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‘Make rhizomes, not roots, never plant! (…)  

The tree imposes the verb ‘to be’, but the fabric of the rhizome is the 

conjunction, ‘and ... and ... and ...’ - G. Deleuze and F. Guattari 

 

‘It is by logic that we prove,  

but by intuition that we discover.’- H. Poincare 
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Resumen General 

Mas allá de ser una enfermedad exclusiva de los genes, el cáncer exhibe una estrecha relación 

con el ambiente biofísico, lo que lo constituye como un fenómeno ecológico. Esta tesis se 

enfoca en el estudio del cáncer bajo aproximaciones teóricas, analíticas, y experimentales 

bajo una mirada ecológica; aplicada desde la emergencia del cáncer (oncogénesis) hasta la 

migración de propágulos metastáticos entre órganos. En el primer capítulo, trabajamos en 

una conceptualización de la oncogénesis como un cambio en el fenotipo celular en respuesta 

al envejecimiento del organismo. Proponemos que en respuesta a los cambios en el ambiente 

celular que ocurren durante el envejecimiento no se mantiene el contexto bajo el cual se 

mantiene la multicelularidad traduciéndose en un cambio fenotípico celular que se aproxima 

a condiciones atávicas ‘unicelulares’ de disgregación estructural y funcional. Discutimos 

acerca de las nociones de individualidad, co-determinación individuo-ambiente y la 

enacción. El envejecimiento participa en la determinación de los rasgos de historia de vida 

celulares; y por lo tanto, las interacciones entre distintos tipos celulares. En el segundo 

capítulo abordamos la complejidad de interacciones competitivas entre estrategias celulares, 

cancerosas y no-cancerosas, y el ambiente físico. Desarrollamos un modelo analítico a partir 

de observaciones de competencia en un modelo in vitro (línea HEY-GFP de cáncer de ovario 

y línea MET5A de mesotelio de ovario) en condiciones de cultivo asociadas al 

envejecimiento del tejido ovárico (Matrigel con concentración variable de colágeno I). 

Nuestros modelos proponen que mecanismos competitivos jerárquicos influenciados por el 

envejecimiento modularían las ventajas competitivas de las células no-cancerosas; 

permitiendo que en tales ambientes la estrategia cancerosa logre invadir el ecosistema 

residente. En el tercer capítulo, abordamos la dimensión espacial el fenómeno a partir del 

estudio de la estructura espacial de los ecosistemas de cáncer mamario (ER+DCIS) bajo 

terapia endocrina neoadyuvante anti-proliferativa (ensayo clínico fase III POETIC, UK). 
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Utilizando algoritmos supervisados de machine learning identificamos de forma 

automatizada células individuales en muestras de tumor con tinción inmunohistoquímica 

Ki67 (marcador de proliferación). Identificamos zonas de mayor concentración celular 

(hotspots) y proyectamos las células en tales hotspots como nodos de una red espacialmente 

explícita. La detección y cuantificación de la comunidad espacialmente estructurada y 

fragmentada de células cancerosas y del sistema inmune junto con la expresión de Ki67, 

permite predecir con mayor poder la respuesta patológica a terapia anti-proliferativa. 

Además de operar como articulador de patrones espaciales, la diversidad de historias de vida 

celular, en interacción con las condiciones locales del ambiente celular, modulan la 

probabilidad de que células tumorales puedan invadir otros órganos. En el último capítulo, 

basados en registros recopilados de literatura, cuantificamos la invasibilidad y la variabilidad 

en invasividad de canceres metastásicos y analizamos el patrón emergente de tal 

variabilidad. A través del análisis de la metástasis como una red entre órganos fuente y 

receptores, un gradiente de invasividad e invasibilidad subyace el patrón macroscópico que 

resulta ser modular, anidado y libre de escala. Discutimos algunos mecanismos relacionados 

al gradiente de invasibilidad y la invasividad dando cuenta de la estructura global de la red. 

El trabajo desarrollado en esta tesis evidencia que el pensamiento ecológico y su 

aplicabilidad está más allá del paradigma ecológico tradicional, y que, por lo tanto, una 

visión multiescala del cáncer inspirado por relaciones entrelazadas en la naturaleza, podría 

dar luces de los mecanismos que subyacen la evolución del cáncer en el contexto del 

programa de organización multicelular, con las implicancias ecológicas, evolutivas y 

clínicas que ello contiene.  
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General Abstract 

Beyond genes, at different scales, cancer exhibits a narrow dialectic interaction with other 

cells and with its physical environment, undoubtedly an ecological phenomenon. This thesis 

focuses on theoretical, analytical, and experimental approaches at different scales; from 

cancer emergence (oncogenesis) to metastasis. In the first chapter, we conceptualise 

oncogenesis as the cellular phenotype-shift of individual cells in response to ageing. We 

propose that under ageing conditions, the multicellularity cannot be sustained. Hence, 

rewiring internal cellular processes enacting a particular phenotype in the cell characterised 

by structural and functional disgregation. We discuss the notions of individuality, cell-

environment co-determination, and the enaction of the external environment of cells. Besides 

to impact on life-history cellular traits, ageing also shapes the ecological interactions 

between cells. In the second chapter, we attempt to integrate the complexity of competitive 

interactions between cellular strategies at different environmental contexts. We developed 

an analytical model which allows us to study the invasion fitness of a cancer strategy 

invading a population of noncancer cell inspired by observations of in vitro competition 

(HEY-GFP ovarian cancer cell line and MET5A mesothelial ovarian cell line) in an 

ecosystem model associated with the ageing of the ovarian tissue (modifying collagen I 

concentration). Our model suggests that hierarchical competitive mechanisms may underlie 

cancer occurrence during late-life stages, where ageing lessen the competitive advantages of 

non-cancer cells allowing a cancer strategy to invade. In the third chapter, we tackle the 

spatial dimension of the phenomenon by studying the spatial structure and composition of 

ER+ breast cancer ecosystems under antiproliferative endocrine therapy. Using supervised 

machine learning algorithms, we identified individual cells in biopsies immunolabelled for 

Ki67 (proliferation marker). In each sample, we identified spatial hotspots of cells (zones of 

higher density), and we projected the cells in these hotspots as nodes of a spatially explicit 



12 
 

 
 

network. The detection and quantification of spatially fragmented and structured 

communities of cancer cells and lymphocytes together with Ki67 expression allow us to 

predict the patients’ pathological response to antiproliferative treatment stronger than 

traditional non-spatial metrics, such as Ki67 expression alone. Besides operating as a driver 

of spatial patterns, the diversity of life-history attributes interacting with organ’s local 

conditions also determines the likelihood to metastasise. In the last chapter, based on 

literature records, we analyse the metastatic pattern for different primary metastatic tumours. 

Through the analysis of metastasis as a bipartite network between source-acceptor organs, 

we show that a gradient of invasiveness and invasibility underlies the modular, nested, and 

free-of-scale macroscopic network pattern. We discuss several mechanisms behind the 

network structure based on the gradient of invasiveness and invasibility. The work developed 

in this thesis shows that ecological thinking and its applicability is beyond the traditional 

ecological paradigm. And that a multiscale view of cancer may expound some mechanisms 

underlying cancer evolution in the context of the multicellular organisation with the ensuing 

environmental, evolutionary, and clinical implications.  
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General Introduction 

 

‘There are many kinds of individuals out there and some of them  

are still waiting to be discovered’ 

 B. Santelices 

The evolutionary transition from the single-cell ancestors to multicellular organisms opens 

the question about how the multicellular organisation emerges after single-cell individuals 

reach a spatial structure and intertwined functional divergence (Michod 2007; Nedelcu 2012; 

Szathmary 2015). The evolution by natural selection based on competition provides a 

conceptually complete paradigm for the divergence of new strategies, but it lacks 

explanatory power for life transitions such as the emergence of multicellularity from single-

cell ancestors (Kikvidze and Callaway 2009; Rainey and De Monte 2014; Szathmary 2015). 

The development to multicellularity can be explained through the integration of different 

mechanisms associated to fitness, for instance, multi-level selection, division of labours, and 

the decoupling of fitness at the level of the group from the scale of the individual cell 

(Michod and Nedelcu 2003; Hanschen et al. 2015). Also, the evolution requires spatial 

convergence and cell-cell communication between the single-cell pre-metazoan individuals 

(Romeralo et al. 2013; Du et al. 2015), emphasising the role of space and local conditions as 

the quintessential characteristic of the multicellular program. 

An ecological manifesto of metazoan life 

The origin of multicellularity in animals and cell differentiation have parallels in terms of 

the underlying spatial convergence and functional divergence or division of labours (Arendt 

2008; Brunet and King 2017). The division of labours entails a social contract where the 

individuals cooperate in favour of the collective over individual success (Herron and Michod 

2008). Here, the analysis of the intricate emergence of a cancer strategy within the 
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multicellular ecosystem resembles the evolutionary transition from pre-metazoan single-cell 

individuals to metazoans, wherein a set of rules has evolved to solve the conflicts of 

coexistence leading to cooperative metabolic cycles within the multicellular schema 

(Michod and Nedelcu 2003; Michod 2007; Rainey and De Monte 2014; Szathmáry 2015); 

but in the case of the onset of cancer, the opposite evolution seems to occur, i.e., an override 

of the cell’s multicellular algorithm back to a unicellular-like strategy (Davies and 

Lineweaver 2011; Bussey et al. 2017; Cisneros et al. 2017; Axelrod and Pienta 2018; Trigos 

et al. 2018). The emergence of a cheater strategy is a likely scenario of the evolution within 

cooperative cycles (Szathmáry and Maynard Smith 1997; Herron and Michod 2008), and in 

the multicellular organisation, it challenges the mechanisms supporting the homeostatic 

multicellular life. Within this ecosystem of complex interactions, the role of other cellular 

lineages has been considered recently, highlighting that a tangled set of interactions 

orchestrate the evolution of cancer within the metazoan ecosystem, from oncogenesis to 

metastasis (Condeelis and Pollard 2006a; Merlo et al. 2006; Xing et al. 2010; Korolev et al. 

2014; Aktipis et al. 2015; Nawaz et al. 2015; Ganesh et al. 2020). 

Cancer, a multi-scale complex adaptive ecosystem 

The multicellular organisation fits in the criteria of complex adaptive systems (Gell-Mann 

1994), wherein different individual elements interact and produce emergent behaviour that 

evolves adaptively in their environment; in this case, the emergent property is the 

multicellular organisation. Complex adaptive systems (CAS) reproduce emergent patterns 

at different ecological spatiotemporal scales (Levin 1992), representing a challenging 

phenomenon for the study of their ability to cope with external disturbances, i.e., their 

robustness and stability (MacArthur 1955; May 1977, 2001). In this view, ecological systems 

can be studied as CASs, whose patterns result from the interactions between entities behind 

the flux of matter, energy, and information (Gell-Mann 1994; May et al. 2008). 
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Cancer is a phenomenon emerging at the cellular scale where the traditional wisdom defines 

it as a ‘disease of genes’. Such a view promises that through the understanding of the most 

reduced biological constituents of cells, we will be able to develop better detection systems 

and, eventually, treat the disease. However, it is clear that cancer corresponds to the 

overproliferation of a cellular strategy, i.e., a population phenomenon; then, it is not evident 

how cancer can be fully understood only through genes without considering the environment 

where the cell or a collective of cells, exist. The past development of the biomedical research 

in cancer has focused its attention on the intracellular mechanisms and processes; however, 

the emerging paradigm is that either the external environment of the cell (Merlo et al. 2006) 

as the external environment of the organism (Hochberg and Noble 2017), shape cancer’s 

ecology and evolution.  

Cancer has been considered, at least theoretically, as a complex adaptive system at a broader 

sense (Schwab and Pienta 1996; Kitano 2004). A novel view from ecology and evolution on 

cancer uphold that ecological and evolutionary principles can help us to spell out some of 

the complexities underlying cancer and contributing to its detection and treatment (Merlo et 

al. 2006; Chen and Pienta 2011a; Greaves and Maley 2012a; Noorbakhsh et al. 2020). 

However, the difficulties of studying cancer ecosystems are that complexity is produced at 

every scale of the phenomenon where the cancer phenotype interacts recursively with its 

environment, i.e., genes/intracellular environment, genes/extracellular environment, 

cell/extracellular environment, organs/physiology, and organism/organismal environment. 

Therefore, the consideration of cancer as a multiscale phenomenon is needed, and actually, 

it can fuel our understanding of its evolution (Deisboeck et al. 2011).  

In this thesis, we analyse how an ecological paradigm of cancer contributes to the 

understanding of this disease as a shift in the organisation of diversity within-organisms’ 

ecology at different scales.  This thesis has four chapters. The first two chapters allow us to 
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integrate how ageing as a shift in the cellular environment may shape oncogenesis and 

facilitate the cancer cell’s invasion in a competitive context with non-cancer cells. In the 

third chapter, we study the spatial dimension of cellular interactions in breast tumour 

biopsies seeking to discover how spatial ecological measures can contribute to predicting 

tumour’s response to antiproliferative adjuvant therapy. Finally, in the fourth chapter, we 

analyse the metastatic phenomenon by using network theory applied to the medical records 

of metastases obtained from the literature seeking to understand the diversity of invasiveness 

and invasibility in metastatic cancers and how such diversity entails emergent macroscopic 

structures. Through these four chapters, we aim to highlight the matching between cells’ 

complexity and their environment required to give rise and maintain a cellular strategy and 

resulting in particular patterns at each scale, from the individual cell to the metastatic spread 

between organs. 
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Chapter I Oncogenesis, Cell-Environment Codetermination, and the Erosion of the 

Multicellular Algorithm with Ageing 

Simon P. Castillo1,2, Juan E. Keymer1,3, and Pablo A. Marquet1,2,4,5 

1Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile. 

2Instituto de Ecología y Biodiversidad de Chile, IEB. 3Instituto de Física, Pontificia Universidad Católica de 

Chile 4Santa Fe Institute, NM, USA.5Instituto de Sistemas Complejos de Valparaíso, Chile. 

 

 

Abstract 

 

Cancer represents the emergence of a singular cellular state that destabilises the normal 

organismal evolutionary steady state, reached under the multicellular algorithm, and 

maintained by homeostatic mechanisms. We present the idea that the onset of the cellular 

disobedience to the metazoan algorithm, known as the cancer phenotype, is triggered by 

changes in the cell’s external environment occurring with ageing, making cells no longer 

able to sustain the social contract of multicellular life characteristic of Metazoans. We 

propose that in an aged context, the environmental information leading to a multicellular 

organisation is eroded, rewiring internal processes of the cell, and resulting in an internal 

shift enacting the ancestral unicellular condition, and expressing the cancer phenotype.  
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The multicellular algorithm and the cellular social contract 

Metazoan cells’ internal environment delimited by the cellular membrane, has evolved in 

agreement to its local external environment (Ratcliff et al. 2012) but keeping encrypted in 

the space of possible strategies the atavistic behaviour from its unicellular ancestors (Bussey 

et al. 2017; Cisneros et al. 2017) or cells embedded in a noncondensed and nondifferentiated 

collection of cells. The transition from unicellular to multicellularity is vital to comprehend 

the nature of the emergence of the cancerous phenotype as a knockdown of the metazoan 

algorithm (Chen et al. 2015). To do so, it is necessary to distinguish the most likely state of 

a multicellular as one ruled by a contemporary division of labours in a condensed state 

whereby homeostasis is achieved through the cooperative metabolic replication of different 

cell lineages and conflict mediation among them by a set of rules that underly their 

continuous co-existence (Szathmary and Smith 1995; Michod and Roze 2001; Michod and 

Nedelcu 2003; Axelrod and Pienta 2018) in a spatially and functionally structured landscape,  

i.e.,  the ‘multicellular algorithm’ (Figure I.1). 

Oncogenesis involves overriding some rules of the multicellular algorithm; in particular, the 

local rupture of the social contract that maintains the multicellular architecture (Aktipis et 

al. 2015; Axelrod and Pienta 2018). The metaphor of the social contract is explicit in the 

functional divergence emerging from a cooperative metabolic network among coexisting 

cell lineages which favour the collective over the individual scale, as a necessary condition 

for multicellularity (Szathmary and Smith 1995; Michod and Roze 2001; Arendt 2008; 

Brunet and King 2017; Doolittle and Booth 2017). In this case, oncogenic cells find a way 

to hack the norm and progressively erode the homeostatic social contract. In physiological 

terms, the cancer phenotype is a cellular strategy characterised by a myriad of hallmarks and 

innovations (Hanahan and Weinberg 2011) often viewed as a mosaic of characters chiefly 

determined by mutational steps and clonal expansion, as envisioned under the somatic 
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mutation theory (Soto and Sonnenschein 2011; Montévil et al. 2017), which emphasises the 

onset of cancer as an endogenously mutation-driven process. The somatic mutations model 

states that each cancer cell has a history of accumulation of mutations and epi-mutations in 

somatic cells. In other words, with each stochastic mutational event, a cell might display a 

new strategy, navigating through its fitness landscape (Simpson 1944; Wright 1988; Huang 

et al. 2009). Recently, however, empirical data show that despite the presence of mutations 

in common cancer-associated genes (e.g., TP53, NOTCH), tissues do not show signs of 

cancer growth (Martincorena et al. 2018; Yizhak et al. 2019); therefore the emergence of the 

cancer phenotype cannot be reduced to genetic modification only, challenging the paradigm 

of genetic mutations as exclusive determinants of the cancer phenotype. Alternatively, an 

emerging paradigm highlights the role of the external environment studied at the scale of the 

organism (Hochberg and Noble 2017) but also at the cellular scale as a driving force of 

cancer dynamics (Bissell et al. 1982; Greaves and Maley 2012a) In particular, the cell’s 

external environment shapes the internal environment and this interaction can modulate the 

emergence (Chaudhuri et al. 2016) and progression (Ingber 2002; Nelson and Bissell 2006) 

of the cancer phenotype. Henceforth, we consider the external environment as the 

environment where the cell is embedded (extracellular matrix). 

Besides the somatic mutation model, another evolutionary hypothesis was proposed to 

explain oncogenesis considering cancer behaviour as a cellular atavism (both reviewed in 

(Thomas et al. 2017)). We propose that these two hypotheses are complementary in the light 

of ecological computability of the external environment as we will explain. Here, we use the 

term computation to refer to the capability of the system (a cell or a collective of cells) of 

interpreting, creating, and modifying its external environment (Trautteur 2007). It raises the 

question of whether the external cellular environment contains the elements that cells 

transduce and interpret as symbols (physical patterns) (Bissell et al. 1982) and whether such 
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representation of the outside lead to a cellular behaviour of a particular kind. In this 

framework, the notion of computability links with the concept of virtuality borrowed from 

computational systems (Trautteur 2007) that includes the capability of focal systems of 

interpreting external signals and adjust their internal environment (Ashby's homeostat 

(Ashby 1968)). Hence, these concepts consider the notion that biological machines can 

modify- and be modified by- their external environment, integrated through the dialectic co-

emergence of the ‘self’ as the cellular individuality and the enacted extracellular 

environment. This dialectic co-emergence already has biological mechanisms such as 

evolution through natural selection (Darwin 1859) and niche construction (Laland et al. 

2016). The ability of cancer cells to modifying their immediate external environment and 

change as a consequence of these changes (niche construction) are essential characteristics 

which contribute to explain their success in invading an organ either in primary tumours or 

in distant metastases (Yang et al. 2014; Qian and Akcay 2018), but this begs the question of 

what determines the appearance of such innovations in cancer cells that allow them to 

proliferate despite the prevailing social contract of cells wherein they are embedded. In this 

essay, under the idea of cellular computation, we propose that the cancer strategy co-emerges 

with its external environment (at the cellular scale) as a consequence of dynamic 

cell/environment interactions underlying the rupture of the spatial and functional structure 

characteristic of the multicellular organisation (Figure I.1). The emergence of the collective 

organisation, underpinned by the division of labours, enable an efficient process of the flux 

of matter, energy, and information (Michod and Nedelcu 2003). Moreover, it is worth to 

make a point about the efficiency of the computation of the external variables, which might 

be facilitated by collective computation and the flux of information between individual 

systems (Flack 2017); thus, cells beyond being single-isolated entities, modify their 
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behaviour and environment as a collective system, and the emergence of cancer strategies 

and their evolution is mediated by the collective, heterogeneous, and enacted environment. 

Oncogenesis and mutual codetermination cell/environment 

Before addressing the evolutionary dynamics leading to the neoplastic phenotype shift, it is 

necessary to introduce some simple notation. Let us first define a cell as the focal system, 

wherein we can discern observables, such as phenotypic strategies 𝜔𝑖(𝑡) ∈ Ω, where Ω 

recapitulates and stores the contemporary and ancestral space of possible strategies or 

cellular phenotypes (Fig. 1). A phenotype is the realisation of a set of continuous life-history 

traits at a given spacetime; in other terms, the expression of the internal environment as a 

representation of the fluxes with the external environment. The internal environment is a 

multi-layered network from genes’ co-expression to metabolic reactions which enables the 

cell's maintenance over time. Now, let us define a process P: ωi → ωo′ as the shift from a 

given cellular strategy to another one, in the case of cancer, the process P is called 

oncogenesis. This transition between cellular strategies might be related to a rewiring of the 

internal environment represented by a shift in the gene co-expression network (Anglani et 

al. 2014; Trigos et al. 2017) which can be mediated by the environment (Bissell et al. 1982). 

From an evolutionary point of view, this shift and the resulting appearance of an ecological 

novelty within the population of non-cancer cells represents the invasion of a mutant 

phenotype to a ‘stable’ structured community of cellular strategies, where the fate of this 

novel phenotype depends on its interaction with the biophysical environment (Gatenby 1991; 

Orlando et al. 2013; Keymer and Marquet 2014). Notice that we denote the cancer strategy 

as ωo′ to emphasize that it does imply a reversion to an ancestral strategy that existed before 

multicellularity, resembling a strategy with a lower degree of spatial and functional structure 

(Figure I.1). 
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The somatic mutation theory has driven the understanding of oncogenesis, effectively 

treating it as an endogenous process, and in so doing closing a system that is intrinsically 

open and complex (Bissell et al. 1982; Schwab and Pienta 1996). Current data that show the 

conspicuity of mutations in cells without the expression of cancerous phenotype challenges 

that view (Martincorena et al. 2018; Yizhak et al. 2019), calling for the emergence of a new 

theoretical framework where cells are envisioned as open autonomous systems that co-

emerge with their external -biophysical- environment (enactivism sensu Francisco Varela 

(Varela 1991; Thompson 2010)). The enactive principle implies a dialectic co-construction 

individual-environment; hence, any deformation or perturbation in the external environment 

is sensed and integrated (e.g., through a point mutation, DNA methylation) by the cell into 

its internal environment, which in turn affects the external environment and how the cell 

enacts it. In this context, cells emerge as autonomous ‘selves’ thanks to their organisational 

closure (Varela 1979),  whereby it becomes an autonomous entity at a given context with 

which it is in a continuous co-transformation (Varela 1991; Thompson 2010). This mutual 

specification or co-determination between a living entity and its environment is the result of 

a history of coupling that involves the exchange of matter, energy, and information between 

the cell's internal environment and its immediate neighbourhood carried out by a 

multilayered network of interactions involving genes and their products (Varela 1991; 

Oyama 2000). This flux determines the state of the focal system (i.e., the cell’s strategy), the 

associated population-level effects (Suderman et al. 2017), and the transformation of the 

cell's immediate environment (Varela 1991; Thompson 2010; Yang et al. 2014; Laland et al. 

2016). This dialectic view of cell-environment co-transformation, we argue, is essential to 

understanding the phenotypic transition of cells from a healthy to a cancerous phenotype 

(oncogenesis) and its evolutionary trajectory. Here, codetermination arises because the 
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environment and the entity specify each other through selection, drift, epi-mutation, and 

niche construction (Varela 1991; Yang et al. 2014; Laland et al. 2016; Larson et al. 2020). 

The erosion of the spatial and functional multicellular ecosystem 

Revisiting the evolutionary hypotheses in the light of cellular environmental effects, we 

propose that in the context of the human body as an ecosystem, the external environmental 

conditions that enable the transition to the atavistic phenotype are the changes in the 

extracellular matrix due to ageing (Benz and Yau 2008; Sprenger et al. 2010). Ageing erodes 

the external information computed by a cell from which it reproduces a singular strategy in 

a multicellular context, equalising the transition between the condensed and functionally-

coupled collective (metazoan) and the noncondensed cellular collectives (pre-metazoan), 

hence increasing the likelihood of oncogenesis, the enaction of the pre-metazoan strategy, 

by selection on the cellular strategy with higher proliferative rate (Greaves 2002). Now, it 

can be linked with the hypothesis of atavism, i.e., the idea of cancer as a reversion to an 

ancient cellular state (Davies and Lineweaver 2011; Bussey et al. 2017; Cisneros et al. 2017). 

As an extension, the relationship between environmental conditions due to ageing, the 

transduction of those environmental signals into cells internal environment (Bissell et al. 

1982), the rewiring of the internal cellular architecture and the restructuring of the external 

network of interactions are reflected in the epidemiological patterns of cancer incidence 

increasing as a function of age (Rozhok and DeGregori 2019).  

The construction of a robust theory of oncogenesis demands its applicability in a biomedical 

context. This framework stresses attention on the role of the external environment, other 

cellular strategies and the physical conditions of the extracellular matrix involved in 

oncogenesis. For instance, epigenetic reprogramming could be an alternative implying that 

the phenotype switch: P: ωi → ωo′ is reversible through manipulation of the external 

environment (Suvà et al. 2013), but also age-related changes at tissue level might serve as 
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early warnings of potential oncogenesis (García-Nieto et al. 2019). In another venue, 

targeting the tumour biophysical environment, such as through cytokines or growth factors, 

also is gaining attention within the potential application to therapeutics (Martin et al. 2016), 

with the benefits of controlling short and long-distance spread of cancer propagules. Also, 

at the level of intratumoural genetic diversity, the role of the environment is gaining 

importance (Swanton 2012), with the corresponding study of the clinical implications of 

such level of biodiversity (Junttila and de Sauvage 2013; McGranahan and Swanton 2015). 

The current understanding of cancer is shifting from the traditional reductionist and closed 

system view towards a view where the configurations of the biophysical, cellular 

environment have a fundamental role shaping cancer’s fitness landscape and hence, its 

evolution. Here, we discussed the idea of cancer as the result of a dialectic cell-environment 

interaction. For the sake of simplicity, we restricted ourselves to analyse the impact of 

environmental changes of the cellular environment associated with ageing; however, it is 

clear that the cellular environment also changes in response to the environment that is 

experienced and enacted by the organism as a whole, which is known to affect the risk of 

cancer development (Hochberg and Noble 2017). It requires further research to test the 

interaction between the organismal and the cellular environment in affecting the cellular 

behaviour and maintaining or destabilising the multicellular structure.  

Cancer emergence can be understood in an integrative way adding ecological and 

evolutionary concepts and tools, since as we discussed here, cancer cells are not isolated 

entities, and the multicellular ecosystem is not merely a collection of cells. To the contrary, 

cell-environment and cell-cell interaction in the context of a biofilm or a functional 

multicellular organism are paramount; no living entity exists in isolation. Ecology and 

evolution are quintessential to tackle the complexity of the human ecosystem, understanding 
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the emergence of the cancer phenotype within it, and in using this knowledge to reach a 

robust and multidisciplinary understanding of cancer onset and evolution. 
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Figures 

 

Figure I.1The emergence of the cancer phenotype in response to the erosion of the spatial 

and functional structure reached under the multicellular algorithm. The external environment 

of cells promotes the spatial convergence of the individualised cells into aggregates. 

Mechanisms related to the selection of varieties and the resolution of conflicts lead to 

functional divergence, cooperative metabolic cycles, and multicellularity. These steps 

append possible cellular strategies to the evolutionary history of the cell stored in Ω. With 

ageing, the erosion of the multicellular environment is transduced and interpreted by cells, 

enacting the ancestral strategy and breaking the spatial and functional structure. 
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Abstract 

Ageing entails the intertwined evolution of both the internal and external environment of 

cells along with the organism life; hence, shaping the ecosystem at the cellular scale. Here, 

we study the ecology of the beginning of cancer cells’ invasion by integrating hierarchical 

competitive interactions between cancer and noncancer strategies and external 

environmental contexts shaped by ageing. Inspired by our observations of in vitro 

ecosystems of co-cultured high-grade serous ovarian cancer cells and mesothelial ovarian 

cells coexisting in collagen I environments; we proposed a numerical ecosystem based on 

evolutionary game theory and adaptive dynamics, analysing how the environmental 

parameter and the noncancer’s competitive resistance to invasion drive the initial invasion 

fitness of the cancer strategy. Our results show how the environmental properties, which we 

might associate with ageing, shape fitness dynamics of both cancer and non-cancer cells, 

increasing the cancer cells' invasion fitness through lessening the competitive resistance of 

non-cancer cells.  
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Understanding the natural laws governing the entangled bank of species packing in nature is 

a fundamental issue in population and community ecology, where some permanent questions 

are related to the relationship between species traits, population dynamics, community 

structure, spatial and temporal environmental dynamics, and invasibility (MacArthur and 

Levins 1967; Sutherland et al. 2013). Cancer ecosystems are very close to these questions; 

they occur in multicellular organisms (Aktipis et al. 2015) where the emergence of the cancer 

strategy, its traits, and its population dynamic modify the community structure of cells 

menacing the organismal homeostatic state evolutionary and ontogenetically achieved by 

different cell types (Pienta et al. 2008; Chen and Pienta 2011b; Hanahan and Weinberg 2011; 

Axelrod and Pienta 2018; Noorbakhsh et al. 2020). From this starting point, it is clear that 

ecological interactions between cancer and non-cancer cells play a key role within cancer 

ecosystems determining the internal structure, its evolutionary trajectory, and the ensuing 

clinical implications (Rak et al. 1996; Li and Neaves 2006; Giannoni et al. 2010; Pietras and 

Ostman 2010; Bertolaso and Dieli 2017; Heindl et al. 2017; Amend et al. 2018). For instance, 

different players within the stroma play underly the faith and spread of cancer cells. In breast 

cancer, macrophages are associated with tumour migration, intravasation, and invasion 

(Condeelis and Pollard 2006a). Also, metastasis may be influenced by cancer-associated 

fibroblasts (CAFs) (Zhang et al. 2013), mesothelial cells promoting cancer cells migration 

to other tissues (Karnoub et al. 2007), or as was showed recently, some cells (L1CAM+ 

cells) in human colorectal cancer have metastasis-initiating capacity (Ganesh et al. 2020). 

Therefore, the study of how a cancer cell population evolves at a given context needs to scale 

up from the individual scale to the interactions between different cellular strategies and the 

external physical environment. 
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Competition within tumour ecosystems 

Competition is one of the possible interactions between strategies. It has had a prolific 

development in ecology, pioneered by Charles Darwin's observations (Darwin 1859), 

Charles Elton's (Elton 1946), and Robert Macarthur's work (MacArthur and Levins 1967). 

Despite a substantial evolution of theoretical, mathematical, and experimental treatment in 

ecology, their applicability to within-organism ecologies is rare. In fact, with the exception 

of Robert Gatenby’s work (Gatenby 1991, 1995), ecological interactions in general, and 

competition in particular, within tumour ecosystems, has been sparsely latent only during 

the last decade (Moreno 2008; Baillon and Basler 2014; Nelson and Masel 2017; Amend et 

al. 2018; Qian and Akcay 2018). The idea of competitive interactions rests on the fact that, 

at a given time, individuals can perform a particular strategy defined by a set of traits (e.g., 

birth and death rates), and that different strategies compete for the same finite resource. 

Inspired by the competition models used in ecology (MacArthur and Levins 1967; May 

1974; Orlando et al. 2013) and the hypothesis of competitive hierarchies (Kinzig et al. 1999), 

the baseline argument here is that cancer cells, as a strategy initially scarce in density, can 

proliferate at a community of noncancer cells if and only if their traits are sufficiently 

different from resident cell's traits (Keymer and Marquet 2014).  

Before moving forward, let us succinctly talk about the hypothesis and hierarchical 

competition-colonisation trade-off (Kinzig et al. 1999; Orlando et al. 2013). A strategy, in 

this case, is defined by the life-history traits that an individual display in a given context. 

These traits draw a competitive shadow, limiting the similarity in traits, in favour of the 

strategy and restricting the space of traits that an invasive strategy can display to achieve a 

positive fitness. The hypothesis imposes a constraint in the performance of life-history traits, 

such that individuals are limited in their capabilities to be a strong competitor or a good 

coloniser; determining the state of the focal system, its stability and evolution (Levin and 
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Paine 1974; Nee and May 1992). An essential element of this hypothesis is the establishment 

of a competitive hierarchy, wherein in a two strategies interaction, there is a superior 

competitor which population is not affected by the inferior competitor’s dynamic; while the 

latter’s fitness is affected by all the strategies (superior and inferior competitors). Previously 

it was discussed this idea of asymmetric competition within cancer ecosystems (Keymer and 

Marquet 2014), suggesting that cancer cells (the inferior competitor) must perform a higher 

reproductive rate and/or lower death rate to survive and sustain an invasive population at a 

suitable habitat governed by noncancer cells playing as superior competitors.  

The interaction between different strategies has recursive implications on the populations’ 

fitness. In this work, we use a simple analytical framework governed by the motion equations 

for biomass 𝑥𝑖 for a given strategy i as a function of a fitness parameter 𝑓𝑖 , with i:{C, NC}: 

�̇�𝑖 = 𝑓𝑖𝑥𝑖    Eq. II.1 

The competitive hierarchy is introduced later on the fitness parameter 𝑓𝑖 ,  which in the case 

of the superior competitor’s fitness (𝑓𝑁𝐶 ) is depending only on its dynamics; whereas for the 

subordinated competitor, the initially scarce cancer strategy, its fitness parameter 𝑓𝐶  depends 

on its dynamic as well as its competitor’s. In this particular case, a missing link which has 

not received enough attention in the literature is related to the question of how this ecological 

interaction works throughout the human lifetime. It arises from the fact that the external 

environment under which cells display their life history is dynamic (Keymer et al. 2012), 

following the inexorable phenomena of ageing which might help to explain cancer’s success 

in late stages of human life (Rozhok and DeGregori 2019).  

Ageing a permissive context for invasion 

A known determinant involved in the success of invasive species is the invasibility of a 

recipient community; it includes the biophysical properties of the native habitat (Richardson 

and Pyšek 2006). In the case of within-organism ecosystems, such as the human body, the 
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changes in the flux of biochemical materials influence the community structure of cells, 

where some of these changes could be related to local or microenvironmental conditions at 

the tissue level (Croucher et al. 2016) or organism-level processes such as ageing (Benz and 

Yau 2008).  

Ageing has two dimensions. The first dimension represents the change in the physical 

environment that cells inhabit, i.e., the extracellular matrix (ECM). These changes determine 

cells' behaviour and proliferation (Sprenger et al. 2010; Kurtz and Oh 2012; Spadaccio et al. 

2015); where besides being an entangled network of structural support, it also initiates 

crucial biochemical cues required for cell growth, proliferation, differentiation, and 

homeostasis (Frantz et al. 2010). One of the most notorious changes in ECM composition is 

related to structural proteins concentration (e.g., collagen I and IV) which modifies 

rheological properties of the ECM, which in turn modify the invasiveness of cancer cells 

(Baker et al. 2010; Swaminathan et al. 2011; Xu et al. 2012; Heindl et al. 2018). The second 

dimension, even though not independent of the first one, is related to the noncancer cell’s 

internal ageing exhibiting a reduction in their proliferative capacity (Fehrer and 

Lepperdinger 2005; Bonab et al. 2006; Collado et al. 2007), representing a shift in one of 

the cellular life-history trait, and under our view, reducing their competitive ability to face 

invasive cells. 

In summary, the main biological principles of our hypothesis are three: (1) a resident 

noncancer strategy projects a competitive shadow along a niche axis, determining a space of 

traits where an invasive cancer strategy may hardly invade the resident habitat; (2) noncancer 

cell's life-history traits (birth and death rates) experiment changes along ageing; and (3) 

along with ageing, the cellular microenvironment is eroded, impacting the noncancer 

cells/environment codetermination, hence in its competitiveness against cancer cells (Figure 

II.1). In this work, initial experimental observations on in vitro coexistence of ovarian cancer 
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(HEYGFP) and noncancer (MET5A) cell lines, inspired us to develop an analytical model 

to evaluate how the interaction between vital histories of two cellular strategies (cancer and 

noncancer) and the external environment shapes the invasion of the cancer strategy in an 

ageing context. 

Methods 

In vitro ecosystems 

Cell lines used in this study are a high-grade ovarian cancer cell line  (HEY-GFP, cancer 

strategy) and a mesothelial cell line (MET5A, noncancer strategy) cultured under two 

different environmental conditions given by matrigel (Corning Inc., USA) with different 

collagen I concentration. Considering that in the ovarian environment collagen I is one of 

the components that shows a more notorious change with ageing; default manufactured 

conditions of matrigel was considered as a case of the high-quality environment, 

representing a non-aged environment, whereas matrigel with an increase of three times the 

concentration of collagen I relative to the high-quality environment, represents the low-

quality environment. We added purified collagen I from rat tail. We incubated cells using 

DMEM medium. Cancer cells express GFP (green fluorescent protein), and MET5A cells 

were pre-treated with a red cell tracker (Corning Inc., USA). 

We set a transwell migration setup described as follows. First, we cover the outer face of the 

bottom of the insert (8μm pore size) with matrigel (one of the two types). Once matrigel 

solidified, we incubated MET5A cells (30000 cells) during 24h, allowing their attachment 

on the matrigel and growth. Then, we added an estimated 30000 cancer cells through the 

inner face of the insert. Since the interest of this study is not only on the invasion, also in the 

temporal dynamics of the system, the experimental setup was left a maximum time of five 

days from the culture of MET5A; which imply the growth and proliferation of both 

strategies, a competitive scenario with demographic results. The first temporal cohort (day 
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0) corresponds to 17h after the addition of HEYGFP cells representing the invasion of cancer 

cells to the non-cancer population, a second temporal cohort (day 1) was retired from 

incubation 24h after cohort 1, and finally, the third cohort (day 2) was retired 24h after cohort 

2. An important point to mention is that 17h after the addition of HEYGFP cells, i.e., cohort 

1 - day 0, we removed the remaining cells that did not migrate through the membrane using 

a cotton swab; therefore the observed population at the cohorts 2 and 3 (day 1 and 2, 

respectively) approaches chiefly to proliferation of the cancer cells which trespass through 

the membrane. After we removed each cohort from incubation, cells were rinsed with PBS 

4%, fixed with PFA 4%, and the membrane of the insert was manually removed and mounted 

over a microscope slide to photograph cells using confocal fluorescence microscopy. Due to 

the high spatial heterogeneity of the Matrigel on the membrane of each insert, noncancer 

cells did not form a homogeneous monolayer over the substrate; hence, we took photographs 

only where we could visualise both strategies. 

Experimental design - A two factors design with three fixed factors is considered in this 

experiment: cells in culture, culture conditions, and day. The ‘culture conditions’ factor has 

two levels according to the composition of matrigel: matrigel, and matrigel with an increase 

of three times of collagen I concentration. The factor called ‘day’ has three levels according 

to the time each assay lasts. The replication level consists of the number of experimental 

units where each combination of levels of factors was applied, for our case, it is incomplete 

due to logistic constraints, with two replicate for some combinations and three in others, 

summing a total of 16 observational units (inserts).  

Numerical ecosystem: underlying assumptions, concepts, and notation 

Our model deals with the process after a cancer strategy appears. We studied the invasion of 

a mutant cellular strategy (cancer, C) in a monomorphic resident population of cells 

(noncancer, NC) where both populations are characterised by particular and fixed 
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reproductive (β) and death (δ) rates defining each strategy and its intrinsic population 

dynamics. Our formulation assumes that all individual cells maintiaind their identity (C or 

NC) and that within each population type are equivalent, there is no stage or metabolic 

differences. We define a game, based on evolutionary game theory, as pairwise interactions 

between individuals performing particular strategy (C or NC), where by-product of an 

interaction individuals get specific pairwise payoff (𝑝) times the counterpart’s relative 

abundance, being the overall payoff for a strategy, i.e., its fitness parameter (here denoted 

by 𝑓𝑖) the sum of its pairwise payoffs. The last concept to define is the environmental 

parameter (ω), it intends to represent the quality of the physical conditions where cells 

display their strategies, i.e., growth, die, and interact. For the sake of simplicity, the 

environmental parameter is an abstract and dimensionless value representing the quality of 

the extracellular matrix for cell growth, lower the parameter lower is the quality of the ECM 

for cell proliferation and tissue renewal. For this model, the parameter associated with the 

environment (ω) and the life-history traits remain fixed over the time of each trajectory since 

our interest is on to evaluate how it shapes the interaction between strategies, and how this 

shapes the invasion fitness of the cancer strategy.  

Let us start with a well-known model in ecology representing denso-dependence within each 

population; it generalises the growth of a population through a fitness parameter (𝑓𝑖) and 

denso-dependency, which apply for cells responding to contact inhibition by proliferation. 

Thus, we can track the population growth over time (�̇�𝑖) of a given strategy 𝑖: {𝐶, 𝑁𝐶}, as a 

function of its fitness parameter 𝑓𝑖 and population size 𝑥𝑖.  

Let us start with the dynamic of the resident, noncancer strategy NC  

�̇�𝑁𝐶 = 𝑓𝑁𝐶 𝑥𝑁𝐶     Eq. II.2 

In this case, we define the fitness parameter by the interactions within the NC population, 

hence 
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𝑓𝑁𝐶 =  𝑝𝑁𝐶,𝑁𝐶 𝑥𝑁𝐶     Eq. II.3 

The pairwise payoff between noncancer cells (𝑝𝑁𝐶,𝑁𝐶) can be approximated by the dot 

product of the strategy's life-history traits (𝑠) and the environmental parameter (�⃗⃗⃗�) 

representing the habitat where the interaction occurs (Keymer and Marquet 2014). The first 

vector, 𝑠,  represents two key events underlying a cell’s vital history: reproduction (𝛽) and 

death (𝛿), hence, a cellular strategy i:{NC, C} is defined by a particular pair of traits 𝑠𝑖 =

(𝛽𝑖 , 𝛿𝑖). The second vector, �⃗⃗⃗�, includes the environmental quality within the model; this 

vector �⃗⃗⃗� = (𝜔+, 𝜔−) with {𝜔+, 𝜔−} ∶ [0,1] acting as a control of the local external 

environment on population growth (sensu (Keymer and Marquet 2014)). Assuming that the 

environmental parameter increases the proliferation and diminishes the death of a singular 

cellular strategy, we consider 𝜔+ = 𝜔 and 𝜔− = −1/𝜔, with 𝜔: (0,1]. Considering this 

notation, for the resident noncancer strategy we have that its payoff can be approached by 

𝑝𝑁𝐶,𝑁𝐶 ≡ 𝑠𝑁𝐶,𝑁𝐶 ∙ �⃗⃗⃗� = (𝛽𝑁𝐶 , 𝛿𝑁𝐶) ∙ (𝜔+, 𝜔−)    Eq. II.4 

We incorporate a denso-dependent population dynamics operating over the proliferation; 

hence the population dynamic can be expressed as 

�̇�𝑁𝐶 = (𝛽𝑁𝐶 𝜔(1 − 𝑥𝑁𝐶) −  𝛿𝑁𝐶/𝜔)𝑥𝑁𝐶     Eq. II.5 

It seems realistic to assume that the noncancer population is at its demographic attractor, i.e., 

�̇�𝑁𝐶 = 0, which represents the homeostatic organismal state; then, the population at the 

equilibrium (𝑥𝑁𝐶
∗ ) follows 

𝑥𝑁𝐶
∗ = 1 −

1

𝜔2𝑅𝑁𝐶
∗      Eq. II.6 

Where 𝑅𝑁𝐶
∗ =

𝛽𝑁𝐶

𝛿𝑁𝐶
. 

As an alternative case, we can consider that the noncancer strategy is not affected by the 

environment occurring in the extracellular matrix; hence, its population state is reduced to 

𝑥𝑁𝐶
∗ = 1 −

1

𝑅𝑁𝐶
∗     Eq. II.7 
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Henceforth, we consider the scenario showed by the Eq. II.5 and II.6 assuming that 

noncancer’s proliferation and death are mediated by the environmental parameter ω. Now, 

the resident population, at its equilibrium (𝑥𝑁𝐶(𝑡) = 𝑥𝑁𝐶
∗ ) , face the appearance of the cancer 

strategy (C). Considering that C is initially scarce, and it runs with disadvantages on a 

multicellular context, we will consider it as an inferior competitor, while the noncancer 

strategy holds the superior competitor category. This hierarchical structure implies that the 

noncancer dynamic holds its intra-strategy and environmental dependency, imposing a 

resident competitive resistance against the invasive strategy, the cancer strategy. The latter, 

in turn, experience a growth given by its life-history traits but subjected to denso-dependency 

imposed by the NC population and a competitive pressure given by the proliferation of the 

NC strategy; hence its initial population dynamic can be defined by 

�̇�𝐶 = 𝛽𝐶 𝜔𝑥𝐶(1 − 𝑥𝑁𝐶
∗ ) − 𝛿𝐶𝑥𝐶−𝛽𝑁𝐶 𝜔𝑥𝑁𝐶

∗     Eq. II.8 

Which led us to define the invasion fitness (S) of the cancer strategy as 

𝑆 =
�̇�𝐶

𝑥𝐶
= 𝛽𝐶 𝜔 − 𝛿𝐶  − 𝜔𝑥𝑁𝐶

∗ (𝛽𝐶 +
𝛽𝑁𝐶

𝑥𝐶
) ; 𝑥𝑁𝐶

∗ = 1 −
1

𝜔𝑅𝑁𝐶
∗    Eq. II.9 

We study the deterministic behaviour of the noncancer population and the invasion fitness 

of the cancer strategy seeking to identify the conditions which allow the cancer strategy to 

invade an ecosystem dominated by noncancer cells. The main point of our model is that an 

initially scarce cancer strategy can, at least initially, invade an ecosystem, i.e., S>0, by the 

interaction between the environmental properties defined by the parameter  and the 

difference in the life history traits (R*) with the resident strategy.  

Results 

The results from the co-culture of cancer cells (HEYGFP) and noncancer cells (MET5A) 

under two culturing conditions open new views about the coexistence of these strategies and 

how the biophysical environment shape cancer patterns. We show that the initial invasion of 
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cancer cells to the population of noncancer cells seems higher in the aged environment (with 

higher collagen I concentration) in comparison with the non-aged environment. However, 

such initial advantage seems to be reverted with time (Figure II.2). These results feed the 

development of the numerical ecosystem that shows that the resident’s resistance to invasion 

changes with the environmental quality (Figure II.2) and so it does the invasion fitness 

(Figure II.3 and Figure II.4).  

Further, the numerical ecosystem allows us to distinguish scenarios where invasion is a 

possible outcome. The condition for a ppositive invasion fitness (S>0) entails that the life 

history traits of the cancer strategy recapitulated by 𝑅𝐶
∗  must to b higher than the traits of the 

noncancer strategy 𝑅𝑁𝐶
∗ . It implies that there is a difference in the proliferation rate 

(𝛽𝐶 > 𝛽𝑁𝐶) and/or in the death rate (𝛿𝐶 > 𝛿𝑁𝐶). The invasion fitness also is mediated by the 

environment, which boosts the proliferation and reduce the growth suppression.  

If the consider that the environmental parameter ω is a representation of the content of 

collagen in the ovarian environment, then we could consider that an aged fibrotic 

environment increases the proliferation of cancer cells and the evasion of growth 

suppressors. While, in this aged context, the noncancer strategy, resident of the ovarian 

environment, has a reduced competitive ability, either by a reduction in its proliferation 

and/or an increase in the apoptotic events.   

Discussion 

The role of ageing shaping cancer prevalence is complex involving several biophysical 

changes within-organism ecologies, involving deregulation and impairing of the immune 

response (Derhovanessian et al. 2008; Shaw et al. 2010), cellular senescence (Collado et al. 

2007; Campisi 2013), and changes in the physical environment of cells (Sprenger et al. 2010; 

Kurtz and Oh 2012; Spadaccio et al. 2015). Our consideration of ageing includes either 

intrinsic changes related to the proliferating capacity of resident cells (Nelson and Masel 
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2017) and extrinsic changes related to the transformation suffered by the extracellular matrix 

along with ageing (Briley et al. 2016). In our model, even though through a very simplistic 

approach, both effects shape the competitive shadow of the resident strategy to face the 

invasive cancer strategy. Similar terms are used in population ecology referring to these 

effects as vertical and lateral perturbation effects, those which modify reproductive 

parameters and those which modify the environmental capacity of supporting a population, 

respectively (Royama 2012). However, in our case, both are variations which shape the 

strategy's life-history traits through modifications of the reproductive parameters and on the 

other hand, perturbations which modify the biophysical environment but that also shape the 

interaction between life-histories. That is to say that either vertical and lateral age-related 

perturbations coalesce shaping the competitive shadow of noncancer strategies, likely 

resulting in the non-linear occurrence pattern of cancer along with human ageing (Rozhok 

and DeGregori 2019). The results presented here show that two aspects are the key for an 

increase of cancer fitness: a decreasing of competition pressure mediated by environmental 

deterioration due to ageing, and a reduction of the proliferative capacity of noncancer cells. 

As we have said, the eroded environment represents an unsuitable habitat for noncancer cells 

proliferation, this case can be further explored in chronic inflammatory conditions related to 

ageing (Bonafè et al. 2012). 

Despite our simple model, the formalisation of the effect of the environment on the 

competition between cell strategies is the first step into the formal consideration of 

ecological forces shaping tumour ecosystems(Gatenby 1991; Korolev et al. 2014). The 

determination of parameters associated with environmental quality is crucial to achieve a 

better understanding of cancer evolution and improve its diagnostic and prognosis. For this 

work, we considered fixed values of environmental quality, notwithstanding, in the future, 

it could be more informative a competitive game where the players are subjected to a 
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particular form of environmental fluctuation which represents the natural trajectory of the 

cellular environment. Although our approach does not deal with the emergence of cancer 

strategy, a call has been done towards the consideration of micro-environment as a driver of 

oncogenesis besides genetic instability (DeGregori 2017). In terms of environmental 

fluctuations, studies oriented to the physical properties of the extracellular matrix as well as 

cell's intrinsic modifications with ageing have shed light into the understanding of how 

vertical and lateral perturbations affect cell behaviour from a physical point of view (Baker 

et al. 2010; Soto and Sonnenschein 2011; Wirtz et al. 2011; Mierke 2015).  

The approach through competitive hierarchies in ageing landscapes points to explain how 

and why cancer ecosystems evolve in a certain way. Its relevance aims to the idea of cells 

are interacting individuals at a confined and limited space compete between them, and this 

competition is underpinned by the codetermination of the strategies with the local 

environment along with the ageing process. Notwithstanding, is necessary to highlight 

something that we have not incorporated here, that this dialectic interaction 

individual/environment is recursive, in sense that the environment could shape community 

structure and the community can modify the local environmental conditions, hence 

modifying its selective pressures (Laland et al. 2016; Ibrahim-Hashim et al. 2017; Qian and 

Akcay 2018). Our hypothesis is bounded in the sense that it only tries to explain what 

happens under a competition framework at the initial step of the invasion, no more and no 

less; however, other interactions could be incorporated, such as cooperation (Krtolica and 

Campisi 2002; Xing et al. 2010; Wei et al. 2017; Ganesh et al. 2020), increasing the number 

of strategies in the ecosystem. This work sought to study particular biological phenomena 

integrating different approaches, more complex biophysical mechanisms could be 

incorporated to model habitat quality and spatial structure; for instance, it can be analysed 

how strategies coexist in stochastic environments or the invasion fitness of a new strategy 
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invading a dynamic environment (Ripa and Dieckmann 2013) or how pro-inflammatory 

environmental conditions could trigger a neoplasm's cascade since it similarities with ageing 

(Franceschi et al. 2006; Bonafè et al. 2012), there are many ways to add ecological 

complexity to one formulation, whereas this should be added only when it is necessary and 

first principles of the ecology and evolution of the system are clear. In this way, ecology can 

help to elucidate different population mechanisms underlying cancer manifesto, way beyond 

the metonymic sense.   
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Figures 

 

 

Figure II.1 Invasion of the cancer strategy driven by ageing, which implies a decrease in the 

competitiveness of the noncancer, resident, strategy. Hypothesised scenarios of local 

competitive interactions and population outputs for cancer and noncancer cellular strategies.  
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Figure II.2 Life-history traits and the environment shape the noncancer strategy’s 

competitiveness and its population homeostatic steady state. (A) The canonical model where 

the environment does not influence proliferation and death; (B) environment-dependent 

proliferation model, where the proliferation increases with the environmental parameter; and 

(C) environment-dependent dynamic model where both proliferation and death depend on 

the environmental parameter. Note that 𝑅𝑁𝐶
∗ = 𝛽𝑁𝐶 𝛿𝑁𝐶⁄ . 
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Figure II.3 Environmental impact on cancer cells invasion and proliferation in fabricated in 

vitro ecosystems. Each dot corresponds to one replicate where both cell lines were cultured, 

and the relative abundance was calculated as the density of each strategy over the total 

density of cells.    
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Figure II.4 Codetermination of the invasion fitness. The cancer life history traits (𝑅𝐶
∗ ) 

interact with he noncancer life history traits (𝑅𝐶
∗ )  and the environmental condition (ω) in 

shaping the initial success of the invasion. The bottom figure shows the condition under 

which the invasion fitness is positive (𝑆 > 0). The colour key applies for both figures.  
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Abstract 

How the spatial structure of the tumour ecosystem determines the response to therapy 

remains unclear. Here, we study the spatial ecology of breast tumours of 387 patients using 

samples before and after endocrine therapy (clinical trial POETIC). We draw on the 

geospatial information in pathological specimens, exploring the spatially fragmented 

coexistence between cancer and immune cells by using deep learning and community 

composition analysis. We found that patients with poor antiproliferative response exhibit a 

lower level of pre-treatment proliferation, spatial coexistence, and fragmentation of the 

interaction between cancer and immune cells, compared with patients with a good 

antiproliferative response. Community structure and fragmentation inferred from pre-

treatment samples predict antiproliferative response stronger than existing metrics. Our 

findings provide new insights into how cancer evolves therapeutic resistance, which can help 

direct precision medicine and identify novel cancer vulnerabilities that will lead to the 

development of new treatments. 
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Space is a quintessential dimension to study patterns in heterogeneous systems of interacting 

adaptive components. To consider the role of space is essential to understand pattern 

formation, patterns of diversity and coexistence, and the overall functioning of ecosystems 

(Durrett and Levin 1994a, 1994b; Tilman and Kareiva 1997). A spatial approach has 

emerged during the last decade in cancer research (González-García et al. 2002; Yerushalmi 

et al. 2010; Nawaz et al. 2015; Yuan 2016; Corredor et al. 2019). This work has highlighted 

the importance of accounting for spatially-explicit interactions between different cellular 

lineages, and the need to consider how different cell strategies coexist in space to develop 

more informative and robust spatial biomarkers for linking the state and evolution of these 

particular ecosystems to a clinical outcome.  

In histopathological samples, zones of higher concentration of cancer and immune cells, or 

hotspots, are associated with good disease-specific survival; improving understanding the 

short and long-term responses of tumours (Nawaz et al. 2015; Nawaz and Yuan 2016; Yuan 

2016). However, cancer ecosystems do not always respond as expected; some may develop 

resistance to endocrine therapy. In oestrogen receptor-positive breast cancer (ER+BC), some 

patients do not show a reduction in cancer cell proliferation after neoadjuvant treatment with 

peri-operative aromatase inhibitors (POAI), and even some of them exhibit recurrent 

malignant cell growth after surgical resection (Dowsett et al. 2007; Gao et al. 2014). 

Understanding the causes of this tumour resilience to treatment is, therefore, a clinical 

imperative. 

The spatial distribution of entities generates a macroscopic pattern which may contribute to 

the understanding of the system's response to external changes (Levin 2005; Gao et al. 2016). 

A spatial ecological system evolves by changes in the diversity of its components (Ives and 

Carpenter 2007; May et al. 2008) (e.g., number of species and their abundances for 

ecological systems), their interactions, driven by the environment in which the system is 
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embedded (Gao et al. 2016), or by the spatial continuity of the system (Durrett and Levin 

1994a; Bascompte and Sole 1996; Hanski and Ovaskainen 2000; Keymer et al. 2000b; Levin 

2005). The continuity or fragmentation of population is vital for its persistence; it reflects 

the integration between life-history traits (survival, reproduction, and migration)(Keymer et 

al. 2000b; Ovaskainen and Hanski 2001) and local ecological interactions (e.g., 

competition)(Tilman et al. 1997). How this generalise to cancer, hence explaining tumoural 

persistence to antiproliferative therapy, remains unclear; presenting new challenges for an 

integrative understanding of tumours. Here we seek to apply the understanding of the spatial 

ecology to understand the success of cancer cells proliferating in the breast tissue and 

overcoming therapy, and associating how the spatial dimension through a measure of 

fragmented coexistence between proliferating cancer cells and immune cells can explain and 

predict the tumoural vulnerability to the percolation of therapy through the cancer 

ecosystem, therefore its effectiveness. To address this challenge we sum up the information 

revealed by gene expression profiling (Veer et al. 2002; Calabrò et al. 2009) and molecular 

markers of proliferation such as Ki67 expression (Urruticoechea et al. 2005; Yerushalmi et 

al. 2010; Penault-Llorca and Radosevic-Robin 2017; Gao et al. 2019) to test empirically how 

well spatial (e.g., hotspot and patch distribution and composition) and non-spatial (e.g., Ki67 

expression) parameters measured in patients before therapy can help us to decipher and 

predict a potential response (Figure III.1). Consequently, we could hypothesise that local 

coexistence between cancer cells and tumour infiltrating lymphocytes (TILs) integrated with 

topological analysis of hotspots within ER+BC ecosystems, can help to explain a tumour’s 

treatment response.  
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Methods 

Patients, samples and global scale ecology 

From the POETIC trial, 387 postmenopausal women with ductal carcinoma in situ ER+BC 

were randomly selected, corresponding to 774 formalin-fixed paraffin-embedded (FFPE) 

tissue samples. Two samples from each patient, one biopsy before treatment with endocrine 

therapy aromatase inhibitors (hereafter, pre-ET) and another sample after the two-weeks 

treatment (hereafter, post-ET). Each sample was immuno-stained for Ki67 before our 

handling and was digitalised at 20x. The expression of Ki67 changes throughout the different 

phases of the cell cycle being expressed in G1, S and G2, but not during the resting phase  

G0, making it a useful biomarker for cell proliferation (Yerushalmi et al. 2010). For cell 

detection and classification, we used a previously developed (Narayanan et al. 2018) 

supervised convolutional neural network (CNN) algorithm, which allows us to detect 

different cell classes according to nuclear morphology and response to immunostaining for 

Ki67 antigen. There are four possible cell classes identified by the CNN algorithm: Ki67+ 

(proliferating cancer cells), Ki67- (non-proliferating cancer cells), tumour infiltrating 

lymphocytes (TILs) and stromal cells (non-immune cells). This approach enables the 

quantification of the number of cells corresponding to each class divided by the tissue area 

obtaining global densities of each cell class for each sample (whole-slide image -WSI- 

densities) and Ki67 expression (number of Ki67+ cancer cells over the sum of Ki67+, Ki67-, 

immune cells and stromal cells).  

Local-scale ecology: hotspots, network, and patches 

After cell detection, Getis-Ord hotspot analysis was carried out between Ki67+/TILs, 

allowing us to focus the next steps of this work on biologically-relevant zones of higher 

occurrence cancer cells and lymphocytes within these ecosystems (Nawaz et al. 2015). This 
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analysis allowed us to calculate cell densities that are part of hotspots for each sample (HS 

Ki67+, and HS ITLs, where HS stands for hotspot). For the next step, we distinguished two 

scales of spatial ecological complexity based on the spatial resolution: global (WSI) and 

local (HS) scales. At the global scale, for each patient, we obtained pre-ET and post-ET cells 

class densities and Ki67 expression. The local scale refers to the spatial co-existence of 

Ki67+/ITLs within hotspots. At this scale, we built the community network of Ki67+ and 

ITLs. Each network reconstruction was made following a Delaunay triangulation method 

using as input the spatial coordinates of each cell in each sample and obtaining as output a 

list of distances between a pair of neighbour cells. Each network was analysed as a 

symmetric-weighted matrix.  In this approach, each cell is a node of the network P, and the 

weight of the link between two cells is inverse to the distance separating a pair of cells 

normalised by the maximum distance between two nodes observed in each sample P. In this 

way, we calculated a weighted link between two cells {a,b} as 

𝑤(𝑎, 𝑏)𝑃 = 1 −  
𝑑𝑖𝑠𝑡(𝑎,𝑏)𝑃

𝑚𝑎𝑥 (𝑑𝑖𝑠𝑡𝑃)
       Eq.  III.1 

For each network, we computed sub-group detection within them (henceforth ‘patches’, 

spatially discrete associations of cells) using the Girvan-Newman algorithm for large 

networks based on the nodes' betweenness (Newman and Girvan 2004) implemented by the 

R-package igraph. This analysis adds the quantification of patch-level coexistence between 

Ki67+ cells with ITLs and the level of fragmentation of the community before endocrine 

therapy. Given that the algorithm might consider isolated cells as patches, for the 

computation of the coexistence index we only considered patches with more than one cell, 

reducing the sample size to 336 patients. We consider the local coexistence with immune 

cells because their action is the main control on tumour development, and also previously it 

has been shown to have prognostic value (Nawaz et al. 2015). For each sample P, we 

calculated a pre-treatment coexistence index which corresponds to a Pearson's correlation 
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coefficient between patch-level abundances of Ki67+ cancer cells and lymphocytes. The 

coexistence index takes values between -1 and 1, where values close to -1 indicate that Ki67+ 

cells and ITLs do not coexist within patches, i.e., when in one patch the density of cancer 

cells is high the density of ITLs is low, and vice-versa. While, coexistence values close to 1 

indicate when within-patches cancer cell’s density is high, ITLs is high too. 

A priori we categorised patients according to their difference in Ki67 expression after 

antiproliferative treatment in two groups: good antiproliferative response (GAR, with 

ΔKi67<0 and poor antiproliferative response (PAR, with ΔKi67>0). Since Ki67 expression 

is used as a metric for response in ER+BC and considering the propagule pressure hypothesis; 

we started testing the explanatory power of the pre-ET Ki67 expression on the post-ET Ki67 

expression for each patient category. We built linear models of the form post-ET Ki67 ~ pre-

ET Ki67*AP category, and in the same way for the tumour response to therapy (measured 

as the change in Ki67 expression), we built linear models of the form ΔKi67 ~ pre-ET 

Ki67*AP category; these models allow us to test the interaction between pre-ET Ki67 

expression and the antiproliferative category of patients as explanatory variables of the 

response variables. The R2 value was taken as a measure of the explanatory power of the 

predictor variable (pre-ET Ki67 expression) and a statistical evaluation of the estimated 

slope (null hypothesis slope =  0). Furthermore, we studied the relationship between the 

coexistence index, the pre-ET WSI Ki67+ expression, and the degree of fragmentation 

(number of patches). Using a t-test, we compared these variables between the 

antiproliferative response categories (GAR vs PAR), here we only consider patients a 

statistically significant value of the coexistence index (152 patients). 

Prediction of the antiproliferative response 

With the subset of 152 patients with a statistically significant coexistence index, we built 

three binomial logistic regressions (link function logit) where the response variable is the 
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antiproliferative response (i.e., GAR or PAR) and the independent variables were: model 1: 

pre-ET Ki67 expression; model 2: pre-ET coexistence index and Ki67 expression; and model 

3: pre-ET number of clusters and Ki67 expression. Models 2 and 3 include the interaction 

term. Each resulting model was used to predict the antiproliferative response of another 

subset of 184 patients that do not have a statistically significant coexistence index. For this 

analysis, we considered a good antiproliferative response as the positive value; therefore, the 

sensitivity of the prediction refers to correct detection of GAR patients after endocrine 

therapy while the specificity refers to the correct prediction of PAR patients. We considered 

a probability threshold of 0.5 on the probability result for each binomial logistic regression 

to assign a predicted GAR category.  

For all the statistical analyses, we used a type I error rate of 0.05; after testing homogeneity 

of variances, we used t-test or Wald test if it corresponds when comparing two samples. 

Spearman correlation was used in the analyses including the number of patches as a 

predictor. All analyses were performed in R, except the convolutional neural network for 

tissue segmentation and cell classification and the Getis-Ord hotspot analyses done in 

Python. 

Results 

After two weeks of antiproliferative treatment with aromatase inhibitors, 304 (78.6%) 

patients showed a good antiproliferative response (GAR) while 83 (21.4%) showed a poor 

antiproliferative response (PAR), considering the expression of Ki67+ as a surrogate of 

cancer proliferation. According to our results, the pre-treatment Ki67 expression, 

Ki67+/ITLs’ within-patch spatial coexistence, and the degree of spatial fragmentation of the 

community quantitively improve the understanding and prediction of the pathological 

response measured by the change in Ki67 expression (a surrogate of cancer cell proliferation) 

after antiproliferative therapy. 
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Positive population feedback in cancer ecosystems 

Our results indicate a positive statistical dependence of the post-therapy Ki67 expression on 

the pre-treatment Ki67 expression (Figure III.2A), giving us some insights into how these 

variables are connected. That positive population feedback in the cancer population may 

apply. The effect of pre-ET Ki67 expression explaining post-ET Ki67 expression varies 

between antiproliferative response categories (table III.S1; pre-ET Ki67*AP category: 

F[1,383]=267.92, p-value=4.93 x10-46). Overall, pre-ET Ki67 expression explained 82.04% of 

the variance in post-ET Ki67 expression in the case of the PAR patients (estimated 

slope=1.99, p-value=2.58x10-32; R2=0.82). For GAR patients, the pre-ET Ki67 expression 

shows a lower, but high and significant explanatory power of post-ET cancer cell 

proliferation (estimated slope=0.36, p-value=2.05x10-74; R2=0.67). The pre-ET Ki67 

expression also emerged as a good predictor of the change in cancer cell proliferation 

(ΔKi67) after two weeks of treatment either for GAR and PAR patients, explaining the 86.6% 

and 53.03%, respectively, of their change (Figure III.2B); but equally in terms of its effect 

between antiproliferative categories (table III.S2; pre-ET Ki67*AP category: F[1,383]=1.34, p-

value=0.25). In the case of PAR patients, we find support for propagule pressure to explain 

the success in terms of cancer cell’s invasion since a higher pre-ET Ki67+ cancer cell density 

relative to the other cell classes was positively associated with the antiproliferative response. 

Fragmentation and coexistence in the tumour ecosystem 

The pre-ET Ki67+ expression allows us to estimate the magnitude of response, but we cannot 

a priori, identify patients that could not show the expected clinical result. To test how spatial 

patterns might predict response to therapy in addition to existing metrics such as Ki67 

expression, we quantified how local-scale patterns of fragmentation and coexistence in the 

hotspot landscape might influence the sign of the patient’s response to therapy in addition to 
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traditional metrics such as the Ki67 expression. The detection of spatially-structured 

subcommunities within each sample allowed to obtain a measure of the community 

fragmentation as the number of patches detected (Figure III.3A); which is negatively 

associated with the antiproliferative response (Spearman’s correlation ρ=-0.49, p-

value=2.15x10-10), it means that higher fragmentation of the community, higher is the 

decrease in Ki67 expression, hence, better response to antiproliferative therapy (Figure 

III.3B). In fact, after the fragmentation corresponding to five patches, the confidence interval 

(CI) of the mean antiproliferative does not include 0 (CI5
ΔKi67= 0.001--0.003; CI6

ΔKi67=-

0.002--0.007), suggesting that there could be a critical fragmentation size between PAR and 

GAR patients. Also, the degree of patchiness is positively associated with the coexistence 

between immune and cancer cells within hotspots (Figure III.3C; Spearman’s correlation 

ρ=0.77, p-value=3.41x10-31), implying an interaction between ecological interaction and 

spatial patterns of community fragmentation. We detected a significantly lower value of pre-

ET Ki67 expression (Welch t-test t[69.98]=-6.86, p-value=2.26x10-09), pre-ET within-patch 

coexistence (t-test t[150]=-2.93, p-value=0.004), and  pre-ET fragmentation was found in PAR 

in comparison to GAR patients (t-test t[150]=-3.3, p-value=0.001) within the patients' subset 

who had a statistically significant coexistence index (p-value < 0.05, 152 out of 336 

patients)(Figure III.4). 

Predicting the antiproliferative response based on coexistence in fragmented landscapes 

Finally, the binomial logistic regressions built to predict the likelihood of patient response 

to antiproliferative therapy of 184 patients show that adding the pre-treatment ecological 

metrics of coexistence and fragmentation to the pre-ET Ki67 expression, independently, 

increases the specificity, hence the power, of the models (i.e., the detection of PAR patients), 

without showing a critical reduction in the sensitivity (detection of GAR patients), hence in 

the increase of false negatives (type II error) of the predictions (Figure III.5). We show that 
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the model that only considers pre-ET Ki67+ expression is very general, predicting the 100% 

of GAR patients and only classifying the 2% of PAR patients correctly (Figure III.5A).  The 

consideration of the interaction between Ki67+ expression and coexistence can predict the 

response of 99% of GAR patients and increasing to 11% the correct prediction of PAR 

patients (Figure III.5B). Hence, the consideration of spatial coexistence between ITLs and 

Ki67+ in spatially structured communities increases 5.5 times the detection of patients while 

keeping the prediction of  GAR patients high (99%). Moreover, the model that considers the 

interaction between Ki67+ expression and the pre-ET patchiness (Figure III.5C) maintains 

high sensitivity (0.94) and low rate of type II error equals to 0.06 (1-sensitivity = 1-0.94), 

predicting the 96% of GAR patients correctly and increasing the detection of PAR patients 

to 40%, i.e., an increase of 20 times the detection of patients showing a poor antiproliferative 

response compared to the model that only considers the pre-ET Ki67 expression (Figure 

III.5A). 

Discussion 

Emergent properties in a complex adaptive system (e.g., an ecosystem) are the result of local 

non-linear interactions between its agents (e.g., species) (Gell-Mann 1994; Levin 2005; May 

et al. 2008). The main system evolves by changes in the diversity of its components (Ives 

and Carpenter 2007; May et al. 2008) (e.g., number of species and their abundances for 

ecological systems) or their interactions, driven by the environment in which the system is 

embedded (Gao et al. 2016). Cancer, as a complex adaptive system (Schwab and Pienta 

1996) reflects these properties wherein its composition and complexity of interactions, 

determine its evolutionary trajectory and response to external perturbations, such as therapy.  

Treatment resistance is the major clinical challenge in the treatment of cancers. As we show 

here, with an integrated approach, we are closer to predict the antiproliferative response to 
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therapy in ER+ breast tumours. Based on the current evidence, Ki67 expression quantifying 

cancer cell proliferation has been strongly suggested to be included in the standard 

pathological assessment of early breast cancers (Urruticoechea et al. 2005; Dowsett et al. 

2007; Yerushalmi et al. 2010; Penault-Llorca and Radosevic-Robin 2017; Gao et al. 2019). 

Moreover, the proliferative status measured with the Ki67 expression is strongly associated 

with proliferative cancer cells’ density after therapy (Figure III.2), where the effect of POAI, 

which has been previously documented (Pohl et al. 2003; Urruticoechea et al. 2005; Dowsett 

et al. 2007; Gao et al. 2014; Penault-Llorca and Radosevic-Robin 2017), is shown on the 

different responses of patients. In this work, we contribute evidence to support the need of 

including Ki67 immunostaining within the protocol from breast cancer; that would allow a 

quantification of the proliferative status of the tumour and also the ER+BC tumour´s 

community structure, abundance and distribution of cells. 

Nevertheless, just a visual inspection is enough to state that pre-treatment Ki67 expression 

alone cannot predict the sign of change, i.e., whether a patient will have a decrease or 

increase in proliferating cancer cells after treatment (FiguresFigure III.2, Figure III.5C). The 

second challenge was to estimate whether a patient will show a reduction in cancer cell 

proliferation in response to therapy, based only on pre-treatment tumour metrics obtained 

from the heterogeneous landscapes of cells in 2D images. In our cohort, we show that 

ecological spatial patterns generalise to cancer ecosystem in terms of the viability of 

population and resistance to perturbations shaped by fragmentation and coexistence patterns. 

The observed positive feedback in the population of cancer cells under a critical value of 

fragmentation (Allee 1931; Liebhold and Bascompte 2003) separating PAR and GAR 

patients show the vulnerability of the cancer ecosystem to the percolation of the control 

performed by the antiproliferative therapy and immune cells (Mocellin et al. 2001; Mao et 

al. 2016; Burugu et al. 2017). Considering that these are primary tumours, the most 
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straightforward explanation for the observed non-uniform –patchy– patterns and the 

implication it has to cancer population fitness emerges from the interaction between the two 

life-history traits: local dispersal ability and proliferation rate (Merlo et al. 2006). The 

dispersal ability of individuals within any population, from cells to human societies, is a 

crucial trait for exploration and colonisation of the environment. The limitation to local 

dispersal modulated by the physical properties of the extracellular matrix properties, i.e. 

niche construction is driven by cancer cells' metabolism (Carmona-Fontaine et al. 2013) 

and/or interactions with other cell types such as immune cells (Bellone and Calcinotto 2013; 

Nawaz et al. 2015; Yuan 2016) may underlie the observed clumped pattern, the fitness of 

cancer cells, the positive population feedback, and the critical fragmented coexistence 

separating the good and poor responses to therapy.  

Our findings come to contribute to the local coexistence patterns between lymphocytes and 

cancer cells as has been discussed for breast cancer (Manjili et al. 2012; Nawaz et al. 2015; 

Savas et al. 2016; Burugu et al. 2017), summing evidence to that Ki67 expression, local 

coexistence, and the degree of fragmentation matter shaping tumour’s response (magnitude 

and direction) (Pohl et al. 2003; Penault-Llorca and Radosevic-Robin 2017), emerging from 

the local spatial interaction between individual cells. Despite the effect, positive or negative, 

that ITLs may exert on cancer cells (Mao et al. 2016), we have found that PAR patients are 

not evenly distributed in the coexistence nor patchiness axis (they fall towards the lower 

values of coexistence and patchiness), meaning that cancer cells reach higher fitness as they 

spatially coexist less with lymphocytes within tumours, opening the question about the effect 

of ITLs on local migration/proliferation patterns of ER+BC cells, and if ITLs can promote 

local dispersal or inhibit local proliferation of cancer cells (Man et al. 2013). 

Notwithstanding, here, the coexistence in strongly associated with fragmentation, linking a 
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potential control driven by immune cells contributing to the fragmentation of the community, 

hence to the spatial diffusion of antiproliferative therapy. 

The development of predictive oncology is gaining evidence from the new approaches 

(Brindle 2008; Yuan 2016). We show that through an integrated approach considering 

traditional and novel spatial metrics is possible to predict patients’ response antiproliferative 

therapy. We claim that through the consideration of tumours as complex adaptive systems, 

the field can gain predictive power to anticipate emergent tumour ecosystem responses to 

therapy where the local interactions between the components of the ecosystem shape its 

responsiveness (May 2001; Thébault and Fontaine 2010; Gao et al. 2016), which is 

imperative in the case of the patient’s prognosis.  

In conclusion, despite each patient being a particular ecosystem responding in a different 

way to treatment, we think that there are general patterns across patients that can be 

discovered and interpreted using the knowledge of different fields, in our case from ecology 

and neural network analyses. We suggest that these results need to be taken carefully because 

they are based on single tumour sections before, and after therapy. The POETIC clinical trial 

database does not have multi-region sampling, making it impossible for us to test if the 

patterns found here are consistent across space and time within a 3D landscape such as a 

tumour, or how sampling variability might affect our results. In our analyses, such sampling 

variability is integrated into the error variance through the study of different patients. 

Nevertheless, there are other studies which may help to expand the results presented here; 

for instance, an analysis carried out from 245 ER-BC patients from the METABRIC 

consortium (Nawaz et al. 2015) averaging three sections within a tumour showed that the 

amount of co-localised cancer and immune hotspots correlates with a better prognosis. There 

are limitations associated with our analyses since we reduced the complexity of a 3D tumour 

to single region 2D landscapes, and we have a limited resolution of lymphocyte diversity. 
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These limitations certainly can not be ignored; nevertheless, we expect our findings to ignite 

further research into the spatial ecology within tumours and the tools that the interaction 

between clinical, ecological and machine views can serve to disentangle the complexities 

behind tumours ecosystems. 
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Figures 

 

Figure III.1 Dissecting ER+ breast tumour’s ecology under endocrine therapy. The pipeline 

followed seeking to extract global-scale metrics acquired from WSI after cell detection and 

local-scale metrics from hotspot detection and spatial network analyses (based on matrices 

analyses). Finally, a set of binomial logistic regressions allows predicting patients’ response 

to therapy. 
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Figure III.2 Propagule pressure and the explanatory power of the pre-treatment Ki67 

expression. (A) post-treatment Ki67 expression and (B) the change in the Ki67 expression 

(post-ET – pre-ET). Each dot corresponds to one patient in the categories of good 

antiproliferative response (yellow triangles) and poor antiproliferative response (blue 

circles). For each category, a linear model is shown (confidence interval 95%) with the 

corresponding statistics. For (A) and (B) we tested the interaction between pre-ET Ki67 

expression and the antiproliferative response. 
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Figure III.3 Fragmented coexistence between cancer and immune cells. (A) Schematic of 

the possible values of coexistence between Ki67+ (cyan) and ITLs (purple) across patches 

(grey); and an example image of low coexistence where cell classes do not coexist in the 

same patch forming mono-class patches (some shown by arrows). (B) PAR and GAR 

patients’ antiproliferative response decreases with the degree of patchiness of communities. 

From a patchiness value equals to six, average ΔKi67 (solid red line) becomes different from 

0.  PAR: poor antiproliferative response and GAR: good antiproliferative response. (C) 

Association between the pre-treatment patchiness and coexistence. 
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Figure III.4 Ecological differences in antiproliferative response categories. GAR (yellow 

triangles) and PAR (blue circles) patients differ in their pre-treatment metrics of(A) Ki67 

expression, coexistence between immune and cancer cells, and (B) the patchiness of the 

community.  
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Figure III.5 Prediction of antiproliferative response to POAI in ER+ breast cancer patients 

based on pre-treatment ecology. The logistic binomial regression model fitted with 152 

patients was used to predict the antiproliferative response of other 184 patients based on (A) 

pre-ET Ki67 expression, (B) pre-ET ki67 expression and pre-ET spatial coexistence between 

ki67+ cancer cells and ITLs, and (C) pre-ET ki67 expression and pre-ET patchiness (AUC: 

area under the curve; Sensitivity: positive predictive value; Specificity: negative predictive 

value). The positive response for prediction represents a good antiproliferative response and 

the threshold for prediction after the logistic binomial regression was 0.5. 
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Supplementary materials 

 

Table III.S1 ANOVA table for the analysis of post-ET Ki67 expression as a function of the 

pre-ET Ki67 expression and the antiproliferative response group (GAR or PAR). 

Term D.F. S.S. M.S. F p-value 

Ki67 expression 1 1.48x10-05 1.48x10-05 750.65 2.81x10-92 

AP response group 2 5.36x10-06 2.68x10-06 135.68 2.84x10-45 

Interaction 1 5.29x10-06 5.29x10-06 267.92 4.93x10-46 

Residual 383 7.57x10-06 1.98x10-08   
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Table III.S2 ANOVA table for the analysis of |ΔKi67| expression as a function of the pre-

ET Ki67 expression and the antiproliferative response group (GAR or PAR). 

Term Df S.S. M.S. F p-value 

Pre-ET Ki67 1 3.27x10-05 3.27x10-05 1713.84 1.81x10-143 

AP response group 2 8.25x10-07 4.13x10-07 21.65 1.23x10-09 

Interaction 1 2.5x10-08 2.5x10-08 1.34 0.25 

Residual 383 7.3x10-06 1.9x10-08   
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Abstract 

Cancer cells spread between organs in the context of the within-organism ecosystem 

still a puzzle, where Paget's seed-and-soil hypothesis raised the role of the organ’s 

conditions to explain it. In this contribution, we seek to tackle the complexity of the 

metastatic process at a coarse-grained scale by defining and quantifying metastasis as 

a bipartite network between source and acceptor organs of cancer cells. With 8,642 

medical records of human metastases from the literature, we quantify the diversity of 

metastatic incidence among organs, suggesting that local processes may occur at the 

organ level contributing to the diversity observed in the metastatic spread. This 

continuum is related to physiological variables, and from it emerges a universal 

topology, with a nested and modular structure and truncated power-law degree 

distribution. These results contribute to the development of theory, which summed to 

the development of evidence support the explanation of local ecology underlying 

metastatic diversity.  
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Despite the plethora of lifeforms that invasive species have, there are inherent 

characteristics to the processes of invasion and colonization, which make the invasion 

process a global phenomenon. A particular hallmark of invaders is that some species 

are more invasive than others being the world’s worst invasive species (Luque et al. 

2013), but also, some habitats harbor more invasive species than others. This variety 

in the invasion patterns emerges from the interaction between invader's life-history 

traits, the process of transportation and introduction of individuals (propagule 

pressure), and the characteristics of the recipient habitat (Turbelin et al. 2017). Cancer 

ecosystems might not be so different from biological invasions (Chen and Pienta 

2011a); in particular, when cancer cells migrate from the primary tumor arriving at an 

acceptor organ where it can succeed in the invasion or perish under local processes 

that do not allow the invasion. 

Notwithstanding, despite many intervening decades of observation and accumulation 

of evidence, our understanding of metastasis is mostly centered on a small number of 

organs and tissues (Langley and Fidler 2011; Peinado et al. 2017). These studies 

indicate that a series of complex processes occur in metastasis (Lambert et al. 2017), 

beginning with the cell’s epithelial-mesenchymal transition (Ganesh et al. 2020), 

allowing the migration of cancer cells from a source tumor through lymphatic or blood 

vessels (Pereira et al. 2018). Then, going through numerous intermediate states, 

habitats, and micro-environmental conditions, and culminating either in spatially 

distinct tumors within the source organ or in distant organs (Nguyen et al. 2009). 

Although this sketched sequence is very similar among those cancers that have been 

studied in detail, it still lacking a broader view, which allows us to identify and quantify 

why specific organs and tissues (hereafter ‘organs’) are more commonly the sites of 

metastasis or with higher invasibility. Also is unclear why some specific primary 
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tumor sites tend to be associated with one or a few specific metastatic organ sites (Scott 

et al. 2012); in contrast, others are more generalists having successful invasions in 

many different organs (Disibio and French 2008), i.e., the continuum of invasiveness 

and invasibility in metastatic cancer.  

After Joseph Récamier coined the term metastasis (1829), two main hypotheses have 

been treated in the literature to explain why some organs are the target for circulating 

tumor cells. Under the ‘seed-and-soil’ hypothesis proposed by Stephen Paget (Paget 

1889), cancer cells migrate from established tumors and only create self-sustaining 

metastatic growth in distant organs if the latter’s micro-environmental conditions, 

defined by local processes, are adequate (Groot et al. 2017); analogous to the 

Grinnellian niche in ecology (Grinnell 1917). The second hypothesis is associated with 

James Ewing (Ewing 1924), who suggests that metastatic spread occurs by purely 

structural factors related to the anatomical connectivity of the vascular system and 

closeness between source and acceptor organs. Hence, the probability of an organ 

harboring a metastasis depends in part on the number of cancer cells delivered to it 

(propagule pressure), which in turn is a function of blood flow and distance to the 

source organ (Fidler 2002). Whereas there is little support for the single action of the 

Ewing’s hypothesis in explaining observed patterns in metastasis, it is unclear to what 

extent Paget's and Ewing's hypotheses integrate and contribute to explaining observed 

patterns of migration (Azevedo et al. 2015).  

Nevertheless, how findings related to metastatic incidence generalize across metastatic 

strategies of both primary and metastatic tumor sites and what macroscopic patterns 

emerge from the study of the continuum of cancer strategies, if any, remains unknown. 

However, its unwinding would mean a crucial contribution guiding the research in 
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metastatic cancers and their underlying causes. In this challenging realm, the 

application of network science has arisen as an opportunity in medicine (Barabási et 

al. 2011; Greene et al. 2015). The study of phenomena as networks have to lead to 

explaining emerging patterns through several mechanisms linked to temporal 

dynamics and diversity of strategies present in the system (Patterson 1990; Barabási 

and Bonabeau 2003; Bascompte et al. 2003; Suweis et al. 2013). Here, we exploit a 

network view on metastasis, carrying out a large-scale statistical analysis by analyzing 

the association between an organ with a primary tumor and its metastatic sites (Figure 

IV.1). Inspired by metapopulation theory, we represent organs as habitat patches, 

potentially harboring tumor cell populations (Keymer and Marquet 2014). In our 

scheme, organs can be ‘source’ or ‘acceptor’ patches. Source patches are those organs 

where the primary metastatic tumor emerges and from where cancer propagules 

migrate, and the acceptor patches correspond to those organs that receive these 

propagules and become colonized. We hypothesize that the idiosyncratic diversity 

characterizing metastatic cancers is reflected in a quantitative pattern of invasiveness 

depicted from the connectivity of organs in the network; and that such diversity shapes 

the metastatic incidence, in source and acceptor organs, with emerging macroscopic 

patterns related to the metastatic association. With this approach, we aspire to 

contribute to an ecological theory of cancer, the quantification of invasiveness and 

invasibility in organs with the resulting macroscopic pattern and the discussion about 

the role of niche and spatial variables influencing metastasis. 

Methods 

We studied the metastatic network between organs by constructing a bipartite network 

based on a matrix representing the number of occurrences that a primary neoplasm in 
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a source organ generated a metastasis in an acceptor organ. The data were obtained 

from the literature (Abrams et al. 1950; Patel et al. 1978; Saitoh et al. 1984; Lamovec 

and Bracko 1991; Bubendorf et al. 2000; Disibio and French 2008; Shinagare et al. 

2011). Based on diSibio and French (Disibio and French 2008), 33 anatomical zones 

(referred here as ‘organs’) and 21,421 occurrences were initially recorded, maintaining 

most of the organs present in the original work (Disibio and French 2008). These 

medical records are from the USA, Switzerland, Germany, and Slovenia, taken 

between 1885-2009 (view references for particular years and occurrences). Given the 

nature of the data, we were unable to classify it by gender or other demographic 

categories, but we decided to exclude organs commonly associated to biological sex 

(breast, prostate, penis, testicles, uterus, vulva, vagina, and ovaries), and grouping 

organs as follows to reconcile contrasting terminology between studies: colon/rectum 

(colon, rectum, anus), intestine (appendix, duodenum, large and small intestines), and 

neck (branchial cyst, larynx, lip, pharynx, salivary glands, tongue, and tonsil). After 

this data filtering, a total of 25 organs and 8,642 occurrences were included in the 

analysis, based on autopsies and tomographies in the case of muscular cancers. In 

analytical terms, we define the metastatic process as a graph G = (S, A, E) where S and 

A denote the set of source and acceptor organs, respectively, and E identifies the links 

or edges connecting them which in this case represents occurrences. An occurrence is 

tallied if there is at least one record of metastasis from a primary metastatic tumor to 

an acceptor organ. We studied the weighted network W = G = (S, A, E) of source-

acceptor organ interactions S×A with S = A = (si/ai,…, N), with i,j: [1,2,... ,N] and N 

corresponds to 25 anatomical sites. The network is studied as a matrix where each 

entry of this matrix represents the metastatic process quantified by ni,j corresponding 

to the number of occurrences of the metastatic pair source-acceptor, i.e., the number 
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of reported secondary growth metastases in an acceptor organ i that are originated from 

a primary tumour in a source organ j. For network calculations, each cell value ni,j was 

transformed to a broad sense metastatic incidence (BSI)  value calculated as wi,j=ni,j/T, 

with T being the total number of cases (8,642 cases).   

Macroscopic network properties  

To assess emergent topological properties in the metastatic network as a result of the 

interaction between the mesoscopic attributes were contrasted observed measures of 

nestedness (NODF2 and BINMAT) against a set of random null networks (N= 1000) 

built under a non-sequential algorithm which only preserves the original number of 

occurrences within the matrix. We evaluate statistical significance by calculating the 

confidence interval (95% CI) of the mean nestedness of the null models and 

contrasting that with the observed value of the occurrence matrix (Figure IV.2). The 

degree of each organ allowed us to evaluate the degree distribution for source and 

acceptor organs, hence if it corresponds to a scale-free network or it does not. Three 

fits were adjusted to the degree distribution: exponential, power-law, and truncated 

power-law (R-package bipartite); we choose the best fit according to the Akaike’s 

Information Criterion (AIC). Modularity was estimated with the two algorithms that 

aim to maximize modularity: QuanBiMo (Dormann and Strauss 2014) and 

DIRTLPAwb+ (Beckett 2016); both available in the R-package bipartite. These 

algorithms allow the detection of modules in our bipartite network based on the 

metastatic incidence patterns. To obtain the observed modularity, we ran 500 iterations 

following the ‘Dormann-Strauss’ or the ‘Beckett’ method, with 100000 steps and 

tolerance of the difference between Monte Carlo-Markov Chains swaps of 1e-10 in the 

case of Dormann-Strauss. Both algorithms allow obtaining a final estimation, which 
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maximizes the likelihood of the modularity; we choose the one with the highest value 

of likelihood. 

Organ level properties and physiological data  

Organ level properties correspond to those organ-level metrics resulting from our 

analyses, including metastatic occurrences and incidence, organ degree (observed 

number of links), organ’s generalism, and physiological metrics obtained from 

literature associated with metastatic incidence. Firstly, to test the relationship 

between spatial closeness and source-acceptor seeding, we contrasted metastatic 

incidence with the spatial closeness between source-acceptor organs based on 

vascular matrices. Secondly, to evaluate if the likelihood of having primary 

metastatic tumor is positively associated with the likelihood of secondary growth in 

acceptor organs, we correlate source-acceptor metrics either for the degree and the 

number of occurrences. Thirdly, a more in-depth analysis of each organ’s role in the 

metastatic network allows testing if there exists a relationship between occurrences 

and the level of generalism of connectivity in the network. Finally, aiming to 

approach to the study of how physiological parameters might account for observed 

network metrics at organ level, we tested linear correlations (null hypothesis: ρ=0) of 

our metrics against organ-level physiological estimates extracted from the literature: 

From (Weiss et al. 1980): organ weight, blood volume (ml), blood flow (ml/min), 

mass-specific blood flow (ml/(min*gr)); From (Sidhu et al. 2011): cardiac output 

(%); From (Tomasetti and Vogelstein 2015): noncancer cell population number, 

number of stem cells, number of division of each stem cell per year, number of 

divisions of each stem cell per lifetime, cumulative divisions of each stem cell per 

human lifetime; From Richardson, Allan and Le (Richardson et al. 2014): organ 

turnover (days).  

To assess the hypothesis that relates metastatic incidence and spatial distribution of 

organs, we built vascular incidence matrices based on the main artery or vein 

conducting blood flow between organs. We identified the main arteries associated 

with an organ’s blood supply: thoracic aorta, abdominal aorta, left gastric coeliac 

trunk, splenic artery, common hepatic artery, superior mesenteric artery, and internal 

iliac artery; and those involved in blood drainage: renal veins, inferior phrenic vein, 

hepatic vein, gastric veins, splenic vein, mesenteric vein, internal iliac vein, and 

internal jugular vein. To characterize the spatial association emerging from the 

vascular arrangement, we constructed a binary vascular matrix M×M with M = (m1, 

m2, …, MN), with M being the number of organs (number of rows/columns). When 

two organs shared an artery or a vein, we recorded this co-occurrence as a 1. In 

contrast, when a pair (mi, mj) did not share a vessel, we assigned a 0. For example, 

the pancreas and liver share blood supply through the abdominal aorta; the ‘supply 

matrix’ has a value of 1 associated with the pair ‘pancreas, liver’. The following 
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source/acceptor organs were excluded for this analysis because the available data do 

not allow the identification of main supply/drainage vessels: bone, lymph nodes, 

retroperitoneum, omentum, skin, skeletal muscle. Our first approach was to correlate 

the weighted metastatic matrix (W) with both vascular matrices independently, 

expecting that if spatial organ arrangement plays a role in cancer spread, it will 

manifest in a significant statistical association.  

In order to test the hypothesis which relates the invasiveness of primary metastatic 

tumors in a source organ with its invasibility, we performed two linear correlations 

(null hypothesis: ρ=0): first between the degree of source (kS) and acceptor (kA) organs, 

and second, between the number of occurrences of primary and secondary-growth 

metastatic tumors. Then, for each organ, the difference in its degree as acceptor and 

source was correlated with the difference in its occurrence of primary tumors and 

metastatic sites. This analysis allowed us to test the association between occurrence 

and connectivity and to identify two categories of organs: those with higher 

invasiveness where the occurrence of primary tumor is higher than the occurrence of 

metastases or kS>kA; and those organs with higher invasibility where the occurrence of 

primary tumor is lower than the occurrence of metastases or kS<kA. Next, we abstract 

the metastatic process as the establishment of a link between two nodes where two 

conditions need to be met; first, cancer seeds need to leave a primary tumor in a source 

organ i with a probability Ps
i, and second, survive the transportation, arrive and 

establish an invasive diaspora at an acceptor organ j with a probability PA
j. We 

considered that the source organ´s degree over the total number of acceptor organs, 

kS
i/N

A, may account for Ps
i, and respectively, for acceptor organs that kA

j/N
S accounts 

for PA
j, then we correlated wi,j (BSI for a source-acceptor pair) with the product P

s
i×PA

j, 

because for a metastasis to occur cancer propagules need to leave the primary tumor 

and establish a population in the acceptor organ. The network analysis also allowed us 

to calculate the generality of each organ using a variation of Schoener’s generality as 
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𝐺𝑖 = 1 −
𝐿− 𝑘𝑖

𝐿−1
, where Gi corresponds to the intensity of generalism of the focal organ 

i, if such organ is a source organ, then L corresponds to the number of potential 

acceptor organs, and ki corresponds to the observed number of connections of the organ 

i, i.e., its degree. As Gi approaches to 1, an organ is more generalist in terms of its 

pattern of linking in the bipartite network. Finally, Shannon’s entropy was used to 

calculate a measure of diversity (Di) of the metastatic recipient or metastatic sources 

for source and acceptor organs, respectively. For an acceptor organ i its diversity of 

metastatic sources is calculated as 𝐷𝑖 = ∑
𝑛𝑖,𝑗

𝑁
log (

𝑛𝑖,𝑗

𝑁
)𝑆

𝑗=1 , where ni,j corresponds to 

the occurrence of metastases in an acceptor organ i from a source organ j and N 

corresponds to the total number of cases; hence, ni,j over N represents the metastatic 

incidence. 

Simulating the role of spatial arrangement stochastic metastases  

To evaluate the importance of source and acceptor statistical traits (degree) in the 

metastatic process, we simulate metastases in a network of 19 source and acceptor 

organs. We considered four different degree scenarios that define Ps
i and PA

j: 

empirical, nested, neutral, and variable scenarios. In the empirical scenario, a vector 

of nodes’ degrees was taken from the observed network. In the nested situation, a 

theoretical uniform distribution of Ps
 and PA

 allows getting values for Ps
i, P

A
j: (0,1).  

For the neutral case, all source and acceptor organs have Ps
i=PA

j=0.5. Finally, in the 

variable case, we combine nested and neutral cases, with Ps
i = 0.5, i:(1, …, 19) and 

PA
j with a uniform distribution. The initial simulated matrix was zero-filled, i.e., ni,j=0, 

for each event a random cell within the matrix is chosen, then if a random number rd: 

U(0,1) is lower than the corresponding product Ps
i×PA

j a metastasis from the organ i to 

the organ j, occurs. Using the same degree cases, we add the supply matrix M to 
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simulate a spatial constraint to metastasis (where M is a binary matrix with organs 

sharing a proximal artery), in this case, the condition for a simulated metastasis must 

be rd<Ps
i×PA

j×mi,j, with mi,j: {0,1}. We run each of the eight scenarios 300 times with 

10000 metastatic simulations for each replicate, after which we obtain a matrix of 

metastatic occurrences from which we calculate a simulated matrix of broad sense 

metastatic incidence to which we compute nestedness and modularity. 

All the analyses were performed in R (version 3.6.2), and the BSI data and the vascular 

incidence matrices are public. 

Results 

Emerging macroscopic patterns arose from the continuum of invasiveness and 

invasibility in the network of metastatic cancers. At the network scale, we found that 

the global architecture is highly structured with a nested subset structure (Figure IV.2), 

a scale-free truncated power-law degree distribution that applies to both source and 

acceptor organs modules (Figure IV.3A and Table S1), and a modular sub-structure 

(Figure IV.3B). The observed network is statistically more nested than null networks 

(NODF2obs=66.27, NODF2null= 63.71±0.14, BINMATobs=9.21, 

BINMATnull=51.23±0.25). Nestedness implies asymmetry, such that there is a core of 

highly interacting source and acceptor organs and a periphery where specialized 

organs with a lower degree interact mainly with generalist organs (higher degree) 

(Figure IV.2Figure IV.2). The value of nestedness indicates that both source and 

acceptor organs vary in terms of the number of connections they have (i.e., their 

‘degree’) (Figure IV.2 - Figure IV.4). At the organ scale, a gradient in primary tumor 

invasiveness across source organs underlies the observed continuum; it means that 

some source organs are connected to more acceptor organs, and/or generate more 
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migrating cells, and/or these migrating cells are selected for to migration (Figure 

IV.4Figure IV.5). The continuum is formally reflected in a monotonic gradient in 

invasibility across acceptor organs (i.e., some acceptor organs are more prone to be 

invaded than others, and/or to receive metastases from more source organs, Figure 

IV.3A). Concerning the evaluation of how spatial closeness between source and 

acceptor organs might be associated with metastatic incidence, our results show that 

the network of metastatic incidence is positively associated to the supply network 

(Kendall’s-τ=0.093, p-value=0.047) meaning that the metastatic incidence is higher 

when source and acceptor organs share an artery. This statistical association does not 

hold for the drainage network (Kendall’s-τ=-0.02, p-value=0.692). A last macroscopic 

attribute is that the metastatic incidence pattern reveals a modular structure of 

interacting organs (modularity likelihoodobs=0.156, Figure IV.3), implying that within 

module connectivity is higher than expected in a random network (Newman and 

Girvan 2004; Beckett 2016). The modules detected do not include necessarily the 

heaviest links between source-acceptor within the same module, it is because the 

available algorithms compute modularity likelihood referred to a maximization for a 

set of weighted links and not particular paired interactions (Beckett 2016).  

About testing how the processes behind generating primary metastatic tumor are 

associated with receiving metastatic propagules, we did not find a significant 

association either in the degree (t[16]=-0.517, ρ=-0.13, p-value=0.612) nor the 

occurrences (t[16]=-0.485, ρ=-0.12, p-value=0.634), suggesting a decoupling in the 

events of generating primary metastatic tumors and receiving metastatic propagules 

(Figure IV.4A-B). However, a broader view unveils a significant positive correlation 

between the difference in occurrences and the difference in the corresponding degree 

(Figure IV.4C; t[16]=3.982, ρ=0.64, p-value=0.0006) showing that more connected 
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organs (acceptor or source) have a higher metastatic incidence compared to less 

connected organs.  

The exploration of the association of some physiological metrics obtained from the 

literature (see methods) and the network-derived source and acceptor organs’ 

properties, shows interesting patterns that require further research (Figure IV.5). For 

instance, these results reveal evidence of a positive and statistically significant 

relationship between the occurrence of metastases in acceptor organs and blood flow 

through those organs (ρ=0.65, p-value=0.03, n=11) and between the occurrence of 

primary metastatic tumors and cumulative stem cells divisions per lifetime (ρ=0.85, p-

value=0.002, n=10). In contrast, the negative and statistically significant relationship 

between acceptor organ’s degree and stem cell divisions per year (ρ=-0.69, p-value 

=0.019, n=10) shows that organs which have a higher stem cell divisions are less likely 

to be invaded by metastatic propagules. Other interesting associations are linked to 

ecological measures such as diversity and generalism. In acceptor organs, their 

diversity of source is positively associated with their weight (ρ=0.85, p-value=0.001, 

n=11) and with their cumulative stem cell divisions per lifetime (ρ=0.85, p-

value=0.001, n=11). Meanwhile, the diversity of acceptor for source organs is 

positively associated with its estimated noncancer cell population (ρ=0.73, p-

value=0.01, n=11) and the estimation of the blood flow (ρ=0.73, p-value=0.03, n=11). 

These results come to contribute to the idea of organ-level physiology shapes the 

likelihood to send or receive metastatic propagules, hence playing an essential role in 

the ecologies of metastatic seeding. 

Finally, the study of the relationship between the establishment of a metastatic link 

between two organs estimated from their corresponding observed degrees and the 

corresponding metastatic incidence (BSI) shed light on the underlying mechanisms of 
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the metastatic process (Figure IV.6). We show that metastatic incidence exhibits a 

threshold behavior as a function of the probability of metastasis (Ps
i×PA

j) and that there 

is a positive relationship between BSI and Ps
i×PA

j after the threshold limiting 

metastases. Finally, about the simulation of metastasis as a stochastic process under 

different degree and spatially-constrained scenarios, we show that variability in source 

and acceptor organs’ degree is a requisite to approach to the observed modular and 

nested macroscopic pattern (Figure IV.S1). However, it is interesting that a spatial 

constraint imposed by the observed arterial incidence matrix increases the modularity 

and the nestedness even beyond the observed value, suggesting that local spatial 

relationships might not mainly shape the observed macroscopic modular pattern. 

Overall, either from the observed patterns as from the simulated processes, the results 

suggest that space and local conditions attributed to organ properties are fundamental 

to understand the emerging patterns of metastasis. 

Discussion 

The quantification of the metastatic pattern allows us to expound some mechanisms 

and refine the hypotheses behind the diversity of metastatic cancers and the metastatic 

process itself. The observed variability between organs implies that organ level 

processes, different between organs, account for the spread of cancer between organs. 

In this context, the macroscopic patterns emerge. Nestedness, scale-free degree 

distributions, and modular patterns in networks have been suggested to promote 

diversity, stability, and network robustness to disturbances (Bascompte et al. 2003; 

Thébault and Fontaine 2010). However, in the context of our study, these network 

attributes are not related to stability and robustness as they are for ecological 

communities since organs are not species that can go extinct. Instead, we associate 
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these macroscopic patterns to the action of several simple mechanisms underlying the 

observed network structure (Barabási and Bonabeau 2003; Suweis et al. 2013; Leung 

and Weitz 2016) and related to the organs’ attributes that we have shown here. 

Mechanisms behind the emerging macroscopic patterns 

Nestedness in ecological systems can arise because habitat patches display a gradient 

in either colonization or extinction probabilities (Patterson 1990). In the case of the 

metastatic network presented here, both extinction and colonization could influence 

the observed patterns (Figure IV.2Figure IV.4Figure IV.6). Extinction in the context 

of metastasis corresponds to failed colonization, resulting from either intrinsic 

unsuitability of specific organs for cancer cell growth or characteristic non-

compatibility between certain primary tumor metastatic cells and specific acceptor 

organ microenvironments. As per colonization, we found positive correlations 

between blood flow through an organ and the incidence of metastasis (Figure IV.5). 

Blood flow is correlated with the number of propagules that could potentially arrive in 

a patch or ‘propagule pressure’ (Blackburn and Duncan 2001), also as has been 

demonstrated recently, the blood flow rate influences arrest, adhesion, and 

extravasation of circulating tumor cells (Follain et al. 2018; Onken et al. 2019). 

The importance of cellular processes such as stem cells’ life history and organ turnover 

is crucial in understanding the emergence of primary tumors and metastasis (Scott et 

al. 2013; Tomasetti et al. 2017). Here, we showed that the generalism of a source organ 

is negatively correlated with cell turnover in that organ (Figure IV.5); it implies that 

source organs with more frequent cell population renewal generate more metastatic 

links to different acceptor organs with a higher metastatic incidence. These results 

suggest both a role for propagule pressure, hence colonization, in the observed nested 
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pattern of the cancer network. Furthermore, the diversity of strategies found in source 

and acceptor organs (Figs. 2-4) can be influenced by tissue-specific risk factors (Joyce 

and Pollard 2009; Aktipis et al. 2013), different life-history trade-offs within tumors 

(Pienta et al. 2013), groups of noncancer cells contributing to metastases (Condeelis 

and Pollard 2006b; Ganesh et al. 2020), and variation in the degree of matching 

between the quality of the recipient organ and the niche requirements of migrating 

metastatic cells, all of which drive colonization success (Joyce and Pollard 2009; 

Pienta et al. 2013; Groot et al. 2017; Ganesh et al. 2020), and some analogous to what 

is observed in models of metapopulation dynamics (Marquet and Velasco-Hernandez 

1997; Keymer et al. 2000a). 

A scale-free degree distribution (Figure IV.3) also is a property shared by different 

complex networks, where the simplest way to generate such topology is based on the 

action of two simple generic mechanisms(Barabási and Albert 1999): (i) one that 

provides for the continuous increase in both the number of nodes and links resulting 

in the expansion of the network and (ii) one that accounts for an increase in the 

probability of a site being connected as function of the number of existing connections, 

known as ‘preferential attachment.’ Two other cases are possible; first, where the 

truncation phenomenon observed in the degree distribution is likely the result of the 

small and finite number of nodes (organs) that can potentially be part of the network, 

and which limits the spread and filling of the distribution (Patterson 1990), and, 

second, following an optimization framework which can underlie the canonical 

preferential attachment (D’Souza et al. 2007). In what follows, we go further in the 

integration of these mechanisms, which can account for the observed architecture of 

metastasis. 
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The first mechanism implies that the network structure has changed through time, 

because of tumor cell migration from primary sites, and/or metastasis to novel acceptor 

organs. Differences in tissue-level cancer risk may have an evolutionary basis (Davies 

2004; Thomas et al. 2016), be associated with the novel, organ-level, environmental 

conditions such as pre-metastatic conditions (Peinado et al. 2017),  or other cellular 

strategies such as L1CAM+ cells (Ganesh et al. 2020). The second mechanism is 

associated with preferential attachment, which in this context implies that a new 

primary tumor is more likely to metastasize to an already highly-connected acceptor 

organ and that a new metastasis is more likely to arise from a primary tumor that has 

already metastasized to many different organs. This mechanism also can generate 

nested networks (Medan et al. 2007), whereby specialized (low degree) acceptor 

organs tend to interact with generalist (high degree) source organs and vice versa 

(Figure IV.2). This preferential attachment and the resulting asymmetric interaction 

can emerge as results of trade-offs in the metastatic process, where the motile cancer 

phenotype is selected according to the local conditions behind the probability of 

success in an acceptor organ (Figure IV.6Figure IV.5). When, the likelihood of being 

a successful propagule is maximized (i.e., an increase of the joint probability of 

migration and establishment, Ps
i×PA

j) the cancer strategy shows an increase in its 

invasiveness, hence higher metastatic incidence. 

Modular networks in ecology have been associated with the presence of species with 

similar functional traits (Montoya et al. 2015) or subsets of spatial locations with more 

frequent dispersal (Bascompte et al. 2003). These two mechanisms are plausible in 

cancer networks. Modularity may reflect a combination of similar traits among some 

organ groups (due to similar organ environments, shared connectivity and/or 

functional characteristics (Qin et al. 2016)), and different traits between these groups 



82 
 

 
 

and other groups that restrict metastasis between modules. We did not detect a explicit 

support for spatial proximity within each module besides the overall correlation of 

matrices, we argue that niche-related characteristics might play a role determining the 

observed modular arrangement. It remains to be uncovered, which are the traits that 

source and acceptor organs share within modules in the cancer network, and that may 

account for their compartimentalization.  

The overall observed pattern results from a diversity in the degree distribution, which 

may be shaped by local mechanisms of selection (Del Genio et al. 2011) understood 

under the natural selection paradigm operating on the metastatic variants (Hochberg 

and Noble 2017). In this local selection paradigm, the attributes of organs that help us 

to understand further the factors that may make an organ more likely to become 

colonized by cancer cells or defining the number of connections that a given 

source/acceptor has, have been primarily discussed in the literature. For example, the 

role of stem cells in tissue renewal might underlie the observed negative correlation 

between acceptor organ degree and its number of stem cell divisions, implying that 

organs which on average have fewer or older cells tend to be targeted for metastasis 

from a more significant number of different primary tumor sources, following Paget’s 

seed and soil hypothesis and cellular processes acting upon the invasion (Merino et al. 

2016). In this case, they receive more links because they are inherently more suitable 

to be colonized, and this is likely one of the mechanisms behind preferential 

attachment, and hence nestedness, modularity, and truncation power-law (D’Souza et 

al. 2007; Medan et al. 2007; Leung and Weitz 2016). 

The ecological and evolutionary study of cancer is showing promising results for 

detection, prognosis, and treatment in cancer patients (Greaves and Maley 2012b). Our 

study comes to contribute in that vein showing that: (i) the diversity in the connectivity 
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patterns and metastatic incidence of organs can recapitulate niche-related processes 

occurring at the organ level accounting for the diversity of metastatic strategies; (ii) 

macroscopic patterns contribute to the understanding of potential mechanisms for 

oncogenesis in source organs and/or incidence of secondary-growth in acceptor 

organs; (iii) quantitative patterns of invasiveness and invasibility open a preventive 

framework for metastases detection given a detected primary tumor which 

undoubtedly requires further research. Nevertheless, despite the clear statistical 

pattern, the clinical implications must be taken carefully, since the predictive power of 

models has not reached a mature yet, and causal mechanisms operating locally, not 

covered here, still waiting to be discovered.  
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Figures 

 

Figure IV.1 Ecological relationships from pollination to metastatic networks. A 

schematic example of how topological abstract the idiosyncratic differences of 

different phenomena, a pollination network that relates the interactions between 

pollinators and plants and a metastatic network that represent the metastatic seeding 

fro source to acceptor organs. Both networks can be represented through a matrix, 

where each matrix value (w) quantify the strength of the pairwise interaction.  
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Figure IV.2 Emergent macroscopic properties of the metastatic network; observed 

nested pattern. For a pair of source and acceptor organs, the cell is shaded if an 

occurrence in tailed from the data collected from the literature.  
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Figure IV.3 Emergent macroscopic properties of the metastatic network; free of scale 

and modular network. (A) Degree distribution for both groups of organs with three 

different fits (summary table SIV.1). (B) Modules detection based on the metastatic 

incidence pattern.   
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Figure IV.4 Mesoscopic relationship between topology and metastatic occurrence. 

Testing the association between (A) degree and (B) occurrences for each organ. In (C) 

a positive relationship between generalism (difference in degree) and invasiveness 

(difference in occurrences) allows dissecting the continuum of strategies in organs 

prone to invade (negative differences) and organs prone to be invaded (positive 

differences). 
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Figure IV.5 Correlation matrix between the organ’s physiological estimates and 

network-derived properties. Each cell shows the correlation coefficient, and coloured 

cells are the statistically significant correlation (green: positive correlation, purple: 

negative correlation) corrected by Bonferroni for multiple comparisons. For the origin 

of the physiological metrics, please, refer to the methods section.  
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Figure IV.6 Metastatic incidence as a function of the estimated likelihood to leave a 

source organ and invade an acceptor organ (PS×PA).  Figures (A) and (B) represent 

source and acceptor’s degree, respectively. A log-log relationship is plotted in the 

inset. 
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Supplementary materials 

 

Figure SIV.1 A simulation of the metastatic process (n=300) under four different 

degree scenarios and considering spatial constraint imposed by the observed supply 

incidence matrix.  The modularity and nestedness of the simulated processes (box plots 

with median and interquartile range, n=300) are contrasted against the observed value 

of the empirical network (solid blue line). Non-spatial constraint implies that 

metastasis depends only on source and acceptor organs degree, while the consideration 

of the spatial constraint adds that if a pair source-acceptor shares the close artery, the 

metastasis will occur with a probability PSxPA, if the two organs do not share a close 

artery, the metastasis does not occur. 
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Table SIV.1. Summary statistics associated with the three alternative models fitted to 

the degree distribution or the probability of observing a source or acceptor organ with 

k connections to other organs. The truncated power-law fits two coefficients: slope 

and cut-off; in this table, only the slope estimation is shown. AIC= Akaike ́s 

information criteria. 

 

Source organs' degree 

Fit Estimate Std. Error p-value R2 AIC 

Exponential 0.126 0.009 0.000 0.984 -31.266 

Power law 0.497 0.087 0.000 0.880 -5.913 

Truncated power law -0.229 0.074 0.011 0.992 -38.681 

      

Acceptor organs' degree 

Fit Estimate Std. Error p-value R2 AIC 

exponential 0.172 0.050 0.018 0.871 0.529 

power law 0.840 0.311 0.043 0.787 3.623 

truncated power law -3.121 0.758 0.015 0.981 -10.278 
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Concluding remarks: Complex Cancer Ecosystems 

“Nothing in biology makes sense except in the light of evolution.”  

T. Dobzhansky 

Any biological system has a history. A cumulative evolutionary history, from one 

generation to another, stored in both the internal and external environment of the 

system. Also, a contemporary history, where the ecological interactions flourish. The 

rise of cancer as a novel cellular phenotype in the multicellular organisation reflects 

the expression of these two temporal dimensions, the evolutionary history since it 

resembles the transitions from single-cell ancestors to multicellular organisms; and the 

contemporary history since its evolution, within the Metazoan’s life span, depends on 

the interaction with its biophysical environment. 

In this thesis, we worked over some principles from ecology applied to cancer at its 

different spatiotemporal scales. Although we distinguished different scales of 

organisation within this complex adaptive ecosystem, the integration between them is 

needed. However, instead of being sequential and nested integration with bottom-up 

or top-down causalities, we think that each scale is connected to every other scale. In 

this section, we will discuss some of these between-scales interactions, our results, and 

the emerging questions that such interactions bring up. 

In the first two chapters, we studied how the cell-environment codetermination shape 

the cancer phenotype’s fitness under the biological phenomenon of ageing. The 

transformation of the biophysical (internal and external) environment of the cell 

known as ageing, sets the conditions that cannot support the multicellular organisation 

(Chapter I, (Davies and Lineweaver 2011; Bussey et al. 2017; Cisneros et al. 2017)). 

Under this lack of spatial and functional structure, the emerging cellular phenotype 

interacts with its neighbourhood. There is a myriad of interactions that the cancer cells 
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establishes with its neighbours; we focus only on competition (Chapter II). However, 

it can be expanded to other control mechanisms, such as immune cells (Chapter III) 

(Maley et al. 2015; Nawaz et al. 2015) or even though, to positive interactions (Rak et 

al. 1996; Xing et al. 2010; Zhang et al. 2011; Man et al. 2013; Wei et al. 2017; Ganesh 

et al. 2020). Now, if we analyse the context where the cancer phenotype emerges, it is 

an aged environment where according to our second hypothesis, the cancer cell will 

face a weaker resident noncancer strategy with a reduced competitive resistance 

(Chapter II). In the axis of ageing, a simple conceptualisation links the two scales; the 

individual scale where the cancer phenotype co-emerge with its external environment 

and the scale of interacting populations, where the cancer strategy competes with 

noncancer cells. At the same time, these hypotheses catalyse some unresolved 

questions, for example, whether we can ameliorate the effects of ageing through 

environmental engineering then reducing the likelihood of oncogenesis and 

maintaining the superior competitiveness of the resident noncancer cells; or, whether 

cancer cells emerge as individuals or there is a collective transition mediated by the 

enacted and competitive environment. The question about collective oncogenetic 

emergence opens opportunities to study whether it can be catalysed by niche 

construction, with some initial cancer cells promoting the cancer diversity (Tissot et 

al. 2016). 

On the axis of ecological interactions between cellular strategies, one could wonder 

how they could help us to explain the macroscopic pattern of metastases (Error! 

Reference source not found.). We could hypothesise that different organs have 

different competitive resistance or facilitation profiles; hence, how organs age or the 

distribution of immune cells might explain the cellular mechanisms behind the 

invasiveness/invasibility continuum. Also, how this continuum of strategies is 
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spatially organised; can network topological measures (such as the studied in Chapter 

III) give us some clues about the potential invasiveness of tumours? Moreover, how 

physical conditions, the quantification of Grinellian niches and biotopes, within the 

organs can influence these patterns of invasion (Heindl et al. 2016). The spatial 

dimension is vital to comprehend ecological patterns of interactions and stability 

(Levin and Paine 1974; Durrett and Levin 1994b; Levin 2005; Pascual and Guichard 

2005); therefore, its consideration is critical to track the development of the disease 

(Maley et al. 2015; Nawaz et al. 2015; Nawaz and Yuan 2016; Heindl et al. 2018). 

Then, why ecology?  

Ecology, coined by Ernst Haeckel in 1866, highlights the study of nature as a whole, 

where the interaction between organisms and their biophysical environment operates 

shaping species distribution and abundance over the planet. In the most fundamental 

level, one could redefine it the light of the codetermination and co-emergence between 

an individual and its environment, shaping life-history strategies’ abundance and 

distribution. Hence, a broader definition points towards the determining and being 

determined by their external environment individuals; hence, operational but not 

functionally enclosed (Darwin 1859; Varela 1979, 1991; Maturana and Varela 1998; 

Metz 2013; Krakauer et al. 2014; Laland et al. 2016). These interactions will, 

eventually, drive the organisation of life across scales as they have driven the major 

transition in life, for example, the emergence of multicellularity (Szathmary and Smith 

1995; Michod 2007; Herron and Michod 2008; Du et al. 2015; Szathmáry 2015).   

The study of cancer as a life transition and an ecological system has two immediate 

implications. The first implication is for oncology and the persistent search of the holy 

grail in genes. It is necessary the acknowledgement that cancer cells at each 
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spatiotemporal scale of its evolution, like the ones analysed in this thesis, establish a 

narrow interaction with its biophysical environment, from the determinants behind 

oncogenesis to the spread of cancer cells between organs. Hence, to understand an 

emergent population pattern such as the proliferation of a cancer cellular strategy, it is 

not possible to reduce the whole phenomenon to the additive study of its genetic 

components. The question about if genetic data is sufficient, or even necessary, to 

understand an ecological phenomenon such as cancer, is still open (Gatenby 2012); 

but certainly a shift must be made towards the study of such a complexity which can 

not be reached by a reductionist approach. The second implication is for ecology, 

which has limited its view to macro ecosystems, whereas the principles developed in 

the field may apply and contribute to the understanding of all the scales of the adaptive 

matter, from cells to the biosphere. The challenge for ecology entails that advances in 

synthesis and integration by identifying common principles from disparate 

phenomena; where the epistemological value of ecology is reflected in its approach to 

understanding complex adaptive systems as a whole, wherein interactions reproduce 

an emergent phenomenon.  

By bringing together experts from different disciplines and fields, we can find 

solutions for today’s complex problems such as cancer, beyond the conventional 

academic frontiers and paradigms (Anderson and Quaranta 2008; Korolev et al. 2014; 

Austin 2017; Maley et al. 2017). The field of ecology and evolution of cancer is just 

emerging with promising ideas, big challenges, and excellent opportunities for 

integration between disciplines (Merlo et al. 2006; Pienta et al. 2008; Kareva 2011; 

Korolev et al. 2014; Amend and Pienta 2015; Ducasse et al. 2015; Turajlic and 

Swanton 2016). If we want to understand and predict the behaviour of complex 

adaptive systems, such as cancer, then it is necessary to jump from the view of studying 
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the system as individual parts to its view as a whole systems with emergent properties 

and patterns. In this endeavour, ecology and evolution offer epistemological and 

practical tools to reach new frontiers. 
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