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his guidance, time spent and excellent willingness throughout this thesis. I also thank

Professor Lorenzo Naranjo for his advice, guidance and excellent disposition. I thank you

both for having devised this thesis topic and have trusted me to develop it. My work with

both Professors has been an experience of great academic and personal growth.

Secondly, I would like to thank the entire team of RiskAmerica and especially to
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ABSTRACT

In this thesis it is proposed a novel, simple, fast and accurate iterative algorithm for

pricing American options based on a direct solution of the early exercise representation.

The performance of the proposed iterative method is compared with other existing numer-

ical schemes that have been studied and presented in the literature. A thorough numerical

analysis of existing methodologies is conducted and find that the proposed iterative proce-

dure perform significantly better. The proposed method is also found to be stable, robust,

and converges monotonically. Additionally, it is showed that the efficiency of the method

can be improved further through the use of Richardson extrapolation. The method is well

suited for parallel implementations that take advantage of the multi-core processors and

graphic processing units.

Keywords: American Options, Iterative Methods, Numerical Methods, Parallel

Computing
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RESUMEN

En esta tesis es propuesto un novedoso, simple, rápido y preciso método iterativo para

valorizar opciones Americanas, el cual se basa en una solución directa del precio crı́tico.

El rendimiento del método iterativo propuesto es comparado con otras aproximaciones

numéricas ampliamente estudiadas en la literatura. Un análisis numérico exhaustivo de

las principales metodologı́as se lleva a cabo. Las puebas arrojan que el método propuesto

presenta un desempeño significativamente mejor. Además es estable, robusto y converge

monótonamente. Del mismo modo, se muestra que la eficiencia del método se puede mejo-

rar aún más mediante el uso de la extrapolación de Richardson. El método es muy adecuado

para ser programado en forma vectorizada y paralela, de tal forma de poder sacar ventaja no

solo a los procesadores multi-core sino que también a los procesadores de tarjetas gráficas.

Palabras Claves: Opcines Americanas, Métodos Iterativos, Métodos Numéricos,

Cálculo Paralelo
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1. ARTICLE BACKGROUND

1.1. Introduction

Options have been object of study for decades. Many efforts have been made looking

for analytical solutions for all style-options. On the seminal articles of Merton (1973) and

Black & Scholes (1973), an analytical formulae for European-style options was success-

fully derived. American options have also been well studied since then. Unfortunately, no

analytical solution have been found for American-style options. American options differ

from its European counterpart in that American-style options allow early exercise any time

before maturity. This particular feature leads to theoretical difficulties to value the option

and find the closed-form formulae since an optimal exercise boundary has to be determined

as part of the solution. Following this idea, Kim (1990) derived an integral equation to de-

termine the early exercise boundary for American options on dividend paying assets. In

his article, he also showed that the American option price is equal to the corresponding

European price plus an early exercise premium, which depends on the optimal exercise

boundary. This finding was also derived and proved, using different approaches, by Jacka

(1991) and Carr, Jarrow, & Myneni (1992). Despite of their contribution, approximation

techniques have to be applied in order to price the option. Thus, having no analytical solu-

tion to the American option pricing problem, have encouraged many researchers to come

up with alternatives numerical methods to price American-style options concerning not

only about the accuracy of pricing but also the computing time.

In this thesis a novel functional iterative method for pricing American options is intro-

duced. The method is based on a fast and accurate solution of the early exercise represen-

tation derived by Kim (1990) for American options. Furthermore, exhaustive studies of the

convergence and performance of the proposed method are conducted. This is also tested

against the main numerical approximation methods widely used, comparing their speed

and accuracy. The proposed method is found stable, with fast convergence and having the

best speed-accuracy trade-off.
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The rest of this chapter is structured as follows: Section 1.2 states the main objec-

tives pursued in this thesis; Section 1.3 presents a literature review of the main theoretical

frameworks and methods for American option pricing; and Section 1.4 presents the future

research. Following this, Chapter 2 contains the main article of this thesis. Within this,

Section 2.1 presents a literature review in conjunction with the novelty of the proposed

method; Section 2.2 introduces the theoretical framework and recall some standard results

of American option pricing theory. Section 2.3 presents the proposed methodology to price

the American options. Section 2.4 describes in detail the numerical implementation of

the method to price the American options. In Section 2.5 a battery of numerical tests is

performed showing the speed-accuracy trade-off of the proposed procedure compared to

others. Section 2.6 finally concludes.

1.2. Main Objectives

The goal of this thesis is to present a novel functional iterative method for pricing

American options based on the integral equations of Kim (1990). This method, instead of

calculating the points of the critical prices in a sequential way as the traditional method

does, computes the early exercise boundary in a parallel procedure which has a flavour of

a Newton-Raphson iteration. Additionally, this paper has two main objectives in order to

demonstrate the power of speed and accuracy that the proposed method has:

The first objective is to carry out numerical tests in order to illustrate the convergence

property and stability of this numerical procedure. Up to now, many methods calculate

properly the American option price. In some cases stability and convergence of these meth-

ods are not demonstrated and lead to miss pricing when some parameters are set. In order

to avoid this difficulty extensive numerical tests are proposed.

The second objective is to compare the performance of the proposed method with oth-

ers widely used in order to establish the speed-accuracy domain. For this purpose, several

methods were programmed and compare. Within this objective, the functional iterative

method will be implemented using different approaches such as approximate integrals by
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using either the trapezoidal rule or the Gauss-Kronrod rule, and use Richardson extrapola-

tion.

1.3. Literature Review

1.3.1. The Free Boundary Problem

The American put is a derivative instrument that gives the right to the holder to sell

an established underlying asset at a specified strike price K within a specified period of

time T . Unlike the European put, the American counterpart can be exercised any time

until maturity. This important feature of American options makes more challenging the

valuation process.

Merton (1973) has shown that the price W (S, T − t;B(·)) of a contingent claim, sat-

isfies the following partial differential equation (PDE):

1

2
σ2S2WSS + (r − δ)SWS − rW +Wt = 0, (1.1)

where r represents the risk-less rate, q the dividend rate, σ the volatility and S the asset

price. The partial differential equation (1.1) applies to any claim whose payoff depends

on the asset price S. The early exercise boundary is represented by B(·), where critical

asset prices B(t) in B(·) are defined for t ∈ [0, T ], and B(t1) 6 B(t2) for t1 6 t2 where

ti ∈ [0, T ]. B(·) defines two regions. The region above B(t), also known as continuation

region, defines the asset prices S that make it optimal to keep the American option alive.

The region bellow B(t) including the boundary is known as stopping region, and it is

where it is optimal to exercise the American put. In order to determine the value of the live

American Put W (S, t;B(·)), it is necessary to define the terminal and boundary conditions:

lim
t→T

W (S, T − t;B(·)) = max [0, (K − S)] , (1.2)

lim
S→B(t)

W (S, T − t;B(·)) = K − B(t), (1.3)
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lim
S→∞

W (S, T − t;B(·)) = 0, (1.4)

lim
S→B(t)

WS = −1. (1.5)

Equation (1.2) refers to the value at maturity of an American Put that has not been exer-

cised. Equation (1.3) specifies the value of an American put when the underlying asset

is crossing the early exercise boundary and the put is exercised. It also implies that the

American put price is continuous across the exercise boundary. The boundary condition

(1.4) is known as value matching condition and reflects the fact that if the underlying asset

increases without limit, it will never fall back within a finite time period, implying that the

American put will not be exercised and therefore it will have no value. The boundary con-

dition (1.5) is known as high contact condition and ensures the optimality of the exercise

boundary. Equations (1.4) and (1.5) are jointly referred as the smooth fit conditions. These

conditions ensures that the premature exercise of the American put on the early exercise

boundary, will be optimal and self-financing. The partial differential equation (1.1), sub-

ject to the conditions (1.2) to (1.5), is known as the free boundary problem. Having the

definition of W (S, T − t;B(·)), the price function of the American put can be separated as

a live option price and exercise price as:

P (St, T − t) =







W (St, T − t;B(·)) if St > B(t)

K − St if St 6 B(t)
(1.6)

The reason that P (St, T − t) is a piecewise function is because as long as the option is kept

alive, W (S, T − t;B(·)) holds, and P (St, T − t) satisfies the PDE. Once the asset price St

cross bellow the early exercise boundary, the option is exercised and the payoff is K − St,

and the PDE is not longer satisfied by P (St, T − t). Hence, this separation makes it easier

to define P (St, T − t) by focusing on the value of live American puts.

1.3.2. The integral equation of the early exercise boundary

In order to solve the free boundary problem and determine the live American put value

W (S, T − t;B(·)), Kim (1990) used the risk-neutral valuation of Cox & Ross (1976) and

4



assumed that the stock price follows a geometric Brownian motion given by:

dS = (r − q)Sdt+ σSdZ (1.7)

where the term dZ denotes increments on a standard Wiener process. He came up with a

continuous-time extension of the discrete-time framework proposed by Geske & Johnson

(1984), allowing early exercise at any point in continuous time as follows:

W (S, T ;B(·)) = p(S, T ) +

∫ T

0

[rKe−rtN(−d2(S, t;B(t)))

− δSe−qtN(−d1(S, t;B(t)))]dt, (1.8)

where p(S, t) represent the Black and Scholes/Merton European put pricing formula given

by:

p(S, T ) = Ke−rTN(−d2(S, T ;K))− Se−qTN(−d1(S, T ;K)) (1.9)

and where N(·) represent the standard cumulative normal distribution function, and

d1(x, t; y) =
ln(x/y) + (r − q + σ2/2)t

σ
√
t

,

d2(x, t; y) = d1(x, t; y)− σ
√
t.

Equation (1.8) expresses the value of the live American put as the sum of an European

put price and the early exercise premium. The early exercise premium can be seen as the

additional value the option provides due to the possibility of exercises prior to maturity.

Thereupon, in order to value the live option it is necessary to calculate the early exercise

boundary B(·). This is determined by the following integral equation:

K − B(t) = p(B(t), T − t)

+

∫ T

t

[rKe−r(ξ−t)N(−d2(B(t), ξ − t;B(ξ − t)))

− qB(ξ − t)e−q(ξ−t)N(−d1(B(t), ξ − t;B(ξ − t)))]dξ. (1.10)

5



This equation reflects the fact that the value of an American put at time of exercise, i.e,

when asset price St touches the optimal boundary B(t) at time t ∈ (0, T ), is equal to the

payoff due to immediate exercise. This issue is shown in condition (1.3). As Kim (1990)

shows, the optimal exercise value at expiration is given by:

limt→T B(t) = K if q 6 r

limt→T B(t) = (r/q)K if q > r

which is analogous to:

B(T ) = Kmin

(

1,
r

q

)

. (1.11)

Having defined the valuation formulas, the price of the American put option can be

computed in two steps. First, Equation (1.10) must be solved backwards from expiration

time (t = T ). As it is mentioned, the value for the optimal exercise at maturity is defined

in (1.11). This is used as a starting point in the procedure of determining B(·). Once

the early exercise boundary B(·) is found, Equation (1.8) must be used in order to price

the American put option. It is possible to notice that numerical tools, such as numerical

integration, have to be applied since equations that Kim (1990) provide are not in a closed-

form. This leads to difficulties in the computing time, since the early exercise boundary

has to be determined recursively and requires extensive calculation.

1.3.3. General methods

Having in mind the definition of the free boundary problem and the solution of this by

the integral equations of Kim (1990), it is possible to describe the main numerical proce-

dures that attempts to solve the American option pricing problem by using this framework.

It is possible to split the main method into three groups. One group is based on trying to

approximate the path of the underlying asset in order to price the options. Other find a

solution to the partial differential equation (PDE) subject to the boundary condition, also

known as, free boundary problem, by numerically solving the problem or deriving an ex-

plicit solution. Finally, the remaining numerical schemes make an approximation based

6



on the Kim (1990) integral equation and might use Richardson extrapolation in order to

improve the accuracy and speed of the method. In this section, the main approximation

schemes are briefly described as follows.

Among the earliest numerical methods that value the American contract indirectly

through the underlying asset is the Binomial tree of Cox, Ross, & Rubinstein (1979). This

lattice method discretizes the time space of the asset price and then discounts, using risk

neutral valuation, the cash flows max (K − St, 0) backwards from maturity until the be-

ginning of the contract. This method is still widely used because of its simplicity and ease

to adapt to any kind of options. The method is convergent since the pricing accuracy can

be improved by setting a higher number of time-steps. Following the same idea, other re-

searchers try to improve the lattice approach in order to gain accuracy. This is the case

of Trinomial method of Boyle (1988), that adds an extra branch to the tree in every step.

This means that instead of having two discrete jumps as binomial, it has three. This im-

provement allows the asset price on the Trinomial method to cover more time space than

in the Binomial. The rest of the procedure is similar to the Binomial, i.e, the cash flow

generated by the asset price path is discounted backwards from maturity. Another lattice

method is the Binomial Black and Scholes of Broadie & Detemple (1996). This numerical

procedure is similar to the Binomial method, with the difference that in the penultimate

discount payoff is approximated as a European option using Black & Scholes (1973) for-

mula. Finally, Longstaff & Schwartz (2001) present a new approach for approximating the

value of an American option by simulation. First, they simulate the path of the asset price

with equation (1.7). Then, they use a simple least squares to estimate the function of the

expected conditional payoff to the option holder from continuation. The intuition behind

this method is that at any time the holder of an American option compares the payoff from

the immediate exercise with the expected payoff from continuation, and exercises the op-

tion if the immediate payoff is higher. Thus, the key insight of this approach is that the

conditional expected payoff can be estimated easily from the cross-section information in

the simulated paths by using a least squares regression.

7



Other type of methods are the so called Quasi-analytical approximation methods. One

of the first was the Quadratic approximation of Barone-Adesi & Whaley (1987) based on

the MacMillan (1986) approach. The Quadratic approximation methods solve the partial

differential equation (1.1) governing the price of the American option by introducing a

specific approximation in the process. Afterwards, Ju & Zhong (1999) refine the derivation

of the Quadratic Approximation by making a similar approximation to the process, but

steps later. Another quasi-analytical method is the so called LUBA of Broadie & Detemple

(1996) based on a lower and an upper bound price. The lower bound price is based on

a capped option, while the upper bound price is based on the integral equations of Kim

(1990). The price is finally obtained as a weighted average between the lower and upper-

bound prices, where the weights are estimated as a function of model parameters.

The last group of methods use the integral equations of Kim (1990) described previ-

ously in Section 1.3.2., in order to price the American option through the early exercise

boundary. The accelerated recursive method of Huang, Subrahmanyam, & Yu (1996) ap-

proximate the American option as a Bermudan option. The randomization method of Carr

(1998) randomizes the time to maturity of the American option and defines a feasible dis-

tribution in order to find a simple solution to the American option pricing problem. Ibáñez

(2003) refines the recursive method of Huang et al. (1996) by making the bermudan op-

tion monotonically convergent to the true American option while the number of exercise

times increases. All of the above methods of this group, use Richardson extrapolation for

improving the accuracy of pricing. On the other hand, Kallast & Kivinukk (2003) use the

trapezoidal rule in order to approximate the integral part of the integral equation (1.10) of

Kim (1990). Recently, Kim, Jang, & Kim (2013) came up with an iterative method that also

solves the integral equation of Kim (1990) in order to calculate the early exercise boundary.

The difference is that they use Little, Pant, & Hou (2000) in order to simplify integrals. The

remaining integrals are solved by using the adaptive Gauss-Kronrod rule.

The mentioned numerical approximations will be compared with the proposed proce-

dure on the next Chapter in terms of calculation time and accuracy.
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1.4. Future Research

The method proposed in this thesis could be tested in the future against other numerical

procedure using GPU codes. Since the proposed method is well suited for calculation in a

GPU, a first interesting line of investigation is to determine how much the speed is increased

compared with the other methods.

A second line of research could be to extend the model to a more complex factor

model, such as adding stochastic volatility to the process. A similar numerical research can

be conducted by comparing the accuracy of pricing with similar approaches. It would be

necessary to find a feasible benchmark and then program similar methods such as LSM of

Longstaff & Schwartz (2001) with stochastic volatility and compare them with the modified

functional iterative method.
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2. A NEW ITERATIVE METHOD FOR PRICING AMERICAN OPTION

2.1. Introduction

The difficulty of valuing American options stems from the fact that the optimal exercise

rule is unknown ex-ante, and must be computed simultaneously with the price of the option.

Kim (1990), Jacka (1991), and Carr et al. (1992) derived an integral equation that provides

an explicit solution to the optimal early exercise boundary for American options. In this

paper we provide a simple iterative method that solves this equation and computes the early

exercise boundary explicitly.

A robust method to solve the early exercise boundary equation of Kim (1990) was

already studied by Kallast & Kivinukk (2003). The authors show that solving such equation

yields a fast and stable method to compute the early exercise boundary. Their approach

works sequentially in that for a given solution of the boundary up to maturity T , they

compute the boundary up to maturity T +∆T .

In contrast, we propose a method that operates in parallel. We iterate over a series of

approximating functions B
(n)
τ , where τ ∈ [0, T ] represents the time-to-maturity, in order to

compute the early exercise boundary Sc(τ). In each iteration a new approximation of the

whole early exercise boundary B
(n+1)
τ is obtained as the result of applying an operator Υ to

the previous approximation B(n), i.e. B(n+1) = Υ(B(n)). The operator is derived from the

equation that determines the early exercise boundary. For each maturity τ , the new value

of the early exercise boundary at that point is given by B
(n+1)
τ = Φτ (B

(n)), where Φτ is

a functional that defines the operator Υ for each τ ∈ [0, T ]. Hence we can think of our

method as a functional iteration of the early exercise boundary.

Iterative methods are interesting alternatives to traditional numerical methods that price

American options in that they are well-suited for parallel implementations. In recent years,

parallel algorithms have become attractive with the advent of multi-core processors and

graphic processing units (GPUs). Using these novel features of modern hardware can im-

prove the efficiency of algorithms significantly.
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In a recent paper, Kim et al. (2013) propose an iterative procedure based on an equation

developed by Little et al. (2000) to solve for the early exercise boundary. Even though the

method of Kim et al. (2013) and ours are both functional iterative procedures, we show

in the paper that our implementation is more efficient in terms of speed, accuracy, and

stability. This is consistent with the previous findings of Kallast & Kivinukk (2003) who

show that solving the equation of Kim (1990) directly yields stable results.

There are numerous studies in the literature that propose methods to price American

options.1 Brennan & Schwartz (1977) were the first to solve numerically a partial differen-

tial equation (PDE) to price American options. Another popular method that discretizes the

time space and the asset price is the binomial method of Cox et al. (1979). Both methods

are still widely used because of their simplicity.

Following the same ideas, other researchers have tried to improve the lattice approach

in order to increase the accuracy and/or reduce the computation time, such as the trino-

mial method of Boyle (1988) and the improved binomial method presented in Broadie &

Detemple (1996). Longstaff & Schwartz (2001) develop a novel method to value options

by simulation that determines the conditional expected payoff by least-squares. Although

all of these methods are flexible and easily adapted to many kinds of options, their main

drawback is that they are time consuming.

A different approach to improve the speed at the expense of precision are the so-called

quasi-analytical approximation methods. One of the first of such methods is the quadratic

approximation of Barone-Adesi & Whaley (1987). The idea of the method is to solve an

approximate version of the PDE governing the price of the American option that yields a

closed-form solution. Ju & Zhong (1999) refine the derivation of the quadratic approxi-

mation of Barone-Adesi & Whaley (1987) by making a similar approximation to the PDE.

Even though Ju & Zhong (1999) appears to be more accurate than Barone-Adesi & Wha-

ley (1987), a main drawback of both methods is that the approximation works well for very

1Barone-Adesi (2005) presents a comprehensive survey of existing methods to price American options.
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short and very long maturity options, but presents difficulties when applied to medium-

term maturity options. Additionally, these methods do not converge to the true price so the

estimation cannot be made arbitrarily small. Broadie & Detemple (1996) develop a method

along these lines based on a lower and an upper bound. The lower-bound price is computed

from a closed-form solution of a capped option, while the upper-bound price is based on

the integral equations of Kim (1990). The price is finally obtained as a weighted average

between the lower and upper-bound prices, where the weights are estimated as a function

of model parameters.

In the literature there are also methods that use Richardson extrapolation in order to

improve the accuracy of the computations. For example, Geske & Johnson (1984) find an

exact representation of an American put and introduce the Richardson extrapolation to the

pricing problem. Huang et al. (1996) approximate the American option as a Bermudan

option. Carr (1998) randomizes the time to maturity of the American option and intro-

duces a feasible distribution in order to find a simple solution. Ju (1998) price the option

approximating the early exercise boundary as a multipiece exponential function. Ibáñez

(2003) refines the recursive method of Huang et al. (1996) by making the Bermudan op-

tion monotonically convergent to the true American option as the number of exercise times

increases.

Finally, other methods use quadrature formulas in order to price the option. Sullivan

(2000) approximates the early exercise premium by using Gaussian quadrature. Kallast &

Kivinukk (2003) use the trapezoidal rule in order to approximate the integral part of the

equation of Kim (1990).

In our paper we take a different approach, and solve the early exercise equation directly.

As we show in the paper, this approach is equivalent to applying a Newton iteration to

parallel perturbations of the early exercise boundary. The resulting algorithm requires an

initial guess of the early exercise boundary, and a numerical rule to evaluate the integral

part of the equation of Kim (1990).
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We explore three different alternatives of implementing the method. First, we estimate

the integrals appearing in the early exercise boundary equation by use of the trapezoidal

rule as in Kallast & Kivinukk (2003). We start the iterations using two different priors: the

flat guess of Kim et al. (2013), and the initial guess of Barone-Adesi & Whaley (1987).

Second, we follow Kim et al. (2013) and estimate the integrals appearing in the boundary

equation by interpolating a few discretized points, and using a more advanced quadrature

procedure such as Gauss-Kronrod.

We perform a thorough empirical analysis, and compare the different implementations

of our method with the quadratic approximation of Barone-Adesi & Whaley (1987), the

least-square Monte-Carlo approach of Longstaff & Schwartz (2001), the refined quadratic

approximation of Ju & Zhong (1999), the six-point recursive integration method of Huang

et al. (1996), the six-point randomization method of Carr (1998), the three-point modified

recursive integration method of Ibáñez (2003), the lower and upper bounds approximation

method of Broadie & Detemple (1996), the binomial tree method of Cox et al. (1979),

the trinomial tree method of Boyle (1988), the binomial tree using the Black & Scholes

formula at the last time-step of Broadie & Detemple (1996), the recursive solution method

of Kallast & Kivinukk (2003), and the iterative method of Kim et al. (2013).

The numerical results show that the implementations of our method that use the trape-

zoidal rule achieve the best performance among all the aforementioned algorithms. In par-

ticular, the best performance is obtained by using the smart initial guess of Barone-Adesi &

Whaley (1987). Our method is fast because the iterations are performed in parallel. Even

though the results that we report in the paper were obtained using a multi-core CPU, the

execution speed of our method is even faster using a standard GPU.

In addition, our method is also stable and accurate, which allows to achieve an arbitrary

precision. We find that our functional iteration converges monotonically to the true Amer-

ican option price as we increase the number of time-steps in the approximation, regardless

of the method employed to estimate the integrals. Finally, we find that the performance of

our method can be improved further by the use of Richardson extrapolation.
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The rest of the article is organized as follows. In Section 2 we introduce the theoretical

framework and recall some standard results of American option pricing theory. Section 3

presents our methodology to price the American options. Section 4 describes in detail the

numerical implementation of our method. In Section 5 we perform a battery of numerical

tests showing the speed-accuracy trade-off of our procedure compared to other methods.

Section 6 finally concludes.

2.2. Theoretical Background

In this section we recall some standard results about American option pricing when

the underlying asset follows a geometric Brownian motion. We consider a continuous-time

economy in which a complete probability space (Ω, F,P) and a filtration F = {Ft; t ≥ 0}
satisfying the usual conditions are defined (see, e.g., Protter, 2005). The risk-free rate r

is constant. A risky asset S pays a constant dividend yield q and follows a geometric

Brownian motion process with constant volatility under the pricing measure Q, equivalent

to P:
dSt

St

= (r − q)dt+ σdWt.

We consider an American put option with maturity T and exercise price K. Denoting

by x+ = max(0, x), the price P0 of the American put is given by (see e.g. Schroder, 1999):

P0 = sup
τ∈[0,T ]

EQ (

e−rτ (K − Sτ )
+
)

,

where the supremum is taken over all stopping times τ ∈ [0, T ]. The price p0 of an equiva-

lent European put option satisfies:

p0 = EQ (

e−rT (K − ST )
+
)

.

The difference between these two prices is called the early exercise premium e0, i.e.

P0 = p0 + e0. (2.1)
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When the underlying asset follows a diffusion (not necessarily a geometric Brownian

motion), the early exercise premium takes the following form (see e.g. Rutkowski, 1994):

e0 = EQ
(
∫ T

0

e−ru(rK − qSu)1{Su≤Sc(T−u)}du

)

, (2.2)

as long as r > 0. In the expression Sc(T − u) denotes the critical spot price that triggers

early exercise when the time-to-maturity is T−u. For American put options, early exercise

is optimal whenever, at time u, the spot price Su is lower than or equal to Sc(T − u).

In the setup described above, it is well known that we can derive a closed-form expres-

sion for the early exercise premium (see e.g. Kim, 1990, Jacka, 1991, Carr et al., 1992).

Let:

f(x, y, τ) = rKe−rτN(−d2(x, y, τ))− qxe−qτN(−d1(x, y, τ)), (2.3)

p(x, y, τ) = ye−rτN(−d2(x, y, τ))− xe−qτN(−d1(x, y, τ)), (2.4)

where:

d1(x, y, τ) =
log(x/y) + (r − q + 0.5σ2)τ

σ
√
τ

,

d2(x, y, τ) = d1(x, y, τ)− σ
√
τ ,

and N(x) = Q(X ≤ x), where X is a standard normally distributed random variable under

Q. The price the American put is then given by:

P0 = p(S0, K, T ) +

∫ T

0

f(S0, Sc(T − u), u)du, (2.5)

where S0 = S(0) denotes the current price of the underlying, the function f is defined as in

(2.3), and p(S0, K, T ) is the corresponding Black-Scholes price of a European put option

defined in (2.4).
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For any given T , the early exercise price Sc(T ) satisfies the following integral equation

for the American put option:

K − Sc(T ) = p(Sc(T ), K, T ) +

∫ T

0

f(Sc(T ), Sc(T − u), u)du. (2.6)

We also have that limT→0+ Sc(T ) = Kmin(1, r/q) (see e.g. Kim, 1990).

2.3. A New Method

In this section we present a new methodology to price American options. We iterate

over a series of approximating functions of the early exercise frontier in order to com-

pute the true early exercise boundary. In each iteration a new approximation of the whole

early exercise boundary is obtained as the result of applying an operator to the previous ap-

proximation. The operator is derived from the equation that determines the early exercise

boundary. The resulting method is parallelizable, fast, accurate, and stable.

We first describe the method for the case of American put options. We then show that

our method is equivalent to a Newton scheme applied to parallel perturbations of the early

exercise boundary. We finally show how the method can be applied to price American call

options.

2.3.1. American Put Options

One approach to price an American put option is to solve Equation (2.6) numerically

to obtain the function Sc(T ). Kallast & Kivinukk (2003) solve (2.6) recursively by find-

ing Sc(T ) one time-step at a time. More precisely, they approximate the continuous time

interval [0, T ] with the discretized set [0,∆T, . . . , NT∆T ]. Then, given an accurate ap-

proximation of Sc(τ) for all τ ∈ [0, T ], they compute an approximation of Sc(T + ∆T ).

This method can then be used to compute an approximation of Sc(T ) for any arbitrary T .

Furthermore, they show that solving equation (2.6) directly is robust and efficient.
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In what follows we provide a different approach to obtain a solution to (2.6). Our

method differs from Kallast & Kivinukk (2003) in that we iterate over a series of approx-

imations S
(k)
c (T ) that converge to Sc(T ) as k → ∞ for all T > 0. In other words, our

method works in parallel whereas Kallast & Kivinukk (2003) solve (2.6) sequentially.

We start by re-writing equation(2.6) as:

Sc(T )UT (Sc)−KVT (Sc) = 0 (2.7)

where

UT (φ) = 1− e−qTN(−d1(φ(T ), K, T ))− q

∫ T

0

e−quN(−d1(φ(T ), φ(T − u), u))du,

VT (φ) = 1− e−rTN(−d2(φ(T ), K, T ))− r

∫ T

0

e−ruN(−d2(φ(T ), φ(T − u), u))du,

for a suitable function φ. It is interesting to note that the functionals UT and VT are bounded

between 0 and 1. Indeed, we can re-write UT as:

UT (φ) = 1− e−qTN(−d1(φ(T ), K, T ))

− (1− e−qT )

∫ T

0

[

qe−qu

1− e−qT

]

N(−d1(φ(T ), φ(T − u), u))du.

We first note that

ϕ(u) =
qe−qu

∫ T

0
qe−qudu

=
qe−qu

1− e−qT

defines a density over [0, T ], and that 0 < N(−d1(φ(T ), φ(T − u), u)) < 1, implying that

0 <
∫ T

0
ϕ(u)N(−d1(φ(T ), φ(T − u), u))du < 1. Also, 0 < N(−d1(φ(T ), K, T )) < 1,

which implies that a convex combination between
∫ T

0
ϕ(u)N(−d1(φ(T ), φ(T − u), u))du

and N(−d1(φ(T ), K, T )) should also be greater than 0 and less than 1. Thus, we can

conclude that 0 < UT (φ) < 1 whenever T > 0. A similar argument shows that 0 <

VT (φ) < 1 for T > 0.
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Therefore, we can solve for Sc(T ) in (2.7) since UT (Sc) is well-defined:

Sc(T ) = K
VT (Sc)

UT (Sc)
. (2.8)

In the paper we use (2.8) as the basis of our iterative method. Starting from an initial guess

B
(0)
τ of the early exercise boundary for all τ ∈ [0, T ], we obtain a new approximation B

(1)
τ

recursively as follows:

B(1)
τ = K

Vτ (B
(0))

Uτ (B(0))
.

Hence, given an approximation of the early exercise frontier B
(n)
τ for all τ ∈ [0, T ] after n

iterations, we can find a new approximation B
(n+1)
τ using (2.8):

B(n+1)
τ = K

Vτ (B
(n))

Uτ (B(n))
. (2.9)

The new approximation for a given maturity τ1 can be computed independently from the

new approximation corresponding to maturity τ2.

Kim et al. (2013) propose an alternative method to compute the early exercise bound-

ary. Their iteration is based on the equation of Little et al. (2000):

Sc(T ) = K
ṼT (Sc)

ŨT (Sc)
(2.10)

where

ŨT (φ) = e−qTN(d1(φ(T ), K, T ) +
1

σ
√
2πT

e−(qT+ 1

2
d1(φ(T ),K,T )2)

+ q

∫ T

0

e−ruN(d1(φ(T ), φ(T − u), u) +
1

σ
√
2πu

e−(ru+ 1

2
d1(φ(T ),φ(T−u),u)2)du,

and

ṼT (φ) =
1

σ
√
2πT

e−(rT+ 1

2
d2(φ(T ),K,T )2) + r

∫ T

0

1

σ
√
2πu

e−(ru+ 1

2
d2(φ(T ),φ(T−u),u)2)du.

Even though the method of Kim et al. (2013) appears similar to ours, empirically their

approach is much slower. In particular, we find the integrals in ŨT and ṼT to be harder to

estimate than their counterparts in UT and VT .
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2.3.2. Our Method As a Newton Iteration

In this section we show that our iterative method is equivalent to applying a multivariate

Newton iteration to equation (2.7). We define for each τ ∈ (0, T ] the functional

Fτ (φ) = φ(τ)Uτ (φ)−KVτ (φ), (2.11)

for a suitable function φ. Note that (2.6) is equivalent to Fτ (Sc) = 0 for all τ ∈ (0, T ]. We

also define for each τ ∈ (0, T ] the functional

F ′
τ (φ) = lim

ǫ→0

Fτ ((1 + ǫ)φ)− Fτ (φ)

ǫ
=

d

dǫ
Fτ ((1 + ǫ)φ)

∣

∣

∣

∣

ǫ=0

,

which can be interpreted as the derivative of Fτ (φ) with respect to a proportional pertur-

bation of φ, and is akin to a Gteaux derivative.2 The above derivative can be computed

explicitly as:

F ′
τ (φ) = φ(τ)Uτ (φ). (2.12)

Note that we showed previously that Uτ (φ) > 0, which also implies that F ′
τ (φ) > 0.

For a given function h(x) of a real variable x, the Newton method provides a way to

solve iteratively the equation h(x) = 0. If we have an approximation xn of a root to the

above equation, the Newton iteration xn+1 solves:

h(xn+1) = h(xn) + h′(xn)(xn+1 − xn) = 0.

In the same way, for a given approximation B(n) of the early exercise frontier, we could fix

τ and solve for ǫn+1 in the following equation:

Fτ (B
(n)(1 + ǫn+1)) = Fτ (B

(n)) + F ′
τ (B

(n))ǫn+1 = 0,

which gives ǫn+1 = −Fτ (B
(n))/F ′

τ (B
(n)).

2If we let λ(τ) = log(φ(τ)) for all τ ∈ (0, T ], and define Gτ (λ) = Fτ (φ), then we have that

F ′

τ
(φ) = lim

ǫ→0

Gτ (λ+ ǫ)−Gτ (λ)

ǫ
=

d

dǫ
Gτ (λ+ ǫ)

∣

∣

∣

∣

ǫ=0

.

Hence, we can interpret the function F ′

τ
(φ) as the Gteaux derivative of Gτ (λ) in the direction of a constant

function equal to 1 for all τ ∈ (0, T ], i.e. with respect to a parallel perturbation of λ.
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The previous equation defines an iteration that computes ǫ in Fτ (B
(n)(1 + ǫ)) = 0, for

a fixed τ ∈ (0, T ]. This is not the same equation that we are trying to solve, since we want

to have Fτ (Sc) = 0 for all τ ∈ (0, T ]. However, by taking

B(n+1)
τ = B(n)

τ

(

1− Fτ (B
(n))

F ′
τ (B

(n))

)

, (2.13)

we obtain an update to B
(n)
τ that is the same as the one given by (2.9). Hence, our functional

method is equivalent to a Newton iteration that solves for ǫ in Fτ (B
(n)(1 + ǫ)) = 0, and

then uses the updated translation of B(n) evaluated at τ as the new update for B
(n+1)
τ .

Since F ′
τ (φ) > 0, equation (2.13) also shows that B

(n+1)
τ < B

(n)
τ whenever Fτ (φ) > 0,

and that B
(n+1)
τ > B

(n)
τ if Fτ (φ) < 0. Hence, the fixed-point iteration in (2.9) adjusts B

(n)
τ

downwards or upwards depending on the sign of Fτ (φ).

2.3.3. American Call Options

The case of American call options can be treated similarly. In order to compute the

price C0 of an American call option with the same characteristics we first define:

g(x, y, τ) = −rKe−rτN(d2(x, y, τ)) + qxe−qτN(d1(x, y, τ)), (2.14)

c(x, y, τ) = −ye−rτN(d2(x, y, τ)) + xe−qτN(d1(x, y, τ)). (2.15)

The price of the American call option is then given by:

C0 = c(S0, K, T ) +

∫ T

0

g(S0, Sc(T − u), T − u)du, (2.16)

where the function g is defined as in (2.14), and c(S0, K, T ) is the corresponding Black-

Scholes price of a European call option defined in (2.15). By letting S0 = Sc(T ) in (2.16)

we can obtain an equation similar to (2.8) for the early exercise boundary of the American

call:

Sc(T ) = K
V̂T (Sc)

ÛT (Sc)
, (2.17)
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where

ÛT (φ) = e−qTN(d1(φ(T ), K, T )) + q

∫ T

0

e−quN(d1(φ(T ), φ(T − u), u))du− 1,

V̂T (φ) = e−rTN(d2(φ(T ), K, T )) + r

∫ T

0

e−ruN(d2(φ(T ), φ(T − u), u))du− 1.

Empirically, we find that the method works similarly well for American call and put

options. It should be noted that the value of the American call can also be obtained from

the value of an American put by using the parity result of McDonald & Schroder (1998):

C(S0, K, r, q, σ, T ) = P (K,S0, q, r, σ, T ).

2.4. Numerical Implementation

We calculate the price of an American option in three steps. First, we start with an

initial guess of the early exercise boundary. Second, the initial guess is updated using

equation (2.8). We repeat this procedure until the maximum difference among two esti-

mated curves during two sequential iterations is below a specified tolerance. Finally, the

price of an American option is obtained by using the estimated early exercise boundary

along with equation (2.5).

In order to implement our numerical method we need to estimate the integrals appear-

ing in the numerator and denominator of equation (2.8), as well as the integral appearing

in equation (2.5). We proceed by using two different methods: the trapezoidal rule, as im-

plemented in Kallast & Kivinukk (2003), and a numerical quadrature method similar to the

one used by Kim et al. (2013).

2.4.1. Trapezoidal Rule

We first divide the time interval [0, T ] into NT subintervals of length ∆t = T/NT . We

keep the number of points fixed through all iterations. Therefore, by varying the number

of initial points it is possible to increase the accuracy. However, the trapezoidal method is
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highly parallelizable so its computational cost does not increase much with the grid size.

Our implementation of the trapezoidal rule takes advantage of this feature.

We first describe the method when applied to American put options. We denote by

B
(k)
i the estimated early exercise boundary after k iterations for time-to-maturity τ = i∆t,

where i = 0, . . . , NT . We also denote by B(k) =
(

B
(k)
0 , B

(k)
1 , . . . , B

(k)
NT

)′
a N × 1 column

vector containing estimates of the early exercise frontier after k iterations.

In our empirical tests, we initialize the method for American put options either by

setting:

B
(0)
i = Kmin(1, r/q), ∀i = 0, . . . , NT (2.18)

as in Kim et al. (2013), or by using the initial guess of Barone-Adesi & Whaley (1987):

B
(0)
i = B∞ + (K − B∞)

(

1− e−[((r−q)i∆t+2σ
√
i∆t)K/(K−B∞)]

)

, ∀i = 0, . . . , NT

(2.19)

where B∞ represents the critical price of a perpetual American put option.3 Also, since we

know that Sc(0+) = Kmin(1, r/q), we fix B
(k)
0 = Kmin(1, r/q) for all k ≥ 0.

Given a set of estimates B(k) obtained after k iterations, we find a new set of estimates

B(k+1) by using equation (2.8):

B
(k+1)
i = K

Vi(B
(k))

Ui(B(k))
, ∀i = 0, . . . , NT , (2.20)

3The critical price of the perpetual American put option is equal to B∞ =
K

1− 1/q1
∞

, where q1
∞

= −1

2
(N −

1)− 1

2

√

(N − 1)2 + 4M , M =
2r

σ2
and N =

2(r − q)

σ2
.
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where

Ui(B
(k)) = 1− e−qi∆tN(−d1(B

(k)
i , K, i∆t))− q∆t

i−1
∑

j=1

e−qj∆tN(−d1(B
(k)
i , B

(k)
i−j, j∆t))

− q∆t

2

[

N(−d1(B
(k)
i , B

(k)
i , 0)) + e−qi∆tN(−d1(B

(k)
i , B

(k)
0 , i∆t))

]

,

Vi(B
(k)) = 1− e−ri∆tN(−d2(B

(k)
i , K, i∆t))− r∆t

i−1
∑

j=1

e−rj∆tN(−d2(B
(k)
i , B

(k)
i−j , j∆t))

− r∆t

2

[

N(−d2(B
(k)
i , B

(k)
i , 0)) + e−ri∆tN(−d2(B

(k)
i , B

(k)
0 , i∆t))

]

,

and N(−d1(B
(k)
i , B

(k)
i , 0)) = N(−d2(B

(k)
i , B

(k)
i , 0)) = 0.5. We continue the process until:

max
i=1,...,NT

∣

∣

∣

∣

∣

B
(k+1)
i − B

(k)
i

K

∣

∣

∣

∣

∣

≤ ε,

where ε is a relative tolerance threshold. The method usually converges very fast, taking

for example between 5 to 6 iterations when ε = 10−3.

Figure A.1 presents an example of how the method works. In this example we use 20

time-intervals to approximate the early exercise boundary. The strike price is K = 100, the

time-to-maturity is T = 1, the risk-free rate is r = 0.04, the dividend rate is q = 0.08, and

the constant volatility is σ = 0.2. In this example the method converges in 5 iterations.

Once an estimate of the early exercise boundaryB = (B0, B1, . . . , BNT
)′ is determined

as in the previous example, we compute the premium of an American put option with spot

S0, strike K and maturity T using equation (2.5). We follow Kallast & Kivinukk (2003)

and use Simpson’s rule to approximate the integral:

P0 = p(S0, K, T )+
∆t

3
[f(S0, BNT

, 0) + 4f(S0, BNT−1,∆t) + 2f(S0, BNT−2, 2∆t) + · · ·

· · ·+ 2f(S0, B2, (NT − 2)∆t) + 4f(S0, B1, (NT − 1)∆t) + f(S0, B0, NT∆t)] . (2.21)

We only use the equation when the option is alive, i.e. when S0 > K. Also, note that we

assume that NT is even.

23



For pricing American call options we follow a similar approach. We denote by G
(k)
i the

estimated early exercise boundary after k iterations for each time-to-maturity i∆t, where

i = 0, . . . , NT , and by G(k) =
(

G
(k)
0 , G

(k)
1 , . . . , G

(k)
NT

)′
a N × 1 column vector containing

estimates of the early exercise frontier after k iterations. We initialize the method either by

setting:

G
(0)
i = Kmax(1, r/q), ∀i = 0, . . . , NT , (2.22)

or by using the initial guess of Barone-Adesi & Whaley (1987):

G
(0)
i = K + (G∞ −K)

(

1− e−[((r−q)i∆t+2σ
√
i∆t)K/(G∞−K)]

)

, ∀i = 0, . . . , NT ,

(2.23)

where G∞ represents the critical price of a perpetual American call option.4 Also, since we

know that Sc(0+) = Kmax(1, r/q), we fix G
(k)
0 = Kmax(1, r/q) for all k ≥ 0.

Given a set of estimates G(k) obtained after k iterations, we find a new set of estimates

G(k+1) by using equation (2.17):

G
(k+1)
i = K

V̂i(G
(k))

Ûi(G(k))
, ∀i = 0, . . . , NT , (2.24)

where

Ûi(G
(k)) = e−qi∆tN(d1(B

(k)
i , K, i∆t)) + q∆t

i−1
∑

j=1

e−qj∆tN(d1(B
(k)
i , B

(k)
i−j, j∆t))

+
q∆t

2

[

N(d1(B
(k)
i , B

(k)
i , 0)) + e−qi∆tN(d1(B

(k)
i , B

(k)
0 , i∆t))

]

− 1,

V̂i(B
(k)) = e−ri∆tN(d2(B

(k)
i , K, i∆t)) + r∆t

i−1
∑

j=1

e−rj∆tN(d2(B
(k)
i , B

(k)
i−j, j∆t))

+
r∆t

2

[

N(d2(B
(k)
i , B

(k)
i , 0)) + e−ri∆tN(d2(B

(k)
i , B

(k)
0 , i∆t))

]

− 1,

4The critical price of the perpetual American call option is equal to G∞ =
K

1− 1/q2
∞

, where q2
∞

= −1

2
(N−

1) +
1

2

√

(N − 1)2 + 4M , M =
2r

σ2
and N =

2(r − q)

σ2
.
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and N(d1(B
(k)
i , B

(k)
i , 0)) = N(d2(B

(k)
i , B

(k)
i , 0)) = 0.5. For an estimate of the early exer-

cise boundary G, the premium of an American call is computed as:

C0 = c(S0, K, T )+
∆t

3
[g(S0, GNT

, 0) + 4g(S0, GNT−1,∆t) + 2g(S0, GNT−2, 2∆t) + · · ·

· · ·+ 2g(S0, G2, (NT − 2)∆t) + 4g(S0, G1, (NT − 1)∆t) + g(S0, G0, NT∆t). (2.25)

This equation is used only when the option is alive, i.e. when S0 < K. We also assume

that NT is even.

2.4.2. Numerical Quadrature

We also implement our method by estimating the integrals using a Gauss-Kronrod

adaptive procedure. In this section we only describe the method when applied to Amer-

ican put options. The method is adapted in a similar manner as it was explained for the

trapezoidal rule.

We work with a discrete set of estimated points from the early exercise curve denoted

by B
(k)
i . In this implementation we follow Kim et al. (2013) and initialize the method only

with the flat prior given in equation (2.18). Given a set of estimates B(k) obtained after

k iterations, we build an estimated curve B
(k)
τ for τ ∈ [0, T ] by using a spline that goes

through the points B
(k)
i for all i = 0, . . . , NT .

We find a new set of estimates B(k+1) for each discrete point B
(k+1)
i by using equation

(2.8) where the integrals in UT and VT are estimated using the adaptive Gauss-Kronrod

procedure. We continue the process until:

max
i=1,...,NT

∣

∣

∣

∣

∣

B
(k+1)
i − B

(k)
i

K

∣

∣

∣

∣

∣

≤ ε,

where ε is a relative tolerance threshold.

Once an estimate of the early exercise boundary B is determined, we build a curve

B(τ) for τ ∈ [0, T ] using splines, and compute the premium of an American put option
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with spot S0, strike K and maturity T using equation (2.5) and the adaptive Gauss-Kronrod

procedure.

2.5. Numerical Results

In this section we present numerical tests that compare the pricing accuracy and the

speed of our method with other numerical techniques that have been studied in the litera-

ture. We present several examples in which our method converges to the “true” American

option price. Furthermore, we provide numerical tests for several pricing methods under

different scenarios in terms of underlying asset prices, maturities and volatilities.

In the following, we denote our functional iteration of Kim’s equation by FIK. We

implement the method in three different ways:

• Using the trapezoidal rule with a flat initial guess [FIK-F]

• Using the trapezoidal rule with the initial guess of Barone-Adesi & Whaley

(1987) [FIK-BAW]

• Using the Gauss-Kronrod quadrature with splines and starting from a flat initial

guess [FIK-GK]

We compare our results with the following methods that have been implemented in the

literature:

• Quadratic approximation of Barone-Adesi & Whaley (1987) [BAW]

• Least-square Monte-Carlo approach of Longstaff & Schwartz (2001) [LS]

• Refined quadratic approximation of Ju & Zhong (1999) [JZ]

• Six-point recursive integration method of Huang et al. (1996) [HSY]

• Six-point randomization method of Carr (1998) [CARR]

• Three-point modified recursive integration method of Ibáñez (2003) [IBN]

• Lower and upper bounds approximation method of Broadie & Detemple (1996)

[LUBA]

• Binomial tree method of Cox et al. (1979) [BIN]

• Trinomial tree method of Boyle (1988) [TRI]
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• Binomial tree using Black & Scholes formula at the last time-step of Broadie &

Detemple (1996) [BIN-BS]

• Recursive solution method of Kallast & Kivinukk (2003) [KK]

• Iterative method of Kim et al. (2013) [KJK]

In order to assess the accuracy of all our computations, the true value is computed

with a binomial tree model with 15 000 time steps in which the Black & Scholes formula

is used at the penultimate node. Broadie & Detemple (1996) show that the traditional

binomial method can have an oscillatory convergence whereas the binomial tree with Black

& Scholes at the end converges faster to the true price.5 We use the root mean squared error

(RMSE) and the relative RMSE6 as the main measures of errors.

All codes were programmed in Matlab and all tests were performed using the same

hardware. For every method we recalculate the early exercise frontier when pricing each

option. We do not take advantage of the fact that for some methods (such as ours) once

the early exercise frontier is known, it is possible to price options with different spot prices

without having to recompute it. We do this to make all methods comparable.

2.5.1. Pricing Accuracy of Our Method

In this section we analyze the pricing accuracy of our methodology. Table A.1 com-

pares the pricing performance of our functional iterative method FIK-F with the true Amer-

ican option price. In the table we fix the following parameters: strike price K = 100, time-

to-maturity T = 3, and volatility σ = 0.2. We generate 12 different examples by using

different spot prices (80, 100, and 120), interest rates (0.04 and 0.08) and dividend yields

(0.04 and 0.12), as shown in the table. Column (1) reports the “true” value of the American

put option calculated using a binomial tree with 15 000 steps in which the Black & Scholes

formula is used at the last time-step (Broadie & Detemple, 1996). Columns (2)−(8) report

5Kallast & Kivinukk (2003) use the binomial method with 10 000 steps as their benchmark. Broadie &

Detemple (1996) use the convergent binomial method proposed by Amin & Khanna (1994) with 15 000 steps

as their benchmark. We tried both but found that the binomial tree with Black & Scholes at the end possess

the best convergence among all three of them.
6We define the relative RMSE as the root mean squared percentage errors.
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American put option prices calculated using our FIK-F method where the number of time-

steps vary from 20 to 140 in increments of 20, while columns (9)−(11) report results using

200, 300 and 400 time-steps respectively.

The table shows that the method using a simple trapezoidal rule to estimate the integral

requires a small number of time-steps to attain high precision, even when the maturity of

the option is large as in the example. Using 20 time-steps we obtain a relative RMSE

less than 10−4. With 60 time-steps we achieve a relative RMSE less than 10−5. The last

two columns show relative RMSEs less than 10−6. We can also see that errors decrease

monotonically as the number of time-steps increase.

2.5.2. Comparison with Other Methods

In this section we compare the performance of our proposed implementations with

other methods that have been studied in the literature. We first compare all methods de-

scribed at the beginning of this section across twelve combinations of the spot price (80,

100, and 120), time-to-maturity (0.5 and 3), and volatility (0.2 and 0.5). The following

parameters are fixed throughout the evaluations: K = 100, q = 0.04, and r = 0.04.

Tables A.2 and A.3 report the results where the methods are sorted from left to right by

decreasing relative RMSE (RRMSE). We find that BAW has the worst RRMSE. JZ attains

a better accuracy than BAW since it is a refined version of the later, reaching close to a

tenth of the RRMSE in BAW (Ju & Zhong, 1999). LUBA has a RRMSE close to but better

than BIN with 1000 time-steps, which is consistent with the accuracy reported in Broadie

& Detemple (1996). CARR has around a third of the accuracy of LUBA, and around

double of the accuracy of HSY, which is consistent with results reported in Ju (1998). We

also find that IBN gains an extra decimal in accuracy over HSY, despite the fact that IBN

uses half the points of HSY. This is consistent with the findings reported in Ibáñez (2003)

who introduces the use of Richardson extrapolation applied to American option methods.

Finally, our approach with only 60 time-steps achieves better accuracy than BAW, LS, JZ,

HSY, CARR, BIN 500, TRI 500, BIN 1000, BIN BS 500, LUBA, BIN BS 1000, BIN

2500, IBN and TRI 2500. Also, our method FIK-F with 400 time-steps reaches the same
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accuracy as KK with the same number of time-steps, which is expected since both methods

use the same equation to solve for the early exercise boundary.

We also perform a comprehensive analysis in which we compare the pricing perfor-

mance of each method using the following different combinations of parameters: spot

price S = 75, 80, ..., 120, 125 (11 values); maturity T = 1/12, 3/12, 6/12, 9/12, 1, 2, 3;

volatility σ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6; risk-free rate r = 0.02, 0.04, 0.06, 0.08, 0.1 and

dividend yield q = 0.0, 0.04, 0.08, 0.12. This generates a set of 9 240 different combina-

tions. Without loss of generality, the strike price is fixed at K = 100. In the analysis we

only focus on American put options since the put-call symmetry identity of McDonald &

Schroder (1998) suggests that similar results should be obtained for American call options.

In unreported results, we verify that this is indeed the case.

We exclude from our tests options with prices of less than 50 cents and we do not

include samples in which a certain method computes a negative early exercise premia.7

After applying these filters, we obtain a total of 7 865 sample points over which we test the

accuracy and speed of all methods.

Table A.4 reports summary statistics of the empirical performance of each method.

As a measure of accuracy we report the root mean squared error (RMSE). We also report

the average time in seconds for each method to price the 7 865 options. To compare the

speed-accuracy trade-off across different methods, we define a new measure of efficiency:

Efficiency = − log(RMSE × Time).

According to this definition, a method performs better the higher its Efficiency.

When compared using our measure of efficiency, the best method is FIK-F 60, followed

by FIK-BAW 400, FIK-F 400, LUBA8, and JZ (in that order). It is interesting to note that

7Binomial and trinomial methods give in some cases negative early exercise premia. This is probably due to

the oscillatory convergence of these kind of methods. On the other hand, our method never computes negative

early exercise premia under the same set of parameters.
8We use the same parameters λ1 and λ2 as calibrated in Broadie & Detemple (1996). Even though these

parameters were calibrated using a dividend rate q = [0, ..., 0.1], we test LUBA under same constraints of q
and obtain similar RMSEs compared with our testing set that has in addition q = 0.12.
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FIK-GK 24 and KJK 24 score much lower, even though they are also iterative methods.

Also, KK 400 also scores lower, even though the method solves the same equation as FIK-

F or FIK-BAW. Finally, it is surprising to note that the highly popular LS method is the

second worst in terms of RMSE, and the worst in terms of speed.

Table A.4 also reports information on the dispersion of the pricing accuracy among the

methods. Columns (4) to (6) report the percentage of options for which the absolute error

(AE) is lower than the corresponding threshold. It is interesting to note that FIK-BAW 400

achieves the highest percentage of options priced with an absolute error less than 10−5. It

is followed by FIK-F 400, KK 400, FIK-GK 24, and KJK 24 (in that order).

We continue our analysis by plotting the speed-accuracy trade-off as shown in Figures

A.2 to A.8. In the figures we measure accuracy as the root mean squared error (RMSE), and

speed as the number of options priced per second. In all figures the axis are in log10-scale.

Hence, the performance of a given method increases as we move towards the north-east.

Consistent with Table A.4, Figure A.2 shows that FIK-F and FIK-BAW outperform

all other methods. We can also observe that for lower precision LUBA and BIN-BS are

efficient. Also, note that FIK-BAW, FIK-F, KK, FIK-GK, BIN-BS, TRI and BIN converge

monotonically in accuracy at the expense of a lower speed.

As a robustness check, we analyze if the results are affected by time-to-maturity (T ),

moneyness (S/K), and volatility (σ). Figures A.3 and A.4 split the results by short (T < 1)

and long maturity (T ≥ 1) options, respectively. Figures A.5 and A.6 split the results by

moneyness, where we consider at-the-money (0.9 < S/K < 1.1), and in or out-the-money

(S/K ≤ 0.9 and S/K ≥ 1.1) options, respectively. Finally, Figures A.7 and A.8 split the

results by low (σ ≤ 0.3) and high (σ > 0.3) volatility. In the figures we exclude FIK-BAW

since its performance is very similar to FIK-F as shown in Figure A.2.

Overall, all figures confirm the convergence of our methods in terms of pricing errors.

As a general result, the more time-steps we use in the computation of the early exercise

frontier, the higher the accuracy we obtain in pricing the options. Furthermore, our ap-

proach seems to dominate in terms of speed-accuracy trade-off all other methods including
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KK, even though the later is based on solving the same equation. Our method is fast be-

cause the iterations are performed in parallel. Hence, the speed could be increased even

further without sacrificing the accuracy by the use of modern hardware such as graphic

processing units (GPUs).9

Finally, it is also worth noticing that methods such as BIN, TRI and BIN-BS, among

others, need to recalculate all steps if one wishes to price an option with a different spot

price. On the other hand, in the case of our method we could compute the early exercise

frontier up to a time-to-maturity T , say, for fixed r, q, and σ. We could then use the same

early exercise boundary to price options with different spot and strike prices, increasing the

speed even more. We choose not to exploit this natural ability of our method in order to

make the benchmark comparable across different methods.

2.5.3. Richardson Extrapolation

Several authors in the literature have proposed the use of Richardson extrapolation to

improve the pricing accuracy (see e.g. Geske & Johnson, 1984, Bunch & Johnson, 1992,

Ibáñez, 2003). Let Pi denote the option price obtained using Ni time-steps. The 2-point

Richardson extrapolation (Bunch & Johnson, 1992) is equal to P = 2P2 − P1, whereas

the 3-point Richardson extrapolation (Geske & Johnson, 1984) is obtained as P = P3 +

7/2P2 − 1/2P1.

Richardson extrapolation works on methods on which convergence can be improved

by using more time-steps. Therefore, the extrapolation cannot be used on methods such as

LUBA, BAW and JZ, for example. We decide to check if Richardson extrapolation would

improve the efficiency of our method and compare the results to two other methods that

improve their efficiency as the number of time-steps increases, namely BIN-BS and KK.

Table A.5 reports the results. We try five different combinations of 2 and 3-point

Richardson extrapolation for BIN-BS, FIK-F and KK. Overall, FIK-F improves its effi-

ciency considerably and in all five cases achieves a higher efficiency than BIN-BS and KK,

9In unreported results, we increased the speed of our method by 10 to 100 times by using a standard NVIDIA

GTX-570 GPU with 480 cores.
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with FIK-F 200/150/100 achieving the highest efficiency. The reason why we are able to

improve the efficiency by using Richardson extrapolation is that the RMSE decreases lin-

early in that region with the number of time-steps (see Ibáñez, 2003), as observed in Figure

A.2.

For BIN-BS, the 2-point Richardson extrapolation performs better than the 3-point

Richardson Extrapolation in terms of efficiency, which is consistent with the results re-

ported by Broadie & Detemple (1996). The 2-point Richardson extrapolation of BIN-BS

shows a significant improvement over the regular BIN-BS. On the other hand, KK does not

benefit much from the use of Richardson extrapolation.

2.6. Concluding Remarks

We introduce a novel, simple, fast and accurate iterative method to price an American

option and solve for its early exercise boundary. The approach is equivalent to applying

a Newton iteration to parallel perturbations of the early exercise boundary. Our method

shows improved performance in terms of speed-accuracy efficiency over existing numerical

methodologies. Moreover, we find that the method is stable, converges monotonically, and

is well-suited for vectorized and parallel implementations.

Numerical results show that using the trapezoidal rule in our method achieves the best

performance among all existing methods analyzed in the paper. The performance can be

improved even further by using a smart guess for the initial early exercise boundary as in

Barone-Adesi & Whaley (1987). We find that our functional iteration converges mono-

tonically to the true American option price as we increase the number of time-steps in

the approximation, regardless of the method employed to estimate the integrals. Finally,

we find that the performance of our method can also be improved further by the use of

Richardson extrapolation.

Therefore, our analysis shows that a direct solution of the early exercise representation

of Kim (1990) seems to be robust and efficient. This point was already raised by Kallast

& Kivinukk (2003) who solved the same equation sequentially. Our results confirm that
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the method of Kallast & Kivinukk (2003) and the one we propose in this paper share the

same convergence property. On the other hand, by solving the early exercise boundary

equation as a functional iteration as in Kim et al. (2013) we can accelerate the solution

process through the parallelization of the iterations.

In summary, the analysis shows that our proposed method is superior to all commonly

used algorithms to price American options, and seems promising for solving early exercise

boundaries of even more complicated models.
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Figure A.1 – Iterations of the early exercise curve B(k) using our functional iterative method.
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Figure A.3 – Speed-accuracy trade-off for short maturity options (T < 1).
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Figure A.4 – Speed-accuracy trade-off for long maturity options (T ≥ 1).
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Figure A.5 – Speed-accuracy trade-off for at-the-money-options (0.9 < S/K < 1.1).
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Figure A.6 – Speed-accuracy trade-off for in- and out-of-the-money options (S/K ≤ 0.9 or

S/K ≥ 1.1).
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Figure A.7 – Speed-accuracy trade-off for low volatility options (σ ≤ 0.3).
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Figure A.8 – Speed-accuracy trade-off for high volatility options (σ > 0.3).
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Table A.1 – Pricing Accuracy of the Functional Iterative Method FIK-F (K = 100, T = 3, σ = 0.2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Spot True NT = 20 NT = 40 NT = 60 NT = 80 NT = 100 NT = 120 NT = 140 NT = 200 NT = 300 NT = 400

r = 0.04 80 23.22837 23.23249 23.22990 23.22921 23.22892 23.22876 23.22866 23.22860 23.22850 23.22843 23.22840
q = 0.04 0.00412 0.00153 0.00084 0.00055 0.00039 0.00029 0.00023 0.00013 0.00006 0.00003

100 12.60529 12.60836 12.60644 12.60592 12.60568 12.60556 12.60548 12.60543 12.60534 12.60529 12.60526
0.00308 0.00116 0.00063 0.00040 0.00027 0.00019 0.00014 0.00006 0.00000 0.00002

120 6.48247 6.48442 6.48323 6.48289 6.48274 6.48266 6.48261 6.48257 6.48252 6.48248 6.48246
0.00194 0.00075 0.00042 0.00027 0.00018 0.00013 0.00010 0.00004 0.00000 0.00002

r = 0.04 80 33.90208 33.90228 33.90216 33.90213 33.90212 33.90211 33.90210 33.90210 33.90210 33.90209 33.90209
q = 0.12 0.00019 0.00008 0.00005 0.00003 0.00003 0.00002 0.00002 0.00001 0.00001 0.00001

100 22.83353 22.83359 22.83357 22.83357 22.83356 22.83356 22.83356 22.83356 22.83356 22.83356 22.83356
0.00006 0.00004 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002

120 14.50205 14.50215 14.50215 14.50215 14.50215 14.50215 14.50215 14.50215 14.50215 14.50215 14.50215
0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010

r = 0.08 80 20.35002 20.34699 20.35250 20.35163 20.35080 20.35031 20.35003 20.34990 20.34982 20.34993 20.35000
q = 0.04 0.00303 0.00248 0.00161 0.00078 0.00029 0.00001 0.00012 0.00020 0.00009 0.00003

100 8.94399 8.94509 8.94445 8.94427 8.94419 8.94414 8.94411 8.94409 8.94405 8.94402 8.94401
0.00110 0.00045 0.00027 0.00019 0.00014 0.00011 0.00009 0.00006 0.00003 0.00001

120 3.89743 3.90030 3.89855 3.89808 3.89787 3.89775 3.89768 3.89763 3.89755 3.89749 3.89747
0.00287 0.00111 0.00064 0.00044 0.00032 0.00025 0.00020 0.00012 0.00006 0.00003

r = 0.08 80 25.65774 25.66244 25.65946 25.65870 25.65838 25.65821 25.65811 25.65804 25.65793 25.65786 25.65783
q = 0.12 0.00470 0.00172 0.00096 0.00064 0.00047 0.00036 0.00029 0.00019 0.00011 0.00009

100 15.49841 15.50063 15.49924 15.49887 15.49871 15.49863 15.49858 15.49854 15.49849 15.49845 15.49844
0.00222 0.00082 0.00046 0.00030 0.00021 0.00016 0.00013 0.00008 0.00004 0.00003

120 8.88548 8.88646 8.88587 8.88571 8.88564 8.88560 8.88558 8.88556 8.88554 8.88552 8.88552
0.00098 0.00038 0.00022 0.00015 0.00012 0.00009 0.00008 0.00005 0.00004 0.00003

RMSE 2.530E-03 1.142E-03 6.799E-04 3.978E-04 2.502E-04 1.808E-04 1.486E-04 1.039E-04 5.950E-05 4.308E-05

Note − Column (1) reports the true value of an American put option based on a binomial tree with 15 000 time-steps that uses Black

& Scholes at the last time-step. Columns (2) to (11) report prices of American put options calculated using the FIK-F method with

different number of time-steps (NT ). Absolute errors between the true value and each American option price are displayed in italics.

The last row reports the root mean squared error (RMSE).
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Table A.2 – Prices of American Put Options (K = 100, q = 0.04, r = 0.04)

Spot True BAW LS JZ HSY CARR BIN TRI LUBA BIN-BS BIN
500 500 500 1000

T = 0.5 80 20.14372 20.12517 20.13108 20.13987 20.13870 20.14286 20.14385 20.14333 20.14433 20.14360 20.14344
σ = 0.2 0.01854 0.01264 0.00384 0.00502 0.00086 0.00013 0.00039 0.00061 0.00012 0.00027

100 5.54634 5.55141 5.52130 5.54328 5.54794 5.54499 5.54378 5.54501 5.54600 5.54735 5.54504
0.00507 0.02504 0.00306 0.00160 0.00135 0.00256 0.00133 0.00034 0.00101 0.00130

120 0.70724 0.71067 0.70584 0.70776 0.70738 0.70686 0.70776 0.70747 0.70719 0.70697 0.70747
0.00342 0.00140 0.00052 0.00014 0.00039 0.00051 0.00023 0.00005 0.00028 0.00023

T = 0.5 80 24.67736 24.67381 24.61927 24.65983 24.67603 24.67401 24.67449 24.67513 24.67858 24.67871 24.67528
σ = 0.5 0.00355 0.05810 0.01754 0.00133 0.00335 0.00287 0.00223 0.00122 0.00135 0.00208

100 13.80581 13.81879 13.73791 13.79824 13.80981 13.80246 13.79944 13.80249 13.80651 13.80824 13.80258
0.01298 0.06790 0.00757 0.00400 0.00335 0.00637 0.00332 0.00070 0.00243 0.00323

120 7.28738 7.30229 7.25333 7.28621 7.28808 7.28518 7.28982 7.28716 7.28743 7.28901 7.28720
0.01491 0.03405 0.00117 0.00070 0.00220 0.00244 0.00022 0.00005 0.00163 0.00018

T = 3 80 23.22837 23.31946 23.12495 23.17341 23.24958 23.22514 23.22921 23.22781 23.22219 23.22922 23.22864
σ = 0.2 0.09109 0.10342 0.05496 0.02121 0.00323 0.00084 0.00056 0.00618 0.00085 0.00027

100 12.60529 12.76321 12.56193 12.58919 12.59927 12.60001 12.60044 12.60236 12.60296 12.60732 12.60282
0.15792 0.04335 0.01610 0.00602 0.00528 0.00484 0.00293 0.00233 0.00204 0.00246

120 6.48247 6.62559 6.41858 6.49419 6.49209 6.47798 6.48133 6.48398 6.48009 6.48385 6.48423
0.14312 0.06390 0.01171 0.00961 0.00449 0.00115 0.00151 0.00239 0.00137 0.00176

T = 3 80 37.97483 38.31502 37.98111 37.90752 38.02363 37.96429 37.97287 37.97120 37.97472 37.97786 37.97255
σ = 0.5 0.34019 0.00628 0.06731 0.04880 0.01054 0.00196 0.00363 0.00011 0.00302 0.00228

100 30.74247 31.13286 30.70746 30.71458 30.72989 30.73039 30.73046 30.73526 30.74201 30.74631 30.73639
0.39039 0.03502 0.02790 0.01258 0.01208 0.01201 0.00721 0.00046 0.00383 0.00609

120 25.21333 25.61935 25.20967 25.21672 25.20719 25.20052 25.22383 25.21716 25.21079 25.21707 25.21810
0.40603 0.00365 0.00339 0.00614 0.01281 0.01050 0.00384 0.00253 0.00375 0.00477

RMSE 2.016E-01 4.819E-02 2.758E-02 1.633E-02 6.517E-03 5.367E-03 3.016E-03 2.206E-03 2.162E-03 2.751E-03

Note − Each column in the table reports the price of an American put option using a different method. The true value is based on a

binomial tree with 15 000 time-steps that uses Black & Scholes at the last time-step. BAW is the quadratic approximation of Barone-

Adesi & Whaley (1987). LS is the least square Monte Carlo approach of Longstaff & Schwartz (2001). JZ is the refined quadratic

approximation of Ju & Zhong (1999). HSY is the six-point recursive integration method of Huang et al. (1996). CARR is the six-point

randomization method of Carr (1998). BIN is the binomial tree method of Cox et al. (1979). TRI is the trinomial tree method of Boyle

(1988). LUBA is the lower and upper bound approximation method of Broadie & Detemple (1996). BIN-BS is the binomial model

using Black & Scholes at the last time-step of Broadie & Detemple (1996). Numbers below some methods indicate the number of

time-steps. Absolute errors between the true value and each American option price are displayed in italics. The last row reports the root

mean squared error (RMSE).
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Table A.3 – Prices of American Put Options (K = 100, q = 0.04, r = 0.04)

Spot True BIN-BS BIN IBN FIK-F TRI BIN-BS KJK FIK-GK KK FIK-F
1000 2500 60 2500 2500 32 32 400 400

T = 0.5 80 20.14372 20.14366 20.14376 20.14094 20.14384 20.14369 20.14370 20.14355 20.14373 20.14373 20.14373
σ = 0.2 0.00005 0.00004 0.00277 0.00012 0.00003 0.00002 0.00016 0.00001 0.00001 0.00001

100 5.54634 5.54683 5.54580 5.54661 5.54638 5.54605 5.54652 5.54633 5.54633 5.54631 5.54631
0.00049 0.00054 0.00027 0.00004 0.00029 0.00018 0.00001 0.00001 0.00003 0.00003

120 0.70724 0.70711 0.70722 0.70727 0.70727 0.70730 0.70720 0.70727 0.70726 0.70725 0.70725
0.00013 0.00003 0.00003 0.00002 0.00006 0.00005 0.00003 0.00002 0.00001 0.00001

T = 0.5 80 24.67736 24.67802 24.67764 24.67861 24.67757 24.67761 24.67760 24.67722 24.67737 24.67733 24.67733
σ = 0.5 0.00066 0.00028 0.00125 0.00021 0.00025 0.00023 0.00014 0.00001 0.00003 0.00003

100 13.80581 13.80699 13.80447 13.80647 13.80592 13.80508 13.80623 13.80579 13.80580 13.80574 13.80574
0.00118 0.00134 0.00066 0.00011 0.00073 0.00042 0.00002 0.00001 0.00007 0.00007

120 7.28738 7.28818 7.28695 7.28775 7.28745 7.28754 7.28767 7.28742 7.28739 7.28733 7.28733
0.00080 0.00043 0.00037 0.00007 0.00016 0.00029 0.00004 0.00001 0.00005 0.00005

T = 3 80 23.22837 23.22880 23.22817 23.22796 23.22921 23.22830 23.22853 23.22855 23.22848 23.22840 23.22840
σ = 0.2 0.00043 0.00020 0.00041 0.00084 0.00007 0.00016 0.00018 0.00011 0.00002 0.00003

100 12.60529 12.60629 12.60426 12.60514 12.60592 12.60465 12.60565 12.60548 12.60544 12.60526 12.60526
0.00100 0.00103 0.00015 0.00063 0.00064 0.00036 0.00019 0.00015 0.00003 0.00002

120 6.48247 6.48314 6.48242 6.48245 6.48289 6.48284 6.48272 6.48268 6.48264 6.48246 6.48246
0.00066 0.00005 0.00002 0.00042 0.00036 0.00025 0.00020 0.00017 0.00002 0.00002

T = 3 80 37.97483 37.97633 37.97666 37.97435 37.97655 37.97426 37.97536 37.97528 37.97519 37.97484 37.97485
σ = 0.5 0.00150 0.00183 0.00048 0.00172 0.00057 0.00053 0.00044 0.00036 0.00001 0.00002

100 30.74247 30.74437 30.73995 30.74213 30.74404 30.74093 30.74316 30.74297 30.74290 30.74245 30.74245
0.00190 0.00252 0.00034 0.00157 0.00154 0.00069 0.00049 0.00043 0.00002 0.00002

120 25.21333 25.21518 25.21458 25.21311 25.21475 25.21429 25.21401 25.21386 25.21380 25.21330 25.21330
0.00186 0.00126 0.00022 0.00142 0.00096 0.00068 0.00054 0.00047 0.00003 0.00003

RMSE 1.066E-03 1.108E-03 9.350E-04 8.558E-04 6.387E-04 3.857E-04 2.714E-04 2.243E-04 3.228E-05 3.225E-05

Note − Each column in the table reports the price of an American put option using a different method. The true value is based on a

binomial tree with 15 000 time-steps that uses Black & Scholes at the last time-step. BIN-BS is the binomial model using Black &

Scholes at the last time-step of Broadie & Detemple (1996). BIN is the binomial tree method of Cox et al. (1979). IBN is the tree-point

modified recursive integration method of Ibáñez (2003). FIK- F is the functional iterative method using a flat guess and trapezoidal

rule. TRI is the trinomial tree method of Boyle (1988). KJK is the iterative method of Kim et al. (2013). FIK-GK is the functional

iterative method using a flat guess and Gauss-Kronrod adaptive integral. KK is the recursive method of Kallast & Kivinukk (2003).

Numbers below some methods indicate the number of time-steps. Absolute errors between the true value and each American option

price are displayed in italics. The last row reports the root mean squared error (RMSE).4
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Table A.4 – Performance Statistics

(1) (2) (3) (4) (5) (6)

RMSE Time Efficiency AE < 10−3 AE < 10−4 AE < 10−5

BAW 2.189E-01 0.001 8.43 16.63% 11.57% 8.30%

BIN 500 4.172E-03 0.059 8.31 33.18% 10.64% 7.31%

BIN 1000 2.017E-03 0.228 7.68 49.28% 13.94% 7.57%

BIN 2500 8.166E-04 1.154 6.97 80.34% 22.75% 9.07%

BIN-BS 500 1.675E-03 0.063 9.16 48.75% 13.48% 7.27%

BIN-BS 1000 8.345E-04 0.239 8.52 75.04% 19.26% 8.05%

BIN-BS 2500 3.047E-04 1.232 7.89 99.87% 33.87% 10.40%

CARR 5.542E-03 0.021 9.06 46.34% 24.11% 8.19%

FIK-BAW 400 1.083E-04 0.176 10.87 99.91% 96.13% 32.21%

FIK-F 60 1.419E-03 0.010 11.16 82.20% 42.10% 13.81%

FIK-F 400 1.092E-04 0.209 10.69 99.92% 96.01% 32.17%

FIK-GK 24 9.636E-04 0.452 7.74 99.06% 69.43% 24.44%

HSY 2.294E-02 0.017 7.85 40.90% 26.19% 10.96%

IBN 3.044E-03 0.117 7.94 81.84% 39.86% 12.68%

JZ 3.665E-02 0.001 10.21 24.31% 15.07% 8.96%

KJK 24 6.101E-03 0.242 6.52 81.72% 50.21% 20.20%

KK 400 1.067E-04 0.711 9.49 99.92% 96.21% 32.02%

LS 7.737E-02 1.780 1.98 2.28% 0.17% 0.01%

LUBA 2.933E-03 0.012 10.25 64.28% 36.39% 12.97%

TRI 500 2.218E-03 0.082 8.61 47.74% 12.22% 7.20%

TRI 1000 1.127E-03 0.315 7.94 70.39% 17.30% 8.01%

TRI 2500 4.364E-04 1.354 7.43 96.07% 30.63% 10.44%

Note − The table reports performance statistics for each numerical method over 7 865 option

values. BAW is the quadratic approximation of Barone-Adesi & Whaley (1987). BIN is the

binomial tree method of Cox et al. (1979). BIN-BS is the binomial model using Black &

Scholes at the last time-step of Broadie & Detemple (1996). CARR is the six-point randomiza-

tion method of Carr (1998). FIK-BAW is the functional iterative method with the initial guess

of Barone-Adesi & Whaley (1987) and the trapezoidal rule. FIK-F is the functional iterative

method with a flat initial guess and the trapezoidal rule. FIK-GK is is the functional iterative

method with a flat initial guess and the Gauss-Kronrod quadrature. HSY is the six-point re-

cursive integration method of Huang et al. (1996). IBN is the tree-point modified recursive

integration method of Ibáñez (2003). JZ is the refined quadratic approximation of Ju & Zhong

(1999). KJK is the iterative method of Kim et al. (2013). KK is the recursive method of Kallast

& Kivinukk (2003). LS is the least-squares Monte Carlo approach of Longstaff & Schwartz

(2001). LUBA is the lower and upper bound approximation method of Broadie & Detemple

(1996). TRI the trinomial tree method of Boyle (1988). Numbers next to some methods spec-

ify the number of time-steps. Column (1) reports the root mean squared error (RMSE) with

respect to the true value that was computed with a binomial tree with 15 000 time-steps that

uses Black & Scholes at the last time-step. Column (2) reports the average time in seconds

needed to value the 7 865 options. Efficiency in (3) is computed as − log(RMSE×Time). The

last three columns (4) to (6) report the percentage of options for which the absolute error (AE)

is lower than the corresponding threshold.
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Table A.5 – Performance Statistics Using Richardson Extrapolation

(1) (2) (3)

RMSE Time Efficiency

BIN-BS 600/400/200 9.234E-04 0.140 8.95

BIN-BS 400/200 5.890E-04 0.052 10.39

BIN-BS 600/300 3.456E-04 0.112 10.16

BIN-BS 800/400 2.874E-04 0.195 9.79

BIN-BS 1000/500 2.264E-04 0.301 9.59

FIK-F 100/50 4.936E-04 0.035 10.97

FIK-F 150/100/50 1.771E-04 0.073 11.26

FIK-F 200/150/100 1.257E-04 0.086 11.44

FIK-F 250/200/150 1.061E-04 0.124 11.24

FIK-F 300/250/200 8.978E-05 0.182 11.02

KK 100/50 4.951E-04 0.286 8.86

KK 160/80 2.861E-04 0.444 8.97

KK 200/100 2.238E-04 0.547 9.01

KK 300/150 1.498E-04 0.809 9.02

KK 150/100/50 1.813E-04 0.560 9.20

Note − The table reports performance statistics for three different methods that are accelerated

with the use of Richardson extrapolation. BIN-BS is the binomial model using Black & Scholes

at the last time-step of Broadie & Detemple (1996). FIK-F is the functional iterative method

with a flat initial guess and the trapezoidal rule. KK is the recursive method of Kallast &

Kivinukk (2003). The notation N3/N2/N1 stands for the 3-point Richardson extrapolation

(see e.g. Geske & Johnson, 1984) where the price of the option is found as P = P3 +7/2P2 −
1/2P1. The notation N2/N1 stands for the 2-point Richardson extrapolation (see e.g. Bunch &

Johnson, 1992) where the price of the option is found as P = 2P2 − P1. In the formulas P1,

P2, and P3 are the prices obtained using N1, N2, and N3 time-steps, respectively. Column (1)

reports the root mean squared error (RMSE) with respect to the true value that was computed

with a binomial tree with 15 000 time-steps that uses Black & Scholes at the last time-step.

Column (2) reports the average time in seconds needed to value the 7 865 options. Efficiency

in (3) is computed as − log(RMSE × Time).
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