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ABSTRACT 

  

Dynamic process modeling is a discipline increasing its participation in industrial 

solutions, nowadays playing part in a several industries for control and prediction 

purposes in production processes. The correct use of these models depends on parameter 

estimation; a necessary task for these tools to represent closely a given system. 

However, enough high-quality data is not always available to carry out this work; scarce 

sample availability, inadequate sampling times, and high amounts of noise are common 

conditions impairing dynamic parameter estimation in most calibration procedures. The 

above may lead into serious difficulties during parameter estimation leading into 

inappropriate calibrations; if this is the case, highly non-linear models will tend to 

instability, thus, failing at generating reliable predictions. Therefore, a method to 

guarantee reliable calibrations when limited data is at hand is necessary if industrial 

application of these models is sought. In this work, a new method for robustness-guided 

model reparametrization was developed in collaboration with the Center for Research 

and Innovation at Viña Concha y Toro to support model calibration. As a case study, 

alcoholic fermentation models of Cabernet Sauvignon wines were recalibrated and 

improved using the proposed framework. To this task, wine fermentations were 

conducted in laboratory and pilot scale reactors, monitoring changes in the main 

metabolites implied in this process by using spectrophotometry. Subsequently, using 

laboratory-scale data, the developed method was applied to select the model structure 

that best adapted to the available data, which was then validated using pilot-scale data. 

By implementing this reparametrization strategy, significant improvements in prediction 

quality and consistency were achieved, leading into higher prediction fidelity.  

 

 

Keywords: Batch fermentation, robust control, winemaking, systems biology, predictive 

model
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RESUMEN 

 

El uso de modelos basados en primeros principios es una disciplina que cada día se 

inserta más dentro de aplicaciones industriales, validando su uso para tareas relacionadas 

al control y predicciones en procesos productivos. Para el correcto uso de estos modelos, 

siempre debe de llevarse a cabo una estimación dinámica de parámetros, de modo que 

estas herramientas representen de manera realista un sistema a caracterizar. Sin 

embargo, no siempre se tiene una cantidad suficiente de datos de alta calidad para 

realizar esta labor; la estimación de parámetros de modelos biológicos se caracteriza por 

una baja disponibilidad de muestras, desconocimiento de tiempos de muestreo 

adecuados, y altos niveles de ruido en las mediciones. La prevalencia de las anteriores 

dificultades en datos de diferentes escalas experimentales suele resultar en calibraciones 

inapropiadas, donde modelos altamente no-lineales e inestables tienden a generar 

predicciones poco confiables. En esta línea, un método para garantizar la confiabilidad 

de una calibración se hace necesaria si se busca una implementación industrial de estos 

modelos. En este trabajo llevado a cabo en el Centro de Investigación y Desarrollo de 

Viña Concha y Toro, se desarrolló un novedoso método de reparametrización de 

modelos guiada por indicadores de robustez para apoyar la tarea de la calibración de 

estos. Este procedimiento fue aplicado al mejoramiento de modelos de fermentación 

alcohólica de vinos Cabernet Sauvignon. Se llevaron a cabo fermentaciones en reactores 

a escala laboratorio y piloto, donde mediante espectrofotometría se realizó seguimiento 

sobre los principales metabolitos involucrados en este proceso. Posteriormente, 

utilizando los datos escala laboratorio, se utilizó el método desarrollado para seleccionar 

la estructura de modelo que mejor se adaptase los datos disponibles, siendo finalmente 

validado en la escala piloto. El método permitió obtener modelos más confiables que 

mejoraron significativamente la precisión y consistencia de sus predicciones. 

 

Palabras Claves: fermentación batch, Control robusto, enología, biosistemas, modelos 

predictivos 
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1. INTRODUCTION 

1.1 Motivation 

1.1.1 Mission of Concha y Toro’s Center for Research and Innovation  

This thesis is a product of a co-development work, where the collaborators were 

the Pontificia Universidad Católica de Chile and the Center for Research and 

Innovation (CRI) at Viña Concha y Toro. CRI is an institution conceived by the 

changes and new challenges presented by the global wine industry during the last 

years. CRI’s mission is to integrate real industry solutions based on applied 

investigation, innovation, and technology transfer to promote Concha y Toro’s 

productive excellence and sustainability, aiming to impact the national and 

international wine industry. According to CRI’s Strategic Plan for Research and 

Development (2016-2020), five research areas have been defined given their 

importance over the productive chain of the company. These areas are: i) 

Strengthening of the vegetal production area; ii) Management of hydric and scarce 

resources; iii) Quality index for grapes and wines (QI); iv) Instrumentation, 

automation, and insertion of TI (IAI); v) New products design. Each area has its 

own associated development team and associated projects, where challenges are 

approached interdisciplinarily. 

 

1.1.2 CORFO R+D+i project portfolio 

Regarding the objective of this thesis, teams from strategic areas QI and IAI have 

been designated to lead a series of projects that are part of an R+D+i project 

portfolio sponsored by CORFO and Concha y Toro since 2017. This portfolio 

consists in a total of four sub-projects (Figure 1-1): Prototype, R+D1, R+D2, and 

Validation and Packaging (VP). Though presenting different specific objectives, 

all the previous sub-projects aim to a sole final purpose, which is the creation of a 
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digital platform for the management of grape and wine quality named 

SmartWinery. The SmartWinery platform intends to present itself to oenologists as 

an instrument for the maximization of efficiency during wine processing decision-

making, ultimately looking for an overall increase in profit per liter of wine 

produced. The last also includes aiding wine professionals in the adaptation to 

seasonal changes affecting winemaking (such as climatic change), which 

represents one of the major challenges in this industry nowadays (Fraga, 2020). To 

accomplish its main purpose, the SmartWinery platform approaches the 

multifactorial problem that characterizes the production of wine focusing in 

optimizing management and resource use during processing. Specifically, this 

production optimization involves looking into each link in the company’s 

productive value chain, supporting decision-making from its initial stages, where 

fruit is received and classified, until the final stage, where wine is bottled. Here, 

decrease of the frequency of wine reclassification (i.e., wine originated from high-

quality grapes being downgraded in quality terms given an inefficient processing), 

use of fermenters optimization for productivity increase while reducing operational 

costs, upholding wine quality consistency, among others, are some of the 

objectives supporting the SmartWinery’s development. All these objectives are 

approached in an interdisciplinary way, where knowledge fields such as process 

engineering, data science, agronomy, biotechnology, among many others, meet to 

guide the development of this new technology. 

 

To ensure that these objectives are fulfilled, two main modules make up the 

SmartWinery, which are addressed in sub-projects R+D1 and R+D2, while sub-

project Prototype involves mounting the previous modules in a digital 

infrastructure to generate a Minimum Viable Product (MVP). Posteriorly, this 

MVP is furtherly rectified and enhanced as part of sub-project VP. A brief 

explanation for each subproject is given in the following subsections. 
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Figure 1-1. Structure of R+D+i portfolio being developed by the QI and IAI teams 

at CRI.  

 

1.1.3 Sub-project R+D1 

Regarding the sub-project R+D1, its main objective is the creation of a module for 

wine quality evaluation; a complex task given the difficulty to define what is 

“good quality” in quantitative terms during winemaking, as there is no clear 

relationship between many of wine’s attributes and its acceptance (Brossard et al., 

2016; Dinnella et al., 2011). To do so, a combination involving wine 

characterization using advanced laboratory techniques to detect chemical markers 

(mainly spectrophotometry), expert-panel guided wine tasting and evaluation, and 

application of sophisticated data analysis and metanalysis techniques are joined 

together in the quest of defining which chemical markers are correlated with the 

concept of “high-quality” in winemaking. If the above is accomplished, then there 

would be a rational way to qualify the wines produced in Concha y Toro’s 

wineries, thus, implying that an optimal composition of this beverage is possible to 
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define, ultimately fulfilling the purpose of guiding wine production towards 

maximum-quality. 

 

1.1.4 Sub-project R+D2 

Subproject R+D2 aims to the creation of a wine processing simulator. Specifically, 

this is being focused on characterizing and predicting changes occurring in wine 

fermenters during the Alcoholic Fermentation (AF) process, showing how the 

main metabolites of the fermenting wine change throughout the process in 

function of the external inputs associated on how reactors are being operated. To 

do so, properly calibrated first principles-based modeling (FPM) is employed by 

applying sets of differential and algebraic equations (DAE) representing mass and 

energy balances in the system. In this context, many AF models are available to 

accomplish the previous task; however, these represent generic approaches to the 

vinification process, existing many factors involved in the outcome of this process 

(e.g., grape composition, yeast genetics, among others), which are typically unique 

for each productor. The above involves that, whichever model is selected for 

process simulation, a proper calibration is imperative, as this procedure will be 

able to capture the effect of factors affecting a vinification procedure, 

consequently guaranteeing its adequate representation by the model. In the context 

of the SmartWinery platform, well-mixed wine AF models (discussed in section 

1.2) have been calibrated and implemented in the platform using data from 

laboratory-scale fermentations. However (and serving as purpose to this thesis), 

there is still space to enhance these models, which still require a further validation 

in larger process scales. Sections 1.2 and 1.3 give greater detail about the concepts 

inquired to address the last situations, while chapter 2 gives a detailed summary 

about work performed to accomplish them.  
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1.1.5 Sub-project Prototype 

Subproject Prototype focuses on the creation of the digital platform serving as 

MVP of SmartWinery, designed to implement the modules generated from sub-

projects R+D1 and R+D2. Here, collaboration with the different vineyards and 

wineries belonging to the Concha y Toro company, and incorporation of IIOT 

technologies, aim to predict the behavior of industrial fermentations throughout 

processing, as well as concentration of tannins and anthocyanins in finished wines; 

widely used as quality assessment indices in this industry (Holt et al., 2008; Ma et 

al., 2014; Singleton & Trousdale, 1992). The modules by themselves accomplish a 

specific task at simulating, predicting, and characterizing the wine production 

process; however, their true potential relies on what occurs when they are suitably 

combined. As shown in Figure 1-2, it is possible to communicate each of these 

modules so that the information flow is established systematically between each of 

the SmartWinery’s functionalities.  

 

 
 

Figure 1-2. SmartWinery’s global structure, information flow, and modules with 

their corresponding sub-projects. 

 

 

 



15 

  

A configuration with these characteristics, supported by an adequate digital 

infrastructure (Figure 1-3), are the fundamental building blocks to generate a 

digital twin, i.e., a virtual representation of an object or system that spans its 

lifecycle, is updated from real-time data, and uses simulation, machine learning 

and reasoning to help decision making (Armstrong, 2020). Given their enabling 

features and great versatility, digital twins represent a trailblazing technology, 

promising extreme usefulness if smartly used. This has already been proven in 

other industries, especially in those aiming towards smart manufacturing (Tao et 

al., 2019). Considering the above, a major impact over the winemaking industry is 

expected with the creation and implementation of digital twins of wine fermenters, 

which, by using modelling and live measurements, can be employed for 

optimization in a new and further extent; thus, enabling to accomplish the 

previously stated objectives supporting the SmartWinery’s development. 

 

 
 

Figure 1-3. The seven layers of IIOT infrastructure involved with standard 

application and digital twin design practices. Taking SmartWinery as an example, 
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fog-level layers include sensors, controllers, and actuators installed in fermentation 

tanks. The Cloud layer refers to those technologies used for storage of big amounts 

of data (servers), while Big-Data layers are those associated to the different 

computational tools used for modeling and prediction generation. Finally, the 

Business-value layers include technologies for automatically 

consuming/processing information of the previous layers, overall aiming to aid in 

decision-making in wine fermentation management. Adapted from Luna et al., 

(2020). 

 
 

1.1.6 Sub-project VP  

Sub-project VP sustains from the other sub-projects, as its main objective is the 

evaluation, integration, and further application of the SmartWinery platform in 

industrial fermentations for its validation. The above includes the improvement 

over the re-design and extension of the TI structure of SmartWinery, 

implementation of the digital platform into more wineries in the company, 

enhancement and extension of functionalities involving models developed in 

subprojects R+D1 and R+D2, techno-economical evaluation of the modules in the 

SmartWinery, among others. All the activities mentioned above were performed 

mainly in direct collaboration with staff working at Lourdes winery from Concha y 

Toro, where the implementation of IIOT hardware, as well as SmartWinery’s 

software were conducted to make the above possible. Here, several industrial-scale 

wine fermenters were adapted to a series of digital technologies (web applications, 

sensors, among others) and coupled to the SmartWinery, to finally be managed 

and evaluated by oenologists from this establishment. Also, the CRI experimental 

winery was included in this assessment, where the same methodology was 

implemented in pilot-scale fermenters for performance evaluation of the 

SmartWinery.  

 



17 

  

As the readers may infer from previous subsections, the development of the 

SmartWinery platform is a project of major proportions, thus, requiring the support 

of several developers for its construction. Following this idea, this work positions 

itself in sub-project VP, having its main objective related to the task of further 

calibrating and enhancing models associated with this digital platform, specifically 

aiming to models based on first principles (those developed in sub-project R+D2). 

In the next sections of this chapter, it will be discussed how these models fit in the 

construction of the SmartWinery, as well as how their functionalities are oriented 

into collaborating with the other type of models. Posteriorly, fundamental concepts 

about FPM and parametric robustness will be discussed, as they play a key role 

over the predictive capacity in this type of model, thus, are essential if there is an 

intention of using these models consistently in the SmartWinery. Finally, the 

approach of this thesis, including hypothesis, methodology, results, and 

conclusions will be stated to give readers a solid idea of the main objectives 

behind the work in Chapter 2, which presents an article to be published in an 

international journal describing in detail this thesis’s work.  

 

1.2 First principles-based models in SmartWinery 

To understand how FPM models fit in the development of the SmartWinery, we 

must first understand their origins and how they work. Wine fermentation is one of 

the oldest bioprocesses known by the humankind, thus, the knowledge regarding 

this process has grown exponentially since its discovery. The above extends 

especially into the last century, where, given the uprise of knowledge in fields 

related to chemical process engineering (e.g., chemical kinetics and heat transfer), 

and furtherly complemented with the emergence of enabling technologies for 

process simulation, the understanding of the fermentation phenomena was 

revolutionized (Miller & Block, 2020). This naturally impacted the comprehension 

in winemaking-related research, as the AF process is the heart of any winery; most 

of the extraction and bioconversion phenomena occur at this stage of the process 
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(Unterkofler et al., 2020). The high impact of AF over the final product’s quality 

during winemaking has driven the interest of authors into channeling this new 

knowledge into the development of instrumentation valuable for wine production 

optimization. In this context, mathematical modeling has risen as a powerful tool 

in this industry, as it shifts the paradigm of practical trial-and-error into a much 

more cost-effective digital approach, ultimately enabling the insertion of 

technologies originated from other disciplines in engineering (such as process 

control and plant-scale optimization). A description referencing to mathematical 

modeling of the AF process will be presented in the following subsections for a 

deeper understanding regarding to these tools.  

 

1.2.1 FPM modeling and simulation 

FPM has proved to be an outstanding tool in the field of chemical engineering, 

especially given its reliability, flexibility, and relatively simple structures when 

applied to most experimental systems. Its range of applications is wide: real-time 

optimization; model predictive control; process performance monitoring; closed-

loop control and automation; among others (Pantelides & Renfro, 2013). These 

last functionalities have proven great potential across the process industry, where 

we find their application in different productive areas such as the food and 

pharmaceutical industries (Benyahia et al., 2012; Mahdi et al., 2009). These 

models are constructed using fundamental engineering, physics, and chemistry 

principles, thus, differing from those derived purely from plant and/or other data 

(e.g., time-series, neural networks, and other forms of data-based models).  

Generally, these fundamental principles rely on mass and energy balances, which 

employ physical/chemical originated terms to include the effect of phenomena 

associated with concepts such as thermodynamics, chemical kinetics, among many 

others (Pantelides & Renfro, 2013). Given their nature, FPM models have a 

dynamic behavior, meaning that the processes they model are constructed 
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transiently and continuously throughout time; another advantage when compared 

to purely data regression-based models.  

 

A typical FPM model is described by a dynamic system of differential equations 

(ODEs), as presented in Equation 1.1 and Equation 1.2. Here, f denotes the 

dynamic model structure, h the output observation function, x(t) the vectorized 

model states, u(t) the vectorized inputs, y(t) the vector of measured/observed 

outputs, and θ the vector of model parameters.  

𝑑𝑥(𝑡)
𝑑𝑡

= 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃) (1.1) 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝜃)  (1.2) 

The system above, while in some cases too simple (e.g., large systems presenting 

significant concentration/temperature gradients), may be applied to most dynamic 

systems for generating predictions while considering external inputs and changes 

occurring throughout processing. In mathematical terms, we refer to simulation as 

the integration of the ODE system presented in equations 1.1 and 1.2. However, 

the outcome of this operation depends highly on how the system is perturbed 

(effect of external input u(t), as well as the values assigned to parameters θ), as 

these characterize fundamental processes occurring in the system in the form of 

constants that represent the effect of conversion rates, heat transfer coefficients, 

activation energy, among others.  

 

1.2.2 FPM modeling applied to winemaking 

Approaching the winemaking process, the system described in equations 1.1 and 

1.2 must be adapted so that the nature of the fermentation process is adequately 

represented. Fermentation is a process where microorganisms and their enzymes 

bring about desirable changes over a specific matrix (typically a food matrix), 

where one or more substrates are bioconverted into a wide range of possible 
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metabolites depending on the characteristics of the biological system employed. In 

wines, grape must represent a complex media composed of a rich blend of amino 

acids, sugars, organic acids, and so on. This richness represents an ideal culture 

media for most microorganisms, thus, encouraging winemakers to select specific 

biological systems to ferment grape must in a controlled and reproducible way, 

avoiding the growth of non-desirable microorganisms (Henriques et al., 2018). The 

main organism used for AF during winemaking is the yeast Saccharomyces 

cerevisiae, as it has shown superior aptitudes when metabolizing media with a 

high amount of sugar, and relatively low concentrations of nitrogenous 

compounds, as well as presenting significant resistance to temperature changes and 

sulfur dioxide (Suárez-Lepe & Morata, 2012). The most significant advance in the 

application of FPM on fermentation systems is attributed to the “Monod” kinetic 

model of cell growth, which despite being proposed several decades ago, still takes 

part in most of the state-of-the-art growth models (Dette et al., 2005; Miller & 

Block, 2020; Monod, 1949). The Monod model considers substrate S as a regulator 

of cell growth acting as a function of total biomass concentration X and a specific 

growth rate µ (Eq. 1.3). Equations 1.4 and 1.5 incorporate additional terms (KS and 

YX/S) to show how the Monod model approaches substrate consumption and 

biomass specific growth rate, respectively. 

𝑑𝑋
𝑑𝑡

= 𝜇𝑋 (1.3) 

𝑑𝑆
𝑑𝑡

= − 𝜇𝑋
𝑌𝑋/𝑆

 (1.4) 

𝜇 = 𝜇𝑚𝑎𝑥 𝑆
𝐾𝑠+𝑆

  (1.5) 

Though the Monod model can be used for wine fermentation modeling into some 

extent, this model presents several limitations in this task given its simplicity: no 

product generation rate equations; lacking secondary phenomena such as inhibition 

by product concentration; non-consideration of operational variables such as 

temperature; single substrate consumption, amongst others (Miller & Block, 
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2020). Lack of inclusion of the above implies a limitation in the predictive 

capacity of the model, thus, leading to lower reliability and consistency when 

performing simulations and comparing with empirical wine fermentations. A more 

realistic representation of yeast metabolism occurring during the AF in 

winemaking is shown in Figure 1-4. Here, the fluxes orientation of the principal 

metabolites involved in the AF process are represented with arrows, while 

inhibitory effects are shown as T-end lines.  We identify glucose (Glx), fructose 

(F), and nitrogen (N) as the three main substrates in this type of fermentation, 

which are consumed for the growth and maintenance of yeast cells. On the other 

hand, the outputs generated in AF by yeasts are mainly ethanol (E), biomass (X), 

carbon dioxide (CO2), glycerol (G), and acetic acid (Ac). As shown in the figure, 

and supported by several researchers, the increase in the concentration of ethanol 

in fermentation media shows an inhibitory effect over sugar consumption, leading 

to the death of yeasts given their incapability of obtaining nutrients for 

maintenance (Brown et al., 1981; Holzberg et al., 1967; Zhang et al., 2015). 

Though the Monod model approach is much simpler and thus easier to apply, the 

multiplicity of interactions present in a multi-component system (such as wine 

must) imposes the necessity of more sophisticated models, where inter-component 

interactions should be represented by incorporating new expressions that account 

for them. In this topic, several authors have proposed more adequate model 

structures, showing a significant improvement when compared to the Monod 

model. As suggested by Miller & Block (2020), three conceptual categories make 

up the scope of models approaching the wine fermentation process:  

a) Models assuming well-mixed fermentation kinetics 

These models essentially consist of systems of DAEs as those shown in equations 

1.1 and 1.2. Here, models assume fermentation dynamics work homogeneously in 

all the volume of fermenters, neglecting any spatial differences. Models in this 

topic differ by the way they incorporate the effect of operational conditions over 

changes in the concentration of primary and secondary metabolites, focusing on 
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different mechanisms related to yeast metabolism to characterize the above. 

Incorporation of nitrogen as the main limiting nutrient, cellular death as the effect 

of temperature and ethanol concentration increase, extension of the effect of 

temperature over kinetic parameters, and incorporation of the effect of oxygen 

concentration during the initial stage of fermentation are some of the approaches 

authors have proposed in the mission of modeling well-mixed wine fermentation 

systems (Boulton, 1980; Cerda-Drago et al., 2016; Coleman et al., 2007; Cramer et 

al., 2002; Saa et al., 2012). A secondary approach to well-mixed systems relies on 

the application of metabolic engineering models, where metabolic pathways take a 

central role in their construction (Pizarro et al., 2007; Sainz et al., 2003; Vargas et 

al., 2011). Here, a “grey-box” modeling approach is employed by using yeast 

genetics to define internal fluxes of nutrients which accomplish a specific function 

inside the metabolic network. Examples of the previous are metabolite 

importation/exportation, maintenance reactions, DNA synthesis, etc. 



23 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1-4. Graphic representation of interactions withing principal components in AF kinetics. Adapted from 

Henriques et al., 2018.
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Dynamic flux balance analysis (dFBA) takes a central role in metabolic 

engineering models, as it can determine how yeasts will internally direct 

metabolite fluxes in time-variant systems, so that a biological objective (biomass 

production maximization) is accomplished. In this line, several authors have 

shown interesting results when applied to wine fermentation modeling, showing 

high precision in the prediction of the generation of secondary metabolites such as 

glycerol, an important metabolite that affects significantly sensorial attributes 

(Pizarro et al., 2007; Sainz et al., 2003; Vargas et al., 2011; Sánchez et al., 2014a). 

Moreover, the latest advances in genomic-scale modeling of Saccharomyces 

cerevisiae yeast species enable exploiting new knowledge on yeast genetic 

mechanisms to enhance wine secondary metabolite generation, which could lead to 

a better understanding and further optimization of the wine production process 

(Sánchez et al., 2017). 

b) Models assuming heterogeneous systems 

Contrarily to the previous models, this approach  does not accept the assumption 

of the system being well-mixed, which is generally inappropriate for large 

reactors, where temperature and concentration gradients are significant; this 

especially applies to industrial winemaking, where these gradients are produced by 

the presence of solids in red wines (Miller & Block, 2020; Schmid et al., 2009). 

White wines also exhibit these gradients, as agitation is avoided to control 

unwanted oxygenations of the must that could lead to detrimental off-flavors 

(Unterkofler et al., 2020). To better illustrate the generation of gradients during 

winemaking, different authors have experimentally tested these gradients 

empirically. Vlassides & Block, (2000) determined that though initially 

heterogeneous, 1200 L white wine fermenters turned into well-mixed systems 

rapidly as fermentation rates increased. However, Schwinn et al., (2019) 

demonstrated that in larger white wine fermenters (7000 L), gradients lasted up to 

4 days before becoming well-mixed. This situation is more critical for red wines, 

where given the generation of a cap (grape pomace agglomeration at must’s 
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surface) temperature could vary up to 10 °C  at the solid-liquid interface between 

the cap and the must (Schmid et al., 2009). The above leads to the conclusion that 

when large fermenters are involved, significant gradients are expected to develop 

and persist throughout the process. While displaying a good predictive capacity on 

smaller systems, all previous models assume well-mixed kinetics, thus non-

applicable to large systems. The difficulty that gradient generation represents 

during winemaking has encouraged authors to create wine fermentation models 

using more complex mathematic background. An initial effort for the above was 

proposed by Zenteno et al., (2010), where a compartmentalization method was 

applied to capture temperature and concentration gradients. More recently, Miller 

et al., (2019), proposed the use of a computational fluid dynamics software to 

generate a model with a higher precision (by using smaller compartments) that 

could better explain the temperature and concentration gradients, successfully 

predicting biomass and ethanol concentration gradients, as well as describing fluid 

flow patterns. Developing these models can be challenging; however, they stand-

up as the future in AF modeling. 

c) Phenolic extraction models 

These models mainly apply to red wine fermentations, as only these include a 

solid-liquid extraction while simultaneously fermenting the sugars in grape must. 

This extraction is critical during the AF process of red wines, as extracted phenolic 

compounds are responsible for most of red wine’s desirable sensorial properties 

(Brossard et al., 2016; Unterkofler et al., 2020; Setford et al., 2017).  Here, readers 

must understand that though phenolic extraction does not significantly affect AF 

kinetics, the contrary is not true (Setford et al., 2017; Setford et al., 2019). Also, 

both AF and phenolic extraction dynamics share sensitivity to some of the 

operational variables manipulated during winemaking. For example, in 

winemaking it has been proven that phenolic compound extraction depends on 

temperature and solvent properties, the last being dynamic given the constant 

generation of ethanol because of AF, which is also affected by temperature 



26 

  

(Unterkofler et al., 2020; Yacco et al., 2016). Considering the above, it can be 

concluded that the AF and phenolic extraction processes involved in winemaking 

are deeply intertwined, and thus, should be brought together during modeling to be 

effectively exploited in real-time control systems driven by sensorial quality 

potential (Setford et al., 2017). This also implies that if large systems are being 

analyzed, phenolic extraction is bound to be spatial and temporal dependent, as the 

way fermentation carries out at different locations in fermenters dictates how 

extraction kinetics will unfold.  

Phenolic extraction kinetic models have long been studied differing in the mass 

transfer mechanisms they consider, as well as the assumptions and fermentation 

kinetics they employ. While interesting, phenolic extraction models and 

mechanisms are out of the scope of this thesis, as these depend significantly on the 

fermentation kinetics, which were the focus of this work. However, for further 

understanding of phenolic extraction models, it is strongly suggested to consult the 

work published by Block & Miller (2020). Also, it is suggested to review the work 

published by Miller et al. (2020), as these authors show results when applying a 

state-of-the-art spatial gradient-based model coupled with fermentation kinetics 

obtaining good predictions. 

Concluding this section, it has been proven that nowadays there is a good amount 

of AF process models for winemaking. Actual challenges mainly consist in solving 

difficulties related to spatial gradients and coupling extraction kinetics in industrial 

applications, which as addressed previously, has been initially approached in a 

successful way. Moreover, new challenges stand upon the modeling of the 

winemaking process, especially the way simulation results are used for value 

generation when applied with industry representatives. Here, the main difficulty is 

the lack of knowledge regarding the usefulness and applications where these 

models can benefit its final users, as most traditional oenologists do not necessarily 

share a formation oriented to the understanding of this type of complex 

engineering tools. Moreover, existing models may be robust for simulating wine’s 
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primary metabolites, however, the presented models still have further potential for 

development, where interesting approaches such as the addition of aroma-related 

precursors to available state-of-the-art models represents an interesting field to be 

exploited in the quest of further understanding the winemaking process (Bartsch et 

al., 2019).  

 
 

1.3 Kinetic model calibration 

In the previous section, AF and phenolic extraction modeling were addressed, 

determining the existence of several alternatives for the simulation of these 

processes, each with its unique benefits and limitations. No matter which model is 

selected, there must always be a calibration step, as FPM models are subject to the 

user’s unique experimental conditions. This means that, in an efficient model, 

mechanisms affecting each component are correctly explained, however, the 

magnitude of their effect in the system is variable subject to external conditions. 

For example, in winemaking, yeast genomics, grape must composition, and 

nitrogen source are some of the most typical conditions that vary between 

winemakers. This model calibration step is known as a dynamic parameter 

estimation (DPE) or “regression” process, where the parameters (θ) of a given 

model structure (Eq. 1) are calculated using optimization procedures to determine 

which values fit better the experimental data associated to the process described by 

the model. However, because experimental data commonly is noisy and 

incomplete, diagnostics to test model identifiability and validity, and the 

significance and determinability of their parameters are imperative to determine 

the degree of experimental support of the model (Jaqaman & Danuser, 2006; 

Krausch et al., 2019; Saa & Nielsen, 2017). If the calibrated model shows 

substantial support, then we call the resulting calibrated model a “robust” model 

structure, which will guarantee reliability while predicting a system’s response. In 

the following subsections, model calibration fundamental concepts will be 
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described, as calibration and enhancement of the AF models used in the 

SmartWinery was the main objective guiding the work of this thesis. 

 

1.3.1 Dimensions of model robustness 

Robustness is an important condition to address during the DPE process, as it is 

determinant for the reliable application of models for tasks such as predictive 

control. The nature of models used for fermentation modeling (i.e., based on first 

principles and constructed around the concepts of energy and mass balance) imply 

that these are constructed using a set of rules based on a priori hypothesis; thus, 

regression using experimental data is the natural way for determining their 

unknown parameters (Jaqaman & Danuser, 2006). However, the achievement of 

the robustness condition (i.e., a model where all parameters are characterized as 

significant and determinable, leading into highly reliable predictions given any 

experimental conditions) during DPE in these models can be challenging. 

Commonly, for biological system models (as those used for AF) data is scarce and 

noisy, while models are typically characterized with a high amount of non-

linearities (Bonate, 2011; Krausch et al., 2019; Saa & Nielsen, 2017; Sacher et al., 

2011). These common data-imparities require a robust model structure so that 

regression results are accurate, making posterior conclusions reliable (Jaqaman & 

Danuser, 2006). For robustness assessment, three main stages are approached in 

this thesis: 

a) A priori regression diagnostics 

The assessment of structural identifiability is a task that must be performed for a 

given model on an a priori basis (prior to regression). This process seeks to answer 

if, given a specific model structure (f(x(t),u(t),θ) in Eq. 1.1), all parameters of the 

model are possible to be determined uniquely with the measured model states (this 

does not account sampling times nor noise in data). In this task, the main approach 

is testing the model’s output response to changes in the values of its parameters 

(θ). This is commonly known as a parametric sensitivity analysis, where 
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parametric output sensitivities can be easily derived for a continuous state-space 

model with n modeled states and p parameters using the system presented in 

equations 1.6 and 1.7 (Stigter & Molenaar, 2015). 

𝑑𝑥𝜃(𝑡)
𝑑𝑡

= 𝜕𝑓
𝜕𝑥

∙ 𝑥𝜃(𝑡) + 𝜕𝑓
𝜕𝜃

  (1.6) 

𝑦𝜃(𝑡) = 𝜕ℎ
𝜕𝑥

∙ 𝑥𝜃(𝑡) + 𝜕ℎ
𝜕𝜃

  (1.7) 

Here 𝑥𝜃(𝑡) denotes sensitivities as a time-dependent (𝑛 × 𝑝) matrix, with each 

column containing the sensitivity of each of the model’s states to an individual 

parameter of the θ parameter vector. Similarly, 𝑦𝜃(𝑡) represents the matrix of 

output sensitivities, where only measured states (those in ℎ(𝑥, 𝑡) from Eq. 1.2) are 

included. Equations 1.6 and 1.7 form a linear time-varying system (with Eq. 1.1 

and Eq. 1.2), which can be solved simultaneously to obtain output parametric 

sensitivities (𝑦𝜃). Calculated sensitivities are posteriorly used in the construction 

of the Relative Output Sensitivity Matrix (ROSM), which plays a key-role when 

analyzing output sensitivities of a system with different physical dimensions. 

Considering N observations in a time interval [𝑡0, 𝑡𝑁], the ROSM is then 

constructed using the definition stated in Eq. 1.8 (Stigter et al., 2015). 

 

𝑅𝑂𝑆𝑀(𝑡𝑁, 𝜃) =

[
 
 
 
 
 
 
 
 
 

𝜃1
𝑦1(𝑡0) ∙ 𝜕𝑦1(𝑡0)

𝜕𝜃1
 ⋯ 𝜃𝑝

𝑦1(𝑡0) ∙ 𝜕𝑦1(𝑡0)
𝜕𝜃𝑝

⋮ ⋯ ⋮
𝜃1

𝑦𝑛(𝑡0) ∙ 𝜕𝑦𝑛(𝑡0)
𝜕𝜃1

⋯ 𝜃𝑝

𝑦𝑛(𝑡0) ∙ 𝜕𝑦𝑛(𝑡0)
𝜕𝜃𝑝

⋮ ⋯ ⋮
𝜃1

𝑦1(𝑡𝑁) ∙ 𝜕𝑦1(𝑡𝑁)
𝜕𝜃1

⋯ 𝜃𝑝

𝑦1(𝑡𝑁) ∙ 𝜕𝑦1(𝑡𝑁)
𝜕𝜃𝑝

⋮ ⋯ ⋮
𝜃1

𝑦𝑛(𝑡𝑁) ∙ 𝜕𝑦𝑛(𝑡𝑁)
𝜕𝜃1

⋯ 𝜃𝑝

𝑦𝑛(𝑡𝑁) ∙ 𝜕𝑦𝑛(𝑡𝑁)
𝜕𝜃𝑝 ]

 
 
 
 
 
 
 
 
 

  (1.8) 

Once the ROSM is constructed, structural identifiability can be assessed. Here, 

two conditions dictate if a model is structurally identifiable. Firstly, all columns of 

this matrix must have at least one large entry, reflecting that at least one model 
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state is being strongly influenced by a given parameter (Jaqaman & Danuser, 

2006). Secondly, the ROSM must have full rank; this means columns must be 

linearly independent, reflecting there is no correlation between parameters. This 

implies that there is no set of parameters compensating one another when their 

values change (Jaqaman & Danuser, 2006; Miao et al., 2011; Stigter & Molenaar, 

2015). If the conditions above are to be accomplished, then, whichever values are 

assigned to parameter vector θ, the model will be structurally identifiable.  

b) Regression scheme  

Once a model is determined to be structurally identifiable (if not, treated so that 

this condition is achieved, concisely explained in the next subsection), the next 

step for its application is the regression to determine an optimal set of values for 

parameters in θ, which minimizes differences between simulated and observed 

data. To fulfill this, typically maximum likelihood (ML) and least squares (LS) 

methods are used to approach the regression (Jaqaman & Danuser, 2006). 

Assuming we aim to determine 𝜃, equivalent to the parameter vector which 

maximizes the probability of observing data 𝑦𝑜𝑏𝑠 when using a determined model 

(𝑝(𝜃|𝑦𝑜𝑏𝑠)), a common statistical model to define the optimization problem when 

considering independent additive Gaussian noise with constant variance for each 

measurement is formulated as shown in Eq. 1.9, which is the typical approach used 

in ML parameter estimation (Saa & Nielsen, 2017). 

𝑝(𝜃|𝑦𝑜𝑏𝑠) = (2𝜋)−𝑁/2 ∙ det(𝛴𝑚𝑒𝑎𝑠)
−1

2 ∙ exp{− 1
2
(𝑦𝑠𝑖𝑚 − 𝑦𝑜𝑏𝑠)Σ𝑚𝑒𝑎𝑠

−1 (𝑦𝑠𝑖𝑚 −

𝑦𝑜𝑏𝑠)}   (1.9) 

In the ML approach, the most likely values of θ are those which maximize the 

probability in the statistical model presented in Eq. 1.9. On the other hand, the LS 

paradigm addresses the problem stated in Eq. 1.9 by applying the assumption that 

the error covariance matrix (Σ𝑚𝑒𝑎𝑠) is constant and independent of θ. Hence, by 

applying the monotonical log-transformation of Eq. 1.9 under this assumption, this 



31 

  

expression takes the form of the commonly used Residual Sum of Squares (RSS) 

presented in Eq. 1.10; this function is to be minimized to determine 𝜃.  

𝑅𝑆𝑆 = (𝑦𝑠𝑖𝑚 − 𝑦𝑜𝑏𝑠)𝑇Σ𝑚𝑒𝑎𝑠
−1 (𝑦𝑠𝑖𝑚 − 𝑦𝑜𝑏𝑠)  (1.10) 

Moreover, other significantly different approaches exist to address the regression 

problem, such as paradigms based on Bayesian statistics and Monte-Carlo 

sampling. In the former, parameters are treated as truly random variables, thus, 

being defined by probabilistic density functions. On the other hand, the above is a 

sampling-based procedure, which scans the likelihood surface generated from 

mass simulation for parameter inference. Though interesting, these methods are 

out of the scope of this work; readers are referred to Saa & Nielsen (2017) for a 

better comprehension over these methods. 

Whichever approach is used, when applied to models related to biological systems, 

it is almost certain that a significant amount of non-linear relations will be present, 

thus implying a non-linear optimization problem. This means that neither Eq. 1.9 

nor Eq. 1.10 will have a closed-form solution; here, global optimization methods 

should be employed to find a good quality solution given the high amount of local 

optima (Jaqaman & Danuser, 2006; Koch, 2013; Saa & Nielsen, 2017). Several 

global optimizers have been developed for the resolution of this type of problems, 

which mainly differ in their algorithmic nature (i.e., stochastic or deterministic). 

The former, though not providing guarantee of global optimality, generally have a 

lower computational burden when used, thus representing an efficient alternative 

for solution space exploration. Deterministic methods, contrarily to the above, 

represent more robust optimal solutions, as they generally employ gradient-based 

solvers for local optimal exploration varying in how initial values are scattered; 

this, at the cost of a greater computational effort for exploration. Whichever 

method is selected, they cannot guarantee we are in presence of the global optimal, 

so that selection must be performed guided by the modeler’s necessities.  

c) A posteriori regression diagnostics 
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Once the maximum likelihood estimator (𝜃) is determined, a posteriori (posterior 

to regression) diagnostics must be performed to evaluate the model’s validity. 

Post-regression diagnostics include the evaluation of several of robustness indices, 

where we can find parameter regression goodness-of-fit, parameter significance, 

and practical identifiability (or determinability) assessment.  

i) Model goodness-of-fit 

Goodness-of-fit is a relevant concept during robustness assessment, as it 

aims to determine if differences between simulated and experimental data 

are because of natural measurement noise and not from the model’s 

inadequacy to fit the experimental data. To evaluate the adequacy of a 

model, usage of standard checks (i.e., distribution of residuals), as well as 

statistical testing can be implemented (Franceschini & Macchietto, 2008). 

The above generally consists in the use of null hypothesis testing, where 

the expected minimal value of Eq. 1.10 is tested to be equal to the number 

of degrees of freedom from model regression (Jaqaman & Danuser, 

2006). Other criteria used for goodness-of-fit evaluation are the 

employment of likelihood ratio tests, as well as other similar criteria such 

as the Akaike or Bayesian Information Criterion, where smaller values 

imply a better overall goodness-of-fit in a model (Akaike, 1998; Jaqaman 

& Danuser, 2006; Lehmann & Romano, 2006; Saa & Nielsen, 2017). 

ii) Parameter determinability 

Parameter determinability is related to the presence of hidden 

interdependencies in the data, which precludes parameters to be uniquely 

determined. To evaluate this dimension of model robustness, 

interdependency between model parameters can be assessed through the 

variance-covariance matrix obtained during model regression. If values of 

this matrix are near extreme values (-1 or 1), then this reflects that two 

parameters are strongly influencing each other, thus compensating their 

values during regression. Overall, this situation tends to be detrimental to 
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a model’s reliability, as this situation can lead to regression instability, 

which is the significant variation of estimated parameter values when 

adding new data for calibration; thus, the model would not be reliable, 

and the response would be inconsistent (Jaqaman & Danuser, 2006).     

iii) Parameter significance 

Finally, the statistical significance of each of the assessed model’s 

parameters must be evaluated to corroborate if all parameters are 

significantly different from zero. The previous is to discard the possibility 

that a parameter turns out not affecting how independent and dependent 

variables relate in the model. A parameter can be characterized as non-

significant because of several reasons: the large uncertainty within the 

data when compared to its output sensitivity in the model, lack of 

sufficient data, data not being informative, among others. To assess the 

parametric significance of estimates, the most popular tool is the Student 

t-value, an indicator reflecting how estimated values compare with their 

confidence intervals. Here, high values indicate parameters being reliable 

estimates, while lower values suggest the presence of the zero value in a 

parameter’s confidence interval. The previous may also imply that some 

parameters are highly correlated, especially in models with many 

parameters and/or highly nonlinear structure (Franceschini & Macchietto, 

2008).  

 

1.3.2 Strategic reparametrization as a model enhancer 

Usually, model calibration tends to be defective when hidden limitations in the 

data are not addressed by performing the previously stated tests. Normally, when 

models have an excessive number of parameters, these tend to adjust very well to 

the data used during the DPE process. However, these usually fail to represent the 

same modeled system when a new dataset is at hand, as well as when experimental 

conditions change even slightly. This is related to the high uncertainty in the 
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estimated parameters, which, when not assessed guided by the previous 

robustness-related concepts, lead to an unstable model in which predictions are 

biased (Egea et al., 2009; Jones et al., 2002). When the assessment of robustness is 

properly executed, there is a high chance of determining a defective parameter set 

in a given model structure, thus, adequate measures can be implemented to 

transform a problematic model into a more consistent variant. Following this idea, 

a commonly promoted strategy to correct problematic model structures is the 

reparametrization process, i.e., the generation of alternative nested models 

obtained from imposing linear constraints or fixing estimated parameters in a 

given model structure, so that the new model presents robustness indicators 

suggesting a superior model quality when compared to its initial structure 

(Krausch et al., 2019; Saa & Nielsen, 2017; Sánchez et al., 2014b).  For example, 

if we suppose the hypothetic model in Figure 1-5 (𝑓0(𝑡, 𝜃𝑢) = 𝑡𝜃1+𝜃2 + 𝜃3), which 

considers three estimated parameters (𝜃𝑢 = [𝜃1, 𝜃2, 𝜃3]), then a possible model 

structure originated by reparametrization could be 𝑓1(𝑡, 𝜃𝑣) = 𝑡𝑎+𝜃2 + 𝜃3, where 

𝜃1 is replaced for a fixed value a, thus, the new parameter vector for this model 

structure is 𝜃𝑣 = [𝜃2, 𝜃3].   
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Figure 1-5. Graphic representation of the reparametrization process. Here, large orange circles represent a given model 

structure characterized by its unique parameters and associated identifiability (Id), sensitivity (Ss), and significance (Sg) 

performance indicators (small circles). Red, yellow, and green refer to problematic, acceptable, and robust features for 

each of the robustness dimensions.
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In this example, both 𝑓0 and 𝑓1 are model structures, being the previous created 

from the original model structure (𝑓0) with its unique estimated parameter set (𝜃𝑣) 

and its own fixed values (𝜃1 = 𝑎). Here, the nested model structure 𝑓1 presents 

different robustness indicators when compared with the original model structure 

𝑓0, in this case being more robust 𝑓1, as parameters in the exponential 𝜃1 + 𝜃2 are 

clearly impossible to determine uniquely or are perfectly correlated.  

 

The main purpose of the reparametrization process is to reduce the model 

complexity by fixing its problematic parameters so that the best model structure to 

fit the available data is achieved. Several authors have proposed diverse methods 

for the individual evaluation of the previously mentioned robustness dimensions 

(Jaqaman & Danuser, 2006; Kreutz et al., 2013; Saa & Nielsen, 2017; Stigter & 

Molenaar, 2015). An interesting method was proposed by Sánchez et. al (2014b), 

where they present a Heuristic Iterative Procedure for Parameter Optimization 

(HIPPO). The above corresponds to an algorithm for robustness assessment and 

DPE, where pre/post-regression diagnostics are deeply involved in its functioning. 

When given as input a model and experimental data, this algorithm generates as 

output reduced (or reparametrized) model structures with no problematic 

parameters, including the optimal values adjusting the estimated parameters of this 

model structure (𝜃). Given parameter interdependency and multiplicity of 

defective parameters, HIPPO uses an iterative method to evaluate model 

structures, where if a model structure presents one or more problematic 

parameters, one of these are fixed, and the process is repeated until no problematic 

features are detected.  

 

1.4 Approach of the thesis 

While several methods for robustness assessment exist, these tend to solely focus 

on the evaluation of a single dimension of the previously referred robustness 

dimensions. The HIPPO algorithm is the exception of the above, as it manages to 
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integrally assess robustness while performing DPE, yielding simpler models with 

no problematic features (Sánchez et al., 2014b). However, this last method is 

limited, as reparametrization is reduced to the selection of the first model structure 

with no problematic features. In this last approach, two problems can be 

addressed. First, robustness is treated in a binary way; this means, we seek to 

answer the question: ¿Is this model structure robust? However, a different 

approach could be answering the questions: ¿How robust is this model structure? 

¿How sensitive is it? ¿How certain are we about this robust model’s parameters? 

The questions above assume robustness as a continuous property of models, where 

each dimension (significance, identifiability, sensitivity, and goodness-of-fit) is 

measured quantitatively. This assumption is convenient, as a strategic approach for 

comparing non-problematic robust models can be performed guided by these 

concepts. Secondly, there are no clear methodologies when rating a model’s 

robustness, i.e., it is not clear if, for example, a robust model structure with better 

sensitivity attributes is preferred over another one with higher certainty over its 

estimated parameters. 

 

Considering the above, the purpose of this thesis is to approach the previously 

stated difficulties in a strategical way, validating and implementing results as part 

of the enhancement of FPM models used in the SmartWinery platform. Following 

this line, the following subsections intend to concisely inform readers about the 

main and secondary objectives, as well as the methodology employed to 

accomplish the above. Also, the main results and conclusions from this work will 

be briefly reviewed. Closing this section ends Chapter I, opening into Chapter II, 

which shows a submitted journal manuscript which summarizes the work 

performed to accomplish the objectives stated in the following subsections. 
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1.4.1 Hypothesis and objectives 

a) Hypothesis 

It is possible to systematically select a model structure which best enables to 

guarantee predictive quality by generating a workflow that strategically 

implements robustness assessment algorithms combined with multicriteria 

decision-making algorithms during the dynamic parameter estimation procedure 

with limited data. 

 

b) Main objective  

The main objective of this work is the generation of a reparametrization strategy 

that enables to obtain reparametrized AF models via robustness assessment 

methods, yielding the best performing model when data is limited by combining 

the use of robustness indicators with multicriteria decision-making methods. 

 

c) Secondary objectives 

To accomplish the previously stated objective, a series of secondary objectives 

were defined, which are the following: 

i) Generate data associated with the fermentation kinetics by conducting 

experimental vinifications at different process scales (laboratory and pilot 

scales). 

 

ii) Use of data generated in laboratory-scale fermentations for model 

processing in the HIPPO algorithm (Sánchez et al., 2014b) to characterize, 

evaluate, and select the model reparametrization that best represents the 

data through multicriteria decision-making methods.   
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iii) Apply the selected best performing AF model structure obtained in the 

previous analysis to validate its reliability through simulations of the pilot-

scale vinification experiments.  

1.4.2 General methodology 

A series of fermentations were carried out simultaneously in batch reactors of 5 

(laboratory-scale) and 1000 (pilot-scale) liters at CRI; this, following a 

standardized industrial winemaking protocol to avoid processing discrepancies. 

During fermentation, samples were taken periodically and analyzed using an 

automatized spectrophotometer (Y15, Biosystems), where measurements of the 

main fermentation kinetics-related species (glucose, fructose, and yeast available 

nitrogen) where measured for data collection. Complementing the above, 

operational data consisting in must and cap temperature was measured through 

PT100 sensors installed in the fermenters. Once experimentation was fulfilled, 

laboratory-scale data was implemented into the HIPPO algorithm to generate 

reparametrized model structures with their corresponding robustness indicators 

(from pre/post regression diagnostics) when characterizing the Zenteno et al. 

(2010) and Coleman et al. (2007) wine fermentation models. Posteriorly, model 

structures were filtered by establishing robustness viability thresholds, and 

consecutively best-performing robust models were selected by applying a series of 

multicriteria decision-making methods (Wang & Rangaiah, 2017). Finally, 

validation of the best performing model structure selected from the previous 

analysis was assessed using the pilot-scale experimental data and simulations, 

where robustness indicators, as well as prediction performance, were analyzed and 

contrasted to the original model’s performance.  
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1.4.3 Principal results and conclusions 

 

a) Preliminary testing of the analyzed models 

To establish a comparative point before applying the method proposed in this 

thesis, two wine fermentation models (Zenteno and Coleman) were calibrated and 

tested to evaluate their performance in prediction generation over an independent 

set of validation experiments in both laboratory and pilot scales. Here, it was seen 

that when applied for laboratory-scale experiments, both calibrated models showed 

an overall good predictive performance, observing an averaged global performance 

index (GPI) of 0.93 between all model states. This was not the case for pilot scale 

experiments, as samples from these were less frequent and contained lower quality 

information for parameter calibration, leading to lower values respecting the fitting 

performance (average GPI of 0.57).  

b) Selection and testing of the best model structure selected by the 

procedure 

Conclusions from the above supported the idea of reparametrizing the Zenteno and 

Coleman models to select a model structure which could best use the limited data 

available for calibration to enhance predictive performance. Here, the method 

developed in this work was applied in the previous models, and reparametrizations 

(i.e., model structures originated from the initial Zenteno and Coleman models, but 

differing in free and fixed parameters) were compared to select the best performing 

ones over the laboratory scale experiments. The best performing model structure 

was defined as “Zenteno-10325”, presenting the original structure of the Zenteno 

model while having 6 free and 8 fixed parameters. When applied to simulate 

laboratory scale validation experiments, Zenteno-10325 showed a superior 

performance compared to the original models, increasing averaged GPI from 0.93 

to 0.97.    
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c) Model validation using pilot-scale data 

Model structure Zenteno-10325 was further tested via its application in the pilot 

scale validation experiments. Again, an increase in predictive performance was 

observed when compared with original model performance, significantly 

increasing fitting performance in sugar-related model states by around 22% of the 

original model’s averaged values. 

d) Limitations and future perspectives 

Though reflecting successful results, work must be done to establish this method as 

a viable one. Some activities include the further validation of this model 

identification method by supporting results with experiments varying in initial and 

operational conditions; this, to quantify their effect in the parameter estimation 

process, giving more information about the effectiveness of the proposed method 

in the mission of generating reliable model structures. Moreover, another 

concerning problem is the high computational cost incurred by some of the 

methods implied in this procedure. It is discussed that the HIPPO algorithm took 

around 13 days to be executed in both Zenteno and Coleman models. This situation 

is heavily detrimental if a wide application of this method is to be expected, as 

computational time grows exponentially as parameters increase in number; thus, 

this situation needs to be addressed urgently so that viability is insured. 

Disregarding the above, the work in this thesis proved that a reparametrization 

strategy can lead into parameter estimates and model structures that predict better 

when compared to models not presenting a reparametrization considering the 

available calibration data. It is expected in the future an overall enhancement of 

this method, positioning it as a generic valuable tool in modelist’s toolboxes when 

working towards model calibration when limited data is at hand.  
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2. ENHANCING WINE FERMENTATION MODELS IN THE 

PRESENCE OF LIMITED DATA: A MULTI-CRITERIA GUIDED 

PARAMETRIC ROBUSTNESS ASSESSMENT WORKFLOW 

2.1. Abstract 
 
Climate change has shortened vintage periods, complicating the management of 

fermentation capacity. Technological paradigms, such as model-based design, industry 

4.0, and the internet of things, can play a crucial role in simplifying the fermentation 

process’s operation and management. Oenological decision-making can be significantly 

improved and simplified with fermentation models applicable in real-time. Bioprocess-

related models like these typically include many unknown parameters where, given the 

high cost they incur, must be estimated from scarce and noisy data obtained from small-

scale experiments. This leads to unreliable estimations and overfitting, especially when 

process scaling is at hand. This study developed and applied a robust model assessment 

workflow to reparametrize and select wine fermentation models to enhance the 

parameter estimation process. Several computational tools were integrated to identify a 

model structure that can be fitted with limited data, while presenting no parametric 

identifiability, sensitivity, and significance problems.  Model selection employed several 

multi-criteria decision-making algorithms considering robustness criteria and statistical 

assessments. To validate the obtained results, wine fermentations were carried on 5L 

(laboratory-scale) and 1000L (pilot-scale) reactors, defining calibration and validation 

experimental sets for each case. Using the laboratory-scale data, and guided by 

robustness and performance indicators, the model structure which optimally adapted to 

the limited data was selected (named Zenteno-10325), increasing the non-reparametrized 

model’s global performance index from 0.92 to 0.97. To further validate the application 

of this method for process scaling, the Zenteno-10325 model structure was applied to 

simulate pilot-scale experiments, leading to a 24\% increase over the sugar state 

prediction adjustment determination coefficient. Overall, this methodology generated 

better performing reparametrized structures when compared with non-reparametrized 
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ones. Though applied to fermentation models, this method can be extended to other 

systems and applications like model-based experimental design. 

2.2. Introduction  
 

As a consequence of climate change, the harvest season’s behavior in vineyards 

has become increasingly unpredictable (Gurbey, 2020). This unpredictability has 

affected the adequate management of harvest dates, truck scheduling, grapes 

reception, and winery capacity (Webb et al., 2007). Winemakers dispose of a 

broad set of operational options and technologies to ensure that wine is made on 

schedule and with the expected quality (Mira de Orduña, 2010). Model-based 

methods are becoming increasingly popular in the food industry to achieve better 

and more consistent operations since they provide a faster and more reliable 

solution than experimental trial and error (Bordons & Núñez-Reyes, 2008; Qin & 

Badgwell, 2003). In wineries, dynamic fermentation models can help winemakers 

decide the best operating strategy to apply in a given situation (Ribéreau-Gayon et 

al., 2006), leading to more effective, efficient, and sustainable processes. This 

approach is particularly relevant for industrial winemaking, representing one of the 

most energy-consuming sectors in the food industry (Galitsky et al., 2005). 

Assessing dynamic fermentation models’ reliability and predictive capacity is 

imperative to guarantee the winemaking process’s expected improvements. 

 

Several alcoholic fermentation models have been proposed that differ on the 

included phenomena (Miller & Block, 2020). Boulton, (1980) described a simple 

dynamic wine fermentation model that considered sugar as the limiting substrate 

and that temperature affected the yeast specific growth rate only. To represent 

industrial wine fermentations better, Cramer et al. (2002) and Coleman et al. 

(2007) considered nitrogen as the primary limiting substrate and that many more 

model parameters were temperature-dependent. As oxygen has demonstrated a 

critical role during initial yeast development, some authors have incorporated its 
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effect on fermentation models as well (Saa et al., 2012; Cerda-Drago et al., 2016). 

Sainz et al. (2003), Pizarro et al. (2007), and Vargas et al. (2011) developed hybrid 

models that coupled a steady-state stoichiometric metabolic model (representing 

the internal yeast fluxes) with biomass and metabolites dynamic mass balances 

(dynamic flux balance analysis). Most of the above models can provide reasonable 

predictions of the principal metabolites’ dynamics at both laboratory and pilot-

scale fermentations. However,  these model predictions are less reliable at an 

industrial scale due to the inevitable temperature and concentrations gradients, 

especially in red wine fermentations (Miller & Block, 2020). At this scale, 

compartmental (Zenteno et al., 2010) or computational fluid dynamic models are 

needed (Miller et al., 2019). 

 

Once an adequate model is selected, dynamic model parameter estimation (model 

calibration) must be performed, which is challenging for bioprocess models 

typically characterized by strong non-linearities, many fitting parameters, as well 

as scarce and noisy data (Bonate, 2011; Sacher et al., 2011; Krausch et al., 2019).  

It is advisable to carefully fix a priori some fitting parameters based on previous 

knowledge or preliminary estimations in these cases. Therefore, only a subset of 

the original model parameters are estimated to different data sets, yielding a 

reliable and robust predictive model; this process is called reparametrization. A 

model structure can be qualified as robust when predictions are reasonably 

accurate (predictive capacity) and when all estimated parameters affect model 

predictions significantly (sensitivity), are estimated with reasonable precision 

(identifiability), and are significantly different from zero (significance). 

Nevertheless, adequate reparametrization is hard to achieve, requiring several 

regression diagnostic techniques to assess the iterative parameter fixing procedure 

(Saa & Nielsen, 2017). These diagnostic techniques can be classified as a priori 

and posteriori. A priori techniques are frequently applied for structural 

identifiability assessments (Jaqaman & Danuser, 2006; Sacher et al., 2011; Stigter 

& Molenaar, 2015). A posteriori methods refer to those that evaluate model 
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calibration results, assessing, for example, predictive capacity, parsimony, 

parametric identifiability, and parametric significance (Jaqaman & Danuser, 2006; 

Saa & Nielsen, 2017). A wide diversity of statistical techniques have been 

proposed to assess either specific aspects (Jaqaman & Danuser, 2006; Rodríguez-

Fernández et al., 2007; Kreutz et al., 2013; Stigter & Molenaar, 2015; Saa & 

Nielsen, 2017) or overall performance (Sánchez et al., 2014b). Despite its 

importance for model reliability, regression analysis is not widely applied in 

bioprocess modeling. Typically, dynamic process models are used without an 

exhaustive robustness analysis (Streif et al., 2013), leading to local instability and 

overfitting that compromise the models’ predictive performance when used under 

different experimental conditions (Jaqaman & Danuser, 2006). 

 

This study proposes a novel workflow to select a robust dynamic model structure 

for fitting wine fermentations. The method was applied to select suitable model 

structures for two dynamic models (Coleman et al., 2007;  Zenteno et al., 2010), 

using laboratory and pilot-scale wine fermentation data. The proposed workflow 

initiates with the iterative reparameterization of the evaluated models using the 

HIPPO package (Sánchez et al., 2014b), where several model structures were 

generated by fixing different parameter sets. Then, several regression performance 

indices were calculated for each model structure generated.  According to the 

regression and global performance indices, several multi-criteria decision-making 

(MCDM) algorithms were applied to choose the most suitable model structure, 

validating the selection with laboratory and pilot-scale data. 

 

2.3. Materials and Methods 
 

2.3.1. Experimental design 
 

A total of 6 experimental fermentations were performed using Cabernet Sauvignon 

grapes obtained from different producers scattered throughout the Maule region, 
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Chile. These fermentations were carried out simultaneously at two scales, referred 

to as laboratory-scale and pilot-scale experiments. Each fermentation system, the 

fermentation procedure, and the sampling methods are described in the following 

sections: 

 

a) Laboratory-scale fermentations 

Laboratory-scale experiments were carried out on a 5L reactor, where the 

temperature was maintained at 26 °C by a heating/cooling jacket covering around 

70\% of the reactor’s wall (Fig. 2-1a). As typically required in red wine production 

to enhance pomace extraction and nutrient distribution, pumping-over was carried 

out three times per day for two minutes at a 2.5 L min-1 flow rate by a pump-

powered aspersion system. 

b) Pilot-scale fermentations 

Pilot-scale experiments were carried out on a 1000L cubic reactor, where the must 

temperature was controlled at 26 °C by a heating/cooling coil placed at the center 

of the reactor  (Fig. 2-1b). Pumping-over was carried out using the same aspersion 

system and operating parameters described above, scaled-up to the corresponding 

size. 
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Figure 2-1. Laboratory and pilot scale batch experimental setups used for the 

experiments. A. Laboratory scale 5 L reactor. B. Pilot scale 1000 L reactor. 

c) Red wine fermentation and juice preparation 

For all fermentation runs, grapes were crushed, obtaining 70% of juice and 30% of 

grape solids (skins and seeds). The pre-fermentative juice was corrected to 23.5 

°Brix, pH between 3.4-3.5, and yeast assimilable nitrogen (YAN) around 250 mg 

L-1. This correction was achieved by diluting with distilled water, and by adding 

tartaric acid, diammonium phosphate (DAP), and sulfur dioxide (5 g hL-1) through 

a potassium metabisulfite solution (50 g L-1). Each fermentation was inoculated 

with the same Saccharomyces cerevisiae yeast strain (Maurivin PDM, ENSIS 

Sciences) at a concentration of 20g hL-1. Also, DAP was added in the middle of 

the fermentation (density 1050 g L-1) to avoid sluggish or stuck fermentations. 

 
d) Sampling and analysis procedures 

A total of 13 and 9 samples were taken to measure glucose, fructose, and YAN 

concentrations in each laboratory-scale and pilot-scale experiment, respectively. 

An automatic spectrophotometric analyzer (Y15, BioSystems) with specific 

  



48 

  

reactive kits was used for sample analysis. Sugar consumption (°Brix and density) 

was measured with a portable densimeter (DMA35, Anton Paar). Must and cap 

temperatures were measured with PT100 sensors and recorded with a sampling 

frequency of 1 minute. 

 

2.3.2. Workflow methodology 
 

Fig. 2-2 shows a general scheme of the robust parameter estimation workflow 

applied in this work. The method begins with the application of the Heuristic 

Iterative Procedure for Parameter Optimization (HIPPO) algorithm (Sánchez et al., 

2014b) to characterize many model structures (typically in the order of thousands) 

with different sets of free and fixed model parameters (reparametrization). Here, a 

single calibration experiment is used to analyze the model structures. A priori and 

a posteriori regression diagnostic techniques are applied to all the generated 

models in this analysis. A priori methods focus solely on evaluating structural 

identifiability, while a posteriori techniques assess several dimensions of model 

robustness: goodness-of-fit, parameter determinability (or practical identifiability), 

and parameter significance. Different criteria were applied in the second stage to 

choose a reduced set of models (typically less than 50) with desirable 

characteristics. These selected model structures are further assessed using several 

multi-criteria decision-making methods, and a few of them (around 3) are pre-

selected for the next stage. Finally, other statistical indices were applied to these 

models, with additional calibration and validation data (in our case, the rest of the 

laboratory data), ending with a single model. The final model is finally assessed 

with independent data (in our case, calibration and validation pilot-scale data). The 

workflow’s final product is a minimum model structure that can fit data from 

different experiments of the same or similar system (in our case, laboratory-scale 

and pilot-scale winemaking fermentations). Details of each step of this workflow 

are provided in the following sections. 
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a) Characterization of model structures using HIPPO 

The first step in this workflow is to generate model reparametrizations using the 

HIPPO algorithm. Each model structure was defined by the same model equations 

but with different combinations of free and fixed parameters. Model structures are 

calibrated by least-squares regression using the meta-heuristic optimization code 

Enhanced Scatter Search (eSS, Egea et al., 2014) in HIPPO. After calibration, a 

priori and a posteriori regression diagnostics were applied to assess parameter 

identifiability, significance, sensitivity, and fitting-performance of each model 

structure. Parameter identifiability aims at deciding if a model’s parameters can be 

estimated uniquely considering structural identifiability and practical 

identifiability. Structural identifiability, computed before parameter fitting, 

depends on how sensitive are the model outputs to the free (fitting) parameters of a 

given model structure. HIPPO computes a normalized sensitivity score matrix 

(SSM) for each model structure using the method described in Hao et al. (2006). 

Practical identifiability, computed after parameter fitting, measures the capacity to 

estimate the free parameters’ true values using a given model structure and a given 

data set. Using the regression results, HIPPO generates a parameter correlation 

matrix (PCM) applying the standard Pearson correlation formula to determine 

highly correlated parameter pairs. 

 

Parametric significance determines if the free parameters of a given model 

structure are significantly different from zero. Identifiable parameters can be 

insignificant due to the high uncertainty in the available data (Jaqaman & Danuser, 

2006). HIPPO applies the t-value to detect insignificant free parameters,  

𝑡𝑣𝑎𝑙𝑢𝑒
𝑝 = 4�̂�𝑝

𝐶𝐼𝑝
 (2.1) 

where 𝜃𝑝 is the estimated value of parameter p, and 𝐶𝐼𝑝 is its confidence interval. 
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Typically, more than one model can fit the data well, and those with more free 

parameters tend to fit the data better, but at the cost of increasing the parameter 

interdependency (thus leading to identifiability problems). Hence, simpler and 

more parsimonious models that fit the data well are preferred (Jaqaman & 

Danuser, 2006). HIPPO calculates the Corrected Akaike Information Criterion 

(𝐴𝐼𝐶𝑐), which is useful to measure the trade-off between model accuracy and the 

number of free parameters. HIPPO requires a specific data set and an ordinary 

differential equations (ODE) model with many fitting parameters. In our example, 

calibration data comprises temperature, fructose, glucose, and YAN measurements 

of one lab-scale fermentation (identified as LAB-LO(02)). Two wine fermentation 

models (Coleman et al., 2007; Zenteno et al., 2010) were analyzed, one comprising 

4 ODEs and 12 fitting parameters, and the other comprising 5 ODES and 14 fitting 

parameters (CO2, density, and temperature ODEs not considered, refer to 

Appendix A). 
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Figure 2-2. Graphical representation of the workflow used for model robustness assessment and selection. In step I the 
characterization of model structures is performed through reparametrization of the model used as input with a reduced set of 
the experimental data. Steps II and III refer to selection steps, where respectively viability thresholds and MCDM selections 
that were defined previously are used to evaluate the model structure’s robustness indices. Finally, in step IV, model 
structures are recalibrated using all calibration data, and are then evaluated using a predefined validation dataset. The selected 
model in this final step is called the best-overall model structure, which is characterized by its highly robust features.
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b) Selection of viable model structures 

The viability analysis is the second step in the workflow, selecting a reduced set 

(typically less than 50) of the many reparametrized model structures generated by 

HIPPO. Here, the SSM (Hao et al., 2006) and normalized sensitivity curves (NSC) 

are re-calculated using the symbolic procedure described by Stigter & Molenaar 

(2015). The re-calculated SSM and the analysis provided by HIPPO (t-values, 

CI’s, PCM, 𝐴𝐼𝐶𝑐) were considered for selecting the viable models according to the 

following criteria: 

i) Parametric identifiability condition. 

The cross-correlation among all parameter pairs of a given model 

structure is calculated (Jaqaman & Danuser, 2006). A threshold of 0.95 

was established for the absolute values of non-diagonal elements of the 

PCM. Higher values indicate a high correlation between pairs of 

parameters, i.e., the structure is not identifiable. 

ii) Significance condition. 

t-values were evaluated as proposed by Sánchez et al. (2014b) to 

determine the statistical significance of parameters. The previous values 

were calculated for each of the p estimated parameters of a structure by 

using the nominal parameter values (𝜃𝑝) and their estimated confidence 

intervals (𝐶𝐼𝑝) as in Eq. 2.1. Values of this index lower than 2 suggest 

that zero is within the corresponding parameter’s confidence interval. An 

adequate model structure should have all t-values > 2. 

iii) Sensitivity condition. 

Here, the model structure’s sensitivity was assessed using the re-

calculated SSM.  Each element of this matrix 𝑆𝑆𝑀𝑖,𝑝 represented the 
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relative sensitivity score of the state variable i for the estimated parameter 

p. Following Sánchez et al. (2014b), we established a threshold value of 

0.01 for all elements of the relative sensitivity matrix to qualify model 

structures as sensitive to their parameters. 

c) Selection of robust model structures 

Once the viable structures are chosen, the next step in the workflow consists of 

applying MCDM methods to obtain a few model structures (typically around 3). 

Here, the previously described estimation indices define O different criteria (𝑂𝐹𝑜), 

each reflecting a model’s performance over a given robustness measure. To 

broaden the scope of this analysis, different weights (𝜔𝑜) for each criteria define 

different scenarios, and several MCDM methods were applied as proposed in 

Wang & Rangaiah (2017) to choose the best model structure for a given scenario, 

as shown in Table 2-1. 

The evaluated criteria were designed to assess the different dimensions that 

characterize the reliability of a given model structure, i.e., identifiability, 

significance, sensitivity and goodness-of-fit. This is important since the 

performance in each case vary significantly; normally, a good performance in one 

of these dimensions is associated with a poor performance in other dimensions  

(e.g., a given model structure fits the data accurately, but the model is not sensitive 

to some free parameters). The model selection procedure makes use of the output 

indices from HIPPO (𝜃, CI and 𝐴𝐼𝐶𝑐) and the symbolically calculated NSC as 

follows: 

i) Performance criteria. 

The corrected Akaike Information Criterion (𝐴𝐼𝐶𝑐), provided by HIPPO 

and calculated like in Eq. 2.2, assess the fitting performance. It considers 

the square sum of errors (SSE), the number of estimated parameters (P), 
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and the number of experimental points (N). The lower the 𝐴𝐼𝐶𝑐value, the 

better the model performance is (should be minimized).  

𝐴𝐼𝐶𝑐 = 𝑁 ∙ log (𝑆𝑆𝐸
𝑁

) + 2(𝑃 +  ) + 2 (𝑃+1)(𝑃+2)
𝑁−𝑃−2

  (2.2) 

ii) Significance criteria. 

This criterion, designed to measure the overall significance of a model 

structure, is given by the mean of the normalized confidence intervals 

(MNCI) of the P parameters provided by HIPPO (Eq. 2.3). Small values 

indicate a better overall significance of the model structure (should be 

minimized). 

𝑀𝑁𝐶𝐼 = 1
𝑃
∑ 𝐶𝐼𝑝

�̂�𝑝

𝑃
𝑝=1   (2.3) 

iii) Sensitivity criteria. 

Total parametric sensitivity (𝐺𝑖,𝑝) was calculated as the integral of the 

symbolically calculated NSC for each i state variable for each p estimated 

parameter, as follows: 

𝐺𝑖,𝑝 = ∫ 𝑁𝑆𝐶𝑖,𝑝𝑑𝑡𝑡𝑓
𝑡0

= ∫ 1
max(𝑥�̂�) 

𝑑𝑥𝑖
𝑑𝜃𝑝

 𝑑𝑡𝑡𝑓
𝑡0

  (2.4) 

where max(𝑥�̂�) is the maximum predicted value of the i model state, 𝑑𝑥𝑖
𝑑𝜃𝑝

 

is the parametric sensitivity of each state with respect to each parameter, 

and 𝑡0 and 𝑡𝑓 refer to the initial and final integration times, respectively. 

Then, the global parametric sensitivity score (𝐺𝑆𝑖) for each state i was 

calculated as follows: 

𝐺𝑆𝑖 = ∑ 𝐺𝑖,𝑝
𝑃
𝑝=1   (2.5) 
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where each 𝐺𝑆𝑖 is a sensitivity-related measurement associated to each 

model state. In the MCDM assessment, each sensitivity measurement 

(𝐺𝑆𝑖) was weighted the same. Higher values of these indices indicate 

higher model sensitivity (should be maximized). 

 

 

Table 2-1. MCDM methods and evaluated scenarios involved in the viable 
structure selection stage.  

 

MCDM Method ¿Weights? Principle 

TOPSIS Yes Euclidean distance to ideal 

LINMAP Yes Euclidean distance to ideal 

VIKOR Yes Euclidean distance to ideal 

SAW Yes Simple weighted summation 

MEW Yes Multiplicative weighting 

GRA No Similarity to utopic optimal 

FUCA Yes Global ranking 

Scenario Priority Performance 
Criteria Weight 

Significance 
Criteria Weight 

Sensitivity 
Criteria Weight 

No priority 0.33 0.33 0.33 

Heuristic 0.50 0.30 0.20 

Performance 0.80 0.10 0.10 

Significance 0.10 0.80 0.10 

Sensitivity 0.10 0.10 0.80 
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d) Best-overall structure selection 

The last step of the workflow yields the best-overall model structure. Here, the few 

model structures obtained from the previous step are re-analyzed using the 

complete calibration and validation data sets (in our case, all laboratory-scale 

experiments in Table 2-2). Goodness-of-fit, and additional statistical testing and 

regression performance indicators, commonly used for model validation were 

applied (Bonate, 2011; Serebrinsky et al., 2019). Details of these procedures are 

given below. 

 

Table 2-2. Experimental data sets. 
 

Usage N° Laboratory-scale Pilot-scale 

Calibration 

1 LAB-LO(02) CII-LO(07) 

2 LAB-LO(02) CII-LO(08) 

3 LAB-MA(04) CII-MA(09) 

4 LAB-MA(05) CII-SR(15) 

Validation 
5 LAB-LO(07) CII-MA(01) 

6 LAB-LO(08) CII-LO(27) 

 

i) MCDM models calibration 

After MCDM selection was made, parameter estimation was performed 

over the selected structures using the laboratory-scale set of calibration 

experiments (Table 2-2) while applying a bootstrapping-based regression 

procedure. The aforementioned was used to obtain the overall model 

structure as a result of fitting laboratory scale measurements. In this 
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procedure, each element corresponds to a specific experimental data set 

(e.g LAB-LO(02)), and different subsets contain different combinations 

of elements. Given K calibration experiments, a total of (𝐾
𝑣) subsets are 

formed for a determined subset size v. To simplify indexation, we 

identify subset Θ𝑢,𝑣 as a specific u subset with v elements. For example, 

[LAB-LO(02), LAB-LO(03), LAB-MA(04)] may correspond to subset 

Θ1,3, while [LAB-LO(02), LAB-LO(03)] and [LAB-LO(02), LAB-

MA(04)] may correspond to subsets Θ1,2 and Θ2,2, respectively. 

Additionally, a squared-error function was defined considering the 

simulated (𝑥𝑖,𝑛(𝜃)) and measured values (𝑥𝑖,𝑛 ) associated to each k-th 

experiment in a given subset. For each experiment, 𝑁𝑘measurement 

points were considered in the calculation of the squared-error over a total 

of I model states, as shown in Eq. 2.6.  

𝐽𝑘(𝜃) = ∑ ∑ (𝑥𝑖,𝑛(�̂�)−𝑥𝑖,𝑛
max(𝑥𝑖,𝑛)

) 𝐼
𝑖

𝑁𝑘
𝑛   (2.6) 

Finally, by combining Eq. 2.6 with the Θ𝑢,𝑣 subsets, the global error 

function 𝐺𝐸(𝜃) for parameter calibration of the MCDM-selected models 

was defined as the sum of the errors calculated for all subsets (Eq. 2.7).  

𝐺𝐸(𝜃) = ∑ ∑ ∑ 𝐽𝑘(𝜃)𝑘∈Θ𝑢,𝑣
𝑈𝑣
𝑢=1

𝑉
𝑣=1   (2.7) 

where K corresponds to the total amount of calibration experiments, and 

𝑈𝑣 corresponds to the number of possible combinations with v elements 

(equivalent to(𝐾𝑣)). 

The parameter estimation problem was solved using eSS with fminsearch 

for the local search. We used the Matlab Parallel Computing Toolbox to 

accelerate this process, given the high computational cost incurred. 

ii) Global performance index 
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Predictions generated by each of the calibrated MCDM-selected 

structures were evaluated using the adjusted determination coefficients 

(𝑅𝑎𝑑𝑗) from each of the measured model states (in our case glucose, 

fructose, and YAN). We defined an index to consider the multiplicity of 

model states and validation experiments. Considering the existence of a 

total of Q validation experiments and I measured model states, we 

defined the global performance index of a model structure w over a 

validation experiment q (𝐺𝑃𝐼𝑤,𝑞), as in Eq. 2.8.  

𝐺𝑃𝐼𝑤,𝑞 = 1
𝐼
∙ ∑ (𝑅𝑎𝑑𝑗)𝑖,𝑞

𝑤𝐼
𝑖=1  , 𝑞 =  …𝑄 (2.8) 

𝐺𝑃𝐼𝑤,𝑞 represents the average between the adjusted coefficients of 

determination (𝑅𝑎𝑑𝑗)𝑖,𝑞
𝑤

 calculated from simulations of the i measured 

model states obtained from a given calibrated MCDM-selected model and 

validation experiment. 

iii) Residual autocorrelation and normality 

Statistical testing was applied over the residuals obtained from each 

selected structure to determine if the resulting models were biased. 

Anderson-Darling test (AD) was applied for the residual normality 

distribution and the Durbin-Watson test (DW) for residuals correlation. 

Both tests were applied with a significance level of 5%. Critical values 

for the DW test were obtained from Farebrother (1980). 

iv) Structural identifiability stability analysis 

To further ensure results from the structural identifiability analysis 

performed by HIPPO and check visually regression stability, we 

employed the method proposed by Stigter & Molenaar (2015). Here, by 

computing the Relative Output Sensitivity Matrix (ROSM) using 

symbolic procedures for parametric sensitivity calculation in combination 
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with Monte Carlo simulation techniques, the authors derive a method to 

graphically evaluate parametric identifiability and instability. This is 

performed by repeatedly calculating the ROSM while varying 

parameter’s nominal values in a predefined interval. In each iteration, 

values of the singular values and associated right singular vectors are 

obtained through Singular Value Decomposition (SVD) of the ROSM. 

Consecutively, these are evaluated to analyze identifiability problems, 

where higher values suggest a high correlation between a given set of 

parameters. We refer readers to Stigter and Molenaar (2015) for a further 

understanding of this method.  

v) Best structure selection 

The final step is the selection of the best-overall model structure using the 

performance indicators from the prior sections. Here, validation data (in 

our case, laboratory-scale validation experiments in Table 2-2 is used to 

compute 𝐺𝑃𝐼𝑤,𝑞, AD, and DW indices for each calibrated MCDM-

selected model structure. The best-overall model structure should present 

a significant sensitivity to calibration, a stable response to small changes 

in parameter values, a good predictive capacity, and minimum bias, 

according to the already defined performance indices and analyses. 

Therefore, the best-overall model structure presents the highest averaged 

𝐺𝑃𝐼𝑤,𝑞, and the highest number of normally distributed uncorrelated 

residuals. 

2.3.3. Model validation 
 

Commonly, models are used in a setting that differs from the one used to calibrate 

them. For example, in our case, we calibrate the model using lab-scale 

experiments, but we would like to use the model in a pilot-scale fermenter. 

Therefore, the best-overall model structure was calibrated with the calibration 
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subset of the pilot-scale experiments (Table 2-2). The pilot-scale validation data 

was then used to assess the model performance and compare it with the full model 

(all model parameters were considered free). Here, the indices described above 

(GPI, AD p-value, and DW d-value) were applied to compare them. 

 

2.4. Results and discussion 
 

2.4.1. Initial evaluation of Coleman and Zenteno models 
 

To accomplish the validation of the proposed methodology, we initially assessed 

the predictive capacity of the original Coleman (RCM, Coleman et al., 2007) and 

Zenteno (RZM, Zenteno et al., 2010) model structures, i.e., considering the fixed 

and free parameters proposed by the corresponding authors. These model 

structures were re-calibrated at both studied scales to adapt them to our data 

following the methodology in section 2.3.2d. In our experiments, we observed a 

case-specific YAN concentration (YAN stagnation point) at which yeasts seemed 

to stop consuming nitrogen (between 15 and 60 mg L-1); other authors have also 

observed this (Childs et al., 2015; Coleman et al., 2007). Also, Coleman and 

Zenteno’s original models consider the total consumption of the available nitrogen 

and no additions during the fermentation; hence, our simulations and experimental 

data were rearranged to consider the YAN stagnation points and the DAP 

additions. At each experiment, the YAN stagnation point was defined as the YAN 

concentration measured just before the DAP addition near must density 1050 gL-1 

(point of the fermentation where we typically observed YAN stagnation, refer to 

section 2.3.1c for information about our fermentation protocol). Then, we 

subtracted the corresponding YAN stagnation concentration from the YAN 

measurements, simulating a total YAN consumption; negative concentrations 

resulting from the subtraction were approximated to zero. DAP additions at the 

middle of the fermentations were considered by splitting the fermentation 

simulation in two: before DAP addition and after DAP addition. The initial YAN 
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values of the second simulation stage were modified according to the amount of 

DAP added. Once simulations were completed, YAN values were corrected by 

adding the YAN stagnation concentration to the simulated nitrogen consumption 

curve. YAN measurements close to zero (commonly those at the end of the 

fermentations) were excluded from calibration and performance assessment since 

these measurements introduced bias. In Fig. 2-3 the YAN corrections described 

above were graphically represented. 

 

The performance of both models is summarized in Table 2-3, calculated with their 

corresponding validation datasets (Table 2-2). Sugar and density showed good 

precision (Radj > 0.79); however, YAN predictions at the pilot-scale were 

inaccurate, probably due to the few measurements taken at the beginning of the 

pilot-scale fermentations (Jaqaman & Danuser, 2006). The protocol in these 

experiments considered a constant sampling based on the density evolution; 

samples were taken when must’s density decreased by 10 kg/m3. This method 

resulted in 3 or less YAN measurements during the first 30 hours of fermentation, 

where nitrogen is consumed much faster than sugar. The laboratory-scale 

experimental protocol considered two measurements per day, independent of the 

density evolution, resulting in better model performance. 
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 Table 2-3. Predictive performance over laboratory-scale and pilot-scale 
experimental data when simulating using the original Zenteno and Coleman 

models.  
 

Coleman Model 

Process Scale Radj YAN Radj Sugar Radj Density GPI 

Laboratory 0.92 ± 0.02 0.93 ± 0.05 0.94 ± 0.02 0.93 ± 0.01 

Pilot 0.22 ± 0.96 0.81 ± 0.15 0.81 ± 0.14 0.62 ± 0.35 

Zenteno Model 

Process Scale Radj YAN Radj Sugar Radj Density GPI 

Laboratory 0.96 ± 0.04 0.97 ± 0.01 0.97 ± 0.01 0.92 ± 0.07 

Pilot -0.51 ± 1.61 0.79 ± 0.20 0.79 ± 0.19 0.52 ± 0.64 
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Figure 2-3. The four steps of the YAN correction procedure. Blue and red dots represent measured and corrected YAN 

measurements, respectively; continuous black line represents simulations. Step I identifies the stagnation point d as the 

YAN measurement before DAP addition. Measurements equal or lower than d are discarded and set to zero, and the 

fermentation is simulated in two stages (before and after DAP addition). In step II, YAN measurements are subtracted 

by d. In step III, simulations are carried out assuming corrected YAN values. Finally, in step IV, simulated values are 

corrected by adding the stagnation YAN concentration.

               
        

 

  

   

   

   

   

  
  
  

  
  

               
        

 

  

   

   

   

   

  
  
  

  
  

               
        

 

  

   

   

   

  
  
  

  
  

            
             
             

               
        

 

  

   

   

   

   

  
  
  

  
                  

                

                

 

 

 

 

 

 

    

  

 

 

                   
     

              
              

             

            
               

              
                  

           

       
       



64 

  

2.4.2. Best-overall model structure selection 
 

In the first step of the proposed workflow (section 2.3.2), the reparametrized 

model structures Coleman et al. (2007) and Zenteno et al. (2010) are generated 

using the HIPPO algorithm (section 2.3.2a) and data from the calibration 

experiment LAB-LO(02). This computationally heavy procedure (around 13 days 

on an Intel 4770k processor) yielded 4092 and 11958 characterized Coleman and 

Zenteno model structures, respectively. The robustness and goodness-of-fit 

(section 2.3.2a) indices of the generated models were considered in steps II and III 

to select a reduced set of structures (Fig. 2-2). This selection was based on a single 

data set (LAB-LO(02)). A more reliable selection can be achieved using a more 

complete data set, although the computational burden would be much higher. 

 

In step II, model structures with many limitations regarding identifiability, 

significance, and sensitivity were discarded according to the criteria specified in 

section 2.3.2b. The measurement noise and the discontinuous DAP additions in the 

middle of the fermentations hamper the ODEs integration and the parametric 

sensitivities calculation, which HIPPO cannot handle easily. Therefore, in this 

step, the SSM and NSC were recalculated for sensitivity assessment of all model 

structures generated by HIPPO using a more robust symbolic-based method 

(section 2.3.2b), although this method is computationally more demanding. This 

step yielded 29 and 5 “viable structures” of the Coleman and Zenteno models, 

respectively, which were processed further. 

 

In step III, MCDM methods were applied (section 2.3.2c) to choose the most 

“voted” model structures under the five scenarios considered (Table 2-1). The 

decision-making results, considering the 5 viable Zenteno models, are shown in 

Fig. 2-4. This procedure allowed us to reduce the 29 Coleman viable models to 

just 3 model candidates (Fig. C-1) and yielded 2 Zenteno model candidates. The 
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candidate models were separated into two: the Coleman-MCDM candidate models 

(group I) and the Zenteno-MCDM candidate models (group II). 

 
Table 2-4. Selected viable structure groups specifications.  

 

Group 
Fermen-

tation 
model 

Group GPI Best GPIa %Normal 
residuals 

Uncorrelated 
residualsb 

(%) 
Group 

I Coleman 0.92 ± 0.03 0.94 ± 0.03 75% 50% (25%) 

Group 
II Zenteno 0.92 ± 0.07 0.97 ± 0.02 75% 62.5% (20%) 

 
a Denoted as the mean GPI obtained from simulations over the laboratory 

validation data set using the best performing model structure in each group. 

 
b Numbers appearing in parenthesis correspond to the percentage of residuals  

where correlation was uncertain in DW testing. These cases were not included in 

the calculation of the residual correlation percentage. 

In step IV (Fig. 2-2), candidate models from groups I and II were re-calibrated 

with the four experimental calibration datasets (2.3.2.d). These re-calibrated model 

structures were validated with two additional laboratory-scale datasets (Table 2-2); 

these results are shown in  Table 2-4. Both groups yielded the same average GPI 

(0.92), although group I presented a slightly lower standard deviation than group 

II, suggesting a more consistent predictive capacity. The best GPI was achieved by 

model 10325 in group II, which presented a better overall predictive capacity, 

considering both validation datasets. The best-performing (highest GPI) Zenteno-

MCDM and Coleman-MCDM (3666) model structures were those that received 

most votes in at least one scenario by the MCDM algorithms (Fig. 2-4). 

 

Sugar-related residuals (glucose, fructose, density, and total sugar) in both model 

groups typically followed a normal distribution (data not shown). In turn, nitrogen 



66 

  

was quickly consumed at the beginning of the experimental fermentations, and not 

many YAN measurements were taken, resulting in a few highly variable YAN 

residuals that did not follow a normal distribution. 

The residuals of group II model structures were less autocorrelated than those in 

group I (Table 2-4). Hence, Zenteno structures provide a better description of the 

process dynamics, while Coleman structures cannot explain a significant part of 

the dynamic response, yielding less accurate predictions. 

 

The original structures of both models (Coleman and Zenteno) were further tested 

with an alternative hybrid identifiability analysis method, which was proven as an 

efficient and reliable analysis to assesses the propagation of non-linear structural 

identifiability (Stigter & Molenaar, 2015). Performing 500 simulations assigning 

random values to each model parameter within the range [𝜃 ± 0.2𝜃], we were able 

to detect the unidentifiable parameters of the original models; as nominal 

parameter values (𝜃), we used those generated by the HIPPO algorithm in the 

calibration of the original model structures. 
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Figure  2-4. MCDM  results when applied to model structures from group II (Zenteno originated models). Stacked bars 

represent votes committed by each of the MCDM methods listed in the figure legend (Table 2-1). Overall, model structures 

9099 and 10325 represent  good levels of robustness , as both models where the most voted in one or more scenario.
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The Zenteno model results are shown in Fig. 2-5, while those of the Coleman 

model are shown in Figure D-1. In these figures we show the absolute values of 

components associated with the last singular vector from the SVD of the ROSM; 

averaged given the multiplicity of simulations. Those components that are 

significantly different from zero pinpoint the non-identifiable parameters, which 

for the Zenteno model are 𝜃11 and 𝜃12 (𝑌𝑋𝐺 and 𝑌𝑋𝐹, respectively; refer to 

Appendix A and Appendix B for further details about these parameters). These 

results showed concordance with the work leading into structure Zenteno-10325, 

as parameters tagged as problematic coincided with those fixed using our method. 

However, as seen in Appendix D, this analysis gave inconclusive results for the 

Coleman model, which were observed as instabilities when slightly changing 

parameter values, resulting in high standard deviations when applying this 

procedure. This indicates strong correlations between several of the parameters in 

this model; thus, suggesting inadequacy in the use of this model for our purposes. 

 

Although this alternative analysis is limited to detect structural unidentifiability, it 

is much more robust than the HIPPO algorithms. Also, as HIPPO’s algorithms 

intend to explore robustness following a tree-exploration approach (fixing a 

parameter implies the generation of a new exploration branch), those alternative 

methods could drastically benefit HIPPO’s efficient implementation; these aim to 

allow early detection of problematic parameters. Consequently, it is advisable to 

run this hybrid algorithm before applying HIPPO, reducing the number of model 

structures generated significantly. This parameter reduction is especially relevant 

for metabolic genome-scale models, where the number of equations can be in the 

order of hundreds (Saitua et al., 2017; Sánchez et al., 2014a).    
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Figure 2-5. Mean absolute values of the components of the last singular vector of the ROSM obtained from applying the 

method proposed by Stigter & Molenaar (2015) over the reduced Zenteno model (Appendix A). A total of 500 iterations were 

performed, varying nominal parameter values. Values distant from cero represent problematic parameters given the data 

structure used for calibration (in this case, parameters 𝜃11 and 𝜃12, refer to Appendix B). 𝜎14 corresponds to the singular value 

associated to the last column in the SVD decomposition of the ROSM. 
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After applying the methods in step IV, the Zenteno-10325 model structure was 

selected for further assessment, given its superior performance. Parameter values 

of fixed and free parameters associated with this structure can be found in 

Appendix B. 

 

2.4.3. Pilot-scale validation 
 

Zenteno-10325 model structure was re-calibrated using the pilot-scale calibration 

data set (Table 2-2) to represent the fermentation’s behavior adequately on this 

scale (see section 2.3.1b). We used the same calibration method described in 

section 2.3.2d. The values of the fixed parameters were those calculated by HIPPO 

(section 2.3.2a).  

 

Predictive simulations were performed to reproduce the pilot-scale validation 

experiments (Table 2-2). The model performance was assessed using the Radj and 

the residual’s statistical indices (section 2.3.2d) associated with the measurement’s 

average of the two validation experiments. The obtained results are summarized in 

Table 2-5 and in Fig. 2-6.   

 

Table 2-5. Model structure Zenteno 10325 averaged performance indices when 

applied for predictions over the pilot-scale experiments.  

 

Radj 
YAN 

Radj   
Glucose 

Radj 
Fructose 

Radj 
Sugar 

Radj 
Density 

Not 
normal 

residuals 

% 
Correlated 
residuals 

-3.90 
± 6.12 

0.95 ± 
0.01 

0.95 ± 
0.01 

0.98 ± 
0.02 

0.98 ± 
0.02 YAN 0% 

 

 

The predictive simulations’ performance with Zenteno-10325 (Table 2-5) is much 

better than that of the original model structure (Table 2-3) for the validation 

experimental pilot-scale dataset. The average Radj associated with the density 
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increased from 0.79 to 0.98, and its standard deviation was reduced by around 

90%; hence, density predictions were more accurate and reliable.  

 

These results are particularly relevant for industrial applications since density is 

the principal variable used by enologists in decision-making during the alcoholic 

fermentation, and its use in new control applications for this process has shown 

relevant interest (Sablayrolles, 2009). Conversely, low YAN predictive 

performance persisted; Fig. 2-3 and Fig. 2-6 confirm that this is related to the few 

measurements at the beginning of the fermentations (2-3 measurements before the 

YAN stagnation point). This limitation also explains a biased estimation of the 

biomass generation at the beginning of the fermentation, resulting in high 

prediction errors of the initial sugar consumption. Predictions of sugar-related 

measurements in later stages of the fermentation were not seriously affected by 

these initial inaccuracies. Model-based design of experiments can help establish 

sampling points that would lead to better predictive models. 
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Figure 2-6. Application of model structure Zenteno 10325 over the pilot-scale validation experiments simulation. Blue and 

orange (line and symbols) represent experiments CII-LO(27) and CII-MA(01), respectively. Symbols represent experimental 

data, while lines correspond to simulations. In the Glucose/Fructose sub-figure, dashed lines and triangles are associated to 

Glucose consumption kinetics, while solid lines and circles are associated to Fructose consumption kinetics. The sugar state 

was simulated as the combination of the Glucose and Fructose model states.
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2.5. Conclusion 
 

This paper proposed a robustness-guided workflow for reparametrization 

assessment and selection of ODE dynamic models to optimize their predictive 

capability, reliability, and flexibility to fit different experimental data. The 

procedure consists of four stages and was applied to select a wine fermentation 

model (starting from a pool of two models) that achieved a good fit using the 

laboratory-scale and pilot-scale experimental data. During stage I, model structures 

varying in their free and fixed parameters were characterized through robustness-

related indices using the HIPPO algorithm; here, we explored a total of 4092 and 

11958 structures corresponding to each evaluated model. Afterward, these model 

structures were re-processed during stage II, where we selected those models 

which accomplished minimum robustness requirements, reducing the number of 

characterized models to a total of 26 and 5 “viable” model structures. When 

further evaluated using MCDM techniques during stage III, we were able to 

discard most of the models, leaving us with a small selection of highly robust 

models. Finally, in stage IV, we used the MCDM-selected models for simulation 

with the complete laboratory-scale validation and calibration datasets. All the 

above yielded the selection of model structure “Zenteno-10325” as the best-overall 

model structures, where only 6 of the initial 14 remained as free parameters for 

regression purposes. When used for prediction generation over the validation 

dataset, model structures Zenteno-10325 showed a 5% increase in global 

predictive performance when compared to the original models. This model 

structure was validated with our pilot-scale experimental dataset, where we 

obtained a significant improvement over quality related to sugar predictions; this 

was observed as an increase in the average fitting performance (Radj) from 0.79 to 

0.92. Nevertheless, the prediction of nitrogen-related variables was inaccurate due 

to insufficient measurements at the beginning of the fermentation. Moreover, we 

also discuss a method for preliminary structural identifiability assessment, which 

could be implemented in HIPPO to significantly reduce processing time (four our 
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example, we estimate this could reduce the number of explored model structures 

by around 80%). Overall, when a limited data structure is at hand, the proposed 

workflow yields a reliable minimum model structure with identifiable, 

independent, and significant fitting parameters. The selected model structure, 

applied at different scales, accurately predicts the process behavior and achieves 

good fit of the experimental data. As a final remark, though applied to models 

lacking features to adequately represent industrial wine fermentation systems, this 

method states a framework to guide regression procedures for most ODE-based 

dynamic process models. If properly used during large-scale fermenter model 

calibration, we expect a significant increase in overall prediction quality and 

certainty in these systems, directly impacting the viability for their implementation 

in industrial applications. 
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3. FINAL REMARKS AND FUTURE PERSPECTIVES 

 
Though applied to wine AF modeling, it is important to state that the method generated 

from this work is fully appliable in dynamic models describing processes out of this 

topic, thus, highlighting the value of its development. Insights from this work aim to 

become a useful addition for a modeler’s repertoire as it is common to see restrictions 

limiting data in most industrial developments, ultimately forcing modelers to adapt to 

generate reliable results. Moreover, applications differing from DPE can be approached 

using this tool, as model reduction tends to shorten computation time while improving 

accuracy in methods aiming to evaluate parameter interdependence exploration; this is 

especially useful in those methods where Monte Carlo simulations are central in their 

procedures. As an example, though based on expert knowledge, Krausch et al. (2019) 

noticed that fixing analyzed model parameters lead into drastically reduced parameter 

confidence interval sizes when performing model-based design of experiments 

(MBDoE), resulting in dramatically lower computation times with higher certainty over 

obtained results.  

Regarding CRI’s mission, model structure Zenteno-10325 is expected to be 

implemented for AF simulation, as results from this work have demonstrated its 

predictive superiority when compared to models being used in the SmartWinery 

platform. However, as industrial wine fermentations are the focus of SmartWinery, this 

model represents just but a stepping-stone pursuing the objective of reliably generating 

predictions for this process scale. The method leading to Zenteno-10325 has cleared 

some difficulties related to DPE when restricted data is at hand; situation to be expected 

in future industrial developments at CRI. This situation encourages the use of the 

proposed method in models more adequate for industrial winemaking to determine a 

minimally viable model structure whose parameters are able of being robustly 

determined, thus, guaranteeing a higher predictive reliability. Additionally, and furtherly 

aiding the previous, it is expected that the combination of this method with MBDoE 

procedures is realized at CRI to generate a precise sampling protocol for future vintage 
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seasons (optimal sampling). Given the above, results from this work represent a highly 

valuable asset for SmartWinery’s further improvement.  
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APPENDIX A: REDUCED ZENTENO MODEL 

 

The reduced Zenteno model was obtained from Zenteno et al. (2010), with 

temperature incorporated as an input for the model. No compartmentalization was 

used, since in both laboratory and pilot-scale experiments, temperature gradients 

were considered not to be significant. CO2 generation was not incorporated into 

the model, as it did not affect other state variables. Density was estimated using 

sugar levels (glucose + fructose) and a linear interpolation obtained by adjustment 

using previous experiments in our laboratory. Therefore, the reduced Zenteno 

model is constructed as follows: 

 

Biomass generation and decay: 

𝑑𝑋
𝑑𝑡

= (𝜇 − 𝑘𝑑) ∙ 𝑋 (A.1) 

Nitrogen consumption: 

𝑑𝑁
𝑑𝑡

= − 𝜇
𝑌𝑋𝑁

∙ 𝑋 (A.2) 

Glucose consumption: 

𝑑𝐺
𝑑𝑡

= −( 𝜇
𝑌𝑋𝐺

+ 𝛽𝐺
𝑌𝐸𝐺

+ 𝑚 ∙ 𝐺
𝐺+𝐹

) ∙ 𝑋 (A.3) 

Fructose consumption: 

𝑑𝐹
𝑑𝑡

= −( 𝜇
𝑌𝑋𝐹

+ 𝛽𝐹
𝑌𝐸𝐹

+ 𝑚 ∙ 𝐹
𝐺+𝐹

) ∙ 𝑋 (A.4) 

Ethanol production: 

𝑑𝐸
𝑑𝑡

= (𝛽𝐺 + 𝛽𝐹) ∙ 𝑋 (A.5) 

With: 

Specific growth rate: 
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𝜇 = 𝜇𝑚𝑎𝑥 ∙ 𝑁
𝑁+𝐾𝑁(𝑇)

  (A.6) 

 

Maximum growth rate: 

𝜇𝑚𝑎𝑥 = 𝜇0 ∙ exp (𝐸𝑎𝑐∙(𝑇−300)
300∙𝑅∙𝑇

) (A.7) 

Biomass decay rate (when T>TD): 

𝜇𝑚𝑎𝑥 = 𝑘𝑑0 ∙ exp (𝐶𝑑𝑒 ∙ 𝐸 + 𝐸𝑡𝑑 ∙ ( 𝑇−305.65
306.65∙𝑅∙𝑇

)) (A.8) 

Thermal death ethanol-related threshold: 

𝑇𝐷 = − 0−4 ∙ 𝐸3 + 0.0049 ∙ 𝐸2 − 0. 279 ∙ 𝐸 +   5.89 (A.9) 

Ethanol production rate from fructose: 

𝛽𝐹 = 𝛽𝐹𝑚𝑎𝑥 ∙ 𝐹
𝐹+𝐾𝐹(𝑇) ∙ 𝐾𝐼𝐺(𝑇)

𝐺+𝐾𝐼𝐺(𝑇) ∙ 𝐾𝐼𝐸(𝑇)
𝐸+𝐾𝐼𝐸(𝑇)

 (A.10) 

Ethanol production rate from glucose 

𝛽𝐺 = 𝛽𝐺𝑚𝑎𝑥 ∙ 𝐺
𝐺+𝐾𝐺(𝑇) ∙ 𝐾𝐼𝐸(𝑇)

𝑅+𝐾𝐼𝐸(𝑇)
 (A.11) 

Specific cell maintenance rate: 

𝑚 = 𝑚0 ∙ exp (𝐸𝑎𝑚∙(𝑇−293.3)
293.3∙𝑅∙𝑇

) (A.12) 

Maximum ethanol production rates: 

𝛽𝑖,𝑚𝑎𝑥 = 𝛽𝑖0 ∙ exp (𝐸𝑎𝑓𝑒∙(𝑇−296.15)

296.15∙𝑅∙𝑇
) , 𝑖 = 𝐺, 𝐹 (A.13) 

Temperature inhibition parameters: 

𝐾𝑖(𝑇) = 𝐾𝑖0 ∙ exp (𝐸𝑎𝑘𝑖∙(𝑇−𝑇∗)
293.3∙𝑅∙𝑇

) , 𝑖 = 𝑁, 𝐺, 𝐹, 𝑖𝐺, 𝑖𝐸 (A.14) 

 

For all parameters values not included in the parameter estimation, i.e., not in the 

table from Appendix B, refer to Zenteno et al. (2010). 
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APPENDIX B: MODEL STRUCTURE ZENTENO-10325 

 
As described above, model structures are models where a specific set of estimation 

parameters are fixed given their lack of robustness for model calibration. Model 

structure Zenteno 10325 corresponds to the model depicted in Appendix A; fixed, 

and estimated parameters are shown in the following table (Table B-1). 

 

 

Table B-1. Parameter enumeration corresponding to the reduced Zenteno model. 

Optimal values for fixed and free parameters of Zenteno model structure 10325 are 

also indicated. 

 

Parameter N° Model parameter Fixed value Estimated value 

𝜃1 𝜇0 - 0.54 h-1 

𝜃2 𝛽𝐺0 - 0.30 h-1 

𝜃3 𝛽𝐹0 - 0.26 h-1 

𝜃4 𝐾𝑁0 - 010 kg m-3 

𝜃5 𝐾𝐺0 8.84 kg m-3 - 

𝜃6 𝐾𝐹0 - 11.97 kg m-3 

𝜃7 𝐾𝑖𝐺0 - 56.65 kg m-3 

𝜃8 𝐾𝑖𝐸0 36.80 kg m-

3 - 

𝜃9 𝐾𝑑0 3.94·10-5 h-1 - 

𝜃10 𝑌𝑋𝑁 21.32 - 

𝜃11 𝑌𝑋𝐺 1.66 - 

𝜃12 𝑌𝑋𝐹 1.41 - 

𝜃13 𝑌𝐸𝐺 0.58 - 

𝜃14 𝑌𝐸𝐹 0.63 - 
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APPENDIX C: MCDM RESULTS WHEN APPLIED TO GROUP I STRUCTURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  C-1. MCDM  results when applied to model structures from group I (Coleman originated models). Stacked bars 

represent votes committed by each of the MCDM methods listed in the figure legend (Table 2-1). Overall, model structures 

3545, 3561 and 3666 represent  good levels of robustness , as these models where the most voted in one or more scenario
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APPENDIX D: COLEMAN MODEL STRUCTURAL IDENTIFIABILITY ANALYSIS RESULT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D-1. Mean absolute values of the components of the last singular vector of the ROSM obtained from applying the 

method proposed by Stigter & Molenaar (2015) over the Coleman model. A total of 500 iterations were performed, varying 

nominal parameter values. Values distant from cero represent problematic parameters given the data structure used for 

calibration. 𝜎14 corresponds to the singular value associated to the last column in the SVD decomposition of the ROSM.
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