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ABSTRACT

This thesis presents a mixed-integer optimization model for the distribution network

planning problem. The model considers important aspects including investments in feed-

ers, substations, and distributed generation (DG), as well as power imports, over a given

planning horizon. The main feature of this model is that it accurately represents the physics

of power flows through the use of a tight polyhedral relaxation, based on a known outer

approximation of the second-order cone. An extensive set of computational experiments

show the value of the proposed approach for understanding the effects of DG integra-

tion, the effectiveness of the relaxation employed, and the computational efficiency of the

overall planning model.

Keywords: Distributed generation, distribution network planning, mixed-integer opti-

mization, optimal power flow.
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RESUMEN

Este trabajo de tesis presenta un modelo de optimización entera-mixta para abor-

dar el problema de planificación de la distribución. El modelo desarrollado considera

múltiples aspectos, incluyendo inversiones en alimentadores, subestaciones, y generación

distribuida (GD), ası́ como las importaciones de energı́a desde el sistema eléctrico tron-

cal sobre un horizonte de planificación determinado. La principal caracterı́stica de este

modelo es que representa de forma precisa la fenomenologı́a de los flujos de potencia a

través de una relajación poliedral de las ecuaciones del flujo de potencia, basada en una

conocida aproximación exterior del cono de segundo orden. Una serie de experimentos

computacionales muestra el valor del enfoque propuesto para entender los efectos de la in-

tegración de GD, la efectividad del modelo de flujos de potencia empleado, y la eficiencia

computacional del modelo de planificación en general.

Palabras Clave: Flujo óptimo de potencia, generación distribuida, optimización entera-

mixta, planificación de la distribución.
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1. INTRODUCTION

1.1. Context

In recent years, the surge in the integration of distributed energy resources (DERs) has

exposed a series of benefits, issues, and challenges that push the need for new and effective

distribution network planning (DNP) tools. The DNP problem consists of determining

how to expand a distribution network (DN) throughout a given planning horizon. A very

important challenge associated with this problem consists of properly modelling DER

alternatives and other technical aspects, while at the same time, representing the power

flow equations in a precise but tractable form. The aim of this thesis is to address this

challenge.

1.2. Distributed Energy Resources

The integration of DERs, implies several benefits. As presented in Figure 1.1, DERs

are easily installed almost anywhere in a DN, due to their modularity and size. Due to this,

DERs foster the development of new electricity market structures (e.g. local energy mar-

kets) and the response to changing market conditions, Pepermans et al. (2005). They can

also help reduce load requirements and power losses, improve voltage profiles and relia-

bility, and support load management, El-Khattam & Salama (2004). Furthermore, DERs

can significantly help limiting green house gas emissions as they can displace fossil-fuel

based generation. Various smart grid concepts can exploit DERs to even displace the need

for large power plants, helping to reduce some investments, Pudjianto et al. (2007). How-

ever, the surge of DERs integration entails several technical challenges such as reverse

power flows and loss of protection effectiveness, voltage regulation, a lack of output pre-

dictability from DG, and reactive power issues, that may reduce the security and the power

quality, Paliwal et al. (2014). Therefore, further considerations into the DNP problem be-

come critical to exploit the opportunities of DERs while overcoming these challenges.



2

For a comprehensive review on aspects related to major benefits, issues and challenges of

DERs integration refer to Keane et al. (2013).

Distribution 
Cluster 

Cogeneration
 

Distribution 
Cluster 

Storage +  
E�cient Transport Mode 

Generation Transmission 
Network 

Distribution 
Network 

Figure 1.1. Power Systems Structure

1.3. The Distribution Network Planning Problem

The DNP involves a large number of alternatives to consider, such as the allocation,

sizing and timing within a planning horizon of new investments and subsequent expan-

sions in capacity of feeders, substations, DG units, capacitor banks, voltage regulators and

price-dependent DERs such as battery energy storage systems and demand response pro-

grams, while considering a certain physical representation of power flows and topological

constraints, among other possible features.

Some major difficulties in modelling the DNP are not only the scale of the problem,

given the number of elements at DNs that ultimately entails the need for both binary and

continuous decision variables, but also the representation of the power flow equations in

an effective and tractable form. On the one hand, it would be ideal to employ AC-OPF
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equations, however, their non-convexity makes this a major difficulty. On the other hand, a

simple approximation of AC-OPF, such as the classic DC-OPF representation, is not well

suited to DNs due to their incapability to capture relevant physical aspects such as high

power losses, and voltage and thermal limits.

Due to these difficulties, the DNP has been tackled in various ways. Some approaches

have directly considered AC-OPF constraints at the expense of using meta-heuristic op-

timization algorithms, as in Ziari et al. (2013), Zeng et al. (2014) and Koutsoukis et al.

(2018), which are capable of treating non-convexities, but they are unable to ensure close-

ness to global optimality. Meanwhile, some other works have managed to formulate linear

and mixed-integer models, which can ensure the quality of the solutions obtained in terms

of closeness of global optimality at expense of a representation of the physical system.

However, many of the existing approaches obviate the complexity in the power flow equa-

tions, using various simplifications such as using only Kirchhoff’s current and voltage

laws and ignoring other aspects, as is the case of Gönen & Foote (1981), Haffner et al.

(2008b), Haffner et al. (2008a), Muñoz-Delgado et al. (2015), Shen et al. (2017), Asen-

sio et al. (2016b), and Asensio et al. (2016a). Instead, some other approaches make use

of linearizations that require estimated operational points, Tabares et al. (2016), or use

strong assumptions regarding voltage magnitudes and bus angle differences that may no

longer apply in some distribution systems (e.g. rural systems), Alotaibi & Salama (2018).

For a comprehensive review on different techniques involved in solving the DNP, refer to

Prakash & Khatod (2016) and Theo et al. (2017).

1.4. Representation of the Power Flows

Fortunately, in order to address the difficulties associated with the non-convexities in

AC-OPF, several effective approximations and convex relaxations have been developed.

The work in Coffrin & Van Hentenryck (2014) presents a linear approximation of the
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AC-OPF that improves over some of the limitations of DC-OPF. Also, the existent relax-

ations of AC-OPF include convex quadratic relaxations, Coffrin et al. (2016), semidefi-

nite programming (SDP) relaxations, Bai et al. (2008), Lavaei & Low (2012), Kocuk et

al. (2016a), and second-order cone programming (SOCP) relaxations, R. A. Jabr (2006),

R. A. Jabr (2008), Kocuk et al. (2016b), Kocuk et al. (2017). A particular advantage of

SOCP relaxations is their practical computational tractability. See Low (2014a) and Low

(2014b) for a thorough survey in this matter.

Another interesting development in previous years is the development of linear re-

laxations of SOCP problems. The seminal work of Ben-Tal and Nemirovski Ben-Tal &

Nemirovski (2001) developed a highly efficient and accurate linear relaxation for such

problems. This idea has been employed in various applications, such as solving general

mixed-integer SOCP problems, Vielma et al. (2008), and approximating quadratic gener-

ation costs in OPF problems, R. Jabr (2012).

1.5. Main Contributions

In this thesis, we present an effective mixed-integer optimization model for the DNP

problem where we leverage the recent progress in convex relaxations of AC-OPF. The

proposed model considers several technical aspects including investments in feeders, sub-

stations, and DG. The proposed model also considers multiple investment periods, while

operational dynamics are represented through load blocks. Further, the proposed model

considers special constraints that ensures that the DN maintains a radial topology. The

power flow model employed is based on the SOCP relaxation of AC-OPF and the linear re-

laxation of SOCP problems developed by Ben-Tal and Nemirovski Ben-Tal & Nemirovski

(2001), resulting in a very tight linear relaxation of the power flow equations. With this,

the model accurately represents power flow phenomena, considering physical power flow

elements such as voltages and reactive power flows.

The main contributions of this work are summarized as follows:
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(i) Application of an SOCP relaxation of the AC-OPF problem and a subsequent

linear relaxation to effectively capture the physics of power flows in the context

of DNP problems.

(ii) Development of a mixed-integer optimization model for the DNP problem that

includes investments and upgrades in feeders, substations and DG integration,

while appropriately modelling power flow equations. The model also imple-

ments a series of physical validity constraints that speed-up the solution process.

(iii) Assessment of the performance of the proposed DNP model to understand the

effects of DG integration, the effectiveness of the power flow model employed,

and the computational efficiency of the overall planning model.

1.6. Document Organization

The rest of the document is organized as follows. Section 2 presents the nomenclature

needed to fully understand the proposed mixed-integer optimization model for the DNP

problem. Section 3 presents the OPF model employed. Section 4 presents the DNP prob-

lem formulation. Section 5 presents various computational experiments. Finally, Section

6 provides concluding remarks.



6

2. NOMENCLATURE

2.1. Sets and Indexes

u ∈ U: Index and set of planning stages.

t ∈ T : Index and set of temporal blocks.

i ∈ B: Index and set of buses.

G ⊂ B: Set of generation buses.

S ⊂ G: Set of substation buses.

DG ⊂ G: Set of DG cluster buses.

ij ∈ L: Index and set of lines.

δ(i) ⊂ B: Set of neighbour buses of bus i.

Υ(u) ⊂ B: Set of transfer node buses at stage u.

2.2. Parameters

c̄nfij : Fixed cost of installing a new feeder (US$/km).

c̄rfij : Fixed cost of reinforcing an existing feeder (US$/km).

c̃nfij : Variable capacity cost in a new feeder (US$/MVA·km).

c̃rfij : Variable capacity cost in a reinforced feeder (US$/MVA·km).

c̄nsi : Fixed cost of installing a new substation (US$).

c̄rsi : Fixed cost of reinforcing an existing substation (US$).

c̃nsi : Variable capacity cost in a new substation (US$/MVA).

c̃rsi : Variable capacity cost in a reinforced substation (US$/MVA).

c̃dgi : DG investment cost (US$/MVA).

osi,t: Supply cost at substations (US$/MWh).

υshi,t : Unserved energy cost (US$/MWh).

ht: Number of hours of load block t in any given year.

rd: Annual discount rate.
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rc: Capital recovery factor.

yu: Number of chronological years in any investment period.

τ e: Life time of project e.

φi,t: DG capacity factor.

V i: Minimum voltage magnitude.

V i: Maximum voltage magnitude.

ψdi : Load power factor at each node.

n(B): Number of buses.

n(Bs): Number of substation buses.

α: Maximum proportion of the minimum load level at each bus for DG inte-

gration.

β: Maximum proportion of the minimum load level of the entire DN for DG

integration.

ρnf,min
ij : Minimum capacity associated to a new candidate feeder (MVA).

ρnf,max
ij : Maximum capacity associated to a new candidate feeder (MVA).

ρrf,min
ij : Minimum capacity associated to a reinforced existing feeder (MVA).

ρrf,max
ij : Maximum capacity associated to a reinforced existing feeder (MVA).

σns,min
i : Minimum capacity associated to a new candidate substation (MVA).

σns,max
i : Maximum capacity associated to a new candidate substation (MVA).

σrs,min
i : Minimum capacity associated to a reinforced existing substation (MVA).

σrs,max
i : Maximum capacity associated to a reinforced existing substation (MVA).

ϕdg,max
i : Maximum DG integration capacity (MVA).

2.3. Decision Variables

xnfij,u: Binary decision for installing a new feeder.

xrfij,u: Binary decision for reinforcing an existing feeder.

ρnfij,u: Capacity installed in a new feeder (MVA).
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ρrfij,u: Capacity reinforcement of an existing feeder (MVA).

znsi,u: Binary decision for installing a new substation.

zrsi,u: Binary decision for reinforcing an existing substation.

σnsi,u: Capacity installed in a new substation (MVA).

σrsi,u: Capacity reinforcement of an existing substation (MVA).

ϕdgi,u: Capacity installed in a DG cluster (MVA).

psi,u,t: Active (MVA) power supplied by a substation.

qsi,u,t: Reactive (MVAr) power supplied by a substation.

pdgi,u,t: Active (MVA) power generated by a DG cluster.

qdgi,u,t: Reactive (MVAr) power generated by a DG cluster.

pshi,u,t: Active (MVA) load shedding at each node.

qshi,u,t: Reactive (MVAr) load shedding at each node.

cii,u,t: Voltage magnitude.

cij,u,t: Cosine voltage relation between connected buses i and j.

sij,u,t: Sine voltage relation between connected buses i and j.

ξij,u,t: Auxiliary variable associated to the linear relaxation of the relation be-

tween connected buses.

Yi,u: Binary decision for making use of a transfer node.

Ki,u: Fictitious nodal demand.

κij,u: Fictitious flow.
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3. OPTIMAL POWER FLOW MODELS

This Section presents the OPF models that will be employed in the DNP model pro-

posed in this thesis. Consider a power network N = (B,L), where generation assets are

connected to a subset of buses, denoted as G ⊂ B. Let Y denote the admittance matrix

of components Yij = Gij + iBij for each line ij ∈ L. Additionally, it is assumed that

Gii = gii −
∑

j 6=iGij and Bii = bii −
∑

j 6=iBij , where gii and bii correspond to the shunt

conductance and susceptance at bus i, respectively. This assumption neglects shunt capac-

itance of lines, and therefore these are represented only by their series impedance, which

is usually the case of short distribution network power lines. Also, let pgi , q
g
i (p`i and q`i ) be

the real and reactive power injection of all generation assets (load) at bus i, and function

Ci(p
g
i ) be their corresponding operational costs. Finally, consider cij = |Vi||Vj| cos θij and

sij = −|Vi||Vj| sin θij , for neighbour connected buses i and j. Here |Vi| is the voltage

magnitude of the complex voltage phasor Vi at bus i, and θij the corresponding angular

difference.

We will first present an exact equivalent formulation of the AC-OPF problem in Sec-

tion 3.1. Then, in Section 3.2, we will show the SOCP-OPF relaxation of the AC-OPF.

Finally, we will present a tight polyhedral relaxation of the SOCP-OPF, namely, the LP-

OPF, in Section 3.3.

3.1. The Cosine-Sine Formulation of AC-OPF

Model 1 presents a full AC-OPF model (see Kocuk et al. (2016b) for details on the

validity of this formulation).
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Model 1: AC-OPF

min
∑
i∈G

Ci(p
g
i ) (3.1)

s.t. pgi − p`i = giicii +
∑
j∈δ(i)

pij ∀i ∈ B (3.2)

qgi − q`i = −biicii +
∑
j∈δ(i)

qij ∀i ∈ B (3.3)

pij = −Gijcii +Gijcij −Bijsij ∀ij ∈ L (3.4)

qij = Bijcii −Gijcij −Gijsij ∀ij ∈ L (3.5)

V 2
i ≤ cii ≤ V

2

i ∀i ∈ B (3.6)

cij = cji ∀ij ∈ L (3.7)

sij = −sji ∀ij ∈ L (3.8)

c2
ij + s2

ij = ciicjj ∀ij ∈ L (3.9)

θji = atan2(sij, cij) ∀ij ∈ L (3.10)

p2
ij + q2

ij ≤ (Smax
ij )2 ∀ij ∈ L (3.11)

pmin
i ≤ pgi ≤ pmax

i ∀i ∈ G (3.12)

qmin
i ≤ qgi ≤ qmax

i ∀i ∈ G (3.13)

The objective function in (3.1) represents total operational cost. Constraints (3.2)

and (3.3) define power balance, while equations (3.4) and (3.5) represent the power flow

(pij, qij) through each line. Boundaries in (3.6) limit the minimum V i and maximum V i

voltage magnitude at each bus, while equations (3.7)–(3.10) guarantee the consistency

of the presented formulation. Expression (3.11) represents transmission line flow limits
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Smax
ij . Finally, equations (3.12) and (3.13) determine the minimum (pmin

i , qmin
i ) and maxi-

mum (pmax
i , qmax

i ) active and reactive power injection of all generation means at each bus,

respectively.

3.2. The SOCP-OPF

In Model 1, both equations (3.9) and (3.10) are sources of non-convexity. On the one

hand, in the case of radial networks, which is typically the case in distribution systems,

equation (3.10) is guaranteed to be satisfied. Thus, by dropping this constraint we still

get an exact equivalent of problem (3.1)–(3.13) under radial networks (and a relaxation

for meshed networks). On the other hand, the non-convex coupling constraint (3.9) can

be relaxed into an SOCP constraint. Thus, with these two changes, we obtain an SOCP

relaxation of AC-OPF, presented in Model 2, from Kocuk et al. (2016b).

Model 2: SOCP-OPF

min
∑
i∈G

Ci(p
g
i ) (3.14)

s.t. c2
ij + s2

ij ≤ ciicjj ∀ij ∈ L (3.15)

(3.2)–(3.8), (3.11)–(3.13). (3.16)

3.3. The LP-OPF

The SOCP-OPF is convex, which guarantees that a global optimum to such model can

be obtained efficiently. Nevertheless, that model is still non-linear. Therefore, if we use

SOCP-OPF in the DNP problem, we would obtain a very difficult mixed-integer SOCP

problem due to the need of binary variables.
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In SOCP-OPF, equations (3.11) and (3.15) can be shown to be special cases of con-

straints based on Lorentz cones Lk, where

Lk =
{

(y1, . . . , yk+1)
∣∣∣√y2

1 + . . .+ y2
k ≤ yk+1

}
(3.17)

The transmission line flow limit constraints in (3.11) can be presented as the following

Lorentz cone L2 set for all lines:(
pij, qij, S

max
ij

)
∈ L2 ∀ij ∈ L (3.18)

Additionally, it can be seen that equation (3.15) can be expressed as the following

SOCP constraint:

c2
ij + s2

ij +
(cii − cjj

2

)2 ≤
(cii + cjj

2

)2 ∀ij ∈ L (3.19)

Also, note that cii and cjj are positive. Thus, equation (3.19) is equivalent to a Lorentz

cone in L3 and, based on the approach in Ben-Tal & Nemirovski (2001), (3.19) can be

further represented through the following two L2 based constraints:(
cij, sij, ζij

)
∈ L2 ∀ij ∈ L (3.20)(

ζij,
cii − cjj

2
,
cii + cjj

2

)
∈ L2 ∀ij ∈ L (3.21)

Here, ζij is a new auxiliary variable for each line (i, j).

By writing (3.19) using two L2 cones is that it is possible to exploit a very effective

linear relaxation of the L2 cone developed in Ben-Tal & Nemirovski (2001). Denote such

linear relaxation of (x, y, z) ∈ L2 as Pν
(
x, y, z,µ

)
≥ 0. Where ν is a parameter that de-

termines the tightness of the relaxation, and µ is a vector of additional auxiliary variables.

The detailed formulation of this relaxation is presented in Appendix A.
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With the above analysis, we obtain the LP-OPF as a linear relaxation of the SOCP-OPF

(3.14)–(3.16) as follows:

Model 3: LP-OPF

min
∑
i∈G

Ci(p
g
i ) (3.22)

s.t. Pνα
(
cij, sij, ζij,µ

α
ij

)
≥ 0 (3.23)

Pνβ
(
ζij,

cii − cjj
2

,
cii + cjj

2
,µβij

)
≥ 0 (3.24)

Pνγ
(
pij, qij, S

max
ij ,µγij

)
≥ 0 (3.25)

(3.2)–(3.8), (3.12)–(3.13). (3.26)

Thus, LP-OPF (3.22)–(3.26) is also a relaxation of AC-OPF in Model 1. Depending

on the tightness of the SOCP-OPF in Model 2 and the tightness of the linear relaxation of

the L2 cone, LP-OPF can also be a very tight relaxation. In what follows, this relaxation

will be used as foundation of the proposed DNP problem.
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4. THE DISTRIBUTION NETWORK PLANNING PROBLEM

This Section presents the DNP problem developed in this thesis. The proposed DNP

involves a large number of alternatives to consider, binary and continuous decision vari-

ables determine the allocation, sizing and timing of new investments and subsequent ex-

pansions in capacity of feeders, substations, DG clusters, while considering a certain phys-

ical representation of power flows and topological constraints, among other possible fea-

tures. Consider a planning horizon divided into multiple investment periods u ∈ U , each

of which considers different load blocks t ∈ T .

4.1. Objective Function

The objective function of the proposed model aims to minimize the total investment

and operational costs of the DN over the planning horizon.

min
∑
u∈U

rdu
(
Cfu + Csu + Cdgu +Ou

)
(4.1)

Where the investment costs in feeders Cfu , substations Csu, DG clusters Cdgu , and the

operational costs Osu for every stage u in the planning horizon, are defined as follows:

Cfu =
∑

(i,j)∈L

rc,f
(
c̄nfij x

nf
ij,u + c̃nfij ρ

nf
ij,u + c̄rfij x

rf
ij,u + c̃rfij ρ

rf
ij,u

)
(4.2)

Csu =
∑
i∈S

rc,s
(
c̄nsi z

ns
i,u + c̃nsi σ

ns
i,u + c̄rsi z

rs
i,u + c̃rsi σ

rs
i,u

)
(4.3)

Cdgu =
∑
i∈DG

rc,dg c̃dgi ϕ
dg
i,u (4.4)

Ou =
∑
t∈T

ht
(∑
i∈S

osi,tp
s
i,u,t +

∑
i∈B

υshi,tp
sh
i,u,t

)
(4.5)

Here, ht corresponds to the number of hours of load block t in any given year.
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Investment decisions are taken in stages u, each of which represents a set of chronolog-

ical years. The discount factors rdu consider the annual discount rate rd and yu chronolog-

ical years in a representative investment period as in (4.6). Additionally, investment costs

for all projects consider a capital recovery factor rc,e as in (4.7), for every transmission,

generation and DG cluster e. The total investment cost is annualized for a given weighted

average capital cost using a capital recovery factor rc and the respective life time of the

project τ e.

rdu =
1

(1 + rd)yu(u−1)

yu∑
i=1

1

(1 + rd)(i−1)
(4.6)

rc,e =
rc

1− (1 + rc)−τe
(4.7)

4.2. Optimal Power Flow Constraints

The active and reactive power flow balance at each node considers power injections

and withdrawals from all energy sources and loads as presented in (4.8) and (4.9).

psi,u,t + pdgi,u,t − p`i,u,t + pshi,u,t = giicii,u,t +
∑
j∈δ(i)

pij,u,t ∀i ∈ B, u ∈ U , t ∈ T (4.8)

qsi,u,t + qdgi,u,t − q`i,u,t + qshi,u,t = −biicii,u,t +
∑
j∈δ(i)

qij,u,t ∀i ∈ B, u ∈ U , t ∈ T (4.9)

The active and reactive power flows through each line are defined through Big-M type

constraints (4.10) and (4.11). Additional bounds (4.12) and (4.13) negate power flows

through non-existent lines.

|pij,u,t +Gijcii,u,t −Gijcij,u,t +Bijsij,u,t| ≤ M(1− xnfij,u) ∀ij ∈ L, u ∈ U , t ∈ T (4.10)

|qij,u,t −Bijcii,u,t +Gijcij,u,t +Gijsij,u,t| ≤ M(1− xnfij,u) ∀ij ∈ L, u ∈ U , t ∈ T (4.11)

|pij,u,t| ≤ Mxnfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.12)

|qij,u,t| ≤ Mxnfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.13)
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The following equations bound the voltage magnitude of all buses in (4.14), and relate

the cosine and sine variables for all the pairs of buses connected through each existent

and candidate line as in equations (4.15) and (4.16). In particular, equations (4.17) and

(4.18) determine the polyhedral approximation of the SOCP cone formulation of equations

(3.23) and (3.24), namely as in the LP-OPF. All the Big-M inequalities in these constraints

become active in case a transmission corridor is installed between the corresponding buses.

V 2
i ≤ cii,u,t ≤ V

2

i ∀i ∈ B, u ∈ U , t ∈ T (4.14)

|cij,u,t − cji,u,t| ≤ M(1− xnfij,u) ∀i ∈ B, u ∈ U , t ∈ T (4.15)

|sij,u,t + sji,u,t| ≤ M(1− xnfij,u) ∀i ∈ B, u ∈ U , t ∈ T (4.16)

Pνα
(
cij,u,t, sij,u,t, ξij,u,t,µ

α
ij,u,t

)
≥ 0 ∀i ∈ B, u ∈ U , t ∈ T (4.17)

Pνβ
(
ξij,u,t,

cii,u,t − cjj,u,t
2

,
cii,u,t + cjj,u,t

2
+ M(1− xnfij,u),µ

β
ij,u,t

)
≥ 0

∀i ∈ B, u ∈ U , t ∈ T

(4.18)

Similarly to equation (3.25), transmission line flow limit constraints for each corridor

are defined as a system of linear inequalities as in (4.19), where the transmission limit

ρnfij,u +ρrfij,u corresponds to the sum of the initially invested and the latter reinforced capac-

ities.

Pνγ
(
pij,u,t, qij,u,t, ρ

nf
ij,u + ρrfij,u,µ

γ
ij,u,t

)
≥ 0 ∀ij ∈ L, u ∈ U , t ∈ T (4.19)

Substations active and reactive power supply limitations consider both the initially

invested and the latter reinforced capacities as in equations (4.20) and (4.21). The active

and reactive power generation from DG clusters are limited by the total installed capacity

and the generation capacity factor at each bus and load level φi,t as in (4.22) and (4.23).

psi,u,t ≤ σnfij,u + σrfij,u ∀i ∈ S, u ∈ U , t ∈ T (4.20)

|qsi,u,t| ≤ σnfij,u + σrfij,u ∀i ∈ S, u ∈ U , t ∈ T (4.21)
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pdgi,u,t ≤ φi,tϕ
dg
i,u ∀i ∈ DG, u ∈ U , t ∈ T (4.22)

|qdgi,u,t| ≤ φi,tϕ
dg
i,u ∀i ∈ DG, u ∈ U , t ∈ T (4.23)

Finally, equations (4.24) and (4.25) represent active pshi,u,t and reactive qshi,u,t load shed-

ding at each node, limited to the actual power demand, and follow the load power factor

at each node ψdi , as in (4.26).

pshi,u,t ≤ pdi,u,t ∀i ∈ B, u ∈ U , t ∈ T (4.24)

qshi,u,t ≤ qdi,u,t ∀i ∈ B, u ∈ U , t ∈ T (4.25)

qshi,u,t = sin(cos−1(ψdi ))
pshi,u,t
ψdi

∀i ∈ B, u ∈ U , t ∈ T (4.26)

4.3. Investment Constraints

In order to model line investments, the proposed model considers binary and continu-

ous variables. Binary variables represent whether the line is built or not, and continuous

variables represent their capacity within specific bounds. The physical assets remain op-

erational once installed, according to equations (4.27) and (4.28). The initially installed

capacity is bounded by certain minimum and maximum magnitudes, in case the build

decision is taken, as in equations (4.29) and (4.30).

xnfij,u−1 ≤ xnfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.27)

ρnfij,u−1 ≤ ρnfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.28)

ρnf,min
ij xnfij,u ≤ ρnfij,u ≤ ρnf,max

ij xnfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.29)

ρnfij,u − ρ
nf
ij,u−1 ≤ ρnf,max

ij (xnfij,u − x
nf
ij,u−1) ∀ij ∈ L, u ∈ U , t ∈ T (4.30)

The same decision-making scheme rules the reinforcement of existent feeders as in

equations (4.31)–(4.34). Finally, reinforcement decisions can only be taken one period
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after the initial binary investment, as in (4.35).

xrfij,u−1 ≤ xrfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.31)

ρrfij,u−1 ≤ ρrfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.32)

ρrf,min
ij xrfij,u ≤ ρrfij,u ≤ ρrf,max

ij xrfij,u ∀ij ∈ L, u ∈ U , t ∈ T (4.33)

ρrfij,u − ρ
rf
ij,u−1 ≤ ρrf,max

ij (xrfij,u − x
rf
ij,u−1) ∀ij ∈ L, u ∈ U , t ∈ T (4.34)

xrfij,u ≤ xnfij,u−1 ∀ij ∈ L, u ∈ U , t ∈ T (4.35)

The same scheme applies to investments in new substations as in equations (4.36)–

(4.39) and their reinforcement in constraints (4.40)–(4.43), given the temporal relation

between these decisions as in (4.44).

znsi,u−1 ≤ znsi,u ∀i ∈ S, u ∈ U , t ∈ T (4.36)

σnsi,u−1 ≤ σnsi,u ∀i ∈ S, u ∈ U , t ∈ T (4.37)

σns,min
i znsi,u ≤ σnsi,u ≤ σns,max

i znsi,u ∀i ∈ S, u ∈ U , t ∈ T (4.38)

σnsi,u − σnsi,u−1 ≤ σns,max
i (znsi,u − znsi,u−1) ∀i ∈ S, u ∈ U , t ∈ T (4.39)

zrsi,u−1 ≤ zrsi,u ∀i ∈ S, u ∈ U , t ∈ T (4.40)

σrsi,u−1 ≤ σrsi,u ∀i ∈ S, u ∈ U , t ∈ T (4.41)

σrs,min
i zrsi,u ≤ σrsi,u ≤ σrs,max

i zrsi,u ∀i ∈ S, u ∈ U , t ∈ T (4.42)

σrsi,u − σrsi,u−1 ≤ σrs,max
i (zrsi,u − zrsi,u−1) ∀i ∈ S, u ∈ U , t ∈ T (4.43)

zrsi,u ≤ znsi,u−1 ∀i ∈ S, u ∈ U , t ∈ T (4.44)

In equation (4.45), investments in DG clusters are progressive, and these are bounded

by a certain proportion β of the minimum load level at each bus, as in equation (4.46).
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Total DG integration in the DN is also bounded by a proportion α of the minimum load

level of the entire DN in (4.47).

ϕdgi,u−1 ≤ ϕdgi,u ∀i ∈ DG, u ∈ U , t ∈ T (4.45)

ϕdgi,u ≤ βpdi,u,t ∀i ∈ DG, u ∈ U , t ∈ T (4.46)∑
i∈DG

ϕdgi,u ≤ α
∑
i∈B

pdi,u,t ∀u ∈ U , t ∈ T (4.47)

4.4. Topology Constraints

Constraints (4.48)–(4.50) ensure the topology of the network remains radial, which

is the case for several real-world DNs, and an assumption that strengthens the proposed

linear relaxation of the power flows, as discussed in Section 3. Here, n(B) and n(Bs) refer

to the number of buses and substation buses, respectively. Also, constraints (4.51)–(4.54)

prevent the planning of DG electrical islands, disconnected of all substations. These equa-

tions are based on Lavorato et al. (2012), and have been adapted to consider continuous

capacity investments in DG clusters.∑
i∈B

∑
j∈δ(i)

xnfij,u = n(B)− n(Bs)−
∑
i∈Υ(u)

(1− Yi,u) ∀u ∈ U (4.48)

∑
j∈δ(i)

xnfij,u ≥ 2Yi,u ∀i ∈ Υ(u), u ∈ U (4.49)

xnfij,u ≤ Yi,u ∀ij ∈ L, u ∈ U (4.50)

Ki,u = ϕdgi,u ∀i ∈ DG, u ∈ U (4.51)

Ki,u = 0 ∀i /∈ (DG ∪ S), u ∈ U (4.52)

Ki,u =
∑
j∈δ(i)

κij,u ∀i ∈ B, u ∈ U (4.53)

|κij,u| ≤ Mxnfij,u ∀ij ∈ L, u ∈ U (4.54)
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4.5. Nature of Variables

The nature of all variables, which completes the model, are presented up next.

xnfij,u, x
rf
ij,u ∈ {0, 1} ∀ij ∈ L, u ∈ U (4.55)

znsi,u, z
rs
i,u, Yi,u ∈ {0, 1} ∀i ∈ B, u ∈ U (4.56)

ρnfij,u, ρ
rf
ij,u ≥ 0 ∀ij ∈ L, u ∈ U (4.57)

σnsi,u, σ
rs
i,u, ϕ

dg
i,u ≥ 0 ∀i ∈ B, u ∈ U (4.58)

psi,u,t, p
dg
i,u,t, p

sh
i,u,t, q

sh
i,u,t ≥ 0 ∀i ∈ B, u ∈ U , t ∈ T (4.59)

4.6. Physical Validity Constraints

With all of the previous equations, we can formulate the DNP problem proposed in this

thesis, through equations (4.1)–(4.59). In what follows, we strengthen this formulation

by adding two types of physical validity constraints, with the purpose of improving the

solving time of the problem.

First, the maximum active an reactive power losses are bounded by a proportion of the

respective maximum transmission capacities ηij , as in equations (4.60) and (4.61).

|pij,u,t + pji,u,t| ≤ ηij(ρ
nf
ij,u + ρrfij,u) ∀ij ∈ L, u ∈ U , t ∈ T (4.60)

|qij,u,t + qji,u,t| ≤ ηij(ρ
nf
ij,u + ρrfij,u) ∀ij ∈ L, u ∈ U , t ∈ T (4.61)

Second, we also know that power losses in the network are non-negative. Due to this,

the following expression must be satisfied:∑
i∈B

(
psi,u,t + pdgi,u,t − pdi,u,t + pshi,u,t

)
≥ 0 ∀u ∈ U , t ∈ T (4.62)
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∑
i∈B

(
qsi,u,t + qdgi,u,t − qdi,u,t + qshi,u,t

)
≥ 0 ∀u ∈ U , t ∈ T (4.63)

Even though the above equations (4.60)–(4.63) result redundant to the rest of the pro-

posed DNP problem (4.1)–(4.58), and thus do not affect the solution space of the problem,

they have the potential of significantly improving the efficiency of a mixed-integer opti-

mization solver.
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5. COMPUTATIONAL EXPERIMENTS

5.1. General Background

The proposed approach has been tested in a 13.8 kV, 24-node power distribution test

system, which initial topology is shown in Figure 5.1, where existent assets are marked in

solid lines, while candidate alternatives are presented in dashed lines. The detailed peak

load and branch data can be found in Appendix B. The power factor was set to 0.93. The

planning horizon is divided into three stages, each of which represents a five-year period,

and considers a 5% discount rate and a capital recovery factor of 10% for all projects, for

all of which a 25-year lifetime has been assumed. Upper and lower bounds for voltages at

all nodes are set to 1.07 p.u. and 0.93 p.u.
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Figure 5.1. Initial topology of the 24-node power distribution test system.
Adapted from Tabares et al. (2016)

The resistance and reactance of all branches are 0.40 Ω/km and 0.39 Ω/km, respec-

tively. The capacity of existing branches is 5 MVA, while substations at bus 21 and 22
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have initial capacities of 12 MVA and 15 MVA, respectively. Investment alternatives for

existing and candidate feeders and substations are presented in Table 5.1, where all costs

were adapted from Muñoz-Delgado et al. (2015). All buses are candidates for wind DG

placement, for all of which a maximum hosting capacity β = 250% of their minimum load

level has been set. Investment costs for wind DG is considered to be $1,700,000/MVA.

Table 5.1. Investment Data for Feeders and Substations

Element Feeder Substation

Type New Reinf. New Reinf.

Min. Cap. 4 MVA 2 MVA 5 MVA 5 MVA

Max. Cap. 6 MVA 5 MVA 12 MVA 8 MVA

Fix. Cost $2,000/km $1,500/km $150,000 $100,000

Var. Cost $3,500/MVA·km $3,000/MVA·km $70,000/MVA $70,000/MVA

All stages consider a representative year for their five-year period. Representative

years are all equal for each stage and consider three load levels. These load blocks con-

sider loading factors of 84%, 96% and 100% of the corresponding peak demand, and their

durations are equal to 2,190 h/year, 5,475 h/year and 1,095 h/year, respectively. The ca-

pacity factor of wind DG at each load level is 36%, 32%, and 34%, respectively. The cost

of purchasing power from the bulk power system at any substation, for each load block,

is $58/MWh, $79/MWh, and $88/MWh, respectively. The cost for unserved energy υsi is

$2,000/MWh.

All experiments have been implemented in Python, and the Pyomo package, Hart et al.

(2011)-Hart et al. (2017), was employed for optimization modeling. Gurobi, Gurobi Opti-

mization (2016), was employed for solving mixed-integer optimization problems with an

optimality gap of 1.0%, and IPOPT, Wächter & Biegler (2006), was employed for solving
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non-convex AC-OPF problems. All experiments have been implemented in a Dell Pow-

erEdge R360 server with an Intel Xeon CPU E5-2630 v4 processor running at 2.20GHz,

and 64 GB of RAM.

We first study the potential of the model to assess the impact of the integration of DG

into the expansion planning of the DN. We then evaluate the effectiveness and computa-

tional efficiency of the proposed model.

5.2. Impact of Distributed Energy Resources Integration

In this Section, we study the impact of DER integration using the proposed DNP

model. Thus, three cases were studied: No Integration, Low Integration and High In-

tegration of DERs. For each of these cases, the maximum systemic DG penetration level

α was set to 0%, 100% and 200% of the minimum demand level. Parameters involved in

the relaxations are selected as να = νβ = νγ = 11.

Figures 5.2, 5.3 and 5.4 show the DNP results across the planning horizon for cases

with No Integration, Low Integration and High Integration of DERs, respectively. In these

Figures, it can be observed how decisions change from one case to another based on the
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Figure 5.2. DNP Results for the No Integration Case
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capacity of the DN to locally satisfy its energy demand, helping to avoid investments on

feeders and substations.
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Figure 5.3. DNP Results for the Low Integration Case
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Figure 5.4. DNP Results for the High Integration Case



26

Figure 5.5 shows the net present cost structure breakdown for all cases. Here, FIC,

SIC and DGIC refer to the total net present cost of all feeders, substations and DG clus-

ters investments, respectively. OC corresponds to the net present cost of all operational

costs through the planning horizon, and the sum of all of these concepts denotes the to-

tal net present cost (TNPC) of the DNP problem. In this Figure, we can observe how

the TNPC under each case decreases as the maximum level of DG penetration increases,

by drastically dropping the operational costs of the network by replacing the imports of

energy from the bulk power system with DG injections, which also displaces and turns

unnecessary further investments in distribution assets, consistent with what was observed

in Figures 5.2, 5.3 and 5.4. Figure 5.5 data can be found in Table B.3.
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Figure 5.5. Net Present Cost Structure (MM US$)

As it can be noted, the progressive increase in the maximum level of DERs installation

within the DN results in a larger renewable generation integration. For the No, Low and

High Integration cases, the total renewable integration is 0%, 29.45% and 59.33%, respec-

tively. Further, the reduction in power inflows from the bulk power system through the
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DN also decreases power losses. As presented in Figure 5.6, for the case of active power

losses across the planning horizon, these losses increased for the No Integration case from

3.8% in the first stage, up to 4.2% in the third stage. For the Low Integration case, they

increased from 1.2% in the first stage, up to 1.5% in the final stage, while in the case of

High Integration, losses rise from 0.5% at the beginning of the planning horizon, up to

0.7% at the end of it. The reduction in losses is a consequence of the reduction in power

flows through the DN given the increase of on-site generation, which ultimately displaces

the need of further distribution investments.

No Integration Low Integration High Integration
DG Integration Level

0.0
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1.0
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Power Losses
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Figure 5.6. Solution Time for the Three Cases Studied Under Different
Precision Parameters (Hours)

Note from the above analysis that the structure of the DNP model employed allows

studying detailed power flow aspects such as power losses, as compared to simpler mod-

els that ignore some of such aspects. First, the LP-OPF within the DNP model explicitly

considers voltages, reactive flows and losses. Such aspects would have not been repre-

sented by simpler models such as DC-OPF, which neglects voltage magnitudes, reactive
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flows and losses, or other approximations solely based on Kirchhoff’s Laws, for example,

which completely obviates the relation between active and reactive power flows. Second,

note that the fact that the DNP model proposed has a mixed-integer optimization structure

implies that we do not need to rely in heuristics to solve the problem. Therefore, the pro-

posed model combines an effective representation of the power flow equations, while also

guaranteeing the quality of the DNP solution.

5.3. Accuracy and Efficiency of the Proposed Model

In what follows, Section 5.3.1 studies the quality and computational efficiency of the

LP-OPF as a power flow model within DNP. Section 5.3.2 studies the improvements in

computational tractability from considering the physical validity constraints in (4.60)–

(4.63).

5.3.1. Precision and Efficiency of the LP-OPF in the DNP Problem

Recall from Sections 3 and 4 that the DNP model (4.1)–(4.63) is based in the LP-OPF

in Model 3, which is a relaxation of SOCP-OPF in Model 2, which is itself a relaxation of

AC-OPF in Model 1. Also, recall that parameter ν controls the tightness or precision of

the polyhedral relaxation (4.17)–(4.19) of L2, which is employed to construct the LP-OPF.

This means that, the larger να, νβ and νγ are in the LP-OPF in Model 3, then, the closer

the relaxation is to SOCP-OPF, and thus also to AC-OPF.

In order to study the effects of parameter ν, five experiments were conducted for each

of the DG integration cases presented in Section 5.2. These experiments consider solving

the DNP problem under ν = να = νβ = νγ set to 7, 9, 10, 11, and 12.

Figure 5.7 compares the power losses as represented by LP-OPF, as compared to the

true power losses obtained from solving AC-OPF, under the respective DNP investment

solutions obtained. It can be observed how the errors achieved by LP-OPF in representing
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power losses increase sharply when reducing the precision parameter ν. Also, it is remark-

able that these errors are less than 1% when ν is 11 or higher, under all the DG integration

cases. Figure data can be found in Table B.4.
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Figure 5.8 shows the net present costs as represented by the DNP model (i.e. the objec-

tive value of problem (4.1)–(4.63)), and its associated costs overrun under AC-OPF, for all

cases. Such cost under AC-OPF is calculated by fixing the investment solutions from the

DNP model and solving the rest of the problem using AC-OPF equations. First, it can be

observed that the costs based on LP-OPF increase as ν increases, which is to be expected

since a smaller ν implies a more loose relaxation of the AC-OPF equations. Second, the

costs overrun based on AC-OPF decrease as ν increases, and this is due to the fact that

better investments solutions are obtained when the LP-OPF is a tighter approximation of

the AC-OPF equations. Further, it is remarkable that the difference between the LP-OPF
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and the AC-OPF planning costs are less than 0.01% when ν equals 11 and 12, which is

consistent with the results in Figure 5.7. Figure data can be found in Table B.5.
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Figure 5.8. Total Net Present Cost (MM US$) as Represented by the DNP
Model and its Comparison to the Associated Cost Under AC-OPF

Regarding the computational efficiency of the model, Figure 5.9 presents the solution

time required to solve the DNP problem (4.1)–(4.63). We can observe that as the precision

parameter ν increases, the solution times show a tendency to increase. This shows that

there is an important tradeoff between computational efficiency and the quality of the

solutions obtained. In this case study, a reasonable balance is achieved when ν = 11.

Figure data can be found in Table B.6.

All in all, these results show the trade-off between the effectiveness of the power flow

relaxation and the computational tractability of the model. As it could be seen, decreasing

the parameters involved in the LP-OPF results generally in lesser computational times yet

in higher losses errors and total planning costs, as precision decreases. Nevertheless, a
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Precision Parameters (Hours)

good balance is found between the computational efficiency of the model and an accu-

rate representation of the PF equations when all parameters of construction of the linear

relaxation are set equal to 11, which for all studied cases results in reasonable solving

times without highly compromising the accuracy with respect to the AC-OPF, which is

ultimately the reason why these values were considered for the cases presented in Section

5.2.

5.3.2. Impact of the Physical Validity Constraints

Finally, we study the computational efficiency of the DNP problem under the physical

validity constraints (4.60)–(4.63). Figure 5.10 shows the solution time of the DNP prob-

lem under the presence and absence of these constraints. Here, “Min. Syst. Losses” refers

to constraints (4.62) and (4.63), and “Max. Trans. Losses” refers to constraints (4.60) and

(4.61). From this Figure we can first observe that if we ignore the two types of physical



32

validity constraints, the solution time becomes longer than 10 hours under all DG integra-

tion cases. As compared to this, adding any or both of the two types of physical validity

constraints can significantly help in reducing the solve time. This shows the value of the

physical validity constraints proposed to improve the tractability and practical application

of the DNP model developed in this thesis. Finally, it is also important to note that the

computational times achieved are reasonable for planning purposes. Figure data can be

found in Table B.7.
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Figure 5.10. Computational Efficiency Of Physical Validity Constraints
(Hours). “10+” Refers to a Solve Time Longer Than 10 Hours

Based on the experiments conducted in this Section, it can be noted that under the

proposed approach, for all studied cases, the total cost of the operation and expansion

planning of the DN differs in less than 0.01% from the actual costs when operation is

subject to an AC-OPF model, which results specially relevant to a distribution system

operator that has to face a surge in DERs integration. Further, the model reliably combines
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an effective representation of the PF equations, while guaranteeing the optimality of its

solution within a 1% optimality gap.

In summary, this Section has shown the value of the proposed approach in analyzing

DERs integration, the effectiveness of LP-OPF as a power flow model in the DNP problem,

and the practical computational tractability of the model.
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6. CONCLUDING REMARKS AND FUTURE WORK

This thesis developes a mixed-integer optimization model for the DNP problem that

accurately represents the physics of power flows through a tight polyhedral relaxation of

the power flow equations. Exploiting this relaxation the proposed DNP model is capable of

assessing the optimal allocation, sizing and timing of new investments and reinforcements

in capacity of not only feeders and substations, but also DG clusters within the DN. Thus,

harnessing the benefits of DERs while facing the challenges of its, in otherwise, unplanned

integration, which is envisioned as a key role of modern distribution system operators.

Extensive experiments assess the effectiveness and the computational tractability of

this approach. Based on these results, the proposed model shows an effective represen-

tation of the AC power flow equations, while also guaranteeing the quality of the DNP

solution. Additionally, although there is an important tradeoff between computational

efficiency and the quality of the solutions obtained, it is important to note that physical

validity constraints can significantly improve the solving times, and thus, a practical com-

putational tractability of the model for planning purposes.

Many directions of future work are open. First, it would be desirable to incorporate

some relevant features that have not been considered in the proposed approach to the

DNP problem. On the one hand, and regarding the accuracy of the proposed model to

represent elements of the power flow equations, the modelling of capacitor banks and

voltage regulators would exploit the effectiveness of the model to leverage their impact

in the planning and operational decisions. On the other hand, the optimal integration of

other DERs such as other renewable or conventional DG units, electric vehicles, battery

energy storage systems, and demand response programs, is also expected to help displace

the need for further distribution investments.

Second, it is relevant to perform additional analysis to understand the value of the

additional physical validity constraints and their impact in the solving time of the problem.

In this line, it would be of interest to tighten these constraints by reducing the maximum
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proportion of losses ηij , given the maximum transmission capacity between nodes i and

j, in equations (4.60) and (4.61), and by introducing a minimum percentage of systemic

power losses, given the maximum systemic DG penetration level α, in equations (4.62) and

(4.63), which would need a deeper understanding of the power flows phenomena within

the studied DN, in order to prevent modifications in the optimal solution of the problem.

All in all, it is expected that tighter physical validity constraints would further reduce the

solving time of the problems as presented in Figure 5.10.
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A. POLYHEDRAL APPROXIMATION OF THE LORENTZ CONE

Following Ben-Tal & Nemirovski (2001), it can be shown that the Lorentz cone

L2 =
{(
α, β, γ

)∣∣√y2
1 + y2

2 ≤ y3

}
(a)

Can be approximated as follows:

$0 ≥ |y1| (b1)

%0 ≥ |y2| (b2)

$k = cos
( π

2k+1

)
$k−1 + sin

( π

2k+1

)
%k−1 k = 1...ν (b3)

%k ≥ | − sin
( π

2k+1

)
$k−1 + cos

( π

2k+1

)
%k−1| k = 1...ν (b4)

$ν ≤ y3 (b5)

%ν ≤ tan
( π

2ν+1

)
$ν (b6)

Here, (b) is a system of linear homogeneous inequalities that form a space denoted

by Pν(y1, y2, y3,µ) ≥ 0. Where µ is the collection of the 2(ν + 1) variables $k and

%k, for k = 0, . . . , ν, and the positive integer ν is a parameter of construction of the

approximation. Refer to Ben-Tal & Nemirovski (2001) for a better understanding on this

approximation.
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B. COMPUTATIONAL EXPERIMENTS

B.1. General Background

Table B.1. Lines Data. Adapted from Tabares et al. (2016)

Line
From

i bus

To

j bus

Length

(km)
Line

From

i bus

To

j bus

Length

(km)

1 1 9 2.100 16 6 22 4.550

2 1 14 2.100 17 7 8 3.500

3 1 21 3.850 18 7 11 1.925

4 2 3 3.500 19 7 19 2.800

5 2 12 1.925 20 8 22 3.500

6 2 21 2.975 21 10 16 1.400

7 3 10 1.925 22 10 23 2.275

8 3 16 2.100 23 11 23 2.800

9 4 7 4.550 24 13 20 2.100

10 4 9 2.100 25 14 18 1.750

11 4 15 2.800 26 15 17 2.100

12 4 16 2.275 27 15 19 2.800

13 5 6 4.200 28 17 22 2.625

14 6 13 2.100 29 18 24 2.625

15 6 17 3.850 30 20 24 1.575
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Table B.2. Peak Load Data (MVA). Adapted from Tabares et al. (2016)

Bus
Stage

Bus
Stage

1 2 3 1 2 3

1 4.05 3.45 5.42 11 0.00 1.91 2.80

2 0.78 0.77 1.21 12 0.00 0.93 1.29

3 2.58 3.38 3.98 13 0.00 1.15 1.87

4 0.32 0.41 2.43 14 0.00 3.05 3.16

5 0.28 0.37 0.47 15 0.00 1.62 1.62

6 1.17 0.92 1.81 16 0.00 0.00 1.22

7 4.04 3.70 4.36 17 0.00 2.16 2.40

8 0.72 0.60 0.94 18 0.00 0.00 2.10

9 1.14 1.12 1.77 19 0.00 0.00 1.81

10 1.56 2.04 2.40 20 0.00 0.00 3.79

B.2. Impact of Distributed Energy Resources Integration

Table B.3. Net Present Cost Structure (MM US$)

Item No Integration Low Integration High Integration

FIC 0.43 0.32 0.26

SIC 1.37 1.08 0.15

DGIC 0 44.56 89.13

OC 181.74 125.67 73.04

TNPC 183.55 171.66 162.60
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B.3. Accuracy and Efficiency of the Proposed Model

B.3.1. Precision and Efficiency of the LP-OPF in the DNP Problem

Table B.4. Error in Power Losses for the Three Cases Studied Under Dif-
ferent Precision Parameters (%)

Precision

Parameter
No Integration Low Integration High Integration

12 -0.01 -0.05 -0.10

11 -0.06 -0.21 -0.44

10 -0.26 -0.86 -1.67

9 -1.19 -3.87 -6.31

7 -18.66 -59.63 -92.76

Table B.5. Total Net Present Cost (MM US$) as Represented by the DNP
Model and its Comparison to the Associated Cost Under AC-OPF

Case No Integration Low Integration High Integration

Prec.

Param.
DNP AC-OPF

Diff.

(%)
DNP AC-OPF

Diff.

(%)
DNP AC-OPF

Diff.

(%)

12 183.56 183.56 0.00 171.66 171.67 0.00 162.60 162.60 0.00

11 183.55 183.56 0.00 171.66 171.67 0.00 162.60 162.60 0.00

10 183.54 183.57 0.01 171.65 171.68 0.01 162.58 162.61 0.01

9 183.47 183.61 0.07 171.58 171.72 0.08 162.53 162.64 0.06

7 182.16 184.08 1.05 170.11 172.56 1.43 161.45 162.70 0.77



46

Table B.6. Solution Time for the Three Cases Studied Under Different Pre-
cision Parameters (Hours)

Precision

Parameter
No Integration Low Integration High Integration

12 5.35 20.38 0.15

11 3.23 6.98 0.15

10 4.58 3.75 0.03

9 2.48 7.86 0.08

7 0.53 0.43 0.01

B.3.2. Impact of the Physical Validity Constraints

Table B.7. Computational Efficiency Of Physical Validity Constraints
(Hours). “10+” Refers to a Solve Time Longer Than 10 Hours

Min. Syst.

Losses

Max. Trans.

Losses
No Integration Low Integration High Integration

3 3 3.23 6.98 0.15

3 7 1.48 10+ 0.10

7 3 5.26 7.68 2.51

7 7 10+ 10+ 10+
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