
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE PSICOLOGÍA

CONSEQUENCES OF THEORETICALLY

MODELING THE MIND AS A COMPUTER

ESTEBAN HURTADO LEÓN

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor in Psychology

Advisor:

CARLOS CORNEJO ALARCÓN

Santiago de Chile, August 2017

c©MMXVII, ESTEBAN HURTADO

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE PSICOLOGÍA

CONSEQUENCES OF THEORETICALLY

MODELING THE MIND AS A COMPUTER

ESTEBAN HURTADO LEÓN

Members of the Committee:

CARLOS CORNEJO ALARCÓN

DIEGO COSMELLI SANCHEZ

LUIS DISSETT VELEZ

JAAN VALSINER

.........

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor in Psychology

Santiago de Chile, August 2017

c©MMXVII, ESTEBAN HURTADO

To Carmen and Fulvio

ACKNOWLEDGEMENTS

I would like to thank the School of Psychology at Pontificia Universidad Católica de

Chile for taking me in and walking me through the diversity of the study of the mind. I

am in debt to all the teachers who kindly and passionately shared their knowledge with me,

and very specially to the kind and helpful work of the administrative staff.

I took my first steps in theoretical computer science at the School of Engineering of

the same university, with Dr. Álvaro Campos, who is no longer with us. His passion for

knowledge, dedication and warmth continue to inspire those of us who where lucky enough

to cross paths with him.

The generous and theoretically profound support of the committee members has been

fundamental to the production of this text. I am deeply thankful to all of them. I would

like to specially thank Dr. Luis Dissett, from whom I learnt many of the issues discussed in

this work. From him I also learnt to see logic as a beautiful form of art. His love for maths

reverbs in the hearts of many of his students, myself included.

I thank my dear friend Dr. Agustı́n Ibañez, for introducing me to cognitive science,

stimulating my development of an individual critical position in the area, and encouraging

me to pursue an academic career. This work would have not been possible without his

inspiration and support. I also thank Roberto Musa and David Carré, for the stimulating

conversations we have had have been a real contribution to this thesis.

I want to thank my thesis advisor, Dr. Carlos Cornejo, in a very special way. This

work, its approach, and my whole interest in the questions embedded in it, would have not

been possible without his humble and theoretically profound guidance. With humility and

true admiration, I hope this is only the beginning of a long collaboration.

I would like to thank CONICYT for funding my doctoral studies. I also thank the

generous spiritual and administrative support I received from Jan Krebs, Héctor Bernales,

David Huepe, and Gorka Naverrete, all people I have had the privilege to work for.

iv

I dedicate this work to my parents, Carmen and Fulvio. I thank them deeply for their

encouragement, dedication and support.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . ix

LIST OF TABLES . xi

ABSTRACT . xii

RESUMEN . xiii

1. Introduction . 1

2. What is a computer system? . 5

2.1. Multiple definition, multiple implementation, and computational power . . 7

2.2. Some well known computer models . 9

2.2.1. Finite-state machines . 9

2.2.2. Pushdown automata . 12

2.2.3. The Turing machine . 14

2.2.4. Universal Turing machines . 17

2.3. Actual implementation of computing models 17

3. Countable and uncountable sets . 21

3.1. How to define a mathematical set . 21

3.2. The cardinality of infinite sets . 23

3.2.1. Natural numbers . 23

3.2.2. Some subsets of natural numbers . 24

3.2.3. Integer numbers . 25

3.2.4. Rational numbers . 26

3.2.5. Real numbers . 27

3.3. Countability of computational procedures 29

vi

4. Turing halting . 32

4.1. The Turing halting problem . 33

4.1.1. Undecidability proof . 33

4.2. Computable numbers . 35

4.3. Consequences . 36

4.3.1. A few undecidable problems . 36

4.3.2. Undecidability of Turing machine equivalence 37

4.3.3. Not all definable functions are computable 38

5. Gödel’s incompleteness . 40

5.1. Axiomatic systems and formal languages 41

5.1.1. Theories and proofs . 41

5.1.2. The natural number system . 43

5.2. Hilbert’s program . 46

5.3. Gödel’s incompleteness . 47

6. Consequences of Gödel’s incompleteness . 49

6.1. Consequences for axiomatic systems . 49

6.1.1. There is no proof of arithmetic consistency in arithmetic 49

6.1.2. There is no definition of arithmetic truth in arithmetic 49

6.2. Relationship with Turing halting . 51

6.3. Implications for logic language . 53

7. Psychological interpretations of incompleteness 56

7.1. Piaget’s reaction to Gödel’s theorems . 56

7.2. Did Wittgenstein misunderstand Gödel? 57

7.3. Lucas-Penrose interpretation of Gödel 59

7.4. The “truth” of Gödel’s sentence . 60

8. Knowledge in an incomplete system . 63

8.1. Truth values and world facts . 63

8.2. Dichotomous truth . 66

vii

8.3. Trichotomous truth . 66

9. Computers and non-determinism . 70

9.1. Non-deterministic Turing machines and quantum computing 70

9.2. Bayesian modeling . 73

9.3. Markovian modeling . 75

9.3.1. Bayes’ theorem in time: an example 76

9.3.2. Acting under uncertainty . 80

9.4. Non-determinism and computational modeling of the mind 82

10. Some controversies around a computational mind 84

10.1. Being versus being like a computer . 84

10.2. Brain and mind . 85

10.3. Is there anything beyond the physical? 86

10.4. Representation of knowledge . 87

10.5. Architecture of the mind . 89

10.6. Body and environment . 91

11. Incompleteness and epiphenomenal qualia 93

11.1. The incompleteness of Mary’s knowledge 94

12. A few limitations of the computational theory of mind 98

12.1. Some basic limitations . 99

12.2. Underdetermination of theoretical models by evidence 100

12.3. Metaphysical orthogonality of the computational theory of the mind . . . 101

13. Conclusions . 104

References . 110

viii

LIST OF FIGURES

2.1 Example of equivalent definitions. The defining property of p-quadrilaterals is

having parallel opposite sides, while that of a-quadrilaterals is having same value

opposite angles. Despite having differently worded definitions, both define the

exact same class of polygons, because one property implies the other. 8

2.3 Simplified finite state machine for two floor elevator. It models how position

changes as a result of pressing up or down buttons. 10

2.4 Finite state machine for a three question quiz show. States circled in double lines

are final. Prize can be up to $3,000 if all three questions are answered correctly.

Retiring without an answer yields an amount that depends on the number of

previous right answers. A wrong answer finishes the game with no prize. . . . 11

2.5 Finite state machine for telling whether a sequence of characters contains an even

amount of ‘a’ symbols. It has essentially the same form as the elevator model

from Figure 2.3. For instance, processing characters “aabaaz” goes through

several state transitions (arrows) each one resulting in a new output. The last

output indicates that the input has an even number of ‘a’. 11

2.6 Both pushdown automata and Turing machines are the combination of a finite-

state machine and some additions. In the case of a PDA the addition is a stack

for piling up symbols. Instead of a stack, a Turing machine has a tape and a

read/write head that transfers symbols between the tape and the FSM. The tape

is infinite, in the sense that there is a beginning to it but no end. In constrast to

a PDA, a TM does not need separate input and output, because the input can be

written on the tape at the begining, and the output can be read from the same tape

after processing has finished. 12

3.1 Matching of integer numbers and natural numbers on the number line. 25

ix

3.2 Countability of rational numbers. This array includes all positive rational

numbers (some appear more than once). It extends infinitely to the right and

to the bottom. In order to build it, each number in a cell has the row number as

numerator and the column number as denominator. All numbers in the table can

be counted, starting from 1/1. 27

4.1 Computable functions are definable integer functions, which in turn are integer

functions. In the opposite direction, there are integer functions that are not

definable. Also, Turing (1936) proved that there are definable functions that are

not computable. 38

5.1 Diagram for derivations of statements in table 5.1. An arrow from A to B should

be read “A supports B”. Circles represent axioms, and rectangle represent other

statements. Note that each rectangle statement is supported by statements on the

left and/or axioms. 43

8.1 Knowledge in a dichotomous truth system. Contrast this with Figure 8.2. . . . 67

8.2 Epistemically trichotomous view. Some statements are (1) true, others are (2)

false, and others have (3) no truth value. 68

9.1 John’s turtle weather forecast model. Dashed circles are states and cannot be

directly observed. Solid rectangles are evidence that can be emitted by states.

Numbers on solid arrows are state transition probabilities. Numbers on dashed

arrows are evidence emission probabilities. 78

13.1 Relationships between a model of a machine, what we can answer about it

(theory), and the actual machine. Dashed circles inside the solid circle reflect to

which extent the model and the theory can speak about the machine. 108

x

LIST OF TABLES

2.1 State transition table for the finite-state machine in Figure 2.3. It contains all the

information needed to completely define the machine. 10

2.2 Example of a Turing machine. The table shows what should be done in the last

three columns, as a function of the situation indicated in the first columns. For

instance, the first row shall be read as follows: if the machine is in state A and

the head is reading a ‘0’ from the tape; then write an ‘x’ to the tape, move the

head one step to the right, and make B the new current state. 15

2.3 Execution of the Turing machine of Table 2.2 on the input ‘101001’. At each

step, the position of the head corresponds to the underlined symbol. Note that

at step 1, the tape hast the input sequence writtin on it. At step 21, the machine

stops and the content of the tape corresponds to the output of the process. . . . 16

3.1 Uncountability of real numbers. If real numbers between 0 and 1 were countable,

they could be displayed on a table like this, with each natural number associated

to a real number, and not leaving out a single real number. Each number can be

written as a 0 followed by a decimal separator and an infinite series of digits dij

in which i is the row and j is the column. 28

5.1 Proof for the statement (a+ b)2 = a2 + 2ab+ b2. 42

9.1 John’s weather beliefs after several days of observing his turtle. 80

9.2 Discrete state, discrete time stochastic models. Table extracted from Anthony

R. Cassandra’s website, http:\\pomdp.org, where he attributes it to Michael

Littman. 80

xi

ABSTRACT

The computational theory of mind holds that the mind is a computer. It does not

restrict how the computer is to be programmed, but provides a metatheoretical framework

for particular theories to propose different ways in which computer systems can support

mental processes. It also functions as a claim about the nature of the mind. Its main goal is

to explain mental phenomena based on computational processes.

This work argues that well known limitations of computers require more attention in

order to understand the possibilities and limitations of the computational theory of mind

itself. To that end, a revision of the Turing halting problem and Gödel’s incomplenteness

theorems is included as a foundation for arguments about what computational models of

the mind could and could not achieve.

Contrary to traditional images, computational procedures can be diverse, flexible, adapt-

able, and deal with the uncertain in successful ways. Therefore, naive criticism of the

computational theory of mind could be misplaced. We argue that the main limitations that

computational modeling imposes on psychology are: that some important questions have

no general answer; that theories are underdetermined by evidence in important ways; and

that theories cannot answer specific questions about the nature of their object of study.

We also show that the same limitations apply to any theory that restricts itself to making

systematic predictions based on finite observations.

Keywords: computational theory of mind, Turing halting, Gödel’s incompleteness,

psychological theories, philosophy of mind

xii

RESUMEN

La teorı́a computacional de la mente señala que la mente es un computador. No im-

pone de qué manera ese computador debe ser programado, sino que establece un marco

metateórico desde el cual diferentes teorı́as pueden proponer maneras en que procesos

mentales se implementarı́an como sistemas computacionales. También cumple el rol de

una afirmación acerca de la naturaleza de lo mental. Su principal fin es explicar fenómenos

mentales con base en procesos computacionales.

El presente trabajo defiende que es necesario dar mayor atención a limitaciones de la

computación que ya han sido estudiadas, con el fin de entender las posibilidades y lim-

itaciones de la teorı́a computacional de la mente. Para ello, se presenta una revisión del

problema de la detención de la máquina de Turing y de los teoremas de incompleción de

Gödel, en tanto fundamento de argumentos acerca de lo que es o no posible lograr mediante

modelos computacionales.

En oposición a nociones tradicionales, los procedimientos computacionales pueden ser

diversos, flexibles, adaptables y lidiar con la incertidumbre de manera exitosa. Por lo tanto,

las crı́ticas ingenuas la teorı́a computacional de la mente podrı́an estar equivocadas. Aquı́ se

argumenta que las principales limitaciones impuestas por el modelamiento computacional

sobre la psicologı́a son: la imposibilidad de dar respuesta general a ciertas preguntas; una

indeterminación muy relevante de las teorı́as por la evidencia; y la imposibilidad de respon-

der ciertas preguntas acerca de la naturaleza del objeto de estudio. También se muestra que

las mismas limitaciones están presentes en cualquier teorı́a que se limite a realizar predic-

ciones sistemáticas basadas en conjuntos finitos de observaciones.

Palabras Claves: teorı́a computacional de la mente, detención de la máquina de Tur-

ing, incompleción de Gödel, teorı́as psicológicas, filosofı́a de la

mente

xiii

1. INTRODUCTION: A HIDDEN PROBLEM

When digital computers were invented in the mid-20th century, they were unlike any

previously existing machine. Calculating tools, like the abacus, already existed. Au-

tonomous mechanisms, like clocks, were also present. But never had those two aspects

been together in a man-made object. The new invention was capable of doing arithmetic,

performing logical operations, sorting records, applying transformations to text, and sev-

eral other tasks that, at the time, were considered exclusive of intelligent beings. And it

was capable of doing all that on its own. It was natural to think that those were just early

demonstrations of what could become a bigger achievement: the fabrication of a human-

like intelligence.

As a consequence, several efforts began to explore ways in which computer machines

could display intelligent behavior (e.g., Turing, 1950; Chomsky, 1957; Putnam, 1967;

Fodor, 1975; Newell & Simon, 1976, and several others). The notion that computers could

explain mental capabilities was attractive to psychology. For the first time the nature of

mental processes could be understood and predictions could be made with swiss-clock pre-

cision. And the only requirement was to make an assumption that seemed reasonable: that

the mind is indeed some kind of computer. This thesis is known as the computational the-

ory of mind (CTM) and has been subject of much debate (Searle, 1980; Putnam, 1988;

Penrose, 1999, etc.).

It is not the purpose of the present work to answer if the mind is a computer. We will

focus on a related question: what are the metatheoretical consequences of modeling the

mind as a computer system? We have known, for almost a century, that computer systems

are subject to hard theoretical limitations that will not be overcome by better technology.

We have to live with them. However, not much has been discussed on how such limita-

tions impact the construction of psychological theories. The reason for that is not lack of

interest. It is probably the fact that relationships between computer science and cognition

are not always evident, and that researching them requires a trip along metamathematical

issues that shape, as they should, a different discipline from cognitive science. We face a

1

scenario in which important metatheoretical consequences of the CTM are solid enough to

be provable, but are also implicit and effectively hidden in clear light. Before going deep

into the issue, we will make an outline of the aforementioned consequences.

There is an intimate relationship between how a computer system is formally defined

and what capabilities it has, which will be the focus of chapter 2. We can define a series of

increasingly powerful computer systems, in the sense that each model can perform compu-

tations that the previous one cannot. But there is a limit among models of which an actual

implementation can be built. And we have very compelling evidence that it is a hard one

that cannot be overcome by any means. In other words, there is a most powerful effective

model of computation. Odds are that the prize goes to what we know as the Turing machine

(1936). Our current and strongly supported understanding is this: if the Turing machine

cannot compute it, nothing will.

The story becomes complicated when we realize that there are several ways to de-

fine that most powerful computer system. For instance, while Post (1936) independently

reached a similar definition to that of Turing, Church (1936) reached a radically different

one. It took some work to prove that Turing’s and Church’s definitions were equivalent

(Turing, 1937). In fact, to any class of computer model there are several different ways to

define it. We are talking about definitions that look completely dissimilar, that use different

words and concepts, and therefore you would not suspect they define systems with the exact

same capabilities until you mathematically prove it. Having the exact same computational

power has a strong meaning for the purposes of theorization, because it means that theories

that adhere to one or the other model of computation have the same potential predictive

power.

The realization that a computer system can be multiply defined comes together with

some problems. First, two seemingly different metatheoretical approaches to cognitive

theorization could end up being the same. For instance, we could think that artificial neural

networks are a game changer with respect to classical formal-logic-driven schemes of early

artificial intelligence. The former are flexible enough to learn patterns and generalize in

2

order to successfully adapt to previously unseen examples (Hinton, 1986), just like humans

and other living beings do. On the other hand, classic AI schemes are thought of as rigid

structures that have a hard time dealing with new cases. It would be easy to state that neural

networks are an improvement over previous theories. Generalizing flexibility would be the

function that sets them apart. But we should analyze the case more carefully. We can

observe flexibility in neural networks. But how do we prove that classical formal reasoning

does not have that kind of flexibility? It is possible that the old scheme shares the same

capabilities with neural networks, and that we are inclined to think otherwise because it is

simply not evident how that could be. Actually, the usual way of implementing a neural

network is by means of a programing language that uses the same old rigid formal rules.

So, actually, neural networks, as a theoretical mind modeling device, do not add any new

capability. They only show us that old rigid formal rules have some human-like capabilities

we previously did not know of. In other words, after the development of neural networks,

the predictive power of the CTM did not improve, it only became better understood.

Would it be enough if we just were more careful and worked more exhaustively when

thinking about cognitive theories and their differences? Metamathematics hits us with a

resounding no. Whether a given function is actually within the capabilities of a specific

computational model is not a question that can be answered in general. In some cases we

get to be so unlucky that we cannot even prove that the question has no answer. We are

only left with the alternative of trying and hoping, knowing that it is possible that we never

find what we search for. We can hold Church (1936), Turing (1936), Gödel (1931), and

others responsible for delivering the bad news, as we will discuss on chapters 4 and 5.

A second problem is that a theory that is not explicitly computational may actually

be unknowingly under the umbrella of the CTM. That would be the case if an alternative

and explicitly computational theory can be proposed that generates exactly the same pre-

dictions. In that case, both imply that a computer has the necessary means to produce the

mental functions that are being described.

3

We will approach such problems according to the following objectives. First, to clar-

ify what a computer is and what its capabilities are. Second, to make a detailed review of

mathematical concepts that are necessary to speak about the power and limitations of com-

puters. Third, to review and question traditional views on the consequences of computer

limitations for psychology. Fourth, make a new proposal about what the consequences are.

Fifth, to debunk criticism of the CTM based on inaccurate traditional images of what a

computer is. Sixth, to reveal limitations of the CTM on a different ground.

4

2. WHAT IS A COMPUTER SYSTEM?

Before we explore the consequences of modeling the mind as a computer system, it is

fundamental that we agree on what a computer system is. In this effort we have two main

goals. First, we aim to define a computer system that is as powerful as possible. Therefore,

if our analysis concludes that a computationally modeled mind has limitations, it will not

be possible to overcome it by considering more powerful computer systems. This way we

will be able to explore limitations of CTM itself. Second, we must define a mechanical

system, in the sense that it must be only governed by clear, unambiguous formal rules.

This means that, just like Searle’s (1980) Chinese room, our powerful computer system

must not rely on creativity, interpretation, feelings, meaning, etc. Because, if it did rely on

such preexisting mental capabilities, how could it be used to explain them?

In the most general way, when we talk about a computer system, we are talking about

a symbol processor. In order to use it, we write a question or problem as a sequence

of symbols, which we then feed to it. After processing, the symbol processor outputs

a different sequence of symbols which is the answer. A digital calculator is a common

example of this. If we want to ask how much is 7 plus 18, we feed the machine this

sequence of five symbols by pressing them on the keyboard.

7+18=

After processing, the calculator will output this sequence of two symbols.

25

The input is allowed to include the symbol + because it is on the keyboard of the

calculator. But many calculators cannot write that + symbol as part of the output. In

general, the input and output do not need to use the same symbol sets, or the same alphabets

technically speaking. Not every input sequence is valid. For instance ++-= will not yield

an answer because it does not have the form of a well written arithmetic problem. In other

words, it is syntactically incorrect. Even if an input sequence has a well written form, it

5

may be semantically invalid, like 10/0=. This will result in the calculator displaying an

error message, because the rules of division do not allow division by zero.

Semantics are important to the user of a computer system. We know what 7, 18

and 25 mean; that is why the answer from the calculator is useful to us. But there is

no need for the calculator to understand meaning as part of its inner working. And that

is fortunate, because regardless of the possibility of building meaning into an electronic

device, we definitely did not know how to do it when calculators were invented. Even if it

had some kind of understanding, we would not care if the calculator thought that 7 means

half a dozen, or that + means ‘apple’, as long as the result, 25 is formally correct. The

calculator does not work by understanding maths, but by carrying out an algorithm, which

is a meaningless mechanical procedure, in the same fashion as we do arithmetic on paper.

So, of every meaning of the word symbol, we have chosen the least meaningful one.

For our purposes, all that there is to a symbol is that it is distinct from other symbols.

Nothing more. This property alone allows a symbol processor to perform processes that

are sensitive to which symbols are fed as input and in which order. We can relate this to

the meaning of information in the classic approach of information theory (Shannon, 1948).

In this sense, information is simply something that had the possibility of being something

else.

The word system is important in computer system. It means that we can make a dis-

tinction between hardware and software. Software works like a food recipe and hard-

ware works like the sum of the cook and the kitchen. The recipe dictates how to pro-

duce a dish, as long as the kitchen has all that is needed. In the same fashion, a com-

puter program dictates how the machine will proceed in order to process input symbols,

as long as it has the capabilities needed to execute the instructions in the program. A

thermostat for a heating system can be seen as a symbol processor. It is fed temper-

ature difference information, which can be represented by two different input symbols:

hotter-than-desired and colder-than-desired. Corresponding outputs are

heating-off and heating-on, respectively. But the fact that it is a symbol processor

6

does not mean it is a computer system. It is not, because it is not intended to be programmed

in order to perform a different function, and therefore there is no hardware/software dis-

tinction. We could force the situation by wiring the thermostat backwards, which would

produce the ill function of heating until malfunction. But that is as much flexibility as we

get. In contrast, a smartphone or a laptop are full blown computer systems, in the sense

that they are not hard wired to perform a single function, but are built for following the

instructions in a computer program. Application software determines the function that will

be performed by the system, as long as it is within its hardware capabilities. In sum, ev-

ery computer system is a symbol processor, but not every symbol processor is a computer

system.

The computer models we will see here relate to that notion of computer system. What

we will actually describe is classes of computers, which are a theoretical analogue to kinds

of hardware. And how we describe them will affect what the capabilities of the class

are. But any particular instance within the class, will have a particular programming. For

example, the first class we will see is that of finite-state machines, which can be used to

perform several different functions. Instances of that classes will be theoretical models of

an elevator or a vending machine, each of which is programmed in a particular way so to

perform one or the other function. The way we decide to wire an instance of a computer

class in order to perform a particular function is the analogue of software. Universal Turing

machines will provide us with a more useful notion of programmability, since they allow a

program to be fed as part of their input.

2.1. Multiple definition, multiple implementation, and computational power

We should note that two different definitions can be equivalent in the sense that they de-

fine the exact same thing. Consider the following example1: we will define p-quadrilaterals

as quadrilaterals (polygons made up of four sides) with the property that opposite sides in it

are parallel (Figure 2.2a). There are also a-quadrilaterals defined by the property that their

opposite angles are of the same value (Figure 2.2b). In principle, p-quadrilaterals do not
1Thanks to Luis Dissett for sharing this useful example with me.

7

seem to be the same as a-quadrilaterals, because definitions are differently worded. How-

ever, although it may not seem evident, one definition does imply the other. In other words,

whenever a quadrilateral satisfies the definition of an a-quadrilateral, it necessarily satisfies

that of a p-quadrilateral and viceversa. Despite having different definitions, a-quadrilaterals

and p-quadrilaterals are the exact same class of polygons. The take-home message is that

two classes of objects could actually be the same one, even if they have differently worded

definitions, or even if definitions focus on different properties.

FIGURE 2.1. Example of equivalent definitions. The defining property of p-
quadrilaterals is having parallel opposite sides, while that of a-quadrilaterals is hav-
ing same value opposite angles. Despite having differently worded definitions, both
define the exact same class of polygons, because one property implies the other.

(A) p-quadrilaterals (B) a-quadrilaterals

A computer program is a precise specification of how a symbol processing task is to

be effectively carried out. For the purposes of this text, what defines a program is what

it does to symbol sequences; in other words, the mathematical function that maps input

to output sequences. How that is accomplished is not relevant as long as it can be done.

For instance, you could turn right either by turning 90o to the right or 270o to the left.

This would certainly make an important difference to a robot, because its motion is part

of its observable output. But as long as differences are kept internal, not affecting the

result, programs can be considered equivalent. Why do we not need to care about internal

differences? Because, if CTM results to be limited in the mental capabilities it can explain

when we do not care about inner workings, it will still be limited if we include the additional

difficulty that internals matter. Efficiency will not be a concern for us. Certainly, turning

8

right is more efficient if we turn 90o to the right instead of 270o to the left. How a particular

computer problem is solved affects efficiency so much, that an inefficient solution may

become impractical. This will not affect our argument, because the kind of limitations we

will explore hold even if our computer system had all the speed and all the time in the

world. In computer scientific terms, we are concerned with computability, not complexity.

We have emphasized that a computer program will work as long as the computer has

all capabilities needed to run it. This is relevant because different models of computation

offer different amounts of computational power. Contrary to its use in tech advertising,

computational power is not about how fast a computer can run, but about what tasks it can

accomplish. Model M2 is computationally more powerful than model M1 if and only if M2

can solve all problems that M1 can, and then some more. Currently, there is no computer

model more powerful than what is known as the Turing machine, and there is good reason

to believe there will never be.

2.2. Some well known computer models

We will review some computer models, starting from the relatively simple finite-state

machine. The recurring scheme will be that each model has some capabilities but also some

limitations that can be overcome by adding new features. In the end, we will reach the very

powerful Turing machine.

2.2.1. Finite-state machines

One relatively simple theoretical model of computing is the class of finite-state ma-

chines (FSM, see Hopcroft, Motwani, & Ullman, 2007, ch. 2). The importance of this

class is twofold. First, it is useful on its own, since it is a good model for elevators, vending

machines, washing machines, and other common apparatuses. Second, it can be used as a

building block in more powerful models of computing.

A FSM has a finite set of possible states. For each state, it clearly defines what the

next state is as a function of the current state and the input symbol that is currently being

9

FIGURE 2.3. Simplified finite state machine for two floor elevator. It models how
position changes as a result of pressing up or down buttons.

1st floor 2nd floor

Up button pressed

Down button pressed

Down button pressed Up button pressed

TABLE 2.1. State transition table for the finite-state machine in Figure 2.3. It
contains all the information needed to completely define the machine.

Current state Current input symbol Next state
1st floor Up button pressed Go to state: 2nd floor
1st floor Down button pressed Stay in state: 1st floor
2nd floor Up button pressed Stay in state: 2nd floor
2nd floor Down button pressed Go to state: 1st floor

processed. Therefore, a particular instance of a state machine can be defined by a state

transition table (see Table 2.1 for an example). Figure 2.3 shows a simplified model for the

behaviour of a two floor elevator. It can be summarised as follows: pressing a button results

in the elevator moving to the requested floor as long as it is not already there. Figure 2.4

models the rules of a three question quiz TV show in which a wrong answer results in

loosing all money.

It is possible to consider the last state of the machine as its output, after it has processed

the whole sequence of input symbols. Or, if needed, the full history of the machine can be

its output. Figure 2.5 shows an example that takes a sequence of characters as input and

outputs whether it includes an even number of ‘a’. Each time any symbol is read from the

input, a machine state is yielded as output. But only the last state in the output matters,

which occurs at the end of the processing.

10

FIGURE 2.4. Finite state machine for a three question quiz show. States circled in
double lines are final. Prize can be up to $3,000 if all three questions are answered
correctly. Retiring without an answer yields an amount that depends on the number
of previous right answers. A wrong answer finishes the game with no prize.

Question 1 Question 2 Question 3 $3,000

$100 $500

No prize

correct answer correct answer correct answer
re

tir
es

re
tir

es

w
rong

answ
er

wrong answer
retires

retires

wro
ng

an
sw

er

start here

FIGURE 2.5. Finite state machine for telling whether a sequence of characters con-
tains an even amount of ‘a’ symbols. It has essentially the same form as the elevator
model from Figure 2.3. For instance, processing characters “aabaaz” goes through
several state transitions (arrows) each one resulting in a new output. The last output
indicates that the input has an even number of ‘a’.

Even Odd

a

a

b b

start here

Sample input:
aabaab
Output:

Even
Odd
Even
Even
Odd
Even
Even

11

FIGURE 2.6. Both pushdown automata and Turing machines are the combination
of a finite-state machine and some additions. In the case of a PDA the addition is
a stack for piling up symbols. Instead of a stack, a Turing machine has a tape and
a read/write head that transfers symbols between the tape and the FSM. The tape
is infinite, in the sense that there is a beginning to it but no end. In constrast to
a PDA, a TM does not need separate input and output, because the input can be
written on the tape at the begining, and the output can be read from the same tape
after processing has finished.

FSM

(4 x (1 + 8))
Input

Stack

p
p

(A) Pushdown automaton.

FSM

(4 x (1 + 8))
Tape

(B) Turing machine

2.2.2. Pushdown automata

Finite state machines can be very powerful. Among other capabilities, they can detect

regular expression patterns (see Hopcroft et al., 2007, ch. 3) which have many important

applications in computer science. However, they have important limitations when facing

problems that require counting. It is easy for a FSM to determine whether a symbol occurs

an even amount of times in some input, as long as there is no need to count exactly how

many are there.

One problem that requires actual counting is to check whether an arithmetic expres-

sion closes all the parentheses it opens. A FSM for keeping track of at most three open

parentheses will need to have at least four different states: 0, 1, 2, and 3 open parentheses.

And it will fail with an expression that has four or more parentheses open at a given point.

If the maximum number of parentheses is not known beforehand, there is no way a FSM

can be built for checking that all parentheses are properly closed.

12

A pushdown automaton (PDA) has no such limitation (see Hopcroft et al., 2007, ch.

6). It corresponds to a FSM with the addition of a stack of symbols. The stack works like

a pile of dishes. A symbol can be put (pushed) on top, or removed (popped) from the top.

After pushing several symbols; e.g., A, B and C; the first symbol that can be popped is the

last one that was pushed (C). This scheme is known as last-in-first-out. Just like the input

and the output of a machine, a stack has its own alphabet. The same symbol can appear

several times, and there is no limit to how many symbols can be pushed.

In order to check if every open parenthesis is eventually closed, a PDA can use the

following strategy. It will add a symbol, ‘p’ to the top of the stack each time a ‘(’ is read

from the input. And it will pop a ‘p’ from the top of the stack each time a ‘)’ is read. If the

input expression properly closes al parentheses it opens, each pushed ‘p’ will eventually be

popped, leaving the stack empty when the input sequence has been completely processed.

If the stack is not empty at the end, it means that at least one parenthesis was opened but

not closed. If an attempt is made to pop a symbol when the stack is empty, it means that a

parenthesis that was not opened is being closed.

Simply adding a stack allows unlimited counting, which opens a whole range of pos-

sibilities. A PDA includes a FSM. Therefore, any problem that can be solved with a FSM

can also with a PDA. And then, there are additional problems that a PDA can solve and

a FSM cannot (unlimited parentheses checking for instance). This means that PDA are

computationally more powerful than FSM.

One important application is the kind of processing done by computer language com-

pilers (Aho & Ullman, 1977), which are fundamental tools for creating computer software.

Their purpose is to translate source code written by a programmer to another language,

usually machine code that can be run on the processor of a digital computer system. De-

spite the fact that PDA have been known for a while (Newell, Shaw, & Simon, 1959) they

still play an important role today in software development. This is probably because PDA

13

lend themselves naturally to the processing of formal languages used for computer pro-

gramming. They also work well for extracting structural information from some natural

language patterns (Chomsky & Miller, 1963).

2.2.3. The Turing machine

Despite being powerful, PDA also have some important limitations. Their ability to

count without bounds is countered by the fact that they forget a count when they use it, be-

cause in order to retrieve the count, symbols from the stack have to be popped and discarded

one by one. For instance, a parenthesis checking PDA can count opening parenthesis and,

then use that count exactly once to match closing parentheses. By the time the machine

has confirmed that parentheses were correctly matched, the stack has been emptied and the

count has been lost.

An elegant solution is to provide a PDA with a second stack, so that symbols popped

from the first one can be stored to the second one instead of being discarded. This allows

the automaton not only to give a second use to the count, but to actually use it as many times

as desired without limits, switching symbols from one stack to the other. Since an original

PDA could not do this, a two-stack PDA is more powerful. It reaches exactly the same

computational power as another important computer model: the Turing machine (Turing,

1936, Hopcroft et al., 2007, ch. 8).

A Turing machine (TM) includes a FSM that functions as control device and a tape of

infinite length on which symbols can be written and read (see Figure 2.7b). Like rectangle

delimited fields in a paper form, the tape in a TM has one position for each symbol. There

is a first position, but not a last one, since there is no end to the tape. The included FSM

reads and writes symbols through a single head that, at any time, points to some position

on the tape. At each step of its operation, the FSM takes the symbol under the head as

input. Just like an ordinary FSM, the one inside a TM has its next state fully determined by

the current input symbol and the current state. Upon reaching a new state, a symbol and a

direction are produced. The symbol is written to the tape, and can even be the same as the

14

one already there. The direction indicates if the head shall move one position to the right

on the tape or to the left. By moving one position at a time, the head of a Turing machine

has the effective capability of reaching any position of the tape.

Despite being more sophisticated than a FSM, a TM can also be specified by means

of a relatively simple table. Table 2.2 shows the specification of the FSM that controls a

Turing machine. This particular machine reads a sequence of ceros and ones from its tape.

It deletes the ceros and moves the ones to the left. At the end, all the ones are next to each

other at the beginning of the tape. For instance, sequence ‘1101001’ becomes ‘1111’ after

running the machine. Table 2.3 displays the process.

TABLE 2.2. Example of a Turing machine. The table shows what should be done
in the last three columns, as a function of the situation indicated in the first columns.
For instance, the first row shall be read as follows: if the machine is in state A and
the head is reading a ‘0’ from the tape; then write an ‘x’ to the tape, move the head
one step to the right, and make B the new current state.

rule state symbol under head what to write where to move next state
R1 A 0 x right B
R2 A 1 1 right A
R3 A blank blank stay stop
R4 B 0 0 right B
R5 B 1 0 left C
R6 B blank blank left D
R7 C 0 0 left C
R8 C x 1 right A
R9 D 0 blank left D
R10 D x blank stay stop

This is a model of great relevance for at least two reasons. First, attempts to extend

its capabilities by including additional devices do not result in additional computational

power. This differs from less powerful models like FSMs or PDA which can be made more

powerful by adding devices, as we saw before. We can add more heads to the tape of a

TM; or even several tapes, each with several heads. Also we can give it non-determinism,

which means that given a machine state, the next one is not fully determined, but could be

any from a list of possible ones. Regardless of all those capabilities, it is always possible

15

TABLE 2.3. Execution of the Turing machine of Table 2.2 on the input ‘101001’.
At each step, the position of the head corresponds to the underlined symbol. Note
that at step 1, the tape hast the input sequence writtin on it. At step 21, the machine
stops and the content of the tape corresponds to the output of the process.

step machine state tape applicable rule
1 A 1101001 R2: write ‘1’, move right, next state A
2 A 1101001 R2: write ‘1’, move right, next state A
3 A 1101001 R1: write ‘x’, move right, next state B
4 B 11x1001 R5: write ‘0’, move left, next state C
5 C 11x0001 R8: write ‘1’, move right, next state A
6 A 1110001 R1: write ‘x’, move right, next state B
7 B 111x001 R4: write ‘0’, move right, next state B
8 B 111x001 R4: write ‘0’, move right, next state B
9 B 111x001 R5: write ‘0’, move left, next state C
10 C 111x000 R7: write ‘0’, move left, next state C
12 C 111x000 R7: write ‘0’, move left, next state C
13 C 111x000 R8: write ‘1’, move right, next state A
14 A 1111000 R1: write ‘x’, move right, next state B
15 B 1111x00 R4: write ‘0’, move right, next state B
16 B 1111x00 R4: write ‘0’, move right, next state B
17 B 1111x00 R6: write blank, move left, next state D
18 D 1111x00 R9: write blank, move left, next state D
19 D 1111x0 R9: write blank, move left, next state D
20 D 1111x R10: write blank, stay, stop
21 stop 1111 none

to build an ordinary (deterministic, one tape, one head) TM that successfully performs the

exact same task on the input (Hopcroft et al., 2007, ch. 8).

In other words, attempts to make a TM better have only resulted in possibly faster

or less tape-hungry devices, but in the end, the computational power is no bigger than

that of an ordinary TM. This is good enough reason to consider that the power of the TM

could be a hard limit, in the sense that a more computationally powerful device may not

be possible to build. This conjecture is known as the Church-Turing thesis (Kleene, 1943,

1967). Apart from making a TM more complex, other completely different approaches

have been taken with the aim of producing very powerful computing models (e.g. Church,

1936). No attempt has surpassed the power of the Turing machine, but very interestingly,

16

some have matched it. It is not possible to prove the Church-Turing thesis, but as we will

see in chapters 5 and 4, there is strong support for it and it is widely believed to be true.

2.2.4. Universal Turing machines

A second reason why TMs are important is because they can simulate the execution of

another TM. A universal TM (UTM) is designed to read a formal description of a particular

TM from its tape, along with some input sequence for it, I . The UTM takes both the

description of the TM and its input I as a whole which it swallows as its own input. Then

it simulates what would happen if I was fed to the TM. As a result, it outputs what the

TM would have written as its own output. The fact that this is possible (Turing, 1936, see

Hopcroft et al., 2007, ch. 9) makes the Turing machine a remarkable design. Less formally,

Turing machines have the capability of simulating themselves. This is a mathematical basis

for the notion of programmable computer system. There is no need to physically build one

TM for each single purpose. A UTM is a general purpose computer device that can be fed

the description of a single purpose TM (the application software) and data (the input) so

that it can run the TM on the input. Just like current digital computers do.

This capability of TMs of simulating themselves adds support to the Church-Turing

thesis. For machine X to simulate machine Y, we would expect X to be in a more powerful

class than Y. Because, X would be capable of doing all that Y can. And then some more,

because it could probably simulate other machines. But when it is a TM that we want to

simulate, the “more powerful machine” that is up to the job is just another TM, actually

belonging to the same class of computing power. As a consequence, a UTM can simulate

another UTM, which is how digital computers can run emulator software in order to behave

like other, usually older, digital computers or videogame devices.

2.3. Actual implementation of computing models

The infinite tape of a TM leaves the taste of fiction in mouth. There is no such thing

as an actual infinite tape. Does that mean that a physical TM cannot be effectively built?

Actually it can, if we rely on the following fact. If a TM finishes its task, it never uses

17

an infinite amount of tape in the process. Because if it did, it would need to perform an

infinite amount of write operations, and it would never finish. So we do not actually need

an infinite amount of tape. We only need the length of the tape not to be limited a priori.

For instance, the machine could be designed so that it pauses when it reaches the end of

the tape, for us to glue additional length for the work to continue, and everything would be

fine.

In practice, we use digital computers with more than enough amounts of memory, so

that the limit is never seen. Theoretically, a personal computer has the power of a FSM,

because it has a limited amount of memory, unlike PDA or TMs, meaning that it has a

finite set of states it can be in. But in practice the number of possible states is unimaginably

big. As long as we do not run out of memory, a personal computer will behave as a Turing

machine. And when we do run out of memory, we can upgrade it or to buy a whole new

computer, which is not that different from glueing additional length at the end of a TM’s

tape.

A human being could look at the table that specifies a Turing machine and follow the

rules in order to perform the same computations on paper. It could be difficult to perform a

long computation without making mistakes. But it can be done, specially if redundant work

is done by several people for checking. If we look at the human mind from a computational

angle, we may question if it is more powerful than a TM. But one thing is sure. It is not

less powerful.

Can we effectively implement more powerful systems? Hypercomputation is a re-

search area that explores computing models with more power than a TM. It originates on

Turing’s (1939) idea of adding an oracle device to a TM. This oracle is a sort of black

box that computes functions that a TM cannot, like predicting if a machine will halt. We

currently do not know if such oracles can be physically implemented. If we believe the

Church-Turing thesis, we must conclude that what the oracle computes cannot be me-

chanically computed, and then the oracle machine cannot be built. But Turing used this

theoretical construct to prove that even with the help of an oracle, a TM would still have

18

a limited computing power. Therefore, despite the skepticism of some authors about the

Church-Turing thesis (Gandy, 1980; Ord, 2002), the fact remains that computer power is

limited.

Other way to transcend the power of a TM would be to stretch time, in order to perform

an infinite amount of operations without having to wait forever. This is the approach of

accelerated Turing machines (Copeland, 2002). Quantum computing holds the promise

of accelerating the execution of TMs. Some (but not all) processes that currently require

exponential amounts of operations with respect to the size of the problem could be solved in

polynomial time (see Bennett, Bernstein, Brassard, & Vazirani, 1997). This would be a very

good thing, since in actual computing exponential time usually means impractical, while

polynomial time usually means doable. It would also be very bad for banking security,

which relies on the fact that cracking their cryptography is currently believed to require

exponential time. In any case, turning infinite time into finite time would be harder than

turning exponential time into polynomial time, if achievable at all (Hodges, 2005).

There are several reasons to consider the Turing machine as the most powerful comput-

ing model that we need in order to understand what it is to model the mind as a computer.

In practice, it is the most powerful model that has been physically implemented, and there

is good reason to think there will never be a more powerful one. Skeptics about the Church-

Turing thesis have not been able to implement a more powerful system, and their theoretical

models of choice often rely on non-existing capabilities like oracles or the execution of an

infinite amount of operations in finite time.

Even if the TM was not the limit, it is a fact that there is a limit. Not only did Turing

(1939) prove that oracle machines still have limitations. As we will see in chapter 3, there

are as many mathematical functions that map input sequences to output sequences as there

are real numbers. But there are as many formal descriptions of computing procedures as

there are natural numbers. And we will see that there are much more real numbers than

natural numbers. Therefore, there are much more functions than it is possible to describe

machines for computing them. Consequently, if some model had the power to compute

19

any possible mapping from inputs to outputs, it would have to transcend the definition of

a machine that can be formally described, and therefore, would hardly correspond to the

concept of computer. This is the notion that the Church-Turing thesis captures.

Perhaps the most important reason to stick with the TM for the purposes of this work

is the links it has to logic and axiomatic systems, which will be clarified in chapter 5.

Science is transparent, in the sense that theoretical models and findings can be shared,

explained and substantiated. Arguments need to have steps, and the transition from each

step to the next has to be explicable with more than a leap of faith, except for axioms with

very strong intuitive support. Ultimately, a theory needs to make predictions. Otherwise,

it would not be possible to check if it matches observations, or to challenge it, making it

useless for science. If a model of a mental phenomenon transcended the power of TMs, its

behavior would go beyond the computable, and we would have to do without the notion of

predictions.

20

3. COUNTABLE AND UNCOUNTABLE SETS

Turing halting and Gödel incompleteness are the next stops in our journey. The former

is an important example of a problem that is clearly and formally well defined, that defini-

tively has an answer, but that answer cannot be computed. The latter shows a limitation of

axiomatic (formal-logic) systems. Undecidability of Turing halting is a stronger and more

recent result than Gödel incompleteness. Both are intimately related, but as usual, this is

not evident at first. We can still benefit from reviewing Gödel’s work, because it helps

with understanding the limitations of TMs and it will shift our focus from calculators to

theorization, which is a central topic to this work.

Before we go into those two topics, it is beneficial to talk about the cardinality of

infinite mathematical sets. The notion that there are different kinds of infinite is important

in order to understand why formalisms that can literally solve infinite different problems,

cannot solve all problems. We will talk about countable and uncountable sets, of which

natural numbers and real numbers are examples, respectively. Both are infinite. But one is

much bigger than the other.

The fundamental reason why computational power has a limit can be stated as follows.

There are uncountable ways to map input to output sequences. But there are only countable

ways to describe a machine. Therefore, there are countless input-output mappings for

which a machine cannot be described. However, let us not get ahead of ourselves.

3.1. How to define a mathematical set

What defines a mathematical set is what belongs in it. We can specify that by giving a

full list of every object it includes. Unfortunately this does not work for sets that have too

many or an infinite amount of objects in them. For those cases, we need a logical expression

that is only true of every object that belongs in the set. With that kind of definition the

cardinality of the set, which is the amount of objects it includes, is not always clear. The

set of “the 10 fastest runners in the World” clearly has a cardinality of 10. But finding the

21

cardinality of the set of “runnners that can run 100 meters in 11 seconds or less” requires

some research.

Sometimes it is not evident if there is even a limit to the amount of objects in a set.

For instance, how many prime numbers are there? In other words, how many objects are

included in the set of prime numbers? Remember that a prime number is a positive integer

number that has exactly two positive divisors1: 1 and itself. Which is the biggest prime

number? There is no such thing, because it is always possible to find a bigger prime.

Euclid’s well known proof (Euclid & Williamson, 1788, book IX, proposition 20) provides

the following argument. Take any finite set of prime numbers S. Then find number N

which is the product of all numbers in S plus 1.

N =
∏
p∈S

p+ 1

This number can be used to prove that there is at least one prime number that is not

in S. If N is prime, then trivially N is a prime number bigger than any other in S. But if

N is composite (i.e., not prime), that still means that there is a prime number not included

in S. Being a composite number it must be possible to express N as the product of prime

numbers. But none of those prime numbers can be in S, because dividing N by any prime

in S will yield the product of the other numbers in S as result, leaving a reminder of 1. The

conclusion is that given any finite set of prime numbers there is always at least one prime

number that is not included. Since no finite set includes all prime numbers, the set of prime

numbers is infinite.

While the information is there in the definition of prime numbers, a mathematical proof

was required in order to find the cardinality of the set. It gets more interesting when we

realize that not all infinite sets have the same cardinality.

1D is a divisor of N if the division N/D leaves no reminder

22

3.2. The cardinality of infinite sets

3.2.1. Natural numbers

Natural numbers N are those we use to count. A fundamental concept in them is that

of successor. Every natural number n is followed by its only successor which we call

S(n). And that successor S(n) is followed by another one S(S(n)) and so on. This can

go on forever as long as there is a beginning. There has to be a first natural number. Often

0 is considered to be the first natural number2. What identifies a natural number is how

many times the successor operator has to be applied to reach it. For instance, number 3

is different and actually bigger than number 2, because they are built as S(S(S(0))) and

S(S(0)) respectively.

This two principles, that there is a first natural number, and that every natural number

has a bigger successor, have the consequence that there are infinite natural numbers. If there

was a finite set containing all natural numbers, then a logical contradiction would occur,

because taking the biggest number in that set and finding its successor (which always exists)

would produce an even bigger natural number, that therefore cannot be in the original set,

meaning that it did not include all natural numbers in the first place.

Whether we start counting from 0 or 1 does not make a difference to natural numbers

in terms of cardinality. It is just a naming issue. Replace 1 for 0, 2 for 1, 3 for 2, etc., and

since there are always more natural numbers available, there is the same amount of them

regardless of the name of the first one.

The set of natural numbers is big enough to include an infinite amount of elements,

but small enough for its elements to be countable. That means that there is a strategy for

visiting each of them, one after the other, without leaving a single one out. It is true that

we will never have enough time to count them all. But it must be noted that any natural

number, no matter how big, will eventually be counted if enough time is given, and that

2Some mathematicians start natural numbers at 1. Whenever there is a need to avoid ambiguity, non-negative
integer numbers is used if 0 is to be included, or positive integer numbers if not.

23

amount of time is always finite. The cardinality of N is often called ℵ0 and is the “smallest”

infinite set cardinality. Sets with bigger cardinality do exist, as we will see.

3.2.2. Some subsets of natural numbers

Infinite cardinalities are not always intuitive. For instance, consider a set T which

includes every natural number and also the irrational number π = 3.14159265... Since T

has every object in N and then an additional one, intuition would suggest that the cardinality

of T is bigger than the cardinality of N. However we must remember that cardinality is

not about which elements are in a set, but about how many. A single additional element

makes no difference to an infinite cardinality, just like it made no difference whether 0 was

included in N.

Consider sets X = {©,4,5}, Y = {D,7,2}. The fact that X has objects not in Y

does not mean that X has more objects. In order to find whether two sets have the same

cardinality we need a criterion that is not based on object identities. Two sets,A andB have

the same cardinality if and only if there is a way to match objects in A with objects in B in

pairs, with no object of A or B left out. Such a pairing is possible in the previous example;

e.g,.,©–D,4–7,5–2. But it would not be possible to match X to N, because only three

natural numbers could be matched by shapes in X , leaving infinite natural numbers out of

the matching. This means that N has bigger cardinality than X .

Removing a finite amount of numbers from N does not alter its cardinality. Lets call

the resulting setM . Note that the infinite natural numbers that remain inM can be counted.

That means they can be matched to natural numbers in pairs without leaving any number

out, either from M or N. M is a strict subset of N but that does not mean its cardinality

is smaller, which would be the case if we were talking about finite sets. M has the same

cardinality as N. The same happens when adding a finite amount of numbers instead of

removing. Therefore, when infinite cardinalities are involved, it is possible for a set and a

strict subset of it to have the same cardinality.

24

−3 −2 −1 0 1 2 3
... z(6) z(4) z(2) z(0) z(1) z(3) z(5) ...

FIGURE 3.1. Matching of integer numbers and natural numbers on the number line.

In a similar fashion, adding or removing an infinite but countable amount of numbers

from a countable set does not necessarily alter its cardinality. An exception would be to

remove every number in the set, leaving an empty set. For instance, consider positive even

numbers. We can map all of them to natural numbers as follows. To every natural number

n, there is a positive even number m = 2 · n. Since there is a one to one mapping, natural

numbers and positive even numbers have the same cardinality. A similar argument can be

used to show that there are as many odd numbers as natural numbers.

3.2.3. Integer numbers

Integer numbers, denoted by Z, add zero and negative numbers to N. It turns out

that every number z in Z can be matched by a number n in N by means of the following

mathematical function.

z(n) =

 −n/2 if n is even

(n+ 1)/2 if n is odd

It works like this for the first six natural numbers.

z(0) = 0

z(1) = 1

z(2) = −1

z(3) = 2

z(4) = −2

z(5) = 3

z(6) = −3

and so on...

25

Figure 3.1 shows a graphical representation of the mapping. By plugging all natural

numbers into function z(n), all integer numbers can be generated. Odd naturals match

positive integers, and even naturals match the rest (negative and zero). It also works the

other way round. Each number n in N can be matched by a number z in Z.

n(z) =

 z · 2− 1 if z is positive

−z · 2 if z otherwise

In this case, positive integers generate odd naturals, and the remaining integers generate

even naturals. The result is that Z has the same cardinality as N.

3.2.4. Rational numbers

Rational numbers Q are those that can be expressed as a fraction of two integer num-

bers (e.g., 1
2
, 3
4
, −3

5
, 13

7
, etc.). Of the two integers, the one at the top is called numerator and

the other denominator. An alternative writing for rational numbers is an integer followed

by decimal digits (e.g., 3
4
= 0.75). Note that some numbers require an unlimited amount

of decimal digits, like 1
3
= 0.333333.... Some numbers (like π = 3.14159265...) cannot

be written as a division, meaning that they are not rational numbers. Rational numbers

are useful to measure amounts in daily life, like distances, weights, etc. Intuition would

suggest that there are more rational than natural numbers, because N is a strict subset of Q.

But we already discussed that this argument is misleading. We know that Q cannot be less

than N. But are they more? The question becomes, are rational numbers countable?

Actually, there is a strategy to count rational numbers. Consider figure 3.2. It is infinite

to the right and to the bottom, and it includes every positive rational number. The table

displays arrows showing an order for counting all rational numbers without leaving out a

single one. With that strategy, some will be counted more than once. For instance, 1
1

and
2
2

are the same number. This can be solved simply by ignoring numbers that have already

appeared in the count. Those are only positive rational numbers. We could make a similar

table for negative rational numbers. Since positive and negative rational numbers can be

26

FIGURE 3.2. Countability of rational numbers. This array includes all positive
rational numbers (some appear more than once). It extends infinitely to the right
and to the bottom. In order to build it, each number in a cell has the row number as
numerator and the column number as denominator. All numbers in the table can be
counted, starting from 1/1.
1
1

2
1

3
1

4
1

5
1

6
1

7
1

1
2

2
2

3
2

4
2

5
2

6
2

1
3

2
3

3
3

4
3

5
3

1
4

2
4

3
4

4
4

1
5

2
5

3
5

1
6

2
6

1
7

counted, the union of both sets with the addition of zero is also countable. This follows

from the same arguments used in Section 3.2.2. As a result Q has the same cardinality as

N.

3.2.5. Real numbers

We have reviewed different infinite sets, and all resulted to have the same cardinality

ℵ0, which is the cardinality of N. But bigger cardinalities are also possible. Cantor (1874),

27

proved that real numbers R are not countable, and therefore have a bigger cardinality than

natural numbers. That proof rests on concepts beyond the scope of this text. However,

he later published an article using a diagonal argument (Cantor, 1891), which is a sim-

pler strategy for proving that R is not countable. The same argument is also at the core

of Gödel’s incompleteness theorems, and Turing halting undecidability, which in turn are

fundamental for understanding the limitations of logic and computing.

TABLE 3.1. Uncountability of real numbers. If real numbers between 0 and 1 were
countable, they could be displayed on a table like this, with each natural number
associated to a real number, and not leaving out a single real number. Each number
can be written as a 0 followed by a decimal separator and an infinite series of digits
dij in which i is the row and j is the column.

Natural number Corresponding real number
0 0 . d00 d01 d02 d03 d04 d05 d06 d07 ...
1 0 . d10 d11 d12 d13 d14 d15 d16 d17 ...
2 0 . d20 d21 d22 d23 d24 d25 d26 d27 ...
3 0 . d30 d31 d32 d33 d34 d35 d36 d37 ...
4 0 . d40 d41 d42 d43 d44 d45 d46 d47 ...
5 0 . d50 d51 d52 d53 d54 d55 d56 d57 ...
6 0 . d60 d61 d62 d63 d64 d65 d66 d67 ...
7 0 . d70 d71 d72 d73 d74 d75 d76 d77 ...
... ...

The argument follows a reductio ad absurdum scheme. Assume that real numbers be-

tween 0 and 1 are countable. Then it is possible to build Table 3.1, in which each natural

number appears next to a corresponding real number. Look at digits in boldface, which

correspond to a diagonal line across digits. We can use those digits to build a new number:

D = 0 . d00 d11 d22 d33 d44 d55 d66 d77 ...

Replace each digit in this number for a different one in order to build another number

D′.

28

D′ = 0 . d′00 d
′
11 d

′
22 d

′
33 d

′
44 d

′
55 d

′
66 d

′
77 ...

D′ is not in the table, because its first digit differs from the first digit of the first number.

The second digit differs from the second digit of the second number. And so on. It differs

from every number in the table in at least one digit. But D′ is a real number between 0

and 1. This generates a contradiction, because we assumed the table already had every real

number between 0 and 1. No matter how we try to match numbers, there will always be at

least one real number between 0 and 1 left out. The conclusion is that the matching was not

possible in the first place. This means the two sets cannot have the same cardinality. What

is being left out is real numbers, not natural numbers. In consequence, the cardinality of

real numbers between 0 and 1 is bigger than that of N. Consequently, the whole of R has

bigger cardinality than N.

Cantor’s theorem states that the cardinality of a setA is strictly less than the cardinality

of its power set 2A. The power set of A is the set of all possible subsets of A. For instance,

the power set of S = {1, 2, 3} is 2S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Cantor’s theorem also works for infinite sets. So 2N is bigger than N, 22N is bigger than 2N,

and so on.

3.3. Countability of computational procedures

Computational procedures (i.e., algorithms) are infinite but countable. The universal

Turing machine (UTM, see section 2.2.4) is useful in order to see that. Remember that

we could write the description of a Turing machine (TM) on the tape of a UTM along

with input data. In other words, a description of a TM is a symbol sequence. We can

enumerate every possible sequence of that kind, and therefore every possible TM. In order

to do that, we should first count every possible symbol sequence of length 1 (only one

symbol). Then by combining every possible symbol with every sequence of length 1, we

get every possible sequence of length 2. Combinations of every possible symbol with

sequences of length 2 yield every possible sequence of length 3. We can continue this

29

strategy in order to generate every possible symbol sequence of any possible length. And

we can assign a new natural number to each new sequence we generate in the process.

The previous argument is implicitly based on the Church-Turing thesis, because we are

assuming that every effective computational procedure has a TM that performs it. But what

if we are skeptical about that? The same argument not only works for descriptions of TMs,

but also for any description that is written as a finite sequence of symbols, where symbols

are taken from a finite alphabet3.

On the other hand, the number of possible mathematical functions of integer numbers

is uncountable. This is already true for functions f that take a natural number as argument

and output either 0 or 1:

f : N→ {0, 1}

In order to see this, consider that to any such function, a subset Sf of N corresponds:

the set of natural numbers n for which f(n) is 1.

Sf = {n ∈ N | f(n) = 1}

And to each subset Sf there is a corresponding function f . So there are as many of such

functions as subsets of N. Let F be the set of binary functions of integer numbers.

F = {f | f : N→ {0, 1}}

and 2N the power set of N (the set of all subsets of N)

2N = {S | S ⊂ N}

What we have found is that the cardinality of 2N and F is the same. From Cantor’s theorem

(see section 3.2.5), the cardinality of 2N is strictly bigger than that of N, and 2N is uncount-

ably infinite. The conclusion is that F is uncountably infinite: binary functions of natural

numbers are uncountable. And since such functions are just a subset of integer functions,

3In a formal language, the alphabet is the set of symbols used for writing symbol sequences (strings).

30

the latter are also uncountable. In summary, algorithms are countable, but functions of

integer numbers are not.

31

4. TURING HALTING

Imagine you requested a calculation from a computer machine. It is a very difficult

one, so the machine is taking some time. After a few hours there is no answer. You better

let it run for the night, hoping to have a result tomorrow. But the next day there is still no

result. The machine is working intensely. Maybe the machine will never stop. Is it worth

letting it run for another day?

Turing halting problem is about determining if a machine will ever stop for a given

input. Some tasks are particularly sensitive to this issue. For instance, a machine built for

scanning signals from the sky in search of extraterrestrial intelligent life (ETIL) has the

possibility of producing a positive result, if such a signal is ever found. But it would not

be capable of producing a negative result. Failure to produce a positive result must not be

interpreted as a negative result. It could be that there is no ETIL. Or it could be that there

is and we have not been able to find it, so the scanning must go on. If we were talking

about a problem that can be formally written for a UTM, we would call it a semidecidable

problem. Theoretically, there are two possible outcomes. But only one result can inform

what the outcome is. The alternative result leaves us with nothing but uncertainty.

In a more general way, a total function produces an output for any valid input. In

contrast, a partial function only provides an output for some input instances. Modeling

the EITL scanning machine as a mathematical function clearly corresponds to a case of a

partial function (of signals from the sky). Other situations are not as clear. In general, it is

not easy to know if a total function can be found for solving a given problem.

We described the Turing machine (TM) model in section 2.2.3. In brief, it is the com-

bination of a finite-state machine, and an endless tape with a head that can read and write

symbols on it. Among physically realizable computing models, no other has surpassed its

power. A TM can be specified by means of a table (see table 2.2 for an example). Also,

there are as many TMs as there are natural numbers. We will use that fact during this chap-

ter: a TM can be identified by the natural number that corresponds to it, as long as we agree

on a strategy for numbering TMs. It is also possible to identify a TM with a sequence of

32

symbols, which works as a formal description that can be fed as input to a universal Turing

machine (UTM). A UTM is a TM with the capability of simulating any other TM that is

formally described to it (see section 2.2.4). The fact that UTMs exist, speaks eloquently of

the power of TMs. But now it is time to speak about their limitations

4.1. The Turing halting problem

The TM model was introduced to show that there are undecidable problems in mathe-

matics (Turing, 1936). This means that some mathematical problems, despite being stated

in a clear and perfectly rigorous formal language, simply do not have and will never have

a solution. The Turing halting problem is about finding a function that tells if some TM,

which we will call M , halts when its tape has input I initially written on it. Formally, the

Turing halting function h looks like this:

h(M, I) =

1 if machine M halts on input I

0 otherwise
(4.1)

Turing elegantly proved that a computable function that satisfies that specification can-

not exist. In conclusion, there is at least one mathematical function of natural numbers that

can be formally specified in a rigorous fashion, but cannot be computed effectively.

4.1.1. Undecidability proof

Given some computer program1 M and input I , an actual implementation of h shall

analyze those data and then output 1 if the result is thatM will halt on I . The other possible

case is that M would not halt on I , in which case the output shall be 0. We expect this to

work and effectively give an answer for any program/input combination. In other words,

h shall be a total function of integer numbers. In a reductio ad absurdum scheme, we will

1That is, a TM formal description for a UTM.

33

assume that h exists. Consider the following partial function, based on the total function h.

g(x) =

 0 if h(x, x) = 0,

↑ otherwise

Here the ↑ symbol means undefined which repesents not giving an answer. An actual

computer implementation of g would first calculate h(x, x). Since h is a total function, we

have no risk of waiting forever, even if it takes some time. If the result was h(x, x) = 0,

then g must also output 0 by its definition. But in the case of h(x, x) = 1 the function g is

designed to not give an answer. In order to do so, the implementation can enter an infinite

loop.

If h could be actually implemented as a computer program, then a program for g could

definitely be implemented, since the latter is a simple construction that adds an infinite loop

on top of the former. Now we can sketch Turing’s proof. Let e be the computer program

(represented by its corresponding integer number) that implements g. Does the program

e halt on input e? In other words is it true that h(e, e) = 1? There are only two possible

cases.

• If h(e, e) = 0 then by definition g(e) must output 0. But this means that g

produces an actual output on argument e, instead of working forever. In other

words, program e halts on input e. This means, by definition, that h(e, e) = 1,

which contradicts the initial statement that h(e, e) = 0. Therefore this cannot be

the case.

• If h(e, e) = 1 then g(e) must be undefined, which means program e never halts

on input e. As consequence h(e, e) = 0, which leads to a contradiction again.

Consequently, function h cannot exist. The Turing halting problem is unsolvable.

There is a naive point of view from which this could be a trivially expected result. A

simple solution attempt would be to use something similar to a UTM (see section 2.2.4) to

run a simulation of M on I . If M halts on I , the UTM simulation will eventually end. Oth-

erwise, the simulation will run forever. We would never know if the simulation just needs

34

a little more time or if it will actually never end. Is this why the Turing halting problem

is not decidable? Not quite, since running a simulation may not be the only way to tell if

the machine halts. Perhaps, by analyzing a description of the machine and its input it could

be possible to determine the halting result. But this strategy will not work either. Turing

proved that h cannot exist, regardless of whether we use a naive strategy or any other to

compute it.

4.2. Computable numbers

Since there are more real numbers than computing procedures (of which there are as

many as natural numbers), it follows that some real numbers can have their digits calculated

and others cannot. A computable number is one that can be calculated to any desired

precision, which means any desired digit of the number can be found computationally. In

other word, a number is computable if a there is a computable function that computes its

digits. One third in decimal notation is a computable number, which happens to be the digit

zero, followed by a decimal separator and then the digit 3 repeated forever (0.3333333...).

Ask me any digit of that number and I can tell you what it is. I can do that mechanically by

simply following algorithm 1.

Algorithm 1 Computes a digit of 1/3 at the given position (negative positions are before
the decimal separator)

1: procedure DIGIT(position)
2: if position < 0 then
3: return 0
4: else
5: return 3

Note that we do not need to fully know an algorithm for a number in order to know it

exists. For instance, how many human pregnancies have occurred during 19th century? It

would be difficult to accurately find that number, but it exists and it is an integer number.

So regardless of which number it is, an algorithm can be build that tells any desired digit

of it. Certainly we do not know the number, and therefore we do not know which of the

many algorithms we could build is the right one. In that sense we know the number is

35

computable, but we do not know which algorithm computes it. This does not make it less

computable.

Not only integer or rational numbers can be computed. For instance, the famous ir-

rational number π is computable, because a computational method exists for finding any

desired digit of it (Berggren, Borwein, & Borwein, 2004). Intuition would suggest that

any number is computable as long as an unambiguous definition of it is given. Turing

(Turing, 1936) used Cantor diagonalization to show that at least one definable number is

not computable.

The issue of uncomputable numbers gives us a taste of how big the problem is. It is not

only that we cannot compute the Turing halting function. Turing’s proof opens a Pandora’s

box full of an infinite amount of undecidable problems.

4.3. Consequences

4.3.1. A few undecidable problems

One important application of Turing halting is proving that other problems are also

undecidable by the strategy of reduction. If a solution to a problem P would allow us to

build a solution to the Turing halting problem, then we know that P must not have solution,

because Turing halting cannot be solved. In other words, if Turing halting can be reduced

to another problem, then the latter is undecidable. Here are some undecidable problems of

Turing machines and proof sketches.

(i) General halting: given a TM, does it always halt or is there any input sequence

that will make it run forever?

Consider machine M ′ that halts on any input if and only if machine M halts on

input I . How do we builtM ′? We program it so that it first erases whatever input

was written on the tape, then it writes I , and moves the head to the beginning

of the tape; the rest of the machine is a copy of the functionality of M ′, so that

if M halts on I , M ′ will halt. If the problem was decidable we could apply its

36

solution to M ′ in order to decide if M halts on input I . But if we could decide if

M halts on I , that would be a solution for Turing halting.

(ii) Non-emptiness of halting: given a TM, does it halt for any input at all?

Consider machine M ′ that halts on input I if machine M halts on I , and halts on

no input if M does not halt on I . In order to built M ′ we program it to check if

the input written on the tape is I . If it is, it takes the head to the beginning and

follows the program of M . Otherwise it enters an infinite loop. If the problem

was decidable, after applying its solution to M ′ we would have a solution for

Turing halting.

(iii) Finiteness of halting: given a TM, does it only halt for a finite set of inputs, or

does it for infinitely many different input sequences?

We use the same machine M ′ that we used for general halting. If machine M

halts on input I , then M ′ halts on each one of the infinite possible input se-

quences. Then by applying this problem’s solution to M ′ we would have a solu-

tion for Turing halting.

4.3.2. Undecidability of Turing machine equivalence

We must give special attention to the problem of testing if two Turing machines are

equivalent in the sense that given the same input they both give the same output. Just as

we did in the previous section, we sketch the proof that this problem is undecidable by

reducing Turing halting to it. If we could test two Turing machines for equivalence, then

we could test any given machine M for equivalence with machine M0, that never halts

because its program is no more than entering an infinite loop. This means that we would

have a solution for testing if machine M halts for any input, which is the non-emptiness of

halting problem. As we saw in previous section, if we had a solution for the non-emptiness

of halting problem, we would have a solution for deciding the Turing halting problem. And

since the Turing halting problem is undecidable, the machine equivalence problem must be

undecidable.

37

FIGURE 4.1. Computable functions are definable integer functions, which in turn
are integer functions. In the opposite direction, there are integer functions that are
not definable. Also, Turing (1936) proved that there are definable functions that are
not computable.

Integer functions

Definable integer functions

Computable functions

This fundamental result is closely related to another result from Turing’s thesis advisor,

Alonzo Church, that is known as undecidability of lambda equivalence. Actually, Church’s

was the first undecidable problem to be discovered, just before Turing halting. Lambda

calculus is a relatively simple formalism for computation that is based on functions, and

has the same power as Turing machines (Turing, 1937). Given two expressions of lambda

calculus, there is no general solution for testing if they compute the same mathematical

function (1936).

4.3.3. Not all definable functions are computable

We already knew that there are more integer functions than can be finitely defined (see

section 3.3). That is because definitions are countable but integer functions are not. We

also knew that not all integer functions can be computed, because descriptions of computer

machines are also countable, which means there are not different machines to cover them.

We did not need Turing halting to know that.

But until now this was not a problem per se. Maybe functions that cannot be defined

are useless. Maybe functions that cannot be computed would be bizarre things that we

would not be interested in. Maybe functions that can be computed are exactly those that

38

can be defined. After all, we are saying that we have no language to define those functions.

But there is still an infinite amount of functions that can be defined. Maybe definable ones

are about things that can occur in reality, and undefinable ones are just contradictory, weird

mathematical paradoxes that have no real world correlate.

Turing halting tells us that there is an actual problem. First, it shows us that the class of

definable functions is not the same as the class of computable functions (see figure 4.1). The

Turing halting function h can be precisely defined, but cannot be computed. Just like even

numbers are a subset of integers, but both sets have the same cardinality (section 3.2.3);

computable and definable functions exist in the same countably infinite amount, but the

former are a strict subset of the latter. All computable functions are definable, because

computer programs that calculate them work as a definitions. But it does not hold the other

way round: not all definable functions are computable.

Another lesson from Turing halting undecidability is that functions that cannot be

computed are not necessarily paradoxical entities unrelated to real world issues. Within

computer science, Turing halting is already a relevant issue. We wish we could provide

computer machines with the means to detect dead ended processes, so we did not waste

resources on them. But the issue transcends computer science. The machine with its input,

as an extended object in the world, is either a halting or a non halting device. The fact that

there is no general way to know which it is, even if we know everything that determines it

(the program and the input), means that there is an unsurmountable gap between what the

machine is and what we can know about it. In other words, Turing halting is an example

of a formal-logic expression that interrogates about a real world issue, but cannot be an-

swered with formal-logic rigor, even when in possession of the whole data that determines

the answer.

39

5. GÖDEL’S INCOMPLETENESS

Gödel’s incompleteness theorems are intimately linked to Turing halting. In principle,

we would not need to review them, because Turing’s results are stronger. However, as we

have already mentioned, this kind of problems can be worded in very dissimilar ways. This

time we can use that to our advantage. While Turing speaks of computer machines and

functions of integer numbers, Gödel speaks about formal logic. Taking a tour of Gödel’s

incompleteness is a good way to observe links between the limitations of computing and

those of formal theorization.

We could argue that psychological or cognitive theories are not necessarily formal in

the way mathematical theories are. Therefore, the limitations of formal theorization may

seem not apply to CTM. However, when the mind is modeled as a computer system, then

the kinds of relevant questions that we can effectively answer about it become limited, as we

saw in chapter 4. At risk of being redundant, we need to be clear about the model/object

distinction that is taking place here. Under the umbrella of CTM, a theory may not be

equivalent to a computer system, but the object under study (the mind) is assumed to be.

Therefore, even if a theory may transcend the limitations of formal theorization, the object

of study will not. Limitations originate at an ontological level from a computational nature

imposed to the mind. This would not be as big of an issue if it were not for the fact that a

cognitive scientist also has a mind. As long as we assume the mind is a computer, we are

faced with a hard choice. Either the mind of the researcher is subject to the same formal

limitations as the computationally modeled mind under study, or the former belongs to

a fundamentally different (strictly more powerful) ontology than the latter, which would

make the theory fundamentally incomplete.

As we face this problem, it is relevant to ask what we are losing when we model the

mind as a computer. Is it something we would care about when we approach research

questions in cognitive science? Or is it just a theoretical curiosity with no important con-

sequences? We need to dig deeper. And before we do, it will be beneficial to discuss what

an axiomatic system is.

40

5.1. Axiomatic systems and formal languages

In formal logic, an axiomatic system consists of a set of initial statements, which we

call axioms, and a set of logical inference rules that produce new statements from previ-

ously established ones. Both statements and rules are written as symbol sequences. In

order to do that, we need to agree on an alphabet (i.e., a finite symbol set), and a syn-

tax that determines whether an arbitrary symbol sequence is well formed. Syntax must be

computable, in the sense that there must be mechanical process which allows us to tell the

correctness of statement without ambiguity. In other words, we are talking about a formal

language. Semantics must also be computable: the process that determines the result of

applying a rule must not be ambiguous. Although it may help, understanding the rules of

of an axiomatic system is never a necessity. A TM should be able to apply the rules in order

to generate new statements. This dispensability of understanding is not unlike the intuition

captured by the Chinese room metaphor (Searle, 1980).

5.1.1. Theories and proofs

A formal theory is the set of all statements that belong in an axiomatic system. This

includes the axioms we start with, and all the statements that can be generated by applying

inference rules. Usually there is a finite amount of axioms, and an infinite amount of gen-

erated statements. In this context, a proof for a statement p is a sequence of statements that

begins with axioms, and continues as a series of statements, each of which can be formally

derived from statements that appeared before. Eventually, the proof reaches statement p,

which can only occur if p can be formally derived from axioms.

As a first example, without too much formalization, we shall use commonly known

arithmetic principles too prove that

(a+ b)2 = a2 + 2ab+ b2

The proof is in table 5.1. Note that the first statements are axioms. Each statement is

completely supported by statements that appear strictly before; except for axioms, which

41

TABLE 5.1. Proof for the statement (a+ b)2 = a2 + 2ab+ b2.

statement support
1 x2 = xx axiom: definition of squaring
2 z(x+ y) = zx+ zy axiom: distributivity of × over +
3 xy = yx axiom: commutativity of ×
4 nx = x+ x+ ...+ x (repeated n times) axiom: definition of ×
5 x = y → y = x axiom: symmetry of equality
6 if x = y and y = z then x = z axiom: transitivity of equality
7 if x = y then y can be substituted for x axiom: substitution of equals
8 (a+ b)2 = (a+ b)(a+ b) statement #1
9 (a+ b)(a+ b) = (a+ b)a+ (a+ b)b statement #2

10 (a+ b)a = a(a+ b) statement #3
11 (a+ b)b = b(a+ b) statement #3
12 (a+ b)(a+ b) = a(a+ b) + b(a+ b) statements #7, #9, #10, and #11
13 a(a+ b) = aa+ ab statement #2
14 b(a+ b) = ba+ bb statement #2
15 a(a+ b) + b(a+ b) = aa+ ab+ ba+ bb statements #7, #13, and #14
16 xx = x2 statements #1, and #5
17 aa = a2 statement #16
18 bb = b2 statement #16
19 ba = ab statement #3
20 2ab = ab+ ab statement #4
21 ab+ ab = 2ab statements #5, and #20
22 aa+ ab+ ba+ bb = a2 + 2ab+ b2 statements #17, #18, #19 and #21
23 a(a+ b) + b(a+ b) = a2 + 2ab+ b2 statements #6, #15, and #22
24 (a+ b)(a+ b) = a2 + 2ab+ b2 statements #6, #12, and #23
25 (a+ b)2 = a2 + 2ab+ b2 statements #6, #8, and #24

are accepted without proof. Also note that the last statement is the theorem, which is the

statement that we wanted to prove. The fact that it appears at last indicates that it was

successfully proved, meaning that the theorem can be effectively generated by arithmetic

theory. Figure 5.1 graphically displays how the axioms support the theorem. A proof

in a theory corresponds to a formula in which all statements of the proof appear joined

by conjunction (logical and). The proof in table 5.1 corresponds to the big formula that

results from orderly writing its 25 statements, one after the other, joined by the logical and

operator.

42

FIGURE 5.1. Diagram for derivations of statements in table 5.1. An arrow from A
to B should be read “A supports B”. Circles represent axioms, and rectangle repre-
sent other statements. Note that each rectangle statement is supported by statements
on the left and/or axioms.

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[x2 = xx] AND [z(x+ y) = zx+ zy] AND [xy = yx]AND...

Not only the last statement (the theorem) has been proved true. Each intermediate

statement has been also proved true, because each one is either an axiom of arithmetic, or

is justified by previously proved statements. This big formula is the conjunction of true

statements, and therefore is true as a whole, which is relevant for Gödel’s argument: in an

axiomatic system a proof can be written as a single big true formula of the theory.

5.1.2. The natural number system

Dedekind–Peano system (Peano, 1889) is an important formalization of natural num-

bers. It has the following axioms, in which x, y, and z are natural numbers.

43

(i) 0 is a natural number.

(ii) Equality is reflexive: x = x

(iii) Equality is symmetric: if x = y, then y = x.

(iv) Equality is transitive: if x = y and y = z, then x = z.

(v) Natural numbers are closed under equality: if x = χ, then χ is a natural number.

(vi) S(x) (the successor of x) is also a natural number.

(vii) S is an injection: x = y if and only if S(x) = S(y).

(viii) No natural number has 0 as its successor: S(x) = 0 is always false.

(ix) Axiom of induction: if the two following conditions hold

• K contains 0,

• n being in K implies S(n) is also in K

then K contains every natural number.

Note that some axioms are actually inference rules, in the sense that they can be used

to deduce a statement from others. For instance, rule 4 allows us to produce the statement

x = z each time we have both x = y and y = z already in our theory. With the Peano

system we can easily prove that 3 is a natural number, which in its formal language would

be written S(S(S(0))). First we apply rule number 1, and then we repeatedly apply rule 6

as many times as needed.

• Step 1. Axiom 1. 0 is a natural number.

• Step 2. Axiom 6. S(0) is a natural number.

• Step 3. Axiom 6. S(S(0)) is a natural number.

• Step 4. Axiom 6. S(S(S(0))) is a natural number.

Other proofs can be more involved. For instance, what is the result of summing all

natural numbers up to n? We will first do a few instances.

• n = 0: 0 = 0

• n = 1: 0 + 1 = 1

• n = 2: 0 + 1 + 2 = 3

• n = 3: 0 + 1 + 2 + 3 = 6

44

• n = 4: 0 + 1 + 2 + 3 + 4 = 10

After a few trials, we could observe that the following formula seems to work well:

n∑
i=0

i =
n(n+ 1)

2

It does work for n up to 4. But does it work for all natural numbers? The axiom of induction

(axiom 9) allows us to prove that indeed it does. We will, of course, need to assume the

notion of addition, which can be included as additional axioms1. LetK be the set of natural

numbers for which the formula works. We first test that n = 0 is in K.

0∑
i=0

i =
0(0 + 1)

2
= 0

The first condition of axiom 9 holds: 0 is one of the numbers for which the formula works.

Now, we shall see if the second condition holds. If n is in K, does that imply that S(n)

is also in K? In other words, if the formula works for χ, does that imply that it works for

χ+ 1? As the question indicates, we shall assume that the formula works for χ, and see if

that assumption leads us to the conclusion that it works also for χ+ 1. Our assumption is

χ∑
i=0

i =
χ(χ+ 1)

2
(5.1)

This assumption may have the same form as the formula we want to prove. But meanings

are different. We want the formula to work for all natural numbers. But we are only

assuming here that it works for a single number χ. We use letter χ instead of n to remind

us of that. We know that the sum up to χ + 1 is equal to the sum up to χ plus the next

number, which is χ+ 1.
χ+1∑
i=0

i =
(χ∑
i=0

i
)
+ (χ+ 1)

=
χ(χ+ 1)

2
+ (χ+ 1)

1The reader can verify that the two following axioms are sufficient: (1) a+0 = a, and (2) a+S(b) = S(a+b).
For simplicity, the next few paragraphs will rest on intuitive knowledge the reader already has about addition.

45

This conclusion holds, because we are assuming equation 5.1. We will work with this

expression, using what we know about how addition formally works.

χ(χ+ 1)

2
+ (χ+ 1) =

χ(χ+ 1) + 2(χ+ 1)

2

=
(χ+ 1)(χ+ 2)

2

=
[χ+ 1]([χ+ 1] + 1)

2

In conclusion
[χ+1]∑
i=0

i =
[χ+ 1]([χ+ 1] + 1)

2

As we have just shown, the assumption that the formula works for χ causes it to also work

for χ + 1. In other words, the second condition of axiom 9 holds. Now we have checked

that its two conditions are true. Therefore, we are allowed to also hold the following true:

K includes all natural numbers. In this case, this means, all natural numbers belong to the

set of numbers for which the formula works.

5.2. Hilbert’s program

Although interest on axiomatization has and old history in mathematics (Ball, 2010),

axiomatic systems gained special relevance on 19th century. The Dedekind–Peano sys-

tem we just presented is an emblematic example. The success of axiomatic systems was

followed by a crisis as early 20th century mathematicians asked themselves whether all

mathematics could be formulated rigorously (Kleene, 1952). Metamathematics became a

first class concern.

Hilbert’s program was a response to the crisis, and a sign of how highly valued axiom-

atization was. It demanded to base mathematics on a formal, complete, and consistent ax-

iomatic system. In other words, it was expected from mathematics that its statements could

be expressed within a formal system with precise manipulation rules for symbol sequences,

that all true statements could be proved within the system, and that no contradiction could

be generated (as in Russell’s paradox, discussed in section 6.3). An important requirement

46

was that of decidability: there shall be an effective method (i.e., a TM) to assess the truth

value of any statement in mathematics.

It is commonly believed that Gödel’s incompleteness theorems have rendered Hilbert’s

program impossible. Nevertheless, this is still controversial. It is unanimous that the find-

ings of Gödel and his contemporaries have a deep meaning, but it is not clear which would

that be (Dawson, 2006; Pekonen, Franzèn, & Mar, 2007).

5.3. Gödel’s incompleteness

Gödel’s first incompleteness theorem (Gödel, 1931) includes several technical details.

Despite that, its proof is based on a relatively simple idea. It is about a statement that we

will call G, and that expresses the following.

G : “Statement G cannot be proved within the formal system F ”.

It is important to note that symbol G appears within statement G. In other words, the

statement refers to itself.

We will first assume that G is false in F . This means that its negation is true, which

would read as “statement G has a proof within F ”. If we take that literally, it means G is

true within F (because it has a proof). But this contradicts our initial statement that G is

false. The consequence is that F is an inconsistent theory, because it includes both G and

its negation. According to the explosion principle, this means that any statement that can

be written in the theory can be proved true and false at the same time, which renders the

whole of F useless.

Now, if we assume instead that G is true in F , this literally means that G cannot be

proved within F . Therefore, F is an incomplete theory; because there is a statement G

which is true in F , but cannot be proved within F . From these two attempts we see that

the theory must be either incomplete or inconsistent, it cannot be complete and consistent

at the same time.

47

The previous argument only works if the language of F is expressive enough to write

such a proposition as G. It would be unfair to accuse a theory of being incomplete because

it cannot prove a statement it will not state in the first place. Incompleteness only occurs

when a theory provides “enough language” to write a statement, but not the capability of

assessing its truth value. Gödel’s proof shows that if a theory is capable of expressing

basic arithmetic facts (i.e., by including the Dedekind-Peano axioms), then it is capable of

formally encoding G. The first incompleteness theorem can then be stated as follows.

“Any effectively generated theory capable of expressing elementary

arithmetic cannot be complete and consistent at the same time.” (Kleene,

1967)

In order to show that a theory that includes arithmetic can encode G, Gödel assigns

a natural number to each syntactically correct statement that can be written within the

theory. Intuitively, this can be accomplished by orderly generating each possible symbol

sequence (remember that the system has a finite alphabet) and checking each time whether

the formula is syntactically correct. The first correct formula will be assigned number 0.

And each time a syntactically correct formula appears, the successor of the last assigned

number will be assigned to it. Although this numbering strategy is not exactly the same

that Gödel used, what is relevant is that each correct logical formula can be assigned a

unique natural number. A proof is also a formula. We can construct the formula of a proof

by orderly taking the formulas for all its steps, and joining them by logical conjunction

(logical and operation). Therefore a proof also has a natural number. By means of Gödel’s

coding, the statement “G has a proof in F ” becomes an arithmetic relation involving the

Gödel number of that statement. The relation states that a Gödel number for the proof of

G exists. By negating the previous statement, and finding its Gödel number, we get G

expressed within natural number arithmetic.

48

6. CONSEQUENCES OF GÖDEL’S INCOMPLETENESS

6.1. Consequences for axiomatic systems

6.1.1. There is no proof of arithmetic consistency in arithmetic

After Gödel’s proof of the first incompleteness theorem, it was soon discovered that it

had the following unsettling corollary (Formica, 2011; Gödel, 1931): an axiomatic system

powerful enough to include arithmetic cannot prove its own consistency. This is known as

Gödel’s second inconsistency theorem. The sketch of the proof rests on the fact that, just

like arithmetic allows as to build a formula for G, it also allows us to build one for

Cons(F) : “System F is consistent”.

The same statement resembles G more closely if we express it this way

Cons(F) : “Statement 0 = 1 cannot be proved within F ”.

An inconsistent system can prove any formula true, ex falso quodlibet, and in particular it

can prove that 0 = 1. Now, if F could prove Cons(F), it would mean that contradictions

cannot be derived from F . Therefore the negation of G cannot be derived, because it leads

to a contradiction, as we previously saw. This sounds a lot like a proof of G. After a few

technicalities, that is the case: if F can prove Cons(F), it means that F can prove G.

But we know that from the first incompleteness theorem that this is false. By reductio ad

absurdum, we must conclude that F cannot prove Cons(F).

6.1.2. There is no definition of arithmetic truth in arithmetic

Tarski’s undefinability theorem (Tarski, 1936; Murawski, 1998) uses methods in Gödel’s

first theorem to prove that a theory that includes arithmetic cannot include a definition of

truth. As consequence, a definition of truth sits at a metatheoretical level with respect to

such a theory.

49

In a formal theory, a definition of truth would be a formal relationship that only holds

true when applied to a true formula. This is analogue to a machine that can orderly be

fed the symbols of a formula as inputs and that outputs whether the formula is true after

mechanical processing.

True(g(A))↔ A

Here, A is a formula, and g(A) is the Gödel number that identifies it1. Let T be the set of

all natural numbers n for which True(n) holds. This means

True(n)↔ n ∈ T

Once again, details require careful mathematical treatment, but a sketch of the proof is

beautifully intuitive. If True(x) was a true statement in system F , then the inverse state-

ment could be proved in F by simply adding the negation symbol ¬ in a way that does not

change the truth value.

¬True(n)↔ n 6∈ T

In other words, a formula like True(n) would not only be a device for testing if a formula is

true in F , but would also implicitly allow us to build a complementary device for testing if a

formula is false in F . As a result, any formula could be effectively tested either true or false,

which would make the system complete. The first incompleteness theorem proved that this

is not the case. In other words, True(n) cannot exist as a definition in F , because that

definition would always tell if a given formula is true, but we have just seen (in section 5.3)

that we cannot always tell.

We should note that Tarski’s proof does not only apply to theories that include arith-

metic. Actually, it applies to any theory that includes negation and has enough self-

referential capabilities to write formulas that refer to other formulas in the system. De-

velopments on the limitations of logic by Tarski (1936), Church (1936), Turing (1936,

1937), Post (1936, 1944), and others, stand on the shoulders of Gödel’s (1931) work. A

1Remember that any sequence of symbols can be assigned a natural number (see sections 3.3, and 5.3).

50

fundamental step was Gödel’s use of the diagonal method, which was later made more ex-

plicit by Carnap (1934; 2009) and Kleene (1938, 1952). All those developments, owe a lot

to Cantor (Cantor, 1891), and the diagonalization strategy he used to prove that there are

more real numbers than natural numbers2.

6.2. Relationship with Turing halting

Turing halting involves a machine that tries to answer a question about another ma-

chine; and the critical issue in the proof involves a program that self-referentially asks

about its own halting. A machine for Turing halting has the flavor of a proof for the self-

referential Gödel’s statement. The relationship between the results of Gödel and Turing is

so intimate that Kleene (1952) and Penrose (1994) managed to, anachronically, state the

first incompleteness theorem in terms of Turing halting. Penrose’s version is as follows.

“Suppose A is a Turing machine which is such that whenever A halts on

an input (q, n) then Cq(n) does not halt. Then for some k, Ck(k) does not

halt, yet A does not halt on (k, k). In other words, if the halting of A is

a sufficient condition for the non-halting of Turing machines then it is not

a necessary condition for that; still more briefly: soundness of A implies

incompleteness of A.”

A formal system has the property of being sound if it only proves true statements3. Pen-

rose’s wording of the incompleteness theorem highlights it’s relationship to Turing halting

through soundness. Since the halting of a TM can be written as a statement in arithmetic,

a sound theory must not always be able to deduct whether a given machine–input pair

halts. If it always did, that would contradict Turing’s undecidability theorem. As we saw

in chapter 4 this would produce contradictory (i.e., false) statements, which would in turn

contradict the soundness of the theory. Therefore, in order to correctly capture the fact that

sometimes a TM’s halting cannot be decided, a sound theory must be incomplete.

2Although he had proven the same before using a different argument (Cantor, 1874)
3More precisely, a formal system is sound if it only proves formulas that are true under any possible assign-
ment of meaning to its symbols.

51

Turing himself commented on Gödel’s work in his 1936 paper, giving perhaps the most

accurate and straightforward interpretation of Gödel’s incompleteness theorems.

“Gödel has shown that (in the formalism of Principia Mathematica), there

are propositions A such that neither A nor its negation4 is provable. On the

other hand, I shall show that there is no general method which tells whether

a formula A is provable in the Principia Mathematica5.”

Let us imagine for a moment that Gödel was wrong, meaning that every logic statement

could be formally proved either true of false, no statements being left out of having a

systematically assigned truth value. There would be no need to ask which statements can

be given a truth value, because answer would always be a trivial yes. As Turing points out,

a machine could be built to consecutively prove all provable formulae, eventually reaching

either A or its negation. In the first case we would know A is provable. In the second we

would know it is not. End of story. But after Gödel proved that some statements simply

could not be effectively given a truth value, things got more complicated. Now we know

there is no guarantee that the machine will ever stop, because a real possibility exists that

neither A or its negation will ever be deduced.

It would have been sensible to believe that any sound formal question could be an-

swered in the future, even if it is a very distant future, if enough effort is put to it. Of course

we can accept that there are also paradoxes which are not worth the effort. But we could

have thought that those are special cases that can be easily identified and disregarded. Un-

fortunately there are very reasonable formal questions that simply do not have an answer,

not one that can be effectively proved correct at least. Those are more than the ones that

can be answered. And the general situation will be that when a formal question has not

been answered, it will not be possible to tell whether it is because more effort is needed or

because an answer does not exist.

The fact that Turing’s approach involves a machine gives Gödel’s work a little bit

of materiality. The issue of Turing halting undecidability corresponds to the following
4Actual wording in Turing’s paper is “such that neither A nor –A is provable”.
5In the original text, Turing uses letter K instead of the words “the Principia Mathematica”

52

material world issue. Physically realizable machines have the means to process symbolic

representations of questions about machines (including themselves), and in many cases, are

bound to fail in finding an answer.

6.3. Implications for logic language

Late 19th century efforts for giving mathematics the rigor of arithmetic soon found dif-

ficulties in the form of paradoxes in set theory. Cantor’s work on infinite cardinalities lead

to the construction of a set of cardinal numbers. It included ℵ0, the cardinality of natural

numbers, ℵ1, the cardinality of real numbers, and went on an on with as many members as

there are natural numbers. Cantor realized that if a set existed that could include all cardinal

numbers, then it would be missing a cardinal number, which is a contradiction. The fact

that this well defined set could not exist was a red alert for set theorists.

Later the famous Russell’s paradox was discovered (Rang & Thomas, 1981). It focuses

on the following set.

R = {x | x 6∈ x}

R is the set of all x such that x is not a member of x. Although it seems like a weird

definition, and already smells like contradiction, the issue is that the criterion for belonging

to this set is a syntactically correct logical expression, and there is no a priori reason that

prevents it from having a truth value for a given set x. We could even suspect that the value

is always false, since there does not seem to be a way to make x a member of itself. This

would be no problem, because it would only mean that no object satisfies the criterion,

and therefore R would be just the empty set. The problem appears when we ask if R is

a member of R. Once again a strange question, but syntactically valid. If the answer is

yes, then R ∈ R, which means R does not satisfy the criterion for belonging to R, which

in turn means R 6∈ R. We reached a contradiction. No surprises here; R ∈ R was a

strange proposition anyways. So what if the answer is no. That means that R 6∈ R, which

means that R does satisfy the criterion for belonging to R, and therefore R ∈ R. Another

53

contradiction. In consequence,

R ∈ R ⇐⇒ R 6∈ R

This result concerned Frege (1893), who expressed the following reaction.

“Is it always permissible to speak of the extension of a concept, of a class?

And if not, how do we recognize the exceptional cases?”

This questions are not too different than the ones that later would be answered negatively

by Gödel and Turing respectively. Frege concerns were well placed because an undealt

inconsistency in set theory was an inconsistency in what was being proposed and built as

a foundation for the hole of mathematics. This would trivialize the field by making every

statement true and false at the same time. Fortunately, there are ways to deal with Russel’s

paradox, the simplest of which is to impose the requirement that the definition of a set can

only refer to sets that already exist.

Gödel’s statement bears a resemblance to Russell’s paradox.

G : “Statement G cannot be proved within the formal system F ”.

This is not a coincidence, since both are applications of Cantor’s diagonal argument. How-

ever, at the time Russell’s paradox was discovered, Gödel’s statement would have not been

considered a problem, because it would have been considered non-sensical that the symbol

for a proposition was contained in the proposition itself. And also, it was expected that

solving Russell’s paradox would rule out this kind of expressions. Wittgenstein (1921)

takes note of this understanding of early 20th century logicians as follows.

“No proposition can say anything about itself, because the propositional

sign cannot be contained in itself (that is the ‘whole theory of types’).”

But the whole point of Gödel’s proof is to show that arithmetic has the power to encode a

reference to a statement in the same statement. Just like had happened before with Russell’s

54

paradox, there was a distance between intuitive meaning and the possibilities of formaliza-

tion. We know the rest of the story: G can be formalized in arithmetic, and we are reviewing

the consequences of that.

We can learn two things from this story. The first is that Cantor’s diagonal arguments

is the source of all kinds of beautiful paradoxes. The second is that the meaning and

consequences of these issues strongly challenge intuition, in such a way that even early

20th century mathematicians struggled to understand them. This explains why, as we will

see next it is easy to underestimate or misinterpret its consequences for psychology.

55

7. PSYCHOLOGICAL INTERPRETATIONS OF INCOMPLETENESS

7.1. Piaget’s reaction to Gödel’s theorems

In Structuralism, one of his late works, Piaget (Piaget, 1970) presented an organized

perspective of his approach to intelligence, and made a brief mention to Gödel’s incom-

pleteness. The relevance of this is that Piaget had already published works with deep roots

in algebraic structures when Gödel’s proof was published. Taking in consideraton that

incompleteness touched the core of his theoretical framework, he reacted in a rather opti-

mistic way. In his view, the fact that formal knowledge structures are incomplete makes

them constantly open. Since a theory cannot complete itself, it will eventually need to

resort to a stronger theory that completes the previous one, but has an incompleteness of

its own. In this way, incompleteness would constantly drive development in consistency

with Piaget’s constructivist view. As we know from the second incompleteness theorem

(section 6.1.1), there is no proof of consistency inside arithmetic. Piaget (Piaget, 1970)

had learned that Gentzen managed to prove the consistency of arithmetic from outside by a

“stronger” formalism. This served as a base for proposing that incomplete formal structures

call for stronger ones in order to overcome their incompleteness.

Piaget’s reaction to Gödel suffers from a few problems. In some important sense prim-

itive recursive arithmetic (PRA), the “stronger” system that Gentzen used for the proof,

is not stronger, nor weaker, but actually comparable (Weyl, 1921). We should also note

that the proof is subject to the consistency of PRA. If PRA was not consistent, it would

prove anything it can express, including the consistency of arithmetic and its inconsistency

at the same time, which proves nothing. In this sense, instead of proving the consistency

of arithmetic, Gentzen’s proof links it to the consistency of PRA. Additionally, there is the

question of what drives the development of simpler structures that are not powerful enough

to be incomplete. Finally, when a formal structure reaches the limit of a UTM’s power, how

can it further develop? We can shed some light on these issues by realizing that a formal

structure that is maxed out in power to a UTM level, can still evolve to better adaption,

56

because what determines adaption is not a position in a hierarchy of theoretical strength,

but the adequacy of the actual definition of the structure.

7.2. Did Wittgenstein misunderstand Gödel?

Here is a paragraph from Wittgenstein (Wittgenstein, von Wright, Rhees, Anscombe,

& Anscombe, 1978) on Gödel’s incompleteness.

I imagine someone asking my advice; he says:“I have constructed a proposi-

tion (I will use ‘P’ to designate it) in Russell’s symbolism, and by means of

certain definitions and transformations it can be so interpreted that it says:

‘P is not provable in Russell’s system’. Must I not say that this proposition

on the one hand is true, and on the other hand unprovable? For suppose

it were false; then it is true that it is provable. And that surely cannot be!

And if it is proved true, then it is proved also true that it is not provable.

Thus it can only be true, but unprovable.” Just as we can ask, “Provable in

what system?”, so we must also ask, “True in what system?” “True in Rus-

sell’s system” means, as was said, proved in Russell’s system, and “false”

in Russell’s system means the opposite has been proved in Russell’s sys-

tem.—Now, what does your “suppose it is false” mean? In the Russell sense

it means, “suppose the opposite is been proved in Russell’s system”; if that

is your assumption you will now presumably give up the interpretation that

it is unprovable. And by “this interpretation” I understand the translation

into this English sentence.—If you assume that the proposition is provable

in Russell’s system, that means it is true in the Russell sense, and the inter-

pretation “P is not provable” again has to be given up. If you assume that the

proposition is true in the Russell sense, the same thing follows. Further: if

the proposition is supposed to be false in some other than the Russell sense,

then it does not contradict this for it to be proved in Russell’s system.

57

This paragraph has been perceived as a rejection of Gödel’s mathematical proof (Hintikka,

2000), starting a debate that suggests that Wittgenstein misunderstood incompleteness.

Gödel himself was not fond of Wittgenstein’s comment and reacted with strong criticism

(Bays, 2004). Floyd and Putnam (Floyd & Putnam, 2000) made a compelling defense of

Wittgenstein, claiming that it is the latter who has been misunderstood. They hold that

Wittgenstein made an important philosophical contribution to the understanding Gödel’s

incompleteness. The source of confusion seems to be the wrong assumption that Wittgen-

stein rejected the mathematics of Gödel’s incompleteness. Instead, the actual target of his

criticism was philosophical remarks made by Gödel and others (Floyd & Putnam, 2000;

Bays, 2004).

Wittgenstein rejects a common interpretation of Gödel according to which incomplete-

ness means that there are true statements that cannot be formally proven. The important

part here is that statements are assumed to be true. This interpretation originates from a

direct reading of Gödel’s sentence

G : “Statement G cannot be proved within the formal system F ”.

G speaks about itself. It can be expressed in system F but it causes problems whether it is

true or false1. Therefore Wittgenstein is right in criticizing an interpretation that assumes

that G is true. In which sense would an unprovable G be true? Not in the sense that it has

been formally proven, because it has not. Nor in the sense that it satisfies a definition of

truth, because it does not exist in F , following Tarski’s undefinability. We have to look for

a truth value for G beyond the limits of F . And if we find it, that does not guarantee that G

is true unless the system F ′ we use to prove it is consistent itself. And we fall in the same

problem again, either F ′ can prove its own consistency or we have to search for a proof

outside F ′.

What happens here is that formal criteria for truth in axiomatic systems were expected

to have enough reach to either prove or disprove any statement in the system. But in F , not

all statements can be reached so to assign them a truth value that agrees with those criteria.
1See chapter 5 and section 6.1.2 for details.

58

Consequently, the wordings of Turing (section 6.2) and Hofstadter (Hofstadter, 1980) are

cleaner: consistent axiomatizations of number theory include undecidable propositions.

7.3. Lucas-Penrose interpretation of Gödel

Lucas (Lucas, 1961) has used Gödel’s incompleteness to lay down an argument against

mechanism in congnitive science.

[...]We now construct a Gödelian formula in this formal system. This for-

mula cannot be proved-in-the-system. Therefore the machine cannot pro-

duce the corresponding formula as being true. But we can see that the

Gödelian formula is true: any rational being could follow Gödel’s argument,

and convince himself that the Gödelian formula, although unprovable-in-

the-system, was nonetheless—-in fact, for that very reason—true. Now any

mechanical model of the mind must include a mechanism which can enun-

ciate truths of arithmetic, because this is something which minds can do: in

fact, it is easy to produce mechanical models which will in many respects

produce truths of arithmetic far [259] better than human beings can. But in

this one respect they cannot do so well: in that for every machine there is a

truth which it cannot produce as being true, but which a mind can.

An equivalent position has been presented by Penrose (Penrose, 1994, 1999). One

could easily agree with the conclusion and be satisfied enough to overlook a fundamental

flaw in the argument. One thing is to say that Gödel’s sentence could be true. A different

one is to claim that it is undoubtedly so. Then the question is, does Lucas sufficiently sup-

port that Gödel’s sentence is true? He briefly provides two separate pieces of justification.

First, he argues that it is what “any rational being” would think, which has to be disregarded

as an ad populum fallacy. Second, he says that Gödel’s sentence is “unprovable-in-the-

system”, which is by definition what Gödel’s sentence means. This is a piece of circular

reasoning that can be uncovered by asking, how does Lucas know that the sentence cannot

be proved in the system? Because he said it at the beginning. With this, Lucas introduces

59

an important difference with respect to Gödel’s incompleteness. Gödel did not introduce an

a priori statement holding thatG is not provable in F . This is why Lucas can say something

that Gödel could not. If Gödel introduced such a fact initially in order to build his proof, he

could be accused of already assuming something that should be proved. And how would he

formalize it? In Lucas’ language it has the appearance of being a harmless statement. But

formally it would involve including G as a true fact, therefore trivially proving G which

means “proved-in-the-system”. As a result, the system would be inconsistent instead of

incomplete.

Gödel did not prove that the sentence is true. Instead he proved that the sentence can

be formally written in arithmetic. This leads us to the main issue: why does Lucas believe

that Gödel’s sentence is obviously true? By the arguments at the end of section 7.2, we

must insist that this is a wrong assumption. But this important issue still requires a little

more attention

7.4. The “truth” of Gödel’s sentence

A possible source of confusion is the belief that, in an axiomatic system, any statement

must be either true or false, excluding any other possibility. It is a reasonable belief. But

now that we are aware of Turing halting, the second incompleteness theorem and Tarski’s

undefinability, we should consider a third option: a truth value may not not correspond to

a statement. We now can explore three instead of two possibilities.

(i) Gödel’s sentence is false. As we have previously seen, this derives in the conse-

quence that the theory under analysis is inconsistent.

(ii) Gödel’s sentence is true. We have reviewed a few arguments against this pos-

sibility (sections 7.2, 6.1.2, and 6.2). Note that this case does not invalidate

Tarski’s undefinability theorem. Therefore, if Gödel’s sentence is true, then there

is no definition in the system for that truth, in a very Russell paradoxical way.

Then, under which definition could we arrive at the conclusion that the sentence

is true, if we have not discussed any other system?

60

(iii) That Gödel’s sentence is neither true nor false. This alternative seems to produce

no contradiction.

The third possibility seems to be the interpretation of Turing, Wittgenstein, and Hofstadter.

And there is a good reason for it. TMs will allow us to give the problem some materiality.

First, assume for a moment that arithmetic is consistent and sound. If we programmed

two UTMs with the axioms and inference rules of arithmetic, a positive one with the task

of proving G, and a negative one with the task of disproving G, none of them would halt.

The positive one could not halt because in that case it would have proven that its meth-

ods are not strong enough for it to reach a halting state (incompleteness). The negative

one could not halt, because that would prove that the positive one would halt, and we al-

ready dismissed that possibility (inconsistency). We still have the possibility of giving up

hope for consistency: both machines would halt, and arithmetic would be useless until we

successfully find a way to repair inconsistencies.

But let us not give up hope yet. What if arithmetic is consistent but not sound? Then

the positive machine would be allowed to halt even though that would theoretically prove

that it cannot halt. And the negative machine would be allowed to halt, even if that speaks

wrongly about the halting of the positive machine. We have three cases to analyze.

(i) Both machines halt. Then arithmetic does not only lack soundness but also con-

sistency, because its axioms allow to mechanically prove G and its negation.

(ii) Only the positive machine halts. Then it proves G, and at the same time it

wrongly proves the statement that the positive machine cannot halt, which does

not matter because we abandoned soundness. But also this provides the arith-

metic proof of G that G states not to exist. This contradiction occurs regardless

of the fact that the negative machine does not halt, since soundness is no longer

required. Once again, arithmetic results to be inconsistent.

(iii) Only the negative machine halts. Analogue to previous cases, this proves the

negation of G, from which we can prove G. Therefore arithmetic is inconsistent.

61

Our only alternative before giving up the consistency of arithmetic is to accept the possi-

bility that none of the machines halt. In other words, the axioms of arithmetic do not have

the effective power to assign a truth value to G.

Someone could say “that situation is exactly what G means, therefore it is true!”. If

we were to give a name to this proof method it would have to be proof by common sense.

Lucas and Penrose are right in this: common sense strongly suggests thatG is true. But they

are not considering that common sense is not 100% bullet proof. It is precisely this kind

of common sense about formalizations that often proves to be deceiving. It is what lead

Wittgenstein and his contemporaries to hold that statements like Gödel’s sentence could

never be formalized, and what lead early proponents of a naive set theory to think that it

roots in formal logic would protect it from contradictions (see section 6.3). The Lucas-

Penrose argument suggests that formal proof and common sense are capable of granting

the same type of truth, only that the latter can do so in some cases the former cannot (e.g.,

Gödel’s sentence). But common sense and formal proof are not tied together so strongly.

More often than not, formal truth is not good enough for common sense, and common

sense truth is not good enough for formalization, simply because they can disagree.

Considering this situation, our next step is to explore what happens when some state-

ments have no truth value in an axiomatic system.

62

8. KNOWLEDGE IN AN INCOMPLETE SYSTEM

A good theory of any phenomenon must make predictions that are consistent with

observations. In that sense, the statements it produces must be true to empirical data. In a

traditional dichotomous view of truth, the only other possibility is that a statement is false.

Just like true statements, false ones can be analytically predicted to be so by a theory, or be

determined by observation.

Let’s add the results of Gödel and Turing to the discussion, as Turing clearly summa-

rizes them (section 6.2). We will call those findings the Gödel–Turing limit. They point

to an insufficiency of dichotomous truth at an epistemic level: it is impossible to know the

truth value of some statements regardless of the amount of finite empirical data available

or the amount of effort devoted to it. This occurs because theories with enough power to

express arithmetic become capable of self-reference, and some self-referential statements

become formally problematic both if they are true or if they are false. Not all and not only

evidently self-referential statements take part in this issue. Statements about the consis-

tency of a theory, a definition of truth for it, and others we will later see, are also dragged

into the problem.

Turing halting provides an example of a physically realizable object that has one of two

mutually exclusive properties (it either halts or not), and would definitely behave according

to the one it has if extended in space–time. The problem is not that the value of the property

does not exist. The problem is that, even though it definitely exists, and even if we have all

the information that determines its value, it is not possible to know it.

8.1. Truth values and world facts

Dichotomous truth values allow us to abuse language speaking of what is true and what

we can know to be true, as if they were the same. In principle, this should work because a

one to one mapping between true facts of the world and provably true statements is highly

hoped to exist. Observations support that logic structures capture the way facts work in the

world. Direct experience suggests that things cannot be and not be at the same time. Also

63

that patterns like mathematical equality, conjunction, disjunction, implication, etc., are true

to what actually happens. History suggests that whenever formal structures fall short of

capturing the way world facts work, or create trouble with themselves, a solution can be

worked out so that better figures of the world can be built with higher hopes of finding a

one to one mapping.

What we are talking about is a fundamental metatheoretical issue. The whole point of

theorization is that we do not need to limit ourselves to observable facts. We can model

the way facts work, record what we observe, process, and predict. As a consequence,

we can alter our behavior in order to produce the results that better serve our goals and

access a kind of understanding about how things work. A one to one object–theory formal

relationship is a stronger hope than just being able to theorize. It holds the promise of the

ultimate control over the world. Even if recording enough facts proves to be difficult, or the

processing happens to be way too resource–hungry for practical use, it would be reassuring

to keep the hope that it could be done.

We want theories to be correct in the sense that what they predict ends up being what

actually happens. A relaxed statement of this hope is that we want theories to correctly

predict what hapens most of the time, with high enough success rate for us to base decisions

on an assessment of risks. This would allow us to obtain a favorable outcome most times,

so that the global balance is positive with good enough certainty: we loose some battles

but we win the war. However, we should note that this does not take us away from a

dichotomous truth model. For this relaxed strategy to work, we need a means to calculate

the true probability of each possible outcome. In other words we need a TM to prove

statements of this kind.

“The probability for outcome A is strictly bigger than 95%”.

Fortunately we have an excellent example in probability theory and statistics which are

widely used today in scientific research. Take confidence intervals for instance. We grab

a data set, and then we use the axiomatic system of classic inferential statistics (or a TM /

stats software) to prove a statement like the following.

64

“Given dataset D, a confidence interval at a γ confidence for variable X ,

assuming a probability distribution f(x), is xlower to xupper” .

The women dataset provided by the R statistical software records height and weight data

for 15 US women, taken from the 1975 World Almanac and Book of Facts. The statement

becomes:

“Given dataset women, a confidence interval at a 95% confidence for vari-

able height, assuming a probability distribution t(x, df = 14), is 62.5 to

67.5 inches.”

The theory is not directly saying that 95% of women at that time and place were expected

to be between 65.5 to 57.5 inches. That is our use of the theoretical result, which should

consider whether data recording methodology is consistent with axioms and facts assumed

for calculations. What the theory says is that the statement in quotation marks is true in the

axiomatic system of inferential statistics given the provided facts. And not 95% true, nor

5% true. Just true. If we replaced 62.5 and 67.5 with any other numbers, the theory would

not prove the resulting statement.

Back to our desire for correct theories, what we expect of formal models of the world is

soundness and consistency. In other words, we respectively want theories to only predicate

truth about statements that map to true world facts, and to be free of contradictions that can

trigger the principle of explosion. Additionally, we want completeness: that we can find a

truth to any statement that maps to a valid question. Otherwise, the theory will be useful,

but sometimes it will leave us under the same shadows as if there were no theory at all. So,

does Gödel’s incompleteness sentence us to coexist with shadows?

One possible interpretation of Gödel’s incompleteness is that, in a formal system, some

statements could be true but unprovable. But then true in which sense? Tarski(Tarski, 1936,

see section 6.1.2) already showed that a complete definition of truth is not possible in such

a system, because the definition applied to the unprovable statement would work as a proof

of the unprovable. We are left with defining truth as a property of statements that the system

can prove. But proof does not reach the the unprovable statement, so we should not call it

65

true in that sense. For the purposes of our current endeavor, which is to target theorization,

we must conclude that within the limits of a theory, statements come in three flavors: true,

false, and neither. Consequently, we need to review the dichotomous truth view.

We will distinguish three analysis levels, which will help us better organize how knowl-

edge in an incomplete formal system relates to facts. At an epistemic level, we will discuss

truth as an issue of formal knowledge, which is what we have done so far. We will also

consider an ontic level, which is simply about what is. Between them, we will put an

ontological level, that is about what is. In this use, the ontological is not completely in-

dependent from the epistemic, and actually functions as a sort of bridge between the other

two levels.

8.2. Dichotomous truth

Figure 8.1 illustrates the most traditional view. At an ontological level, any given

statement is either true or false. If our logical model is sound, true statements correspond

only to what actually is in the world. Since what is not does not exist, it cannot be at an

ontic level or support false statements. But the relationship is shown in the figure, in order

to represent that we believe that not being is the cause for a statement to be false. We assign

the false truth value to statements that are not true. We assume that our model is complete.

Therefore, all true statements are provably true, and false ones are provably false. The

epistemic level is slightly more complex than the others, because there is a chance that we

do not know the truth value for some statements yet. This dichotomous view of truth values

is a good representation of the intuition that, in a sound system, logical truth corresponds

to solid world facts; so if something is true, it stands to reason that it should be provable.

Note that there is a one to one relationship from each level to each other.

8.3. Trichotomous truth

As we previously realized, the Gödel–Turing limit forces us to consider the fact that

truth within a theory is no longer dichotomous, at least at an epistemic level. We need to

66

FIGURE 8.1. Knowledge in a dichotomous truth system. Contrast this with Figure 8.2.

E
pi

st
em

ic
le

ve
l

O
nt

ol
og

ic
al

le
ve

l
O

nt
ic

le
ve

l

Provably
True

Proved
True

True
but

unknown

Provably
False

Proved
False

False
but

unknown

True False6=

What
is

What
is not

make room for a third truth value which corresponds to no truth value at all. Figure 8.2

shows what occurs within a formal system that is powerful enough to be incomplete. The

third truth value opens a Pandora’s box of possible fates for the epistemic truth of state-

ments. For instance, a statement can already be proven to have a truth value in the system,

although we may not know which one it is yet. This is a very different situation from that

of another statement which has already been proven to lack a truth value. In other cases,

we will not even know if a truth value can be found. As Turing (1936) points out, the issue

is not only that some statements have no truth value, but also that we often cannot know

which they are.

67

FIGURE 8.2. Epistemically trichotomous view. Some statements are (1) true, oth-
ers are (2) false, and others have (3) no truth value.

E
pi

st
em

ic
le

ve
l

O
nt

ol
og

ic
al

le
ve

l
O

nt
ic

le
ve

l
Provably

True
Provably

False
No provable
truth value

Proved
True

Proved
False

Proved to
lack truth

value

Has tr.
value

Has tr.
value

Know nothing yet Know nothing yet
Know nothing yet

True False No truth
value

→←

What
is

What
is not

By separately analyzing the three levels, we get to have a better look at the face of

incompleteness. Relationships among levels are no longer one to one. Even though the

figure suggests that there is a very close relationship between the ontological an the epis-

temic level, this time the situation is harder than with complete dichotomous truth. Before,

it was guaranteed that a truth value would be eventually found for any statement if we were

patient enough. Now, the truth value of a statement we know nothing about could very well

be a truth value that cannot be found. And what we are left incapable of knowing could be

something that is in the world. For our purposes, this is the most important consequence

of the Gödel–Turing limit. An incomplete formal system is not only logically incomplete.

68

It is also bound to be incomplete in capturing what is, at least from the point of view of a

theoretician.

69

9. COMPUTERS AND NON-DETERMINISM

After reviewing Gödel’s incompleteness (chapter 5) and its epistemological conse-

quences (chapter 6), not much needs to be added in order to suspect that certain facts

cannot be known with certainty. However we were dealing with an epistemic uncertainty.

The Turing halting problem pointed us to an example in which a necessary epistemic un-

certainty (halting undecidability) was related to an ontologically certain world fact (actual

halting, see section 4.3). In other words, Gödel’s incompleteness only proves that knowl-

edge is compromised. The reality that is being modeled is not necessarily affected. But

what if the physical world was ontologically uncertain, as the Copenhagen interpretation

of quantum mechanics holds (Heisenberg, 1949)?

Whether the physical world is deterministic or not is a difficult question. The sen-

sible approach here seems to be finding out the consequences that an ontologically non-

deterministic world would have on modeling the mind as a computer. For that we have

a few tools at our disposal, thanks to ingenious mathematical developments. The problem

has two parts: how non-determinism affects the physically extended computer machine that

implements a mind, and how that computer deals with uncertainty in the world it strives to

know.

9.1. Non-deterministic Turing machines and quantum computing

Regular TMs proceed in a deterministic manner. Remember the specification of TMs

(section 2.2.3). The state of the full machine is composed of the state of the tape (content

and head position) and the state of its control device (a FSM). The next state of the full

machine is determined by its current state. Therefore, the input initially on tape fully

determines the sequence of states the machine will transit through, and the output. In

contrast, a non-deterministic TM (NDTM) can specify more than one possible next state

given the current one.

How to run a NDTM? The trick is to think that the machine is not in a single state at a

given time, but in a set of states. At the beginning, this set has only one state, which is the

70

initial one. In the next step, the set only includes all the states that could have resulted from

the initial one. In general, at each step, the set of states gets updated with all states that could

have resulted from the ones present at the previous step. If at some step, some element of

the set corresponds to what is considered a final state (which needs to be determined before

the machine starts to run), it means that one of the possible execution paths of the machine

has reached a result. We can access it by looking at the tape contents inside the final state

that was found.

How does the power of a NTDM relate to that of a TM? It is easy to see that NDTMs

are at least as powerful as TMs, because a regular deterministic TM is a particular case

of NTDM in which the amount of possible next states that can follow the current one is

always 1. What is surprising, and a little trickier to prove, is that the same is true in the

opposite direction: TMs are at least as powerful as NDTMs, because a TM can be built for

simulating a NDTM (Hopcroft et al., 2007, ch. 8). This derives from the following fact.

Even though the number of possible states of a NDTM can grow very fast as it runs, it is

finite at each step and can be organized in a tree of possible execution paths. A TM can

simulate the same thing by orderly generating and going through the execution tree until

a final state is found. A three-tape TM can do this by keeping the input string in the first

tape, using the second tape to try an execution path, and keeping track of progress in the

third tape so that nodes in the tree do not get visited more times than necessary. In turn, as

previously mentioned, a several tape TM has the same power as a regular single tape TM

(section 2.2.3, Hopcroft et al., 2007, ch. 8).

The conclusion is that a NDTM has not less, not more, but exactly the same power as

a regular TM. Something similar (but not exactly equal) occurs with quantum computers

which take advantage of the capability that non-deterministic systems have for exploring

several execution paths simultaneously. Previously, we briefly mentioned that quantum

computers are not more powerful than TMs (section 2.3, Hodges, 2005). They are only

faster.

71

We must however note that NDTMs are not a perfect theoretical correlate of quantum

computers. At least, not any more than a regular TM could be. It is true that NDTMs

have the same computational power as quantum computers, because TMs have the same

power as both (see, Bennett, 1973, for a proof that quantum computers have at least the

same power as a TM). But NDTMs can be theoretically faster1 than quantum computers;

because harder restrictions operate on the latter (Bernstein & Vazirani, 1997). The point

here is that quantum computing takes advantage of quantum physical phenomena that were

not considered in the design of classical physics inspired TMs. Nevertheless, just like it

happened with previous attempts, adding sophistication to the machine did not produce an

advantage in computational power with respect to a regular TM. NDTMs, while not a direct

correlate to quantum computers, offer a relatively easy account of how a non-deterministic

model of computation happens not to supersede classic TMs. They provide this insight

without requiring a dive into quantum computing or quantum mechanics.

So non-determinism applied to a physically extended mind/computer will not affect

the limits of theories. We can even stick to a classic single head TM and still have the

same predictive power. But how do we deal with the fact that the “outside world” may be

non-deterministic too. The Copenhagen interpretation of quantum mechanics (Heisenberg,

1949), draws an important distinction here. It has been known for long that measuring

physical quantities is subject to error because there is a limit to the precision an instrument

can be built to. Also, because uncontrolled physical variables often affect measurements

in a way that, from within the boundaries of a specific theory, can only be described as

random error or noise. Stated this way, this is a methodological issue that affects us at

an epistemic level. It can often be mitigated by building more precise instruments and

controlling more variables until the precision of predictions is good enough for whatever

the purpose is. However, Heisenberg’s uncertainty principle (Heisenberg, 1927) points to a

different issue: its proposal is that the physical world is ontologically uncertain.

TMs are deterministic. And non-deterministic devices are not more capable than a

deterministic TM. It intuitively follows that TMs may be too rigid to model a mind that

1In the sense of requiring less steps for reaching a result.

72

needs to deal with the indeterminacy of the physical world. The answer is this: non-

determinism of the world can be dealt with in a computationally deterministic way. And it

works very well.

9.2. Bayesian modeling

A fundamental building block in our current theories to model uncertain events is the

Bayes theorem. It stands on the following definition from classic probability theory.

P (A|B) =
P (A ∩B)

P (B)
(9.1)

It reads

“Probability of event A given that event B is the case, equals to the prob-

ability that both events A and B occur, divided by the probability that B

occurs in general.”

An example may be of help. We know that it is sort of difficult to get two sixes when

throwing a dice twice. But if we are in the middle of the exercise and already got one

six, we are in a good position. Now we do not need two sixes in order to reach the goal,

but just one more. Since outcomes of the two throws are (hopefully) independent, classic

probability predicts that the probability of getting two consecutive sixes is obtained by

multiplication on the probabilities for the two events. Let A, and B respectively be the

events that the first and the second throw of a dice yields an outcome of six.

P (two sixes) = P (A ∩B) = P (A)P (B) =
1

6
· 1
6
=

1

36

Sensibly, the probability of obtaining two sixes is 1 in 36. But how does the probability

change if we switch to a situation in which we already got the first six? By the definition

73

in equation 9.1, he have

P (two sixes|first throw yielded six) = P (A ∩B|A)

=
P (A ∩B ∩ A)

P (A)

=
P (A ∩B)

P (A)

=
(1/36)

(1/6)
=

1

6

What happened here is that our success in the first throw is past history and no longer

uncertain. All we need to do to reach the goal is just to get another six, and that has a

probability of 1 in 6.

In our current context, we can learn three things from the previous example. First, we

can formally write and process knowledge about uncertain events by performing perfectly

deterministic symbol processing. Second, gathering additional knowledge about the state

of the world produces an update on the probabilities we assign to events. The third is a

clever consequence of equation 9.1. We can rewrite the equation as follows.

P (A ∩B) = P (A|B)P (B)

And since P (A ∩B) equals P (B ∩ A), we have

P (A|B)P (B) = P (B|A)P (A)

Therefore,

P (A|B) =
P (B|A)P (A)

P (B)
(9.2)

Equation 9.2 is known as Bayes’ theorem. Formally, it serves the purpose of inverting

P (A|B) into P (B|A). Why this is remarkable gets clearer when we think ofA as a discrete

world state, and of B as a piece of evidence.

P (state|evidence) =
P (evidence|state)P (state)

P (evidence)

74

It might be difficult to directly assess the probability that the world is in a specific state

given the evidence we possess, which is the left side of the equation. But the right side

allows us to compute it in terms of probabilities that are easier to obtain by counting em-

pirical frequencies.

• The probability that a piece of evidence emerges from a given world state.

P (evidence|state)

• The probability that a given state occurs in the world.

P (state)

• The probability that a given piece of evidence emerges under general conditions.

P (evidence)

Bayes’ theorem is the starting point to an interesting debate on different interpretations

of the notion of probability (Cox, 1946; De Finetti, 2017), which however is not essential

for us to go forward. We shall simply say that classic probability is traditionally and mostly

associated to the idea of probability as frequency of occurrence. Bayesian analysis opens

the door to two families of interpretations; one in which probability quantifies objective

expectations (Cox, 1961), and other in which probability is a matter of subjective belief

(De Finetti, 2017). We should also stress that this is just a matter of interpretation. Equa-

tions are the same and bayesian analysis is not at all formally incompatible with classic

probability, to the extent that it is even derived from classic axioms, as you may have no-

ticed.

9.3. Markovian modeling

In section 8.1 we held that a theory was not only useful for predictions about what

always happened, but also for relaxed predictions that spoke about what happens most of

the time. Bayesian analysis takes that to a new level, by allowing probabilistic predictions

75

to be continuously updated as more evidence gets available, improving on initial certainty

levels. We will specifically focus on Markovian processes (Markov, 1906; Ching, Huang,

Ng, & Siu, 2013), which add a time dimension to bayesian inference. They are modeled

under the assumption that the current state of a system fully determines the next state,

whether this is faithful to the modeled phenomenon or just a convenient simplification.

9.3.1. Bayes’ theorem in time: an example

Consider the following example. John has a job that requires him to live and work

24/7 in a basement for a certain period of time. He cannot observe local weather directly,

and for some reason forecasts are not available where he is. But he still wants to talk about

the weather when he chats with his loved ones through a messaging application. He relies

on his pet for that, a turtle whose behavior is somewhat related to weather. John’s records

indicate the following probabilities for the turtle’s behavior.

P (sleep|sunny day) = 0.1 (9.3)

P (mild activity|sunny day) = 0.3 (9.4)

P (intense activity|sunny day) = 0.6 (9.5)

P (sleep|rainy day) = 0.7 (9.6)

P (mild activity|rainy day) = 0.2 (9.7)

P (intense activity|rainy day) = 0.1 (9.8)

These data correspond to P (evidence|state) at the end of previous section. Note that prob-

abilities for a given weather sum up to 1.0, because any possible behavior of the turtle is

always categorized into one of the three shown categories. John has heard that where he is,

rainy days are just as frequent as sunny ones.

P (sunny day) = 0.5 (9.9)

P (rainy day) = 0.5 (9.10)

76

He also heard that a rainy day tends to be followed by another rainy day 70% of the times

and something similar occurs with sunny days.

P (sunny tomorrow|sunny today) = 0.7 (9.11)

P (rainy tomorrow|sunny today) = 0.3 (9.12)

(9.13)

P (sunny tomorrow|rainy today) = 0.3 (9.14)

P (rainy tomorrow|rainy today) = 0.7 (9.15)

The whole model can be visualized as in figure 9.1. Note how similar it is to a FSM

(section 2.2.1), with the sole differences that state transitions indicate the probability for

their occurrence next to arrows, and that the output (evidence) is not fully determined by

the state (or transition), but is probabilistic.

Introducing evidence

With all this information, John uses equation 9.2 for estimating his beliefs on today’s

weather after observing that his turtle is sleeping.

P (sunny today|sleep) =
P (sleep|sunny today)P (sunny today)

P (sleep)
(9.16)

P (rainy today|sleep) =
P (sleep|rainy today)P (rainy today)

P (sleep)
(9.17)

We do not directly know the probability that the turtle sleeps. But we have enough infor-

mation to compute it from equations 9.3, 9.6, 9.9, 9.10. From total probability law2

P (sleep) =P (sleep|sunny day)P (sunny day)

+ P (sleep|rainy day)P (rainy day)

=0.1 · 0.5 + 0.7 · 0.5

=0.4

2Total probability law states that P (A) =
∑n

i=1 P (A|Bn)P (Bn) as long as Bn are disjoint and their union
represents the whole space from which events are sampled.

77

FIGURE 9.1. John’s turtle weather forecast model. Dashed circles are states and
cannot be directly observed. Solid rectangles are evidence that can be emitted by
states. Numbers on solid arrows are state transition probabilities. Numbers on
dashed arrows are evidence emission probabilities.

Sunny Rainy

turtle
sleeps

turtle
mildly active

turtle
intensely active

0.3

0.7

0.3

0.7

0.7 0.2 0.10.1 0.3 0.6

Then equations 9.16 and 9.17 become

P (sunny today|sleep) =
0.1 · 0.5
0.4

= 0.125 (9.18)

P (rainy today|sleep) =
0.7 · 0.5
0.4

= 0.875 (9.19)

This is our first result, and corresponds to beliefs for the first day. That is, we have a value

for the belief that it is sunny today (0.125), given the evidence that the turtle sleeps. And

the same for the belief that it is rainy today (0.875). As expected, the fact that the turtle is

sleeping leads to a higher belief that it is a rainy day.

78

Updating beliefs for the next day

State transition probabilities in equations 9.11 to 9.15 allow us to update beliefs for

tomorrow. We need to consider that we do not know the weather for sure, so we have to

include both believes for sunny and rainy day.

P (sunny tomorrow) =P (sunny tomorrow|sunny today)P (sunny today) (9.20)

+ P (sunny tomorrow|rainy today)P (rainy today) (9.21)

=0.7 · 0.125 + 0.3 · 0.875 (9.22)

=0.35 (9.23)

P (rainy tomorrow) =P (rainy tomorrow|sunny today)P (sunny today) (9.24)

+ P (rainy tomorrow|rainy today)P (rainy today) (9.25)

=0.3 · 0.125 + 0.7 · 0.875 (9.26)

=0.65 (9.27)

This is our second result, our beliefs for tomorrow are 0.35 sunny and 0.65 rainy. We

believe that tomorrow will also be rainy, but with less certainty than today. In order to

improve our certainty we need to wait until tomorrow and observe the turtle.

Repeated observations and updates

Note that updates to beliefs are caused by observations of the turtle and by a day

passing by. We can repeatedly apply both procedures each day, updating for the tur-

tles behavior, and updating for weather transition probabilities. Assume that the turtles

behavior for the next four days is sleep, mild activity, intense activity,

intense activity. Table 9.1 shows beliefs after each day’s observation of the turtle.

Note how day three yields very similar beliefs for both weather possibilities, so there is no

clear prediction for that day. However, John can be pretty sure of the weather on days 2

79

and 5, and his estimations are better than those he had on day one after a single observa-

tion. This is remarkable, since from John’s isolation he never gets to see how the weather

actually is.

TABLE 9.1. John’s weather beliefs after several days of observing his turtle.

Day Observation Sunny day belief Rainy day belief
1 sleep 0.125 0.875
2 sleep 0.071 0.929
3 mild activity 0.423 0.577
4 intense activity 0.841 0.159
5 intense activity 0.913 0.087

9.3.2. Acting under uncertainty

John’s turtle forecast is an example of a hidden Markov model (HMM). It is a use-

ful modeling tool when we are spectators to a process in which states are not directly

observable, but can be partially observed by measuring their probabilistic consequences.

Variations on this scheme depend on whether we are mere spectators or act upon the world,

and if we can observe world states fully or partially as displayed in table 9.2.

TABLE 9.2. Discrete state, discrete time stochastic models. Table extracted from
Anthony R. Cassandra’s website, http:\\pomdp.org, where he attributes it to
Michael Littman.

Observation only Observation and action
Completely MC MDP
observable Markov chain Markov decision

state process
State partially HMM POMDP

observable through Hidden Markov Partially observable
probabilistic evidence model Markov decision process

When action is included in Markovian modelling, the goal is to map world state to

optimal actions in order to reach a goal. The goal is usually to maximize long term re-

wards, so this requires an assignment of reward values to world states. Partially observable

Markov decision processes (POMDPs, Littman, 2009; Astrom, 1965) are specially inter-

esting. They assume that world states are not directly observable, and that the effects of

80

acting in the world are not completely deterministic. In other words, world states are prob-

abilistically related to what can be observed, as in John’s weather forecast. And actions are

probabilistically related to their actual effects. As an example of this, consider shooting

darts to a bullseye target. Under a given circumstance you may choose to take the action of

aiming for the center. But after the shoot, there is no guarantee that the state of the world

will include the dart within the center region. There is a probability that this happens, but

other effects on the world (like fully missing the target) also have a chance.

Since knowledge of the world state is partial in a POMDP, actions are not mapped

from actual world states (which we cannot know directly); but from a belief state, that

includes one probability value for each possible world state. This is analogue to John’s

belief numbers about the two possible weather states. Beliefs on world states are updated

both after acting, and after observations, because new partial information can be derived

from both kinds of events.

Remarkable emergent properties are associated with POMDPs. An entanglement be-

tween action and observation is present, not as a consequence of a design goal, but as a

result of seeking optimal rewards with the tools provided by a Bayesian framework. The

programming of this kind of models is done by setting structure and probabilities, just like

at the beginning of John’s turtle problem. But this is rarely done by hand picking values.

It usually involves fitting parameters automatically to empirical data (Cassandra & Kael-

bling, 2016; Atrash & Pineau, 2010). As a consequence, action policies emerge without

much intervention of a designer. Even though the global objective of a POMDP is to max-

imize reward, it could well “delay gratification”, and direct a few actions towards reducing

uncertainty in its beliefs. In the long term, this may lead to decisions that produce higher

rewards. In this context, uncertain belief states are those that assign similar probabilities to

all worlds states, in contrast to more certain belief states in which one or a few world states

clearly dominate.

Perhaps the most remarkable property that emerges in POMDPs is the necessity of

segmenting a continuous belief space into a finite amount of belief domains, in order to be

81

able to map beliefs to discrete actions. An explanation is in order. Here we shall not use

the term continuous as strictly as in the discussion of chapter 3 but in the relaxed sense that

is common in data analysis, where the meaning is: dense enough that treating it discretely

does not make sense. Such is the case when beliefs are probabilities: a belief is a vector that

includes continuous values between 0 and 1 for each possible state. Even if actual world

states are considered discrete, belief states are necessarily continuous and often multidi-

mensional. A discretization strategy is needed in order to associate such a space to a few

discrete actions. And it stands to reason that, in many cases, similar belief states should be

associated to the same action. In a POMDP, such a discretization is automatically learned

with the goal of maximizing rewards. We are talking of a self-organizing emergence of

discrete beliefs supported by action policy relevance and value. Although this is not even

close to explaining why humans organize reality into concepts, it is still noteworthy that a

model so overwhelmingly simpler than living beings can exhibit these properties.

9.4. Non-determinism and computational modeling of the mind

The stochastic models we just reviewed do not need to be thought as tools for mod-

eling the mind. Instead, they should be seen as models of non-deterministic phenomena,

that can be used in a TM as a way of gathering information from and acting on an environ-

ment. Whether human knowledge is probabilistic in nature is a separate question (Chater

& Oaksford, 2008; Baker, Saxe, & Tenenbaum, 2011). The issue here is that TMs can

be programmed to deal simultaneously with multiple kinds of uncertainties in a flexible

and successful way, whether uncertainty comes from an ontological lack of determinism

or from errors inherent to instrumentation, and regardless of non-deterministic quantum

phenomena that may operate on the physical extension of the TM’s implementation.

Something to be learned from MDPs, POMDPs, and alternative models of computation

like artificial neural networks, is that “Turing computing” does not need be “Turing styled”

in the way it is usually perceived: centralized, serial, and rigid. All these models are

within the capabilities of traditional TMs. That is why researchers can use their own von

Neumann architecture laptops to study and run such kinds of models. First attempts in

82

artificial intelligence tried to analyze problems, divide them into smaller easier tasks, and

solve them one by one in an orderly fashion. The main weakness of such a scheme is that

success of the whole relies on complete success of the parts. If some step fails, a solution

cannot be provided. Stochastic modeling is inspired by a different spirit. We may never

be a 100% certain, at any step of the process, and we can still solve the problem well. By

doing without the requirement of certainty, information can be better utilized.

But do not forget that this is still a TM, just with a clever program. John never con-

cluded that it was 87.5% true that “the day was rainy”. What he concluded is that he was

100% sure that “his belief was 87.5% for the rainy state”. And he computed that number

by deterministically processing symbols under the axiomatic system of classic probabil-

ity. The morale is: a fully deterministic system can deal with uncertainty quite well. If

we search for something computers cannot do in order to build an argument against the

computational theory of mind, we need to look somewhere else.

83

10. SOME CONTROVERSIES AROUND A COMPUTATIONAL MIND

It is no secret that the fundamental claim of CTM is that the mind is a computer. It

is stated either directly (McCulloch & Pitts, 1943; Putnam, 1967; Fodor, 1975; Newell

& Simon, 1976; Block, 1995, , etc.) or simply assumed (i.e., Chomsky, 1957; Marr,

1983; Fodor, 1983). The mystery lies in what the claim means. Although the debate is as

young as digital computers, the field is rich and questions are challenging. There has been

enough time to propose a huge amount of philosophical positions, while specifying detailed

differences among them. Rather than reviewing several approaches, we will focus on a few

controversies that are relevant for this work. Our aim is not to be exhaustive, or to go deep

into each issue, but to offer a taste of the diversity of perspectives under CTM and to better

understand what it means when it claims that the mind is a computer. We must remember

that our goal is not to decide if the mind is a computer, but to explore the consequences of

modeling the mind as one that has the limitations we have already exposed.

10.1. Being versus being like a computer

We should note that it is possible to use computers, either theoretical models or actual

digital devices, as a metaphor for speaking about the mind. How good the metaphor is will

be the result of how much it makes it easier to communicate difficult concepts, and how

little potential it holds for misleading conclusions. Of course, computers are not exclusive

in this. However, lifeless mechanisms hold a special appeal as metaphors of the mind,

because we can fully understand how they work, and any life-like capabilities they display

must be constructed first. Computers are specially attractive because their mechanism is

relatively simple to understand if compared to the enormous complexity of behavior they

can achieve.

However, metaphors are not theories, nor fundamental pieces in them. Instead, they

play a role in communicating theories and helping us to understand them. It would be

problematic to assimilate a metaphor as an essential theoretical device. The vehicle/image

is not the concept being referred, but only like it. This means that some aspects are similar,

84

while other ones are not. In order for this scheme to help intuition without being overcom-

plicated, we must do without a rigorous or exhaustive delimitation of which aspects are

similar. Therefore, if we based theoretical results on metaphors, sometimes we would be

making predictions not intended by the theory. How could we tell? The CTM does not

claim that the mind is like a computer. It claims that it actually is a computer. This does

not prevent some properties of particular computer mechanisms to be used as metaphors

for understanding the theorized mind/computer. For instance, thinking memory processes

as storage or retrieval operations on electronic memory devices is common.

Saying that the mind is a computer implies saying that the mind is a physically ex-

tended machine. Electronic computers are made from silicon chips, wire, etc.; while hu-

mans are made of flesh and bone. CTM does not care, because nothing prevents an im-

plementation of TMs in flesh. However, we should be aware of an implicit identification

here between mind and body (e.g., Boring, 1933). If the mind is a computer, and the com-

puter in humans is implemented in flesh, then mind is implemented in flesh. Moreover, it is

common to approach this relationship by targeting, not the whole body, but the brain (e.g.,

Smart, 1959). The mind–body relationship is too big of a topic to review in a comprehen-

sive way here. But we should at least be aware of what kind of claims we are dealing with

in CTM.

10.2. Brain and mind

It is immediately problematic to assume that the mind is the brain or any physically

extended object. A brain has a weight, but how much does the mind weight? Where are

mental processes? Can I touch them? The solution in type identity theory (e.g., Feigl, 1958;

Smart, 1959; D. K. Lewis, 1966; Place, 1970) is that there are types of mental events that

are correlated to physical events. What does the trick is that, in this view, mental processes

are not the brain, but states of the brain. Maybe we cannot attribute weight to a mental

process, but neither can we to a state of a mechanism.

85

Functionalism identifies mental states with functional states instead of brain states. In

this view, what matters the most about a mental state is the role it plays in a system, regard-

less of the brain states that support it. The notion of mathematical function is involved here

in terms of information processing: what matters is the mathematical function, regardless

of the choice of TM implementation. Functionalism opposes to type identity theory in the

view of an insider (Putnam, 1967), the objection being that the same mental state can have

diverse physical realizations. The multiple realizability thesis stands on the observation that

some mental states like pain, seem to be present in a wide variety of animals with wildly

varying physical structures, and in relation to many different physical events. Therefore, a

mental state does not seem to be identical to a single brain state. Not every one sees type

identity theory as completely incompatible with functionalism. Lewis (1980) believes that

both views have problems, but can be mixed into a better identity theory.

10.3. Is there anything beyond the physical?

Work on type identity theory and functionalism presents the mind as something that

would not directly be a physical object (i.e., the brain) but rather something that happens to

one (i.e., brain states). It could be argued that this is not a departure from a physical account

of the mind, in the sense that what happens to the physical is also physical. Physicalism

claims that everything is or supervenes on the physical. In other words, anything that is not

directly physical is a consequence of the physical.

Once again we are in front of a challenging claim. Controversies organize around

the meaning of physical, the meaning of everything, and whether the claim is true (see

Davidson, 2001; Moser & Trout, 2002). It does not help that, despite this being a general

problem, it has received special attention in philosophy of mind; a field that is rich in

challenges to physicalism, but has difficult questions of its own. But, if we are true to

the spirit of the question (and to our current purposes), the issue is very understandable.

If the mind is a computer, does that mean that there is nothing more than the machine

that we can touch and weight on a scale? How does a physical mechanism explain the

quality we perceive in feelings that occur in the intimacy of mental life? Is it even correct

86

to ask for physical explanations when we talk about feelings? The answer of physicalism

must necessarily be that there is nothing beyond the physical. Therefore, if we feel there is

something else, there must be an explanation for why we wrongly feel so. Since we arrive to

these questions by the powers of reason, it could actually be a logical issue. Perhaps some

false inference leads us to thinking that there must be something beyond the physical. That

is the opinion of Dennett (1993) in his refutation of Jackson’s “Mary’s room” argument

(Jackson, 1982, 1986). We will revisit this issue in chapter 11.

10.4. Representation of knowledge

Theorization on the mind cannot simply ignore the essential phenomenon of repre-

sentation. Mental contents usually involve the presence of objects in the world that present

themselves again in the mind. We want to understand how this is possible and how it works.

We could make the stronger claim that the nature of the mind is to perform computations on

representations. This would give the theory some clarity about how to implement mental

processes. There is more than a single way to approach this problem. Here we will briefly

see two opposing views.

10.4.0.1. Representational theory of mind

Fodor (Fodor, 1975) holds that thinking occurs in a language of thought, also called

Mentalese, capable of producing mental representations. We will call this the language of

thought hypothesis (LOTH). The idea bears a lot of resemblance to axiomatic systems. Just

like complex logic formulas can be produced by combining primitive elements, Mentalese

produces complex representations by combining primitive ones. Similarities do not stop

there. In both cases, the processing of expressions is carried out strictly by mechanical ma-

nipulation of symbols (i.e., by a TM). Advantages of the LOTH can be easily understood

in terms of these similarities to axiomatic systems. It explains the fact that human cogni-

tion is capable of an infinity of different expressions, and yet it can establish systematic

relationships among them without a need for infinite experiences.

87

Even if we asume that the LOTH is true, there are important controversies involving

whether Mentalese is exclusively human (Gallistel & King, 2011), whether it only applies

to high-level thought (Fodor, 1983), or if it resembles the propositional character of natural

language (Pinker, 2005). Note that the LOTH endorses a computational nature of mental

processes. This does not exclude identification with brain states or functional states. Also,

it does not require physicalism. However, Mentalese can be implemented in a physically

extended TM. Therefore, it provides a solution for physicalists, and is often associated to

them.

10.4.0.2. Distributed representations

When compared to the LOTH, connectionism (Rumelhart, McClelland, & PDP Re-

search Group, 1986) offers a radically different proposal on the computational implemen-

tation of representations. It starts with McCulloch & Pitts (1943) realizing that formal

models of simplified neurons can support logic functions. In Mentalese, a straightforward

approach to representation is to use one symbol for each primitive concept. For instance,

JOHN and MARY could represent two people called John and Mary; and INLOVE(x,y)

could represent the relationship of x and y being in love. It all can be combined to represent

the fact that John and Mary are in love as follows.

INLOVE(JOHN, MARY)

If we were to produce the same representation with simple models of neurons, the

naive approach would be to assign one neuron to each concept. There would be neuron

JOHN, neuron MARY, and neuron INLOVE. Neurons JOHN and MARY would somehow be

connected through neuron INLOVE. Nevertheless, this model has to be abandoned quickly.

For starters, research on biological brains shows a very different reality: there is no one to

one relationship between concepts and single brain cell activity. Also, each new learning

would require assignment of new neurons to the task and a very fast creation of detailed

and specific connections, all to produce a structure that would catastrophically fail with the

88

death of a single neuron. Connectionist models have reached a different strategy that better

resembles biological nervous systems: distributed representations.

Such a strategy can be exemplified by NETtalk (Sejnowski & Rosenberg, 1987), an

artificial neural network that was built and trained from examples to read english text aloud.

It achieved good generalization, in the sense that it can do a good job reading new text

that was not presented during the training. Representation of categories like vowels vs

consonants emerged from training in a way that does not assign one neuron to each. What

happened is that the same group of neurons represented the two categories. Then how

could categories be told apart? Each category corresponded to a different activation pattern

of the same neurons. Information about categories was stored in a distributed fashion in the

connections between artificial neurons, no single connection being exclusively associated

to a single category. This strategy is the basis for artificial neural networks resilience:

neurons and connections can be removed usually without catastrophic damage to function.

It also allows such devices to behave nicely in front of new cases.

We must remark that, in practice, artificial neural networks are implemented as soft-

ware for current digital computers with a von Neumann architecture (Von Neumann, 1993),

which is a practical implementation of a universal Turing machine. In turn, universal Tur-

ing machines are Turing machines (see section 2.2.4). Therefore, artificial neural networks

are not more powerful than Turing machines. Everything that a connectionist model can do,

can also be done by a Turing machine that implements the calculations to run a simulation

of the model.

10.5. Architecture of the mind

Connectionism offers the possibility of a massively distributed computational imple-

mentation of the mind: everything connected to everything. But it does not enforce it. It

is also possible to segment the implementation into modules that exhibit liberal flow of

information inside, but limited interface to the outside. Fodor (1983) introduced the notion

89

of a modular mind. He described modules as domain specific, informationally encapsu-

lated, fast, and innate, among other attributes. Domain specificity refers to the processing

of only a well delimited kind of information. So there could be modules for color percep-

tion, analysis of visual shapes, natural language grammar, etc. Encapsulation means that

information processing that occurs within a module only has access to input information

that needs to be processed, and whatever is already stored inside the module, with little or

no informational access to or from other modules. Encapsulation and domain specificity

would allow very fast processing speeds that could explain why some complex processes

of human speech, vision, etc. occur so quickly. Language development in human children

(Stromswold, 1999), and visual perception to some extent (Spelke, 1994), suggest modu-

larists that modules should be innate. This is because the acquisition of very sophisticated

knowledge takes place in little time, subject to what is considered relatively little exposure

to examples, and with a time course that is remarkably constant across different cultures.

As restrictive as modularism looks, it actually corresponds to a more relaxed archi-

tecture than that of a single head Turing machine which has a central processing unit (its

FSM), just like single processor digital computers based on a von Neumann architecture1

(Von Neumann, 1993; Null, Lobur, et al., 2014). In this sense, traditional TMs are serial,

centrally executing one instruction strictly after the other. Modularity resigns the massive

parallelism that could be achieved in fully connected neural networks, but still retains some

simultaneous processing. It is the informational encapsulation of modules that impedes lib-

eral interchange with a central location, disallowing a central control of the system. The

fact that several encapsulated modules work in parallel in a modular system, provides some

of its speed advantage and confer it some resiliency, because failure inside a module should

have limited effect over other modules.

In summary, we have a range of architectural options for the computational implemen-

tation of mental processes, that goes from the completely centralized single head TM, to

1Von Neumann architecture is a practical design for digital computers that closely follows the organization
of a Turing machine. It is probably inspired in Turing’s work, since von Neumann was a visiting professor at
Cambridge and met Turing before publication of the halting problem undecidability.

90

fully connected artificial neural networks made from several similar and simple processing

units. Modularity sits in the middle. But in Fodor’s version, it also makes some claims

about domain specificity, innateness, and which mental functions are modular; that have

encountered resistance (Prinz, 2006; Churchland, 1988; McCauley & Henrich, 2006). If

we restrict the debate to architecture, the main question is to which extent the mind is mod-

ular, with Fodor (1983) himself limiting modularity to low-level cognitive processes, in

opposition to some evolutionary psychologists that see it as a pervasive feature of the mind

(Cosmides & Tooby, 1992; Pinker, 1997).

10.6. Body and environment

The perspective of embodied cognition observes that, in the past, cognitive science has

put too much emphasis on formal processes and too little on how those are situated in a

physically extended environment (Anderson, 2003). Ignoring the environment generates

both, a positive and a negative bias in theories about the mind. Positively, it makes theories

too optimistic by not considering the physical constraints an actual living being is subject

to. Negatively, it makes theories more complicated than they need to be, because problems

that are hard to solve in isolation could be easier to solve with the memory and processing

help an actual environment could provide.

We can see some conflicting views on this topic from the beginning of the artificial

intelligence program. Von Neumann’s cell automata (Von Neumann, 1951), despite simple,

where all about the environment of a modeled agent. In contrast, Turing’s attempt to answer

if machines can think (Turing, 1950) starts by designing a game that excludes flesh and

voice from analysis, so that it is all about symbol processing. At any rate, a clear interest

in this debate is more recent (Shapiro, 2007; Mahon & Caramazza, 2008; Clark, 1997).

Embodied cognition gives attention to notions like spacial directions, such as “up” or

“front” and realizes that they could be anything for an isolated symbol processing agent,

only acquiring meaning when used by a being that stands up and has eyes located so to look

into some direction in space. A lot of thought has been given to spatiotemporal conceptual

91

metaphors (Lakoff & Johnson, 1980), which are abundant in everyday language and can

prove difficult to explain from formal symbol processing alone.

The approach of enactive congnition (Varela, Rosch, & Thompson, 1992) is special in

several ways. Two of them are directly relevant to our purposes. First, it challenges the

view that cognition requires representation, whether it is classical symbol processing as in

LOTH, or distributed connectionist representations. It holds that an a priori division be-

tween external world objects and internal representations should not be assumed. Instead

cognition should be found in the mutual interactions of body and environment. This is a

rejection of traditional symbolic computation as an explanation of the mind. Second, it

removes some of the aboutness that characterizes cognitive theories. It is not about aug-

menting theories with a theorized mind–body–environment continuity. It is about actually

having a body, and actually being there.

92

11. INCOMPLETENESS AND EPIPHENOMENAL QUALIA

The fast picture of the CTM that we presented in chapter 10 reveals that, in general,

there are two kinds of issues, although they are sometimes presented in an indistinct way.

The first ones we will call computational1. They are about the relationship between com-

putational procedures and an often implicit formalization of observed behaviors. Can com-

puters implement the behavior? If so, what would be a detailed mechanism for that? What

are clear similarities and difference between the proposed mechanism and the formalized

behavior? We reviewed a few questions that correspond to this description. For instance,

how is it possible that the mind can produce an infinity of expressions and yet establish

systematic relationships among them. LOTH answers how this can be implemented com-

putationally (section 10.4.0.1). Issues like the architecture of the mind or how to implement

representations in consistency with behavioral observations also fall in this category. The

second kind of issues we will call metaphysical. They refer to the fundamental nature of

the mind. Is the mind a correlate of machine states or functional states or both? Does it

involve anything more than its physicality? Can it be explained by a relationship between

matter and symbolic representations, or does such a relationship assume an unnecessary

separation between the mind and an outside world?

Metaphysical issues of the mind are particularly difficult. Take the difficulty of com-

putational questions and add the fact that we have not agreed on the nature of the objects

we are talking about. But they are also the most psychological issues in a proper sense.

Because, in contrast, computational questions do not require our object of study to actually

have a mental life, as we will argue in chapter 12. They just require it to have an observ-

able behavior. A position one could take is that some complex behaviors are a sufficient

condition for mental life. Nevertheless, the point is that mental life is not necessary for

a computational theory, in the same way that an engineer can calculate a bridge regard-

less of whether a mind emerges from its physical processes or not. This is not to say that

1Mechanical may be a better name. However it is important at this point to use a sort of neutral term. As
used here, the term computational, is consistent with the fact that, at an epistemic level, TMs are as powerful
a model as they could be.

93

computational questions are not psychological at all. Models of behavior are essential for

predicting the mind, and offer a fertile terrain for proposing ideas about its nature. We

must however recognize that some of the most fascinating and proper psychological issues

like consciousness, aesthetic pleasure, or the subjective quality of mental life, are currently

metaphysical issues.

11.1. The incompleteness of Mary’s knowledge

A frustrating aspect of cognitive science is how difficult or even impossible it is to

speak formally about some mental phenomena. Jackson’s Epiphenomenal qualia (Jackson,

1982) made a controversial attempt, by means of asking a question that attempts to be both

computational and metaphysical. His goal was to defend the position of epiphenomenalism,

according to which mental events are caused by physical events, but not the other way

around (Huxley, 1882). Jackson’s work presents us with the following thought experiment.

“Mary is a brilliant scientist who is, for whatever reason, forced to investi-

gate the world from a black and white room via a black and white television

monitor. She specialises in the neurophysiology of vision and acquires, let

us suppose, all the physical information there is to obtain about what goes

on when we see ripe tomatoes, or the sky, and use terms like ‘red’, ‘blue’,

and so on. She discovers, for example, just which wave-length combina-

tions from the sky stimulate the retina, and exactly how this produces via

the central nervous system the contraction of the vocal chords and expul-

sion of air from the lungs that results in the uttering of the sentence The sky

is blue’. [...] What will happen when Mary is released from her black and

white room or is given a colour television monitor? Will she learn anything

or not? It seems just obvious that she will learn something about the world

and our visual experience of it. But then it is inescapable that her previous

knowledge was incomplete. But she had all the physical information. Ergo

there is more to have than that, and Physicalism is false.”

94

Jackson was not the first to ask if any amount of formal knowledge about physical

phenomena can replace first person experience (see Russell, 1918; Tye, 1986, for instance).

However Jackson’s thought experiment has been widely discussed (Dennett, 1993; Jackson,

1986). There are many aspects to this debate apart from those that are relevant here. A

deeper discussion can be found in Ludlow, Nagasawa, & Stoljar (2004).

Dennet (1993) defends physicalism against Jackson’s position by claiming that his

thought experiment is not a proof. In Dennett’s eyes, thought experiments are “intuition

pumps” that help us conceive new possibilities which must be later confirmed by systematic

methods. He focuses in the asseveration that Mary acquires “all the physical information

there is to obtain about [color]”, arguing that, since no human being can accurately imag-

ine what would it be like to possess that kind of information, what we imagine to be the

outcome when Mary is released could also be inaccurate. In order to make his point clear,

Dennett offers the following alternate ending to Mary’s story.

And so, one day, Mary’s captors decided it was time for her to see

colors. As a trick, they prepared a bright blue banana to present as her

first color experience ever. Mary took one look at it and said “Hey!

You tried to trick me! Bananas are yellow, but this one is blue!”

Her captors were dumfounded. How did she do it? “Simple,” she

replied. “You have to remember that I know everything–absolutely

everything–that could ever be known about the physical causes and

effects of color vision. So of course before you brought the banana in,

I had already written down, in exquisite detail, exactly what physical

impression a yellow object or a blue object (or a green object, etc.)

would make on my nervous system. So I already knew exactly what

thoughts I would have (because, after all, the ‘mere disposition’ to

think about this or that is not one of your famous qualia, is it?). I was

not in the slightest surprised by my experience of blue (what surprised

me was that you would try such a second-rate trick on me). I realize

95

it is hard for you to imagine that I could know so much about my re-

active dispositions that the way blue affected me came as no surprise.

Of course it’s hard for you to imagine. It’s hard for anyone to imagine

the consequences of someone knowing absolutely everything physical

about anything!”

This new ending shifts the focus from the original question, if Mary would learn any-

thing new from first person color experience, to a new one: will Mary realize the banana

trick? Dennett’s story makes several unlikely assumptions, just like Jackson’s, but we

should avoid discussing them because that would deviate us from the spirit of this debate.

The question is whether knowledge by direct experience goes beyond the best of formal

knowledge about the physical. A non-trivial assumption made by Dennett is that full for-

mal knowledge about the cognitive machine (i.e., Mary’s nervous system) allows Mary to

predict the effects of some input (i.e., information from visualizing the banana). In chap-

ter 4 we could see that there are many things we cannot predict about the behavior of a

machine, even if we had full access to its design and input data. This leaves us with the

only possibility of running the machine and seeing what happens. Since it could well be

that Mary cannot (in general) predict what the effects of the banana input would be in her

nervous system, Dennett’s point is not solid. It may be necessary for Mary’s body to be

exposed to the experience of color before some particular computational process of her

nervous system can take place in her and be observed.

Let us say that Mary possesses the axiomatic system of the neurophysiology of vision

plus a database of all known facts about it. We will call it system FV . In other words if

something can be proved about vision, Mary can do it. We will also assume that process-

ing time is not a problem, and that Mary owns a device that allows observation of brain

activity with all the spacial and temporal resolution she may require for this experiment.

Whether the trick banana produces brain activity consistent with the perception of yellow

corresponds to a statement SY that can be written in the FV system. In the spirit of Den-

nett’s argument the extensive power we have given to Mary should allow her to formally

find the truth value of SY in order to determine if the banana is actually yellow. But system

96

FV must include arithmetic. Therefore, it must be incomplete, and there is no guarantee

that the a truth value can be computed for SY .

Gödel’s incompleteness opens the possibility that all the formal knowledge about a

topic is not enough to prove everything about that topic. As always, a point of view from

TMs is more material and more insightful. Undecidability of Turing halting means than

some behaviors of machines cannot be predicted, they need to occur with physical exten-

sion. In turn, if we modeled the mind as a computer, this would mean that we would not

always be able to predict what is true about proesses. Since we are talking about a mind,

this is consistent with the idea of experience as being there. But it does neither prove nor

disprove that there is something beyond the physical. It only shows how neither Jackson’s

proposal nor Dennett’s refutation can settle the issue.

We have just scratched a metaphysical issue. We know that computation requires a

physical extension (i.e., hardware) to run. But we can also speak of an unextended design

that correlates with the organization of that physical extension (i.e, software). Could the

mind be the software aspect to the brain–body–environment? By virtue of Turing halting,

software is not enough to predict everything about the processes it determines on the ma-

chine. So if the mind is modeled as a computer, and the actual becoming of its processes

is part of its essence, then it cannot occur as an unextended aspect to the machine. It must

have an extension.

97

12. A FEW LIMITATIONS OF THE COMPUTATIONAL THEORY OF MIND

Based on results reviewed in previous chapters, here we summarize a few claims we

can now make regarding limitations of the computational theory of mind (CTM). Remem-

ber that this view holds that, in some sense, the mind is a computer. We will take this

asseveration as equivalent to the following one: the mind implements an instance of a Tur-

ing machine model. With this new wording the claim is neither stronger nor weaker than

the original. It is not weaker because the original wording implies the new one: the fact

that something is an actual computer implies that there is a Turing machine model for it.

We base this on the assumption that the Church–Turing thesis is reasonable and has solid

support (see the end of section 2.2.3). Also, the new wording is not stronger because, in

the opposite direction, it implies the original one: if something can be modeled as a Turing

machine, then it is a computer.

It may seem like the previous analysis is incomplete in the sense that the Turing ma-

chine has a particular architecture (see section 2.2.3, and figure 2.7b). In contrast the notion

of computer allows diverse architectures. Therefore, it may seem like a wording that speaks

of a Turing machine corresponds to a stronger claim. But since the power of the Turing

model of computation is maximal in practice (as follows from Church–Turing thesis), this

is not an issue for our purposes. It is not because of two reasons.

First, as metatheoretical frameworks, computational mind and Turing machine mind

allow theories with the exact same potential predictive power, which follows from the fact

that both correspond to the exact same class of computational power. In other words, a

behavior that cannot be exhibited in one framework, neither can in the other.

Second, it is because of its remarkable power that the Turing machine can model the

architecture of any computer that can actually be implemented. If this were not the case,

then we would have a computer with more power than a Turing machine, which would

violate the Church–Turing thesis. In consequence, there are two architectures to consider

apart from the organization of the computational process that is being modeled: the serial

98

structure of Turing machines, and the architecture that underlies the programming of the

particular Turing machine model instance.

Remember that a Turing machine can, for instance, implement an artificial neural net-

work, which corresponds to a parallel architecture (see end of section 10.4.0.2). Under rea-

sonable assumptions, neural networks can also implement Turing machines (Hyötyniemi,

1996), specially if we couple them to an environment that provides potentially unlimited

information storage space for any practical purposes. The fact that a Turing machine can

model any implementable computer architecture means that it does not enforce a particular

architecture on the modeled object. This is why researchers of neural networks can de-

rive their theoretical predictions from neural network simulations that run on their digital

computers (e.g., Sejnowski & Rosenberg, 1987; Deng et al., 2009).

12.1. Some basic limitations

The following are the most direct limitations that we can derive from computability

theory.

(i) A process that has a formal definition may not have a mechanical implemen-

tation. It follows from Turing halting undecidability and its analysis in sec-

tion 4.3.3, as visualized in figure 4.1, that a process can have a formal definition

but be impossible to realize.

(ii) In general, there is no way to know if a given mechanical process will ever reach

a particular state we may be interested in. If a systematic method for solving

this problem existed, this would allow us to solve the Turing halting problem.

Turing proved that such a thing is not possible (chapter 4).

(iii) In general, there is no way to know if two formal descriptions of mechanical pro-

cesses predict the same behavior. If we had a systematic method that solved this

problem, we could solve the Turing machine equivalence problem in particular.

But as a consequence of Turing halting undecidability, this problem cannot have

a solution (section 4.3.2).

99

These limitations may have important consequences for cognitive neuroscience. Even

if we had a complete description of causal relationships in the nervous system, full body,

and environment of a subject; there is no general method to predict that a particular state

will be reached. Consequently, there is a high chance that a full theory of behavior is not

attainable from the study of nervous systems. Additionally, there is no general method to

determine if a nervous system, or any subset of it, matches a function we can formally

define. This may limit the analytic understanding of the nervous system and its functions.

12.2. Underdetermination of theoretical models by evidence

The fact that several different models can predict the same data is not a new issue.

Descartes (1986, first published in 1641) doubted everything he believed, under the suppo-

sition that there could be a Evil Demon devoted to present him false illusions of the world.

His experiences would be the same whether they came from a true external world or the

deceptions of the demon. Therefore evidence was not enough to determine if a true external

world or an Evil Demon thesis was true. The same issue has been discussed as a widely

applicable problem in science (Duhem, 1991; Quine, Churchland, & Føllesdal, 2013).

In an optimistic and naive manner, we could expect the power of Turing machines

to rescue us from underdetermination, on the grounds that different models for the same

evidence could be computationally equivalent in the sense that they generate the same

predictions. In other words, it could be hoped that those models are not different in a

relevant way. Unfortunately, this is not the case.

The fundamental limitation is that, however large, any record we can make of obser-

vations is finite. And a computer can model any given piece of finite information. Further-

more, it can do so in an infinite amount of relevantly different ways. In order to visualize

this, consider a single piece of past observations. Consider too a finite random sequence

of events that could be observed in the future. Now append the random sequence to past

observations. We can program a computer to model the result. Since we can append ran-

dom events in infinitely many ways, and we can program computers for each resulting

100

sequence. We have just created an infinite amount of theories that are all equally right

about observations we currently possess, but make different predictions about the future.

However, we can hope for theories that partially capture regularities in current obser-

vations, in order to produce sensible predictions. Once again, artificial neural networks

offer a concrete example. They can be inductively trained to recognize members of a

class1 (Chauvin & Rumelhart, 1995). They do not need to be previously presented with

all members of the class, of which there could be infinitely many. After the presentation

of (and repeated training with) a few instances, the network often acquires the capability

of successfully recognizing members that where not presented before. But this has a few

conditions. When a network has too many artificial neurons, and therefore two many con-

nections, its number of parameters is big enough to “learn examples by heart”. This makes

it very easy for the network to model training instances, but does not force it to capture

the underlying similarities that make those part of a class. As a consequence, the network

fails in front of new examples. On the opposite end, when a network has too few artificial

neurons, it lacks the complexity needed to capture the essential features of the class. But

when the number of units is just right, and the amount of training is just enough, artificial

neural networks generalize surprisingly well. Nevertheless, the fact remains that any set

of finite observations can be modeled by a computer, actually several different ones that,

depending on our luck, could make slightly or wildly different predictions.

12.3. Metaphysical orthogonality of the computational theory of the mind

That the human mind is a computer is a metaphysical claim. If we accept it, it follows

that metaphysical properties of computers are also properties of the human mind. But

the same properties will apply to other objects like a digital gaming console, which is

not a human mind. What metaphysical properties are specific of the human mind? The

CTM cannot be used to decide this. Since several different computational models can be

consistent with any observations we may have, it will always be the case that the same

1An actual solution of a problem by using artificial neural networks would involve several classes and training
with several instances of each class. This paragraph focuses on one class for simplicity.

101

evidence will allow models with different properties, whether metaphysically relevant or

not.

Consider physicalism or epiphenomenalism, for instance, as they would be treated in

the context of the CTM. One holds that the mind supervenes on the physical. The other that

mental events are non-physical but caused by physical events. As much as, strictly speak-

ing, the two theories do make different metaphysical claims, we could sensibly say that

those are not really predictions but assumptions. Should any other metaphysical claims be

theoretically derived from the sum of metaphysical assumptions and computational mod-

els in such a theory, those could be considered predictions, strictly speaking. But not in a

sense that allows us to tell theories apart, because they would be the just the consequence

of metaphysical assumptions.

We could propose, just as an example, that the nature of the mind is such that a neces-

sary condition for it is to process information in a massively parallel way as opposed to a

serial Turing machine. And predictions about what can be observed would follow, possibly

including metaphysically relevant consequences. But since (massively parallel) artificial

neural networks can model anything, the claim could not be falsified. In order to propose

a falsifiable metaphysical claim within the computational theory of mind, we would need

to restrict acceptable models to a computational power class strictly weaker than Turing

machines. In principle this does not seem like a problem. A computer that does not har-

ness its full potential is still a computer. But human minds can simulate Turing machines.

And a weaker model (than Turing machines) cannot. By reductio ad absurdum, within the

computational theory of mind, we cannot propose a falsifiable metaphysical claim that is

specifically about the mind or about any other object of which we can only make a finite

amount of observations.

We will have to limit ourselves to non-specifically mental metaphysical properties. We

can say that if the mind is a computer, then it needs to be so in a physically extended way.

And the same is true of any computer, whether it is a mind or not. This is a metatheoretical

consequence of Turing halting. Since computational theories are incomplete, the only place

102

in which a machine can actually possess all the attributes that its design determine, is in its

physical extension, with time for allowing the execution of the machine’s processes, and

space that allows the determined patterns to actually take place.

103

13. CONCLUSIONS: THE CONSEQUENCES OF THEORETICALLY MODEL-

ING THE MIND AS A COMPUTER

The typical image of a computer characterizes it as a dumb device that gets its intel-

ligence but also its errors from a programmer. Perfectly logical, fast, and rigid. Incapable

of learning or adapting; any deviation from the expected would cause it to explode. Since

software can be copied, several computers can behave the same way. They do not seem

too diverse. If such an obnoxiously logical device was used to attempt the creation of an

artificial mind, it would probably be all reason but no heart, brilliant at maths but its jokes

would be bad. It could probably understand quantum mechanics, but not a flirtatious look.

Our revision presents a different image. Computers1 can learn and evolve on their own,

make generalizations, deal with the uncertain, be diverse, etc. In a certain sense, it is prob-

lematic that computers are that powerful. They can model any finite set of observations,

which means they can simulate any piece of observable behavior we can sensibly record.

Consider that there is no way for us, as observers of a reality, to make infinite records of a

behavior in a finite amount of time.

Then, in which sense is this problematic? This would prima facie seem like a solution

for building successful models of behavior. A hint can be found in the example of a teacher

training a pupil to learn the rules for a number series. Even if the pupil has correctly written

down several numbers of the series, how many more numbers are needed so that we know

the pupil has mastered the right rules (Wittgenstein, 1953, remark 145)? In the case of

“training” a computational model, the fact that it has successfully modeled a finite amount

of observations does not guarantee that it will continue to do so when new observations

come in the future. Since a computer can model any finite sequence of observations, in

particular it can model an infinite amount of sequences that begin correctly and then go on

in any of infinitely possible wrong ways. See section 12.2 for a more detailed discussion.

1Because of the arguments exposed in chapter 2, our use of the word computer in this chapter corresponds
to a notion of a Turing machine. More properly, to any computer machine that can be modeled as a Turing
machine.

104

Excessive modeling power is also a problem when we use theoretical models with the

purpose of learning something about the nature of a studied object. Because a computer

can model any finite piece of observable human behavior, there is a naive way in which

human mind and computers could be related2: since the model works, then the nature of

the mind could be that it behaves like a computer. But a computer can also model the

behavior of a thermostat or the chemical reactions that occur in a ripening apple. Since a

computer can model finite behavior of about anything, how does that say anything specific

about the nature of any modeled thing? A more in depth analysis of this issue can be found

in section 12.3.

A psychological model can be implicitly computational. Take the bystander effect for

instance: people are less likely to help a victim when others are present, probably because

of a lowered sense of responsibility (Darley & Latane, 1968). A simple logic for this

phenomenon is shown in algorithm 2.

Algorithm 2 Bystander effect. N is the number of bystanders, including the modeled
person. Note that the model does only consider groups of 1, 2, or 4 people. The RANDOM
procedure gives a result that tends to vary a lot, being true with a frequency that corresponds
to its argument given as a percentage, and false in the rest of cases

1: procedure REACTION(N)
2: if N == 1 then
3: if RANDOM(85%) then
4: Report the issue with a delay of about 1 minute.
5: else if N = 2 then
6: if RANDOM(62%) then
7: Report the issue with a delay of about 1.5 minutes.
8: else if N = 4 then
9: if RANDOM(31%) then

10: Report the issue with a delay of about 2.5 minutes.

Since computers can model any finite amount of data, in particular they can be made as

good as any finite description of a finite amount of data. In the terminology of computer

2This does not mean that any mind–computer relationship proposal is naive.

105

science, a psychological model of observable facts should correspond to a non-empty par-

tial recursive function. Non-empty means that it has to provide a prediction for at least one

case. Partial function means that it is allowed not to make predictions for some cases. Re-

cursive function means that when it does, there must be an effective mechanical procedure

(i.e., a Turing machine) that calculates those predictions unambiguously. Otherwise, we

cannot fully agree on how the theory relates to observations, past or predicted. The set of

predictions made by the model is, generally speaking, recursively enumerable. This means

that there is a Turing machine that can generate all the potentially infinite predictions of the

model, one after another. But if we start with a possible outcome, and ask if it is among the

predictions of the model, there is no guarantee that this can be formally answered. This is a

consequence of the undecidability of Turing halting. We could wait forever for the machine

to produce the prediction, without knowing if it ever will.

To any model that generates behavioral or physiological (or in any way measurable)

predictions from a finite amount of data in a systematic way, there is a corresponding Turing

machine. Here, systematic means that predictions are not any arbitrary sequence of events,

but are related to and derived from observations by some method. Just like there is a gap

that separates a model and the modeled, there is a gap that separates questions about the

model and the model itself.

At this point it is natural to question that the bystander effect model, or any other model

of comparable simplicity is a model of the mind. At most, it is a model of a phenomenon

that occurs to people with minds, which is what makes it psychologically relevant. Nev-

ertheless, we could argue that any other model that targets psychological phenomena at a

measurable level, being comprehensive and explanatory enough for whatever the purposes

of the modeler are, will have the property of generating systematic predictions from a finite

amount of data. In conclusion, if such a thing as a systematic model of the mind based on

a finite amount of observations exists, it is computational, even if it is implicitly so.

106

In order to understand the consequences of modeling the mind as a computer, we need

to understand a deep epistemological issue regarding computational models. A conse-

quence of Turing halting undecidability is that there is a surprising and inescapable gap

between the actual behavior of a machine and what can be predicted about it through mod-

eling. It is surprising because the same model that fully determines the operation of the

machine has limits regarding the predictions it can make about that same operation. How

can this be possible? In order for a prediction to be useful, it has to be generated in a finite

amount of time. But there are claims about formal processes that requiere infinite time in

order to be falsified. Turing halting undecidability proof forces that, in many cases, there

is not a finite-time alternative method that can provide us a correct answer.

All we can do is run the machine and see what happens. To that end, it is required

that the machine has a physical extension. Or at least that an agent with the capability of

simulating the machine, be human or machine, has a physical extension. But even if we

run the machine we may never get to know if it will ever reach the state we are interested

in. Because if the state has not occurred yet, there is no guarantee that it will occur, nor

that it will not.

Figure 13.1 displays the situation. The theory does not fill the modeled object. No

surprise there. But note that what the theory cannot answer corresponds to facts caused by

the model of the machine, which is a subset of the theory. We are not asking questions like

what the color of the machine is or how much it weights. We are asking, for example, if a

particular state is among those that the model determines to take place at some time (given

a particular input to the machine).

The computational theory of mind holds that, in some sense, the mind is a computer.

Turing halting undecidability dictates that the predictive power of a theory that adheres to

that claim is necessarily incomplete respect to its object of study (as depicted in figure 13.1).

As a consequence, the same is true of its explanatory power: more phenomena will occur

107

FIGURE 13.1. Relationships between a model of a machine, what we can answer
about it (theory), and the actual machine. Dashed circles inside the solid circle
reflect to which extent the model and the theory can speak about the machine.

Actual
machine

Machine
theory

Machine
model

causes
ca

us
es

than those that the theory can explain. This conclusion can be extended to any psychologi-

cal theory that only makes systematic predictions strictly based on finite observations. And

finite observations are about the only kind we can make.

Computational models are not only incomplete in the sense we just mentioned. They

are also very limited as theoretical tools when discussing the nature of modeled objects in a

specifically psychological manner, as discussed in section 12.3. Therefore, for a metatheo-

retical framework to accommodate psychological theorization in a proper and comprehen-

sive way, it must allow more than modeling observations. Formalization is useful, but it is

not enough.

Modeling is highly important. It allows us to make predictions and to explain. At the

same time it helps us understand. But it is fundamentally incomplete. A program seeking to

base psychology exclusively in formal methods and measurable data can definitely produce

advances, but it would be too restrictive for the whole of psychology. The consequence of

108

theoretically modeling the mind as a computer is that we need to go beyond computational

models.

109

References

Aho, A. V., & Ullman, J. D. (1977). Principles of compiler design. Addison-

Wesley.

Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial intelligence,

149(1), 91–130.

Astrom, K. J. (1965). Optimal control of markov decision processes with incomplete

state estimation. Journal of mathematical analysis and applications, 10(1), 174–205.

Atrash, A., & Pineau, J. (2010). A bayesian method for learning POMDP observa-

tion parameters for robot interaction management systems. In The POMDP practi-

tioners workshop. ICAPS 2010, Toronto, Canada.

Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian theory of mind: Model-

ing joint belief-desire attribution. In Proceedings of the Cognitive Science Society

(Vol. 33).

Ball, W. (2010). A short account of the history of mathematics. Dover Publications.

Bays, T. (2004). On Floyd and Putnam on Wittgenstein on Gödel. The Journal of

Philosophy, 101(4), 197–210.

Bennett, C. H. (1973). Logical reversibility of computation. IBM journal of Re-

search and Development, 17(6), 525–532.

Bennett, C. H., Bernstein, E., Brassard, G., & Vazirani, U. (1997). Strengths and

weaknesses of quantum computing. SIAM journal on Computing, 26(5), 1510–1523.

Berggren, J. L., Borwein, J. M., & Borwein, P. (2004). Pi: a source book. Springer.

110

Bernstein, E., & Vazirani, U. (1997). Quantum complexity theory. SIAM Journal

on Computing, 26(5), 1411–1473.

Block, N. (1995). The mind as the software of the brain. New york, 3, 377–425.

Boring, E. G. (1933). The physical dimensions of consciousness. The Century Co.

Cantor, G. (1874). Ueber eine eigenschaft des inbegriffs aller reellen algebraischen

zahlen. Journal für die reine und angewandte Mathematik, 77, 258–262.

Cantor, G. (1891). Uber eine elementare frage der mannigfaltigkeitslehre. Jahres-

bericht der Deutschen Mathematiker-Vereinigung, 1(1), 75–78.

Carnap, R., Frank, P., & Schlick, M. (1934). Logische syntax der sprache. J.

Springer.

Cassandra, A. R., & Kaelbling, L. P. (2016). Learning policies for partially observ-

able environments: Scaling up. In Machine learning proceedings 1995: Proceedings

of the twelfth international conference on machine learning, tahoe city, california,

july 9-12, 1995.

Chater, N., & Oaksford, M. (2008). The probabilistic mind: Prospects for bayesian

cognitive science. OUP Oxford.

Chauvin, Y., & Rumelhart, D. E. (1995). Backpropagation: theory, architectures,

and applications. Psychology Press.

Ching, W.-K., Huang, X., Ng, M. K., & Siu, T.-K. (2013). Introduction. In Markov

chains (pp. 1–46). Springer.

Chomsky, N. (1957). Syntactic structures. Mouton.

Chomsky, N., & Miller, G. A. (1963). Introduction to the formal analysis of natural

languages. In R. D. Luce, R. Bush, & E. Galanter (Eds.), Handbook of mathematical

psychology (Vol. 2, pp. 269–322). New York: Wiley.

111

Church, A. (1936). An unsolvable problem of elementary number theory. American

journal of mathematics, 58(2), 345–363.

Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality: A reply

to Jerry Fodor. Philosophy of Science, 55(2), 167–187.

Clark, A. (1997). Being there: Putting mind, world, and body back together. Cam-

bridge, MA.

Copeland, B. J. (2002). Accelerating turing machines. Minds and Machines, 12(2),

281–300.

Cosmides, L., & Tooby, J. (1992). Cognitive adaptations for social exchange. The

adapted mind: Evolutionary psychology and the generation of culture, 163, 163–228.

Cox, R. T. (1946). Probability, frequency and reasonable expectation. American

journal of physics, 14(1), 1–13.

Cox, R. T. (1961). Algebra of probable inference. JHU Press.

Darley, J. M., & Latane, B. (1968). Bystander intervention in emergencies: diffusion

of responsibility. Journal of personality and social psychology, 8(4), 377.

Davidson, D. (2001). Essays on actions and events: Philosophical essays. Claren-

don Press.

Dawson, J. (2006). Shaken foundations or groundbreaking realignment? A centen-

nial assessment of Kurt Gödel’s impact on logic, mathematics, and computer science.

In Logic in computer science, 2006 21st Annual IEEE Symposium on (pp. 339–341).

De Finetti, B. (2017). Theory of probability: A critical introductory treatment

(Vol. 6). Wiley.

112

Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In Computer vision and pattern recognition,

2009 IEEE Conference on (pp. 248–255).

Dennett, D. C. (1993). Consciousness explained. Penguin UK.

Descartes, R. (1986). Meditations on first philosophy with selections from the objec-

tions and replies (J. Cottingham, Trans.). Cambridge: Cambridge University Press.

Duhem, P. (1991). The aim and structure of physical theory. Princeton University

Press.

Euclid, & Williamson, J. (1788). The Elements of Euclid. Printed at the Clarendon

Press.

Feigl, H. (1958). The ‘mental’and the ‘physical’. Minnesota studies in the philoso-

phy of science, 2(2), 370–497.

Floyd, J., & Putnam, H. (2000). A note on Wittgenstein’s “notorious paragraph”

about the Gödel theorem. The Journal of philosophy, 97(11), 624–632.

Fodor, J. A. (1975). The language of thought (Vol. 5). Harvard University Press.

Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. MIT

press.

Formica, G. (2011). Almost von Neumann, definitely Gödel: The second incom-

pleteness theorem’s early story. Logic and Philosophy of Science, 9(5), 151-158.

Frege, G. (1893). Grundgesetze der Arithmetik. H. Pohle.

Gallistel, C., & King, A. (2011). Memory and the computational brain: Why cogni-

tive science will transform neuroscience. Wiley.

113

Gandy, R. (1980). Church’s thesis and principles for mechanisms. Studies in Logic

and the Foundations of Mathematics, 101, 123–148.

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica

und verwandter Systeme, I. Monatshefte für mathematik und physik, 38(1), 173–

198.

Heisenberg, W. (1927). Über den anschaulichen inhalt der quantentheoretischen

kinematik und mechanik. Zeitschrift für Physik A Hadrons and Nuclei, 43(3), 172–

198.

Heisenberg, W. (1949). The physical principles of the quantum theory. Courier

Corporation.

Hintikka, J. (2000). On wittgenstein. Wadsworth/Thomson Learning.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceed-

ings of the eighth annual conference of the cognitive science society (Vol. 1, p. 12).

Hodges, A. (2005). Can quantum computing solve classically unsolvable problems?

arXiv:quant-ph/0512248v1.

Hofstadter, D. (1980). Gödel, escher, bach: An eternal golden braid. Penguin

Books.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2007). Introduction to automata

theory, languages, and computation. Pearson.

Huxley, T. H. (1882). On the hypothesis that animals are automata, and its history.

In Meeting of the British Association for the Advancement of Science, 1874, Belfast.

Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. Proceed-

ings of STeP, 96.

114

Jackson, F. (1982). Epiphenomenal qualia. The Philosophical Quarterly, 32(127),

127–136.

Jackson, F. (1986). What Mary didn’t know. The Journal of Philosophy, 83(5),

291–295.

Kleene, S. C. (1938). On notation for ordinal numbers. The Journal of Symbolic

Logic, 3(4), 150–155.

Kleene, S. C. (1943). Recursive predicates and quantifiers. Transactions of the

American Mathematical Society, 53(1), 41–73.

Kleene, S. C. (1952). Introduction to metamathematics. Wolters-Noordhoff.

Kleene, S. C. (1967). Mathematical logic. Wiley.

Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago

Press.

Lewis, D. (1980). Mad pain and martian pain. Readings in the Philosophy of Psy-

chology, 1, 216–222.

Lewis, D. K. (1966). An argument for the identity theory. The Journal of Philoso-

phy, 63(1), 17–25.

Littman, M. L. (2009). A tutorial on partially observable markov decision processes.

Journal of Mathematical Psychology, 53(3), 119–125.

Lucas, J. R. (1961). Minds, machines and gödel. Philosophy, 36(137), 112–127.

Ludlow, P., Nagasawa, Y., & Stoljar, D. (2004). There’s something about Mary: es-

says on phenomenal consciousness and Frank Jackson’s knowledge argument. MIT

Press.

115

Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cogni-

tion hypothesis and a new proposal for grounding conceptual content. Journal of

physiology-Paris, 102(1), 59–70.

Markov, A. A. (1906). Rasprostranenie zakona bol’shih chisel na velichiny, zav-

isyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazan-

skom universitete, 15(135-156), 18.

Marr, D. (1983). Vision: A computational investigation into the human representa-

tion and processing of visual information. Henry Holt and Company.

McCauley, R. N., & Henrich, J. (2006). Susceptibility to the Müller-Lyer illusion,

theory-neutral observation, and the diachronic penetrability of the visual input system.

Philosophical Psychology, 19(1), 79–101.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

Moser, P., & Trout, J. (2002). Contemporary materialism: A reader. Taylor & Fran-

cis.

Murawski, R. (1998). Undefinability of truth. The problem of priority: Tarski vs

Gödel. History and Philosophy of Logic, 19(3), 153–160.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a general problem-

solving program. In IFIP congress (pp. 256–264).

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Sym-

bols and search. Communications of the ACM, 19(3), 113–126.

Null, L., Lobur, J., et al. (2014). The essentials of computer organization and archi-

tecture. Jones & Bartlett Publishers.

Ord, T. (2002). Hypercomputation: computing more than the turing machine.

116

Peano, G. (1889). Arithmetices principia: nova methodo. Fratres Bocca.

Pekonen, O., Franzèn, T., & Mar, G. (2007). Godel’s theorem: an incomplete guide

to its use and abuse. The Mathematical Intelligencer, 29(2), 66–70.

Penrose, R. (1994). Shadows of the mind: A search for the missing science of con-

sciousness. Oxford University Press.

Penrose, R. (1999). The emperor’s new mind: concerning computers, minds, and

the laws of physics. Oxford University Press.

Piaget, J. (1970). Structuralism. ERIC.

Pinker, S. (1997). How the mind works. 1997. NY: Norton.

Pinker, S. (2005). So how does the mind work? Mind & Language, 20(1), 1–24.

Place, U. T. (1970). Is consciousness a brain process? In The mind-brain identity

theory (pp. 42–51). Springer.

Post, E. L. (1936). Finite combinatory processes—formulation. The Journal of

Symbolic Logic, 1(03), 103–105.

Post, E. L. (1944). Recursively enumerable sets of positive integers and their deci-

sion problems. Bulletin of the American Mathematical Society, 50, 284-316.

Prinz, J. (2006). Is the mind really modular. Contemporary debates in cognitive

science, ed. RJ Stainton, 22–36.

Putnam, H. (1967). Psychological predicates. Art, mind, and religion, 1, 37–48.

Putnam, H. (1988). Representation and reality. Cambridge, Mass.: A Bradford

Book.

Quine, W. V. O., Churchland, P. S., & Føllesdal, D. (2013). Word and object. MIT

press.

117

Rang, B., & Thomas, W. (1981). Zermelo’s discovery of the “Russell Paradox”.

Historia Mathematica, 8(1), 15–22.

Rumelhart, D. E., McClelland, J. L., & PDP Research Group, C. (Eds.). (1986).

Parallel distributed processing: Explorations in the microstructure of cognition, vol.

1: Foundations. Cambridge, MA, USA: MIT Press.

Russell, B. (1918). The philosophy of logical atomism. The Monist, 495–527.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and brain sciences,

3(03), 417–424.

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pro-

nounce english text. Complex systems, 1(1), 145–168.

Shannon, C. E. (1948). A mathematical theory of communication, part I, part II.

Bell Syst. Tech. J., 27, 623–656.

Shapiro, L. (2007). The embodied cognition research programme. Philosophy com-

pass, 2(2), 338–346.

Smart, J. J. (1959). Sensations and brain processes. The Philosophical Review,

68(2), 141–156.

Spelke, E. (1994). Initial knowledge: Six suggestions. Cognition, 50(1), 431–445.

Stromswold, K. (1999). Cognitive and neural aspects of language acquisition. In

M. Gazzaniga (ed.), The cognitive neurosciences.

Tarski, A. (1936). Der wahrheitsbegriff in den formalisierten sprachen. Studia

Philosophica, 1, 261–405.

Turing, A. M. (1936). On computable numbers, with an application to the Entschei-

dungsproblem. Journal of Mathematics, 58, 345–363.

118

Turing, A. M. (1937). Computability and λ-definability. The Journal of Symbolic

Logic, 2(04), 153–163.

Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the Lon-

don Mathematical Society, 2(1), 161–228.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–

460.

Tye, M. (1986). The subjective qualities of experience. Mind, 95(377), 1–17.

Varela, F., Rosch, E., & Thompson, E. (1992). The embodied mind: Cognitive sci-

ence and human experience. MIT Press.

Von Neumann, J. (1951). The general and logical theory of automata. Cerebral

mechanisms in behavior, 1(41), 1–2.

Von Neumann, J. (1993). First draft of a report on the EDVAC. IEEE Annals of the

History of Computing, 15(4), 27–75.

Wagner, P. (2009). Carnap’s logical syntax of language. Springer.

Weyl, H. (1921). Über die neue Grundlagenkrise der Mathematik. Mathematische

zeitschrift, 10(1), 39–79.

Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.

Wittgenstein, L., & Russell, B. (1921). Logisch-philosophische abhandlung.

Wittgenstein, L., von Wright, G. H., Rhees, R., Anscombe, G. E. M., & Anscombe,

G. E. M. (1978). Remarks on the foundations of mathematics. MIT press Cam-

bridge, MA.

119

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. Introduction
	2. What is a computer system?
	2.1. Multiple definition, multiple implementation, and computational power
	2.2. Some well known computer models
	2.2.1. Finite-state machines
	2.2.2. Pushdown automata
	2.2.3. The Turing machine
	2.2.4. Universal Turing machines

	2.3. Actual implementation of computing models

	3. Countable and uncountable sets
	3.1. How to define a mathematical set
	3.2. The cardinality of infinite sets
	3.2.1. Natural numbers
	3.2.2. Some subsets of natural numbers
	3.2.3. Integer numbers
	3.2.4. Rational numbers
	3.2.5. Real numbers

	3.3. Countability of computational procedures

	4. Turing halting
	4.1. The Turing halting problem
	4.1.1. Undecidability proof

	4.2. Computable numbers
	4.3. Consequences
	4.3.1. A few undecidable problems
	4.3.2. Undecidability of Turing machine equivalence
	4.3.3. Not all definable functions are computable

	5. Gödel's incompleteness
	5.1. Axiomatic systems and formal languages
	5.1.1. Theories and proofs
	5.1.2. The natural number system

	5.2. Hilbert's program
	5.3. Gödel's incompleteness

	6. Consequences of Gödel's incompleteness
	6.1. Consequences for axiomatic systems
	6.1.1. There is no proof of arithmetic consistency in arithmetic
	6.1.2. There is no definition of arithmetic truth in arithmetic

	6.2. Relationship with Turing halting
	6.3. Implications for logic language

	7. Psychological interpretations of incompleteness
	7.1. Piaget's reaction to Gödel's theorems
	7.2. Did Wittgenstein misunderstand Gödel?
	7.3. Lucas-Penrose interpretation of Gödel
	7.4. The ``truth'' of Gödel's sentence

	8. Knowledge in an incomplete system
	8.1. Truth values and world facts
	8.2. Dichotomous truth
	8.3. Trichotomous truth

	9. Computers and non-determinism
	9.1. Non-deterministic Turing machines and quantum computing
	9.2. Bayesian modeling
	9.3. Markovian modeling
	9.3.1. Bayes' theorem in time: an example
	9.3.2. Acting under uncertainty

	9.4. Non-determinism and computational modeling of the mind

	10. Some controversies around a computational mind
	10.1. Being versus being like a computer
	10.2. Brain and mind
	10.3. Is there anything beyond the physical?
	10.4. Representation of knowledge
	10.5. Architecture of the mind
	10.6. Body and environment

	11. Incompleteness and epiphenomenal qualia
	11.1. The incompleteness of Mary's knowledge

	12. A few limitations of the computational theory of mind
	12.1. Some basic limitations
	12.2. Underdetermination of theoretical models by evidence
	12.3. Metaphysical orthogonality of the computational theory of the mind

	13. Conclusions
	References

