levels (fibronectin:
1.53 	 0.16 vs. control: 0.95 	 0.09, P � 0.05; collagen I:
2.18 	 0.23 vs. control: 1.06 	 0.08 fold change, P � 0.05).
Candesartan (10�7 M), an AT1 receptor blocker, prevented the

ANG II-mediated induction of fibronectin (mRNA: 0.91 	
0.14, protein: 0.84 	 0.23, P � NS) and collagen I (mRNA:
1.09 	 0.14, protein: 1.07 	 0.16, P � NS).

ANG II increases the expression of �-catenin target genes in
M-1 cells. Cyclin D1 and c-myc are �-catenin target genes.
ANG II augmented the mRNA and protein levels of cyclin D1
and c-myc (fold change cyclin D1: 1.86 	 0.48 and 1.65 	
0.11; c-myc: 1.63 	 0.04 and 2.11 	 0.36, respectively, P �
0.05). In the presence of candesartan, the effects of ANG II on
cyclin D1 and c-myc were completely abolished (Fig. 3, A and
B). We next evaluated whether ANG II treatment was able to
increase �-catenin expression, which would explain the induc-
tion of cyclin D1 and c-myc. As shown in Fig. 4, ANG II
increased �-catenin protein levels after 4 h, with the highest
induction at 16 h (fold change: 2.61 	 0.15 vs. 1.10 	 0.21,
P � 0.001). This induction was still significantly higher after
24 h (fold change: 1.61 	 0.20 vs. 1.01 	 0.21, P � 0.05).

Angiotensin II induces the expression of collagen I and
fibronectin via activation of the �-catenin signaling in M-1
cells. To determine whether ANG II interacts with the
�-catenin signaling pathway to induce the expression of pro-
fibrotic genes, we treated M-1 cells with ANG II in the
presence of pyrvinium pamoate, which targets �-catenin by
activating CK-1� (38). As shown in Fig. 5, A and B, ANG
II-mediated upregulation of collagen I and cyclin D1 and
c-myc mRNA levels were prevented by pyrvinium pamoate. In
a new set of experiments, we evaluated the effect of pyrvinium
pamoate on the ANG II-induced expression of �-catenin. As
shown in Fig. 6, ANG II treatment induced �-catenin protein
level changes (fold change: 2.21 	 0.43 vs. 1.01 	 0.06, P �
0.05). Along with the ANG II-induced upregulation of
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Fig. 2. ANG II increases fibronectin and col-
lagen I mRNA and protein levels in M-1 cells.
Levels of mRNA (A) and protein (B) of fi-
bronectin and collagen I are augmented by
ANG II treatment (10�7 M) after 16 h, and this
effect was abolished by an AT1 receptor
blocker candesartan (cand). *P � 0.05 vs.
control (n � 6).
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�-catenin, ANG II also promoted the phosphorylation of ser-
9-GSK-3� (fold change p-ser-9-GSK-3�/GSK-3� ratio:
3.56 	 0.47, P � 0.05). Previous treatment with pyrvinium
pamoate suppressed the ANG II-mediated upregulation of
�-catenin (fold change: 1.23 	 0.19, P � nonsignificant vs.
control) and p-ser-9-GSK-3�/GSK-3� ratio (fold change: 1.58 	
0.48, P � nonsignificant). Treatment with pyrvinium pamoate
in control cells showed nonsignificant changes in the p-ser-9-
GSK-3�/GSK-3� ratio; however, we observed a slight, but
significant reduction in �-catenin expression levels (fold
change: 0.78 	 0.22, P � 0.05; Fig. 5). Phosphorylated
�-catenin levels were reduced by ANG II treatment, whereas
pyrvinium pamoate prevented this effect (Fig. 6).

DISCUSSION

In the present study, we demonstrate that in mouse collect-
ing duct cells, ANG II via AT1 receptor induces the expression
of fibronectin and collagen I as well as cyclin D1 and c-myc,
which are both target genes of the �-catenin signaling pathway.
Our results indicate that the activation of the AT1 receptor
induces fibrotic factors in the collecting duct cells through the
stimulation of �-catenin signaling.

Angiotensin II is the major fibrogenic factor in the kidney
and most of its effects are related to cell cycle dysregulation

(51). Systemic chronic infusion of ANG II induces the over-
expression of fibronectin and collagen I deposition in the
kidney (52). Some of the ANG II-dependent mechanisms
involved in the development of CKD involve oxidative stress,
intrarenal RAS overactivation, and high blood pressure (11, 21,
46). Additionally, other factors may contribute to the stimula-
tion of fibrosis, independent of ANG II (15, 16). The sustained
formation of peroxynitrite in rats fed a high-salt diet may
induce sulfhydryl oxidation, protein nitration, and lipid peroxi-
dation, which all contribute to kidney injury (8), as reflected by
the glomerular expansion and tubulointerstitial fibrosis. We
reported that an excessively high-salt diet, by itself, leads to a
marked increase in peroxynitrite formation and predisposes the
kidney to greater tubulointerstitial injury when associated with
chronic ANG II infusions (23). High salt also independently
stimulates TGF-�1 (47) and other intracellular signaling
pathways leading to an enhanced response to ANG II. In
fact, we showed in rats that physiological intrarenal RAS
activation in response to a chronic low-salt diet, despite
absence of major renal tissue injury, augmented renal tubu-
lointerstial fibrosis (42).

Although most of the profibrotic effects of ANG II have
been reported in mesangial cells, podocytes, and proximal
tubule epithelial cells (1, 50), a direct link between ANG II and
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target genes in M-1 cells. Cyclin D1 and c-myc mRNA
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sartan (cand). ANG II increased mRNA and protein
expression of both cyclin D1 and c-myc, and candesar-
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fibrosis in collecting duct cells remains complex and poorly
understood. An involvement of the collecting duct cells in the
development of tubulointerstitial fibrosis has been suggested
(2, 18), yet little is known about the possible role of ANG II

profibrotic action on tubuloepithelial cells in the distal
nephron. Collecting duct cells can undergo epithelial mesen-
chymal transition via stimulation of insulin-like growth factor
(IGF)-I by TGF-�1 (18). Immunohistochemical studies of
renal biopsies from adult patients with a variety of underlying
renal diseases associated with interstitial fibrosis demonstrate
the expression of mesenchymal proteins such as �-SMA and
vimentin in tubular epithelial cells, including those of collect-
ing ducts, adjacent to regions of interstitial fibrosis and tubular
basement membrane disruption (19, 36). The mechanism by
which collecting duct cells undergo extracellular matrix trans-
formation is complex and may involve IGF-induced Akt and
GSK-3� phosphorylation associated with early disruption of
E-cadherin-�-catenin membrane colocalization with the trans-
location of E-cadherin to endosomes and �-catenin to the
nucleus (18).

�-Catenin is expressed along the nephron and plays a role in
kidney disease (20, 30). However, there is little evidence about
its role in collecting duct cells. Recent studies have suggested
that lithium decreases renal medullary GSK-3� activity (35)
and is associated with nephrotoxicity (33), and changes in
cellular composition in the distal nephron (4, 5). Kidneys from
lithium-treated rats show upregulation of p-ser-9GSK-3�
and proliferating cell nuclear antigen in the cortex and
medulla. Lithium is an unspecific activator of the Wnt
pathway (34). Despite its effects on GSK3-�, lithium also
inhibits other enzymes like the inositol monophosphatase,
inositol polyphosphate 1-phosphatase, fructose 1,6-bispho-
sphatase, bisphosphate nucleotidase, adenylate cyclase, and
PKC, among others (34).

Because the dysregulation of the evolutionarily conserved
Wnt/�-catenin signaling system has been involved in the de-
velopment of fibrotic processes (13, 18), we further examined
whether ANG II induces profibrotic genes via �-catenin sig-
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naling pathway activation. We tested the expression of cyclin
D1 and c-myc, both classic target genes of this pathway. Our
data agree with previous in vitro studies showing that ANG II
upregulates cyclin D1 expression in Chinese hamster ovary
cells expressing AT1 receptor (12). Moreover, Diep et al. (6)
showed that in ANG II-infused rats there was an increased
cyclin D1 expression in blood vessels. Additionally, in rat
vascular smooth muscle cells, ANG II induced the expression
of c-myc (29). Diez et al. (7) showed that inhibition of ACE
reduced c-myc levels in smooth muscle cells in spontaneous
hypertensive rats. Although the binding of ANG II to the AT1

receptor exerts most of the pathophysiological effects of ANG
II by promoting cell proliferation and inflammation (26), our
data indicate that AT1 receptor-dependent activation of the
�-catenin signaling pathway also plays an important role on the
stimulation of profibrotic factors in collecting duct cells.

Free �-catenin is phosphorylated by GSK-3� and is rapidly
targeted for proteosomal degradation (32). However, different
stimuli can inhibit GSK-3� via phosphorylation at the Ser9 site
leading to �-catenin stabilization (32). AT1 receptor is widely
expressed along the nephron (14) and its activation leads to
PKC activation and calcium accumulation in collecting duct
cells (11). It has been suggested that �-catenin stabilization can
be induced by the activation of PKC with phorbol esters in T
cells (25). Therefore, we examined whether the effect of ANG
II on �-catenin signaling trans-activates transcription factors of
the TCF/LEF family for the activation of gene expression (43).
Our data suggest that the direct AT1 receptor-dependent acti-
vation of �-catenin signaling stimulates �-catenin downstream
target genes in M-1 cells since candesartan prevented this

effect. The inhibition of �-catenin signaling by pyrvinium
treatment decreases protein and mRNA levels of profibrotic
genes and �-catenin target genes induced by ANG II. Notably,
the expression of cyclin D1 and c-myc, both widely known
�-catenin target genes implicated in regulating cell prolifera-
tion, was correlated with �-catenin stabilization. Our results
indicated that ANG II treatment increases Ser9-GSK-3� phos-
phorylation leading to the stabilization of �-catenin. Interest-
ingly, ANG II also induced the upregulation of total �-catenin
and decreased its phosphorylation. We confirmed our observa-
tions demonstrating that after 48 h, ANG II treatment induces
a mesenchymal phenotype demonstrating that the M-1 cells
can undergo epithelial mesenchymal transition as previously
suggested (18).

In conclusion, this study demonstrates that ANG II increases
�-catenin protein levels in a time-dependent manner, whereas
cotreatment with pyrvinium pamoate decreases both �-catenin
and p-ser9-GSK-3�. Our findings support the concept that in
collecting duct cells, ANG II has a stimulatory effect on the
�-catenin signaling pathway to induce the expression of fi-
brotic factors. Our data also indicate that AT1 receptor activa-
tion is necessary for induction of the profibrotic factors, fi-
bronectin and collagen I, through a mechanism involving
�-catenin stabilization in collecting duct cells. These results
suggest a role for AT1 receptor in the development of fibrosis
in tubuloepithelial cells of the collecting duct.
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Fig. 6. Pyrvinium pamoate blunted the ANG
II-mediated increase in �-catenin protein levels
and phosphorylation of glycogen synthase ki-
nase-3� (GSK-3�) in M-1 cells. �-Catenin
protein levels (top), phosphorylated ser-9-
GSK-3� (middle), and phopho-�-catenin lev-
els (bottom) in M-1 cells incubated with ANG
II in the presence or absence of pyrvinium
pamoate (pyr) during 16 h. ANG II upregulates
�-catenin and p-ser9-GSK-3� while the phos-
phorylation of �-catenin decreases; however,
pretreatment with pyrvinium pamoate prevented
this effect. *P � 0.05 vs. control (n � 6).
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