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Neutrino masses and mixings from supersymmetry with bilinearR-parity violation:
A theory for solar and atmospheric neutrino oscillations
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The simplest unified extension of the minimal supersymmetric standard model with bilinearR-parity viola-
tion naturally predicts a hierarchical neutrino mass spectrum, in which one neutrino acquires mass by mixing
with neutralinos, while the other two get mass radiatively. We have performed a full one-loop calculation of
the neutralino-neutrino mass matrix in the bilinearR” p minimal supersymmetric standard model, taking special
care to achieve a manifestly gauge invariant calculation. Moreover we have performed the renormalization of
the heaviest neutrino, needed in order to get meaningful results. The atmospheric mass scale and maximal
mixing angle arise from tree-level physics, while solar neutrino scale and oscillations follow from calculable
one-loop corrections. If universal supergravity assumptions are made on the soft-supersymmetry breaking
terms then the atmospheric scale is calculable as a function of a singleR” p violating parameter by the renor-
malization group evolution due to the nonzero bottom quark Yukawa coupling. The solar neutrino problem
must be accounted for by the small mixing angle Mikheyev-Smirnov-Wolfenstein~MSW! solution. If these
assumptions are relaxed then one can implement large mixing angle solutions. The theory predicts the lightest
supersymmetic particle decay to be observable at high-energy colliders, despite the smallness of neutrino
masses indicated by experiment. This provides an independent way to test this solution of the atmospheric and
solar neutrino anomalies.

PACS number~s!: 14.60.Pq, 11.30.Pb, 12.60.Jv
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I. INTRODUCTION

The high statistics data by the SuperKamiokande Colla
ration @1# has confirmed the deficit of atmospheric mu
neutrinos, especially at small zenith angles, opening a
era in neutrino physics. On the other hand the persistent
agreement between solar neutrino data and theoretical ex
tations has been a long-standing problem in physics@2#. Al-
together these constitute the only solid evidence we n
have in favor of physics beyond the present standard mo
providing a strong hint for neutrino conversion. Althoug
massless neutrino conversions@3# can be sizable in matter
and may even provide alternative solutions of the neutr
anomalies@4#, it is fair to say that the simplest interpretatio
of the present data is in terms of massive neutrino osc
tions. Taking for granted such an interpretation, the pres
data do provide an important clue on the pattern of neutr
masses and mixing. The atmospheric data indicatenm to nt

flavor oscillations with maximal mixing@5#, while the solar
data can be accounted for in terms of either small mix
angle ~SMA! and large mixing angle~LMA ! Mikheyev-
Smirnov-Wolfenstein ~MSW! solutions @6#, as well as
through vacuum or just-so solutions@7#. A large mixing
amongnt and ne is excluded both by the atmospheric da
and by reactor data on neutrino oscillations@8#. There has
indeed been an avalanche@9# of papers trying to address th
issue in the framework of unified models adoptingad hoc
texture structures for the Yukawa couplings.

Here we propose an alternative approach to describe
structure of lepton mixing which accounts for the atm
0556-2821/2000/62~11!/113008~25!/$15.00 62 1130
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spheric and solar neutrino anomalies@10# based on the sim-
plest extension of minimal supergravity with bilinea
R-parity violation~BRPV! @11#. The particles underlying the
mechanism of neutrino mass generation are the neutra
persymmetric partners of the standard model gauge
Higgs bosons which have mass at the weak scale and
thus accessible to accelerators.

Our model breaks lepton number and therefore neces
ily generates nonzero Majorana neutrino masses@12#. At the
tree level only one of the neutrinos picks up a mass by m
ing with neutralinos@13#, leaving the other two neutrino
massless@14#. While this can explain the atmospheric ne
trino problem, to reconcile it with the solar neutrino da
requires going beyond the tree-level approximation. This
the purpose of the present paper. Here we improve the w
of Ref. @15# by performing a full one-loop calculation of th
neutrino mass matrix and also update the discussion in
light of the recent global fits of solar and atmospheric ne
trino data. This can also be used to improve the discuss
given in Ref. @16# where the tree approximation was a
sumed. For simplified analyses including only the atm
spheric neutrino problem in the tree-level approximation
Ref. @17# and a number of papers in Ref.@18#.

We have performed a full one-loop calculation of th
neutralino-neutrino mass matrix in the bilinearR” p minimal
supersymmetric standard model~MSSM!, showing that, in
order to explain the solar and atmospheric neutrino data,
necessary and sufficient to work at the one-loop level, p
vided one performs the renormalization of the heaviest n
trino. In contrast with all existing papers@15,18#, we have
taken special care to verify the gauge invariance of the
©2000 The American Physical Society08-1
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culation, thus refining the approximate approaches so
used in the literature. We find that if the soft-supersymme
breaking terms are universal at the unification scale then o
the small mixing angle MSW solution to the solar neutri
problem exists. On the other hand if these assumptions
relaxed then one can implement large mixing angle so
tions, either MSW or just so.

Bilinear R-parity breaking supersymmetry has been ext
sively discussed in the literature@10#. It is motivated on the
one hand by the fact that it provides an effective truncat
of models whereR parity breaksspontaneouslyby singlet
sneutrino vevs around the weak scale@19#. Moreover, they
allow for the radiative breaking ofR parity, opening also
new ways to unify gauge and Yukawa couplings@20# and
with a potentially slightly lower prediction foras @21#. For
recent papers on phenomenological implications of th
models see Refs.@22–24#. If present at the fundamental leve
trilinear breaking ofR parity will always imply bilinear
breaking at some level, as a result of the renormaliza
group evolution. In contrast, bilinear breaking may exist
the absence of trilinear breaking, as would be the case
arises spontaneously.

This paper is organized as follows. In Secs. II–IV w
describe the model, the minimization of the scalar poten
and the radiative breaking of the electroweak symmetry
Sec. V the tree level masses and mixings are described, w
the contributions to the one loop mass matrix and the ga
invariance issue are studied in Sec. VI. Finally the neutr
masses and mixings are discussed in Sec. VII where
show our results for solar and atmospheric oscillation par
eters. The more technical questions regarding the mass
trices, couplings, and one loop results as well as further
tails of gauge invariance are given in the appendixes.
also briefly discuss how, despite the smallness of neut
masses indicated by experiment, the theory can lead to
servableR” p phenomena at high-energy accelerators.

II. THE SUPERPOTENTIAL AND THE SOFT BREAKING
TERMS

Using the conventions of Refs.@23,25# we introduce the
model by specifying the superpotential, which includ
BRPV @10# in three generations. It is given by

W5«ab@hU
i j Q̂i

aÛ j Ĥu
b1hD

i j Q̂i
bD̂ j Ĥd

a1hE
i j L̂ i

bR̂j Ĥd
a2mĤd

aĤu
b

1e i L̂ i
aĤu

b#, ~1!

where the couplingshU , hD , andhE are 333 Yukawa ma-
trices andm and e i are parameters with units of mass. T
bilinear term in Eq.~1! violates lepton number in addition t
R parity.

Supersymmetry breaking is parametrized with a set of
supersymmetry breaking terms. In the MSSM these are g
by
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Lsoft
MSSM5MQ

i j 2Q̃i
a* Q̃j

a1MU
i j 2Ũ i Ũ j* 1MD

i j 2D̃ i D̃ j* 1ML
i j 2L̃ i

a* L̃ j
a

1MR
i j 2R̃i R̃j* 1mHd

2 Hd
a* Hd

a1mHu

2 Hu
a* Hu

a

2F1

2
Mslsls1

1

2
Mll1

1

2
M 8l8l81H.c.G

1«ab@AU
i j Q̃i

aŨ jHu
b1AD

i j Q̃i
bD̃ jHd

a1AE
i j L̃ i

bR̃jHd
a

2BmHd
aHu

b#. ~2!

In addition to the MSSM soft supersymmetry~SUSY! break-
ing terms inLsoft

MSSM the BRPV model contains the following
extra term:

Vsoft
BRPV52Bie i«abL̃ i

aHu
b , ~3!

where theBi have units of mass. In what follows, we negle
intergenerational mixing in the soft terms in Eq.~2!.

The electroweak symmetry is broken when the two Hig
doubletsHd andHu , and the neutral component of the sle
ton doubletsL̃ i

1 acquire vacuum expectation values~VEVs!.
We introduce the notation

Hd5S Hd
0

Hd
2D , Hu5S Hu

1

Hu
0 D , L̃ i5S L̃ i

0

l̃ i
2D , ~4!

where we shift the neutral fields with nonzero VEVs as

Hd
0[

1

&
@sd

01vd1 iwd
0#, Hu

0[
1

&
@su

01vu1 iwu
0#,

~5!

L̃ i
0[

1

&
@ ñ i

R1v i1 i ñ i
I #.

Note that theW boson acquires a massmW
2 5 1

4 g2v2, where
v2[vd

21vu
21v1

21v2
21v3

2.(246 GeV)2. We introduce the
following notation in spherical coordinates for the vacuu
expectation values:

vd5v sinu1 sinu2 sinu3 cosb,

vu5v sinu1 sinu2 sinu3 sinb,

v35v sinu1 sinu2 cosu3 , ~6!

v25v sinu1 cosu2 ,

v15v cosu1 ,

which preserves the MSSM definition tanb5vu /vd . In the
MSSM limit, where e i5v i50, the anglesu i are equal to
p/2. In addition to the above MSSM parameters, our mo
contains nine new parameterse i , v i , and Bi . The three
VEVs are determined by the one-loop tadpole equations,
we will assume universality of theB terms, B5Bi at the
unification scale. Therefore, the only new and free para
eters can be chosen as thee i .
8-2
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III. THE SCALAR POTENTIAL

The electroweak symmetry is broken when the Higgs a
lepton fields acquire nonzero VEVs. These are calculated
the minimization of the effective potential or, in the diagr
matic method, via the tadpole equations. The full scalar
tential at the tree level is

Vtotal
0 5(

i
U]W

]zi
U2

1VD1Vsoft
MSSM1Vsoft

BRPV, ~7!

wherezi is any one of the scalar fields in the superpoten
in Eq. ~1!, VD are theD terms, andVsoft

BRPV is given in Eq.~3!.
The tree level scalar potential contains the following l

ear terms:

Vlinear
0 5td

0sd
01tu

0su
01t1

0ñ1
R1t2

0ñ2
R1t3

0ñ3
R , ~8!

where the differentt0 are the tadpoles at tree level. They a
given by

td
05~mHd

2 1m2!vd1vdD2m~Bvu1v ie i !,

tu
052Bmvd1~mHu

2 1m2!vu2vuD1v iBie i1vue2,

t1
05v1D1e1~2mvd1vuB11v ie i !1

1

2
~v iMLi1

2 1ML1i
2 v i !,

~9!

t2
05v2D1e2~2mvd1vuB21v ie i !1

1

2
~v iMLi2

2 1ML2i
2 v i !,

t3
05v3D1e3~2mvd1vuB31v ie i !1

1

2
~v iMLi3

2 1ML3i
2 v i !,
11300
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where we have definedD5 1
8 (g21g82)(v1

21v2
21v3

21vd
2

2vu
2) and e25e1

21e2
21e3

2. A repeated indexi in Eq. ~9!
implies summation overi 51,2,3. The five tree level tadpole
ta
0 are equal to zero at the minimum of the tree level pot

tial, and from there one can determine the five tree le
vacuum expectation values.

It is well known that in order to find reliable results fo
the electroweak symmetry breaking it is necessary to incl
the one-loop radiative corrections. The full scalar potentia
one loop level, called effective potential, is

Vtotal5Vtotal
0 1VRC, ~10!

whereVRC include the quantum corrections. In this paper w
use the diagramatic method, which incorporates the radia
corrections through the one-loop corrected tadpole equati
The one loop tadpoles are

ta5ta
02dta

DR1Ta~Q!5ta
01T̃a

DR~Q!, ~11!

where a5d,u,1,2,3 andT̃a
DR(Q)[2dta

MS1Ta(Q) are the
finite one loop tadpoles. At the minimum of the potential w
haveta50, and the vevs calculated from these equations
the renormalized VEVs.

Neglecting intergenerational mixing in the soft mass
the five tadpole equations can be conveniently written
matrix form as

@ tu
0,td

0,t1
0,t2

0,t3
0#T5M tad

2 @vu ,vd ,v1 ,v2 ,v3#T, ~12!

where the matrixM tad
2 is given by
M tad
2 53

mHd

2 1m21D 2Bm 2me1 2me2 2me3

2Bm mHu

2 1m21e22D B1e1 B2e2 B3e3

2me1 B1e1 ML1

2 1e1
21D e1e2 e1e3

2me2 B2e2 e1e2 ML2

2 1e2
21D e2e3

2me3 B3e3 e1e3 e2e3 ML3

2 1e3
21D

4 ~13!

and depends on the VEVs only through theD term defined above.
In order to have approximate solutions for the tree level vevs, consider the following rotation among theHd and lepton

superfields:

M tad825RM tad
2 R21, ~14!

where the rotationR can be split as
8-3
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R5F c3 0 0 0 2s3

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

s3 0 0 0 c3

G 3F c2 0 0 2s2 0

0 1 0 0 0

0 0 1 0 0

s2 0 0 c2 0

0 0 0 0 1

G 3F c1 0 2s1 0 0

0 1 0 0 0

s1 0 c1 0 0

0 0 0 1 0

0 0 0 0 1

G , ~15!
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where the three angles are defined as

c15
m

m8
, s15

e1

m8
, m85Am21e1

2,

c25
m8

m9
, s25

e2

m9
, m95Am821e2

2.

~16!

c35
m9

m-
, s35

e3

m-
, m-5Am921e3

2.

It is clear that this rotationR leaves theD term invariant.
The rotated VEVs are given by

@vu8 ,vd8 ,v18 ,v28 ,v38#T5R@vu ,vd ,v1 ,v2 ,v3#T, ~17!

and under the assumption thatv18 ,v28 ,v38!v, these three
small VEVs have the approximate solution

v18'2
me1

ML1
821D

FmHd

2 2ML1

2

m8m-
vd81

B12B

m8
vu8G ,

v28'2
m8e2

ML2
821D

FmHd
822ML2

2

m9m-
vd81

B22B8

m9
vu8G ,

~18!

v38'2
m9e3

ML3
821D

FmHd
922ML3

2

m-2 vd81
B32B9

m-
vu8G ,

where we have defined the following rotated soft terms:

mHd
825

mHd

2 m21ML1

2 e1
2

m82 , mHd
925

mHd
92m821ML2

2 e2
2

m92 ,

mHd
-25

mHd
92m921ML3

2 e3
2

m-2 , B85
Bm21B1e1

2

m82 ,

B95
B8m821B2e2

2

m92 , B-5
B9m921B3e3

2

m-2 , ~19!

ML1
825

mHd

2 e1
21ML1

2 m2

m82 , ML2
825

mHd
82e2

21ML2

2 m82

m92 ,

ML3
825

mHd
92e3

21ML3

2 m92

m-2 .
11300
The approximationv18 ,v28 ,v38!v is justified in supergravity
~SUGRA! models with universality of soft masses at th
weak scale, as shown in the next section.

IV. RADIATIVE BREAKING OF THE ELECTROWEAK
SYMMETRY

It was demonstrated in Ref.@10# that BRPV can be suc
cesfully embedded into SUGRA with universal bounda
conditions at the unification scale, and with a radiatively b
ken electroweak symmetry. AtQ5MU we assume the stan
dard minimal supergravity unification assumptions:

At5Ab5At5A,

B5Bi5A21,
~20!

mHd

2 5mHu

2 5MLi

2 5MRi

2 5MQi

2 5MUi

2 5MDi

2 5m0
2,

M35M25M15M1/2.

We run the renormalization group equations~RGEs! from
the unification scaleMU;231016GeV down to the weak
scale, giving random values to the fundamental paramete
the unification scale:

1022<htU
2 /4p<1,

1025<hbU
2 /4p<1,

23<a0[A/m0<3, ~21!

0<mU
2 /m0

2<10,

0<M1/2/m0<5.

The Yukawa couplings are determined by requiring th
three eigenvalues of the chargino/charged-lepton mass
trix correspond to the experimentally measured tau, mu
and electron masses.1

As in the MSSM, the electroweak symmetry is brok
because the large value of the top-quark mass drives
Higgs boson mass parametermHU

2 to negative values at the

1For the case of large tree-level neutrino mass one must note
the lepton Yukawa couplings are no longer related to the lep
masses via the simple relations valid in the standard model. S
charginos mix with charged leptons, the Yukawa couplings dep
also on the parameters of the chargino sector. For the case of i
est here~light nt mass fixed by the atmospheric scale! this correc-
tion is less important.
8-4
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NEUTRINO MASSES AND MIXINGS FROM . . . PHYSICAL REVIEW D62 113008
weak scale via its RGE@26#. In the rotated basis, the param
eterm-2 is determined at one loop by

m-252
1

2
@mZ

22ÃZZ~mZ
2!#

1

~mHd
-21T̃vd8

DR
!2~mHu

2 1T̃vu8
DR

!tb8
2

tb8
221

, ~22!

wheretb85vu8/vd8 is defined in the rotated basis and is ana
gous to tanb in Eq. ~6! defined in the original basis. Th
finite dimensional reduction (DR) Z-boson self-energy is

ÃZZ(mZ
2), and the one-loop tadpolesTvd8

DR
and Tvu8

DR
are ob-

tained by applying to the original tadpoles in Eq.~11! the
rotationR defined in Eq.~15!. The radiative breaking of the
electroweak symmetry is valid in the BRPV model in t
usual way: the large value of the top quark Yukawa coupl
drives the parametermHU

2 to negative values, breaking th

symmetry of the scalar potential.
As we will see a radiative mechanism is also respons

for the smallness of the neutrino masses in models with
versality of soft mass parameters at the unification scale.
relevant parameters are the bilinear mass parametersB and
Bi , the Higgs boson mass parametermHd

2 , and the slepton

mass parametersMLi

2 .

The RGEs for theB parameters are

dB

dt
5

1

8p2 S 3ht
2At13hb

2Ab1ht
2At13g2

2M21
3

5
g1

2M1D ,

dB3

dt
5

1

8p2 S 3ht
2At1ht

2At13g2
2M21

3

5
g1

2M1D , ~23!

dB2

dt
5

dB1

dt
5

1

8p2 S 3ht
2At13g2

2M21
3

5
g1

2M1D ,

where we do not write the effect of Yukawa couplings of t
first two generations. Similarly, the RGE for the down-ty
Higgs boson mass is

dmHd

2

dt
5

1

8p2 S 3hb
2Xb1ht

2Xt23g2
2M2

22
3

5
g1

2M1
2D ,

~24!

and the RGEs for the slepton mass parameters are

dML3

2

dt
5

1

8p2 S ht
2Xt23g2

2M2
22

3

5
g1

2M1
2D ,

dML2

2

dt
5

dML1

2

dt
52

1

8p2 S 3g2
2M2

21
3

5
g1

2M1
2D ,

~25!

where Xb5mHd

2 1MQ3

2 1MD3

2 1Ab
2 and Xt5mHd

2 1ML3

2

1MR3

2 1At
2.
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With the aid of these RGEs we can find an approxim
expression for the slepton VEVs in the rotated basisv i8 ,
given in Eq.~18!. The relevant soft term differences, define
asDBi[Bi2B andDmi

2[MLi

2 2mHd

2 , are approximated by

DB35
1

8p2 ~3hb
2Ab!ln

MU

mweak
,

DB25DB15
1

8p2 ~3hb
2Ab1ht

2At!ln
MU

mweak
~26!

for the B terms, and by

Dm3
25

1

8p2 ~3hb
2Xb!ln

MU

mweak
,

Dm2
25Dm1

25
1

8p2 ~3hb
2Xb1ht

2Xt!ln
MU

mweak
~27!

for the mass squared terms. This way, if we assume thae i
!m we can neglect the rotations in Eq.~18! and we find

v i8'
vde i /m

MLi

2 1D
~Dmi

22tbmDBi ! ~28!

which give us an approximate expression for the sneutr
VEVs v i8 in the basis where thee i terms are absent from th
superpotential. In a model with unified universal bounda
conditions on the soft SUSY breaking terms~SUGRA case,
for short! the v i8 are calculable in terms of the renormaliz
tion group evolution due to the nonzero bottom qua
Yukawa coupling. We should stress here that for our sub
quent numerical calculation we solve the tadpole equati
exactly.

The symmetry of the neutralino/neutrino mass matrix i
plies that only one neutrino acquires a tree level mass,
the other two remain massless@14# ~see next section!. The
massive neutrino will have the largest component alongt, m,
or e if the largest VEV isv38 , v28 , or v18, respectively. On the
other hand, the most obvious difference between the th
generation sneutrino VEV and the first two generations is
the extra contribution fromht to DBi in Eq. ~26! and toDmi

2

in Eq. ~27! for the first two generations. Due to the tau lept
contribution,DB1 and DB2 are larger thanDB3 , and simi-
larly for the Dmi

2, specially if tanb@1. However, we have
checked that it is possible without fine-tuning the parame
in an unnatural way to arrange for the heaviest of the neu
nos to be an equal mixture ofnm andnt as needed in order to
obtain an explanation of the atmospheric neutrino anom
That this is possible can be understood by noticing that th
can be a cancellation between theDB andDm2 terms in Eq.
~28! for v18 andv28 .

V. TREE LEVEL NEUTRINO MASSES AND MIXINGS

Here we discuss the tree level structure of neutr
masses and mixings. For a complete discussion of the
8-5
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mion mass matrices in this model see Appendix A.2 In the
basisc0T5(2 il8,2 il3,H̃d

1,H̃u
2,ne ,nm ,nt) the neutral fer-

mion mass matrixMN is given by

MN5FMx0 mT

m 0 G , ~29!

where

Mx05F M1 0 2 1
2 g8vd

1
2 g8vu

0 M2
1
2 gvd 2 1

2 gvu

2 1
2 g8vd

1
2 gvd 0 2m

1
2 g8vu 2 1

2 gvu 2m 0

G
~30!

is the standard MSSM neutralino mass matrix and

m5F 2 1
2 g8v1

1
2 gv1 0 e1

2 1
2 g8v2

1
2 gv2 0 e2

2 1
2 g8v3

1
2 gv3 0 e3

G ~31!

characterizes the breaking ofR parity. The mass matrixMN
is diagonalized by~see Appendix A!

N* MNN215diag~mx
i
0,mn j

!, ~32!

where (i 51,...,4) for the neutralinos and (j 51,...,3) for the
neutrinos.

We are interested in the case where the neutrino m
which is determined at the tree level is small, since it will
determined in order to account for the atmospheric neut
anomaly. The above form forMN is especially convenient in
this case in order to provide an approximate analytical d
cussion valid in the limit of smallR” p violation parameters
Indeed in this case we perform a perturbative diagonaliza
of the neutral mass matrix, using the method of Ref.@27#, by
defining @24#

j5m•Mx0
21. ~33!

If the elements of this matrix satisfy

;j i j !1, ~34!

then one can use it as expansion parameter in order to fin
approximate solution for the mixing matrixN. Explicitly we
have

j i15
g8M2m

2 det~Mx0!
L i ,

2In our notation the four component Majorana neutral fermio

are obtained from the two component via the relationx i
05(

Fi
0

Fi
0

).
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j i252
gM1m

2 det~Mx0!
L i ,

j i352
e i

m
1

~g2M11g82M2!vu

4 det~Mx0!
L i ,

j i452
~g2M11g82M2!vd

4 det~Mx0!
L i , ~35!

where

L i5mv i1vde i}v i8 ~36!

are the alignment parameters. From Eqs.~35! and ~36! one
can see thatj50 in the MSSM limit wheree i50, v i50. In
leading order inj the mixing matrixN is given by

N* 5S N* 0

0 Vn
TD S 12 1

2 j†j j†

2j 12 1
2 jj†D . ~37!

The second matrix above block diagonalizes the mass ma
MN approximately to the form diag(Mx0,meff), where

meff52m•Mx0
21mT

5
M1g21M2g82

4 det~Mx0! S Le
2 LeLm LeLt

LeLm Lm
2 LmLt

LeLt LmLt Lt
2
D .

~38!

The submatricesN andVn diagonalizeMx0 andmeff :

N* Mx0N†5diag~mx
i
0!, ~39!

Vn
TmeffVn5diag~0,0,mn!, ~40!

where

mn5Tr~meff!5
M1g21M2g82

4 det~Mx0!
uLW u2. ~41!

Clearly, one neutrino acquires mass due to the projec
nature of the effective neutrino mass matrixmeff , a feature
often encountered inR” p models @14#. As a result one can
rotate away one of the three angles@12# in the matrixVn ,
leading to@28#

Vn5S 1 0 0

0 cosu23 2sinu23

0 sinu23 cosu23

D
3S cosu13 0 2sinu13

0 1 0

sinu13 0 cosu13

D , ~42!

where the mixing angles can be expressed in terms of
alignment vectorLW as follows:

s

8-6
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tanu1352
Le

~Lm
2 1Lt

2!1/2, ~43!

tanu2352
Lm

Lt
. ~44!

VI. ONE-LOOP NEUTRINO MASS MATRIX

One-loop radiative corrections to the neutralino-neutr
mass matrix in the BRPV model were calculated first in R
@15#, working in the ’t Hooft–Feynman gauge (j51). Our
analysis improves the previous work in that we check exp
itly the gauge invariance using theRj gauge. We use dimen
sional reduction to regularize the divergences@29# and in-
clude all possible MSSM particles with consisten
determined mass spectra and couplings in the relevant lo

A. Two-point function renormalization

We denote the sum of all one-loop graphs contributing
the two-point function as

The most general expression for the one-loop contributio
the unrenormalized neutralino-neutrino two-point function

iSFF
i j ~p![ i $p” @PLS i j

L ~p2!1PRS i j
R~p2!#2@PLP i j

L ~p2!

1PRP i j
R~p2!#%, ~45!

where the indicesi andj run from 1 to 7,PR5 1
2 (11g5) and

PL5 1
2 (12g5) are the right and left projection operator

andp is the external four momenta. The functionsS andP
are unrenormalized self-energies and depend on the ext
momenta squaredp2. The neutral fermionsFi

0 are a mixture
of weak eigenstate neutralinos and neutrinos and given

Fi
05Ni j c j

0, ~46!

whereN is the 737 matrix that diagonalizes the neutralin
neutrino mass matrix according to Eq.~32!.

The inverse propagator at one loop is obtained by add
to the tree level propagator, this self-energy previou
renormalized with the dimensional reductionDR scheme and
denoted asS̃ and P̃. In the DR scheme, the counterterm
cancel only the divergent pieces of the self-energies. In
way, they become finite and dependent on the arbitrary s
Q. The tree level masses are promoted to running masse
order to cancel the explicit scale dependence of the s
energies. Thus, the inverse propagator of the neutral ferm
Fi

0 is

GFF
~2!~p!5pmgm2mFi

~Q!1S̃FF
ii ~p,Q!. ~47!
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The physical pole mass is given by the zero of the inve
propagator, in the limit wherepmgm→mFi

, and may be
found using

Z̃Fi

21ū~p!@pmgm2mFi
#u~p!5ū~p!@pmgm2mFi

~Q!

1S̃FF
ii ~p,Q!#u~p!, ~48!

whereu andū are two on-shell spinors,mFi
andmFi

(Q) are
the neutral fermion pole and running masses, respectiv
andS̃FF

ii (p,Q) is the renormalized two-point function in th

DR scheme. The quantityZ̃Fi

21 corresponds to the finite ratio

of the infinite wave function renormalization constants in t
DR scheme and the on-shell scheme, and it accounts fo
fact that the residue of theDR propagator at the pole is not
@30#. The renormalized functionS̃FF

ii (p,Q) is calculated by
subtracting the pole terms proportional to the regulator
dimensional reduction

D5
2

42d
2gE1 ln 4p, ~49!

where gE is the Euler’s constant andd is the number of
space-time dimensions. In practice we have

S̃FF
ii ~p,Q!5@SFF

ii ~p!#D50 . ~50!

Since ū(p)g5u(p)50, the terms proportional tog5 in S̃FF
ii

do not contribute. From Eq.~48! we find

DmFi
[mFi

2mFi
~Q!5P̃ i i

V~mFi

2 !2mFi
S̃ i i

V~mFi

2 !, ~51!

where

S̃V5 1
2 ~S̃L1S̃R!, S̃V5 1

2 ~P̃L1P̃R!, ~52!

and the tilde implies renormalized self-energies. A given
of input parameters in the neutralino-neutrino mass ma
defines the set of tree level running massesmFi

(Q), among
them two massless and degenerate neutrinos. The one
renormalized massesmFi

are then found through Eq.~51!,
and the masslessness and degeneracy of the two lightest
trinos is lifted.

The tree level masslessness of the lightest neutrinos
plies an indetermination of the corresponding eigenvect
In order to find the correct neutrino mixing angles we dia
onalize the one-loop corrected neutralino-neutrino mass
trix. We define

Mi j
pole5Mi j

DR~Q!1DMi j ~53!

with

DMi j 5
1
2 @P̃ i j

V~mi
2!1P̃ i j

V~mj
2!#

2 1
2 @mx

i
0S̃ i j

V~mi
2!1mx

j
0S̃ i j

V~mj
2!#, ~54!
8-7
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where the symmetrization is necessary to achieve gauge
variance. Of course, the diagonal elements ofDMi j corre-
spond to the difference between the pole and running ma
defined in Eq.~51!.

B. Gauge invariance

As explained in Sec. II B, the one-loop corrected vacu
expectation values are found by solving the one-loop c
rected tadpole equations in Eq.~11!. Of course, it is desirable
to work with gauge invariant VEVs. In order to achieve t
gauge invariance of theva’s, the one-loop tadpoleT̃a

DR(Q)
must be independent of the gauge parameterj. As it is
shown in Appendix C the following set of tadpoles is gau
invariant:

where Sa8
0 denote neutral scalar bosons in the weak ba

~see Appendix A! h’s are the Fadeev-Popov ghosts. A sim
lar set for theZ gauge boson exists. Nevertheless, the tadp
with a charged Goldstone boson in the loop introduce
gauge dependence that cannot be canceled. For this re
the Goldstone boson loops are removed from the tadp
Ta(Q) and introduced into the self-energies. This in tu
allows us to achieve the gauge invariance for the two po
functions, as well as for the VEVs, as explained below.

Among the loops contributing to the self-energies, co
sider for example theW-boson loop, which in the generalRj

gauge is

where ellipses indicate terms proportional tog5 which are
irrelevant for us,Fk

1 are charged fermions resulting from
mixing between charginos and charged leptons, and

~S i j
V !W52

1

16p2 (
k51

5

~OL jk
ncwOLki

cnw1OR jk
ncwORki

cnw!

3H 2B1~p2,mk
2,mW

2 !1B0~p2,mk
2,mW

2 !

2jB0~p2,mk
2,jmW

2 !2
mk

22p2

mW
2 @B1~p2,mW

2 ,mk
2!

2B1~p2,jmW
2 ,mk

2!#J ,
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~P i j
V !W5

1

16p2 (
k51

5

~OL jk
ncwORki

cnw1OR jk
ncwOLki

cnw!

3mk@3B0~p2,mk
2,mW

2 !1jB0~p2,mk
2,jmW

2 !#.

~55!

This graph introduces an explicit dependence on the ga
parameterj. The other self-energy graph withj dependence
is the one that includes the charged Goldstone boson.
charged Goldstone boson is one of the eight charged sc
Sk

1 resulting from mixing between the two charged Hig
fields and the six charged sleptons. This contribution is

where again, ellipses indicate terms proportional tog5 , and

~S i j
V !S1

52
1

16p2 (
r 51

8

(
k51

5

~OR jkr
ncs OLkir

cns

1OL jkr
ncs ORkir

cns !B1~p2,mk
2,mr

2!,

~P i j
V !S1

52
1

16p2 (
r 51

8

(
k51

5

~OL jkr
ncs OLkir

cns

1OR jkr
ncs ORkir

cns !mkB0~p2,mk
2,mr

2! ~56!

with the couplings given in Appendix B. Nevertheless, gau
dependence is not canceled after combining Eqs.~55! and
~56!. In order to achieve it the inclusion of the Goldston
boson tadpole graphs, left over from the tadpole equation
necessary:

where (S i j
V) tad50 and

~P i j
V ! tad52

1

32p2(
k51

5

~OL jik
nns 1OR jik

nns !

3
1

mS
k
0
gkG1G2

S0S1S2

A0~jmW
2 !. ~57!

A0 , B0 , and B1 appearing above are Passarino-Veltm

functions@31#, gkG1G2
S0S1S2

being the neutral scalar coupling to
pair of charged Goldstone bosons, andOnns the neutral sca-
lar couplings to a pair of neutral fermions~neutralino-
8-8



s

ct

NEUTRINO MASSES AND MIXINGS FROM . . . PHYSICAL REVIEW D62 113008
FIG. 1. Example of calculated
Dmatm

2 as a function of~left! the

alignment parameter LW and
~right!, as function of

uLW u/(AM2m), all of these ex-
pressed in GeV. The figure show
that Eq.~41! can be used to fix the
relative size ofR-parity breaking
parameters to obtain the corre
Dmatm
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neutrinos!. Numerically, we have checked that, by adding t
Goldstone tadpoles to the self-energies our results do
change by varying the gauge parameter fromj51 to j
5109, thus establishing the gauge invariance of the calcu
tion. Similarly we have also checked that the correspond
set of diagrams involving the neutral gauge boson tadp
~Z! plus neutral ghost tadpoles is gauge invariant and, s
larly, the contribution to the self-energies due toZ exchange
plus neutral pseudoscalars and neutral Goldstones is
gauge invariant.

Before we close this section we would like to add a sh
discussion on the basic structure of the loops which will
useful in the following. It is useful to do this in the approx
mation where theR” p parameters are small, as discuss
above. As seen from the expression formeff , at tree-level the
effective neutrino mass matrix in this limit has the structu
mi j ;L iL j , and at this level of sophistication neutrin
angles are simple functions of ratios ofL i /L j . The one-loop
corrections, however, in general destroy this simple pictu
This can be seen as follows. The one-loop corrections h
the general form

~S i j ,P i j !;( ~Oi ,aOj ,b1Oi ,cOj ,d!~B1 ,mB0!, ~58!

where theO stand symbolically for the various coupling
Now, since the expansion matrixj, defined in Eq.~33! can
be written asj ia; f ae i1gaL i @see Eq.~35!# a product of
two couplings involving neutrino-neutralino mixing has th
general structure

Oi ,aOj ,b;~ f ae i1gaL i !3~ f a8e j1ga8L j !3F~¯ !,
~59!
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where all other dependence on the SUSY parameters
been hidden symbolically inF(¯). The one-loop correc-
tions therefore also carry a certain index structure, which
be written as

mi j
one-loop;ae ie j1b~e iL j1L ie j !1cL iL j , ~60!

wherea, b, care again complicated functions of SUSY p
rameters involving couplings, the Passarino-Veltman fu
tions, etc. Clearly, the terms proportional toc in Eq. ~60!
above will lead only to a renormalization of the heavie
neutrino mass eigenstate. On the other hand the terms
portional toa in Eq. ~60! are genuine loop corrections. Con
sider the simple case where allL i[0. Clearly in this case the
tree-level neutrino mass is absent, but the one-loop effec
neutrino mass has the same index structure as before
now in terms ofe i , j ’s instead ofL i , j ’s. In this idealized case
angles are given as simple functions ofe i ratios. For nonzero
L i the terms proportional tob in Eq. ~60!, however, destroy
this simple picture. Any mismatch betweene i /e j andL i /L j
will lead, in general, to a very complex parameter dep
dence of the neutrino angles.

VII. NUMERICAL RESULTS ON NEUTRINO MASSES
AND MIXINGS

Here we collect our numerical results on neutrino mas
and mixings. As we have seen, a characteristic of the BR
model is the appearance of vacuum expectation values
the sneutrino fields,v i8 which imply a tree-level mass for on
of the neutrinos given by Eq.~41!. The one-loop-corrected
neutrino mass matrix gives important contributions to t
heaviest neutrino mass which we have determined thro
s

-

FIG. 2. Example of calculated
neutrino masses in units of eV a
a function of ue2u/uLu, for a par-
ticular though typical choice for
the other parameters~see text!, il-
lustrating the relative importance
of tree versus loop-induced neu
trino masses.
8-9
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FIG. 3. The neutrino mass
spectrum versus tanb, for param-
eters otherwise chosen as in Fi
2. The importance of loops in-
creases strongly with tanb.
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the renormalization procedure sketched above.
First we note that in order to solve the atmosphericand

solar neutrino problem one requiresmone-loop!mtree. If this is
satisfied it is essentially trivial within our model to solve th
atmospheric neutrino problem. It is simply equivalent
choosing an adequate size of the alignment vectoruLW u2, as
can be seen from Eq.~41! and is also demonstrated in Fig.
However there are regions of parameters where the one-
contributions are comparable to the tree-level neutrino m
This is discussed in quite some detail below, where we g
an illustrative parameter study in order to isolate the m
features of the dependence on the underlying parame
First we get a rough idea of the magnitude of the neutr
masses including the one-loop corrections by displaying
Fig. 2 the three lightest eigenvalues of the neutrin
neutralino mass matrix as a function of the parame
ue2u/uLu. Other parameters are fixed as follows:~a! MSSM
parametersm05m5500 GeV, M25200 GeV, tanb55, B
52A5m0 . ~b! RPV parametersuLu50.16 GeV2, 10Le
5Lm5Lt and e15e25e3 . In the left panel we give the
predicted masses in the general case, while in the one on
right we apply the sign condition

~em /et!3~Lm /Lt!<0 ~61!

to be discussed in more detail below.
One notices that the parameterue2u/uLu determines the

importance of the loop contribution relative to the tree-lev
induced masses. For example, from the right panel one
that, belowue2u/uLu!10 the heaviest neutrino massm3 is
mainly a tree-level mass, while forue2u/uLu*10 the loop-
induced masses are important relative to the tree-level
Similar results are obtained for other choices of MSSM
rameters.
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It is also interesting to analyze the dependence of
neutrino mass spectrum obtained in this model as a func
of other supersymmetric parameters. In Fig. 3 we show
three lightest eigenvalues of the neutrino neutralino m
matrix as a function of tanb, keeping the other paramete
fixed as in Fig. 2, fixinge2/uLu51. Again in the right figure
we have applied the sign condition discussed in more de
below. Loop contributions are very strongly correlated w
tanb. Similarly one can compute the three lightest eigenv
ues of the neutrino-neutralino mass matrix as a function
m0 , as shown in Fig. 4. Largerm0 leads to smaller loop
masses, as expected. From Figs. 2–4 one sees that, a
pected, the pattern of neutrino masses obtained in the b
ear R” p scenario, for almost all choices of parameters, is
hierarchical one.

In the above we have not paid attention to whether or
the parameter values used in the evaluation of the neut
mass spectrum are indeed solutions of the minimization
pole conditions of the Higgs potential. We now move to
more careful study of the magnitude of the neutrino m
spectrum derived in theR” p scenario.

In order to proceed further with the discussion of the s
lutions to the solar neutrino anomalies in this model we m
distinguish two cases:~1! unified universal boundary condi
tions on the soft SUSY breaking terms~SUGRA case, for
short!; ~2! nonuniversal boundary conditions on the so
SUSY breaking terms~MSSM case, for short!. In what fol-
lows we refer to these two possibilities as SUGRA a
MSSM cases, accordingly.

For the analysis of the neutrinomassesthese two sce-
narios are very similar so we focus on the case where
low-scale parameters are derivable from a universal su
gravity scheme. In Fig. 5 we show the mass squared dif
ence Dm12

2 which is relevant for the analysis of neutrin
g.
-

FIG. 4. The neutrino mass
spectrum versusm0 , for param-
eters otherwise chosen as in Fi
2. The importance of loops de
creases with increasingm0 .
8-10
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FIG. 5. Dmsol
2 versusueu/m for

m<0 ~left! andm.0 ~right!.
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oscillations and therefore relevant to the interpretation of
lar data, as a function of the parameterueu/m. In the left panel
we displaym<0 while on the right panelm.0. Small values
preferDm12

2 in the range of the vacuum solution to the so
neutrino problem, while large values give masses in
range of the MSW solutions.

Points shown in the following figures were obtained sc
ning the relevant parameters randomly over the region:M2
and umu from 0 to 500 GeV,m0 @0.2,1.0 TeV#, a0 and
b0@23,3# and tanb @2.5,10#, and for theR” p parameters,
uLm /Ltu50.821.25, em /et50.821.25, uLe /Ltu50.05
20.1, ee /et50.621.25, anduLu50.0520.12 GeV2. They
were subsequently tested for consistency with the minim
tion ~tadpole! conditions of the Higgs potential and for ph
nomenological constraints from supersymmetric parti
searches.

One can also explicitly determine the attainable range
Dm12

2 for which the correspondingDm23
2 ~see below! lies in

the range required for the correct interpretation of the atm
spheric neutrino data. The result obtained is displayed in
6 in which we showDm12

2 as function of tanb for those
points which solve the atmospheric neutrino problem.

We now turn to the discussion of the three neutrino m
ing angles and of how they must be identified in terms
our underlying parameters. Following the usual convent
the relation

N1L5N8N, ~62!

na5Uaknk ~63!

connecting mass-eigenstate and weak-eigenstate neut
are recovered in our notation as

Uak5N41k,41a
1L , ~64!

where the mixing coefficientsN are determined numericall
by diagonalizing the neutral fermion mass matrix. Note th
without loss of generality, in the bilinear model one can
ways choose as basis the one in which the charged le
mass matrix is already diagonal. The neutrino mixing ang
relevant in the interpretation of solar and atmospheric d
are identified as~if Ue3!1, as indicated by the atmospher
data and the reactor neutrino constraints!:

sin2~2u13!54Um3
2 ~12Um3

2 !, ~65!
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sin2~2u12!54Ue1
2 Ue2

2 . ~66!

Note that the maximality of the atmospheric angle
achieved forLm5Lt ~see Fig. 7! andLe is smaller than the
other two, as required by the Chooz data~see below!. In fact
we have found@32# that if e2/L!10 then the approximate
formula holds

Ua3'La /uLW u. ~67!

In Fig. 8 we show the expected magnitude ofUe3
2 versus

the relevant ratio ofR” p parameters. In order to comply wit
the reactor data from the Chooz experiment one should h
Ue3

2 below 0.05. This implies a bound onLe which can be
read off from the figure.

The discussion on the solar mixing angle is more
volved. First note that it has no meaning before adding
one-loop corrections to the neutrino mass, since in that li
the two low-lying neutrinos would be degenerate in mass

In order to proceed further with the discussion of the s
lutions to the solar neutrino problem in this model we mu
analyze carefully the implications of Eq.~28!. Here it is im-
portant to distinguish between case 1~SUGRA! and case 2
~MSSM! discussed above.

In the SUGRA case by taking the ratio of the first tw
equations in Eq.~28!,

ee

em

Dme
22tanbmDBe

Dmm
2 2tanbmDBm

.
Le

Lm
, ~68!

we conclude that, sinceLe,Lm and, since the relevant rati
of SUSY soft-breaking terms is close to 1, it follows th

FIG. 6. Dm12
2 versus tanb for points which solve the atmo

spheric neutrino problem.
8-11
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sin2(2u() is small. The predictions for the solar angle as
function of theR” p breaking parameters is indicated in Fig.

More precisely, the interpretation of the solar data@6# in
terms of the small angle MSW solution indicates that

sin2~2u(!&102321022 ~69!

and this in turn selects the required ratio ofLe to Lm and
Lt . Therefore in this case the large angle solutions, incl
ing the vacuum or just-so solutions do not fit in the schem

We now move to the general MSSM case. In this case
ratio of SUSY soft-breaking terms appearing in Eq.~68! is in
general arbitrary and thus the ratios ofL i /L j are no longer
tied up to the ratios ofe i /e j ’s. This opens up the possibility
for large angle solutions to the solar neutrino problem.
first sight it would seem that all predictivity of the sola
angle is lost in this case, as seen in left panel of Fig. 10

The ability of our model to determine the solar neutri
angle may be understood in terms of Eq.~60!. For example,
in the SUGRA case we see from Eq.~68! that thee and L
ratios are fixed within a narrow range, leading to the sm
mixing angle prediction for the solution to the solar neutri
problems. There is, however, another way to obtain pre
tivity for the general MSSM case, namely, by applying E
~61!.

The possibility of our model predicting the solar ang
even in the general MSSM case by assuming Eq.~61! can be
understood as follows. Consider first the simplified lim

FIG. 7. Atmospheric angle versusLm /ALe
21Lt

2. Maximality is
obtained forLm.Lt if Le is smaller than the other two~see Fig.
8!.

FIG. 8. Ue3
2 versusLe /ALm

2 1Lt
2. To obey the experimenta

boundUe3
2 <0.05, Le must be smaller thanLm ,Lt .
11300
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Le[0. In this casen1[ne at tree level and there is no mix
ing at all between the electron neutrino and the other t
states, but a finite mixing exists at one loop, due to the te
proportional toee . In this case the sign condition, defined
Eq. ~61! introduces two more zeros into the matrix propo
tional to b in Eq. ~60! above, if uemu[uetu and uLmu[uLtu.
This fact simplifies the calculation of the solar angle ve
much, since one of the neutrino eigenvectors~the one forne)
has no dependence on theL i ratios but only on thee i ratios.
For a nonzeroLe ~and small departures from equality ofem ,
et , or uLmu, uLtu) this feature is destroyed and aLe depen-
dence reintroduced in the solar angle. However, as long
the one-loop contributions are smaller than the tree-level
and as long asLe!Lm,t , the ‘‘cross talk’’ between theLe
andee pieces is sufficiently small, such that some predict
ity of the solar angle is retained, as illustrated in Fig.
~right panel!.

The discussion on mixing angles may be summarized
follows. In the case that one-loop corrections are not lar
than the tree-level contributions, the approximate formula

Ua3'La /uLu ~70!

holds. This allows one to fix the atmospheric angle and at
same time obey the CHOOZ constraint. For the solar an
however, the results depend on whether one wants to wor
a SUGRA motivated scenario or not. For the SUGRA s
nario we have found that our model allows only the sm
mixing angle MSW solution~SMA!, while for the general
case also LMA and vacuum oscillation solutions a
possible.

VIII. CONCLUSIONS

We have shown that the simplest unified extension of
minimal supersymmetric standard model with biline
R-parity violation typically predicts a hierarchical neutrin
mass spectrum, offering a natural theory for the solar a
atmospheric neutrino anomalies. In this model only one n
trino acquires mass due to mixing with neutralinos, while t
other two get mass only as a result of radiative correctio
We have performed a full one-loop calculation of the effe
tive neutrino mass matrix in the bilinearR” p MSSM, taking
special care to achieve a manifestly gauge invariant calc

FIG. 9. sin2(2usol) versusLe /ALm
2 1Lt

2 for the SUGRA case,
for a discussion see text.
8-12
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FIG. 10. sin2(2usol) versus
ee /Aem

2 1et
2. The left panel corre-

sponds to the case without th
sign condition and the the righ
panel assumes the sign condition
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om
tion and performing the renormalization of the heaviest n
trino, needed in order to get reliable results. The atmosph
mass scale and maximal mixing angle arise from tree-le
physics, while the solar neutrino scale and oscillations foll
from calculable one-loop corrections.

Under the assumption of universal boundary conditio
for the soft-supersymmetry breaking terms at the unificat
scale we find that the atmospheric scale is calculable by
renormalization group evolution due to the nonzero bott
quark Yukawa coupling. In this case one predicts the sm
mixing angle ~SMA! MSW solution to be the only viable
solution to the solar neutrino problem.

In contrast, for the general MSSM model, where t
above assumptions are relaxed, one can implement abimaxi-
mal @33# neutrino mixing scheme, in which the solar neutri
problem is accounted for through large mixing angle so
tions. A great advantage of our approach is that the par
eters required in order to solve the neutrino anomalies ca
independently tested at high-energy accelerators, as o
nally proposed in Ref.@14#. In fact, as shown in Refs
@32,34# the bilinearR” p model predicts the lightest supersym
metric particle~LSP! decay to be observable at high-ener
colliders, since the expected decay path can easily be sh
the typical detector sizes. This happens despite the small
of neutrino masses indicated by the SuperKamiokande d
This provides a way to test this solution of the atmosphe
and solar neutrino anomalies and potentially discriminate
tween the large and small mixing solutions to the solar n
trino problem.
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APPENDIX A: MASS MATRICES

1. Scalar mass matrices

a. Charged scalars

The mass matrix of the charged scalar sector follows fr
the quadratic terms in the scalar potential

Vquadratic5S82MS6
2 S81, ~A1!

where the unrotated charged scalars areS81

5(Hd
1 ,Hu

1 ,ẽL
1 ,m̃L

1,t̃L
1 ,ẽR

1 ,m̃R
1,t̃R

1). For convenience we
will divide this (838) matrix into blocks in the following
way:

MS6
2

5FMHH
2 M

H l̃

2T

M
H l̃

2
M

l̃ l̃

2 G1jmW
2 FMA

2 MB
2T

MB
2 MC

2 G , ~A2!

where the charged Higgs block is
MHH
2 53

Bm
vu

vd
1

1

4
g2~v2

22S i 51
3 v i

2!1
td

vd
Bm1

1

4
g2vdvu

1mS i 51
3 e i

v i

vd
1

1

2
S i , j 51

3 v i~hEhE
† ! i j v j

Bm1
1

4
g2vdvu Bm

vd

vu
1

1

4
g2~vd

21S i 51
3 v i

2!

2S i 51
3 Bie i

v i

vu
1

tu

vu

4 . ~A3!

This matrix reduces to the usual charged Higgs mass matrix in the MSSM when we setv i5e i50 and we callm12
2 5Bm. The

slepton block is given by
8-13
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M
l̃ l̃

2
5FMLL

2 MLR
2

MRL
2 MRR

2 G , ~A4!

where

~MLL
2 ! i j 5

1

2
vd

2~hE* hE
T! i j 1

1

4
g2S 2 (

k51

3

vk
22vd

21vu
2D d i j 1

1

4
g2v iv j2

vu

v i
Bie id i j 1

t i

v i
d i j

1m
vd

v i
e id i j 2e iS (

k51

3
vk

v i
ekD d i j 1e ie j1ML ji

2 2
1

2 (
k51

3
vk

v i
~MLik

2 1MLki
2 !d i j , ~A5!

MLR
2 5

1

&
~vdAE* 2mvuhE* !, ~A6!

MRL
2 5~MLR

2 !†, ~A7!

~MRR
2 ! i j 5

1

4
g82S 2 (

k51

3

vk
22vd

21vu
2D d i j 1

1

2
vd

2~hE
ThE* ! i j 1S (

k51

3

~hE
T! ikvkD S (

s51

3

~hE* !s jvsD 1MR ji
2 . ~A8!

We recover the usual stau mass matrix again by replacingv i5e i50 @note that we need to replace the expression of the tad
t i in Eq. ~9! before taking the limit#. The mixing between the charged Higgs sector and the slepton sector is given b
following 632 block ~repeated indices are not summed unless an explicit sum appears!:

M
H l̃

2
5F 2me i2

1

2
vd(

k51

3

~hE* hE
T! ikvk1

1

4
g2vdv i 2Bie i1

1

4
g2vuv i

2
1

&
vu(

k51

3

~hE
T! ikek2

1

&
(
k51

3

~AE
T! ikvk 2

1

&
(
k51

3

~hE
T! ik~mvk1ekvd!

G ~A9!

and as expected, this mixing vanishes in the limitv i5e i50. The charged scalar mass matrix in Eq.~A2!, after settingtu
5td5t i50, has determinant equal to zero forj50, since one of the eigenvectors corresponds to the charged Goldstone
with zero eigenvalue.

For our one loop calculations one has to had the gauge fixing. The part of the mass matrix in Eq.~A2! that comes from the
gauge fixing reads for the (232)A block

MA
25F vd

2

v2

2vuvd

v2

2vuvd

v2

vu
2

v2

G ~A10!

for the (632) B and the (636) C blocks

MB
25F v ivd

v2

2v ivu

v2

0 0
G , MC

2 5FMD
2 0

0 0
G , ~A11!

where the (333)D block is

MD
2 53

v1
2

v2

v1v2

v2

v1v3

v2

v2v1

v2

v2
2

v2

v2v3

v2

v3v1

v2

v2v3

v2

v3
2

v2

4 . ~A12!
113008-14
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The charged scalar mass matrices are diagonalized by the following rotation matrices:

Si
65Ri j

S6
Sj

68 ~A13!

with the eigenvalues diag(mS1

2 ,...,mS8

2 )5RS6MS6
2 (RS6)T.

b. CP-even neutral scalars

The quadratic scalar potential includes

Vquadratic5
1

2
@sd

0,su
0,ñ i

R#MS0

2 F sd
0

su
0

ñ i
R
G1¯ , ~A14!

where the neutralCP-even scalar sector mass matrix in Eq.~A14! is given by

MS0
2

5F MSS
2 MSñR

2

MSñR

2 M ñRñR

2 G ~A15!

where

MSS
2 5F Bm

vu

vd
1

1

4
gZ

2vd
21m(

k51

3

ek

vk

vd
1

td

vd
2Bm2

1

4
gZ

2vdvu

2Bm2
1

4
gZ

2vdvu Bm
vd

vm
1

1

4
gZ

2vu
22 (

k51

3

Bkek

vk

vu
1

tu

vu

G , ~A16!

MSñR

2 5F 2me i1
1

4
gZ

2vdv i

Bie i2
1

4
gZ

2vuv i

G , ~A17!

and

~M ñRñR

2 ! i j 5S me i

vd

v i
2Bie i

vu

v i
2e i (

k51

3

ek

vk

v i
2

1

2 (
k51

3
vk

v i
~MLik

2 1MLki
2 !1

t i

v i
D d i j 1

1

4
gZ

2v iv j1e ie j1
1

2
~MLi j

2 1ML ji
2 !,

~A18!

where we have definedgZ
2[g21g82. In the upper-left 232 block, in the limitv i5e i50, the reader can recognize the MSS

mass matrix corresponding to theCP-even neutral Higgs sector. To define the rotation matrices let us define the unro
fields by

S805~sd
0,su

0ñ1
R ,ñ2

R ,ñ2
R!. ~A19!

Then the mass eigenstates areSi
0 given by

Si
05Ri j

S0
Sj8

0 ~A20!

with the eigenvalues diag(mS1

2 ,...,mS5

2 )5RS0
MS0

2 (RS0
)T.

c. CP-odd neutral scalars

The quadratic scalar potential includes

Vguadratic5
1

2
@w1

0,w2
0,ñ i

I #M P0
2 F w1

0

w2
0

ñ i
I
G1¯ , ~A21!
113008-15
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where theCP-odd neutral scalar mass matrix is

M P0
2

5F M PP
2 M Pñ I

2

M Pñ I

2T M ñ I ñ I

2 G1jmZ
2FME

2 MF
2T

MF
2 MG

2 G , ~A22!

where

M PP
2 5F Bm

vu

vd
1m(

k51

3

ek

vk

vd
1

td

vd
Bm

Bm Bm
vd

vu
2 (

k51

3

Bkek

vk

vu
1

tu

vu

G , ~A23!
ed

n

M Pñ I

2 5F 2me i

2Bie i
G , ~A24!

and

~M ñ I ñ I

2 ! i j 5S me i

vd

v i
2Bie i

vu

v i
2e i (

k51

3

ek

vk

v i

2
1

2 (
k51

3
vk

v i
~MLik

2 1MLki
2 !1

t i

v i
D d i j 1e ie j

1
1

2
~MLi j

2 1ML ji
2 !. ~A25!

Finally the part of the mass matrix in Eq.~A22! that
comes from the gauge fixing reads for the (232) E block

ME
25F vd

2

v2

2vuvd

v2

2vuvd

v2

vu
2

v2

G ~A26!

for the (332) F block

MF
25Fv ivd

v2

2v ivu

v2 G , ~A27!

and for the (333)G block

MG
2 53

v1
2

v2

v1v2

v2

v1v3

v2

v2v1

v2

v2
2

v2

v2v3

v2

v3v1

v2

v3v2

v2

v3
2

v2

4 . ~A28!

The charged pseudoscalar mass matrices are diagonaliz
the following rotation matrices:
11300
by

Pi5Ri j
P0

Pj8 ~A29!

with the eigenvalues diag(mA1

2 ,...,mA5

2 )5RP0
M P0

2 (RP0
)T,

where the unrotated fields are

P805~wd
0,wu

0ñ1
I ,ñ2

I ,ñ3
I !. ~A30!

d. Squark mass matrices

In the unrotated basisũi85(ũLi ,ũRi* ) and d̃i85(d̃Li ,d̃Ri* )
we get

Vquadratic5
1

2
ũ8†M ũ

2ũ81
1

2
d̃8†M

d̃

2
d̃8, ~A31!

where

M q̃
25S M q̃LL

2 M q̃LR
2

Mq̃RL
2 M q̃RR

2 D ~A32!

with q̃5(ũ,d̃). The blocks are different for up and dow
type squarks. We have

M ũLL
2 5

1

2
vu

2hU* hU
T 1MQ

2 1 1
6 ~4mW

2 2mZ
2!cos 2b,

M ũRR
2 5

1

2
vu

2hU
T hU* 1MU

2 1 2
3 ~mZ

22mW
2 !cos 2b,

M ũLR
2 5

vu

&
AU* 2m

vd

&
hU* 1(

i 51

3
v i

&
e ihU* ,

M ũRL
2 5M ũLR

2 † , ~A33!

and

M
d̃LL

2
5

1

2
vd

2hD* hD
T 1MQ

2 2 1
6 ~2mW

2 1mZ
2!cos 2b,
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M
d̃RR

2
5

1

2
vd

2hD
T hD* 1MD

2 2 1
3 ~mZ

22mW
2 !cos 2b,

M
d̃LR

2
5

vd

&
AD* 2m

vu

&
hD* ,

M
d̃RL

2
5M

d̃LR

2 †
. ~A34!

We define the mass eigenstates

q̃5Rq̃q̃8, ~A35!

which implies

q̃i85Rj i
q̃* q̃ j . ~A36!

The rotation matrices are obtained from

Rq̃†~M q̃
diag!2Rq̃5M q̃

2. ~A37!
11300
In our case the matrices in Eq.~A32! are real and therefore
the rotation matricesRq̃ are orthogonal matrices.

2. Chargino mass matrix

The charginos mix with the charged leptons formi
a set of five charged fermionsFi

6 , i 51,...,5 in two
component spinor notation. In a basis whe
c1T5(2 il1,H̃u

1 ,eR
1 ,mR

1 ,tR
1) and c2T

5(2 il2,H̃d
2 ,eL

2 ,mL
2 ,tL

2), the charged fermion mass term
in the Lagrangian are

Lm52
1

2
~c1T,c2T!S 0 MC

T

MC 0 D S c1

c2 D1H.c. ~A38!

where the chargino/lepton mass matrix is given by
e two
MC53
M

1

&
gvu 0 0 0

1

&
gvd m 2

1

&
~hE!11v1 2

1

&
~hE!22v2 2

1

&
~hE!33v3

1

&
gv1 2e1

1

&
~hE!11vd 0 0

1

&
gv2 2e2 0

1

&
~hE!22vd 0

1

&
gv3 2e3 0 0

1

&
~hE!33vd

4 ~A39!

and M is the SU~2! gaugino soft mass. We note that chargino sector decouples from the lepton sector in the limite i5v i
50. As in the MSSM, the chargino mass matrix is diagonalized by two rotation matricesU andV defined by

Fi
25Ui j c j

2 ,Fi
15Vi j c j

1 . ~A40!

Then

U* MCV215MCD , ~A41!

whereMCD is the diagonal charged fermion mass matrix. To determineU andV we note that

MCD
2 5VM C

† MCV215U*MCMC
† ~U* !21 ~A42!

implying thatV diagonalizesMC
† MC andU* diagonalizesMCMC

† . For future reference we note that

c j
25Uk j* Fk

2 , c j
15Vk j* Fk

1 . ~A43!

In the previous expressions theFi
6 are two component spinors. We construct the four component Dirac spinors out of th

component spinors with the conventions,3

3Here we depart from the conventions of Ref.@25# because we want thee2, m2, andt2 to be the particles and not the antiparticles.
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x i
25S Fi

2

Fi
1D . ~A44!

APPENDIX B: THE COUPLINGS

1. The neutralino couplings

Using four component spinor notation the relevant part of the Lagrangian can be written as

L5x i
2gm~OLi j

cnwPL1ORi j
cnwPR!x j

0Wm
21x i

0gm~OLi j
cnwPL1OLi j

ncwPR!x j
2Wm

11x i
2~OLi jk

cns PL1ORi jk
cns PR!x j

0Sk
2

1x i
0~OL jik

cns PL1OLi jk
cns PR!x j

2Sk
11

1

2
x i

0gm~OLi j
nnzPL1ORi j

nnzPR!x j
0Zm

0 1
1

2
x i

0~OLi jk
nnh PL1ORi jk

nnh PR!x j
0Hk

0

1 i
1

2
x i

0~OLi jk
nna PL1ORi jk

nna PR!x j
0Ak

01qi~OLi jk
qns PL1ORi jk

qns PR!x j
0q̃k1x i

0~OLi jk
nqs PL1ORi jk

nqs PR!qj q̃k* , ~B1!

whereq can be eitherd or u. The various couplings are as follows.

a. Chargino-neutralino-W

OLi j
cnw5gh ih jF2Nj 2* Ui12

1

&
S Nj 3* Ui21 (

k51

3

Nj ,41k* Ui ,21kD G ,

ORi j
cnw5gS 2Nj 2V i1* 1

1

&
Nj 4V i2* D , ~B2!

OLi j
ncw5~OL ji

cnw!* ,ORi j
ncw5~OR ji

cnw!* .

b. Neutralino-neutralino-Z

OLi j
nnz5

g

cosuw
h ih j

1

2 S Ni4Nj 4* 2Ni3Nj 3* 2 (
k51

3

Ni ,41kNj ,41k* D ,

~B3!

ORi j
nnz52

g

cosuw

1

2
~Ni4* Nj 42Ni3* Nj 32Sk51

3 Ni ,41k* Nj ,41k!.

c. Chargino-neutralino-charged scalar

OLi jk
cns 5h jFRk1

S6

~hE11Nj 5* V i3* 1hE22Nj 6* V i4* 1hE33Nj 7* V i5* !1Rk2
S6S 2

g

&
Nj 2* V i2* 2

g8

&
Nj 1* V i2* 2gNj 4* V i1* D 2Rk3

S6
hE11Nj 3* V i3*

2Rk4
S6

hE22Nj 3* V i4* 2Rk5
S6

hE33Nj 3* V i5* 2Rk6
S6

g8&Nj 1* V i3* 2Rk7
S6

g8&Nj 1* V i4* 2Rk8
S6

g8&Nj 1* V i5* G , ~B4!

ORi jk
cns 5h iFRk1

S6S g

&
Nj 2Ui21

g8

&
Nj 1Ui22gNj 3Ui1D 1Rk3

S6S g

&
Nj 2Ui31

g8

&
Nj 1Ui32gNj 5Ui1D

1Rk4
S6S g

&
Nj 2Ui41

g8

&
Nj 1Ui42gNj 6Ui1D 1Rk5

S6S g

&
Nj 2Ui51

g8

&
Nj 1Ui52gNj 7Ui1D

1Rk6
S6

hE11~Nj 5Ui22Nj 3Ui3!1Rk7
S6

hE22~Nj 6Ui22Nj 3Ui4!1Rk8
S6

hE33~Nj 7Ui22Nj 3Ui5!G , ~B5!

OLi jk
cns 5~OR jik

ncs !* , ORi jk
cns 5~OL jik

ncs !* . ~B6!
113008-18
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d. Neutralino-neutralino scalar

OLi jk
nnh5h j

1

2
@Rk1

S0
~2gNi2* Nj 3* 1g8Ni1* Nj 3* 2gNj 2* Ni3* 1g8Nj 1* Ni3* !1Rk2

S0
~1gNi2* Nj 4* 2g8Ni1* Nj 4* 1gNj 2* Ni4* 2g8Nj 1* Ni4* !

1Rk3
S0

~2gNi2* Nj 5* 1g8Ni1* Nj 5* 2gNj 2* Ni5* 1g8Nj 1* Ni5* !1Rk4
S0

~2gNi2* Nj 6* 1g8Ni1* Nj 6* 2gNj 2* Nj 6* 1g8Nj 1* Ni6* !

1Rk5
S0

~2gNi2* Nj 7* 1g8Ni1* Nj 7* 2gNj 2* Ni7* 1g8Nj 1* Ni7* !#, ~B7!

ORi jk
nnh 5~OLi jk

nnh !* .

e. Neutralino-neutralino pseudoscalar

OLi jk
nna52h j

1

2
@Rk1

P0
~2gNi2* Nj 3* 1g8Ni1* Nj 3* 2gNj 2* Ni3* 1g8Nj 1* Ni3* !1Rk2

P0
~1gNi2* Nj 4* 2g8Ni1* Nj 4* 1gNj 2* Ni4* 2g8Nj 1* Ni4* !

1Rk3
P0

~2gNi2* Nj 5* 1g8Ni1* Nj 5* 2gNj 2* Ni5* 1g8Nj 1* Ni5* !1Rk4
P0

~2gNi2* Nj 6* 1g8Ni1* Nj 6* 2gNj 2* Ni6* 1g8Nj 1* Ni6* !

1Rk5
P0

~2gNi2* Nj 7* 1g8Ni1* Nj 7* 2gNj 2* Ni7* 1g8Nj 1* Ni7* !#, ~B8!

ORi jk
nna 52~OL jik

nna !* .

The factorsh i are the signs one has to include if we considerN, U, andV, as real matrices and the mass of the fermioni is
negative.

f. Neutralino–up-quark–up-squark

OLi jk
uns 5

4

3 S g

&
D tanuWNj 1* Rk,m13

ũ* RRi ,m
u 2~hu!mlRk,m

ũ* RRi ,l
u Nj 4* , ~B9!

ORi jk
uns 52S g

&
D S Nj 21

1

3
tanuWNj 1DRk,m

ũ* RLm,i* u 2~hu* !mlRk13,l
ũ* RLm,i* u Nj 4 ~B10!

and

OLi jk
nus 5~OR jik

uns !* , ORi jk
nus 5~OL jik

uns !* . ~B11!

g. Neutralino–down-quark–down-squark

OLi jk
dns 52

2

3 S g

&
D tanuWNj 1* Rk,m13

d̃* RRi ,m
d 2~hd!mlRk,m

d̃* RRi ,l
d Nj 3* , ~B12!

ORi jk
dns 5S g

&
D S Nj 22

1

3
tanuWNj 1DRk,m

d̃* RLm,i* d 2~hd* !mlRk,l 13
d̃* RLm,i* d Nj 3 ~B13!

and

OLi jk
nds 5~OR jik

dns ! i* ORi jk
nds 5~OL jik

dns !* . ~B14!
th
ou
o
d
an

r-

y

2. The neutral scalar couplings

To evaluate the tadpoles we need the couplings of
neutral scalars with all the fields in the model. These c
plings are easier to write in the unrotated basis. The c
plings for the mass eigenstates can always be obtaine
appropriate multiplication by the rotation matrices. As
11300
e
-

u-
by

example, and to fix the notation~repeated indices are unde
stood to be summed unless otherwise stated!, the couplings
of three neutral scalars in the two basis will be related b

gi jk
S0S0S0

5Rip
S0

Rjq
S0

Rkr
S0

gpqr
S80S80S80

. ~B15!
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Sometimes we will also use partially rotated couplings,
instance,

gi jk
S80S0S0

5Rjq
S0

Rkr
S0

giqr
S80S80S80

~B16!

in an obvious notation. These couplings are defined as
lows:

gi jk
S0S0S0

5
]3L

]Si
0Sj

0]Sk
0 ,

gi jk
S80S80S80

5
]3L

]Si8
0]Sj8

0]Sk8
0 . ~B17!

a. Neutral-scalar–neutral-scalar–neutral-scalar

gi jk
S80S80S80

52
1

4
~g21g82!um~ d̂mid̂ jk1 d̂m jd̂ ik1 d̂mkd̂ i j !,

~B18!

where we have defined

um[~vd ,vu ,v1 ,v2 ,v3!, d̂ i j [diag~1,2,1,1,1 !.
~B19!

For future reference we also define

vm[~v1 ,v2 ,v3! ~B20!

while d i j without the hat is the usual Kronecker delta.

b. Scalar–pseudoscalar–pseudoscalar

gi jk
S80P80P80

52
1

4
~g21g82!umd̂mid̂ jk . ~B21!

c. Scalar–charged-scalar–charged-scalar

We define

gi jk
S80S81S82

5S giHH
S80S81S82

giHL
S80S81S82

giHR
S80S81S82

~giHL
S80S81S82

!† giLL
S80S81S82

giLR
S80S81S82

~giHR
S80S81S82

!† ~giLR
S80S81S82

!† giRR
S80S81S82

D ,

~B22!

where

~giHH
S80S81S82

! jk5
1

4
g2@2vu~d i1d j 1dk21d i2d j 1dk1

1d i1d j 2dk11d i2d j 2dk2!2vd~d i1d j 1dk1

1d i1d j 2dk21d i2d j 1dk21d i2d j 2dk1!

1vmd i 22,m~d j 1dk12d j 2dk2!#

2
1

4
g82umd̂ imd̂ jk2

1

2
vmd j 1dk1
11300
r

l-

3~hEhE
†1hE* hE

T!m,i 22 , ~B23!

~giHL
S80S81S82

! jk52
1

4
g2@d i 22,k~vdd j 11vud j 2!1vmd i j dmk#

1
1

2
vm~hE* hE

T!mkd i1d j 1

1
1

2
vdd j 1~hE* hE

T! i 22,k , ~B24!

~giHR
S80S81S82

! jk5
1

&
em~hE* !mk~d i1d j 21d i2d j 1!

1
1

&
~AE* ! i 22,kd j 11

1

&
m~hE* ! i 22,kd j 2 ,

~B25!

~giLL
S80S81S82

! jk5
1

4
~g22g82!umd̂ imd jk2

1

4
g2vm

3~d i 22,jdmk1d i 22,kdm j!2~hE* hE
T! jkvdd i1 ,

~B26!

~giLR
S80S81S82

! jk52
1

&
d i1~AE* ! jk1

1

&
md i2~hE* ! jk ,

~B27!

~giRR
S80S81S82

! jk5
1

2
g82umd̂ imd jk2vdd i1~hE

ThE* ! jk

2
1

2
vm@~hE* ! i 22,k~hE!m j

1~hE! i 22,j~hE* !mk#. ~B28!

d. Scalar–up-squarks–up-squarks

With the definition

L5gi jk
S80ũ8ũ8* Si8

0ũ j8ũk8* 1¯ ~B29!

we get

gi jk
S80ũ8ũ8* 5S giLL

S80ũ8ũ8* giLR
S80ũ8ũ8*

giRL
S80ũ8ũ8* giRR

S80ũ8ũ8*
D , ~B30!

where

giLL
S80ũ8ũ8* 5umd̂ imS 2

1

4
g21

1

12
g82DI2vu~hUhU

† !d i2 ,

giLR
S80ũ8ũ8* 52

1

&
d i2AU1

1

&
mhUd i12

1

&
hUemd i 22,m ,

giRL
S80ũ8ũ8* 5giLR

S80ũ8ũ8* ,
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giRR
S80ũ8ũ8* 52

1

3
umd̂ img82I2vu~hU

T hU* !d i2 ,

~B31!

whereI is the unit 333 matrix.

e. Scalar–down-squarks–down-squarks

With the definition

L5gi jk
S80d̃8d̃8* Si8

0d̃ j8d̃k8* 1¯ ~B32!

we get

gi jk
S80d̃8d̃8* 5S giLL

S80d̃8d̃8* giLR
S80d̃8d̃8*

giRL
S80d̃8d̃8* giRR

S80d̃8d̃8*
D , ~B33!

where

giLL
S80d̃8d̃8* 5umd̂ imS 1

4
g21

1

12
g82DI2vd~hDhD

† !d i1 ,

giLR
S80d̃8d̃8* 52

1

&
d i1AD1

1

&
mhDd i2 ,

giRL
S80d̃8d̃8* 5~giLR

S80d̃8d̃8* !* ,

giRR
S80d̃8d̃8* 5

1

6
umd̂ img82I2vd~hD

T hD* !d i1 . ~B34!

f. Scalar-W¿-WÀ

With the definition

L5gi
S80W1W2

Si8
0W1W21¯ ~B35!

we get

gi
S80W1W2

5g
mW

v
~vdd i11vud i21vmd i 22,m!, ~B36!

where

v5Avd
21vu

21v1
21v2

21v3
2. ~B37!

g. Scalar-Z0-Z0

With the definition

L5
1

2
gi

S80Z0Z0
Si8

0Z0Z01¯ ~B38!

we get

gi
S80Z0Z0

5
g

cosuW

mZ

v
~vdd i11vud i21vmd i 22,m!.

~B39!
11300
h. Scalar-quark-quark

With the definition

L5gi jk
S80ūuSi8

0ū juk1gi jk
S80d̄dSi8

0d̄ jdk1¯ ~B40!

we get

gi jk
S80ūu52

1

&
~hU! jkd i2 ~B41!

and

gi jk
S80d̄d52

1

&
~hD! jkd i1 . ~B42!

i. Scalar-chargino-chargino and scalar-neutralino-neutralino

With the definition

L5x i
2~OLi jk

cch8PL1ORi jk
cch8 PR!x j

2Si8
0

1
1

2
x i

0~OLi jk
nnh8PL1ORi jk

nnh8PR!x j
0Si8

0 ~B43!

we have

OLi jk
cch852

e j

&
@g~V i1* Uj 2* dk11V i2* Uj 1* dk21V i1* Uj 3* dk3

1V i1* Uj 4* dk41V i1* Uj 5* dk5!1~hE11Uj 3* V i3*

1hE22Uj 4* V i4* 1hE33Uj 5* V i5* !dk12~hE11Uj 2* V i3* dk3

1hE22Uj 2* V i4* dk41hE33Uj 2* V i5* dk5!#, ~B44!

ORi jk
cch85~OL jik

cch8 !*

and

OLi jk
nnh85h j

1

2
~2gNi2* Nj 3* 1g8Ni1* Nj 3* 2gNj 2* Ni3* 1g8Nj 1* Ni3* !

3~dk12dk21dk31dk41dk5!,

ORi jk
nnh85~OL jik

nnh8!* . ~B45!

APPENDIX C: TADPOLES

1. Gauge boson and ghost tadpoles

We will consider the gauge boson and ghost tadpoles
an arbitraryRj gauge to show that the dependence onj
cancels out. We will do it for any model.

a. General Z0 boson tadpole

We write down the tadpole contribution from theZ0 for a
general theory with the couplinggHZZ to the Higgs boson:
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~C1!
e

her
where

Gm
m5~2 i !F 4

p22MZ
22~12j!

p2

~p22MZ
2!~p22jMZ

2!G
~C2!

and the factor1
2 is a symmetry factor. Now we do som

transformations in the second term of theZ0 propagator
G(j),

G~j!5~12j!
p2

p22MZ
2

1

p22jMZ
2

5
1

p22MZ
22j

1

p22jMZ
2 ~C3!

and therefore we can write

Gm
m5~2 i !F 3

p22MZ
2 1j

1

p22jMZ
2G . ~C4!

Then
e

11300
iTZ5
1

2
igHZZ~2 i !

i

16p2 @3A0~MZ
2!1jA0~jMZ

2!#

5
i

16p2

1

2
gHZZ@3A0~MZ

2!1jA0~jMZ
2!#, ~C5!

where we have used the definition

i

16p2 A0~m2![E ddp

~2p!d

1

p22m2 . ~C6!

As A0(jm2) grows for largej asjm2 we conclude thatTZ
grows asj2. This dependence has to cancel against ot
diagrams. It is easy to realize that the Goldstone of theZ0

will not do it because, although its mass depend onj, its
contribution to the tadpole will only grow asj because its
coupling toH does not depend onj. But the ghost coupling
to H does dependj as we will see.

b. General Z0 ghost tadpole

Let us then calculate the tadpole of the ghost of theZ0.
We have
~C7!
e

d

el,
where the factor~21! is because of the anticommutativ
properties of the ghosts. Using the definition ofA0 we get

iTcz
5

i

16p2 gHczc̄z
A0~jMZ

2!. ~C8!

Adding the two contributions together we obtain

iTZ1 iTcz
5

i

16p2 F3

2
gHZZA0~MZ

2!

1S 1

2
gHZZj1gHczc̄zDA0~jMZ

2!G . ~C9!
We see that for thej dependence to cancel one must hav

1

2
gHZZj1gHczc̄z

50. ~C10!

As we will show below this is true for the SM, MSSM, an
also for the bilinearR-parity model. Then the contribution
from the Z0 and neutral ghost tadpoles is, for any mod
gauge independent and given by

iTZ1 iTcz
5

i

16p2

3

2
gHZZA0~MZ

2!. ~C11!
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c. The WÁ boson and cÁ ghost tadpoles

The calculation for theW6 boson and charged ghosts
very similar. The main differences are that theW tadpole
does not have a factor1

2 and that there aretwo ghosts for the
W6. Therefore we have

iTW1 iTc
W
11 iTc

W
25

i

16p2 @3gHWWA0~MW
2 !1~gHWWj

1gHc
W
1c

W
11gHc

W
2c

W
2!A0~jMW

2 !#.

~C12!

We see that thej dependence will cancel out if

gHWWj1gHc
W
1c

W
11gHc

W
2c

W
250. ~C13!

We will show below that this is true in general. Then t
contribution from theW6 and charged ghost tadpoles is, f
any model, gauge independent and given by

iTW1 iTc
W
11 iTc

W
25

i

16p2 3gHWWA0~MW
2 !. ~C14!

d. The standard model

Now let us see how the cancellation occurs in the stand
model. The relevant couplings for theZ0 are

gHZZ5
g

cosuW
MZ ,

gHczc̄z
52

g

2 cosuW
jMZ ~C15!

and we immediately see that Eq.~C10! is verified. For the
W6 we have

gHWW5gMW ,

gHc
W
1c

W
152

g

2
jMW ,

gHc
W
2c

W
252

g

2
jMW ~C16!

satisfying Eq.~C13!.

e. Bilinear R-parity model

In the bilinearR-parity model the relevant couplings ar

g
i

S80cW
1c1W

52
g

2
j

mW

v
~vdd i11vud i21vmd i 22,m!,

g
i

S80cW
2c2W

52
g

2
j

mW

v
~vdd i11vud i21vmd i 22,m!,

~C17!

and
11300
rd

gi
S80czc̄z52

g

2 cosuW
j

mZ

v
~vdd i11vud i21vmd i 22,m!.

~C18!

Then using Eqs.~B36!, ~B39!, ~C17!, ~C18! in Eqs. ~C13!,
~C10! we see that the same cancellation occurs.

2. General tadpole expressions

After showing the gauge invariance of the gauge bos
tadpoles together with their ghosts we give now the gen
tadpole in a compact form. We will write them for the unr
tated neutral HiggsH80 because that is what is needed f
substitution into Eq.~9!. The general form can be written a
(X5W6,Z0,S6,H0,A0,ũ,d̃,u,d),

TH
i8

0
X

5
1

16p2 Pi
X , ~C19!

where

Pi
W53gi

S80W1W2
A0~MW

2 !,

Pi
Z5

3

2
gi

S80Z0Z0
A0~MZ

2!,

Pi
S6

52 ( 8
k51

8

gikk
S80S1S2

A0~mk
2!,

Pi
S0

52 (
k51

5
1

2
gikk

S80S0S0
A0~mk

2!,

Pi
P0

52 (
k51

5

8
1

2
gikk

S80P0P0
A0~mk

2!,

Pi
ũ52 (

k51

6

3gikk
S80ũũ* A0~mk

2!,

Pi
d̃52 (

k51

6

3gikk
S80d̃d̃* A0~mk

2!

Pi
x6

52 (
k51

5

~21!
OLkki

cch8 1ORkki
cch8

2
4mkA0~mk

2!,

Pi
x0

52 (
k51

7

S 2
1

2D OLkki
nnh81ORkki

nnh8

2
4mkA0~mk

2!,

Pi
u52 (

k51

3

~23!gikk
H80ūu4mkA0~mk

2!,
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Pi
d52 (

k51

3

~23!gikk
H80d̄d4mkA0~mk

2!,

~C20!

where(8 means that we sum over all fieldsexceptfor the
Goldstone boson. As explained in Sec. VI B the contribut
of the goldstones is added to the self-energies to ach
gauge invariance.

APPENDIX D: ONE-LOOP SELF-ENERGIES

In this section we write down the contribution of the se
eral self-energy diagrams in thej51 gauge.

1. The W and Z loops

The contribution of theW andZ loops to the functionsSV

andPV can be written in the form (X5W,Z),

S i j
V52

1

16p2 (
k

Fi jk
X B1~p2,mk

2,mX
2 !,

P i j
V52

1

16p2 (
k

Gi jk
X mkB0~p2,mk

2,mX
2 !

~D1!

with

Fi jk
W 52~OL jk

ncwOLki
cnw1OR jk

ncwORki
cnw!,

Gi jk
W 524~OL jk

ncwORki
cnw1OR jk

ncwOLki
cnw!, ~D2!

and

Fi jk
Z 5~OL jk

nnzOLki
nnz1OR jk

nnzORki
nnz!,

Gi jk
Z 522~OL jk

nnzORki
nnz1OR jk

nnzOLki
nnz!.

~D3!
’’

nt
th
N

lle

in
. G
ler

fo
. F
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n
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2. The scalar loops

All the scalar contributions can be written in the for
(X5S6,S0,P0,ũ,d̃),

S i j
V52

1

16p2 (
r

(
k

Fi jkr
X B1~p2,mk

2,mr
2!,

P i j
V52

1

16p2 (
r

(
k

Gi jkr
X mkB0~p2,mk

2,mr
2! ~D4!

with

Fi jkr
S6

5~OR jkr
ncs OLkir

cns 1OL jkr
ncs ORkir

cns !,

Gi jkr
S6

5~OL jkr
ncs OLkir

cns 1OR jkr
ncs ORkir

cns !, ~D5!

Fi jkr
S0

5
1

2
~OL jkr

nnh OLkir
nnh 1OR jkr

nnh ORkir
nnh !,

Gi jkr
S0

5
1

2
~OL jkr

nnh ORkir
nnh 1OR jkr

nnh OLkir
nnh !, ~D6!

Fi jkr
P0

52
1

2
~OR jkr

nna OLkir
nna 1OL jkr

nna ORkir
nna !,

Gi jkr
P0

52
1

2
~OL jkr

nna OLkir
nna 1OR jkr

nna ORkir
nna !, ~D7!

Fi jkr
ũ 5~OR jkr

nus OLkir
uns 1OL jkr

nus ORkir
uns !,

Gi jkr
ũ 5~OL jkr

nus OLkir
uns 1OR jkr

nus ORkir
uns !, ~D8!

Fi jkr
d̃ 5~OR jkr

nds OLkir
dns 1OL jkr

nds ORkir
dns !,

Gi jkr
d̃ 5~OL jkr

nds OLkir
dns 1OR jkr

nds ORkir
dns !. ~D9!
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