
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

RAD-NLQ: A REST API RESOURCE

DISCOVERY FRAMEWORK SUPPORTING

NATURAL LANGUAGE QUERIES

NIKOLAS GONZALO BRAVO RAKELA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

ROSA ALARCÓN

Santiago de Chile, January 2017

c©MMXVII, NIKOLAS BRAVO

P*hITIFTCIA Uh}fiT.f,R$I}AS CATOLICA I}E fiHILE

ESCTIf,LA}H INGHNIERfA

RAD.NLQ: A REST API RESOURCE

DISCOYERY TRAMEWORK SUPPORTING

NATURAL LANGUAGE QT]ERIES

NIKOTAS GON T"ALO BRAYO RAKELA

Mernbsrs fif thc C*mmittse: ,rffi
RoSAALARC6N W
TATMEN*ff*N frtj urgyffil wl*_c
The*is submittsd to ttr* Offt*e of Research and Graduate Studies

in partial futfillment of ttre requirements fbr th* degree of

Idaster cf Scisnns in Engineering

Samtiago de Chile, Januffry 2*L7

S nancxvll, NltroLAs Bn,qvo

To humanity

ACKNOWLEDGEMENTS

I would like to thank my parents for supporting me during my studies. I would also

like to thank Javiera Pérez for her continued and always present support and advise. Ad-

ditionally, special thanks are in order to those who directly contributed to the underlying

project involving this thesis, especially my friend Rodrigo Saffie.

I also like to thank my friends. I would like to thank Tomás Vukasović, Felipe Rivera,

and Felipe Kopplin for their immense and continued support and companionship during

this period. I would also like to thank all my past classmates and future colleagues for

their companionship and counsel throughout my thesis: Augusto Sandoval and Guillermo

Valenzuela with whom we have shared much work together; Hans Findel and Alfredo

Cobo with whom we shared an office and always had the time to share their helpful ad-

vise; and Nicolás Risso, Santiago Larraı́n, and José Ignacio Navarro for their continued

companionship in these past months leading to my work’s end. Finally I would like to

acknowledge my e-pen-pal Sebastián Hoch for our always enjoyable mind-sparring.

Finally, but not least, I would like to thank my Graduate Commitee, professors Rosa

Alarcón, Jaime Navón, César Aguilar, and Sergio Gutiérrez for their time and insight

reviewing this work.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

ABSTRACT x

RESUMEN xi

1. INTRODUCTION 1

2. RELATED WORK 3

2.1. REST Web API description . 3

2.2. Natural Language for Web service and REST API discovery 5

3. RAD: REST API DESCRIPTION 9

3.1. RAD Concept Vocabulary . 10

3.2. RAD as a JSON document . 12

3.3. RAD as a graph . 17

4. RAD-NLQ: NATURAL LANGUAGE REST RESOURCE DISCOVERY 19

4.1. RAD-based Service Discovery . 19

4.2. Supporting Natural Language Queries: RAD-NLQ 20

5. Implementation 26

5.1. RAD-QL: an API to query the RAD graph 26

5.2. System overview . 26

6. Evaluation 30

6.1. Vocabulary and API Dataset . 30

6.2. Input Query Dataset . 31

6.3. Evaluation Criteria . 33
v

6.4. Results . 35

7. CONCLUSIONS 38

REFERENCES 40

APPENDIX 43

A. Web Application Screenshots . 44

vi

LIST OF FIGURES

3.1 RAD metamodel . 9

3.2 Associated Schema.org based vocabulary: document metadata, vocabulary, and

prefixes . 11

3.3 Associated Schema.org based vocabulary: relationships 12

3.4 JSON implementation schema of RAD . 13

3.5 Spotify Web API described as RAD-JSON: API, description metadata, and

resources . 14

3.6 Spotify Web API described as RAD-JSON: methods 15

3.7 Spotify Web API with RAD in JSON: parameters 16

3.8 Spotify Web API with RAD in JSON: responses 17

3.9 RAD graph model . 18

5.1 RAD-NLQ System UML Component Diagram 27

5.2 Screenshot of the RAD-NLQ interface in the Web application: query input . . 28

5.3 Screenshot of the RAD-NLQ interface in the Web application: query graph

response . 29

6.1 Result’s score histogram for RAD-NLQ and the Google Web Search Engine . 37

A.1 RAD-NLQ: User’s natural language phrase input 44

A.2 RAD-NLQ: Concept extraction from user’s input 45

A.3 RAD-NLQ: RAD-QL query to discover resource-method pairs with the

extracted concepts . 45
vii

A.4 RAD-NLQ: Ranked method node IDs linked to the extracted concepts . . . 46

A.5 RAD-NLQ: Obtaining RAD-QL query suggestions for the selected method

node ID . 46

A.6 RAD-NLQ: RAD-QL queries suggested for the given method node ID . . . 47

A.7 RAD-NLQ: Interactive graph detailing the workflow for the given method

node . 48

viii

LIST OF TABLES

4.1 Typical grammatical structure of queries used by Web searchers with a

distribution based on a sample of 222 hand-labeled queries (Excerpt) 23

6.1 Nodes and edges in the graph database . 31

6.2 Vocabulary subgraph composition . 31

6.3 Activity layer nodes . 32

6.4 Use of distinct semantic layer concepts . 32

6.5 Composition of our input dataset of 128 queries. RC: Resource Concept, A:

Action, PC: Parameter Concept, E: Entity 33

6.6 Evaluation results. RC: Resource Concept, A: Action, PC: Parameter Concept,

E: Entity . 36

ix

ABSTRACT

A great amount of functionality available on the Web is nowadays provided through

Web APIs. Some of them follow the REST design guidelines, characterized by a consis-

tent use of the HTTP methods and the identification of resources with URIs that do not

include the media type, among others. REST design empowers APIs and allows them

to achieve massive scalability and evolvability. This capability coupled with the intro-

duction of a standardized semantic API description would facilitate machine-clients to

discover and use REST Web API dynamically, creating customized ecosystems tailored

to the user’s needs. In this thesis we present RAD-NLQ, based on the the RAD REST

API description, which allows us to implement API discovery through natural language

queries. We implemented and tested our approach comparing it with Google Web search

engine with promising results.

Keywords: Web API, REST, Service discovery, Natural language.

x

RESUMEN

Gran parte de las funcionalidades disponibles en la Web es accedida por medio de

APIs Web. Algunas de ellas sigue las directrices de diseño de REST que promueven un

consistente uso de los métodos HTTP y la identificación de recursos con URIs que no

incluyen el media type, entre otros. REST empodera a las APIs, y permite que logren

gran escalabilidad y evolucionen fácilmente. Ésto, junto con la introducción de una de-

scripción semantica de APIs Web estándar, facilitarı́a el descubrimiento y consumo de

APIs Web REST de forma dinámica, permitiendo la creación dinámica de ecosistemas

personalizados a las necesidades del usuario. En esta tesis presentamos RAD-NLQ, un

framework basado en el modelo de descripción RAD que permite el descubrimiento de

pares recurso-método que satisfagan consultas de usuarios expresadas en lenguaje natu-

ral. Nuestra implementación de RAD-NLQ fue probada contra el motor de búsqueda de

Google arrojando resultados prometedores.

Palabras Claves: API Web, REST, Descubrimiento de Servicios, Lenguaje Natural.

xi

1. INTRODUCTION

The Web was initially conceived as a pull-based content delivery platform. In the past

decade we have witnessed a dramatic evolution of its capabilities from its ability to support

dynamic content, to customization, rich interfaces, and its support of B2B applications. In

the latter case, the evolution of complex traditional services with limited scalability and

proprietary platforms have given place to Web APIs that fully comply Web standards and

are massively scalable allowing the creation of new business ecosystems and transforming

the Web into a marketplace of applications.

The main characteristic that differentiates Web APIs is its underlying architectural

style. In our research we focus on the REST (Representational State Transfer) (Fielding,

2000) architectural style. It provides massive scalability, independent evolvability and

extensibility, among other benefits to the Web. A REST Web API is a collection of iden-

tified resources, which are manipulated though its representations (a snapshot of the re-

source’s state in a moment in time) via a set of self-contained methods, such as those

in the Hypertext Transfer Protocol (HTTP) (Fielding et al., 1999). Hypermedia controls

(e.g. links) provided in the representations allow clients to discover related resources.

REST Web APIs have experienced notorious growth in the developer community: in

ProgrammableWeb1, one of the most important Web APIs repositories, most develop-

ers declare their APIs as REST-based; Google Trends2 also shows an overwhelming and

increasing interest in REST Web APIs.

Nowadays, an additional revolution is pervading various technological fields by en-

riching technology with cognitive capabilities. This evolution have been studied in the

Web community through efforts such as Semantic Web, though it was not considered

in the design of REST Web APIs. One of the advantages of providing semantic sup-

port for REST Web APIs is the facilitation of APIs discovery and hence, its composition

1Programmable Web http://www.programmableweb.com/
2Google Trends https://www.google.com/trends/explore?q=rest%20api,soap%
20api

1

giving rise to the dynamic creation of new ecosystem customize to the user needs. A

fundamental limitation for such case is the lack of a standardized machine-readable API

description. REST Web APIs expose their resources and underling semantics in natural

language documents destined to human consumption. Machine clients cannot understand

such semantics, and therefore cannot determine the intended business goal achieved by

executing a method on a resource. As a direct consequence, the reverse problem exists:

resource discovery. A machine client cannot determine which REST APIs, resources, or

methods should be executed in order to achieve a business goal. Therefore, the discovery

of REST web APIs is most commonly done through manual search on large API repos-

itories (e.g. ProgrammableWeb) through keywords, tags, or category-based searches; or

simply through a Web search engine (e.g. Google3, Bing4, or Yahoo!5) followed by manual

exploration of the returned links.

In a previous publication we have presented the REST API Description (RAD)(Alarcón,

Saffie, Bravo, & Cabello, 2015) and showing its capabilities to organize REST API’s

methods by exploiting a semantic layer associated with the API description. In (Saffie,

2016) we exploited these characteristics to implement an automatic service composition

approach. In this thesis we present RAD-NLQ, a framework based on RAD for the discov-

ery of resource-method pair that achieve a specific business goal through natural language

phrase queries. In order to validate our approach we implemented a prototype including 6

popular REST Web APIs, which outperformed the Google Web search engine in our tests.

This thesis is organized as follows: Chapter 2 presents related work on REST Web

API descriptions and REST Web API discovery. Chapter 3 presents RAD, its underlying

metamodel, its implementation as a JSON document, and its representation as a graph.

Chapter 4 presents RAD-NLQ, our RAD-based approach for REST web API discovery

through natural language, while Chapter 5 presents our prototype’s implementation, and

Chapter 6 our evaluation. Finally, Chapter 7 presents our conclusions.

3Google http://google.com/
4Bing http://bing.com/
5Yahoo! http://yahoo.com/

2

2. RELATED WORK

2.1. REST Web API description

A REST Web Service is a collection of resources, each resource having a unique iden-

tifier (e.g. a URI), which can be manipulated by a well defined set of methods (e.g. HTTP

methods) (Fielding, 2000) and representations. A representation contains information of

the resource’s state in a particular format (e.g. HTML, JSON, XML, etc.) at a particular

time which can be retrieved (e.g. through an HTTP GET operation) or used to modify

the resource state (e.g. an HTTP POST operation). Additionally, REST requires that

its architectural components (e.g. clients, servers, caches, etc.) interact between each

other through self-descriptive messages (e.g. the correct use of HTTP methods). Finally,

a REST system must be hypermedia-centered, meaning that a resource’s representation

must contain the necessary controls and links that allow the client to identify the available

actions at any point in the client-server interaction. These four characteristics constitute

REST’s Uniform Interface constraint, which characterizes the Web and as such the design

of REST Web APIs. REST also facilitates service evolvability by leveraging Web stan-

dards (e.g. data formats, network protocols, etc.), and service scalability by exploiting

REST architectural constraints (e.g. layers, caches, etc.).

Multiple proposals exist in order to describe REST Web APIs. The Web Applica-

tion Description Language (WADL) (Hadley, 2009) is the REST equivalent of the Web

Services Description Language (WSDL) (Chinnici, Moreau, Ryman, & Weerawarana,

2007). WADL describes a REST API in terms of resources, media types, schemas of

the expected request and response, and representations containing parameters with links

to other resources. However, it does not offer support for link discovery, ignoring the

dynamic nature of REST itself. As a result, it gravitates to being operation-centric, and

introduces additional complexity without yielding any clear benefits for either human or

machine-clients. These descriptions are maintained independently from the service itself,

also arising maintainability issues (John & Rajasree, 2013).

3

Other approaches include the Hypertext Application Language (HAL)1 (Kelly, 2016),

a lightweight description language, implemented as a JSON document, focusing on hy-

permedia in order to make the API explorable, but limited only to the HTTP GET method.

Google also presents an interesting proposal, the API Discovery Service2. It offers an API

which serves machine-readable discovery documents for its own set of supported APIs,

including information regarding resources, their JSON Schema3, methods available for

each resource, and their parameters.

Semantic descriptions have been also proposed for REST services. RESTdesc4 (Verborgh

et al., 2011) (Verborgh et al., 2013) represents REST API functionality in RDF, including a

request’s qualified pre and postconditions. Though it is flexible, compact, and able to han-

dle complexity, it requires previous knowledge of the resources’ URIs in order to execute

more advanced queries. SA-REST5 (Lathem, Gomadam, & Sheth, 2007), and hRESTS

(Kopecky, Gomadam, & Vitvar, 2008), are simpler approaches; both propose the creation

of a new resource describing API resources’ URIs, methods, input, and output parameters

written either as RDFa property-value pairs (Adida, Birbeck, McCarron, & Pemberton,

2008) (SA-REST), or Microformat annotations (Khare & Çelik, 2006) (hRESTS). Both

approaches, SA-REST and hRESTS, support links but do not support dynamic resource

discovery by following such links. ReLL (Alarcón & Wilde, 2010) is fully compliant on

REST’s principles and has shown its hypermedia capability when fully crawling a REST

service’s resources. However, ReLL only supports the HTTP GET method assuming only

one semantic action: reading the resource’s state. Finally, Hydra (Lanthaler & Gütl, 2013)

is based on JSON-LD (Sporny, Longley, Kellogg, Lanthaler, & Lindström, 2014), which

adds lightweight semantics to the service’s description. Hydra models resources, oper-

ations, and hyperlinks as link templates, but its underlying RDF model adds significant

complexity to the proposal.

1HAL http://stateless.co/hal specification.html
2Google API Discovery Service https://developers.google.com/discovery/
3JSON Schema http://json-schema.org/
4RESTdesc http://restdesc.org/
5SA-REST https://www.w3.org/Submission/SA-REST/

4

Industry approaches have been rapidly and steadily growing, especially among Web

developers, as the need to standardize descriptions among REST Web API providers in-

creases. Swagger6, among the most popular proposals in this category, has been adopted

into the Open API Initiative7 specification. A Swagger description is a JSON or YAML

document which describes an API’s resources, methods, parameters, and responses and

their schemas. The RESTful API Modeling Language (RAML) 8 is a similar proposal,

where descriptions are implemented as YAML documents, providing additional support

to rich data type definitions as well as URI parameters. RAML is more expressive than

Swagger, but as a consequence is more complex and less intuitive. Lastly, API Blueprint9

uses its own Markdown-based format, and supports resources, methods, parameters, data

types, and responses superficially as HTTP codes with an associated example. Though

it is easy to understand, it is not intuitive to write, and can not be considered flexible or

expressive. The company backing API Blueprint, Apiary10, has recently began supporting

Swagger in their own services, suggesting the future suspension of support of the former.

All the industry-driven approaches mentioned before have a common limitation: the lack

of any type of associated semantics, limiting any kind of automated resource discovery.

2.2. Natural Language for Web service and REST API discovery

Various approaches have been proposed for the discovery of functionality available in

the Web using natural language techniques, mainly for traditional SOAP/WSDL-based

Web Services, in stark contrast with the lack of approaches for REST Web APIs. A

SOAP/WSDL Web service exposes functionality on the Web that is described in a WSDL

document (Box et al., 2000). It contains a set of endpoints (URLs), user defined methods

(e.g. BuyApples), input and output parameters (e.g. Price, Quantity) as well as certain

rules (e.g. security related). REST Web APIs differ in that methods are limited to the

6Swagger http://swagger.io/
7Open API Initiative https://www.openapis.org/
8RAML http://raml.org/
9API Blueprint https://apiblueprint.org/
10Apiary https://apiary.io/

5

network protocol (e.g. HTTP operations) so that not out-of-band information due to am-

biguous definition -which is often the case- is required.

In order to address this ambiguity most proposals are based on Semantic Web tech-

niques, where functional aspects of service elements (e.g. operations, input and output

parameters) are associated to concepts that are part of a semantic network. These ap-

proaches tend to support schema-agnostic natural language keyword-based queries as their

input. For instance, (Lakshmi & Dhas, 2013) proposes an improved Semantic Web Service

Discovery method by combining functional and textual similarity matching, by means of

matching a keyword-based user query to semantic OWL-S (Martin et al., 2004) annota-

tions. (Sangersa, Frasincara, Hogenbooma, & Chepeginb, 2013) also matches keyword-

based user queries to semantic annotations in its WSMO Web Service description. Sim-

ilarly, (Gunasri & Kanagaraj, 2014) extracts annotated keywords in the Web Service’s

OWL-S description, and groups them into clusters which are later matched, using similar-

ity algorithms, against a natural language keyword-based user input.

For the case of REST API designers, the main focus has been on defining resources

rather than user-defined operations. This capability combined with stateless interaction

and caches (due to the proper use of HTTP operations) provide APIs with massive scal-

ability. For REST discovery, efforts mainly come from the industry and focus on the

discovery of specific resources called root resource (API home page, API directory, API

description, API documentation, etc.) which represent a catalog of resources for a spe-

cific API. Most proposals come in the form of large Web API repositories or directories:

Mulesoft’s ProgrammableWeb11, Mashape’s PublicAPIs12, APIs.io13, and APIHound14.

11Programmable Web http://www.programmableweb.com/
12Public APIs https://www.publicapis.com/
13APIs.io http://apis.io/
14APIHound http://apihound.com/

6

ProgrammableWeb has the largest hand-curated API directory which can be queried

by category, the API’s name, or through text to be matched against each API’s text descrip-

tion. This has the disadvantages of APIs having to be curated by a human, the keyword-

style search not supporting natural language phrases, and the fact that search results are

returned at the root resource and not the specific resources that are semantically related to

the query. Since the root resource is a catalog of the API’s resources, users must manually

navigate the ad-hoc documentation in order to find what they need.

Similarly, PublicAPIs is also hand-curated, and drops the category hierarchy in favor

of more flexible tags, but still suffers from most of ProgrammableWeb’s issues. APIs.io

indexes APIs through an Apis.json15 document, a machine readable document that API

providers can use to describe their API resources through a name, a human-readable de-

scription, a set of tags, and external links which could include a Swagger description doc-

ument of the API. APIs.io allows users to search their directory through the API’s name

and tags, and the search response is also limited to the root resource.

APIHound constantly crawls the Web for new APIs, which they index and assign rel-

evant categories and keywords to. The system is designed to be queried through the API’s

name or keywords, and even though querying using natural language phrases is not explic-

itly unsupported, they are still executed as keyword-based searches, and as such, results

yielded from these queries are often inconsistent and unreliable. APIHound’s contribution

resides in indexing APIs by directly crawling the Web without direct intervention from

the API’s developers, but as stated in their blog16 on January 5 2015, sometimes non-API

related material is mistakenly also indexed. Results are also returned at the root resource,

this being the main weakness of all large Web API directories, as the user must manu-

ally search the response (most commonly a documentation Web page) in order to find the

resource, HTTP method, and parameters they need to achieve their intended business goal.

15Apis.json http://apisjson.org/
16APIHound’s Blog http://apihound.com/blog.jsp

7

Another way to discover APIs’ resources is through generic Web search engines such

as the Google, Bing, or Yahoo! search engines, which are typically designed to support

short (Spink, Jansen, Wolfram, & Saracevic, 2002) verbal and non-verbal phrases (Barr,

Jones, & Regelson, 2008), allowing much needed flexibility on the end users’ queries.

However, unlike previous approaches, the limitation of generic search engines resides in

its search space, causing results to often be cluttered with irrelevant and non-API related

material. Even though if the search space is restricted to the Web API domain, the quality

of the result is directly related to the quality and granularity of the API’s description (i.e.

the root resource content and its links). For example, for an API where each resource’s

description has its own URL (and is indexed by it), the search engine may return the

exact URL with the documentation the user is looking for; whereas if only the API’s root

resource is indexed, the accuracy of the result is lost, and since such URL is returned

to the user, they must keep searching for what they need in the API’s documentation

resource. Thus, Web search engines response quality is highly dependent on the quality of

the documentation’s webpage, and as the latter is inconsistent across the Web, so are the

search engine’s results.

8

3. RAD

As previously mentioned, REST API descriptions are key to facilitate API discovery.

In a previous work (Alarcón et al., 2015), we introduced an approach called RAD to

describe REST Web APIs and allow the automatic creation of workflows (Saffie, 2016).

In this chapter, we briefly summarize RAD since is the basis of our approach. RAD is

presented as a metamodel, a graph model and an implementation. The RAD metamodel

(Figure 3.1) separates REST web API elements into a semantic and an activity layer.

Semantic Layer

<<BDomain>>
Parameter
Concept

<<bind>>

<<BDomain>>
Action Concept

<<BDomain>>
Resource
Concept

1..n 1..n

Activity
Layer

Parameter

Method

Response

Resource

1

0..n

0..n

1..n

1

1

0..n

1

1

<<State>>
Representation

0..1

0..n

1

1..n

0..n 0..n

0..n

0..n
0..n

0..n

Request

Hypermedia
Control

10..n

1

0..n
0..n
0..n

0..n

1

0..n

1

1

1

Figure 3.1. RAD metamodel

In the semantic layer, Resource, Parameter and Action are abstract concepts

in the business domain. They convey the semantics of activity layer elements, but are

not bound to its implementation. The activity layer represents the REST Web API it-

self. Resource elements are identified by their URI, and are associated with at least

one Method (e.g. GET, POST, DELETE, etc. under the HTTP protocol). Requests

performed over Resources may require input Parameters (e.g. in the header, body,

9

or the URI). Upon the execution of the Request, a Response could be received, con-

taining the Resource’s state in the form of a Representation, which itself could

include output Parameters and a set of Hypermedia Controls (e.g. a hyperlink).

Hypermedia Controls refer to a Resource-Method pair, which could potentially

be executed through another Request.

3.1. RAD Concept Vocabulary

As discussed in the previous section, resources, parameters and methods are all indi-

vidually referenced to single unambiguous concepts in the business domain. These con-

cepts, as well as their relationships, are declared in a separate vocabulary document. This

vocabulary corresponds to the semantic layer in the RAD metamodel, and could consist

of a simple vocabulary or even a full-fledged ontology.

We based our vocabulary on Schema.org1, a specification backed by companies such

as Google, Microsoft and Yahoo to enrich search result snippets through annotations in

HTML documents. The Schema.org specification comprehends entities with their own

URI, such as items, objects and actions. In this work we chose to extend the current spec-

ification by adding properties to a concept through the URI pattern Concept/newPro-

perty (which has since been deprecated since May 2015), in which the new prop-

erty is nested in the original concept’s URI. It is important to mention that Resource

Concepts are represented in upper camelcase, while its Parameter Concepts are

notated in lower camel case. We also saw the need for more specific concepts than those

already present, so we added new ones to the vocabulary following the previously men-

tioned URI pattern, and creating relationships to link them to existing concepts.

Our vocabulary file is implemented as a JSON document. Figure 3.2 and Figure

3.3 portray snippets of such document. The required keys in this document are name,

version, baseUri, prefixes, and relationships. Prefixes are prepended with

1Schema.org http://schema.org/

10

Figure 3.2. Associated Schema.org based vocabulary: document metadata,
vocabulary, and prefixes

the ’@’ character, and are abbreviations of the vocabulary’s concepts, and as such are asso-

ciated with a URI formed by concatenating the vocabulary’s baseUri and the reference

value for each Resource Concept or Action Concept, as well as the Parameter

Concept’s name in the case of one. RAD descriptions should reference the vocabu-

lary’s concepts through these prefixes in order to increase the document’s maintainabil-

ity. Finally, relationships between Resource Concepts, and between Parameter

Concepts are specified under relationships key (Figure 3.3). Such relationships

11

Figure 3.3. Associated Schema.org based vocabulary: relationships

are normally those of a specific concept to its generalization, or between a collection of

concepts and its individual concepts. Vocabulary entities, through their relations to more

general and abstract concepts, form a tree, with http://schema.org/Thing at its

root.

3.2. RAD as a JSON document

This section presents an overview of the RAD metamodel implemented as a JSON

document. This document’s purpose is twofold: it must not only serve as documentation,

but it also must be machine readable. In Figure 3.4, fields which only serve as human-

targeted documentation are presented in italics (e.g. name for human-friendly names,

description for human-friendly descriptions, additional doc for links to further

documentation, and example with example values), and their presence is optional. Ad-

ditionally, semantic references from Resources, Methods and Parameters to their

12

name
baseURI
version
description
vocabulary
resources

URI pattern

name
reference
description
methods method

description
reference
additional_doc
required_params
parameters

responses

parameter

name
description
reference
type
example
minimun
maximun
default

response

description
headers
body

type
media
reference
properties
target
items

e.g.:"/v1/albums/{@musicAlbumIdentifier}/tracks"

	e.g.:"get"

	e.g.:"limit"

	e.g.:"200"

Figure 3.4. JSON implementation schema of RAD

corresponding concepts are done through the reference field, seen in blue in the fig-

ure. Further explanation of each portion of the JSON document will be accompanied by a

snippet of an example JSON description.

Figure 3.5 presents a snippet of the document at it’s highest level, including general

API information, as well as metadata regarding the description itself. Required keys at

this level are baseURI, version, vocabulary and resources. baseURI refers

to the invariable and common root portion of the URI preceding the resource’s unique

path (Webber, Parastatidis, & Robinson, 2010), version allows for API versioning,

13

Figure 3.5. Spotify Web API described as RAD-JSON: API, description
metadata, and resources

vocabulary specifies the unique name of the semantic vocabulary to be used across

this whole document, and the resources key lists the paths to all the API’s resources.

Resources listed in resources can have their URI formed by appending the key

upon which they are listed to the API’s baseURI. Semantic references to parameters in

the resource’s URI template itself can be annotated directly in the path by directly in-

cluding the relevant Parameter Concept’s prefix (see the /v1/users/{@user-

SpotifyIdentifier}/playlists resource in the example). Moving into a re-

source itself, two keys are mandatory: reference links the Resource in the activity

layer to its corresponding Resource Concept in the semantic layer, while methods

lists all available methods (e.g. GET, POST, DELETE, etc. for the HTTP protocol) avail-

able to be executed upon the resource.

Figure 3.6 explores the contents of a resource’s methods key. A method’s identifier

is used as the key (see HTTP ”get” and ”post” in the example). An individual method’s re-

quired keys are reference, required params, parameters, and responses.

Once again the reference links the Method in the activity layer to its corresponding

Action Concept in the semantic layer. The required params key determines all

14

Figure 3.6. Spotify Web API described as RAD-JSON: methods

possible parameter combinations that could be used to execute the method through the

evaluation of a logical expression (supporting AND, OR, XOR, and the use of parenthe-

sis). Finally parameters and responses keys list all the method’s parameters and

responses respectively.

Figure 3.7 explores the contents of a method’s parameters key, where all available

parameters for that method are listed. Each parameter is listed by the name it must have

in the request itself, and may be prepended by a symbol depending on their location in it:

’!’ for the header, and ’#’ for the body. If the parameter is present as a query parameter

no symbol is prepended, while if the parameter is part of the resource’s URI template it is

listed in the resource’s key and not in this section. The required keys for each parameter

are: reference which references the activity layer’s Parameter to its corresponding

semantic layer Parameter concept, and typewhich represents the parameter’s data

type (e.g. ”string”, ”integer”, ”boolean”, ”array”, etc.). A parameter’s value could also

have restrictions: enum indicates the list of values the parameter can take, default

states the value the parameter will take if it is not included in the request, and maximum

and minimum respectively limit the maximum and minimum values a number-based data

type parameter is allowed to have.

15

Figure 3.7. Spotify Web API with RAD in JSON: parameters

Lastly, Figure 3.8 explores the contents of a method’s responses key, where all pos-

sible responses for that method are listed. Each response is listed by a unique ID, which in

the case of the HTTP protocol would be its response code. The required keys in this case

are headers and body, both of which are arrays containing expectations of the response

header and body respectively. The body itself requires three keys: reference links a

resource’s representation in the activity layer to a corresponding Resource Concept

in the semantic layer, media specifies the response’s media type (currently limited to

application/json), and type states the data type of the information in the re-

sponse’s body. Accepted values for type are those defined by JSON Schema (i.e. string,

16

Figure 3.8. Spotify Web API with RAD in JSON: responses

integer, number, object, array, boolean, null), as well as hyperlink. The hyperlink value

requires an additional target key to indicate the URI of a referenced resource in the

response (Hypermedia Control).

3.3. RAD as a graph

RAD elements and their relationships are modeled as a single graph, presented in

Figure 3.9, which mimics the metamodel previously shown in Figure 3.1. Nodes and

edges stemming from the RAD Concept Vocabulary, form part of the metamodel’s

Semantic Layer, while all other graph elements stem from each service’s descrip-

tions, therefore belonging to the metamodel’s Activity Layer.

17

<<Activity Layer>>
Request <<Activity Layer>>

Resource

<<Activity Layer>>
Response

<<Semantic Layer>>
Resource Concept

<<Activity Layer>>
Representation

<<Activity Layer>>
Parameter

<<Semantic Layer>>
Parameter Concept

<<Semantic Layer>>
Action Concept

contains

uses

contains

isA

isA

contains

contains

contains

produces

Figure 3.9. RAD graph model

18

4. RAD-NLQ: NATURAL LANGUAGE REST RESOURCE DISCOVERY

4.1. RAD-based Service Discovery

As previously stated, the semantic layer presented in the RAD metamodel could con-

sist of a vocabulary, or even a full-fledged ontology. It is individually tied with the ac-

tivity layer through its resource, parameters, and the underlying method in the request.

In practice, this means that each Resource refers to a semantic Resource Concept,

each Parameter refers to a Parameter Concept, and each Method to an Action

Concept.

Given that resources, parameters, and methods are semantically annotated, a machine

can now make sense of the underlying business goal in a method executed over a resource.

For example, let’s consider the case of an API which allows users to rent apartments with a

resource /apartments/4 accepting HTTP POST requests. Not much information can

be extracted from this description, as the resource representing an apartment may not nec-

essarily has a self descriptive name, and a POST method could mean anything, including

buying, building, or renting the apartment. In a RAD description, the resource would be

referencing the https://schema.org/Apartment concept, and the POST method

would reference the https://schema.org/RentAction concept. Since both con-

cepts are unambiguously described in the Schema documentation, it is clear that by exe-

cuting a POST HTTP method over the /apartments/4 resource will allow us to rent

such apartment.

Now that we know the business goal associated to a method-resource pair (hypermedia

control), we may solve the reverse problem: to discover the resources and methods that

allow us to achieve a specific business goal. We understand a business goal as an Action

concept that has an effect on a Resource concept and is grounded through a set of

instances of method, resource, and parameter concepts, optionally restricted on how the

execution of the resulting request takes place.

19

With a resource concept (e.g. http://schema.org/MusicGroup), an action

concept (e.g. http://schema.org/FindAction/), and optionally one or more

parameter concepts (e. g. http://schema.org/MusicGroup/name/) we can

query the RAD graph. For instance, we can search for all the resources referencing

a given concept, that are affected by a given action, and optionally require the pres-

ence of certain parameter concepts. This query will return all the resources with the

corresponding methods that would allow us to achieve our business goal. For exam-

ple, to find out a music group by its name we shall search for methods described by a

http://schema.org/FindAction/ concept associated to resources described by

a http://schema.org/MusicGroup concept that accept parameters described by

a http://schema.org/MusicGroup/ name/ concept. Even though such search

query can be executed on the RAD graph, its expression is cumbersome: the user must

know in advance the syntax of the concept URLs, its meaning and the whole set of avail-

able concepts which requires out-of-band information (i.e. description documents, manu-

als, examples, etc.).

4.2. Supporting Natural Language Queries: RAD-NLQ

In this section we introduce RAD-NLQ, a framework allowing users to query the RAD

graph through natural language queries. Such queries allow users to discover the resources

and methods which achieve the business goal stated in the query. Two challenges that arise

from this approach need to be solved: the extraction of relevant query concepts, and the

matching of those query concepts with the appropriate concepts in the RAD vocabulary.

Based on the analysis of typical grammatical forms of user queries presented in (Barr et

al., 2008) (see excerpt in Table 4.1), we designed and implemented an algorithm to extract

concepts from a natural language search phrase (see Algorithm 1). Once a noun is found,

all adjectives directly preceding it and the nouns directly following it are extracted and are

considered as a Resource concept. Meanwhile, all verbs, and particles directly follow-

ing them, are extracted and considered as an Action concept. Finally, if a preposition

20

Algorithm 1 Pseudo-code of the concept extraction algorithm
Input: tagged words (an ordered list of the query’s words and their tags)
Output: The query’s extracted concepts, categorized by type

1: concepts ← An object containing three arrays that store resource concepts, action
concepts, and parameter concepts

2: tagged words← tagged words without apostrophes
3: i← 0
4: while i < length of tagged words do
5: tagged word← tagged words[i]
6: if tagged word.tag is a noun then
7: concept← tagged word.word
8: k ← i− 1
9: while k ≥ 0 do

10: k tagged word← tagged words[k]
11: if k tagged word.tag is not an adjective then
12: break
13: end if
14: concept← k tagged word.word+ ” ” + concept
15: k ← k − 1
16: end while
17: k ← i+ 1
18: while k < length of tagged words do
19: k tagged word← tagged words[k]
20: if k tagged word.tag is not a noun nor an adjective then
21: break
22: end if
23: concept← concept+ ” ” + k tagged word.word
24: i← k
25: k ← k + 1
26: end while
27: concepts.resources.add(concept)
28: else if tagged word.tag is a verb then
29: concept← tagged word.word
30: k ← i+ 1
31: while k < length of tagged words do
32: k tagged word← tagged words[k]
33: if k tagged word.tag is not a particle then
34: break
35: end if

21

Algorithm 1 Pseudo-code of the concept extraction algorithm (continued)
36: concept← concept+ ” ” + k tagged word.word
37: i← k
38: k ← k + 1
39: end while
40: concepts.resources.add(concept)
41: else if tagged word.tag is a preposition, i ≥ 0, and tagged words[i − 1].tag is

not a verb then
42: concept← null
43: k ← i+ 1
44: while k < length of tagged words do
45: k tagged word← tagged words[k]
46: if k tagged word.tag is a noun or an adjective then
47: if concept is null then
48: concept← k tagged word.word
49: else
50: concept← concept+ ” ” + k tagged word.word
51: end if
52: else
53: if concept is not null then
54: concepts.parameters.add(concept)
55: end if
56: concept← null
57: end if
58: i← k
59: k ← k + 1
60: if k = length of tagged words, and concept is not null then
61: concepts.parameters.add(concept)
62: end if
63: end while
64: end if
65: i← i+ 1
66: end while
67: if length of concepts.actions = 0 then
68: concepts.actions.add(”get”)
69: end if
70: return concepts

is detected, all nouns and adjectives following the same grammatical rules as those used

to extract Resource concepts are extracted as Parameter concepts. If at the end of the

22

execution no action concept is extracted, the default http://schema.org/GetAction/

(i.e. equivalent to HTTP GET) action concept is assumed.

Table 4.1. Typical grammatical structure of queries used by Web searchers
with a distribution based on a sample of 222 hand-labeled queries (Excerpt)

Grammatical Type Example Freq %
noun-phrase free mp3s 69.8%

URI http://answers.yahoo.com/ 10.8%
word salad mp3s free 8.1%
other-query florida elementary reading conference2006-2007 6.8%
unknown nama-nama calon praja ipdn 2.7%

verb-phrase download free mp3s 1.4%
question where can I download free mp3s 0.45%

RAD-NLQ inputs are verb phrases, that is, for the case of question-type queries, our

algorithm will remove the question portion and will treat the query as a verb phrase. Noun

phrases will be treated the same way as verb phrases, as if no action concept is found a

default ”get” action concept is assumed afterwards. Therefore, our approach supports a

71.65% of the query structures (see section 4.2 for a detailed explanation) used on Web

search engines. Other grammatical types are not supported since they are not appropriate

for API searches (i.e. ”URI” and ”unknown”), or the grammatical structure of the query

does not provide information regarding the expectations of the user (i.e. ”word salad”).

Once all relevant concepts have been extracted, a suitable match in the vocabulary

must be made for each one of them. Algorithm 2 presents our approach for implementing

such match. Each extracted query concept is matched against relevant concepts in the

vocabulary and a similarity score is calculated; those scores that pass a minimum threshold

are selected as suitable candidates to be matched with. Once all suitable candidates are

selected (resource concepts, action concepts, and optionally parameter concepts), they are

permuted. Each permutation is assigned a score, consisting on the aggregated score of each

of its candidate concepts. Once again, those scores that pass a threshold are considered as

the closest to the business goal stated in the initial query.

23

Algorithm 2 Pseudo-code of the concept permutation matching algorithm
Input: query, vocabulary
Output: permutations

1: q resource concept← The resource concept in the query
2: q action concept← The action concept in the query
3: q parameter concept← The resource concept in the query if any, else null
4: v resource concepts← All resource concepts in the vocabulary
5: v action concepts← All action concepts in the vocabulary
6: v parameter concepts← null
7: if q parameter concept is not null then
8: v parameter concepts← All parameter concepts in the vocabulary
9: end if

10: candidate resource concepts← []
11: candidate action concepts← []
12: candidate parameter concepts← []
13: for each rc candidate in v resource concepts do
14: rc candidate.score← concept similarity score between q resource concept and

rc candidate
15: if rc candidate.score ≥ resource concept score threshold then
16: candidate resource concepts.add(rc candidate)
17: end if
18: end for
19: for each ac candidate in v action concepts do
20: ac candidate.score ← concept similarity score between q action concept and

ac candidate
21: if ac candidate.score ≥ action concept score threshold then
22: candidate action concepts.add(ac candidate)
23: end if
24: end for
25: if q parameter concept is not null then
26: for each pc candidate in v parameter concepts do
27: pc candidate.score ← concept similarity score between

q parameter concept and pc candidate
28: if pc candidate.score ≥ parameter concept score threshold then
29: candidate parameter concepts.add(pc candidate)
30: end if
31: end for
32: end if

24

Algorithm 2 Pseudo-code of the concept permutation matching algorithm (continued)
33: permutations ← List of permutations of candidate resource concepts,

candidate action concepts, and candidate parameter concepts (if any)
34: for each permutation in permutations do
35: permutation score← multiplication of scores for all two or three (with parame-

ter concept) concepts
36: if permutation score < concept permutation score threshold then
37: delete permutation from permutations
38: end if
39: end for
40: return permutations

25

5. IMPLEMENTATION

5.1. RAD-QL: an API to query the RAD graph

In order to offer an simple interface to query the RAD graph we created RAD-QL

as a query language-like API which enables the traversal of the RAD graph. RAD-QL

can currently answer 10 different types of queries, such as obtaining all necessary ele-

ments to execute a successful REST API call, obtaining the most similar concepts in the

Semantic Layer to a given input, and obtaining all Operation nodes directly re-

lated to a given Resource Concept and Action pair.

5.2. System overview

Our implementation architecture is presented in Figure 5.1. We store the RAD graph

instance in a Neo4J 3.01 graph database. The database is accessed solely by rad-core,

a module written in Python 32 which provides an API to query the RAD graph. Two

modules, also written in Python3, populate the graph: vocabulary-parser parses

our vocabulary JSON document and adds the Semantic Layer to the graph; while

json-description-parser processes each RAD JSON document and adds the ser-

vice to the graph, creating the respective Activity Layer nodes in the graph, and linking

them to the Semantic Layer.

The query-enginemodule is the only access point for end users to query the graph,

and as such it is the main module concerning this thesis. It (1) suggests RAD-QL queries

based on input parameters, (2) processes and answers RAD-QL queries, and most impor-

tantly (3) can suggest RAD-QL queries based on natural language queries. This module

was developed using Python3, using the Natural Language Toolkit’s (NLTK)

1Neo4J https://neo4j.com/
2Python 3.x documentation https://docs.python.org/3/

26

rad-coreNeo4J

json-
description-
parser

vocabulary-
parser

query-
engine web-app

Figure 5.1. RAD-NLQ System UML Component Diagram

3 PorterStemmer 4, as well as the standard Part-Of-Speech tagger pos tag and tok-

enizer word tokenize functions to process the input phrase. Once the input phrase has

been analyzed, and the key concepts and actions have been extracted, each of them is com-

pared to existing concepts in the RAD graph’s semantic layer using the UMBC Semantic

Similarity service5 (Han, Kashyap, Finin, Mayfield, & Weese, 2013). Finally, entities are

found and replaced using the Dandelion API6.

Finally, the web-app module is a Web application available at http://rad.ing

.puc.cl/demo/query, and screenshots can be seen in Figure 5.2 and Figure 5.3. This

application allows users to consume all three functionality provided by the query-engine.

Depending on the query, the user will receive an interactable response in the form of: (1)

a suggested RAD-QL query to execute, (2) a subgraph of the RAD graph which can be

3Natural Language Toolkit (NLTK) http://www.nltk.org/
4Porter Stemmer https://tartarus.org/martin/PorterStemmer/
5UMBC Semantic Similarity service http://swoogle.umbc.edu/SimService/index.html
6Dandelion API https://dandelion.eu/

27

Figure 5.2. Screenshot of the RAD-NLQ interface in the Web application:
query input

traversed, or (3) a link. For further explanation and screenshots of this module see Ap-

pendix A. This module was developed with the Express7 framework over Node.js8 and

AngularJS9, and graphs are rendered using vis.js10.

7Express http://expressjs.com/
8Node.js https://nodejs.org/en/
9AngularJS https://nodejs.org/en/
10vis.js http://visjs.org/

28

Figure 5.3. Screenshot of the RAD-NLQ interface in the Web application:
query graph response

29

6. EVALUATION

6.1. Vocabulary and API Dataset

In order to evaluate our proposal we chose to use real, industry-standard Web APIs.

Selected APIs had to adhere to REST’s constraints as much as possible, provide a compre-

hensive documentation website, and their business domain should be somewhat related.

Due to the nature of the Web APIs we found, we were forced to relax our criteria regarding

some of REST’s constraints. A total of six Web APIs were selected:

(i) Foursquare1: Provides read and creation methods to it’s directory of venues

and their events resources, as well as a user’s private profile and lists.

(ii) Google Travel Partner2: Only two out out of ten resources were included in

our example: (1) the Hotels API 2.03 provides programmatic access to a user’s

hotel list feed, and (2) the Prices API 2.04 allows users to query pricing

and itinerary data for a given hotel.

(iii) Songkick5: Provides access to its live music database, including past and

upcoming concerts, artist search and suggestion, and concert setlists.

(iv) Spotify6: Provides access to its music streaming service’s catalog, including

artists, albums, playlists, and tracks.

(v) Taxi Fare Finder7: Allows a user to get an fare estimate for a given taxi

ride, retrieves a list of registered taxi companies in a given city, and

searches for supported cities.

1Foursquare API https://developer.foursquare.com/docs/
2Google Travel Partner’s API https://developers.google.com/hotels/hotel-ads/api
-reference/
3Google Travel Partner’s Hotel API https://developers.google.com/hotels/hotel-ads/
api-reference/hotels-api-v2
4Google Travel Partner’s Prices API https://developers.google.com/hotels/hotel-ads/
api-reference/prices-api-v2
5Songkick API http://www.songkick.com/developer
6Spotify API https://developer.spotify.com/web-api/endpoint-reference/
7Taxi Fare Finder API https://www.taxifarefinder.com/api.php

30

(vi) Uber8: Allows users to obtain information and estimates of Uber

rides as well as cancel requested Uber rides. It also provides access to a

user’s profile and history, as well as the ability to retrieve all available

products for a user.

These Web APIs were described by a RAD JSON document as described in section 3.2

and then parsed into the RAD graph presented in section 3.3. Table 6.1 presents a general

overview of the resulting graph. Table 6.2 details the vocabulary subgraph composition,

and Table 6.3 details the activity layer nodes by API. Finally, Table 6.4 details the use of

distinct semantic layer concepts across all APIs.

Table 6.1. Nodes and edges in the graph database

Nodes Edges
Vocabulary 405 463
Foursquare 612 1174

Google Travel Partner 29 50
Songkick 318 579
Spotify 611 1189

Taxi Fare Finder 47 82
Uber 175 304
Total 2197 3841

Table 6.2. Vocabulary subgraph composition

Concept Type Distinct Elements
Resource Concepts 106

Actions 11
Parameter Concepts 299

6.2. Input Query Dataset

We consider a use case to be a combination of one Resource Concept, one Action Con-

cept, and optionally one Parameter Concept, with a clear underlining business goal. In

8Uber API https://developer.uber.com/docs/riders/references/api

31

Table 6.3. Activity layer nodes

API Resources Methods Parameters Responses Representations
Foursquare 12 12 562 13 13

Google Travel Partner 2 2 21 2 2
Songkick 15 15 260 15 13
Spotify 20 27 513 28 23

Taxi Fare Finder 3 3 35 3 3
Uber 10 11 129 15 10
Total 62 70 1520 76 64

Table 6.4. Use of distinct semantic layer concepts

API Resource Concepts Actions Parameter Concepts
Foursquare 8 4 120

Google Travel Partner 2 1 17
Songkick 10 3 38
Spotify 13 9 63

Taxi Fare Finder 3 2 21
Uber 9 3 46

order to create a testbed we defined the vocabulary of concepts from the APIs documenta-

tion. That is, we retrieved all documentation websites for each RAD-indexed resource and

each API, and extracted relevant keywords to act as Resource Concepts, Action Concepts,

and Parameter Concepts. A total of 42 unique use cases were formed though this process.

In order to eliminate bias in the grammatical construction of the input search query

phrases used in our evaluation, we automatically generated such phrases. In subsection

4.2 we analyze how and why our concept extraction algorithm supports a 71.65% of user

query’s grammatical compositions across web search engine users through the direct sup-

port of only one of them: verb phrases. Therefore, we created the SimplePhraseTransform
9 tool for generating phrases based on simplified grammatical rules constructed out of part-

of-speech tags used in the Penn Treebank Project10. Our input set consists of a total of 128

9SimplePhraseTransform’s Source Code https://github.com/rad-lab/simple-phrase
-transform
10Penn Treebank Project https://www.ling.upenn.edu/courses/Fall 2003/ling001/
penn treebank pos.html

32

queries generated out of the original 42 use cases, and its composition can be viewed in

Table 6.5.

Table 6.5. Composition of our input dataset of 128 queries. RC: Resource
Concept, A: Action, PC: Parameter Concept, E: Entity

Query Type Example Freq %
RC + A search for venues 73.44%

RC + A + PC search for venues by their name 19.53%
E + A get U2’s upcoming events 7.03%

6.3. Evaluation Criteria

We evaluated our model through the direct comparison of our system versus the Google

search engine using as input the same automatically generated natural language phrase-

queries, since all other API repositories search engines listed in section 2.2 do not support

this kind of search queries. For a proper comparison, we used a similar rating criteria for

the search results of both systems (our approach and the Google search engine). We also

restricted the Google search domain to the API’s documentation through the use of the

’site:’ command in order to eliminate results from sources not in the dataset. Equation 6.1

defines our ranking score based on the position of the item in the response (the higher

the rank, the lower the value). Equation 6.2 defines a correctness score based on

the content of the response: we consider that a partial answer for a query only includes

some of the expected items in the response, while a tangential answer satisfies the query

goal through the execution of an indirectly related action and resource (e.g. obtaining a

price estimate for the taxi by canceling the request itself).

ranking score(ranked position) =1.1− 0.1 ∗ ranked position if 1 6 ranked position 6 10

0 else

(6.1)

33

correctness score(content) =

1 if the response content directly answers the query

0.8 if the response content partially answers the query

0.5 if the response content tangentially answers the query

0.2 if the response content has a link to the query’s answer

0 if the response content does not answer the query

(6.2)

We also consider the concept extraction score (Equation 6.3) which is ap-

plied only to the RAD-NLQ system. This score measures the ability of the system to use

all possible concepts present in the input to form a RAD-QL query. We also define the

hit score (Equation 6.4) which is applied only to the Google search engine results.

This score measures the content of each link according to the number of relevant elements

in the target Web page (e.g. a single URL documenting all the APIs resources will score

lower than a URL that targets a specific resource directly related to the answer).

concept extraction score(used concepts, total concepts) =
used concepts

total concepts
(6.3)

hit score(number of elements) =
1

number of elements
(6.4)

Finally, we defined the performance scores for RAD-NLQ (Equation 6.5) and the

Google search engine (Equation 6.6). These scores will be directly compared in the next

section (higher is better).

34

rad nlq score(responses) =
∑

r∈responses

(rankingscore(ranked positionr)

× correctness score(contentr)

× concept extraction score(used conceptsr, total conceptsr)) (6.5)

google score(responses) =
∑

r∈responses

(ranking score(ranked positionr)

× correctness score(contentr)

× hit score(number of elementsr)) (6.6)

6.4. Results

An overview of the results of our evaluation are presented in Table 6.6, and a histogram

of the result’s scores can bee observed in Figure 6.1. At a first glance we see that queries

including entities instead of concepts are all successfully resolved by RAD-NLQ, while

the Google search engine is unable to correctly answer these queries. Additionally, queries

which have a parameter as a restriction are much more reliably answered by RAD-NLQ.

Further inspection on queries where RAD-NLQ was outperformed by Google reveals

some limitations of our system. On 7 queries (25.92%) RAD-NLQ performed correctly,

averaging a respectable score of 0.65; Google, on the other hand, did not only offer the

required link in one of its top ranks, but also delivered a link to the APIs documentation

homepage which included a link to the resource documentation. Thus, it obtained a higher

score though it did not provide new information but redundant information. Another 9

failed queries (33.33%) are related to use cases solely involving complex resources without

a unique concept representing them, but rather a collection of parameter concepts. Such

35

Table 6.6. Evaluation results. RC: Resource Concept, A: Action, PC: Pa-
rameter Concept, E: Entity

Success frequency by system (%)
Query Type RAD-NLQ Draws Google Total

RC + A 67 (52.34%) 4 (3.13%) 23 (17.97%) 94 (73.44%)
RC + A + PC 20 (15.63%) 1 (0.78%) 4 (3.13%) 25(19.53%)

E + A 9 (7.03%) 0 (0.00%) 0 (0.00%) 9 (7.03%)
Total 96 (75.00%) 5 (3.91%) 27 (21.09%) 128 (100%)

is the case of Google Travel Partner’s Price11 resource which offers a given hotel’s pricing

and itinerary data, as well as Foursquare’s Venue Hours12 resource which offers exclusively

a given venue’s opening and popular hours. In both cases there is no clear underlying

concept for them, and as such, our concept matching performs poorly. In all other 11

failed cases (40.74%), the problem can be traced to correctly extracted concepts failing to

match concepts in our vocabulary.

11Google Travel Partner’s Prices API https://developers.google.com/hotels/hotel
-ads/api-reference/prices-api-v2
12Foursquare API’s Venue Hours resource https://developer.foursquare.com/docs/
venues/hours

36

Figure 6.1. Result’s score histogram for RAD-NLQ and the Google Web
Search Engine

37

7. CONCLUSIONS

In this thesis we offer further validation of the RAD description metamodel for REST

APIs, which is capable of representing well-known real Web APIs. RAD is able to suc-

cessfully support most common practices in Web API design, including a lightweight

model of resources, methods, required parameters and their data type and location in the

request (i.e. URL, header, or body), and all responses as well as their parameters.

This thesis also offers further validation of the metagraph derived from the metamodel.

The metagraph allows for the discovery of services at a resource-method pair level in order

to achieve a given business goal. This metagraph also allows flexibility on its implemen-

tation: we have shown in this thesis the use of a graph database and the Schema.org dic-

tionary as our semantic layer, but any other graph-based approach is supported, including

a full-fledged RDF-based ontology as the semantic layer.

Most importantly, this thesis is proof that the RAD metamodel and metagraph allow for

the discovery of services at a resource-method pair level through Web search engine-like

natural language phrase queries. We have presented a framework able to support natu-

ral language beyond industry-standard keywords, but rather phrases, which successfully

outperforms Google’s Web search engine in most Web API discovery use cases.

An important advantage of our proposal is that the description constitutes a separate

layer not only from the semantic layer itself, but also from the implementation of the API:

the RAD description has no effect over data exposed by the API, its functionality, and the

supported media types (e.g. JSON, XML, YAML, HTML, etc.). An important disadvan-

tage stems from this: the description is tightly coupled to the API’s implementation. By

allowing the description to be flexible and not having an effect on the implementation,

coupling occurs the other way around, where any change on the API must be reflected

on its documentation, decreasing service evolvability. Considering most APIs maintain

a documentation website anyways, this coupling could be maintained, and not increased,

38

through the generation of the documentation website itself from its RAD description doc-

ument.

Another limitation appears when analyzing real industry-level Web API’s design: though

common Web API design practices are supported, special cases exist. As discussed in sec-

tion 6.4, not all resources have a clear underlying concept to be represented by, but rather

a collection of loose parameters. Another case we encountered is when the the presence

or value of a parameter directly changes the concept representing the URL. Both cases

are an inconvenience in our our discovery efforts, and though they could be attributed to

problems in the API’s design, these cases occur in well-known Web APIs, and should be

acknowledged.

Additionally, the quality and precision of our concept matching process results are

limited by the the complexity and completeness of the semantic layer in use. In this

theses we based our semantic layer on the Schema.org vocabulary, but ontologies and

other graph-based solutions could also be used. A semantic layer with more detailed

and complete relationships could be exploited in order to obtain more precise results than

those shown in this thesis. This would significantly increase the solution’s complexity, as

the underlying algorithm for the concept matching process would have to be specifically

tailored for each variation of the semantic layer.

As of future work, we will focus on improving RAD-NLQ’s results through the use of

an ontology over the Schema.org vocabulary approach, allowing us to make use of more

complex relationships between concepts. We also aim to improve our concept similarity

process which is directly linked from the previous goal. Finally, we look forward on sup-

porting both border case limitations previously discussed, through the support of virtual

one-time-use concepts composed by loosely coupled parameters.

39

REFERENCES

Adida, B., Birbeck, M., McCarron, S., & Pemberton, S. (2008, September). RDFa in

xHTML: Syntax and processing a collection of attributes and processing rules for extend-

ing xHTML to support RDF (Tech. Rep.). World Wide Web Consortium.

Alarcón, R., Saffie, R., Bravo, N., & Cabello, J. (2015). REST web service description for

grpah-based service discovery. In Engineering the web in thee big data era (pp. 461–478).

Springer.

Alarcón, R., & Wilde, E. (2010, April). RESTler: crawling RESTful services. In Proceed-

ings of the 19th international conference on World Wide Web (pp. 1051–1052). ACM.

Barr, C., Jones, R., & Regelson, M. (2008, October). The linguistic structure of English

Web-search queries. In Proceedings of the conference on empirical methods in natural

language processing (pp. 1021 – 1030). ACM.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H., . . .

Winer, D. (2000, May). Simple Object Access Protocol (SOAP) 1.1 (Tech. Rep.). World

Wide Web Consortium.

Chinnici, R., Moreau, J., Ryman, A., & Weerawarana, S. (2007, June). Web Services

Description Language (WSDL) version 2.0 part 1: core language (Tech. Rep.). World

Wide Web Consortium.

Fielding, R. (2000). Architectural styles and the design of network-based software archi-

tectures (Unpublished doctoral dissertation). University of California, Irvine.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T.

(1999, June). Hypertext Transfer Protocol – HTTP/1.1 (Tech. Rep.). Internet Engineering

Task Force.

40

Gunasri, R., & Kanagaraj, R. (2014). Natural language processing and clustering based

service discovery. International Journal of Scientific & Technology Research, 3(4), 28–

31.

Hadley, M. (2009, August). Web Application Description Language (Tech. Rep.). World

Wide Web Consortium.

Han, L., Kashyap, A., Finin, T., Mayfield, J., & Weese, J. (2013). UMBC EBIQUITY-

CORE: Semantic textual similarity systems. In Proceedings of the second joint conference

on lexical and computational semantics. Association for Computational Linguistics.

John, D., & Rajasree, M. (2013). RESTDoc: Describe, discover and compose RESTful

semantic web services using annotated documentations. International Journal of Web &

Semantic Technology, 4(1), 37–49.

Kelly, M. (2016, May). JSON hypertext application language (Tech. Rep.). Internet

Engineering Task Force.

Khare, R., & Çelik, T. (2006). Microformats: a pragmatic path to the semantic Web. In

Proceedings of the 15th international conference on world wide web (pp. 865–866).

Kopecky, J., Gomadam, K., & Vitvar, T. (2008). An HTML microformat for describing

RESTful web services. In International conference on web intelligence and intelligent

agent technology.

Lakshmi, D., & Dhas, J. (2013). An user-friendly and improved semantic-based web ser-

vice discovery approach using natural language processing techniques. International Jour-

nal of Innovative Research in Computer and Communication Engineering, 1(10), 2435–

2442.

Lanthaler, M., & Gütl, C. (2013). Hydra: A vocabulary for hypermedia-driven web APIs.

In Proceedings of the 6th workshop on linked data on the web at the 22nd international

world wide web conference.

41

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). SA-REST and (s)mashups: Adding se-

mantics to RESTful services. In Proceedings of the international conference on semantic

computing (pp. 469 – 476).

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., . . . Sycara,

K. (2004, November). OWL-S: Semantic markup for web services (Tech. Rep.). World

Wide Web Consortium.

Saffie, R. (2016). Towards automatic service composition in REST (Unpublished master’s

thesis). Pontificia Universidad Católica de Chile.

Sangersa, J., Frasincara, F., Hogenbooma, F., & Chepeginb, V. (2013). Semantic web

service discovery using natural language processing techniques. Expert Systems with Ap-

plications, 40(11), 4660–4671.

Spink, A., Jansen, B., Wolfram, D., & Saracevic, T. (2002). From e-sex to e-commerce:

Web search changes. IEEE Computer, 35(3), 107–109.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., & Lindström, N. (2014, January).

JSON-LD 1.0-a JSON-based serialization for linked data (Tech. Rep.). World Wide Web

Consortium.

Verborgh, R., Steiner, T., Deursen, D. V., Roo, J. D., de Walle, R. V., & Gabarró, J. (2011).

Description and interaction of RESTful services for automatic discovery and execution.

In Proceedings of the FTRA 2011 international workshop on advanced future multimedia

services.

Verborgh, R., Steiner, T., Deursen, D. V., Roo, J. D., de Walle, R. V., & Gabarró, J. (2013).

Capturing the functionality of Web services with functional descriptions. Multimedia tools

and applications, 64(2), 365–387.

Webber, J., Parastatidis, S., & Robinson, I. (2010). REST in practice: Hypermedia and

systems architecture. O’Reilly Media, Inc.
42

APPENDIX

43

A. WEB APPLICATION SCREENSHOTS

This appendix details the user’s flow throughout the Web Application described in

Chapter 5 when discovering resource.method pairs through natural language phrase

queries. The demostration presented in this appendix is available at rad.ing.puc.cl/demo/query.

Figure A.1. RAD-NLQ: User’s natural language phrase input

Figure A.1 presents the data input field for the Web Application. A total of 3 queries

modes are supported: Natural language, RAD-QL, and Query Suggestion. The first mode

is selected and allows the user to input a natural language phrase query in the query box

(e.g. ”get a concert’s setlist”). The former 2 modes will be explained further ahead.

The response to the natural language query submitted in Figure A.1 is presented in

Figure A.2. The response contains a list of RAD-QL queries containing the extracted

concepts from the input query, ranked by the amount of extracted concepts out of the

total are used to form each RAD-QL query (the numbers on the right). Each RAD-QL

query in the response is interactable, and upon clicking one the query is inputted into the

query box and the query mode is switched to RAD-QL. Figure A.3 presents this scenario

when selecting the suggested highest-scored RAD-QL query which allows us to discover

resources and methods involving the specified resource and action concepts.

44

Figure A.2. RAD-NLQ: Concept extraction from user’s input

Figure A.3. RAD-NLQ: RAD-QL query to discover resource-method
pairs with the extracted concepts

Figure A.4 presents the response to the query inputted in Figure A.3. A ranked list

of interactable method node IDs are presented, as they serve as they are unique to a

resource-method pair, as a single method node can only be associated to a single

resource node. Each ID is accompanied buy a number (≥ 0, ≤ 1) on the right repre-

senting how well the execution of that resource-method pair answers the RAD-QL

query.

Upon selecting the best-ranked method node ID, the Query suggestion query mode

is selected and the ID is added to the list. This mode allows users to find RAD-QL queries

based on the type of parameters they have, alongside filling the returned query’s template

45

Figure A.4. RAD-NLQ: Ranked method node IDs linked to the extracted
concepts

Figure A.5. RAD-NLQ: Obtaining RAD-QL query suggestions for the se-
lected method node ID

with the stated value for each parameter. This can be seen in Figure A.6, where a list

of RAD-QL queries is presented which use the given parameters, alongside a number by

which they are ranked representing the proportion of parameters used to form the query.

Finally, upon executing the only RAD-QL query returned in Figure A.6, which aims

to retrieve the workflow for the method node’s ID, an interactable graph is returned. This

graph is a subgraph of the RAD graph, and presents the method node, alongside its asso-

ciated resource, parameters, and responses, as well as all relationships between

46

Figure A.6. RAD-NLQ: RAD-QL queries suggested for the given
method node ID

them. All nodes and edges can be selected in order to view more detailed information

about them. Additionally, all nodes can be directly added into the Query suggestion query

mode as parameters, allowing users to continue exploring the RAD graph.

47

Figure A.7. RAD-NLQ: Interactive graph detailing the workflow for the
given method node

48

