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The simplest unified extension of the minimal supersymmetric standard model with bRspeaity viola-
tion naturally predicts a hierarchical neutrino mass spectrum, in which one neutrino acquires mass by mixing
with neutralinos, while the other two get mass radiatively. We have performed a full one-loop calculation of
the neutralino-neutrino mass matrix in the bilinégr minimal supersymmetric standard model, taking special
care to achieve a manifestly gauge invariant calculation. Moreover we have performed the renormalization of
the heaviest neutrino, needed in order to get meaningful results. The atmospheric mass scale and maximal
mixing angle arise from tree-level physics, while solar neutrino scale and oscillations follow from calculable
one-loop corrections. If universal supergravity assumptions are made on the soft-supersymmetry breaking
terms then the atmospheric scale is calculable as a function of a ®gglmlating parameter by the renor-
malization group evolution due to the nonzero bottom quark Yukawa coupling. The solar neutrino problem
must be accounted for by the small mixing angle Mikheyev-Smirnov-Wolfensk8W) solution. If these
assumptions are relaxed then one can implement large mixing angle solutions. The theory predicts the lightest
supersymmetic particle decay to be observable at high-energy colliders, despite the smallness of neutrino
masses indicated by experiment. This provides an independent way to test this solution of the atmospheric and
solar neutrino anomalies.

PACS numbse(s): 14.60.Pq, 11.30.Pb, 12.60.Jv

[. INTRODUCTION spheric and solar neutrino anomal{d€)] based on the sim-
plest extension of minimal supergravity with bilinear
The high statistics data by the SuperKamiokande CollaboR-parity violation(BRPV) [11]. The particles underlying the

ration [1] has confirmed the deficit of atmospheric muonmechanism of neutrino mass generation are the neutral su-

neutrinos, especially at small zenith angles, opening a neRersymmetric partners of the standard model gauge and

era in neutrino physics. On the other hand the persistent digdiggs bosons which have mass at the weak scale and are

agreement between solar neutrino data and theoretical expdflUs accessible to accelerators.

tations has been a long-standing problem in phyE2gsAl- _ Our model breaks Ieptpn number gnd therefore necessar-

together these constitute the only solid evidence we noWy 9enerates nonzero Majorana neutrino magses At the

have in favor of physics beyond the present standard modeﬁfee lef;/hel onI%/ c;ne ofltge Peu;rinotshpiclii upta mass tb_y mix-
providing a strong hint for neutrino conversion. Although ing with neutralinos{13], leaving the other o neutrinos

X . . . massles$14]. While thi n explain the atmospheric neu-
massless neutrino conversiof® can be sizable in matter, asslesy14] € this can exp'a € almospheric neu

: . . ! _trino problem, to reconcile it with the solar neutrino data
and may even provide alternative solutions of the neutring

. L . X . Tequires going beyond the tree-level approximation. This is
anomalieg4], it is fa|r tq say that the S|mplest mterpretaﬂc_)n the purpose of the present paper. Here we improve the work
of the present data is in terms of massive neutrino oscilla

x ; i . of Ref.[15] by performing a full one-loop calculation of the
tions. Taking for granted such an interpretation, the presenf{grino mass matrix and also update the discussion in the
data do provide an important clue on the pattern of neutrinqwight of the recent global fits of solar and atmospheric neu-
masses and mixing. The atmospheric data indiegt¢o v, {rino data. This can also be used to improve the discussion
flavor oscillations with maximal miXin@s:l, while the solar given in Ref. [16] where the tree approximation was as-
data can be accounted for in terms of either small mixindsumed. For simplified analyses including only the atmo-
angle (SMA) and large mixing angldLMA) Mikheyev-  spheric neutrino problem in the tree-level approximation see
Smirnov-Wolfenstein (MSW) solutions [6], as well as Ref.[17] and a number of papers in R¢L8].
through vacuum or just-so solutiorg]. A large mixing We have performed a full one-loop calculation of the
amongv, and ve is excluded both by the atmospheric dataneutralino-neutrino mass matrix in the bilingg minimal
and by reactor data on neutrino oscillatidid. There has supersymmetric standard mod@lSSM), showing that, in
indeed been an avalancf® of papers trying to address this order to explain the solar and atmospheric neutrino data, it is
issue in the framework of unified models adoptiad hoc  necessary and sufficient to work at the one-loop level, pro-
texture structures for the Yukawa couplings. vided one performs the renormalization of the heaviest neu-
Here we propose an alternative approach to describe theino. In contrast with all existing papef45,18, we have
structure of lepton mixing which accounts for the atmo-taken special care to verify the gauge invariance of the cal-
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culation, thus refining the approximate approaches so fakg/(l)?tsm M”2 Q?J"MHZDiUT+MBZBiBT+ME2E?*E?
used in the literature. We find that if the soft-supersymmetry

breaking terms are universal at the unification scale then only M gZNRfRJ* + ma Ha3*H3+ ma Ha*Ha

the small mixing angle MSW solution to the solar neutrino ¢ !

problem exists. On the other hand if these assumptions are 1 1 1
=MANg+ = MAN+ M'N'N +H.c.

relaxed then one can implement large mixing angle solu- T VishshsT 5 2
tions, either MSW or just so. 5 o
Bilinear R-parity breaking supersymmetry has been exten- + el AUQPU;HO+ ALQPDH3+ ALLPR HE

sively discussed in the literatuféQ]. It is motivated on the
one hand by the fact that it provides an effective truncation
of models whereR parity breaksspontaneousipy singlet In addition to the MSSM soft supersymmeti§USY) break-
sneutrino vevs around the weak scgl]. Moreover, they ing terms in£Y3SM the BRPV model contains the following
allow for the radiative breaking oR parity, opening also extra term:

new ways to unify gauge and Yukawa couplif@®| and

with a potentially slightly lower pre_dlctl_on fp&s_[Zl]. For VSBOF;th: _ Bifieabt'aHBv 3)
recent papers on phenomenological implications of these

models see Ref§22—24. If present at the fundamental level where theB; have units of mass. In what follows, we neglect
trilinear breaking ofR parity will always imply bilinear intergenerational mixing in the soft terms in E@).

breaking at some level, as a result of the renormalization The electroweak symmetry is broken when the two Higgs
group evolution. In contrast, bilinear breaking may exist indoubletsHy andH,,, and the neutral component of the slep-

the absence of trilinear breaking, as would be the case if ifon doubletsT_il acquire vacuum expectation valug&EVs).

—BuH3HL. )

arises spontaneously. We introduce the notation
This paper is organized as follows. In Secs. -1V we
describe the model, the minimization of the scalar potential, HY Hiy - (L?
and the radiative breaking of the electroweak symmetry. In d:<H) u_< HS)’ i~ Ti_ (4)

Sec. V the tree level masses and mixings are described, while

the contributions to the one loop mass matrix and the gaugghere we shift the neutral fields with nonzero VEVs as

invariance issue are studied in Sec. VI. Finally the neutrino

masses and mixings are discussed in Sec. VII where we 1

show our results for solar and atmospheric oscillation param- H3=—[og+vg+iel]l, Hi= —[08+vu+ i o9l

eters. The more technical questions regarding the mass ma- V2 V2

trices, couplings, and one loop results as well as further de- ®)

tails of gauge invariance are given in the appendixes. We L°——[7/-R+v-+i7/!]

also briefly discuss how, despite the smallness of neutrino Vi ! 1

masses indicated by experiment, the theory can lead to ob-

servableR, phenomena at high-energy accelerators. Note that theW boson acquires a maﬂs\ZN 1g%v?, where

v2=v3+vi+vi+vi+v3=(246 GeV}. We introduce the

following notation in spherical coordinates for the vacuum

Il. THE SUPERPOTENTIAL AND THE SOFT BREAKING expectation values:

TERMS

=y sin#, sin#, sin 65 cosB,
Using the conventions of Reff23,25 we introduce the vaTv ! 2 3C0SA

model by specifying the superpotential, which includes

=p sinf, sin 6, sin f3 sin B,
BRPV [10] in three generations. It is given by oum? ! 2 3sing

v3=v Sinf SinH, cosHz, (6)
W= QPO Hi+hE QD HG+hE LPR AG— wHGH, vp=v sinf; cosy,
+6i|:?F|B], (1) V1=V 00301,

which preserves the MSSM definition t8&uv,/vy. In the
where the couplingby, hp, andhg are 33 Yukawa ma- MSSM limit, where ¢,;=v;=0, the angless; are equal to
trices andu and €; are parameters with units of mass. The #/2. In addition to the above MSSM parameters, our model
bilinear term in Eq(1) violates lepton number in addition to contains nine new parametees, v;, and B;. The three
R parity. VEVs are determined by the one-loop tadpole equations, and
Supersymmetry breaking is parametrized with a set of softve will assume universality of th8 terms,B=B; at the
supersymmetry breaking terms. In the MSSM these are giveuanification scale. Therefore, the only new and free param-
by eters can be chosen as the
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Ill. THE SCALAR POTENTIAL where we have defined=3%(g?+9'?)(vi+v3+v5+0]

2 2_ 2 2 2 . -
The electroweak symmetry is broken when the Higgs and” Vu) @nd e"=e1+ e+ €5. A repeated index in Eq. (9)
lepton fields acquire nonzero VEVs. These are calculated vi§'Plies summation over=1,2,3. The five tree level tadpoles
the minimization of the effective potential or, in the diagra- t« @€ €qual to zero at the minimum of the tree level poten-

matic method, via the tadpole equations. The full scalar potial, and from there one can determine the five tree level
tential at the tree level is vacuum expectation values.

It is well known that in order to find reliable results for
the electroweak symmetry breaking it is necessary to include
the one-loop radiative corrections. The full scalar potential at
one loop level, called effective potential, is
wherez; is any one of the scalar fields in the superpotential
in Eq. (1), Vp are theD terms, andvery ¥ is given in Eq.(3). Viota= Vot Vre, (10

The tree level scalar potential contains the following lin-
ear terms:

2
MSSM_,_y/BRPV
+Vp+Vei "+ Veort s (7)

JW
V?otaI: 2| ‘ ﬁ_Z,

whereVgc include the quantum corrections. In this paper we
VO =050 4 10504 t95R+ t05R 4 tO5R 8 use the_ diagramatic method, which incorporates the radlgtlve
finear“d™d © fuTu T LT T2tz IS ® corrections through the one-loop corrected tadpole equations.
where the different® are the tadpoles at tree level. They are The one loop tadpoles are

given by

t,=t0— 8t2R+T,(Q)=t3+ToR(Q), 11
t9=(mfy, + #?)vatveD — p(Buy+oie), « e TQT A THQ), (@D
9= —Buvg+ (M3 + 1), —v,D+vBig+u e where a=d,u,1,2,3 andT2R(Q)=— st¥S+ T (Q) are the

finite one loop tadpoles. At the minimum of the potential we
1 havet,=0, and the vevs calculated from these equations are
t9=0v,D+e;(—pvgtuvBi+vie)+ E(UiMEilJF MZ,00), the renormalized VEVs.
) Neglecting intergenerational mixing in the soft masses,
the five tadpole equations can be conveniently written in
1 matrix form as
t9=v,D + €x(— pvg+tv Bytvi€) + E(UiMEinFMEini),

[t&tgvtO’tovtg]T: Mtzac[vu UdiU1,U2 ,Us]Ta (12

1
0_ _ eV (1M 2. 2
t3=vsD +es(—pvgtuBstvie)+ Z(U'M'-'3+M'-3'v')' where the matridMZis given by

M2 2 -
my,+u°+D —Bu — e —ME !
_B,LL mau+,lL2+62_D Blel 8262 8363
2, 2
Mtzad: THE Bie ML1+61+D €16 €1€3 (13
M€ Bze €162 MEZ+E§+D €2€3
2, 2
— MUE3 B3€3 €1€3 €r€g ML3+ 63+D

and depends on the VEVs only through theéerm defined above.
In order to have approximate solutions for the tree level vevs, consider the following rotation amdrg &mel lepton
superfields:

M= RMgR ™1, (14)

where the rotatiorR can be split as
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Fc3; 0 0 O —s377 [c, O
0 1 0O 0 1
R=| 0 01 0 O |[x] O O
0 001 O s, O
| s3 0 0 0 ¢c3 ] LO O
where the three angles are defined as
H €1 ’ 2
Ci1=—, S1=/—, = + €7,
1 “ 1 “ M M 1
! €
szlu_/u S=—, u w2+ €.
)72
(16)
'LL” 63 " n
Ca= i+ Ss=m M= NK 2+es

It is clear that this rotatiorR leaves theD term invariant.

The rotated VEVs are given by

[v,vg.01.05,05]=R[vy,vg,v1,02,03]",  (17)

and under the assumption thaf,vj,v3<v, these three

small VEVs have the approximate solution

[~2 _ pp2
, wep | MAg Mle,+ By,— "
V17~ — ,
1 M(_i—'—D_ M/M/// d M/ u
! m M2 ’
U,N_ M €En Hd sz,+Bz_B v,
27 2 d '
MI/_2+D i M//M/// M// u
(18)
"2 2
' ,U,H€3 de ML3 B3_B” ,
U3~ — M|,_§+D I ,LLWZ Ud+ /*LW Uu_’

where we have defined the following rotated soft terms:
2 n2 12 2 2
,z_mH/'L +M|_ €l szdeM +Mi, €

Hq ™ MIZ ’ Hy MIIZ ’

n2 n2
2
o M +ME 63 Bu?+B,é€
H, — T! =T 972
d o M
ro12 n.on2 2
" B M + 8262 ” M + 8363
B"= "2 ’ B m2 ’ (19)
2 2 2 2 12 2 2 12
mi €1t M{ 1 my €2+ M{_u
12 ’
Ly 12 ' M L2_ "2 ’
mi e5+ME
M 12 d
Ly m2
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0 —-s, 07 [cg O —s; 0 07
0 0 O 0 1 0 00O
1 0 O|x] s 0 ¢, O Of, (15
0 c, O 0 0 0 10
0 0 1 | 0 0 0 0 1]

The approximatior 1 ,v5,v4<<v is justified in supergravity
(SUGRA) models with universality of soft masses at the
weak scale, as shown in the next section.

IV. RADIATIVE BREAKING OF THE ELECTROWEAK
SYMMETRY

It was demonstrated in Reff10] that BRPV can be suc-
cesfully embedded into SUGRA with universal boundary
conditions at the unification scale, and with a radiatively bro-
ken electroweak symmetry. =M, we assume the stan-
dard minimal supergravity unification assumptions:

(20

Mz=M,=M1=Myp,.

We run the renormalization group equatioflRGES from

the unification scaleM;~2x 10'°GeV down to the weak
scale, giving random values to the fundamental parameters at
the unification scale:

10 2<h3,/4m=<1,
10 5<h? /4n<1,

<udImi=<10,

0=<My;p/my=<5b.

The Yukawa couplings are determined by requiring that
three eigenvalues of the chargino/charged-lepton mass ma-
trix correspond to the experimentally measured tau, muon,
and electron masses.

As in the MSSM, the electroweak symmetry is broken
because the large value of the top-quark mass drives the
Higgs boson mass parameruaﬁ|U to negative values at the

IFor the case of large tree-level neutrino mass one must note that
the lepton Yukawa couplings are no longer related to the lepton
masses via the simple relations valid in the standard model. Since
charginos mix with charged leptons, the Yukawa couplings depend
also on the parameters of the chargino sector. For the case of inter-
est herg(light v, mass fixed by the atmospheric soatleis correc-
tion is less important.
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weak scale via its RGE26]. In the rotated basis, the param-  With the aid of these RGEs we can find an approximate

eter u”? is determined at one loop by expression for the slepton VEVs in the rotated basis
L given in Eq.(18). The relevant soft term differences, defined
~ =B.— 2— M2 —m? i
p=— E[mi—Azz(mg)] asAB;=B;—B andAm/=M¢ —m, , are approximated by
~DR ~TR 1 M
M2+ T = (m2 +T00)t 2 ABy==—(3h2A,)In——,
d vy u vy 8 Myeak
+ 12 ’ (22)
tﬂ -1
My
— — 2 2
wheret;=v//v} is defined in the rotated basis and is analo- ABZ_ABl_g_Z(Sthb+hTAT)I” m (26)
BT Fuvd ™ weak

gous to tang in Eq. (6) defined in the original basis. The
finite dimensional reduction{R) Z-boson self-energy is for the B terms, and by

Azz(m2), and the one-loop tadpoléE  and T,/ are ob-
d u

1 M
tained by applying to the original tadpoles in EdJ) the Amgzp(Shﬁxb)lnm v,
rotationR defined in Eq(15). The radiative breaking of the & weak
electroweak symmetry is valid in the BRPV model in the 1 M
us_ual way: the large V?Iue of the tc_)p quark Yukawa _couphng Am’é‘:Amiz_z(?,thbJr hEXT)In U (27)
drives the parametennHU to negative values, breaking the 8

symmetry of the scalar potential éor the mass squared terms. This way, if we assumedhat

As we will see a radiative mechanism is also responsibl < . we can neglect the rotations in E@.8) and we find
for the smallness of the neutrino masses in models with uni=-* 9 4

versality of soft mass parameters at the unification scale. The

relevant parameters are the bilinear mass paramBteairsd v/
B;, the Higgs boson mass parameteﬁd, and the slepton
mass parametend { .

The RGEs for theB parameters are

'weak

UdEi//.L
- MZ+D

(Am7—tzuAB;) (28)

which give us an approximate expression for the sneutrino
VEVs v/ in the basis where the terms are absent from the

superpotential. In a model with unified universal boundary
dB 2 2 2 2 3 2 it i
S8 3hZA+3hiA,+h2A +3g5M,+ ggll\/|1 , conditions on the soft SUSY breaking tert®JGRA case,

m for shory thev{ are calculable in terms of the renormaliza-
dB 3 tion group evolution due to the nonzero bottom quark
. _2(3ht2At+ h2A.+3g3M,+ _giMl)’ (23)  Yukawa coupling. We should stress here that for our subse-

dt 8w T 5 quent numerical calculation we solve the tadpole equations
exactly

@_ ﬁ_ [ 3n2A + 302M. + § 2\ The symmetry of the neutralino/neutrino mass matrix im-

dt  dt _ 8a2| 2MAeT oG Mo 2 0iMy |, plies that only one neutrino acquires a tree level mass, and

the other two remain masslegs4] (see next section The

where we do not write the effect of Yukawa couplings of themassive neutrino will have the largest component algng,
first two generations. Similarly, the RGE for the down-type or e if the largest VEV isvg, vy, Orvy, respectively. On the
Higgs boson mass is other hand, the most obvious difference between the third

generation sneutrino VEV and the first two generations is in

the extra contribution frorh, to AB; in Eq. (26) and toAm?

in Eq. (27) for the first two generations. Due to the tau lepton
(24) contribution,AB; and AB, are larger tham\B3, and simi-

larly for the Am?, specially if tan3>1. However, we have
and the RGEs for the slepton mass parameters are checked that it is possible without fine-tuning the parameters
in an unnatural way to arrange for the heaviest of the neutri-
nos to be an equal mixture of, andv, as needed in order to
obtain an explanation of the atmospheric neutrino anomaly.
That this is possible can be understood by noticing that there
dez del can be a cancellation between th8 andAm? terms in Eq.

1 3 ) ,
TR :_W(gggMg_;_ggiMi)' (28) for vy andvs.
(25

2
m

3
“dt 842 ( 3h§Xb+ h,ZrXT— 3g§M§— ggiMi) )

dME, 1
dt  8#72

3
|~ 3g23- oim3)

V. TREE LEVEL NEUTRINO MASSES AND MIXINGS

—m2 2 2 2 —m2 2 ) i
where X,=my +Mg,+Mp +A; and X,=my +Mi, Here we discuss the tree level structure of neutrino
+ M§3+Af. masses and mixings. For a complete discussion of the fer-
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mion mass matrices in this model see Appendi% W. the gM i
basisy°T=(—i\',—iN%H},HE,ve,v,,v,) the neutral fer- fif—m i

mion mass matribM  is given by

& (9°M1+g"°M)v,, _

mT i3=— —+ ’
My= A:nxo 0l (29 BT adet)
(g°M1+9'°M>)vg
Whel’e §i4_ - 4 de(MXO) i (35)
M, 0 —39'vqy 39'vy where
Moo 0 P 0vq  —39vy Ai=pv;+vgecv| (36)
X0~ ,
—39'vq 3 0vg 0 M are the alignment parameters. From E@&) and (36) one
1g'v ~lgy —u 0 can see that=0 in the MSSM limit wheree;=0, v;=0. In
29 7 297 (30 leading order in¢ the mixing matrix\is given by
1 ¢t T
is the standard MSSM neutralino mass matrix and A :(N* 0 ) 1-:¢¢ § 37
1 1 0 VI 3 1- % ng .
—20'vy z20v1 0 €&
o 1 0 € 31 The second matrix above block diagonalizes the mass matrix
m=) —29v2 30v2 2 (31 M, approximately to the form diag( 0, Megr), where
1y 1 0 B
2903 z29U3 €3 Mefi= —m-MXolmT
characterizes the breaking Bfparity. The mass matrii A2 AA. AA
is diagonalized bysee Appendix A 2 12 e & m e
M19°+Mo2g 2
“adetMy | e M Al
* —1_ i 0
NM N —dlag(mXio,mVj), (32 X Ak, ALA, A2
where (=1,...,4) for the neutralinos ang<£1,...,3) for the (39
neutrinos. . . . )
We are interested in the case where the neutrino mas-ghe submatricesl andV, diagonalizeM,o andme:
which is determined at the tree level is small, since it will be N* MXoNT=diaqmXi0), (39

determined in order to account for the atmospheric neutrino

anomaly. The above form favl  is especially convenient in Vil A
. . . ) ; . MgV, =diag 0,0m,), 40
this case in order to provide an approximate analytical dis- vty go.0m,) (40
cussion valid in the limit of smalR, violation parameters. \yhere
Indeed in this case we perform a perturbative diagonalization
of the neutral mass matrix, using the method of R27], by Tr(ma) M g%+ M,g'? AP 1)
- M=Tr(Meg)= ——F+7 .
defining[24] e 4 det M, 0)
§=m-/\/l;ol. (33 Clearly, one neutrino acquires mass due to the projective
nature of the effective neutrino mass matni;, a feature
If the elements of this matrix satisfy often encountered ifR, models[14]. As a result one can
rotate away one of the three angld®] in the matrixV,,,
VE;<1, (34  leading to[28]
then one can use it as expansion parameter in order to find an 1 0 0
?pproximate solution for the mixing matriX. Explicitly we V,=| 0 cosfl; —sinfy
ave
0 sinf,; C0SHy3
9'Mau ;
L= AL cosf3 0 —sinf;3
S17 2 detM o) M1

x| 0o 1 o0 (42)

sind;3 0  cosbHq3

%In our notation the four component Majorana neutral fermionsyhere the mixing angles can be expressed in terms of the
Fo . >
are obtained from the two component via the reIat,i&?m(F—'o). alignment vectorA as follows:
i

113008-6



NEUTRINO MASSES AND MIXINGS FROM . .. PHYSICAL REVIEW D62 113008

Aeg The physical pole mass is given by the zero of the inverse
tan613=—m, (43 propagator, in the limit wherep,y“—mg, and may be
7 found using
A ~ _
tan ;= — 1. (44) ZE U(P)[ Py~ me, Ju(p)=U(P)[P, 7"~ Mg, (Q)

+Si.(p,Q)Ju(p), (48)

whereu andu are two on-shell spinorsr;n;i and m,:i(Q) are

One-loop radiative corrections to the neutralino-neutrinothe neutral fermion pole and running masses, respectively,
mass matrix in the BRPV model were calculated first in Ref.and"’iFiF(p,Q) is the renormalized two-point function in the

[15], working in the 't Hooft—Feynman gaugé&<{1). Our pp scheme. The quanti®z * corresponds to the finite ratio

analysis improves the previous work in that we check explic-

itly the gauge invariance using tiiy gauge. We use dimen- of the infinite wave function renormalization constants in the

sional reduction to regularize the divergen¢es] and in- DR scheme and the on-shell scheme, and it accounts for the

clude all possible MSSM particles with consistently fact that the residue of theR propagator at the pole is not 1
determined mass spectra and couplings in the relevant loopg30]. The renormalized functiol ¢r(p,Q) is calculated by
subtracting the pole terms proportional to the regulator of

VI. ONE-LOOP NEUTRINO MASS MATRIX

A. Two-point function renormalization dimensional reduction
We denote the sum of all one-loop graphs contributing to 2
the two-point function as A= . ve+Indm, (49
B where yg is the Euler's constant and is the number of
=13%:(p). space-time dimensions. In practice we have
SE(P. Q) =[2Le(P)]s-o- (50)

The most general expression for the one-loop contribution to .
the unrenormalized neutralino-neutrino two-point function isSinceu(p) ysu(p) =0, the terms proportional tgs in ¢
- do not contribute. From Eq48) we find
i3 2e(p)=i1{P[P.3i(p?) + Pr2 (PP ]~ [PLIL;(p?)

+PrIIE(PH1}, (45 AmF‘EmFi_mFi(Q):ﬁi\i/(m%i)_mFiSi\i/(m%i)’ (5D

where
where the indicesandj run from 1to 7Pg=31 (1+ ys) and

P.=3 (1—1ys) are the right and left projection operators, V_1,FLLSR, SV_1 TL, TR
andp is the external four momenta. The functiobsandI1 2T=2 (3020, 2= (IF4IT, (52)

are unrenormallzeg self-energies and depoend on the externgly the tilde implies renormalized self-energies. A given set
momenta squarep”. The neutral fermion§;’ are a mixture  f inpyt parameters in the neutralino-neutrino mass matrix

of weak eigenstate neutralinos and neutrinos and given by yefines the set of tree level running massgs(Q), among
Q).

them two massless and degenerate neutrinos. The one-loop
renormalized masses, are then found through Eq51),

and the masslessness and degeneracy of the two lightest neu-
trinos is lifted.
The tree level masslessness of the lightest neutrinos im-
lies an indetermination of the corresponding eigenvectors.

to the tree level propagator, this self-energy previousl ) . g .
lized with the di ional reductibi sch q In order to find the correct neutrino mixing angles we diag-
renormalized with the dimensional reductibR scheme and 5176 the one-loop corrected neutralino-neutrino mass ma-

denoted a$ andfl. In the DR scheme, the counterterms trix. We define

cancel only the divergent pieces of the self-energies. In this

way, they become finite and dependent on the arbitrary scale MPoe= MPR(Q)+ AM;; (53
Q. The tree level masses are promoted to running masses in b b N

order to cancel the explicit scale dependence of the selfyit

energies. Thus, the inverse propagator of the neutral fermion

0 ~ ~
Fills AM;;=3 [T (m?) + T (m) )

FP=Njj 7, (46)

whereN is the 7X 7 matrix that diagonalizes the neutralino-
neutrino mass matrix according to E§2).
The inverse propagator at one loop is obtained by addin

TE(P) =Py~ M (Q+3R(P.Q).  (47) —z [meSi(m)+meSim)], (54
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where the symmetrization is necessary to achieve gauge in-

variance. Of course, the diagonal elementsAdfl;; corre- (115 )W— T6n 22 (OlKORki+ ORKOTR)
spond to the difference between the pole and running masses

defined in Eq/(51). Xy 3Bo(p2 mg,m3,) + EBo( p%, M, ém3,) .

B. Gauge invariance (59

As explained in Sec. Il B, the one-loop corrected vacuunmrhis graph introduces an explicit dependence on the gauge
expectation values are found by solving the one-loop corparametek. The other self-energy graph withdependence
rected tadpole equations in Ed1). Of course, it is desirable is the one that includes the charged Goldstone boson. The
to work with gauge invariant VEVS. In order to achieve the charged Goldstone boson is one of the eight charged scalars
gauge invariance of the,’s, the one-loop tadpol@®R(Q) S resulting from mixing between the two charged Higgs
must be independent of the gauge paraméteAs it is  fields and the six charged sleptons. This contribution is
shown in Appendix C the following set of tadpoles is gauge
invariant: St

P

FO /~ S\ RO

w RITW & —] F—=i— =i(pZ} - 1})5"
[ ] °
b -+
[

. Fy
[} [ ] . +
+  Tege =i [To(Q)]""
: { ¢ [ “(Q)] where again, ellipses indicate terms proportionayo and
1570 1570
1 1

(S =-

8 5
) ] 1 2 2 (Onc_s cns
where S/° denote neutral scalar bosons in the weak basis 1672 /=) &y T RIkrLkir
(see Appendix A 7's are the Fadeev-Popov ghosts. A simi- heS. mchs s 2 2
lar set for theZ gauge boson exists. Nevertheless, the tadpole + OLjikr Oriir) B1(P%, mi;,my),

with a charged Goldstone boson in the loop introduces a

gauge dependence that cannot be canceled. For this reason, (1Y )S+ 1 i i nes yons

the Goldstone boson loops are removed from the tadpoles 16m2 ~4 & OLjir OLkir

T,(Q) and introduced into the self-energies. This in turn

allows us to achieve the gauge invariance for the two point +OR ORI MBo(PZ, M, m7)  (56)

functions, as well as for the VEVs, as explained below.
Among the loops contributing to the self-energies, con-with the couplings given in Appendix B. Nevertheless, gauge
sider for example th&V-boson loop, which in the gener. ~ dependence is not canceled after combining E§S) and

gauge is (56). In order to achieve it the inclusion of the Goldstone
boson tadpole graphs, left over from the tadpole equations, is
w necessary:
P Fy
J 1% 14 - (E
(]52 - H ) + /’ \\G"
/
]
F,:_ ‘\ /
=i (pZY —TY)Ted 4

where ellipses indicate terms proportional ¥9 which are 0 'Slg 0
irrelevant for us,F; are charged fermions resulting from F; : F,

mixing between charginos and charged leptons, and
] where §;)***=0 and
1
E W On(;WOCHW+ Onc_w cn' \ 5
( ) T 1672 kzl ( Ljk ~Lki Rjk~RKi (H_\()tad: 3 1 E (Onns N nns)
ij 32772k:l Ljik Rjik

><|281(p2,mﬁ,m3v>+Bo<p2,mi,m6v>

1
X g AglEm). (57)
 eo(pmt iy~ TP [y ) -
OtF - esTw my LWk Ay, By, and B1 appearing above are Passarino-Veltman
functions[31], ngiGS, being the neutral scalar coupling to a
—By(p% éma, mﬁ)]} , pair of charged Goldstone bosons, @D’ the neutral sca-

lar couplings to a pair of neutral fermion&eutralino-
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2
atm
atm

FIG. 1. Example of calculated
101t Amﬁtm as a function of(left) the
> alignment parameter A and
107 102 (right), as  function of
P |A|/(\M,u), all of these ex-
10 103 pressed in GeV. The figure shows
that Eq.(41) can be used to fix the
107 , , , 1041 relative size ofR-parity breaking

0.05 0.08 0.1 0.12 parameters to obtain the correct
1 15 2 3 5 Am?

Al 10°|X1/ (v/Maps)

neutrino$. Numerically, we have checked that, by adding thewhere all other dependence on the SUSY parameters has
Goldstone tadpoles to the self-energies our results do ndieen hidden symbolically if(--+). The one-loop correc-
change by varying the gauge parameter frgm1l to ¢  tions therefore also carry a certain index structure, which can
=10°, thus establishing the gauge invariance of the calculabe written as
tion. Similarly we have also checked that the corresponding
set of diagrams involving the neutral gauge boson tadpole mi‘}”e"°°p~asiej+b(eiAj+Aiej)+cAiAj, (60)
(2) plus neutral ghost tadpoles is gauge invariant and, simi-
larly, the contribution to the self-energies duezexchange wherea, b, care again complicated functions of SUSY pa-
plus neutral pseudoscalars and neutral Goldstones is alsgmeters involving couplings, the Passarino-Veltman func-
gauge Invariant. tions, etc. Clearly, the terms proportional ¢coin Eq. (60)
Before we close this section we would like to add a shortapove will lead only to a renormalization of the heaviest
discussion on the basic structure of the |OOpS which will b%eutrino mass eigenstate_ On the other hand the terms pro-
useful in the fOlIOWing. It is useful to do this in the apprOXi- ortional toa in Eq (60) are genuine |Oop corrections. Con-
mation where theR, parameters are small, as discussedsider the simple case where Al|=0. Clearly in this case the
above. As seen from the expressioniay;, at tree-level the  tree-level neutrino mass is absent, but the one-loop effective
effective neutrino mass matrix in this limit has the structureneutrino mass has the same index structure as before, but
m;;~AiAj, and at this level of sophistication neutrino now in terms ofe; ;’s instead ofA; ;’s. In this idealized case
angles are simple functions of ratios&f/A; . The one-loop  angles are given as simple functionsepfatios. For nonzero
corrections, however, in general destroy this simple picturea; the terms proportional tb in Eq. (60), however, destroy
This can be seen as follows. The one-loop corrections havgjs simple picture. Any mismatch betweerfe; andA; /A
the general form will lead, in general, to a very complex parameter depen-
dence of the neutrino angles.

2

107"}

Am
Am

(i L)~ 2 (05,20, 0+0;..0; ¢)(B1,mBy), (58
VIl. NUMERICAL RESULTS ON NEUTRINO MASSES

. . . AND MIXINGS
where theO stand symbolically for the various couplings.

Now, since the expansion matr defined in Eq(33) can Here we collect our numerical results on neutrino masses
be written as¢;,~f.€i+9,A; [see Eq.(35] a product of and mixings. As we have seen, a characteristic of the BRPV
two couplings involving neutrino-neutralino mixing has the model is the appearance of vacuum expectation values for

general structure the sneutrino fields;; which imply a tree-level mass for one
of the neutrinos given by Eq41). The one-loop-corrected
O; 20~ (T €+ 9oA) X (TLe5+9,A ) XF(--), neutrino mass matrix gives important contributions to the

(59 heaviest neutrino mass which we have determined through

_ 10 1o

Z 5

. i IO FIG. 2. Example of calculated
o ] 5 10 /_ neutrino masses in units of eV as
g / g a function of|€?|/|A[, for a par-

103} 103 ticular though typical choice for
the other parameteKsee tex}, il-
lustrating the relative importance

-5 [ -5 .
10 107°r of tree versus loop-induced neu-
trino masses.

10"2 16" 160 161 162 10° 102 16—1 160 161 162 10°
|€?|/IA] (VAN
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1 _10°
- s
L, 10-1 L 2, 10_1 |
o gt
o~ [a] .
5102t / 5 102} /_ FIG. 3. The neutrino mass
S S ,./-/ spectrum versus tg8 for param-
3| L 3 —— . . .
10 /,_/ 1073 eters otherwise chosen as in Fig.
) - 2. The importance of loops in-
107 ¢ 107} creases strongly with tgB
3 5 7 10 15 3 5 7 10 15
tan 3 tan 3
the renormalization procedure sketched above. It is also interesting to analyze the dependence of the

First we note that in order to solve the atmosphemc  neutrino mass spectrum obtained in this model as a function
solar neutrino problem one requireg"®'°°%<mt"e |fthisis  of other supersymmetric parameters. In Fig. 3 we show the
satisfied it is essentially trivial within our model to solve the three lightest eigenvalues of the neutrino neutralino mass
atmospheric neutrino problem. It is simply equivalent tomatrix as a function of ta, keeping the other parameters
choosing an adequate size of the alignment velhd?, as  fixed as in Fig. 2, fixinge?/| A|=1. Again in the right figure
can be seen from E@41) and is also demonstrated in Fig. 1. We have applied the sign condition discussed in more details
However there are regions of parameters where the one-lodpelow. Loop contributions are very strongly correlated with
contributions are comparable to the tree-level neutrino maséan 8. Similarly one can compute the three lightest eigenval-
This is discussed in quite some detail below, where we givéles of the neutrino-neutralino mass matrix as a function of
an illustrative parameter study in order to isolate the maifMo, as shown in Fig. 4. Largem, leads to smaller loop
features of the dependence on the underlying parameter@asses, as expected. From Figs. 2—-4 one sees that, as ex-
First we get a rough idea of the magnitude of the neutrind?ected, the pattern of neutrino masses obtained in the bilin-
masses including the one-loop corrections by displaying iréar R, scenario, for almost all choices of parameters, is a
Fig. 2 the three lightest eigenvalues of the neutrino-hierarchicalone.
neutralino mass matrix as a function of the parameter Inthe above we have not paid attention to whether or not
|€2|/|A|. Other parameters are fixed as followa) MSSM  the parameter values used in the evaluation of the neutrino
parametersm,= u=500 GeV, M,=200 GeV, tarB=5, B mass spectrum are indeed solutions of the minimization tad-
=—A=m,. (b) RPV parameter§A|=0.16 Ge\, 10A, Pole conditions of the Higgs potential. We now move to a
=A,=A, and ;= €,=€3. In the left panel we give the more careful study of the magnitude of the neutrino mass

predlcted masses in the general case, while in the one on tis@ectrum derived in th&;, scenario.

right we apply the sign condition In order to proceed further with the discussion of the so-
lutions to the solar neutrino anomalies in this model we must

(€ 1€)X (A, IAN)<O (61)  distinguish two caseg1) unified universal boundary condi-

tions on the soft SUSY breaking terniSUGRA case, for
to be discussed in more detail below. shord; (2) nonuniversal boundary conditions on the soft

One notices that the parametes|/|A| determines the SUSY breaking term$MSSM case, for short In what fol-
importance of the loop contribution relative to the tree-level-lows we refer to these two possibilities as SUGRA and
induced masses. For example, from the right panel one sed4SSM cases, accordingly.
that, below|€?|/|A|<10 the heaviest neutrino mass; is For the analysis of the neutrinmasseshese two sce-
mainly a tree-level mass, while fge?|/|A|=10 the loop- narios are very similar so we focus on the case where the
induced masses are important relative to the tree-level onéow-scale parameters are derivable from a universal super-
Similar results are obtained for other choices of MSSM pa-gravity scheme. In Fig. 5 we show the mass squared differ-

rameters. ence AmZ, which is relevant for the analysis of neutrino
1 1
i 107! i 1071
S 102 T
o T ——— 81077 '\\ FIG. 4. The neutrino mass
S \ = 107+ spectrum versusn,, for param-
4 Y eters otherwise chosen as in Fig.
107 107 2. The importance of loops de-
105} 1051 creases with increasingy .
200 300 500 700 1000 200 300 500 700 1000

my [GeV] my [GeV]
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S 108t S 1078t
£ g
[\l o
< 105t < 10°5¢
107+ 7 L
10 FIG. 5. AmZ;, versus| e|/ u for
10} 100 u<0 (left) and x>0 (right).
1071} 10-11L
01 02 05 1. 2 01 02 05 1. 2
le|/p x 10° lel/p x 10°
oscillations and therefore relevant to the interpretation of so- sin2(2012):4U§1U§2. (66)

lar data, as a function of the paramefigfu. In the left panel

we displayu <0 while on the right pangk>0. Small values Note that the maximality of the atmospheric angle is

prefer AmZ, in the range of the vacuum solution to the solarachieved forA ,= A (see Fig. TandA. is smaller than the

neutrino problem, while large values give masses in thether two, as required by the Chooz dédae below In fact

range of the MSW solutions. we have found32] that if €2/A <10 then the approximate
Points shown in the following figures were obtained scanformula holds

ning the relevant parameters randomly over the regidp:

and |u| from 0 to 500 GeV,my [0.2,1.0 TeV\], a, and Uua~AL/|Al. (67)
bo[ —3,3] and tanp [2.5,10, and for theR, parameters,
A, /A, |=0.8-1.25, €,/e,=0.8-1.25 |A/A,]=0.05 In Fig. 8 we show the expected magnitudelf, versus

—0.1, €,/€,=0.6—1.25, and|A|=0.05-0.12Ge\t. They the relevant ratio oR, parameters. In order to comply with
were subsequently tested for consistency with the minimizathe reactor data from the Chooz experiment one should have
tion (tadpolé conditions of the Higgs potential and for phe- U2, below 0.05. This implies a bound ok, which can be
nomenological constraints from supersymmetric particleread off from the figure.
searches. The discussion on the solar mixing angle is more in-
One can also explicitly determine the attainable range ofolved. First note that it has no meaning before adding the
AmZ, for which the correspondingms; (see belowlies in  one-loop corrections to the neutrino mass, since in that limit
the range required for the correct interpretation of the atmothe two low-lying neutrinos would be degenerate in mass.
spheric neutrino data. The result obtained is displayed in Fig. In order to proceed further with the discussion of the so-
6 in which we showAm3, as function of tang for those lutions to the solar neutrino problem in this model we must
points which solve the atmospheric neutrino problem. analyze carefully the implications of E(R8). Here it is im-
We now turn to the discussion of the three neutrino mix-portant to distinguish between cas¢SUGRA) and case 2
ing angles and of how they must be identified in terms oufMSSM) discussed above.
our underlying parameters. Following the usual convention In the SUGRA case by taking the ratio of the first two
the relation equations in Eq(28),

MNLE=A N, (62) € Amé—tan,@,uABe :E 69)
€, Am,—tanfuAB, A’

Vo= u akVk (63) . H i
we conclude that, sinc& <A , and, since the relevant ratio
connecting mass-eigenstate and weak-eigenstate neutrin8s SUSY soft-breaking terms is close to 1, it follows that
are recovered in our notation as

£ 10}
Uak=Na ks (64) B
1075+

where the mixing coefficientd/ are determined numerically _7
by diagonalizing the neutral fermion mass matrix. Note that, 10
without loss of generality, in the bilinear model one can al- 10°°
ways choose as basis the one in which the charged lepton
mass matrix is already diagonal. The neutrino mixing angles 1071
relevant in the interpretation of solar and atmospheric data 3 5 8 10

are identified agif Ug3<<1, as indicated by the atmospheric

data and the reactor neutrino constraints tanf

. 2 2 FIG. 6. Amf2 versus tang for points which solve the atmo-
SiM(2615) =4U%5(1-U%y), (65 spheric neutrino problem.
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% T == 102
3 g 10
o =
& © 102
107" ¢ 0%}
107
1078
1072 L2 . : AP ; e L - L A
0.1 02 03 05 07 1 2 10 10 10 10 10
A/ \JA2 + A2 Ao/ (/AL + A2
FIG. 7. Atmospheric angle versus, //AZ+ AZ. Maximality is FIG. 9. Si.ﬁ(zesol) versusAo/\/A%+AZ for the SUGRA case,
obtained forA ,=A _ if A is smaller than the other tweee Fig. for a discussion see text.

8).
A=0. In this casev,=v, at tree level and there is no mix-
Sirf(26) is small. The predictions for the solar angle as aing at all between the electron neutrino and the other two
function of theR, breaking parameters is indicated in Fig. 9. States, but a finite mixing exists at one loop, due to the terms
More precisely, the interpretation of the solar dgg&in proportional toe, . In this case the sign condition, defined in

terms of the small angle MSW solution indicates that Eq. (61) introduces two more zeros into the matrix propor-
. tional to b in Eq. (60) above, if[e,|=|¢,| and|A ,|=|A,].
SiNf(2605)=<10 3-10"2 (69  This fact simplifies the calculation of the solar angle very

o ) ) much, since one of the neutrino eigenvectting one fory,)
and this in tumn selects the required ratio®f to A, and  pa5 no dependence on the ratios but only on the; ratios.
A .. Therefore in this case the large angle solutions, includgq, 5 nonzero\ (and small departures from equality of
ing the vacuum or just-so solutions do not fit in the scheme, . 1A, |A 7) this feature is destroyed andAa, deper,1-
H T sl T

We now move to the general MSSM case. In this case thience reintroduced in the solar angle. However, as long as
ratio of SUSY soft-breaking terms appearing in E88) isin  {he one-loop contributions are smaller than the tree-level one
general arbltrary_and thus the ratlosmif//\j are no Iong_e_r and as long ad <A, ,, the “cross talk” between the\
tied up to the ratios of; /;'s. This opens up the possibility 54 ¢ pieces is sufficiently small, such that some predictiv-
for large angle solutions to the solar neutrino problem. Aty of the solar angle is retained, as illustrated in Fig. 10
first sight it would seem that all predictivity of the solar (right pane).
angle is lost in this case, as seen in left panel of Fig. 10. "¢ giscussion on mixing angles may be summarized as

The ability of our model to determine the solar neutrinO¢qios. In the case that one-loop corrections are not larger

angle may be understood in terms of £60). For example,  {hap the tree-level contributions, the approximate formula
in the SUGRA case we see from E®8) that thee and A

ratios are fixed within a narrow range, leading to the small U,s~A,/lA| (70)
.. .. h . a3 @
mixing angle prediction for the solution to the solar neutrino

problems. There is, however, another way to obtain predicpg|ds. This allows one to fix the atmospheric angle and at the
tivity for the general MSSM case, namely, by applying EQ.same time obey the CHOOZ constraint. For the solar angle,
(6D). . L however, the results depend on whether one wants to work in
The possibility of our model predicting the solar angle 3 SUGRA motivated scenario or not. For the SUGRA sce-
even in the general MSSM case by assuming(Ef) can be 410 we have found that our model allows only the small
understood as follows. Consider first the simplified “m'tmixing angle MSW solution'SMA), while for the general
. case also LMA and vacuum oscillation solutions are
w3 1007 possible.

VIIl. CONCLUSIONS

We have shown that the simplest unified extension of the
minimal supersymmetric standard model with bilinear
R-parity violation typically predicts a hierarchical neutrino
mass spectrum, offering a natural theory for the solar and
. . . L atmospheric neutrino anomalies. In this model only one neu-

0.1 02 03 05 07 1 trino acquires mass due to mixing with neutralinos, while the
A/ R+ R other two get mass only as a result of radiative corrections.
We have performed a full one-loop calculation of the effec-

FIG. 8. U% versusAe/\/AiJrAf. To obey the experimental tive neutrino mass matrix in the biline&, MSSM, taking

boundUZ;=<0.05, A, must be smaller than , A ,. special care to achieve a manifestly gauge invariant calcula-

e3™

1072 ¢
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‘B = B FIG. 10. sif(26s,) versus
9= 107 €/ €+ €%. The left panel corre-
10’4L 1074+ sponds to the case without the
105l 1051 sign condition and the the right

panel assumes the sign condition.
102 1071 10° 1072 107 10°
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APPENDIX A: MASS MATRICES

solution to the solar neutrino problem. 1. Scalar mass matrices
In contrast, for the general MSSM model, where the
above assumptions are relaxed, one can implembithaxi- a. Charged scalars

mal[33] neutrino mixing scheme, in which the solar neutrino  The mass matrix of the charged scalar sector follows from

problem is accounted for through large mixing angle solu-the quadratic terms in the scalar potential
tions. A great advantage of our approach is that the param-

eters required in order to solve the neutrino anomalies can be V quadrati™ s'—Mgts'ﬂ (A1)
independently tested at high-energy accelerators, as origi-

nally proposed in Ref[14]. In fact, as shown in Refs. where the unrotated charged scalars arg8'"
[32,34] the bilinearR, model predicts the lightest supersym- =(H§ ,Hf} jéf ,ﬁifﬁif ,"é; ,ﬁ;};)_ For convenience we
metric particle(LSP) decay to be observable at high-energywill divide this (8 8) matrix into blocks in the following
colliders, since the expected decay path can easily be shortgpay:

the typical detector sizes. This happens despite the smallness

of neutrino masses indicated by the SuperKamiokande data. M2, M M2 M2T
. . : : : 2 HH HI A B
This provides a way to test this solution of the atmospheric M2, = + ém? (A2)
. ; : C s* 2 2 Wmz M2
and solar neutrino anomalies and potentially discriminate be- My My B c
tween the large and small mixing solutions to the solar neu-
trino problem. where the charged Higgs block is
[ Uy 1 td 1 i
BMU_d+ZQZ(v§_E?:1vi2)+U_d Bu+ Zgzvdvu
s Vi ol T
+M2i=1€ia+ Ezi,jzlvi(hEhE)ijUj
M2, = : (A3)
1, va 1, 2.3 2
But 79%vqvy BMU—U+ 29 (vg+2is1vi)
v; t
~3% Big—+—
L Uu Uy

This matrix reduces to the usual charged Higgs mass matrix in the MSSM when we=set=0 and we calhﬁzz Bu. The
slepton block is given by
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M2, M?
mz=| ot R (Ad)
Mzl Mgg
where
M2, = o3(hE T +£2—3 220 02) 5 4 gz - YBes oo
( LL)ij_ZUd( ehe)ij 29| ~ & vicvatey) btz 0%, b, Di€i0 -0
v 3 v 13 v
d K K
+,u,v_i€i6ij_6i(2 v_iek 5ij+€i6j+MEji_§kZlU_i(MEik+MEki)5ij’ (AS)
2 1 * *
MLRzg(UdAE_MUuhE)! (A6)
M& =(MPR)", ad
1 3 1 3 3
(MzRR)ij:Zg,z(_kzl vE—vitos 5ij+§U§(hEhE)ij+ gl(hg)ikvk)(;l(h’é)sjvs +M2Rji' (A8)

We recover the usual stau mass matrix again by replagifg; = 0 [note that we need to replace the expression of the tadpole
t; in Eq. (9) before taking the limit The mixing between the charged Higgs sector and the slepton sector is given by the
following 6X 2 block (repeated indices are not summed unless an explicit sum ajpears

3
1 1 1
_Mei_ivdgl (hEhD)iwk+ Zgzvdvi _Bi€i+Zgzqui
3 (A9)

2 —
Mui= : 13 1
-— hD)ikek— — > (AD) —— >, (h), -

\/jv”k21 (hg)ikex f2k21 (Ag)ikvk \/ngl (hg)ik(uvkt evg)
and as expected, this mixing vanishes in the limit ¢;=0. The charged scalar mass matrix in E42), after settingt,
=t4=t;=0, has determinant equal to zero #+ 0, since one of the eigenvectors corresponds to the charged Goldstone boson
with zero eigenvalue.

For our one loop calculations one has to had the gauge fixing. The part of the mass matrixA2)&gat comes from the
gauge fixing reads for the ¢(22)A block

Ug ~Uuld
5 v? v?
Ma= 9 (A10)
—Uuld Uy
0 2
for the (6X2) B and the (6<6) C blocks
, Uil;d —Uizvu , MZD 0
0 O
0 0
where the (X3)D block is
[ U% V1l2 0103-
v v? o v?
2
2_| V21 Uz U2Us
Mp=|—z 2 2 (A12)
U3l1 UpU3 U%
v v? P
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The charged scalar mass matrices are diagonalized by the following rotation matrices:

S=R}S (A13)
with the eigenvalues diagg ,...mg)=R%"MZ. (RS)T.

b. CP-even neutral scalars

The quadratic scalar potential includes
1 R 2
unadraticzz[o'du O'u- ]M Oyt (A14)

where the neutraCP-even scalar sector mass matrix in E414) is given by

MZs M5

SVR
Mi=| 5 (A15)
Mg T
R R"R
where
Uy 1 2 2 Uk td B _l 2
Buvd+ 4gzvd+ugl €Ky g + y Bu 4gZUdUu
M&s= , (A16)
1 2 Uk t
—BM_Zgzvdvu BM—+ gzv E kak +—
Up Uy
1 2
— e+ Zgzvdvi
M§3R= 1 , (A17)
Bifi_zggvuvi
and
3 3
9 Uy Uy v 1 1 1
(M2 5 )= ,u,eiv—i—Bieiv—i—eikZl “ 24 (M ,k+|v|Lk,)+ 8+ 79500+ e+ 5 (ME+ M),

(A18)

where we have defin@EEgz+g’2. In the upper-left X 2 block, in the limitv;= €;=0, the reader can recognize the MSSM
mass matrix corresponding to ti@P-even neutral Higgs sector. To define the rotation matrices let us define the unrotated
fields by

S'%=(09,0%R 35, 75). (A19)
Then the mass eigenstates SPegiven by
S=R{’S;° (A20)
with the eigenvalues diagél,...,né)stoMéo(Rso)T.

c. CP-odd neutral scalars

The quadratic scalar potential includes

) o

V .—_[ 0 07! Mz 9 4. (AZl)
guadratic— 5 ©1,92, 7] po ‘flz )

Vi
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where theCP-odd neutral scalar mass matrix is

PHYSICAL REVIEW D 62 113008

2
, | MBe M, J[ME ME
Mpo= Mgl M%ﬁ, +&mg M2 M2 (A22)
where
ty
B,u,—+,u,2 ek——i-v— Bu
=1 U4 d
Mgp= e (A23)
Ud Uk u
B — —+ —
M BMUU 21 kakvu vy
|
0
, [ —ne p.=RP P’ (A29)
P7’|_[—Biei ! (A24) AT
g with the eigenvalues d|agﬁ A5) RP’M?2 (RP )"
an where the unrotated fields are
3
v v v , ~
(M%;)”: ,LLEi_d_ Biei—u— GiE Ek_k P 0= (‘Pd quvgl_!vlzlv‘?,)- (A30)
1 Ui Ui = Ui
1 i Vi M2 + t; 5 d. Squark mass matrices
2& v (Mt M) ij €€ In the unrotated basid/ = (Ti.;,U%) andd’=(d,;,d%)
1 we get
+§(MLIJ+MLJ|) (A25) 1 - .
Vauadraic=5 0" MU' + 5 d’ m3d’, (A31)
Finally the part of the mass matrix in EgA22) that
comes from the gauge fixing reads for thex(2) E block where
2 _ 2 2
Uy Uylqg M2 M=
2 o mi=| o O (A32)
ME= 2 (A26) Mzre M3rr
uld E
v? v? with §=(U,d). The blocks are different for up and down
type squarks. We have
for the (3X2) F block
1
, [viwg —viv, M%LLzzvﬁhﬁhL+Mé+% (4m2,—m2)cos 28,
Me=|—z —7 | (A27)
1
and for the (3¢<3)G block M2 = v v2hlh¥+M2+2 (m2—m3)cos 28,
[ U1  Uil2 01U3- 3
- 2 2 2 _Uuju Udis Ui s
v v v M3 o=— +> —¢ghd,
- . . uLR‘/iU V_Ui:l\/zlu
, M&rL=Miir: (A33)
Ugly Uglz U3
| vt wf v? ] and
The charged pseudoscalar mass matrices are diagonalized by 2 _Z 2k T M2 L (o2 2
4 . . === — 3 (2mg,+m3)cos 28,
the following rotation matrices: ML =7 vdhoho + Mg (2miy+mz)cos 28
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1

2
MERR=§v§hEh’5+M%—%(m%—ms\,)cosze,
|V|~2 _E * _ ﬂ *

dLR_‘/i D lu“‘/2 D>

2 2t

Mir =MLk

We define the mass eigenstates
4=R%’,
which implies
G =Rj G-
The rotation matrices are obtained from
RIT(M§?9)2RA= M2,

[ M igvu
V2
1
5gvd K
1
MC: Egvl — €1

1
Egvz €
1

I 5903 €3

PHYSICAL REVIEW D62 113008

In our case the matrices in EGA32) are real and therefore
the rotation matrice®? are orthogonal matrices.

2. Chargino mass matrix

The charginos mix with the charged leptons forming

(A34) a set of five charged fermion&,”, i=1,..,5 in two
component spinor notation. In a basis where
prT=(=INYH e ur TR and yT

(A35) =(—ix",Hg e  ,u_ ,7), the charged fermion mass terms
in the Lagrangian are

1 0 M{\/yt
Lo=—= Ty T ( )+H.c. A38
(A36) w=—5 )(MC 0) ’ (A38)
(A37) where the chargino/lepton mass matrix is given by
0 0 0
(hg) - (hg) - (hg)
_ = v. = -

W E)11V1 3 E)22V2 3 E/33V3

- (hg) 0 0 (A39)

— Y

‘/2 E/11Yd

0 ! (hg) 0
— Y
‘/2 E/22Y d
0 0 ! (hg)
— U
V2 E/33Yd |

and M is the SU2) gaugino soft mass. We note that chargino sector decouples from the lepton sector in the=imit
=0. As in the MSSM, the chargino mass matrix is diagonalized by two rotation matfigesdV defined by

Fir=Uijg; F=Viy .

Then

U*McV 1=M¢p,

(A40)

(A41)

whereM ¢p is the diagonal charged fermion mass matrix. To deterrhirendV we note that

M2,=VM LMV i=U*MME(U*) 2

(A42)

implying thatV diagonalizesMEMC andU* diagonalizesM CME. For future reference we note that

vi =VUiiFi

Nkt
i =ViiFi -

(A43)

In the previous expressions th¢ are two component spinors. We construct the four component Dirac spinors out of the two

component spinors with the conventichs,

3Here we depart from the conventions of Rg#5] because we want the”, ©~, and 7~ to be the particles and not the antiparticles.
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_ (R
Xi =\ g7/ (A44)
|
APPENDIX B: THE COUPLINGS
1. The neutralino couplings
Using four component spinor notation the relevant part of the Lagrangian can be written as
£=x; Y"(OFf'PL+OFPRIX)W,, + x{v*(OF*PL+O[§"Pr) x; W, + xi (OFTPL+ ORPRIX)SC
_ 1—
+X|(OET|SI<PL+OE?jSkPR)Xj S:+§Xi07 (ONPL+ORTPRIX[Z)+ 2X|(OE:}1PL+OETH<PR)XOHO
11— _
2X| (OEﬂ?(PL+ORT?kPR)X?AE+qi(OEri}SkPL+Og?jskPR)XJ Akt Xi (OﬂﬂiPL+Og?jskPR)QJQE ' (B1)
whereq can be eithed or u. The various couplings are as follows.
a. Chargino-neutralino-W
1 3
Orii"=gmim| —NUi1— 5( NT3Ui2+k21 NT,4+kUi,2+k> 1
cnw * 1 *
Rij :g _N12V|1+ EN]4V|2 y (BZ)
EiCjW:(OE?i *, g(i:jwz( (F:er}i *
b. Neutralino-neutralino-Z
3
g 1
L= coso, 177 |4Nr4_Ni3Nr3_gl Ni,4+kNj*,4+k),
(B3)
g
ORT]Z COSH 2(N|*4NJ4 N NJ3 2k 1N| 4+kNJ 4+k)
c. Chargino-neutralino-charged scalar
- g g -
Liik= 7] Rkl (henaNjsVis+ heo NGV + hegaNi Vi) + R, | — EN}E = > —Nf VL —gNy —R; heN%SVH
Rk4 hE22N 3Via— Rks hE33N]3V RE«;Q"/QN}H i*s_RE;Q"/zNﬁVi*A_ RE&Q"/QNJ?H 5| (B4)
=9 g’ <[ 9 9’
RiK= 7 Ry (ENjZUinF EleUiZ_gNjSUil +RE; ENjZUis’"— 5N11Ui3_9Nj5Ui1)
e g, =g g’
+Rg 5Nj2Ui4WL 5leui4_gNj6Ui1 +Rys EN]‘zUis‘F ENj1Ui5_gNj7Ui1
+ R Ne1a(NjsUia— NjaUia) + R Neao( NjgUia— NizUis) + Rigg heas(Nj7Ui— Nj3Uis) | (B5)
Lijk= (ORfi)* . ORic=(O[fiR)*. (B6)
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d. Neutralino-neutralino scalar

1 0 0
Ok =715 [RR(— gNENI5+ ' NiNfS — NN+ 7 NSNS + R+ gNTNT — g NN, + gNPNT — g Ny
+RE(— gNHN + 0/ NN — NSNS + g7 NFN) + REy(— NN+ g/ NA N — gNENP + g N NG
+Rk5( gNEN7+g’ I\|*1N gNj* 7+ 9" NN, (B7)

nnh nnh
R|]k (OLuk)* '

e. Neutralino-neutralino pseudoscalar

1 0 0
Eﬁi:_ﬂjE[lel(_gNi* 3+ 9 NN — gNSGNSG+ " NI N + R (+ gNN, — g NA NS, + gNSNE, — g N N,
+Rk3( gN? N*5+g N*lN gNJ*Z i*5+g’NJ* )+Rk4( gN? N*6+g N gN SN +9’ N*1N|*6)
+R|5’5(_9Ni* 7T 9" NANT— NSNS+ 9 NN ], (B8)
Rij=—(O[fi)*.

The factorsy; are the signs one has to include if we consiNetd, andV, as real matrices and the mass of the fermian
negative.

f. Neutralino—up-quark—up-squark

4 9 ~
Einjizg(5)tanaWNj*lRE,mJﬁRgi,m_(hu)mIR RglINMv (BQ)
oS = — 9 N; +1tan0 N: “* *U.—(h*) i RFUN, (B10)
Rijk V3 j2 3 wWiNj1 Lm,i u/mITk+31™Lm,i'Vj4
and
Lijk = (ORji) ™, Ogij=(OLji)*- (B1D)
g. Neutralino—-down-quark-down-squark
dns _ 2 g E*
Olix=—3 v tan N ka+3RR|m (ha) miREY R INj3, (B12)
2
odns _[ & Nj, 1tan0 N R h¥) R&* R*d N (B13)
Rijk — ‘/2 3 WiNj1 Lm| ( mITk 1+3M™Lm,i'Vj3
and
Ol = (ORfi)} ORfi=(Offi)*. (B14)
I
2. The neutral scalar couplings example, and to fix the notatidnepeated indices are under-

To evaluate the tadpoles we need the couplings of thétood to be summed unless otherwise sttt couplings
neutral scalars with all the fields in the model. These couof three neutral scalars in the two basis will be related by
plings are easier to write in the unrotated basis. The cou-
plings for the mass eigenstates can always be obtained by 0050 RS RSORSO 50570570 (B15)
appropriate multiplication by the rotation matrices. As an Yijk kr9par '
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Sometimes we will also use partially rotated couplings, for

instance,
10 0 0 10c’0cr0
g5 S =RGRE GOSN, ° ° (816)
in an obvious notation. These couplings are defined as fol-
lows:
L
S
' IS'S ISy
3
S/OSrOSrO (9 £
i = S0, 0,a0- (B17)
I]k &Si 0(98] O&Sko

a. Neutral-scalar-neutral-scala—neutral-scalar

10g70g70 1 A A A~ A A
95k == 7(9%+ 9" Un(Bmidjict BBt Omicdy ),
(B18)

where we have defined

UmE(Ud,Uu,Ul,Uz,U:g), ’SijEdiag‘f’,_,‘f‘,‘f’,'f').
(B19)

For future reference we also define
Um=(v1,02,03) (B20)

while &;; without the hat is the usual Kronecker delta.

b. Scalar-pseudoscalarpseudoscalar

SIOPIOPIO_ 1 2 2 ~ ~
Oijk —_Z(Q +9")UnSmidjk - (B21)
c. Scalar-charged-scalar-charged-scalar
We define
S/OS/+S/—
Gijk
SIOSI+577 SIOSHrSrf S!OSrJrSrf
GiHH iHL iHR
- SrOSrJrSrf t SIOSHrSrf S’OS’+S’7
= (gL ) diLL iLR ,
S/OS/+S/— t S/OS/+S/— + S/OS/+S/—
(9itRr )t (GilRr )" OirR
(B22)
where

10’ +r — 1
(Ohm ° )jk:Zgz[_Uu(5i15jl5k2+5i25j15k1

+ 8116)26k1 1 0126)26k2) —v4(i16j101
+ 8i10j20k2F 0126j10k2+ 612620k1)
+Umdi—2m(616k1— 6j26k2) ]

1 n A
- Zg'2Um5im5jk_ zvm5j15k1
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X (hehg+hEND) 2, (B23)

S/OSI+S/—)

1
(Gt ik:_Zgz[éi‘zyk(vd511+Uu51'2)+vm5ii5mk]

1 * | T
+ zvm(hEhE)mk5i15jl

1
+ 5 vadj(hEND)i -2k, (B24)

10l +r — 1
(Ghr ° )jk:EGm(hE)mk(éiléj2+5i25j1)

1 1
+5(Aé)i72,kﬁjl+ 5M(h’é)i—2,k5jz,
(B25)
10’ +ar — 1 A~ 1
(o> ° )jkzz(gz_g'z)um5im5jk_Zgzvm

X (8- 2 Omkt+ 8- 2k0mj) — (NEND) kv i,

(B26)
10t +r — 1 1
(OFR° ¥ == Sa(AD) it — w8ia(hE)jk,
giLr ik v i1\AE)jk ‘/QM i2lNg)jk
(B27)
10’ +r — 1 A
(Oikr ° )jkzzg'zum5im5jk—Ud5i1(hEhE)jk
1 *
_Evm[(hE)i—z,k(hE)mj
+(hg)i—2;("g) mil- (B29)
d. Scalar-up-squarks-up-squarks
With the definition
L=g5 VS UK+ (B29)
we get
Sljf'fl'al* 'SL,IZG/E,*
S’OFJ’T.II _ | I
Gijk *_( SO0 T & s'%/a,*)' (B30)
iRL iRR
where

/O“/"‘, A l l ,
gﬁ_Lu e =umgim( - Zgz+ 1_29 Z)I_Uu(hUhL)‘SiZy

rO"r’*, 1 1
giR’ = %5i2AU+ 5MhU5i1_ Ehufm@—z,m,
SO0 Tr% _ SO0 T
girL =0iLr )
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rO“r , 1
Oire =~ 3Undimg *Z—vu(hih{) iz,
(B31)
whereZ is the unit 3x 3 matrix.
e. Scalar-down-squarks-down-squarks
With the definition
L=g3 8 g Oqa (B32)
we get
504" dr % 504" dr %
%35« | GiLL giLr
g”k ( S04 dr % s'OE’E/*)’ (B33)
iRL iRR
where
s'0g d/*_ 1 24 ~ 92| 7— h hiys.
OiLL um im 49 + g vyl D) i1
107y , 1 1
gﬁ_Rd dre E5ilAD+ 5MhD5i21
S04 dr % 04" dr % *
iRL —(gn_R )
S’Oa’a/*_} 3 rZI_ hT xS B34
girr —6Um imd vg(hphp) &i1. (B34)
f. Scalar-Wt-W~
With the definition
L=g¥" W W oW W - (B35)

we get

1 O\A/+\n— My
g Vv :gT(Ud5i1+vu5i2+vm5i—2,m)a (B36)

where
v=\vit+vitvi+vs+us (B37)
g. Scalar-2-2°
With the definition
1 §'07020<105,050
L= 2gI S"Z2°Z2°+ (B38)
we get
107070 g mz
T = st v Watnt vzt umdizm).

(B39)
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h. Scalar-quark-quark
With the definition

10 ’
L=g5 S/ "Tuy+ g dds Od;dy+ - (B40)
we get
65— — L (hy) e (B41)
: V2
and
o 1
s'%d
2 == —(hp)iSi1. B42)
gljk \/7( D)]k i1 (

i. Scalar-chargino-chargino and scalar-neutralino-neutralino
With the definition

L=x; (OFP +O%NPR)X[ S/°

1 / ’ ’
+ 5 X (O[kPL+ORIPRIX)S®  (B43)
we have
OE?PI; [g(V U8+ VLU S+ ViU 6k
+ VU8t ViU 6is) + (henUs Vi

+he2UfVis+heasUisVis) Sk — (henaUpVis s

+ he2UiHViadiat heasUihVisdes) 1, (B44)

cch’ _ cch’\ %
Okgjjk=(O(jix)

and

, 1
OE?jhk:’?jE(_gNi*Z 3t 0" NN —gNoNG+9 NI NG

X (61— Skot Ozt Okat 6ks)s

ORifi= (O™ (B45)
APPENDIX C: TADPOLES
1. Gauge boson and ghost tadpoles

We will consider the gauge boson and ghost tadpoles in
an arbitraryR; gauge to show that the dependence &n
cancels out. We will do it for any model.

a. General 2 boson tadpole

We write down the tadpole contribution from t#& for a
general theory with the couplingy,,, to the Higgs boson:
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VA
d%p
1 .
\igHzZ iTz = 31902z /_(27T)d G.*(p) 1)
|
where | . o 2 2
Gh=(—) 4 1o p2 ITzzilgHZZ(_UW[3AO(MZ)+§AO(§MZ)]
SR (P~ M2)(p?— €M2)

i 1
(€2 =162 5 Iz 3A(MY) + EAq(EMD)],  (CH)

and the factor; is a symmetry factor. Now we do some \here we have used the definition

transformations in the second term of tE8 propagator g

G(9), i p_ f dp 1
2 162 Ag(m)= (2m? p—m?’ (Co)
G(§)=(1-¢) pZ— M2 p?— M2 As Ag(ém?) grows for large¢ as ém? we conclude thaf,
grows as¢?. This dependence has to cancel against other
1 1 diagrams. It is easy to realize that the Goldstone ofZfRe
~ M2 §p2—§M2 (C3  will not do it because, although its mass dependépiits
z z contribution to the tadpole will only grow as because its
and therefore we can write coupling toH does not depend o# But the ghost coupling
to H does depend as we will see.
3
Gh=(—1) M2 + & 7= emZ| (CH b. General Z ghost tadpole
z z
Let us then calculate the tadpole of the ghost of Ze
Then We have
C; 3 .
z',‘.. '...' T ( 1) . / ddp i
..'-: ’L _— — -
VigHe,z. cz 9He,z, (2m)d p? — EM2 (C7)
H

where the factor(—1) is because of the anticommutative We see that for thé dependence to cancel one must have
properties of the ghosts. Using the definition/qf we get

1
Egszg"‘chZ;Z:O- (C10

z

. i
ITe,= 752 re,cPo(EM). (C8)

As we will show below this is true for the SM, MSSM, and
also for the bilinearR-parity model. Then the contribution

3 from the Z° and neutral ghost tadpoles is, for any model,
EgHZZAO(Mg) gauge independent and given by

Adding the two contributions together we obtain

. . i
ITZ+ ITCZZ W

+

1 . ) i 3
5 OnzzE+ chZcZ) Ao(fMg)}- (C9 Tz +1Te,= 762 EgszAo(Mg)- (C1y
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c. The W* boson and & ghost tadpoles

S/OCZEZ_ g mz

The calculation for thaV* boson and charged ghosts is i T2 cos&WgT(Ud5i1+v“5i2+vm5i’2m)'
very similar. The main differences are that tWétadpole (C18
does not have a factgrand that there arevo ghosts for the _ _
W=. Therefore we have Then using Eqs(B36), (B39), (C17), (C18) in Egs.(C13),

(C10 we see that the same cancellation occurs.
i
ITw i Ter H1Te, = WBQHWV\AO(MS@ +(Grwwé 2. General tadpole expressions

— — 2 After showing the gauge invariance of the gauge boson
T Otcey, T ey, Aol EM) ] tadpoles together with their ghosts we give now the general

(c12  tadpole in a compact form. We will write them for the unro-

tated neutral Higg#l’® because that is what is needed for

We see that theé dependence will cancel out if substitution into Eq(9). The general form can be written as
_ _ (X=W=,z°%5* H° A ,d,u,d),

Hwwé + gHC\X/C\X/—F ch;vc;v: 0. (C13
1
X

TH°~ 1672

X
We will show below that this is true in general. Then the P (C19

contribution from theV* and charged ghost tadpoles is, for
any model, gauge independent and given by where

N . i PW=3gS " WW A (M2)),
|Tw+ ITC\-X/—‘F ITC\?V: WISQHWV\AO(M\ZN) (014) ! gl 0( W)

3

z_ > 507070 2
d. The standard model Pi 2 gi Ao(M2),
Now let us see how the cancellation occurs in the standard 8
model. The relevant couplings for tt# are = / g/0gtg-
Ping PP =—2" g S Ag(mp),
g
Onzz=———5 Mz, 5
COS6O\y 0 1 oc0c0
PP = _gl Egiks S Ao(mp),
g
OH, =~ 5 aman Mz (C19
¢, 2 COSby 50 ° 1 5/0p0p0 2
_ , , . PP=-> 5 Yikk Ao(mp),
and we immediately see that EGC10) is verified. For the k=1
W= we have 6
~ 1 OT %
Ihww=gMyy, Pi'= _kgl 39§<kuu Ao(mi),
_ 9 M - 6 o
gHC\;rVC\;rV_ Eé W P:j: _kzl 3gﬁ(kdd AO(mE)
_ g 5
Onco o= — 5 EMy (C19 +
satisfying Eq.(C13). ——
LkKki RKki 2
e. Bilinear R-parity model (-1 T“'mkAO(mk),
In the bilinearR-parity model the relevant couplings are .
0
s/0c et g My Pr=->
S S e (Bt oudia T Ui o), &
1) O+ O
0~ m — o | ——4mA(m?),
iS e W:_g§TW(Ud5i1+Uu5i2+vm5i—2,m), ( 2 2 KOk
(C1? 3 o~
and Pi'= = 2 (=3)ik "4miAo(my),
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2. The scalar loops

All the scalar contributions can be written in the form
(X=5",8°,P°1,d),

104,
= —gl (—3) 0 “YamAg(m)),
(C20

whereX’ means that we sum over all fieléxceptfor the v X 2 2 2
Goldstone boson. As explained in Sec. VIB the contribution  >ij = ~ 167722 zk Fijkr Ba(p% M mp),
of the goldstones is added to the self-energies to achieve

gauge invariance. 1 y -
= 1%22 Ek Gl MiBo( P2, M, my) (D4)
APPENDIX D: ONE-LOOP SELF-ENERGIES '
In this section we write down the contribution of the sev- With
eral self-energy diagrams in the=1 gauge. nes yens nCS ~cns
|]kr (ORJkr Lkir+Oijr Rkir/»
1. The W and Z loops k (OECE ET(s +qui cRnks‘ ) (D5)
The contribution of th&V andZ loops to the function& v Gilkr Sl JerR
andIIV can be written in the formX=W,Z2), L om nnh T
L Fl]kr 2(OijrOLkir+oRjkroRkir)'
v X 2 2
Eij:_WEk FiikB1(p?,mi,mg), L
h h h h
GI]kI’ 2 (OE?krOgI](ir_l_og}krOErllir)' (DG)
1
% X 2 2
=~ WZ G{jkMiBo(p?,mi,mg)
k F _ nna nna nna nna)
(Dl) |]kr 2( Rjkr Lklr LJkr Rkir
with
|]k Z(OEtJ:\évoﬁT(\:v_*_ Orrjﬁv&/ CIXV) G|]kr - E( E?Ifr Erll?r"_og}ir grl]filr)v (D7)
Giji=—4(O[XORii+ ORJOLR (D2) F.,kr (ORjkrOlkir + OLjir ORikir)»
and |]kr ( ETlfrolljrllisr_‘_ogﬁr LFjlnksir ' (DS)
nnz~nnz nnz ~nnz
fx=(OlfkOi + ORJORK), ds ~d ds ~d
Il J I J I |]kr (OgjskroLrlliSr_l_OEjlfroRnksir '
G| 2( nr)z nnz_+ nr]z nn.z).
]k Lik~Rki Rjk™~Lki d d d d
(D3) |]kr (OE]Er Lrllisr_‘_ogjiroRnksir ' (D9)
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