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Abstract 

The temperature corrections to the current algebra Gell-Mann, Oakes, and Renner (GMOR) relation in SU( 2) @ SU(2) 
are investigated in the framework of QCD sum rules. There are no corrections at leading order in the quark masses. At 
the next to leading order we find corrections of the form rni r2, which are small except near the critical temperature. As 
a by-product we obtain the temperature behaviour of the pion mass, which is essentially constant, except near the critical 
temperature where it increases with T. 

Due to its small mass, the pion plays a special role 
in the dynamics of hot hadronic matter. Therefore, it 
is quite important to understand the temperature be- 
haviour of the pion’s Green function. The pion mass 
,q(T) has been studied in a variety of frameworks, 
such as Chiral Perturbation Theory (low temperature 
expansion) [ 11, the Linear Sigma Model [ 21, the 
Mean Field Approximation [ 31, the Virial Expansion 
[ 41, etc. There seems to be a reasonable consensus that 
,u~ (T) is essentially independent of T, except possi- 
bly near the critical temperature T, where ,ur(T) in- 
creases with T. While the pion is (hadronically ) stable 
at T = 0, it is expected to develop a width (imaginary 
part of the Green function) at non-zero temperature, 
such width being interpreted as a damping coefficient 
which should diverge at the critical temperature for 
deconfinement. This follows from a proposal [5,6] 
(see also [ 71) to consider the width of a hadron as a 
phenomenological order parameter for the deconfine- 
ment phase transition. In fact, as the temperature is 
increased and the hadron melts, its width should in- 
crease until it becomes infinite at T = T,, thus ensur- 

ing that no resonance peaks remain in the hadronic 
spectral function. The latter should become a smooth 
function of the energy and coincide with its perturba- 
tive QCD value. These properties have been confirmed 
by detailed calculations in the framework of the virial 
expansion [ 81 and the Linear Sigma Model [ 91. 

In this paper we study the temperature corrections 
to the well known Gel&Mann, Oalces, and Renner 
(GMOR) relation of current algebra [ lo] 

where fr N 93 MeV, and < fiu >N< did BE 

< qq >z - 0.01 GeV3. We do this in the framework 
of QCD sum rules at finite temperature [ 5,11,12]. As 
a byproduct of our analysis, we obtain the temperature 
dependence of the pion mass. 

We begin by considering the following two-point 
function (at T = 0) 
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%p(q) = i s d4X &x 

x < OIT (Ap(~) jf (O)>lO >= iq,JMq*) 2 (2) 

where A,(x) = : d(x)y,ysu(x) :, and js(x) = 

: d(x) iyp( x) :. Calculating II5 (q2) in perturbative 
QCD to order O(mi), and incorporating the leading 

non-perturbative corrections, we find 

%(q*)loon = -&(m, +md) ln(-q*/v*) 

+ $m,mn(m, +md)-$ 

+ 
2<qq> 1 *<@I> 

q* 
+T(m,+md) ~ 

s4 

1 (mu + md> < 3~2 > -- 
8 $ IT 

(3) 

Using m, P 5 MeV, md N 10 MeV [ 131, and 

< %G* >z (l-4) x lOA2 GeV4 [ 141, the above 
expression can be safely approximated for 

GeV* as 

-q* N 1 

HIS (2) /QoD = $& (% + md) In(-q*/v*) 

+-3P 1 (m,fmd) < y”G2,, 

q* -8 $ 
. (4) 

n- 

On the hadronic side, saturation with the lowest 
hadronic state (the pion) yields 

rI,( 42) IHAD = 
(mu$-md) &-q* . 

(3 

We shall ignore in the sequel contributions from higher 
resonances (z’, ?r”, etc.) because the analysis will be 
basically restricted to energies below 1 GeV, in which 
case these hadronic contributions are absorbed into the 

continuum. 
Invoking Cauchy’s theorem in the form 

1 - 
?T s sNIm IIs (s) (mDds 

0 

1 
=--_ 

27ri J 
sN% (S) Iqc&, (6) 

c(/soo 

where N = 0, 1, 2, ea., leads to Finite Energy Sum 

Rules (FESR) . The first two FESR in our case read 

2&u: = -2(mu + md) < gq > 
.%l 

J 
ds, 

0 

(7) 

2f34=;(m&mdf2 < ZG” > 

$0 

+ g$(% +md)* 
s 

sds , (8) 

0 

where so is the continuum threshold. Eq. (7) be- 
comes the GMOR relation at leading order in the quark 
masses. We have left the explicit form of the trivial in- 
tegrals above, in order to compare later with the FESR 
at finite temperature, where these integrals cannot be 
calculated analytically in closed form. 

Next, we reconsider the above FESR at finite tem- 

perature. Thermal corrections to II, (q*) lQa can be 
calculated in the standard fashion [ 5,11,12], and we 
find for the imaginary part 

Im III5 (S,T)IQCD 

+ t(mU+md)T26(s), (9) 

where nF ( X) = ( 1 +e”) -I is the Fermi thermal factor. 
In addition, the non-perturbative vacuum condensates 
will develop a temperature dependence. For < qq >T 

we shall use the results of [ 31 away from the chiral 
limit, i.e. for mq # 0. The gluon condensate is basi- 
cally independent of T, except very close to the criti- 
cal temperature T, [ 151, so that we shall take it as a 
constant. On the hadronic side, the pion mass and de- 
cay constant will develop a temperature dependence, 
and so will SO. The latter follows from the notion that 
as the resonance peaks in the spectral function be- 
come broader, the onset of the continuum should shift 
towards threshold [ 5,161. The temperature behaviour 
of this asymptotic freedom threshold can be obtained 
from the lowest dimension FESR associated to the 
two-point function involving the axial-vector currents 
[ 5,161, provided fr( T) is known, viz. 
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Fig. 1. The ratios f~(T)lf~(O), Solid curve (a); 

< qq >T / < ifq >, dotted curve (b), both from [3]; and 

so(T)/so(O), dashed curve (c), from the FESR IQ. (10). 

so(T) 

s dz24z) 13 - u2(z>1 

x [I - 2nF ($1 

00 

+ s dz2 u(z) [3 -u2(Z)h (10) 

0 

where u(z) = (1 - (m, + md)2/z2) 1. We have used 

fr(T) as determined in [3] (for m4 Z O), and 
solved the above FESR for so(T) . The result is shown 

in Fig. 1, together with the input f,(T), as well as 
< L& >r, both from [ 31. It is interesting to notice that 
for temperatures not too close to T,, say T < 0.8T,, 
the following scaling relation holds to a good approx- 

imation 

fifi(T) _ < t& >T _ so(T) 
f2,(0) - < (74 > - so(O) * 

(11) 

The FESR, Eqs. (7) and (8) now become 

G(T) = 2&%&T) + 2(m, + md) < qq >T 

= &mu + md)2 C f$T2 

+ ‘7:s [l -2?ZF ($1 }, 

0 

(12) 
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Fig. 2. The ratio of the GMOR relation, IQ. (14). 

=&(m,+md)’ +G2> I 
+ “S”[l -%lF ($)I Sdr) . 

0 

In Fig. 2 we show the ratio 

G(T) 41? T2 -=_- 
G(O) 3 so(O) 

(13) 

+ & ‘Tds [l -2nF ($)I (14) 

0 

for sa( 0) = 1 GeV2 (reasonable changes around this 

value have basically no influence on the results). Qual- 
itatively, our result is in agreement with expectations: 
since both fn( T) and < qq >T decrease with T, the 
same should be true of G(T) . From the point of view 
of the sum rule, Eq. ( 14)) the decrease of G( T) is due 
to the decrease of so(T) (notice that T2/so(0) < 1 
in the temperature range under consideration). Quan- 
titatively, it would be interesting to compare our re- 
sult with that of the low temperature expansion, once 
this becomes available (to determine the 0(T2) cor- 
rection one needs the two-loop, c>(p6), calculation of 
the parameters entering G(T) [ 171) . 

Using f,(T) and < qq >T as input, plus so(T) 
obtained from Eq. ( lo), it is possible to use the two 
FRSR above, Eqs. ( 12) -( 13)) to obtain two indepen- 
dent determinations of p,(T) . The results of this cal- 
culation, shown in Fig. (3), are in good agreement 
with each other, as well as with results from other 
methods [ l-41. This is rather important, as it provides 
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Fig. 3. The ratio ~~(7’)/,u&O) obtained by solving the FESR 
F!.q. (12), curve (a), and EQ. (13), curve (b). In both cases, 
f,(T) and < @I >r from [ 31 were used as input. 

strong support for the validity of the QCD sum rule 

program at finite temperature. 
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