New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

Related content

. . . - Quan um raichet control—mRarves ing on
Resonant ratcheting of a Bose-Einstein %: thB
condensate Gong - -

- Quantum resonances and rectification in
ac-driven ratchets
S. Denisov, L. Morales-Molina and S.
Flach

To cite this article: L Morales-Molina and S Flach 2008 New J. Phys. 10 013008

- Resonant tunneling of Bose—Einstein
condensates in optical lattices
Alessandro Zenesini, Carlo Sias, Hans
Lignier et al.

View the article online for updates and enhancements.

Recent citations

- Dynamical stabilization of a superfluid
motion in the presence of an ac force
L. Morales-Molina and E. Arévalo

- Nonlinearity effects on the directed
momentum current

Wen-Lei Zhao et al

- Quantum transport in a driven disordered
potential: onset of directed current and
noise-induced current reversal
Denis V. Makarov and Leonid E. Kon’kov

This content was downloaded from IP address 146.155.157.160 on 06/06/2018 at 16:46


https://doi.org/10.1088/1367-2630/10/1/013008
http://iopscience.iop.org/article/10.1209/0295-5075/83/40005
http://iopscience.iop.org/article/10.1209/0295-5075/83/40005
http://iopscience.iop.org/article/10.1209/0295-5075/79/10007
http://iopscience.iop.org/article/10.1209/0295-5075/79/10007
http://iopscience.iop.org/article/10.1088/1367-2630/10/5/053038
http://iopscience.iop.org/article/10.1088/1367-2630/10/5/053038
http://dx.doi.org/10.1103/PhysRevA.96.033637
http://dx.doi.org/10.1103/PhysRevA.96.033637
http://dx.doi.org/10.1103/PhysRevE.90.022907
http://dx.doi.org/10.1103/PhysRevE.90.022907
http://dx.doi.org/10.1140/epjb/e2014-50568-3
http://dx.doi.org/10.1140/epjb/e2014-50568-3
http://dx.doi.org/10.1140/epjb/e2014-50568-3

New Journal of Physics

The open-access journal for physics

Resonant ratcheting of a Bose—Einstein condensate

L Morales-Molina 1 and S Flach 2

! Department of Physics, National University of Singapore, 117542,
Republic of Singapore

2 Max-Planck-Institut fiir Physik Komplexer Systeme, Nothnitzer Strasse 38,
01187 Dresden, Germany

New Journal of Physics 10 (2008) 013008 (13pp)
Received 4 October 2007

Published 14 January 2008

Online athttp://www.njp.org/
doi:10.1088/1367-2630/10/1/013008

Abstract.  We study the rectification process of interacting quantum particles
in a periodic potential exposed to the action of an external ac driving. The
breaking of spatio-temporal symmetries leads to directed motion even in the
absence of interactions. A hallmark of quantum ratcheting is the appearance
of resonant enhancement of the current (Denisoal 2007 Europhys. Lett79
10007; Denisowt al 2007 Phys. RevA 75 063424). Here, we study the fate

of these resonances within a Gross—Pitaevskii equation which describes a mean
field interaction between many particles. We find that the resonance (i) is not
destroyed by interactions, (ii) shifts its location with increasing interaction
strength. We trace the Floquet states of the linear equations into the nonlinear
domain, and show that the resonance gives rise to an instability and thus to the
appearance of new nonlinear Floquet states, whose transport properties differ
strongly as compared to the case of noninteracting particles.
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1. Introduction

The breaking of space-time symmetries, and its role in the generation of directed transport in
single particle Hamiltonian ratchets, has been extensively studied in the clag$t¢a] apnd
quantum regimesA]—[8]. Experiments with thermal cold atoms loaded on optical latti€s [
demonstrated the fruitfulness and correctness of the theoretical predictions. Importantly, the
latest studies show a resonant enhancement of the current in the quantum regime, due to
resonances between Floquet state§]. Real experiments involve many atoms, and interaction
between them may be tuned, but will always be left at least at some residual nonzero level.
Therefore, the impact of interactions on quantum ratchets has to be addressed. As recently
shown by Polettet al [10] for a kicked system, interaction may lift accidental symmetries of

the single particle dynamics and change the current values.

In this paper, we study, using the mean-field approach, the generation of directed transport
of interacting quantum particles in a periodic potential under the action of a two harmonic
driving. With this approach we mimic the motion of cold atoms in an optical lattice in the
presence of an external forc8][ but at much lower temperatures, when a Bose—Einstein
condensate may formi]]. To this end, we investigate the continuation of Floquet states of the
corresponding linear system into the nonlinear domain. We show that a resonant enhancement
of the current in the nonlinear regime takes place, which results from the resonant interaction
betweennonlinear Floquet statesWe derive an analytical expression for the evolution of
guasienergies in the nonlinear regime. Finally we show the relation between the transport
properties of nonlinear Floquet states and the asymptotic current of an initial state with zero
momentum.

2. Model

Experimental realizations of ratchets with cold atoms may tune the temperatures from
milliKelvin down to microKelvin, such that a Bose-Einstein condensate may form due to
interactions between particle$l]. The corresponding general equation to be studied is then
given by the one-dimensional Gross—Pitaevskii equation (se€l&]y. [
2 2 2

8‘1{;5‘[) = [—;—M& +Vy COiZkLX) — Xe(f)] v+ 47T'\t;| %
whereas is the s-wave scattering lengthl is the atomic masgk, = =/d is the optical lattice
wave number with optical stefy V, is the periodic potential depth, ae¢r) is a periodic driving
force. The wavefunction is normalized to the total number of atoms in the condensate and we
defineng as the average uniform atomic density[13)].

Introducing the dimensionless variables= 2k X, t = t/t, ¥ = ¥/,/Ng, and defining
1/ = M/4hk?ts; we transform the systeni)to the dimensionless equatioh(]

ih NMR2 (1)

Ay (t)
p—— = Hoy +gly Iy, 2
where the dimensionless one-particle Hamiltonian is
Ho = 1p®+vocosgx) — X E(t), (3)

with p = —i,u%( and rescaled parameters = 1>MV,/4h%k? =1, E(t) = u’Me(t)/8nh%k?
andg = u2C with C = wnpas/k? [12]. The dimensionless ac fieH(t + T) = E(t).

New Journal of Physics 10 (2008) 013008 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

As in the linear limit p, 6], we considerE(t) = E; cosfw (t —tp)] + Ex cos[2o (t — tp) +6]
with tg as initial time. .

By using the gauge transformatign;) — exp['ﬁx AMD]|v), whereA(t) = —E; sinfw(t —
to)]/w — Ez Sin[2w (t — to) + 0] /2w is the vector potential, 6]; we transform the original one-
particle Hamiltonian to

Ho = 3[p — A(t)]*+cogx). (4)

2.1. Linear regime

Consider the Schrédinger equation, the linear limit of equatigpg4). Here, we use a tilde to
denote wavefunctions, quasienergies and other relevant parameters for the linear regime.

It was shown in p, 6] that, for the appearance of a dc-current in the quantum regime, two
symmetries need to be broken. These symmetries are defined in the classical limit as figllows [
If E(t) is shift symmetricE(t) = —E(t + T/2), then the Hamiltonian3) is invariant under the
transformation

Si:(xa p’t)_> (_X7_p’t+T/2)' (5)

Likewise if E(t) possesses the symmetgy(t) = E(—t), then @) is invariant under the
transformation

S) : (X’ p’ t) - (X’ _p9 _t) (6)

The Hamiltonian equatiorB] is a periodic function of time. Then the solutiong,(t +1to)) =
U (t, tp)|¥ (tg)), can be characterized by the dynamics of the eigenfunctiob®f ty) which
satisfy the Floquet theorem:

Ve (1) = &7/ T g, (1)), |G (t+T)) = [P (1)) 7)

The quasienergies, (— < €, < ) and the Floquet eigenstates can be obtained as solutions of
the eigenvalue problem of the Floquet operator

U (T, to)|Vu (to)) = €% |1, (t0)). (8)

Due to the discrete translational invariance of equati®nad Bloch’s theorem all Floquet
states are characterized by a quasimomentwnith |y, (X + 27)) = €™ |1/, (X)).

We chooser = 0 which corresponds to initial states where atoms equally populate all (or
many) wells of the spatial potential. This allows us to use periodic boundary conditions for
equation ), with spatial periodL = 27, so that the wave function can be expanded in the
plane wave eigenbasis of the momentum operpion) = J%e‘”", viz

N
P®)= Y b)) 9
n=—N
Thus, the Floquet operator is obtained by solving equati@rg4) in the linear limit.

In the computations we neglect the contribution originating fréih)?, since it only yields

a global phase factor. Details of the numerical method are givef]irA[study of a related
problem with nonzerac has been published ], which shows that the essential features

of avoided crossings survive. Once the Floquet evolution operator is computed, one finds that
the symmetries of the classical equations of motion are reflected by corresponding symmetries
of the Floquet operator. If the Hamiltonian is invariant under the shift symn&t($), then

New Journal of Physics 10 (2008) 013008 (http://www.njp.org/)
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the Floquet operator possesses the propeidy, to) = Uk (T/2,t9)U(T/2,10) [5, 6]. Here
U performs a transposition along the codiagonalofWith our driving functionE(t), S, is
always violated. If the Hamiltonian is invariant under the time reversal symn&t(§), then
the Floquet operator has the propddyT, t5) = U (T, to)*P [5, 6, 14].

To estimate the net transport, it is necessary to compute the asymptotic current. It is
obtained using the expressidrity) = Y, (p).|C. (to)|* [6], where(p), are the Floquet states
momenta andC, (to) are the expansion coefficients of the initial wave function in the basis of
Floguet states. Breaking the symmetr&<5) and §, (6), we desymmetrize the Floquet states,
i.e. the Floguet states momenta acquire a finite vahyg # 0, which results in the appearance
of a directed transport.

In general, the current is a function of the initial tirgeand the relative phase namely
J(to, 0). After averaging over the initial time it exhibits the properdy §]:

JO)=—-J@+7)=—I(—0). (10)

We focus the analysis on previous computations obtained 10.2 in [5, 6].

Figurel(a) shows a section of the quasienergy spectrum of the Floquet statesé&/éosus
the interval [- =, 0], where a resonance of states, i.e. an avoided crossing, takes place. The
guasienergies of the system equatid)s-(4) in the linear limit possess the property p]

€q(0) = €,(—0). (11)

Figurel(b) shows the current dependencedoihe computation is performed taking the initial
state|0) = 1/+/27, which overlaps with states in the chaotic layer. With this initial condition
we mimic a dilute gas of atoms which are spread all over the lattice with zero momentum.
The current has two peaks which are linked to avoided crossings displayed in Z{@yirén
these particular avoided crossings, states from the chaotic layer and transporting states mix,
which leads to a leakage from the chaotic layer to the transporting state, thereby enhancing the
current.

On the other hand, it was shown i, [6] that by tuning the amplitude of the second
harmonic of the driving force the peaks becomes broader which makes it easier resolving it
in experiments (see dashed line in figa(b)).

2.2. Nonlinear regime

In the nonlinear case the analysis of the generation of directed transport in the presence of a
driving force is much more complicated, due to possible nonintegrability, classical chaos, and
mixing [15]. However, one can take the Floquet states of the linear problem, and continue them
as periodic orbits into the nonlinear regime. Then these nonlinear Floquet states can be analyzed.

While in the linear regime the evolution of the Floquet state is determined by equalion (
with a unitary operatod, in the nonlinear regime the unitarity is lost, and is replaced locally by
simplectic maps16]. Nevertheless, a similar transformation over one period of the ac driving
can be defined, viz

U v, (0) = exp(—i€a) ¥ (0), (12)

whereU is a nonlinear map of the phase space on to itself, defined by integrating a given
trajectory over one period of the ac drivin7]. The solutions),, constitute generalizations of
the linear Floquet state3)(

New Journal of Physics 10 (2008) 013008 (http://www.njp.org/)
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Figure 1. Left panel: (a) two bands of quasienergies in the linear regime
whose interaction leads to avoided crossings. Symbols placed in different bands
correspond to states with Husimi functions depicted in the right panel. Here
E, =1.2. (b) Average currend versust for different amplitude values of the
second harmoni&;,: 1 (dashed line) and.2 (solid line). Right panel: Husimi
functions of two different Floquet states labeled by a circle and squatg$00.

We use the Husimi function defined i6][ Bands and current are plotted for
the interval(—m, 0). Here the quasienergies are symmetric with respect to a
reflection ind as deduced from equatiohl), while from equation0) it follows

that the current is antisymmetric with respect to a reflection at the origin. The
other parameters aig, = 3.26 andw = 3.

To compute the nonlinear Floquet states, we use a numerical method implemented in
computational studies of periodic orbits7]. The basics steps are as follows. First, we choose
a linear Floquet state as an initial seed. Then taking a small value of the nonlinearity strength,
we compute the new solution using a Newton—Raphson iterative procedure, by varying initial
seed (see appendix A for a detailed explanation). The procedure involves conservation of the
norm and the variation of the quasienergy of the state, which together enforce the convergence
to the desired solution. In each iteration step, the new trial solution is integrated over one time
period T. Once a solution is found, we increase the nonlinearity strength again by a small
amount and repeat the same procedure. Thus, we trace the solution into the nonlinear domain.

Desymmetrization of the Floquet states, due to breaking of symmetries, leads to the
appearance of directed transport in the linear regime with enhancement of transport due to
resonant Floquet states. It is therefore worthwhile to investigate what happens with nonlinear
Floquet states in the absence of those symmetries, and trace the fate of the abovementioned
resonances in the nonlinear regime.

New Journal of Physics 10 (2008) 013008 (http://www.njp.org/)
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2.2.1. Dimer. To gain insight into the effect of breaking symmetries on nonlinear Floquet
states, we utilize a basic model of two coupled BEC states in the presence of an external driving.
The equations for a driven two sites model can be written as

dy

iME = Cya+g Ny +uys F (1), (13)
. d
'M% =Cy+gvaNo — puy f (1), (14)

where f (t) = f;sin(wt) + f,sin(2wt +6), C is the coupling term, and\; , = |Yr10|? are the
populations or number of particles in the sites 1 and 2. The above equations can be also
gualitatively viewed as a restriction of the original caégt¢ just two basis states with opposite
momenta. That leads to the corresponding different signs of the last terms in the rhs of the above
equations.

With f (t) =0 the equations above are used to describe, on the mean field level, the self-
trapping transition of two coupled BEC. It was shown i8[19] that such a phenomenon
occurs when the nonlinearity exceeds a critical value, and the new states are characterized by a
population imbalanc@&;—N,. The existence of critical or threshold values have been predicted
as well [L8]. The critical value is determined by the bifurcation point of the stationary solutions.
The selftrapped states violate the permutational symmetr{3fand (L4), which implies that
the equations are invariant under permutation of the two indice9t)f# 0, the permutational
symmetry is broken in general. If howevért) is antisymmetric, then the dimer equations are
invariant under the combined action of permutationl time reversal.

Let us consider the linear cage= 0 first. For f (t) = 0 the stationary solutions are the
in- and out-of-phase modess (t) = +y,(t) = (1/+/2)e7 /Wt which are in fact strictly time-
periodic states, with periodru/C. Adding the ac drivef (t) they transform into two linear
Floguet states. They will start to become asymmetric, since the presenté)ofiolates
permutational invarianceut only if f(t) is also violating time-reversal antisymmetNote that
if f(t)is antisymmetric, the original ac fieE(t) is symmetric. If on the contrary time-reversal
antisymmetry is in place, the linear Floquet states will still be invariant under the combined
action of permutation, time reversal and complex conjugation. Thus they do not acquire any
population imbalance. Also the Floquet states will now acquire a nonzero phase $Hift
wherev ~ % in the limit f (t) — 0, when iterated over one period of the drivifig

In the presence of nonlinearity close to these linear Floquet states there will be again states,
which are ‘periodic’ in the sense that after one period of the ac driving the state returns to itself,
up to a corresponding phase. Note that both the shape of the eigenstate, but also the phase (i.e.
the analogue of the quasienergy in the linear case) will smoothly change upon continuation into
the nonlinear regime. The continuation process of such a nonlinear Floquet state is thus encoded
by the linear Floquet state gt= 0, which is chosen to be continued.

In the case off;, f, being nonzerof becomes a relevant parameter. Bo£ 0, = time-
reversal antisymmetry is broken, and the nonlinear Floquet solutions will also loose that
symmetry, together with the permutational symmetry (see above).

Hereafter, we name by symmetric the case when0, x and nonsymmetric otherwise.

We will also coin linear and nonlinear Floquet stagesiodic orbits although they are only
periodic up to the above mentioned phase shift.

Figure2 shows the result of continuation of one periodic orbit for the symmetric and non-
symmetric driven dimer, which corresponds to the symmetric eigenstate of the linear undriven

New Journal of Physics 10 (2008) 013008 (http://www.njp.org/)
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(a) (b
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Figure 2. Nonlinearity parameteay versus quasienergies for one of the nonlinear
Floquet states. (&) =0. (b) # = —1.6. Bottom-right inset shows the average
populations over a periodl as a function of the nonlinearity strengghTop-left
inset is the enlargement arougd= 0 of the bottom-right inset. The parameters
arew=2r, fi=f,=1,C=1andu = 1.

system. The symmetric case shows a pitchfork bifurcation with the appearance of two new states
at the bifurcation point (figurg(a)). These new states exhibit a population imbalance similar to
the undriven systemiB], [20]-[22], despite the fact that the equations are symmetric.

This bifurcation is a hallmark of the presence of nonlinearity. Out of a given Floguet state
several new states are emerging, while for the linear case the number of linear Floquet states is
fixed by the size of the chosen basis.

Conversely, if the time-reversal symmetry is broken, a saddle-node bifurcation appears.
First of all the state continued from the linear limit, already acquires some nonzero population
imbalance, since the symmetry is broken. Fig@rehows that the strict continuation of that
state evolves into a state with a strong population imbalance. Two other states—one which is
corresponding to a weak imbalance, and another which has a strong imbalance as well—emerge
through the saddle-node bifurcation.

To conclude this part, we may expect that nonlinearity induces Floquet states with nonzero
population imbalance via bifurcations, or enhances the already present imbalance (originating
from a symmetry breaking) again via bifurcations. We remind the reader here, that the simple
dimer model can be obtained from) (by choosing two momentum basis states with different
sign, and replacing the original complicated interaction which is mediated via further basis
states, by a direct interaction term. A population imbalance thus means a momentum imbalance
as well, i.e. a nonzero current. It may be thus as well expected, that for the full problem, to be
treated below, nonlinearity may enhance directed currents via bifurcations.

2.2.2. Fulllattice. The analysis of nonlinear Floquet states in the dimer suggests the formation
of states with nonzero mean momentum above a certain threshold value. The question then
arises, to what extent those features, exhibited by the Floquet states in the dimer, are manifested
in the full lattice equations2)—(4).

On the other side, the question about the fate of the resonances found in the linear limit
remains. It is therefore of particular interest to analyse those resonant Floquet states, which
lead to an enhancement of transport in the linear regime. By switching on the nonlinearity in
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Figure 3. (@) Nonlinearity strength versus quasienergy of periodic solutions.
The periodic solutions are a continuation from the Floquet states displayed in
figurel. The symbols link to states displayed in figdrénsets: Husimi functions

(P vs X) (cf figure 1). The sequence of Husimi functions for the red line is
explained in the text. (b) Enlargement of the region where the quasienergies
of the continued original states intersect in panel (a). The results from the
computation of equationl@) appear superimposed to the circles with solid
lines. Inset: mean average momentum of periodic solutions versus nonlinearity
strength. Blue square: momentum of the state depicted by a blue circles-dashed
line in (a). Red circle: momentum of the state depicted by a red circles-dashed
line in (a). The parameters al§ = 3.26,E; =1.2,60 = —1.6 andw = 3.

equation p), the system in the linear regime gets perturbed and the resonances are shifted to
different values of the control parameters.

In figure 3, we present the continuations of two Floquet states depicted in figurto
the nonlinear domain. We observe a bifurcation of one of the periodic states as we increase
the nonlinearity strength. Here, as in the dimer, a bifurcation of saddle-node type leads to the
formation of three periodic solutions out of one.

Since we want to study the transport of a BEC with zero initial momentum, we focus on
the continuation of the state lying in the chaotic layer. The continuation process is indicated by
a sequence of Husimi functions in figuBéa), and can be summarized as follows: (i) before
the bifurcation, the state is located in the chaotic layer; (ii) after the bifurcation, the periodic
state transforms into a mixed state due to a resonance with a second transporting state; (iii)
further increase of the nonlinearity strength transforms it into a transporting state. By contrast,
the originally transporting state does not experience significant changes as we increase the
nonlinearity strength.

A quantitative measure of this transition process is given by the evolution of the average
momentum of the periodic states as we change the nonlinearity strength @d)yeThe
momentum of the state initially located in the chaotic layer goes from small to high values
with a sharp increase gt~ 0.003 (i.e. at the bifurcation point), whereas the momentum for the
transporting state remains nearly a constant.

So far, we have analyzed the evolution of two states in the nonlinear domain. A clear
message from the above results is, that nonlinear Floquet states may drastically change their

New Journal of Physics 10 (2008) 013008 (http://www.njp.org/)
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average momentum at bifurcations, which are also visible through sharp changes in the
dependence of their quasienergies on the nonlinearity parameter.

In order to estimate the shift of the bifurcation point, and to finally predict the new possible
resonance positions with increasing nonlinearity, we use a perturbation approach to estimate the
dependence = P(¢, g), related to the Aharanov—Anandan pha2g [see also16]). Assume
that nonlinear periodic solutions and Floquet states are related through a dynamical {hase
i.e.¢(t) = exp[-ir(t)]p(t) with A(T) —A(0) = 2k, k=0, £1, £2, ... .

Then fork = 0 we find (see appendix B for details)

T
6(9,g)=€(9)+%f0 dt(pll91%6), (15)

where (- --) = foz” ... dx is the inner product defined in the Hilbert space of Floquet states.
From equationb) it follows that states with strong nonlinear interaction have large quasienergy
variations. This allows to resonantly couple states located deep in the well, which exhibit strong
localization, with other states. These resonant couplings are beyond the dimer model discussed
above.

Bifurcations of new states correspond to a coalescence of different families of states,
leading tap; (t) = exp[—ix; ()] (@;p1(t) + b;P2(t)), wherep (t) andga(t) are the corresponding
original Floquet states. The evolution of the quasienergies for the nonlinear periodic states is
thus given by

.
€j(0,9) = |aj|251(9)+|bj|2€2(9)+%f dt (¢ 116 1°18;), (16)
0

wherea; andb; are the corresponding weightings of the linear states in the nonlinear state
expansion (see appendix B for details).

In figure 3(b), we plot the quasienergy values computed with equatl@) Using the
nonlinear states continued from the original linear states depicted in figuvée find an
excellent agreement with the full numerical results.

For weak nonlinearity, the quasienergies of the states depend lineady Ansimple
perturbation expansion allows us to take the wavefunctions of the original linear states and
its respective quasienergies with equati@b)( Then from the quasienergy intersection of the
two statesg; (6, g) = €2(0, g), we compute the critical value of
_ ul€2(0) — €1(0)]

foT 0271 |$1|4dx dt — foT f027T |¢~>2|4dx dt
Inserting the wave function of the original linear states depicted in fijimeequation 17), we
obtaing = 0.003008, which is a good estimate of the nonlinearity strength at the bifurcation
point. Let us now investigate the evolution of the stdiefor x = 0. In the linear regime,
we use the Floquet representation to derive the expression for the asymptotic current. In the
nonlinear regime it is no longer possible. Instead, we compute the running average momentum
P= rlto) ft; pdt with p = (¥| p|v), over long times, which becomes the asymptotic current in
the limitt — oo, i.e. J(tp) = lim,_, ., P. To validate the convergence to the asymptotic current
we use maximum integration times ranging from 100 000 to 300 000 time periods.

First we compute the current fér~ —0.99. In such a case, far= 0, there is an avoided
crossing (see above discussion), i.e. a resonance. Further increase of the nonlinearity leads to a
decay of the current (figuré). However, takingg = —1.1, —1.2, we observe a corresponding

g (17)
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http://www.njp.org/

10 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0=-0.99 6=-1.10 60=-1.20 0.08
0.10+ Linear
: 1(0)0.04 |

J(0)
0.05

0.1¢

J(t
(1) 0.05 |

0 1 Il 1
0 0.002 0.004 0.006 0.008 0 0.5 1 1.5 2

8 Iy

Figure 4. Left panel: current dependence upon the nonlinearity stremfgtht =
—1.2, —1.1, —0.99 with initial timety = 0. Right panel: (a) current dependence
upon @ for g=0.005 withty = 0. (b) Current as a function of the initial time
for 6 = —1.2 and two different nonlinearity strengths. Circlgs= 0.005 and
squaresg = 0.001. The other parameters d&e= 3.26, E; = 1.2 andw = 3.

shift of the resonance peak to larger values of the nonlinearity parameter, thus showing a
robustness of the resonant current enhancement observed in the linear limit.

Figure4 shows the dependence of the currenboiResonances similar to the linear case
are observed, which are shifteddnThus the nonlinearity strength can also be used as a control
parameter for tuning resonances.

It was shown for the linear regimg,[6] that the current depends upon the initial titgen
the nonlinear case, the dynamics may exhibit similar behavior to classical ctidosfking
the analysis more complicated. An essential point here is that, while in the linear regime Floquet
states mix in narrow parameter regions via avoided crossings, in the nonlinear domain mixed
states may survive for a fairly large range of nonlinearity values. This, along with the fact
of having multiple bifurcations with the appearance of new periodic st2#smay lead to
classical-like chaotic behavior predicted ir].

A benchmark for the persistence of directed transport is that the sum of currents for
different initial times do not cancel. To check this, we compute the momentum evolution for
different initial times with the system in and out of resonance. In figuvee present the current
dependence upon the initial tine The curve depicted by filled circles shows a similar behavior
to the one obtained in the linear regime with the system in resonance (cf figuré}t ith &lso
displays a large positive current for all initial times, thus confirming the existence of directed
motion. On the contrary, the curve with squares shows a nearly flat profile with smaller current
values, recalling the off resonance scenario in the linear limit.

3. Conclusions

We have studied the rectification of interacting quantum patrticles in a periodic potential exposed
to the action of an external ac driving, using a mean-field approach.

We showed that by tuning the nonlinearity in an optical lattice it is possible to enhance
the directed transport of cold atoms. A possible experimental way to achieve it is to vary the
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scattering length by changing the strength of the magnetic f&3{] These resonances are
partly continued from the noninteracting system, but become saddle node bifurcations of more
complicated nonlinear Floquet states in the nonlinear system under consideration.

We developed analytical estimates of the nonlinearity strength in the resonance, and
showed that the evolution of an initial state with zero momentum carries all the signatures of a
ratchet state, i.e. its average momentum is nonzero. Therefore, ratchets and quantum resonances
of (nonlinear) Floquet states are robust with respect to interactions, and should be observable in
real experiments. It is possible that such resonances may even lead to a partial depletion of the
condensate fraction, and evaporation. Another issue is the loss of coherence due to incoherent
transitions to excited states. In this case, a more suitable description is given by using a master-
like equation with dissipatior2f.

Finally, bifurcations of the nonlinear Floquet states have been observed, which may affect
the measured currents strongly.

Appendix A. Numerical procedure for the computation of nonlinear Floquet states

Take equation2)

U ¥4 (0) = exp(—ie,) ¥ (0), (A1)

where v, are periodic solutions in the nonlinear domain dddis a symplectic operator.
The periodic stateg,, (0) are decomposed into real and imaginary part®as- {Realfy, (0)],
Im[v,(0)]}. Likewise, we define the vectér = {Real[exgie,)U ¥, (0)], Im[exp(ie,)U v, (0)]}.
For convenience we write them abl2limensional vectorX, (0) = ®,(0) andX, = [, (0)],
where N is the dimension of the Hilbert spac27]. Hereafter, for simplicity, we drop the
indexa.

The two vector@q(qand)ﬁ((O) are identical for the linear case. Assuming weak nonlinearity,
we compute the vectoX after one integration period, taking as initial seed the linear &b
This implies that after a full integration period our final state deviates from the initial state:

G[X(0)] = X — X(0). (A.2)

To correct such a deviation we use the Newton—Raphson method. Basically, the method updates
the initial seedX(O) after every iteration until each component@)ﬁs reduced to a value less
than 10°°. For every integration over the peridd we use the split operator method.

To successfully accomplish the reduction of the vector differeAc®)( some constraints
should be fulfilled. First, the Floquet states should preserve the norm. We thus add another
componenGon+ = XX — X(O)X(O) and the iteration process is also zeroing this component.

_To fully characterize our nonlinear Floquet states, we define the new variable Yeetor
(X, €), with the quasienergy as th&2+ 1 component. Next, we define the new vector function
F(Y) [G(Y) GZN+1(Y)] Having 2N + 1 variables and® + 1 functions to be zeroed, we now
may apply standard Newton—Raphson methods.

Appendix B. Quasienergy dependence on the nonlinearity strength

We define an expression similar to equati@)y but for the nonlinear case, viz

Y () =g (t)), lp(t+T)) =lo ). (B.1)
Here, we have dropped the index
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Then, inserting equation (B.1) into equation (2), one finds
ad
ua|¢> =Hl|9), (B.2)

whereH = Hp— %e +g|¢|. Similarly, using equation (7) we get for the linear case

J  ~ -
porld) =HiP), (B.3)

whereH = Hg — %é
Now defineg (t) = exp[—ix(t)]¢(t) such that(T) — A(0) = 2kr with k =0, +1, £2. . ..
This assumes that after projecting the nonlinear state on to the linear space, both vectors, the
projected and the Floquet states in the linear space, have a phase diffeten{23]. For
simplicity we take in the following = 0.
Using theng (t) and equation (B.3), we get

ar(t 1 - ~ 0

—% = —(¢O[H|P (1)) — (P OI (1)) (B.4)
uw ot

Using equation (B.2) and integrating over a period, we find

1 (7 - - T
=;f0 dt[(¢(t)|Ho|¢(t))—(¢(t)|Ho|¢(t))]—€+e—%/o dt(]|p|2|e). (B.5)

The first term of the rhs of equation (B.5) becomes zero. Then we obtain

6—6+—/ dt(@ll¢1*|¢). (B.6)

As follows from equation (A.1)¢ denotes the phase accumulated after a completion of
one periodl . To understand the physical meaning of equation (B.6), we rewrite it as a function
of the real quasienergy (see [28] for definition). It relates to our as € = éu/T, where
—1 w/2 < & < w/2. Then we obtain

g/ dt(161%19) 8+—/ dg | . (8.7)

This expression tells us that the energy of our nonllnear Floquet state is the sum of the
corresponding linear and nonlinear contributions. The second term is the time average of the
state energy due to the nonlinear interaction.

So far, we have considered the energy evolution of single states without perturbation.
However, single states may ‘coalesce’ leading to bifurcations. We take the simplest case with
two resonant states. We project vectors on a basis that results from the superposition of the
continued original eigenstates, whose continuation lead to resonances in the nonlinear domain.
That is, ¢; (t) = exp[—ir; (1)](a;P1(t) +bja(1)) with j = 1,2; whereg,(t) and¢,(t) are the
original Floquet states.

By doing similar operations as above we get

mF&+mF&+—/‘m¢m@|wn (8.8)

where|a;|? = (¢1¢;)|* and|b; > = 1 — [a;|* = [($2l¢;) .
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