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Abstract. We study the rectification process of interacting quantum particles
in a periodic potential exposed to the action of an external ac driving. The
breaking of spatio-temporal symmetries leads to directed motion even in the
absence of interactions. A hallmark of quantum ratcheting is the appearance
of resonant enhancement of the current (Denisovet al 2007Europhys. Lett.79
10007; Denisovet al 2007Phys. Rev.A 75 063424). Here, we study the fate
of these resonances within a Gross–Pitaevskii equation which describes a mean
field interaction between many particles. We find that the resonance (i) is not
destroyed by interactions, (ii) shifts its location with increasing interaction
strength. We trace the Floquet states of the linear equations into the nonlinear
domain, and show that the resonance gives rise to an instability and thus to the
appearance of new nonlinear Floquet states, whose transport properties differ
strongly as compared to the case of noninteracting particles.
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1. Introduction

The breaking of space-time symmetries, and its role in the generation of directed transport in
single particle Hamiltonian ratchets, has been extensively studied in the classical [1]–[3] and
quantum regimes [4]–[8]. Experiments with thermal cold atoms loaded on optical lattices [9]
demonstrated the fruitfulness and correctness of the theoretical predictions. Importantly, the
latest studies show a resonant enhancement of the current in the quantum regime, due to
resonances between Floquet states [5, 6]. Real experiments involve many atoms, and interaction
between them may be tuned, but will always be left at least at some residual nonzero level.
Therefore, the impact of interactions on quantum ratchets has to be addressed. As recently
shown by Polettiet al [10] for a kicked system, interaction may lift accidental symmetries of
the single particle dynamics and change the current values.

In this paper, we study, using the mean-field approach, the generation of directed transport
of interacting quantum particles in a periodic potential under the action of a two harmonic
driving. With this approach we mimic the motion of cold atoms in an optical lattice in the
presence of an external force [9], but at much lower temperatures, when a Bose–Einstein
condensate may form [11]. To this end, we investigate the continuation of Floquet states of the
corresponding linear system into the nonlinear domain. We show that a resonant enhancement
of the current in the nonlinear regime takes place, which results from the resonant interaction
betweennonlinear Floquet states. We derive an analytical expression for the evolution of
quasienergies in the nonlinear regime. Finally we show the relation between the transport
properties of nonlinear Floquet states and the asymptotic current of an initial state with zero
momentum.

2. Model

Experimental realizations of ratchets with cold atoms may tune the temperatures from
milliKelvin down to microKelvin, such that a Bose–Einstein condensate may form due to
interactions between particles [11]. The corresponding general equation to be studied is then
given by the one-dimensional Gross–Pitaevskii equation (see e.g. [12])

ih̄
∂9(τ)

∂τ
=

[
−

h̄2

2M

∂2

∂X2
+ V0 cos(2kL X)− Xe(τ )

]
9 +

4π h̄2as

M
|9|

29, (1)

whereas is the s-wave scattering length,M is the atomic mass,kL = π/d is the optical lattice
wave number with optical stepd, V0 is the periodic potential depth, ande(τ ) is a periodic driving
force. The wavefunction is normalized to the total number of atoms in the condensate and we
definen0 as the average uniform atomic density [12, 13].

Introducing the dimensionless variablesx = 2kL X, t = τ/ts, ψ =9/
√

n0, and defining
1/µ= M/4h̄k2

Lts; we transform the system (1) to the dimensionless equation [10]

iµ
∂ψ(t)

∂t
= H0ψ + g|ψ |

2ψ, (2)

where the dimensionless one-particle Hamiltonian is

H0 =
1
2 p̂2 + v0 cos(x)− x E(t), (3)

with p̂ = −iµ ∂
∂x and rescaled parametersv0 = µ2MV0/4h̄2k2

L = 1, E(t)= µ2Me(t)/8h̄2k3
L

andg = µ2C with C = πn0as/k2
L [12]. The dimensionless ac fieldE(t + T)= E(t).
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As in the linear limit [5, 6], we considerE(t)= E1 cos[ω(t − t0)] + E2 cos[2ω(t − t0)+ θ ]
with t0 as initial time.

By using the gauge transformation,|ψ〉 → exp[ i
µ

x A(t)]|ψ〉, whereA(t)= −E1 sin[ω(t −

t0)]/ω− E2 sin[2ω(t − t0)+ θ ]/2ω is the vector potential [5, 6]; we transform the original one-
particle Hamiltonian to

H0 =
1
2[ p̂− A(t)]2 + cos(x). (4)

2.1. Linear regime

Consider the Schrödinger equation, the linear limit of equations (2)–(4). Here, we use a tilde to
denote wavefunctions, quasienergies and other relevant parameters for the linear regime.

It was shown in [5, 6] that, for the appearance of a dc-current in the quantum regime, two
symmetries need to be broken. These symmetries are defined in the classical limit as follows [1].
If E(t) is shift symmetricE(t)= −E(t + T/2), then the Hamiltonian (3) is invariant under the
transformation

Sa : (x, p, t)→ (−x,−p, t + T/2). (5)

Likewise if E(t) possesses the symmetryE(t)= E(−t), then (3) is invariant under the
transformation

Sb : (x, p, t)→ (x,−p,−t). (6)

The Hamiltonian equation (3) is a periodic function of time. Then the solutions,|ψ̃(t + t0)〉 =

U (t, t0)|ψ̃(t0)〉, can be characterized by the dynamics of the eigenfunctions ofU (T, t0) which
satisfy the Floquet theorem:

|ψ̃α(t)〉 = e−i(ε̃α/T)t
|φ̃α(t)〉, |φ̃α(t + T)〉 = |φ̃α(t)〉. (7)

The quasienergies̃εα(−π < ε̃α < π) and the Floquet eigenstates can be obtained as solutions of
the eigenvalue problem of the Floquet operator

Ũ (T, t0)|ψ̃α(t0)〉 = e−iε̃α |ψ̃α(t0)〉. (8)

Due to the discrete translational invariance of equation (4) and Bloch’s theorem all Floquet
states are characterized by a quasimomentumκ with |ψ̃α(x + 2π)〉 = eih̄κ

|ψ̃α(x)〉.
We chooseκ = 0 which corresponds to initial states where atoms equally populate all (or

many) wells of the spatial potential. This allows us to use periodic boundary conditions for
equation (2), with spatial periodL = 2π , so that the wave function can be expanded in the
plane wave eigenbasis of the momentum operatorp̂, |n〉 =

1
√

2π
einx, viz

|ψ̃(t)〉 =

N∑
n=−N

cn(t)|n〉. (9)

Thus, the Floquet operator is obtained by solving equations (2)–(4) in the linear limit.
In the computations we neglect the contribution originating fromA(t)2, since it only yields
a global phase factor. Details of the numerical method are given in [6]. A study of a related
problem with nonzeroκ has been published in [4], which shows that the essential features
of avoided crossings survive. Once the Floquet evolution operator is computed, one finds that
the symmetries of the classical equations of motion are reflected by corresponding symmetries
of the Floquet operator. If the Hamiltonian is invariant under the shift symmetrySa (5), then
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the Floquet operator possesses the propertyU (T, t0)= UzT(T/2, t0)U (T/2, t0) [5, 6]. Here
Uz performs a transposition along the codiagonal ofU . With our driving functionE(t), Sa is
always violated. If the Hamiltonian is invariant under the time reversal symmetrySb (6), then
the Floquet operator has the propertyU (T, t0)= U (T, t0)z [5, 6, 14].

To estimate the net transport, it is necessary to compute the asymptotic current. It is
obtained using the expressionJ(t0)=

∑
α〈p〉α|Cα(t0)|2 [6], where〈p〉α are the Floquet states

momenta andCα(t0) are the expansion coefficients of the initial wave function in the basis of
Floquet states. Breaking the symmetriesSa (5) andSb (6), we desymmetrize the Floquet states,
i.e. the Floquet states momenta acquire a finite value〈p〉α 6= 0, which results in the appearance
of a directed transport.

In general, the current is a function of the initial timet0 and the relative phaseθ , namely
J(t0, θ). After averaging over the initial time it exhibits the property [5, 6]:

J(θ)= −J(θ +π)= −J(−θ). (10)

We focus the analysis on previous computations obtained forµ= 0.2 in [5, 6].
Figure1(a) shows a section of the quasienergy spectrum of the Floquet states versusθ for

the interval [−π,0], where a resonance of states, i.e. an avoided crossing, takes place. The
quasienergies of the system equations (2)–(4) in the linear limit possess the property [5, 6]

ε̃α(θ)= ε̃α(−θ). (11)

Figure1(b) shows the current dependence onθ . The computation is performed taking the initial
state|0〉 = 1/

√
2π , which overlaps with states in the chaotic layer. With this initial condition

we mimic a dilute gas of atoms which are spread all over the lattice with zero momentum.
The current has two peaks which are linked to avoided crossings displayed in figure1(a). In
these particular avoided crossings, states from the chaotic layer and transporting states mix,
which leads to a leakage from the chaotic layer to the transporting state, thereby enhancing the
current.

On the other hand, it was shown in [5, 6] that by tuning the amplitude of the second
harmonic of the driving force the peaks becomes broader which makes it easier resolving it
in experiments (see dashed line in figure1(b)).

2.2. Nonlinear regime

In the nonlinear case the analysis of the generation of directed transport in the presence of a
driving force is much more complicated, due to possible nonintegrability, classical chaos, and
mixing [15]. However, one can take the Floquet states of the linear problem, and continue them
as periodic orbits into the nonlinear regime. Then these nonlinear Floquet states can be analyzed.

While in the linear regime the evolution of the Floquet state is determined by equation (8)
with a unitary operatorU , in the nonlinear regime the unitarity is lost, and is replaced locally by
simplectic maps [16]. Nevertheless, a similar transformation over one period of the ac driving
can be defined, viz

Uψα(0)= exp(−iεα)ψα(0), (12)

whereU is a nonlinear map of the phase space on to itself, defined by integrating a given
trajectory over one period of the ac driving [17]. The solutionsψα constitute generalizations of
the linear Floquet states (7).
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Figure 1. Left panel: (a) two bands of quasienergies in the linear regime
whose interaction leads to avoided crossings. Symbols placed in different bands
correspond to states with Husimi functions depicted in the right panel. Here
E2 = 1.2. (b) Average currentJ versusθ for different amplitude values of the
second harmonicE2: 1 (dashed line) and 1.2 (solid line). Right panel: Husimi
functions of two different Floquet states labeled by a circle and square fort0 = 0.
We use the Husimi function defined in [6]. Bands and current are plotted for
the interval(−π,0). Here the quasienergies are symmetric with respect to a
reflection inθ as deduced from equation (11), while from equation (10) it follows
that the current is antisymmetric with respect to a reflection at the origin. The
other parameters areE1 = 3.26 andω = 3.

To compute the nonlinear Floquet states, we use a numerical method implemented in
computational studies of periodic orbits [17]. The basics steps are as follows. First, we choose
a linear Floquet state as an initial seed. Then taking a small value of the nonlinearity strength,
we compute the new solution using a Newton–Raphson iterative procedure, by varying initial
seed (see appendix A for a detailed explanation). The procedure involves conservation of the
norm and the variation of the quasienergy of the state, which together enforce the convergence
to the desired solution. In each iteration step, the new trial solution is integrated over one time
period T . Once a solution is found, we increase the nonlinearity strength again by a small
amount and repeat the same procedure. Thus, we trace the solution into the nonlinear domain.

Desymmetrization of the Floquet states, due to breaking of symmetries, leads to the
appearance of directed transport in the linear regime with enhancement of transport due to
resonant Floquet states. It is therefore worthwhile to investigate what happens with nonlinear
Floquet states in the absence of those symmetries, and trace the fate of the abovementioned
resonances in the nonlinear regime.
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2.2.1. Dimer. To gain insight into the effect of breaking symmetries on nonlinear Floquet
states, we utilize a basic model of two coupled BEC states in the presence of an external driving.
The equations for a driven two sites model can be written as

iµ
dψ1

dt
= Cψ2 + gψ1N1 +µψ1 f (t), (13)

iµ
dψ2

dt
= Cψ1 + gψ2N2 −µψ2 f (t), (14)

where f (t)= f1 sin(ωt)+ f2 sin(2ωt + θ), C is the coupling term, andN1,2 = |ψ1,2|
2 are the

populations or number of particles in the sites 1 and 2. The above equations can be also
qualitatively viewed as a restriction of the original case (4) to just two basis states with opposite
momenta. That leads to the corresponding different signs of the last terms in the rhs of the above
equations.

With f (t)= 0 the equations above are used to describe, on the mean field level, the self-
trapping transition of two coupled BEC. It was shown in [18, 19] that such a phenomenon
occurs when the nonlinearity exceeds a critical value, and the new states are characterized by a
population imbalanceN1–N2. The existence of critical or threshold values have been predicted
as well [18]. The critical value is determined by the bifurcation point of the stationary solutions.
The selftrapped states violate the permutational symmetry of (13) and (14), which implies that
the equations are invariant under permutation of the two indices. Iff (t) 6= 0, the permutational
symmetry is broken in general. If howeverf (t) is antisymmetric, then the dimer equations are
invariant under the combined action of permutationand time reversal.

Let us consider the linear caseg = 0 first. For f (t)= 0 the stationary solutions are the
in- and out-of-phase modesψ1(t)= ±ψ2(t)= (1/

√
2)e∓i(C/µ)t , which are in fact strictly time-

periodic states, with period 2πµ/C. Adding the ac drivef (t) they transform into two linear
Floquet states. They will start to become asymmetric, since the presence off (t) violates
permutational invariance,but only if f(t) is also violating time-reversal antisymmetry. Note that
if f (t) is antisymmetric, the original ac fieldE(t) is symmetric. If on the contrary time-reversal
antisymmetry is in place, the linear Floquet states will still be invariant under the combined
action of permutation, time reversal and complex conjugation. Thus they do not acquire any
population imbalance. Also the Floquet states will now acquire a nonzero phase shifte−iνT ,
whereν ≈

C
µ

in the limit f (t)→ 0, when iterated over one period of the drivingT .
In the presence of nonlinearity close to these linear Floquet states there will be again states,

which are ‘periodic’ in the sense that after one period of the ac driving the state returns to itself,
up to a corresponding phase. Note that both the shape of the eigenstate, but also the phase (i.e.
the analogue of the quasienergy in the linear case) will smoothly change upon continuation into
the nonlinear regime. The continuation process of such a nonlinear Floquet state is thus encoded
by the linear Floquet state atg = 0, which is chosen to be continued.

In the case off1, f2 being nonzero,θ becomes a relevant parameter. Forθ 6= 0, π time-
reversal antisymmetry is broken, and the nonlinear Floquet solutions will also loose that
symmetry, together with the permutational symmetry (see above).

Hereafter, we name by symmetric the case whenθ = 0, π and nonsymmetric otherwise.
We will also coin linear and nonlinear Floquet statesperiodic orbits, although they are only
periodic up to the above mentioned phase shift.

Figure2 shows the result of continuation of one periodic orbit for the symmetric and non-
symmetric driven dimer, which corresponds to the symmetric eigenstate of the linear undriven
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Figure 2. Nonlinearity parameterg versus quasienergies for one of the nonlinear
Floquet states. (a)θ = 0. (b) θ = −1.6. Bottom-right inset shows the average
populations over a periodT as a function of the nonlinearity strengthg. Top-left
inset is the enlargement aroundg = 0 of the bottom-right inset. The parameters
areω = 2π , f1 = f2 = 1, C = 1 andµ= 1.

system. The symmetric case shows a pitchfork bifurcation with the appearance of two new states
at the bifurcation point (figure2(a)). These new states exhibit a population imbalance similar to
the undriven system [18], [20]–[22], despite the fact that the equations are symmetric.

This bifurcation is a hallmark of the presence of nonlinearity. Out of a given Floquet state
several new states are emerging, while for the linear case the number of linear Floquet states is
fixed by the size of the chosen basis.

Conversely, if the time-reversal symmetry is broken, a saddle-node bifurcation appears.
First of all the state continued from the linear limit, already acquires some nonzero population
imbalance, since the symmetry is broken. Figure2 shows that the strict continuation of that
state evolves into a state with a strong population imbalance. Two other states—one which is
corresponding to a weak imbalance, and another which has a strong imbalance as well—emerge
through the saddle-node bifurcation.

To conclude this part, we may expect that nonlinearity induces Floquet states with nonzero
population imbalance via bifurcations, or enhances the already present imbalance (originating
from a symmetry breaking) again via bifurcations. We remind the reader here, that the simple
dimer model can be obtained from (4) by choosing two momentum basis states with different
sign, and replacing the original complicated interaction which is mediated via further basis
states, by a direct interaction term. A population imbalance thus means a momentum imbalance
as well, i.e. a nonzero current. It may be thus as well expected, that for the full problem, to be
treated below, nonlinearity may enhance directed currents via bifurcations.

2.2.2. Full lattice. The analysis of nonlinear Floquet states in the dimer suggests the formation
of states with nonzero mean momentum above a certain threshold value. The question then
arises, to what extent those features, exhibited by the Floquet states in the dimer, are manifested
in the full lattice equations (2)–(4).

On the other side, the question about the fate of the resonances found in the linear limit
remains. It is therefore of particular interest to analyse those resonant Floquet states, which
lead to an enhancement of transport in the linear regime. By switching on the nonlinearity in
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Figure 3. (a) Nonlinearity strength versus quasienergy of periodic solutions.
The periodic solutions are a continuation from the Floquet states displayed in
figure1. The symbols link to states displayed in figure1. Insets: Husimi functions
(P vs X) (cf figure 1). The sequence of Husimi functions for the red line is
explained in the text. (b) Enlargement of the region where the quasienergies
of the continued original states intersect in panel (a). The results from the
computation of equation (16) appear superimposed to the circles with solid
lines. Inset: mean average momentum of periodic solutions versus nonlinearity
strength. Blue square: momentum of the state depicted by a blue circles-dashed
line in (a). Red circle: momentum of the state depicted by a red circles-dashed
line in (a). The parameters areE1 = 3.26, E1 = 1.2, θ = −1.6 andω = 3.

equation (2), the system in the linear regime gets perturbed and the resonances are shifted to
different values of the control parameters.

In figure 3, we present the continuations of two Floquet states depicted in figure1, into
the nonlinear domain. We observe a bifurcation of one of the periodic states as we increase
the nonlinearity strength. Here, as in the dimer, a bifurcation of saddle-node type leads to the
formation of three periodic solutions out of one.

Since we want to study the transport of a BEC with zero initial momentum, we focus on
the continuation of the state lying in the chaotic layer. The continuation process is indicated by
a sequence of Husimi functions in figure3(a), and can be summarized as follows: (i) before
the bifurcation, the state is located in the chaotic layer; (ii) after the bifurcation, the periodic
state transforms into a mixed state due to a resonance with a second transporting state; (iii)
further increase of the nonlinearity strength transforms it into a transporting state. By contrast,
the originally transporting state does not experience significant changes as we increase the
nonlinearity strength.

A quantitative measure of this transition process is given by the evolution of the average
momentum of the periodic states as we change the nonlinearity strength (figure3(b)). The
momentum of the state initially located in the chaotic layer goes from small to high values
with a sharp increase atg ≈ 0.003 (i.e. at the bifurcation point), whereas the momentum for the
transporting state remains nearly a constant.

So far, we have analyzed the evolution of two states in the nonlinear domain. A clear
message from the above results is, that nonlinear Floquet states may drastically change their
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average momentum at bifurcations, which are also visible through sharp changes in the
dependence of their quasienergies on the nonlinearity parameter.

In order to estimate the shift of the bifurcation point, and to finally predict the new possible
resonance positions with increasing nonlinearity, we use a perturbation approach to estimate the
dependenceε = P(ε̃, g), related to the Aharanov–Anandan phase [23] (see also [16]). Assume
that nonlinear periodic solutions and Floquet states are related through a dynamical phaseλ(t),
i.e.φ(t)= exp[−iλ(t)]φ̃(t) with λ(T)− λ(0)= 2kπ , k = 0,±1,±2, . . . .

Then fork = 0 we find (see appendix B for details)

ε(θ, g)= ε̃(θ)+
g

µ

∫ T

0
dt〈φ||φ|

2
|φ〉, (15)

where〈· · ·〉 =
∫ 2π

0 . . . dx is the inner product defined in the Hilbert space of Floquet states.
From equation (15) it follows that states with strong nonlinear interaction have large quasienergy
variations. This allows to resonantly couple states located deep in the well, which exhibit strong
localization, with other states. These resonant couplings are beyond the dimer model discussed
above.

Bifurcations of new states correspond to a coalescence of different families of states,
leading toφ j (t)= exp[−iλ j (t)](a j φ̃1(t)+ b j φ̃2(t)), whereφ̃1(t) andφ̃2(t) are the corresponding
original Floquet states. The evolution of the quasienergies for the nonlinear periodic states is
thus given by

ε j (θ, g)= |a j |
2ε̃1(θ)+ |b j |

2ε̃2(θ)+
g

µ

∫ T

0
dt〈φ j ||φ j |

2
|φ j 〉, (16)

wherea j and b j are the corresponding weightings of the linear states in the nonlinear state
expansion (see appendix B for details).

In figure 3(b), we plot the quasienergy values computed with equation (16), using the
nonlinear states continued from the original linear states depicted in figure1. We find an
excellent agreement with the full numerical results.

For weak nonlinearity, the quasienergies of the states depend linearly ong. A simple
perturbation expansion allows us to take the wavefunctions of the original linear states and
its respective quasienergies with equation (15). Then from the quasienergy intersection of the
two states,ε1(θ, g)= ε2(θ, g), we compute the critical value ofg:

g =
µ[ε̃2(θ)− ε̃1(θ)]∫ T

0

∫ 2π
0 |φ̃1|

4 dx dt −
∫ T

0

∫ 2π
0 |φ̃2|

4 dx dt
. (17)

Inserting the wave function of the original linear states depicted in figure1 in equation (17), we
obtaing = 0.003008, which is a good estimate of the nonlinearity strength at the bifurcation
point. Let us now investigate the evolution of the state|0〉 for κ = 0. In the linear regime,
we use the Floquet representation to derive the expression for the asymptotic current. In the
nonlinear regime it is no longer possible. Instead, we compute the running average momentum
P =

1
(t−t0)

∫ t
t0

p̄ dt with p̄ = 〈ψ | p̂|ψ〉, over long times, which becomes the asymptotic current in
the limit t → ∞, i.e. J(t0)= lim t→∞ P. To validate the convergence to the asymptotic current
we use maximum integration times ranging from 100 000 to 300 000 time periods.

First we compute the current forθ ≈ −0.99. In such a case, forg = 0, there is an avoided
crossing (see above discussion), i.e. a resonance. Further increase of the nonlinearity leads to a
decay of the current (figure4). However, takingθ = −1.1,−1.2, we observe a corresponding
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Figure 4. Left panel: current dependence upon the nonlinearity strengthg for θ =

−1.2,−1.1,−0.99 with initial time t0 = 0. Right panel: (a) current dependence
upon θ for g=0.005 witht0 = 0. (b) Current as a function of the initial time
for θ = −1.2 and two different nonlinearity strengths. Circles:g = 0.005 and
squares:g = 0.001. The other parameters areE1 = 3.26, E1 = 1.2 andω = 3.

shift of the resonance peak to larger values of the nonlinearity parameter, thus showing a
robustness of the resonant current enhancement observed in the linear limit.

Figure4 shows the dependence of the current onθ . Resonances similar to the linear case
are observed, which are shifted inθ . Thus the nonlinearity strength can also be used as a control
parameter for tuning resonances.

It was shown for the linear regime [5, 6] that the current depends upon the initial timet0. In
the nonlinear case, the dynamics may exhibit similar behavior to classical chaos [15], making
the analysis more complicated. An essential point here is that, while in the linear regime Floquet
states mix in narrow parameter regions via avoided crossings, in the nonlinear domain mixed
states may survive for a fairly large range of nonlinearity values. This, along with the fact
of having multiple bifurcations with the appearance of new periodic states [24], may lead to
classical-like chaotic behavior predicted in [15].

A benchmark for the persistence of directed transport is that the sum of currents for
different initial times do not cancel. To check this, we compute the momentum evolution for
different initial times with the system in and out of resonance. In figure4, we present the current
dependence upon the initial timet0. The curve depicted by filled circles shows a similar behavior
to the one obtained in the linear regime with the system in resonance (cf figure 4 in [5]). It also
displays a large positive current for all initial times, thus confirming the existence of directed
motion. On the contrary, the curve with squares shows a nearly flat profile with smaller current
values, recalling the off resonance scenario in the linear limit.

3. Conclusions

We have studied the rectification of interacting quantum particles in a periodic potential exposed
to the action of an external ac driving, using a mean-field approach.

We showed that by tuning the nonlinearity in an optical lattice it is possible to enhance
the directed transport of cold atoms. A possible experimental way to achieve it is to vary the
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scattering length by changing the strength of the magnetic field [25]. These resonances are
partly continued from the noninteracting system, but become saddle node bifurcations of more
complicated nonlinear Floquet states in the nonlinear system under consideration.

We developed analytical estimates of the nonlinearity strength in the resonance, and
showed that the evolution of an initial state with zero momentum carries all the signatures of a
ratchet state, i.e. its average momentum is nonzero. Therefore, ratchets and quantum resonances
of (nonlinear) Floquet states are robust with respect to interactions, and should be observable in
real experiments. It is possible that such resonances may even lead to a partial depletion of the
condensate fraction, and evaporation. Another issue is the loss of coherence due to incoherent
transitions to excited states. In this case, a more suitable description is given by using a master-
like equation with dissipation [26].

Finally, bifurcations of the nonlinear Floquet states have been observed, which may affect
the measured currents strongly.

Appendix A. Numerical procedure for the computation of nonlinear Floquet states

Take equation (12)

Uψα(0)= exp(−iεα)ψα(0), (A.1)

whereψα are periodic solutions in the nonlinear domain andU is a symplectic operator.
The periodic statesψα(0) are decomposed into real and imaginary parts asE8α = {Real[ψα(0)],
Im[ψα(0)]}. Likewise, we define the vectorE�= {Real[exp(iεα)Uψα(0)], Im[exp(iεα)Uψα(0)]}.
For convenience we write them as 2N dimensional vectorsEXα(0)= E8α(0) and EXα = E�[8α(0)],
where N is the dimension of the Hilbert space [27]. Hereafter, for simplicity, we drop the
indexα.

The two vectorsEX and EX(0) are identical for the linear case. Assuming weak nonlinearity,
we compute the vectorEX after one integration period, taking as initial seed the linear stateEX(0).
This implies that after a full integration period our final state deviates from the initial state:

EG[ EX(0)] = EX − EX(0). (A.2)

To correct such a deviation we use the Newton–Raphson method. Basically, the method updates
the initial seedEX(0) after every iteration until each component ofEG is reduced to a value less
than 10−9. For every integration over the periodT , we use the split operator method.

To successfully accomplish the reduction of the vector difference (A.2), some constraints
should be fulfilled. First, the Floquet states should preserve the norm. We thus add another
componentG2N+1 = EX EX − EX(0) EX(0), and the iteration process is also zeroing this component.

To fully characterize our nonlinear Floquet states, we define the new variable vectorEY =

( EX, ε), with the quasienergy as the 2N + 1 component. Next, we define the new vector function
EF( EY)= [ EG( EY),G2N+1( EY)]. Having 2N + 1 variables and 2N + 1 functions to be zeroed, we now
may apply standard Newton–Raphson methods.

Appendix B. Quasienergy dependence on the nonlinearity strength

We define an expression similar to equation (7), but for the nonlinear case, viz

|ψ(t)〉 = e−i(ε/T)t
|φ(t)〉, |φ(t + T)〉 = |φ(t)〉. (B.1)

Here, we have dropped the indexα.
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Then, inserting equation (B.1) into equation (2), one finds

iµ
∂

∂t
|φ〉 =H|φ〉, (B.2)

whereH= H0 −
µ
T ε + g|φ|

2. Similarly, using equation (7) we get for the linear case

iµ
∂

∂t
|φ̃〉 = H̃|φ̃〉, (B.3)

whereH̃= H0 −
µ

T
ε̃.

Now defineφ(t)= exp[−iλ(t)]φ̃(t) such thatλ(T)− λ(0)= 2kπ with k = 0,±1,±2 . . ..
This assumes that after projecting the nonlinear state on to the linear space, both vectors, the
projected and the Floquet states in the linear space, have a phase differenceλ(t) [23]. For
simplicity we take in the followingk = 0.

Using thenφ(t) and equation (B.3), we get

−
∂λ(t)

∂t
=

1

µ
〈φ̃(t)|H̃|φ̃(t)〉 − 〈φ(t)|i

∂

∂t
|φ(t)〉. (B.4)

Using equation (B.2) and integrating over a period, we find

0 =
1

µ

∫ T

0
dt[〈φ̃(t)|H0|φ̃(t)〉 − 〈φ(t)|H0|φ(t)〉] − ε̃ + ε−

g

µ

∫ T

0
dt〈φ||φ|

2
|φ〉. (B.5)

The first term of the rhs of equation (B.5) becomes zero. Then we obtain

ε = ε̃ +
g

µ

∫ T

0
dt〈φ||φ|

2
|φ〉. (B.6)

As follows from equation (A.1),ε denotes the phase accumulated after a completion of
one periodT . To understand the physical meaning of equation (B.6), we rewrite it as a function
of the real quasienergỹE (see [28] for definition). It relates to our̃ε as Ẽ = ε̃µ/T , where
−µ ω/2< Ẽ < µ ω/2. Then we obtain

E = Ẽ +
g

T

∫ T

0
dt〈φ||φ|

2
|φ〉 = Ẽ +

1

T

∫ T

0
dt g

∫ 2π

0
dx |φ|

4. (B.7)

This expression tells us that the energy of our nonlinear Floquet state is the sum of the
corresponding linear and nonlinear contributions. The second term is the time average of the
state energy due to the nonlinear interaction.

So far, we have considered the energy evolution of single states without perturbation.
However, single states may ‘coalesce’ leading to bifurcations. We take the simplest case with
two resonant states. We project vectors on a basis that results from the superposition of the
continued original eigenstates, whose continuation lead to resonances in the nonlinear domain.
That is,φ j (t)= exp[−iλ j (t)](a j φ̃1(t)+ b j φ̃2(t)) with j = 1,2; whereφ̃1(t) and φ̃2(t) are the
original Floquet states.

By doing similar operations as above we get

E j = |a j |
2Ẽ1 + |b j |

2Ẽ2 +
g

T

∫ T

0
dt〈φ j ||φ j |

2
|φ j 〉, (B.8)

where|a j |
2
= |〈φ̃1|φ j 〉|

2 and|b j |
2
= 1− |a j |

2
= |〈φ̃2|φ j 〉|

2.
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