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RESUMEN . 

La simulación de variables hidro-climáticas y su impacto futuro implica usar Modelos 

de Circulación General (GCM) bajo distintos escenarios de gases de efecto 

invernadero o RCP (Representative Concentration Pathways). Cuantificar y tratar 

formalmente la incertidumbre asociada a estos modelos y escenarios es clave en 

estudios de impacto y adaptación al cambio climático. Este trabajo propone 

metodologías para enfrentar esta incertidumbre, particularmente en el análisis del 

desempeño de embalses, por medio de la transferencia de los estadísticos de los GCM 

al clima local. Inicialmente se demuestra la contribución relevante de los GCM y sus 

realizaciones a la incertidumbre total. Luego se propone un tratamiento de los GCM 

mediante la fusión de ensambles de estos y el clima local para generar series de clima 

estadísticamente compatibles con las proyecciones globales. La metodología es 

aplicada en tres cuencas Chilenas (Limarí, Maipo y Maule) simplificando el correcto 

tratamiento de los GCM y la generación de climas futuros asociados a probabilidades 

de ocurrencia para la modelación hidrológica. Esta metodología se utiliza para 

identificar el tiempo de emergencia (ToE) en el que el cambio en precipitaciones y 

temperaturas en estas cuencas aparece significativamente. Finalmente se evalúa una 

meta cambiante de entrega de agua como estrategia de adaptación del sistema de 

embalses Paloma (Limarí). Junto con las metodologías de generación de clima e 

identificación del ToE, otros resultados relevantes son: (1) sólo 5 percentiles de 

tendencia del ensamble de GCM replican las estadísticas obtenidas a partir de series 

individuales de clima para cada GCM; (2) el ToE ocurre antes del 2030 para las tres 

cuencas bajo escenarios RCP 6.0 y 8.5, siendo el Maule donde las precipitaciones 

futuras cambian mayormente; y (3) la reducción progresiva del agua distribuida por el 

sistema Paloma mantiene constante el número de fallas, pero reduce fuertemente la 

disponibilidad de agua. 
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ABSRTACT   .                     

Simulating hydro-climatic variables and their future impacts, require using General 

Circulation Models (GCMs) under different greenhouse-gases concentration 

scenarios, called RCP (Representative Concentration Pathways). Quantifying and 

explicitly coping with GCM and RCP uncertainty is a key issue in climate change 

impacts and adaptation studies. This work proposes methodologies to cope with these 

uncertainties, particularly in the reservoir performance, through merging the statistical 

attributes of GCM to local climate. First, the work shows the relevance of the 

uncertainty of the GCM and their realization to the overall uncertainty. This is 

followed by the proposal of a method that builds a GCM ensemble by merging their 

statistical attributes to local climate to generate climate time series that preserve both 

local and global statistics. The method is applied in three Chilean basins (Limarí, 

Maipo and Maule), and simplifies the GCM treatment to generate future climate 

associated with a certain probability of occurrence that can be used for hydrological 

modeling. This method is applied to identify significant changes in the Time of 

Emergence (ToE) of precipitation and temperature. Finally, a progressively changing 

water allocation goal is evaluated as an adaptation strategy to climate change for the 

Paloma reservoir system (Limarí). In addition to the methods for generating climate 

series and identify the ToE, other relevant results are: (1) only five trend percentiles 

are enough in the GCM ensemble to properly replicate the statistical attributes of using 

each GCM individually; (2) ToE is expected to happen before 2030 for the three basins 

under RCP 6.0 and 8.5, being the Maule basin the one that presents the earliest changes 

in precipitation; and (3) the progressive water allocation goal is able to maintain the 

number of failures of the Paloma system constant in time, but it has a big impact over 

the overall water allocation amount. 
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1. CHAPTER 1: GENERAL INTRODUCTION 

In water management practice decision makers used to assume stationarity to 

cope with uncertainty (Bras et al., 1983; Datta and Burgos, 1984; Datta and Houck, 

1984). In recent years the stationarity assumption has been strongly questioned (Milly 

et al., 2008; Milly et al., 2015), as climate change is affecting the stationary behavior 

of hydro-climatic variables. Under a non-stationary future scenario, General 

Circulation Models (GCMs) are used to simulate future climate, information 

commonly used in studies to assess the impacts of climate change and provide the 

scientific basis for decision making. Several studies have focused on detecting and 

quantifying climate variability and changes in precipitation and temperature under 

future scenarios, and its potential effects over water resources and water infrastructure 

(e.g. Adeloye et al., 1999; Fowler et al., 2005; Giorgi and Bi, 2009; Mahlstein et al., 

2011; Matonse et al., 2013; Mondal and Wasimi, 2007; Mondal et al., 2010). 

Water systems are strongly dependent on the infrastructure, being water 

reservoir systems one of the key elements. In particular, several studies have evaluated 

the effects of climate change on reservoirs in general (Lettenmaier et al., 1999, Fowler 

et al., 2003, Steinschneider and Brown, 2012, Adeloye et al., 2016, Soundharajan et 

al., 2016) and their performance in particular (Steinschneider and Brown, 2012, 

Adeloye et al., 2016, Soundharajan et al., 2016). Vicuña et al. (2010) developed a 

reservoir operation rule that dynamically adapts trough time to changes in climate, 

whereas Adeloye et al. (2016) studied reservoir operation rules under a constant 

change, by using the delta change approach (Hay et al., 2000; Diaz-Nieto and Wilby, 

2005; Minville et al., 2008). Nonetheless, to the best of our knowledge, a dynamical 
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adaptation in water allocation to climate change has not been addressed considering 

an uncertainty assessment using a special treatment that incorporates several GCMs 

and the four RCPs, as it would be required for a robust result (Chadwick et al., 2018a).  

Climate change impact studies have several problems associated with the 

uncertainty, which according to the concept of cascade of uncertainty (Wilby and 

Dessai, 2010) increases as one moves from the definition of future greenhouse gas 

concentration (i.e. the Representative Concentration Pathway, RCP) up to the 

assessment of the impacts on the water or environmental system of interest produced 

by changes in the local climate. The first problem is that some studies do not consider 

or misunderstand the uncertainty of the processes; as Blöschl and Montanari (2010) 

argued, climate change impact studies tend to be too optimistic about their predictions. 

Important aspects are usually neglected, such as the uncertainty related to changes in 

climate variables and the differences in the strength of the emergence of temperature 

and precipitation. In fact, the changes in temperature emerge more clearly than for 

precipitation (Hawkins and Sutton, 2011). A second problem is that the bias correction 

or statistical downscaling methods to disaggregate locally the outputs of GCMs may 

lack of strong conceptual support, as they are mostly used to fulfill a specific need 

(Ehret et al., 2012). Moreover, even Regional Circulation Models (RCMs) are 

apparently not good enough to correctly simulate local conditions without bias 

correction (Teutschbein and Seibert, 2010). Thus, when a study focuses on the 

hydrological impacts, a large range of climate change projections obtained using 

several GCMs and downscaling methods is fundamental to investigate the spectrum of 

uncertainty (Chen et al., 2011). A final problem is that the uncertainty of the 

hydrological model used to simulate hydrological variables is also relevant, especially 
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when calibrated for certain climate conditions, but used for different ones under 

climate change (Merz et al., 2011). Overall, the assessment of the contribution to the 

uncertainty coming from the GCMs and their realization, as well as the RCP scenarios 

is not clear. Moreover, the local climate plays a significant role as it may hinder and 

affect not only the assessment of the uncertainty, but also the clear identification of the 

occurrence of climate change at the basin scale. Hence, identifying the time of emerge 

(i.e. the time at which climate change signal can be clearly identified from the climate 

noise) (Hawkins and Sutton, 2012) at the basin scale, and therefore, dependent of the 

local conditions, becomes an appealing idea that deserves to be explored. Such task 

has rarely been undertaken before, and only for the US (University of Washington, 

2015; Leng et al. 2016). 

Based on the background previously described, the following hypotheses are 

proposed for this research: 

- The uncertainty induced by the GCMs and their realizations significantly alters 

the results of a climate change impact study. 

- It is possible to generate climate with stochastic methods that preserves both 

the GCM and local precipitation and temperature statistics. 

- It is possible to identify at a basin scale the time at which the climate change 

emerges, by using GCM projections and local climate statistics. 

- A dynamic water allocation strategy yields better results in terms of 

maintaining a constant reliability than a single allocation objective in a dry 

basin under climate change. 

The overarching objective of this study is to generate tools able to cope with 

the uncertainty on the different steps of a climate change impact study, which take into 
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consideration explicitly a wide range of GCMs and their realizations, as well as the 

local climate records. To address this objective, the following specific objectives have 

been defined according to the hypothesis abovementioned:  

1. To analyze and understand the impact of climate change-induced uncertainty on 

the operation of large reservoirs, in order to assess and quantify the relative 

contribution of the GCM’s, their realizations and RCP scenarios to this 

uncertainty.  

2. To develop a GCM downscaling approach more suitable to cope with GCM 

uncertainty when dealing with climate change studies at the basin scale.  

3. To propose a methodology to estimate time of emergence at local sclaes, 

considering GCMs outputs and local climatic conditions explicitly.  

4. To evaluate the impact of progressive changes in climate over reservoir 

performance measured by using performance indexes, and possible adaptation 

strategies.  

This document is organized in four main chapters, each corresponding to a self-

contained investigation addressing the above highlighted objectives. The organization 

of this work is as follows: 

Chapter 2 analyses the impact of choosing different GCM projections over the 

performance in the operation of a reservoir system, and the uncertainty associated with 

the GCMs and the RCPs. The Paloma reservoir system located in the Limarí river 

basin, a semiarid Mediterranean basin in central Chile, is used as a case study. The 

methodology uses several GCM projections and a quantile mapping bias correction 

(Wood et al., 2002; 2004; VanRheenen et al., 2004; Maurer, 2007; Maurer et al., 2009) 

as a downscaling method. The Water Evaluation and Planning (WEAP) system (Yates 
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et al., 2005a; b) was utilized to simulate the hydrology of the basin. Finally, the 

performance indexes proposed by Hashimoto et al. (1982) are used to measure the 

performance of the reservoir system.  

Chapter 3 proposes a method more suitable to cope with GCM uncertainty 

when dealing with climate change studies. The method generates climate series by 

merging within a statistical framework the changes in precipitation and temperature 

from a group GCM and local climate statistics. The changes of annual precipitation 

and temperature obtained from the GCMs are statistically treated to produce trend 

percentiles, which are combined with local climate to generate climate time series that 

incorporate both the climate information from the CGM group as well as the local 

statistics. This methodology is evaluated against traditional downscaling and bias 

correction approaches, such as delta change, quantile mapping bias correction and the 

use of a subset of GCMs. The method is also compared against using individually each 

of the precipitation and temperature series, which are constructed by combining the 

local climate statistics with each individual GCM. In particular it is verified whether 

the proposed method reproduces the statistical attributes obtained from the post 

analysis of these series. 

Chapter 4 proposes a methodology to identify, at a local scale, the time at which 

the climate change signal emerges from the climate noise, also known as Time of 

Emergence (ToE). ToE is commonly studied at large scales (Sui et al., 2014) or for the 

whole planet (Giorgi and Bi, 2009; Hawkins and Sutton, 2012). The methodology is 

implemented in three river basins in central Chile, and considers the method developed 

in Chapter 4 to generate future climate (precipitation and temperature) associated with 

different trend percentiles. These climate series are compared against series generated 
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to replicate the historical local climate, and the ToE is defined to be the time at which 

both sets of data are statistically different, using the statistical power of a Kolmogorov-

Smirnov hypothesis test to assess the probability of certainty of this identification (i.e. 

the probability of being correct when accepting that the climate has statistically 

changed). As the trend percentiles from Chapter 3 are used, the power for different 

percentiles among a GCM group can be determined. 

Chapter 5 evaluates through time different water allocation goal strategies for 

climate change adaptation. Just as in Chapter 2, the Paloma reservoir system in the 

Limarí river basin is used as case study, while the indexes proposed by Hashimoto et 

al. (1982) are considered in the performance assessment. However, in this Chapter the 

downscaling is done using the method developed in Chapter 3. Three alternative goals 

for the operation of the reservoir system are tested: (1) the current reservoir operation 

rule proposed by Ferrer et al. (1978), (2) a constant reduction of the water allocation 

goal, and (3) a progressive reduction of the water allocation goal. Particularly, 

alternatives (2) and (3) are designed to maintain the stationary historical reservoir 

reliability of the Paloma System.  

This document closes with a summary, which highlights the most relevant 

conclusions of this work and proposes future research recommendations.  
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2. CHAPTER 2: ASSESSING THE ROLE OF GCM AND RCP 

SOURCES OF UNCERTAINTY IN THE PERFORMANCE OF 

CURRENT RESERVOIR OPERATION IN SEMIARID CHILE 

2.1. INTRODUCTION 

 Different approaches are used to study optimal reservoir operation policies, 

such as linear programming (e.g. Yoo, 2009), nonlinear programming (e.g. Sinha et 

al., 1999) or dynamic programming (e.g. Stedinger et al., 1984). Typically, short and 

long-term horizons (Datta and Burges, 1984) are identified in reservoir operation 

policies. Commonly, stationarity is assumed for the long-term horizon; however, 

estimations of the inflows and demands are uncertain, particularly under the context 

of global change, and the effect of this uncertainty on the reservoir’s performance is 

difficult to characterize. This is relevant, as the cost associated with inaccurate 

forecasting can be similar to the savings due to accurate forecasting (Datta and Burges, 

1984). 

Reservoir performance is typically evaluated using indexes, with reliability, 

resiliency and vulnerability (RRV) (Hashimoto et al., 1982) being widely used (Moy 

et al., 1986; Fowler, 2003; 2007; Goharian et al., 2017; Zhang et al., 2017; Alameddine 

et al., 2018). These indexes allow for quantitative comparison among different 

operation options, and describe water resource systems better than other metrics (e.g. 

mean, standard deviation), which often incompletely describe the system under failur 

(Hashimoto et al., 1982). The RRV approach is multivariate, although tradeoffs have 

been identified among these indexes (Moy et al., 1986; Bayazit and Ünal, 1990; 

Srinivasan and Philipose, 1996; 1998; Zhang et al., 2017). For example, short or 
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moderate failures instead of long or deep deficits are commonly preferred due the 

tradeoff between vulnerability and reliability (Hashimoto et al., 1982; Srinivasan and 

Philipose, 1996; 1998; Draper and Lund, 2004). This practice in reservoir operation is 

known as hedging (Srinivasan and Philipose, 1998). 

Several studies have focused on quantifying climate variability and trends in 

precipitation and temperature under future scenarios, and their potential effects over 

water resources (e.g. Fowler et al., 2005; Mondal et al., 2010; Walton et al., 2017; Shi 

et al., 2018; Smitha et al., 2018). Other studies have assessed the impacts of these 

changes on water management systems and infrastructure (e.g. Fowler et al., 2007; 

Kim and Kaluarachchi, 2009). Climate change impact studies have several uncertainty 

problems. For example, temperature and precipitation changes are frequently treated 

equally, despite the fact that temperature trends emerge more clearly than 

precipitations’ (Hawkins and Sutton, 2011), or that precipitation changes could even 

be considered as random processes (Sun et al., 2011). Second, the bias correction and 

statistical downscaling methods used over the General Circulation Models (GCMs) 

outputs for hydrological studies, may lack strong conceptual support (Ehret et al., 

2012). Moreover, even Regional Circulation Models (RCMs) lack the skill to correctly 

simulate local hydrology without bias correction (Teutschbein and Seibert, 2010). 

Thus, when a study focuses on the hydrological impacts, a large range of projections 

obtained using several GCMs and downscaling methods is fundamental to investigate 

the spectrum of uncertainty (Chen et al., 2011). Third, the uncertainty of the variable(s) 

used to build hydrological models are also relevant but usually neglected, especially 

when calibrated and then used in different climate conditions (Merz et al., 2011).  
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Uncertainty has been incorporated in climate change studies in very different 

manners.  The first studies did not perform uncertainty analysis (e.g. Fowler et al., 

2003), nonetheless they acknowledged this limitation and recommended using future 

climate projections from different GCMs and ensemble members to estimate 

uncertainty. The consideration of just some GCMs is common as a result of the 

modeler’s choice or to the fact that some specific GCMs have been identified locally 

to be suitable for climate change studies (Fowler et al., 2005). For example, Samadi et 

al. (2013) only used HadCM3 GCM with the A2 emission scenario, because they 

determined it to be the most appropriate GCM for the study area. Yung et al. (2011) 

adopted the most critical climate change scenarios, by using the largest reduction in 

precipitation and highest temperature increase. Buser et al. (2009) used four RCMs 

and one high resolution GCM with the A2 emission scenario, limiting the study to 

these five uncorrelated models because of the availability of GCMs with fine grids.  In 

a more comprehensive study, Schaefli et al. (2007) studied the hydropower generation 

in the Swiss Alps under climate change using 19 RCMs. Nevertheless, uncertainty is 

usually quantified in terms of precipitation (Ouyang et al., 2014) or streamflow at most 

(Chen et al., 2011). Some studies have broadly analyzed different sources of 

uncertainty under climate change, by measuring reservoir operation’s performance 

(Brekke et al., 2009; Georgakakos et al., 2012; Steinschneider et al., 2015a; 2015b; 

Whateley and Brown, 2016). Moreover, some studies recently evaluated the 

uncertainty of climate change on the reservoir performance using RRV indexes 

(Steinschneider and Brown, 2012; Adeloye et al., 2016; Schlef et al., 2017; 

Soundharajan et al., 2016). However, the following questions related to the impacts 

over reservoirs have not been fully addressed: (1) What is the relationship between 
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changes in climate and the performance of a current operation rule measured by RRV 

indexes? (2) Where does the greatest source of uncertainty come from: intra-GCMs 

(i.e. several realizations of the same GCM), inter-GCMs (i.e. across GCMs) or the 

Representative Concentration Pathways (RCPs)? 

The objective of this chapter is to analyze and understand the impact of climate 

change-induced uncertainty on the operation performance of large reservoirs measured 

by RRV indexes, to assess and quantify the relative contribution of the GCMs and 

climate change scenarios to this uncertainty. The case study focuses on the long-term 

performance of a reservoir system under its current operation rule in the Limarí basin, 

Chile. Using a wide range of climate change scenarios, we analyze the range of RRV 

indexes performance, produced by the intra-GCM, inter-GCM and RCP. 

 

2.2. THE LIMARÍ RIVER BASIN AND THE PALOMA RESERVOIR 

SYSTEM 

The Limarí River basin is a snow dominated catchment with an area of 11,800 

km2 in north central Chile, whose outlet is located at 30º43’51’’S, 71º42’01’’W. It is 

a semi-arid basin with large spatial variation in precipitation, increasing from the 

Pacific coast to the Andes, and from north to south, with annual average between 100 

and 300 mm. Precipitation occurs mostly during autumn and winter (May to August), 

and snow accumulates in the upper basin. The precipitation inter-annual variability is 

also high (i.e. coefficient of variation of 0.65 - 0.75 for different gauges) with a strong 

signal coming from the El Niño Southern Oscillation (ENSO) phenomenon 

(Montecinos and Aceituno, 2003). Streamflow is mostly produced by snow melt 

during spring and summer seasons (September to January). Hydro-meteorological 
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records for the basin are available from the Dirección General de Aguas (DGA, 

http://snia.dga.cl/BNAConsultas/reportes), the Chilean Water Agency. The 

streamflow gauges considered are listed in Table 2-1. 

 

Figure 2-1: Map of the Limarí river basins and its location in Chile. 

The Paloma reservoir system located in the basin supplies water to ~50,000 ha 

of irrigated land and drinking water to Ovalle city (110,000 inhabitants). The system 

is composed by the Paloma, Cogotí, and Recoleta reservoirs, whose capacities are 750, 

150, and 100 Mm3, respectively (Fig. 2-1). This capacity largely exceeds the average 

annual system inflow (i.e. 400 Mm3), which allows coping with the inter-annual 

variability (Vicuña et al., 2012). The intra-annual streamflow variability is naturally 

regulated by snow accumulation and melting. Because future spring and summer flows 
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are expected to occur earlier in the season due to climate change (Vicuña et al., 2011; 

2012), the reservoir system should participate more actively in regulating future flows.  

Table 2-1: Streamflow gauges in the Limarí basin. 

Station Subcatchment 
Area 

(km2) 

Years of 

record 

Elevation 

(m) 
Latitude Longitude 

San Agustín 

(HSA) 
Hurtado 656 

1969-2011 
2,035 

30º 27' 

44'' S 

70º 32' 

10'' W 

Ojos de agua 

(LMOA) 
Los Molles 144 

1969-2011 
2,355 

30º 44' 

37'' S 

70º 26' 

20'' W 

Cuestecita 

(MC) 
Mostazal 353 

1969-2011 
1,250 

30º 48' 

46'' S 

70º 36' 

46'' W 

Las Ramadas 

(GLR) 
Grande 544 

1969-2011 
1,380 

31º 00' 

42'' S 

70º 34' 

52'' W 

Desembocadura 

(TD) 
Tascadero 238 

1969-2011 
1,370 

31º 00' 

43'' S 

70º 39' 

52'' W 

Fragüita (CF) Cogotí 475 
1969-2011 

1,065 
31º 06' 

43'' S 

70º 53' 

06'' W 

  

The current operation rule of the system was developed by Ferrer et al. (1978), 

who used precipitation and streamflow data from 1944 to 1976 to simulate the inter-

annual variability and various allocation scenarios. They estimated volumes of 138 

and 220 Mm3 for the 3- and 4-year moving average of the annual inflows to the system 

with 85% exceedance probability, and concluded that a wet year is expected to follow 

three dry years. Hence, a period of three years was considered critical for the long-

term horizon operation of the reservoir system, leading to a single annual allocation 

decision (Ferrer et al., 1978).  This operation rule has been valid for the last 40 years, 

and is consistent with Chilean water rights law, according to which annual water 

allocations can be given by DGA up to the volume with an 85% exceedance probability 

(DGA, 2008).  

More formally the system operation is expressed as follows. The stored volume 

S (m3) in reservoir j at the beginning of year t+1 is: 
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𝑆𝑗
𝑡+1 = 𝑆𝑗

𝑡 − 𝑂𝑗
𝑡 + 𝐼𝑗

𝑡 − 𝐸𝑗
𝑡  

− 𝑆𝑝𝑗
𝑡  

(2.1) 

where O, I and Sp are the outflow, inflow and spilled water, respectively (m3), and E 

is the net evaporation from the reservoir (m3): 

𝐸𝑗
𝑡 = 𝐴𝑗

𝑡 ∙ (𝑒𝑗
𝑡 − 𝑃𝑗

𝑡)   (2.2) 

where e is the evaporation (m), P is the precipitation (m), and A is the surface area 

(m2), which is related to the water stored. S is restricted to the range defined by the 

reservoir maximum storage capacity 𝑀𝑆 (m3) and the dead storage 𝐷𝑆 (m3): 

𝐷𝑆𝑗  ≤ 𝑆𝑗
𝑡 ≤ 𝑀𝑆𝑗   (2.3) 

The water allocated in year t+1 (𝑂𝑗
𝑡+1) is a function of the stored water in the 

system composed of M reservoirs at year t (𝑆𝑇
𝑡 = ∑ 𝑆𝑗

𝑡𝑀
𝑗=1 ). If 𝑆𝑇

𝑡  overpasses a threshold 

or restrain bound (RB), a fixed amount 𝛼𝑗 is allocated from reservoir j. Otherwise, the 

allocated water is a fraction r of the storage.  

𝑂𝑗
𝑡 = {

𝛼𝑗             if 𝑆𝑇
𝑡 ≥ 𝑅𝐵

𝑟 ∙ 𝑆𝑗
𝑡       if 𝐷𝑆𝑗 ≤ 𝑆𝑇

𝑡 < 𝑅𝐵

0           if 0 ≤ 𝑆𝑇
𝑡 < 𝐷𝑆𝑗

 (2.4) 

Ferrer et al. (1978) determined values of  = 240, 40 and 40 Mm3 for the Paloma, 

Recoleta and Cogotí reservoirs respectively, as well as values of RB = 500 Mm3 and r 

= 0.5. Thus, if the system storage exceeds 500 Mm3, the maximum allowed annual 

water allocation is 320 Mm3. Otherwise; half of the stored water is allocated.   

2.3. METHODOLOGY 

Several methods and tools were used to link climate, hydrology and the 

reservoir system and its performance. First, an already developed hydrological 
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climate-driven model implemented in the Water Evaluation and Planning (WEAP) 

system (Yates et al., 2005a; b) was calibrated using historical monthly runoff data. 

Then, precipitation and temperature data for the period 2011-2100 from 49 runs of 

GCMs (Appendix A) and the four RCPs (i.e. 149 climate projections) were 

downscaled to be used as input for the WEAP model to simulate streamflow series. 

Finally, the performance of the reservoirs’ system under this set of streamflow 

scenarios was characterized through performance indexes. Details of these steps are 

presented in the subsections below. 

2.3.1. HYDROLOGICAL MODELING 

WEAP uses climate information as input to generate streamflow following a 

semi-distributed approach. In the model, elevation bands were used as hydrological 

units where climate, soil, topography and land use characteristics are specified. A 

WEAP model already set up for the Limarí Basin by Vicuña et al. (2011; 2012) was 

re-calibrated and used in this study. The re-calibration used the most recent years (1985 

– 2011), leaving the period 1969-1984 for validation. This approach allows obtaining 

calibration parameter values closer in time to future climate projections, to avoid errors 

caused by a large lag time between the calibration and simulation periods (Merz et al., 

2011). Overall, the simulated and observed hydrographs are similar, and satisfactory 

Nash-Sutcliffe efficiency (NSE) coefficient values (Nash and Sutcliffe, 1970) were 

obtained for the different streamflow gauges (Table 2-2); furthermore, observed and 

simulated average annual flows are very similar for the calibration period. The model 

tends to underestimate the annual flow for the validation period, while the coefficient 

of variation (CV) is underestimated for the entire period. When comparing the 
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validation and calibration periods, the NSE value improves for the San Agustín and 

Ojos de Agua gauges, is maintained for Cuestecita gauge and decreases for Las 

Ramadas, Desembocadura and Fragüita gauges (Table 2-2). The poorest performance 

of the model corresponds to San Agustin gauge (Fig. 2-2), which receives 

contributions from the highest elevations in the basin (> 5,000 m) where reliable 

meteorological measurements are scarce. Nonetheless, even at this gauge low flows 

(i.e. the most relevant flows for the long-term simulation of the basin) are well 

simulated. Moreover, the main tributaries contributing to the system (i.e. Las Ramadas, 

Fragüita and Cuestecita) are well simulated, and explain most of the inflows to Cogotí 

and Paloma reservoirs, which represent 90% of the system storage volume. 

 

Figure 2-2: Observed vs. simulated monthly discharges for the period 1969-2011 

at the San Agustin gauge in the Hurtado River. 
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Table 2-2: Comparison of observed (obs) and simulated (sim) streamflows both for 

calibration and validation periods. 

  Calibration (1985-2011) Validation (1969-1984) 
 NSE Mean [m3/s] C.V. NSE Mean [m3/s] C.V. 

Station  Obs Sim Obs Sim  Obs Sim Obs Sim 

San Agustín 0.45 2.79 2.77 0.82 0.53 0.63 2.74 2.57 0.71 0.40 

Ojos de Agua 0.54 0.83 0.85 0.70 0.40 0.58 0.84 0.72 0.73 0.39 

Cuestecita 0.63 1.60 1.66 0.92 0.70 0.63 1.79 1.32 1.02 0.77 

Las Ramadas 0.72 3.93 3.97 0.92 0.77 0.67 4.72 3.29 0.80 0.71 

Desembocadura 0.61 1.32 1.35 1.16 0.99 0.51 1.61 1.06 1.04 0.77 

Fragüita 0.84 2.38 2.43 1.27 1.00 0.71 3.04 3.08 0.75 0.68 

Note: C.V. Coefficient of variation = average/standard deviation, NSE Nash-

Sutcliffe efficiency index; (Nash and Sutcliffe, 1970). 

 

2.3.2. DEVELOPMENT OF CLIMATE CHANGE SCENARIOS 

Under the premise that many GCMs are needed to characterize the uncertainty 

when analyzing climate change impacts, this study considered 49 GCMs realizations 

(Appendix A), and the RCPs 2.6, 4.5, 6.0 and 8.5 (Moss et al., 2010; Taylor et al., 

2012). GCMs’ projected precipitation and temperature series were downscaled using 

a quantile-mapping methodology, a bias-correction method developed for adjusting 

GCM’s output for hydrological forecast (Wood et al., 2002), and subsequently used in 

other climate change impacts and uncertainty studies (e.g. Maurer et al., 2009; Walton 

et al., 2017; Shi et al., 2018). This method was successfully compared against other 

dynamic and statistical methods by Wood et al. (2004). In our work GCM outputs are 

interpolated using inverse square distance to the ground weather station location. 

These interpolated GCM data are then bias corrected against the historical records 

(1971-2005). Because precipitation in the study basin is highly seasonal and summer 

months (December-March) are mostly dry, a monthly precipitation quantile-mapping 

performs poorly. Thus, an annual quantile-mapping was used instead, whereas a k-
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Nearest Neighbor (k-NN) method similar to the one used by Greene et al. (2012) was 

adopted to disaggregate annual precipitation into monthly data (Lall and Sharman, 

1996; Rajagopalan and Lall, 1999). Following the heuristic approach adopted 

elsewhere (Lall and Sharman, 1996; Rajagopalan and Lall, 1999), a value of 𝑘 = √𝐿 =

√35 ≈ 6 was used in the implementation of the k-NN method, in which L is the 

number of years in the historical record. For temperature, the quantile-mapping 

approach was applied on a monthly scale, as originally proposed by Wood et al. 

(2002). 

2.3.3. PERFORMANCE INDEXES 

To assess the performance of the reservoirs system, the first step is to define a 

satisfactory and unsatisfactory state. The system is considered to be in a satisfactory 

state when the total demand (𝐷) is met. If in a certain time step 𝐷 is not satisfied, the 

system falls into an unsatisfactory state referred to as a failure. With this definition, 

the Paloma system is on failure when the water allocation is under 𝐷 = ∑ 𝛼𝑗
𝑀
𝑗=1 =

320 𝑀𝑚3, i.e. when the demand is not fully satisfied. The Paloma system operation 

performance is evaluated under the future climate projections for the period 2011-

2100. The performance criterion used are the reliability, resilience and vulnerability 

indexes proposed by Hashimoto et al. (1982), widely used in the literature (e.g., 

Bayazit and Ünal, 1990; Moy et al., 1986; Fowler et al., 2003; Kim and Kaluarachchi, 

2009; Kjeldsen and Rosbejerg, 2004; Schaefli et al., 2007; Srinivasan and Philipose, 

1996; 1998; Steinschneider and Brown, 2012).  
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Reliability (Rel) measures how often the system fails. For our purpose, it is 

calculated as the percentage of time that the system is able to meet the 𝐷, in the n years 

under evaluation. 

𝑅𝑒𝑙 = 1 −
∑ 𝑍𝑡
𝑛
𝑡=1

𝑛
 (2.5) 

where 𝑍𝑡 counts the number of years at failure: 

𝑍𝑡 =

{
 
 

 
 0            if∑𝑂𝑗

𝑡

𝑀

𝑗=1

= 𝐷 = 320 𝑀𝑚3

1            if∑𝑂𝑗
𝑡

𝑀

𝑗=1

< 𝐷 = 320 𝑀𝑚3

 (2.6) 

 

where t is the year from 1 up to n, the last year of the analysis. 

Resilience (Res) is a measure of how fast the system recovers once it has failed. 

𝑅𝑒𝑠 =
∑ 𝑊𝑡
𝑛
𝑡=1

∑ 𝑍𝑡
𝑛
𝑡=1

  (2.7) 

where 𝑊𝑡 equals 1 each time step in which the system passes from failure to success 

and 0 if it stays on failure. Hence, ∑ 𝑊𝑡
𝑛
𝑡=1 ≤ ∑ 𝑍𝑡

𝑛
𝑡=1 , which ensures a Res range 

between 0 (no recovery from failure or always in failure) to 1 (immediate recovery 

from failure or never in failure). 

Following the approach by Srinivasan and Philipose (1996; 1998), two indexes 

for vulnerability were used: (1) the maximum vulnerability or maximum water deficit 

(𝑀𝑎𝑥𝑉) as used by Moy et al. (1986), and (2) the average vulnerability or average 

water deficit (𝐴𝑣𝑔𝑉). Both indexes range between 0 and 1, and are:  

𝑀𝑎𝑥𝑉 =
𝑚𝑎𝑥(𝑣𝑡)

𝐷
 (2.8) 
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where 

𝑣𝑡 = 𝐷 −∑𝑂𝑗
𝑡

𝑀

𝑗=1

≥ 0 (2.9) 

𝐴𝑣𝑔𝑉 =
(
∑ 𝑣𝑡𝑛
𝑡=1
𝑛 )

𝐷
 

(2.10) 

 

In Eq. (2.8) and (2.10), vulnerability values are standardized by 𝐷. 

 Finally, the Standardized Average Outflows (OF) was used as an additional 

index in the analysis:    

𝑂𝐹 =

(
∑ ∑ 𝑂𝑗

𝑡𝑀
𝑗=1

𝑛
𝑡=1

𝑛 )

𝐷
 

(2.11) 

hence, OF ranges between 0 and 1, and measures the mean percentage of water 

allocated by the system compared to 𝐷. 

2.4. RESULTS AND ANALYSIS 

The changes in the reservoir system’s performance for the period 2011-2100 is 

analyzed under the different GCMs and RCPs. The uncertainty is characterized by 

relating the range of the RRV indexes and the climate on three possible categories: 

inter-GCM, intra-GCM and RCP contribution to the overall uncertainty. Fig. 2-3 

compares the values of the Reliability, Resilience and Standardized Average Outflow 

for all the GCMs and RCPs, whereas Fig. 2-4 presents the same for both vulnerability 

indexes. Both Figures show the historical simulated RRV performances as a dashed 

line. The reliability range (Fig. 2-3a) varies with the climate change scenario. For 

example, for GCM 2 (see Appendix A), the reliability is slightly above 0.4 for RCP 



38 

  

8.5, whereas it reaches a value over 0.7 for RCP 2.6 (i.e. more than a 30% difference 

in the time under failure). Other GCMs lead to clustered reliability values regardless 

of the RCP (for instance Rel = 0.2 for the GCM 17). Overall, the inter-GCM reliability 

range is wider than the RCP reliability range. Note for example that under RCP 4.5, 

the reliability goes from almost zero (GCM 16) to one (GCM 11.5). The standardized 

outflow (Fig. 2-3c) follows the same pattern. Reliability and standardized outflow 

perform worse in the future, even under RCP 2.6. On the other hand, the intra-GCM 

reliability range of some GCMs is clustered around a single value across all their 

realizations while others have a wide range (Fig. 2-3a). For example, the three 

realizations of GCM 13 under RCP 4.5 produce reliabilities values of 0.09 (GCM 13.2 

and 13.3) and 0.1 (GCM 13.1). Under RCP 4.5, GCM 6 has an intra-GCM reliability 

range of 0.63, going from 0.1 (GCM 6.3) to 0.73 (GCM 6.2). The wider range of the 

intra-GCM reliability for GCM 6 as compared to GCM 13, is not explained by the 

higher number of realizations (i.e. 10 and 3 realizations, respectively), as almost any 

subgroup of three realizations from GCM 6 would produces a reliability range of 0.3 

or more.  

A similar range of results is observed for resilience (Fig. 2-3b). For example, 

the GCM 2 produces a resilience value of 0.18 for RCP 4.5, and above 0.5 for RCP 

2.6. Interestingly, the resilience for this GCM under RCP 8.5 is almost the same as for 

RCP 6.0 (Res = 0.3) and higher than for RCP 4.5. Similar to the reliability, the inter-

GCM range is wider than the RCP range. The range of results is similar to the 

reliability range because a couple of GCM and RCP combinations produce high 

resilience values (i.e. GCM 9, RCP 6.0; GCM 34, RCP 4.5), but most of the resilience 

values tend to be grouped between 0 and 0.4. These values indicate that the expected 
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duration of a failure is slightly longer than 2 years. The resilience index presents the 

same intra-GCM pattern as reliability, with a wide range for some GCMs (e.g. GCM 

6), while for others similar index values are produced across their realizations (e.g. 

GCM 13). Compared to the historical situation, resilience index performs worse for 

146 of the 149 future projections analyzed. Higher reliability and resilience values tend 

to be related, although this does not always hold. For instance, the best resilience of 

GCM 4.5 (realization r5i1p1 of GCM CCSM4, Table A1) results from RCP 2.6, while 

its best reliability results from RCP 4.5. 

 

Figure 2-3: Reliability (a), resilience (b) and standardized outflow (c) for the 

different RCPs and GCMs. The simulated mean historical performance (years 

1971-2005) is presented with a dashed line. 

Maximum water deficit values for most of the GCMs and RCPs combinations 

are larger than 0.8 (Fig. 2-4a). However, the issue of inter-GCM dispersion already 
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discussed for the other indexes, still holds. Low vulnerability values are obtained for 

the GCMs and RCPs combinations that produce high reliability and resilience. Again, 

the pattern of higher uncertainty due to GCMs is noticeable in Fig. 2-4b. More 

specifically a wide range of 𝐴𝑣𝑔𝑉 is produced among the GCMs (inter-GCM); such a 

range is also produced by most of the realizations for a given GCM (intra-GCM), just 

as for other indexes. The intra-GCM range of 𝑀𝑎𝑥𝑉 is small for most of the GCMs, 

because at least one extremely severe drought appears as part of the future climate 

projection (Fig. 2-4a). Nevertheless, results spread is wider considering different 

GCMs than that resulting from different RCPs. As expected, both vulnerability indexes 

show a worsening future performance. 

 

Figure 2-4: 𝑴𝒂𝒙𝑽 (a) and 𝑨𝒗𝒈𝑽 (b) for the different RCPs and GCMs. The 

simulated mean historical performance (years 1971-2005) is presented with a 

dashed line. 

Overall, results reported in Fig. 2-3 and Fig. 2-4 show that the performance 

indexes are subject to higher inter-GCM induced uncertainty, followed by intra-GCM 
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induced uncertainty, with the RCP-induced uncertainty being the least significant 

source. This contribution of GCMs and their realizations to the uncertainty can be 

further seen in the boxplots significant overlapping in Fig. 2-5. Despite this 

overlapping, the system’s performance tends to be slightly worse for more severe 

RCPs. For example, the median reliability decreases from around 0.5 (RCP 2.6) to 0.3 

(RCP 8.5), while the median standardized average outflows decrease from 0.7 to 0.5. 

Interestingly, the interquartile ranges of the boxplots are wider for the RCPs 4.5 and 

6.0, especially for reliability and standardized outflow. The big overlap of the indexes 

in Fig. 2-5 emphasizes that GCMs contribute the biggest portion of the uncertainty. 

This is a significant result, as the reservoir operators would make similar decision 

under any of these RCPs, although decisions can be quite different based on different 

GCMs, or even based on different realizations of the same GCM (Fig. 2-3 and 2-4). If 

the current reservoir system’s operation rule is not modified, future scenarios where 

performance metrics worsen compared to the historical ones are very likely. 

To evaluate the temporal dynamics of the GCM and RCP induced uncertainty 

over the performance of the system operation, the simulation period is divided into 

time windows 2011-2045 and 2046-2100. The future is unpromising even for the 1st 

period, with few GCMs’ projections producing performances similar to the historical 

one (Fig. 2-6). Furthermore, there is a significant performance’s worsening in the 2nd 

period, especially under RCP 8.5, as the medians become more different among RCPs 

in this period (e.g. the difference in reliability medians between RCP 2.6 and 8.5 goes 

from 0.1 in the 1st period to 0.3 in the 2nd period). However, the overlap of the boxplots 

is still big for the 2nd period, emphasizing that, despite the increase in RCP uncertainty, 

the portion of uncertainty related to the GCMs is still larger. The overlapping is caused 
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by an increase in the uncertainty of the GCMs, which is seen in the interquartile range 

of the boxplots (e.g. the RCP 8.5 standardized outflow boxplot goes from 0.47-0.80 in 

the 1st period to 0.20-0.74 in the 2nd period). 

 

Figure 2-5: Boxplot for indexes of reliability, resilience, standardized outflows, 

𝑴𝒂𝒙𝑽, and 𝑨𝒗𝒈𝑽. The simulated historical performance (years 1971-2005) is 

presented with a dashed line.  



43 

  

 

Figure 2-6: Boxplot for indexes of reliability, resilience, standardized outflows, 

𝑴𝒂𝒙𝑽, and 𝑨𝒗𝒈𝑽, for the 1st (years 2011-2054, 1° P) and 2nd (years 2055-2100, 

2° P) period. The simulated historical performance (years 1971-2005) is 

presented with a dashed line.   

Some studies evaluated the tradeoff among the RRV indexes under the same 

climate conditions and different reservoir operations (Moy et al., 1986; Bayazit and 

Ünal, 1990; Srinivasan and Philipose, 1996; 1998; Zhang et al., 2017). Here the 

reservoir system operation is constant and the relationship among RRV indexes and 

changes in climate, measured by the percentage of change (𝑃𝐶) in precipitation, is 

evaluated. PC is calculated from the raw GCMs before downscaling: 



44 

  

𝑃𝐶 =
𝐴𝐹𝑃𝑃 − 𝐴𝐶𝑃𝑃

𝐴𝐶𝑃𝑃
 (2.12) 

where 𝐴𝐹𝑃𝑃 and 𝐴𝐶𝑃𝑃 are the average future annual precipitation between 2011 - 

2100 and over the control period (1971 - 2005) respectively. Appendix A presents PC 

values for all the GCMs and RCPs. 

Table 2-3: Pearson (Spearman) correlation coefficients between different 

performance indexes. 

  Reliability Resilience 𝑀𝑎𝑥𝑉  𝐴𝑣𝑔𝑉  Outflows PC 

Reliability 
1.00  

(1.00) 

0.93  

(0.97) 

-0.84  

(-0.91) 

-0.94  

(-0.95) 

0.97  

(0.99) 

0.93  

(0.93) 

Resilience 
0.93  

(0.97) 

1.00  

(1.00) 

-0.90  

(-0.90) 

-0.90  

(-0.94) 

0.88  

(0.97) 

0.85  

(0.90) 

𝑀𝑎𝑥𝑉  
-0.84  

(-0.91) 

-0.90  

(-0.90) 

1.00  

(1.00) 

0.85  

(0.94) 

-0.78  

(-0.93) 

-0.79  

(-0.89) 

𝐴𝑣𝑔𝑉  
-0.94  

(0.95) 

-0.90  

(-0.94) 

0.85  

(0.94) 

1.00  

(1.00) 

-0.97  

(-0.98) 

-0.90  

(-0.91) 

Outflows 
0.97  

(0.99) 

0.88  

(0.97) 

-0.78  

(-0.93) 

-0.97  

(-0.98) 

1.00  

(1.00) 

0.92  

(0.93) 

PC 
0.93  

(0.93) 

0.85  

(0.90) 

-0.79  

(-0.89) 

-0.90  

(-0.91) 

0.92  

(0.93) 

1.00  

(1.00) 

 

Fig. 2-7 and Table 2-3 illustrate the strong correlation between the performance 

indexes and PC values. PC reaches the highest Person or linear correlation values with 

reliability and standardized outflow (0.93 and 0.92, respectively), which are similar to 

the Spearman or rank correlation (0.93 and 0.93, respectively), i.e., the correlation is 

strongly linear. The index with the lowest Pearson correlation coefficient against PC 

is 𝑀𝑎𝑥𝑉 (r = -0.79), which can be attributed to the non-linear relationship between 

both variables observed in Fig. 2-7. In fact, the differences between Pearson and 

Spearman correlation identify non-linear relationships. For example, these two 

coefficients clearly differ when comparing PC and 𝑀𝑎𝑥𝑉, resilience and outflows, and 

𝑀𝑎𝑥𝑉 and outflows (Table 2-3). Both resilience and 𝑀𝑎𝑥𝑉 have an apparent threshold 
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after which the linear relationship with PC does not hold (Fig. 2-7). Moreover, they 

have a non-linear relationship with most of the other indexes (Table 2-3), except 

among them. These non-linear correlations among the indexes support the necessity 

of using more than one RRV index, as they cannot be reduced to a single index. The 

outflow is the most redundant index, because it highly correlates with reliability and 

𝐴𝑣𝑔𝑉 (Table 2-3). PC values from the four RCPs significantly overlap for the 

performance indexes; nevertheless, higher RCPs tend to produce greater negative 

changes in precipitation (Fig. 2-7). 

 
Figure 2-7: Reliability, resilience, standardized outflows, 𝑴𝒂𝒙𝑽, and 𝑨𝒗𝒈𝑽 vs 

percentage of change in precipitation (𝑷𝑪) of the raw GCMs. 

2.5. CONCLUSION 

This chapter evaluates the uncertainty associated with the GCMs, their 

realizations and the RCP scenarios over the performance of the current operation of 

the Paloma reservoir system, in the Limari River basin, Chile, under climate change 
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for the period 2011-2100. This assessment was conducted by downscaling the GCMs 

temperature and precipitation outcomes with a quantile-mapping bias correction 

approach, which in turns served as input to a WEAP hydrological model. Modeled 

flows were used to simulate the operation of a reservoir system under the current 

operation rule, whose performance was characterized using RRV indexes. Our main 

conclusions are: 

- The overall uncertainty in the performance increases in time, both due to larger 

GCM and RCP uncertainties later in the century. The main contribution to this 

uncertainty comes from the GCMs, particularly for the early future. This can cause 

significant changes in the assessment of the reservoir performance.  

- For most of the GCMs, the intra-GCMs (i.e. several realizations of a single GCM) 

uncertainty is comparable to the inter-GCM uncertainty, as few GCMs present the 

same performance for several realizations. This is relevant as multiple GCM 

realizations are generally not considered when studying climate change impacts on 

water systems.  

- The uncertainties associated with GCMs differ for different RCPs. Overall, there is 

more uncertainty associated with RCP 4.5 and RCP 6.0, while the uncertainty for 

RCP 2.6 was the lowest. More studies are needed to determine whether this result 

will hold for other locations. 

- The performance measured by every index worsens in time when compared to the 

historical situation, even for an early period. 

- As expected, a strong correlation between the performance indexes and the 

percentage of change of precipitation simulated by the GCMs (PC) was found. 
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Hence, to reduce the uncertainty of the reservoir system performance, the PC 

uncertainty must be reduced.  

- Given the non-linear relationships among the indexes, they provide complementary 

and relevant information about the current operation rule under different climate 

conditions. Only the standardized average outflow can be ignored, due to its strong 

correlation with reliability and average vulnerability. 

The strong correlation between the changes in climate and the performance 

indexes may allow the assessment of the future climate conditions that will take the 

reservoir system to not satisfy the demand under the current operation rule. Moreover, 

our results suggest the modification of this rule to better regulate water allocation. 

Such rule should consider the new reservoir under construction in the upper basin, 

known as Valle Hermoso. Finally, future studies considering other downscaling 

methods and different hydrological models should be carried out, to quantify the 

uncertainty associated with these components in the assessment of the system’s 

performance.  
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3. CHAPTER 3: USING A STATISTICAL PRE-ANALYSIS 

APPROACH AS AN ENSEMBLE TECHNIQUE FOR THE 

UNBIASED MAPPING OF GCM CHANGES TO LOCAL 

STATIONS 

3.1. INTRODUCTION 

Uncertainty is inherent to water resources planning and management. 

Typically, this planning has considered stationarity to characterize and quantify 

uncertainty. In particular, the design and operation of water infrastructure uses 

historical hydro-meteorological records that are assumed to be representative of the 

future. Such approach is used to assign costs and benefits to decisions and projects, as 

well as to estimate the involved system performance (Bras et al., 1983; Datta and 

Burgos, 1984; Datta and Houck, 1984). But decision making should no longer rely 

completely on the assumption of stationarity (Milly et al., 2008; Milly et al., 2015), as 

global change in general, and climate change in particular, are altering the behavior of 

hydro-climatic variables.  

A widely used approach to cope with uncertainty in water resources 

management under stationarity has been probabilistic risk assessment, in which 

exceedance probabilities are given to different possible outcomes. Risk assessment has 

also been used in non-stationary extreme flood evaluation (Stedinger and Griffis, 2011; 

Vogel et al., 2011; Salas et al., 2012; Obeysekera and Salas, 2013; Salas and 

Obeysekera, 2013; Read and Vogel, 2015), and serves as an alternative to evaluate 

changes and variability in climate. Although a non-stationary risk assessment is 

challenging (Serinaldi and Kilsby, 2015), and a probabilistic projection of climate 
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change could mislead decision-makers by under-evaluating the real range of possible 

futures (Clark and Pulwarty, 2003), risk assessment under deep uncertainty, such as 

climate change, is possible (Shortridge et al., 2017).  

Climate change and its impacts on the hydrological regime and water systems, 

have been widely studied by several authors (i.e., Downing et al., 1997; Adeloye et al., 

1999; Lettenmaier et al., 1999; Fowler et al., 2005; Mondal and Wasimi, 2007; Giorgi 

and Bi, 2009; Mondal et al., 2010; Hagemann et al., 2011; Mahlstein et al., 2011; 

Matonse et al., 2013). These climate change impact studies typically follow a top-

down approach that starts form the climate projections identified from General 

Circulation Models (GCMs) for different greenhouse gases (GHG) scenarios. These 

projections are downscaled to a regional or local scale, and used to run models to 

simulate specific impacts over different sectors, activities or components of the 

environment, such as infrastructure, crops, cities, ecosystems, etc. (Wilby and Dessai, 

2010; Kiparsky et al., 2012).  

Unfortunately, the approach depicted above is associated with an increasing 

cascade of uncertainty (Wilby and Dessai, 2010), which makes decision making very 

difficult (Hallegatte, 2009). Indeed, the top-down studies that use insufficient GCMs, 

lack the ability to quantify their contribution to the total uncertainty explained by this 

cascade. The consideration of just some of the GCM is commonly due to simplicity or 

to the fact that some specific GCM have been identified locally to be suitable for 

climate change studies (Fowler et al., 2005). For example, Yung et al. (2011) evaluated 

11 scenarios in the assessment of municipal water supply risk using only two GCMs 

(i.e. the most extreme ones) in addition to population forecasts and a variety of demand 

management programs and possible system expansions. Kim and Kaluarachchi (2009) 
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used six GCMs to estimate an average future change when studying the impacts of 

climate change in the Blue Nile River. However, other studies consider a larger 

number of GCMs and GHG scenarios to analyze a wider range of possible future 

outcomes (Schaefli et al., 2007; Maurer et al., 2009). Typically, a large contribution to 

the uncertainty comes from the downscaling methods (Chen et al., 2011; Ouyang et 

al., 2014) and the GHG scenarios. In fact, the uncertainty coming from this last factor 

becomes more dominant in a distant future (Hawkins and Sutton, 2011). Nonetheless, 

several authors have identified large uncertainties associated with the GCM choice 

(Minville et al., 2008; Hawkins and Sutton, 2011; Chen et al., 2011; Teng et al., 2012; 

Ahmadalipour et al., 2017). Using a large number of GCMs improves the 

characterization of the impacts of climate change and its variability, by allowing for 

example, the estimation and assessment of risk or the relative probability of future 

scenarios, both concepts commonly used to deal with uncertainty in water 

management. Yet, considering a large number of GCMs to produce the different 

possible climate series may be beyond the capabilities of most water resource 

practitioners and decision-makers, thus the development of simple approaches to treat 

multiple GCM projections becomes essential. Such approaches must not compromise 

the correct representation of both local climate and GCMs projections.  

In the attempt of having a suitable alternative to cope with GCM uncertainty 

when dealing with climate change, this chapter develops an ensemble technique for 

the mapping of GCM changes to local stations, in which both the local climate 

variability and the GCMs’ statistics are preserved (i.e. the technique is unbiased). The 

approach extracts future changes from annual precipitation and temperature time series 

derived from multiple GCM runs. A statistical framework combining these changes 
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allows using the needed trend percentiles to represent the range of future climate 

conditions. Finally, climatic variability is added to these trends to produce future 

scenarios coherent with local conditions. The methodology is applied to three different 

river basins located in the Mediterranean regions of Chile using 45 future climate 

projections run under the scenario RCP 8.5. In these applications, we extensively 

assess the results of our method against those obtained from considering individually 

each possible GCM output. We also compare its ability to preserve GCM and local 

statistics against that of more traditional approaches such as delta change, bias 

correction and the use of a subset of GCMs.  The chapter is organized as follows: 

section 3.2 describes the approach that is able to manage GCM uncertainty for climate 

variability and climate change studies, whereas section 3.3 describes the study area 

and the climate time series. In section 3.4 the method is applied to the different case 

study basins, while in section 3.5 the main conclusions are presented. 

3.2. METHODOLOGY 

The proposed methodology is based on a statistical pre-analysis of the GCM 

described in Fig. 3-1. This pre-analysis is used to build climate time series that 

incorporate both trends from the GCM and natural variability. The GCM pre-analysis 

approach is tested against the conventional analysis of all GCM runs in which each 

possible GCM is considered individually to produce the corresponding climate series. 

These series are treated statistically to estimate future climate conditions and their 

corresponding probability of occurrence. The ability of the proposed method to map 

GCM changes to local stations is also tested against other three commonly used 

methods (i.e. quantile mapping bias correction, the use of a subset of representative 
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GCMs and delta change). Further details of the climate time series generation upon the 

conventional analysis of all GCM runs, the pre-analysis of the GCMs and the 

commonly used methods are provided in subsections 3.2.1, 3.2.2 and 3.2.3 

respectively 

3.2.1. CONVENTIONAL ANALYSIS OF ALL GCM RUNS 

The conventional analysis of all GCM runs combines two components: (1) The 

extraction of changes in precipitation and temperature data from the GCM, and (2) the 

generation of annual climate series around these changes. This analysis is performed 

for each GCM G under scenario RCP 8.5 (Moss et al., 2010), although any other 

radiative forcing scenario can eventually be used. 

3.2.1.1. GCM CLIMATE CHANGE EXTRACTION 

In this step, the three or four closest grid points of the GCM precipitation and 

temperature outputs (Fig. 3-1a) are interpolated to the gauge location using the inverse 

square distance method (Myers, 1994). Then, the normalized moving averages in 

precipitation (𝑁𝑀𝐴𝑃𝑡,𝐺)  is obtained for the GCM for a moving time window (e.g. 25 

or 30 year window) whose last year is t (Fig. 3-1b). 𝑁𝑀𝐴𝑃𝑡,𝐺 measures the change in 

precipitation and is defined as the ratio between the GCM precipitation output moving 

averages (𝑀𝐴𝑃𝑡,𝐺) and the average from the control period of the GCM adopted up to 

the last year of this control period 𝑡𝑜 (𝐴𝑃𝑡𝑜,𝐺): 

𝑁𝑀𝐴𝑃𝑡,𝐺 =
𝑀𝐴𝑃𝑡,𝐺
𝐴𝑃𝑡𝑜,𝐺

                                   , (𝑡𝑜 < 𝑡 < 𝑡𝑓) (3.1) 

where 𝑡𝑓 is the last year of the output from GCM.  
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Figure 3-1: Schematic representation of GCM pre-analysis and conventional analysis of all GCM runs approaches. From the GCM 

precipitation (a and e) the normalized moving average (𝑵𝑴𝑨𝑷𝒕,𝑮) is obtained by the ratio between the moving averages (𝑴𝑨𝑷𝒕,𝑮) 

and the control period average (𝑨𝑷𝒕𝒐,𝑮) (b and f). 𝑵𝑴𝑨𝑷𝒕,𝑮is used in the annual time series generator (c) to obtain the precipitation 

series with the conventional analysis approach (d). Several percentiles of 𝑵𝑴𝑨𝑷𝒕,𝒑(g and h) are used to build the GCM trends (i). 

These trends are used in the annual time series generator (j) to obtain the precipitation series with the GCM pre-analysis approach 

(k).
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On the other hand, the temperature difference for a given GCM (𝐷𝑀𝐴𝑇𝑡,𝐺) is 

obtained by the difference between the GCM temperature output moving average 

(𝑀𝐴𝑇𝑡,𝐺) and the average from the control period (𝐴𝑇𝑡𝑜,𝐺): 

𝐷𝑀𝐴𝑇𝑡,𝐺 = 𝑀𝐴𝑇𝑡,𝐺 − 𝐴𝑇𝑡𝑜,𝐺                   , (𝑡𝑜 < 𝑡 < 𝑡𝑓) (3.2) 

An analogous process is used to extract the change in the standard deviation of 

precipitation from the GCM group. In the case of precipitation, the normalized moving 

standard deviation (𝑁𝑀𝑆𝐷𝑃𝑡,𝐺) is defined for each GCM as the ratio between the 

GCM precipitation output moving standard deviation (𝑀𝑆𝐷𝑃𝑡,𝐺) and the standard 

deviation from the control period (𝑆𝐷𝑃𝑡𝑜,𝐺): 

𝑁𝑀𝑆𝐷𝑃𝑡,𝐺 =
𝑀𝑆𝐷𝑃𝑡,𝐺
𝑆𝐷𝑃𝑡0,𝐺

                              , (𝑡𝑜 < 𝑡 < 𝑡𝑓) (3.3) 

The temperature standard deviation difference (𝐷𝑀𝑆𝐷𝑇𝑡,𝐺) is obtained for each 

GCM by the difference between the GCM temperature output moving standard 

deviation (𝑀𝑆𝐷𝑇𝑡,𝐺) and the standard deviation from the control period (𝑆𝐷𝑇𝑡𝑜,𝐺): 

𝐷𝑀𝑆𝐷𝑇𝑡,𝐺 = 𝑀𝑆𝐷𝑇𝑡,𝐺 − 𝑆𝐷𝑇𝑡𝑜,𝐺           , (𝑡𝑜 < 𝑡 < 𝑡𝑓) (3.4) 

3.2.1.2. ANNUAL CLIMATE TIME SERIES GENERATOR 

The second step is the generation of annual series of temperature and 

precipitation that incorporate local variability using a probability density function 

(PDF) (Fig. 3-1c). These series are generated considering the changing climate 

according to the statistics of the GCMs. For each gauge of interest, the process starts 

by obtaining the moments (mean 𝜇, standard deviation 𝜎 and skewness) of the annual 

precipitation and temperature records. These moments, or the future expected ones 

obtained using the historical moments and the rates of change calculated in Eqs. (3.1-
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3.4), are used to estimate the parameter set 𝜃 of any PDF 𝑓𝑌(𝑦, 𝜃) of the variable Y 

(temperature or precipitation). Thus, 𝜃 will change in time according to the outcome 

from the GCMs, either if they are used individually to generate the climate series 

(subsection 3.2.1.3), or if they are considered jointly using the proposed ensemble 

approach (subsection 3.2.2). Note that for precipitation we only used strictly non-

negative distributions. The PDF 𝑓𝑌(𝑦, 𝜃) is chosen by minimizing the Kolmogorov-

Smirnov (KS) statistic of the KS test (Ayyub and McCuen, 2011). Note also that the 

generation of temperature and precipitation series may eventually need considering 

and preserving the correlation between them if significant, as well as possible 

correlations among locations. This was not needed in the case study here presented. 

As an alternative, the series can be normalized to generate correlated numbers which 

can then be transformed back to the original variables domain using the inverse of their 

cumulative distribution function (Ayyub and McCuen, 2011). In Appendix B we 

propose a method for this purpose, which is applied to one of the river basins of our 

case study. 

3.2.1.3. INCORPORATING GCM CHANGES INTO NON-

STATIONARY ANNUAL CLIMATE SERIES GENERATOR 

We now combine the GCM precipitation and temperature changes obtained in 

Eq. (3.1) through (3.4) with the annual climate series generator depicted in subsection 

3.2.1.2 for each year t. Thus, the resulting precipitation and temperature series 

incorporate both the GCM precipitation and temperature mean and standard deviation 

changes, as well as the natural variability coming from the standard deviation (Fig. 3-

1d). Note that other potential sources of annual natural variability not captured by the 
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standard deviation are not considered. Under this approach, the value of the climatic 

variable at any time t for the GCM is obtained as: 

𝑌𝑡,𝐺 = 𝐹𝑌
−1(𝑢, 𝜃) = 𝐹𝑌

−1(𝑢, 𝜇∗(𝑡, 𝐺), 𝜎∗(𝑡, 𝐺))    (3.5) 

where u is a random uniform number [0-1]. Note that the values of the 

parameter set θ change with time, as both the mean (𝜇∗) and standard deviation (𝜎∗) 

vary according to the GCM changes, while the skewness, if needed, is assumed to be 

constant. This approach was also adopted by Vogel et al. (2011) to incorporate trends 

in the return period of floods. The value of 𝜇∗ and 𝜎∗ in Eq. (3.5) at any year t for 

precipitation are calculated from the historical mean (𝜇) and standard deviation (𝜎) 

and the normalized change rates calculated in Eq. (3.1) and Eq. (3.3): 

𝜇∗(𝑡, 𝐺) = 𝜇 ∙ 𝑁𝑀𝐴𝑃𝑡,𝐺 (3.6) 

𝜎∗(𝑡, 𝐺) = 𝜎 ∙ 𝑁𝑀𝑆𝐷𝑃𝑡,𝐺  (3.7) 

For temperature, 𝜇∗ and 𝜎∗ are obtained using the changes rates from Eq. (3.2) 

and Eq. (3.4):  

𝜇∗(𝑡, 𝐺) = 𝜇 + 𝐷𝑀𝐴𝑇𝑡,𝐺   (3.8) 

𝜎∗(𝑡, 𝐺) = 𝜎 + 𝐷𝑀𝑆𝐷𝑇𝑡,𝐺 (3.9) 

Note that Eq. (3.5) allows the generation of annual climate variables. If intra-

annual climate series were needed, disaggregation methods such as the k-Nearest 

Neighbor, k-NN, (Rajagopalan and Lall, 1999) or the stochastic temporal 

disaggregation method (Thober et al., 2014) can be used. In fact, Greene et al. (2012) 

applied k-NN to disaggregate annual precipitation and temperature data into finer 

time-scales. 



57 

  

3.2.2. GCM PRE-ANALYSIS 

The GCM pre-analysis considers the following steps: (1) Extraction of 

changing rates of precipitation and temperature associated with each GCM (Fig. 3-1 e 

and f); (2) grouping the changes from each GCM (Fig. 3-1g); (3) calculation of the 

empirical cumulative distribution functions (CDF) of the GCM changes for each year 

(Fig. 3-1h); (4) construction of GCM trends using the CDFs (Fig. 3-1i), and (5) 

generation of annual climate series around each GCM trend (Fig. 3-1k). 

To identify the long-term trends in precipitation and temperature, the resulting 

𝑁𝑀𝐴𝑃𝑡,𝐺 and 𝐷𝑀𝐴𝑇𝑡,𝐺  time series calculated from Eq. (3.1) and Eq. (3.2) are grouped 

(Fig. 3-1g). For each year t, empirical cumulative distribution functions (CDF) for the 

values of 𝑁𝑀𝐴𝑃𝑡,𝐺 and 𝐷𝑀𝐴𝑇𝑡,𝐺 are calculated (Fig. 3-1h). The trend in time 

associated with a given percentile or non-exceedance probability p (i.e. 𝑁𝑀𝐴𝑃𝑡,𝑝 or 

𝐷𝑀𝐴𝑇𝑡,𝑝, Fig. 3-1i) is given by the values of 𝑁𝑀𝐴𝑃𝑡,𝐺 (or 𝐷𝑀𝐴𝑇𝑡,𝐺) with the same 

probability p calculated from the CDF of each year. Hence, several trends (e.g. 25th, 

50th, 75th percentiles) could be extracted and considered to analyze different possible 

future scenarios explicitly, in order to represent the dispersion among the group of 

GCM results. 

An analogous process is done for the standard deviation. Thus, empirical CDF 

for changes in the standard deviation of precipitation and temperature (𝑁𝑀𝑆𝐷𝑃𝑡,𝐺 and 

𝐷𝑀𝑆𝐷𝑇𝑡,𝐺) calculated from Eq. (3.3) and Eq. (3.4) are obtained. Again, different 

percentiles are chosen, which allows the definition of continuous trends with percentile 

p (𝑁𝑀𝑆𝐷𝑃𝑡,𝑝 and 𝐷𝑀𝑆𝐷𝑇𝑡,𝑝). To avoid producing climate data whose trends in 

average and variability are inconsistent with the GCM output, the value of p is chosen 
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for the trend of the normalized moving average in precipitation (𝑁𝑀𝐴𝑃𝑡,𝑝) and it is 

randomly generated for the trend of the normalized moving average in standard 

deviation (𝑁𝑀𝑆𝐷𝑃𝑡,𝑝) after considering the average correlation between 𝑁𝑀𝐴𝑃𝑡,𝐺 

and 𝑁𝑀𝑆𝐷𝑃𝑡,𝐺. The same procedure is applied to temperature (𝐷𝑀𝐴𝑇𝑡,𝑝 

and 𝐷𝑀𝑆𝐷𝑇𝑡,𝑝). Note that we focus the subsequent assessment of our method on an 

independent analysis of temperature and precipitation. Were a joint analysis of these 

variables needed, one could also consider the correlation among the average and 

standard deviation of precipitation and temperature when assigning the values of p. 

This could be done by choosing the value of p for the 𝑁𝑀𝐴𝑃𝑡,𝑝, and randomly 

generating the value of p for 𝑁𝑀𝑆𝐷𝑃𝑡,𝑝, 𝐷𝑀𝐴𝑇𝑡,𝑝 and 𝐷𝑀𝑆𝐷𝑇𝑡,𝑝. This process must 

consider the matrix with the correlations among 𝑁𝑀𝐴𝑃𝑡,𝐺, 𝑁𝑀𝑆𝐷𝑃𝑡,𝐺, 𝐷𝑀𝐴𝑇𝑡,𝐺 

and 𝐷𝑀𝑆𝐷𝑇𝑡,𝐺. 

The trends estimated from the GCM output are used on the annual climate 

series generator (Fig. 3-1j). Thus, the resulting climate series (Fig. 3-1k) is a GCM 

ensemble that incorporates the natural variability. The climatic variable at any year t 

for a trend percentile in 𝜇 (𝑝1) and in 𝜎 (𝑝2 correlates with 𝑝1), is obtained as: 

𝑌𝑡,𝑝1,𝑝2 = 𝐹𝑌
−1(𝑢, 𝜃) = 𝐹𝑌

−1(𝑢, 𝜇∗(𝑡, 𝑝1), 𝜎
∗(𝑡, 𝑝2))    (3.10) 

note that Eq. (3.10) is the same as Eq. (3.5), but it uses the GCM ensemble 

trends instead of the changes of a single GCM. The values of the parameter set θ 

change with time, as both the mean (𝜇∗) and standard deviation (𝜎∗) change with 

𝑁𝑀𝐴𝑃𝑡,𝑝, 𝐷𝑀𝐴𝑇𝑡,𝑝 , 𝑁𝑀𝑆𝐷𝑃𝑡,𝑝 and 𝐷𝑀𝑆𝐷𝑇𝑡,𝑝.  
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3.2.3. BIAS CORRECTION AND DOWNSCALING METHODS 

The GCM pre-analysis capability to reproduce the raw GCM projection 

changes over the mean and the standard deviation of annual precipitation is also tested 

against a quantile mapping bias correction (Wood et al., 2002), the sub-set of 

representative GCM projections (Whetton et al., 2012) and the delta change approach 

(Hay et al., 2000). These three approaches are some of the most widely used to 

incorporate GCM statistics to climate change studies. 

The quantile mapping bias correction (QMBC) was originally developed by 

Wood et al. (2002), and subsequently used elsewhere (e.g. VanRheenen et al., 2004; 

Maurer, 2007; Maurer et al., 2009; Shi et al., 2018; Walton et al., 2017). Wood et al. 

(2004) successfully compared this method against other dynamic and statistical 

methods. In our work, the QMBC is applied to annual precipitation data by using a 

gamma-gamma transformation (Sharma et al., 2007). 

The sub-set of GCM projections is a selection of a few raw GCMs projections 

that are more likely and/or have a more severe impact (Whetton et al., 2012). We 

selected five raw GCM projections to represent the quantiles of the GCM precipitation 

projection changes. The most extreme GCM mean precipitation changes (i.e. 1% and 

99% percentiles) and the inter-quartiles (i.e. 25%, 50%, 75%) between the near future 

(2036-2063) and the control period (1978-2005) were selected as representative of the 

entire group of GCM projections. This five GCM projections are not bias corrected. 

 The delta change approach, also called change factor, consists in applying the 

changes in the raw GCM projections to the historical climate data (Hay et al., 2000; 

Diaz-Nieto and Wilby, 2005; Minville et al., 2008). For precipitation, the delta change 
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method multiplies the historical precipitation series by the change factor associated 

with the mean precipitation of the raw GCM projections. 

 

3.3. STUDY AREA AND CLIMATE TIME SERIES 

The methodology is applied to three basins located in central Chile (Fig. 3-2): 

(1) the Limarí River basin, a semiarid Mediterranean basin in north central Chile 

whose outlet is located at 30º43’51’’S, 71º42’01’’W; (2) the Maipo River Basin, a 

Mediterranean basin in central Chile whose outlet is located at 33º 36’ 40’’ S, 71º37’ 

50’’ W; and (3) the Maule River Basin, another Mediterranean basin in central south 

Chile whose outlet is located at 35º 19’ 00’’ S, 72º 24’ 30’’ W. All these basins are 

bordered on the west by the Pacific Ocean and on the east by the Andes Mountains.  
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Figure 3-2: Limarí, Maipo and Maule river basins and their geographic location. 
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Table 3-1: Annual mean, standard deviation and coefficient of variation (CV) of precipitation and temperature recorded at Las Ramadas, 

Cerro Calán and Armerillo gauges. 

Basin Station Years Latitude Longitude 
Elevation 

[m] 

Mean 

Precip. 

[mm] 

Std. Dev. 

Precip. 

[mm] 

C.V. 

Precip. 

Mean 

Temp. 

[°C] 

Std. Dev. 

Temp. 

[°C] 

C.V. 

Temp. 

Limarí 
Las 

Ramadas 

(1978-

2005) 

31º 01' 

11'' S 

70º 35' 

11'' W 
1,380 341.5 209.8 0.61 16.3 0.54 0.033 

Maipo 
Cerro 

Calán 

(1978-

2005) 

33º 23' 

42'' S 

70º 32' 

12'' W 
848 452.2 201.0 0.44 16.3 0.40 0.025 

Maule Armerillo 
(1978-

2005) 

35º 42' 

04'' S 

71º 04' 

38'' W 
492 2397.2 807.2 0.34 14.0 1.12 0.080 
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These three basins are representative of the Mediterranean climate conditions 

in central Chile. Differences in annual precipitation regime are observable in basic 

rainfall statistics obtained from rain gauges in each basin (Table 3-1). Annual rainfall 

increases from north to south, while the annual temperature tends to decrease (Table 

3-1). On the other hand, the value of the coefficient of variance for precipitation 

decreases with latitude, reflecting a less variable inter-annual precipitation in the south. 

The historical control period used in our study goes from 1978 to 2005. The duration 

of this period was restricted on the one side by the availability of data and the existence 

of a shift of the Pacific Decadal Oscillation that took place between 1975 and 1976 

that affects the stationarity assumption (Trenberth, 1990; Rosenblüth et al., 1997; 

Trenberth and Stepaniak, 2001; Giese et al., 2002; Boisier and Aceituno, 2006; Bown 

and Rivera, 2007). On the other hand, year 2005 corresponds to the end of historical 

control period of the GCM (Taylor et al., 2012). 

For this study we considered 45 climate projections of 20 GCMs and their 

realizations from the fifth Coupled Model Intercomparison Project (CMIP5) (Taylor 

et al., 2012) listed in the Appendix C. A weighting factor corresponding to the inverse 

of the number of realizations of each GCM is used for each one of the 45 GCM 

projections (e.g. each one of the five CanESM2 projections have a weighting factor of 

1 5⁄ ). Other alternative weighting criteria could be used. 

3.4. RESULTS AND DISCUSSION 

In this section we evaluate the effectiveness of the GCM pre-analysis strategy. 

For this purpose, we first validate the conventional analysis of all GCM runs as the 

best method to reproduce both the local climate and GCMs’ statistics (subsection 
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3.4.1). We then use this approach as the reference to assess the ability of the GCM pre-

analysis to reproduce the statistical moments of precipitation and temperature 

(subsection 3.4.2). Finally, in subsection 3.4.3 we compare future precipitation and its 

recurrence probabilities over several years estimated using the GCM pre-analysis and 

the conventional analysis of all GCM runs. Furthermore, we evaluate the error between 

both approaches by varying the number of trends considered on the GCM pre-analysis. 

3.4.1. REPRODUCTION OF GCM PRECIPITATION CHANGE  

The ability of the GCM pre-analysis to reproduce both the precipitation from 

the Limarí basin and the changes of the GCM projections is compared in Fig. 3-3 

against the results from the conventional analysis, QMBC, the subset of five GCM and 

the delta change method. The GCM pre-analysis uses 45 trend percentiles of the mean, 

and the standard deviation trends are randomly selected after considering the 

correlation among them. To avoid producing results that are bias toward the GCMs 

with more realizations, each GCM realization is repeated n times, where n is the ratio 

between the least common multiple of the number of realizations of each GCM and 

the number of realizations of that specific GCM (i.e. each CanESM2 realization is 

considered six times, because the least common multiple of the number of realizations 

of each GCM is 30 and CanESM2 has five realizations). 

The historical mean precipitation is well reproduced by all the methods, except 

the raw GCMs and the subset of five GCMs, which has not gone through bias 

correction (Fig. 3-3 a). Because it uses the historical record, the delta change always 

reproduces the historical mean. The percentage of change of the mean precipitation for 

the near period (2036-2063) according to the raw GCMs is well reproduced by all the 
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methods, except the QMBC (Fig. 3-3 b), whereas for the late period (2066-2093) is 

well reproduced by the delta change and both the conventional analysis and the GCM 

pre-analysis (Fig. 3-3 c). The subset of five GCMs partially reproduce the percentage 

of change in the late period, while QMBC tends to overestimate the negative changes. 

The best method in reproducing the mean precipitation and its change is the delta 

change, followed closely by both the conventional analysis and the GCM pre-analysis, 

which do not capture the exact range of change from the raw GCMs. This is explained 

by the fact that trend is assigned the last year of the moving window when built, which 

causes a time lag between the changes from the raw GCM and both methods. The 

subset of GCMs performs correctly in the near period, because the selection was done 

in this period, but in the late period its performance decreases. As noted also by Pierce 

et al. (2015), the QMBC method may significantly alter the changes projected by the 

raw GCMs. 
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Figure 3-3: Performance of different downscaling or bias correction methods in reproducing the mean and standard deviation of 

historical precipitation (dotted lines) and its future change (%) for the Limarí basin.
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The historical precipitation standard deviation is perfectly reproduced both by 

the conventional analysis, the GCM pre-analysis and by delta change, and very well 

reproduced by the QMBC (Fig. 3-3 d). The raw GCM and the GCM subset 

significantly underestimate the standard deviation. The percentage of change of the 

standard deviation for the near future (2036-2063) is best reproduced by the 

conventional analysis followed by QMBC (Fig. 3-3 e). Although the GCM pre-

analysis is not able to correctly represent the range of the standard deviation changes, 

it represents the median change very well. Finally, both the GCM subset and the delta 

change perform poorly. For the late period (2066-2093) the conventional analysis is 

the best in representing the standard deviation changes (Fig. 3-3 f). Again, the GCM 

pre-analysis reproduce the median change well, but cannot capture the range of values 

correctly. All the other methods have trouble in reproducing the changes in the 

standard deviation. 

Overall, the conventional analysis is the best method to both reproduce local 

climate and GCMs’ statistics, followed by the GCM pre-analysis. Although the GCM 

pre-analysis does not perform as expected on the standard deviation changes, it 

represents the median change very well. The rest of the downscaling and/or bias 

correction methods have different problems in preserving the raw GCMs’ changes. 

3.4.2. REPRODUCTION OF THE CLIMATE TIME SERIES MOMENTS 

Fig. 3-4 compares GCM percentiles of the first three moments obtained from 

the conventional analysis and the GCM pre-analysis (i.e. mean μ, standard deviation 

σ/coefficient of variation CV and skewness) of the future climate data (precipitation 

and temperature) for the three basins (Limarí, Maipo and Maule). This comparison 
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uses the simplest alternative for the percentiles of the trends, which is adopting the 

same percentiles for μ and σ trends on the GCM pre-analysis. Nonetheless this 

alternative may over-simplify the representation of the future climate. Note that 

climate data generated by using the conventional analysis has three dimensions: a 

GCM dimension, number of annual random realizations and time. In this case, the 

moments are calculated over the random realizations and then, for each year, 

percentiles are estimated by building the empirical CDF over the GCMs (Fig. 3-4). 

Because in the GCM pre-analysis percentiles are chosen while building trends, they 

are known before generating the climate data. Hence, in this case moments are 

estimated over the random realization for each year (Fig. 3-4). The selection of trend 

percentiles for μ and σ in the GCM pre-analysis before generating climate values, 

allows by construction to reproduce the same percentiles of the conventional analysis. 
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Figure 3-4: Comparison of the 25th, 50th and 75th GCM percentiles of the mean (first 

column), standard deviation (second column), coefficient of variation (third column) 

and skewness (forth column) obtained with the GCM pre-analysis and the 

conventional analysis (C. A.) approaches. The analysis is performed for precipitation 

(first, third and fifth row) and temperature (second, fourth and sixth row) in the 

Limarí (first and second row), Maipo (third and fourth row) and Maule (fifth and 

sixth row) basins. The same percentiles for the mean and the standard deviation were 

used in the GCM pre-analysis. 
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The mean and standard deviation of precipitation and temperature for the three 

basins (Fig. 3-4, first and second column) of GCM pre-analysis are the same as 

conventional analysis for the 25th, 50th and 75th percentile. Hence, not only future 

values of μ and σ are the same, but also GCM percentiles can be chosen at the 

beginning, which simplifies the analysis when using the GCM pre-analysis. The CV 

and the skewness of the 50th percentile of precipitation are the same for GCM pre-

analysis and conventional analysis (Fig. 3-4, third and fourth column). Such level of 

agreement was not obtained for the 25th and 75th percentiles, especially after year 2050. 

For temperature, the behavior of CV produced by GCM pre-analysis and conventional 

analysis is very similar (Fig. 3-4, third column), with minor differences being observed 

for the Maule basin. Finally, temperature skewness obtained from the GCM pre-

analysis and conventional analysis are similar although more variability is produced 

in the pre-analysis case (Fig. 3-4, fourth column). Overall, the moments obtained from 

GCM pre-analysis are quite close to the moments obtained from conventional analysis. 

Because the same trend percentiles for μ and σ were used in the GCM pre-

analysis shown in Fig. 3-4, the reproduction of moments obtained from conventional 

analysis is the best possible we could obtain. In reality however, these percentiles are 

not necessarily the same, although they are correlated (i.e. a GCM producing a big 

change in the mean, tends to produce a larger change in the standard deviation as well). 

Fig. 3-5 presents same results as Fig. 3-4, but GCM pre-analysis takes into account 

these differences between the trends for μ and σ. In this case, GCM pre-analysis uses 

45 equally spaced percentiles of the mean, while percentiles for the standard deviation 

trends are randomly selected after considering the correlation among them. GCM pre-

analysis moments are estimated along the dimension of the random realizations, and 
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then the percentiles are estimated from empirical CDF over GCMs for each year (Fig. 

3-5). Note that results from conventional analysis in Fig. 3-4 and 3-5 are the same. 

 
Figure 3-5: Comparison of the 25th, 50th and 75th GCM percentiles of the mean 

(first column), standard deviation (second column), coefficient of variation (third 

column) and skewness (forth column) obtained with the GCM pre-analysis and 

the conventional analysis (C. A.) approaches. The analysis is performed for 

precipitation (first, third and fifth row) and temperature (second, fourth and sixth 

row) in the Limarí (first and second row), Maipo (third and fourth row) and 

Maule (fifth and sixth row) basins. Randomly correlated percentiles for the mean 

and the standard deviation were used in the GCM pre-analysis. 
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For the three river basins, the 25th, 50th and 75th percentiles of μ for precipitation 

and temperature of climate generated with GCM pre-analysis and conventional 

analysis are the same (Fig. 3-5, first column). The skewness in temperature is also 

quite similar for all three basins (Fig. 3-5, fourth column), whereas for precipitation, 

they are not alike (i.e. the values from the conventional analysis are overestimated by 

the pre-analysis values). The pre-analysis and conventional analysis σ and the CV for 

both precipitation and temperature also differ, though in some cases the medians are 

similar (Fig. 3-5, second and third columns). The differences in σ are partially due to 

random selection of trend percentiles on the GCM pre-analysis, making comparison 

not completely fair. Note that mean is the only moment clearly changing across all 

three basins (Fig. 3-4 and 3-5), with reductions in precipitation and increases in 

temperature. 

3.4.3. REPRODUCTION OF FUTURE PRECIPITATION 

In the previous subsection the effectiveness of GCM pre-analysis was tested 

by its performance on the reproduction of the main statistical properties. We now test 

the ability of the method to reproduce future precipitation and the recurrence of 

different magnitudes and durations. We assess GCM pre-analysis approach by 

comparing future consecutive number of years with precipitation under a threshold by 

year 2070 for the Limarí, Maipo and Maule river basins against those estimated by the 

conventional analysis approach (Fig. 3-6). In particular, we count the number of time 

windows of 3, 6 and 10 consecutive years with precipitation under a certain value. In 

the case of conventional analysis, we counted the number of time windows in a 10,000 

year realization of what is predicted for year 2070 by each of the 45 GCM projections. 
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The average number of time windows from the 45 series is then reported in Fig. 3-6 

and compared against result from the GCM pre-analysis case. In the latter, the number 

of time windows was also obtained after averaging the number of time windows 

identified from each of the 10,000 simulations of year 2070 using 45 and 5 equally 

spaced trend percentiles of μ. The 45 trend percentiles were used to have the same 

number of trends and GCM projections, while using 5 trend percentiles implies a 

simplified version adopted to better understand the capacity of the proposed method 

to deal with uncertainty using a reduced number of trend percentiles. Note than in this 

case the percentiles of σ trend were randomly selected considering the correlation with 

the μ trend. 

The difference (in percentage) between the results from both GCM treatment 

approaches when using the 45 trend percentiles decreases with the number of time 

windows being identified. The maximum percentage error decreases from -100% (Fig. 

3-6e) to 12.2% (Fig. 3-6i) up to 3.3 % (Fig. 3-6a) as the average number of detected 

time windows goes from ~1 to 35 or more, up to 200 or more respectively. Overall the 

number of time windows for the three basins is similar regardless the length of the 

time window adopted, showing the effectiveness of GCM pre-analysis method to deal 

in a simple manner with a wide range of GCM climate projections. Interestingly, GCM 

pre-analysis with only 5 trend percentiles is remarkably similar to that using 45 trends, 

with maximum percentage errors a slightly larger than the ones previously mentioned.
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Figure 3-6: Average number of series with exactly 3, 6 and 10 consecutive years with precipitation under a certain value from 

10,000 years of simulation with the 45 GCMs (conventional analysis), 45 percentiles and 5 percentiles for the climate series 

generator (GCM pre-analysis). The comparison is performed for the year 2070 for the three river basins. The difference in 

percentage between the 45 percentiles of GCM pre-analysis and conventional analysis is presented above the bars.
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Future water scarcity is a big concern in Mediterranean regions, especially in 

those Chilean locations where a drier and warmer climate is expected (Vicuña et al., 

2011; Meza et al., 2012; Vicuña et al., 2012; Demaria et al., 2013). Future precipitation 

conditions on Limarí, Maipo and Maule basins can be analyzed by estimating the 

probability of 3- 6- and 10-year precipitation falling below a certain threshold 

magnitude, regardless of what happens the years before or after. For this purpose, using 

conventional analysis approach, we simulated 10,000 years realizations of the future 

climate projections of years 2050 (mid-term) and 2090 (long-term). We used each of 

the 45 future GCM projections, and counted the number of times in which the above 

mentioned condition was identified. This number, divided by the total number of years 

of simulation is what was used to estimate the probability. For pre-analysis approach, 

we only used 5 equally spaced trend percentiles of μ. Again, the total count divided by 

the number of years in the simulation corresponded to the probability. Later on, we 

explain the rationale behind the selection of 5 percentiles. 

The above-mentioned probabilities for the three basins and the two future years 

(2050 and 2090) are shown in Fig. 3-7. For example, for the year 2050, there is a 36% 

probability that the following 3 years will have less precipitation than the average of 

341.5 mm in the Limarí basin (Fig. 3-7a). Note that these probabilities combine the 

effect of both climate uncertainty (i.e. that related to the standard deviation of the 

stationary precipitation) and uncertainty related to the discrepancy among the GCMs 

under RCP 8.5. To complement results in Fig. 3-7, Table 3-2 lists the probabilities of 

having 3, 6 and 10 consecutive years with less precipitation than the historical average 

reported in Table 3-1 for the study basins. Table 3-2 also has the probabilities of having 

3, 6 and 10 consecutive years under the average for the stationary historical scenario. 
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For the stationary scenario, the current probability of having 3 consecutive dry years 

in the Limarí is 23%, which is similar that of Maipo (24%) and slightly higher than the 

one of Maule (20%). By year 2050 these probabilities increase in the Maipo to 40%, 

in Maule 38% and Limarí 36%. By 2090 the probability of having 3, 6 and 10 

consecutive dry years for Maule basin (i.e. 59%, 38% and 24%, respectively) will be 

higher than the probabilities expected for the Maipo basin (54%, 33% and 20%) and 

the Limarí basin (49%, 29% and 17%).
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Figure 3-7: Probability of having 3, 6 and 10 consecutive years with precipitation lower than a certain value for the Limarí (a and d), 

Maipo (b and e) and Maule (c and f) basins, using GCM pre-analysis and conventional analysis (C. A.). The analysis is performed 

for year 2050 (a, b and c) and 2090 (d, e and f). The overall mean absolute (g) and maximum absolute (h) difference of the 

comparison of both approaches for several numbers of trend percentiles of the GCM pre-analysis.
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 Fig. 3-7g and Fig. 3-7h show the mean and maximum absolute difference of 

the probability of consecutive years below different precipitation thresholds between 

conventional analysis and GCM pre-analysis for different numbers of equally spaced 

mean trend percentiles. Note that plots consider all the basins, two future years of 

evaluation and several realizations for smoothing the curve. With 5 or more trends 

used for the GCM pre-analysis, differences with respect to the results from 

conventional analysis are significantly reduced. For example, by using only one trend 

in the GCM pre-analysis differences with conventional analysis are more than double 

the one obtained when using 5 or more trends. Fig. 3-7g and 3-7h support the use of 

the GCM pre-analysis approach for two reasons. First, using 5 to 10 trends 

significantly reduces the error compared to using a GCM single trend. Second, the 

difference between the GCM pre-analysis and conventional analysis is fairly small. 

Note that a GCM single trend is equivalent to the widely used single GCM ensemble 

(Kim and Kaluarachchi et al., 2009; Greene et al., 2012). 

Table 3-2: Probability of observing 3, 6 and 10 consecutive years with precipitation 

lower than the historical mean for the Limarí, Maipo and Maule basins. Three cases 

are considered: a stationary scenario (S.S.) assuming historical values, and a mid-

century (2050) and end of century (2090) year. 

Basin Station 

3 consecutive 

years 

6 consecutive 

years 

10 consecutive 

years 

S.S. 
Year 

2050 

Year 

2090 
S.S. 

Year 

2050 

Year 

2090 
S.S. 

Year 

2050 

Year 

2090 

Limarí 
Las 

Ramadas 
23% 36% 49% 6% 15% 29% 1% 5% 17% 

Maipo 
Cerro 

Calán 
24% 40% 54% 6% 18% 33% 1% 8% 20% 

Maule Armerillo 20% 38% 59% 4% 17% 38% 1% 7% 24% 
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To evaluate the severity of the future reductions in precipitation over the study 

basins, we defined the changes in annual precipitation (𝐶𝐴𝑃𝑗,𝑖) index, which is similar 

to the well-known Standard Precipitation Index (SPI) (McKee et al., 1993; Bhuiyan et 

al., 2006; Burke and Brown, 2008; Khan et al., 2008): 

𝐶𝐴𝑃𝑗,𝑖 =
𝑃𝑃𝑗,𝑖 − 𝜇𝑖

𝜎𝑖
     

(3.11) 

The 𝐶𝐴𝑃𝑗,𝑖 index is computed for each year j using the moving average of i 

years. It corresponds to a standardized moving average annual precipitation obtained 

by subtracting the mean of the annual historical precipitation moving average (𝜇𝑖) 

from the i years moving average annual precipitation (𝑃𝑃𝑗,𝑖) and dividing by the 

standard deviation of the annual historical precipitation moving average (𝜎𝑖).



80 

  

 

 

Figure 3-8: Probability of having 𝑪𝑨𝑷𝒋,𝒊=𝟏  (a, b and c) and 𝑪𝑨𝑷𝒋,𝒊=𝟒 (d, e and f) under 0, -0.5 and -1 for the Limarí (a and d), 

Maipo (b and e) and Maule (c and d) river basins, using GCM pre-analysis and conventional analysis (C. A.).  The overall mean 

absolute (g) and maximum absolute (h) difference of the comparison of both approaches for several numbers of trend percentiles of 

the GCM pre-analysis.
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Fig. 3-8 shows the continuous temporal change of the probability of having 

values of the 𝐶𝐴𝑃𝑗,𝑖 index under 0, -0.5 and -1 in the three basins, for two values of 

moving average window (i.e. i = 1 and 4 years). Again, the results obtained from both 

the GCM pre-analysis and conventional analysis are compared, although in this case 

the continuous change is evaluated. These probabilities also combine the effect of both 

the climate uncertainty and the uncertainty related to the discrepancy among the GCMs 

under RCP 8.5. Only 5 equally spaced mean trend percentiles are used for GCM pre-

analysis, while conventional analysis uses the 45 future GCM projections (Fig. 3-8 a 

through f). To assess the impact of the number of trend percentiles chosen for the pre-

analysis approach, we used different numbers of equally spaced mean trend percentiles 

to calculate the mean difference and maximum absolute difference of the probability 

of having 𝐶𝐴𝑃𝑗,𝑖 under 0, -0.5 and -1 between the conventional analysis and the GCM 

pre-analysis (Fig. 3-8g and Fig. 3-8h).  Just as in Fig. 3-7g and 3-7h, the difference 

between having GCM pre-analysis and conventional analysis can be significantly 

reduced by considering 5 or more trends on the GCM pre-analysis, instead of the single 

median GCM ensemble. Again, the GCM pre-analysis allows reducing the error of not 

using a GCM group by using a multiple trend GCM ensemble, instead of a single 

median GCM ensemble. 

The probability of 𝐶𝐴𝑃𝑗,𝑖=1 being under 0 for year 2020 and 2100, goes from 

62%, 59% and 59% to 74%, 77% and 83% for the Limarí (Fig. 3-8a), Maipo (Fig. 3-

8b) and Maule (Fig. 3-8c) basins, respectively. The probability of having  𝐶𝐴𝑃𝑗,𝑖=1 <

−1 for years 2020 and 2100 worsens for Limarí (i.e. going from 14% to 29%, Fig. 3-

8a), Maipo (i.e. going from 16% to 36%, Fig. 3-8b) and Maule (i.e. going from 18% 

to 49% Fig. 3-8c) river basins. The Maule is the most affected basin, because the 
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probability of having more negative values of 𝐶𝐴𝑃𝑗,𝑖=1 increases the most. The 

probability of 𝐶𝐴𝑃𝑗,𝑖=4 being under 0 for year 2020 and 2100, also worsens 

significantly for the Limarí (i.e. from 61% to 80%, Fig. 3-8d), Maipo (i.e. from 60% 

to 85%, Fig. 3-8e) and Maule (i.e. from 58% to 93%, Fig. 3-8f) basins. Again, the 

probability of 𝐶𝐴𝑃𝑗,𝑖=4 being under -1 for year 2020 and 2100 worsens for the Limarí 

(i.e. going from 35% to 63%, Fig. 3-8d), Maipo (i.e. going from 31% to 67%, Fig. 3-

8e) and Maule (i.e. going from 23% to 76%, Fig. 3-8f) basins. Once more, the most 

affected basin is the Maule basin, showing a steeper slope of 𝐶𝐴𝑃𝑗,𝑖, which indicates 

grater changes in its precipitation through the century. 

3.5. CONCLUSION 

In this chapter we propose an ensemble technique for the unbiased mapping of 

GCM changes in precipitation and temperature to local stations, based on both the 

statistical pre-analysis of the GCMs and the inclusion of natural climate variability. 

The method was implemented in three Mediterranean basins in Chile (Limarí, Maipo 

and Maule), and evaluated against a conventional analysis method in which each GCM 

is individually used to build future climatic scenarios from which percentiles are 

computed. This evaluation included the assessment of the ability to reproduce 

statistical moments, and to estimate the length, severity and probability of occurrence 

of precipitation under different thresholds. Moreover, the pre-analysis approach was 

also compared against commonly used downscaling and/or bias correction approaches 

(quantile mapping bias correction, a GCM subset selection and delta change). The 

following conclusions are emphasized: 
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- The best approach to reproduce both local climate and incorporate the changes from 

the raw GCM projections is the conventional analysis, followed by the GCM pre-

analysis. Both methods outperform other commonly used downscaling and/or bias 

correction approaches. 

- Results obtained using GCM pre-analysis and conventional analysis are very 

similar. On average there is less than a 0.4% difference between the probabilities 

of future years below different precipitation thresholds estimated with both 

methods. 

- Using 5 to 10 trend percentiles obtained from the GCM pre-analysis is clearly better 

than using the single trend of the median GCM ensemble, as in the last case the 

uncertainty or discrepancy among the group of GCMs is not formally considered. 

The GCM pre-analysis has the advantage of building GCM ensembles that 

incorporate not only the mean or median, but also the entire range of climate 

projections of a group of GCMs. 

- The GCM pre-analysis is able to simulate accurately the percentiles of the mean 

and the standard deviation of the temperature and precipitation of a group of GCMs. 

The percentiles of the skewness and coefficient of variation are less well 

represented. 

Despite its good performance, the GCM pre-analysis is an ensemble technique 

that does not allow the preservation of the physical internal consistency of an 

individual GCM. If such consistency were crucial, the conventional analysis is 

recommended. Thus, the method here proposed must be understood as an ensemble-

type approach that successfully preserves the local climate while incorporating the 

GCMs’ statistical attributes. 
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Considering that the GCM percentiles can be chosen at the beginning of the 

GCM pre-analysis, the proposed method becomes an attractive alternative to assess 

climate change uncertainty and perform impact studies. Furthermore, the application 

of the approach to other river basins is quite auspicious due to its good performance in 

challenging basins with high annual precipitation variability. As the method 

incorporates both the local climate and the GCM changes, it allows the identification 

of the most vulnerable basins to climate change in a certain region or country, and the 

eventual prioritization of investments. From the three basins here studied, the Maule 

basin is the one for which we identified the highest probability of being drier in the 

future. Nevertheless, one should also consider the magnitude of changes in 

precipitation and the socioeconomic and environmental impacts of these drier 

conditions, before making any decision or taking action. 
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4. CHAPTER 4: WHEN SHOULD WE ADAPT? ASSESSING THE 

LOCAL TIME OF EMERGENCE FOR PLANNING ADAPTATION 

DECISIONS 

4.1. INTRODUCTION 

Hawkins and Sutton (2012) define Time of Emergence (ToE) as the time at 

which the signal of climate change emerges from noise of natural variability. ToE 

studies not only focus on precipitation (Giorgi and Bi, 2009; Hawkins and Sutton, 

2011; Lee et al., 2016; Nguyen et al., 2018) and temperature (Diffenbaugh and Scherer, 

2011; Hawkins and Sutton, 2012; Mahlstein et al., 2011; Mora et al., 2013), but also 

heat waves and extreme temperatures (Harrington et al., 2016; King et al., 2015; King 

et al., 2016; Lopez et al., 2018), sea level (Carson et al., 2016; Lyu et al., 2014), current 

system upwelling (Brady et al., 2017), and different ocean properties (Keller et al., 

2014; Henson et al., 2017). Finding ToE allows decision-makers to plan the 

implementation of adaptation plans and the incorporation of GCM projections in the 

design of new infrastructure.  

ToE is most commonly detected by a General Circulation Model (GCM) 

signal-to-noise ratio exceeding a certain threshold (Giorgi and Bi, 2009; Hawkins and 

Sutton, 2012; Keller et al., 2014; Lee et al., 2016; Lyu et al., 2014; Sui et al., 2014), 

although other alternatives have been proposed. For example, Muir et al. (2013) find 

the time at which the signal permanently exceeds the pre-industrial simulated control 

variability. Other studies detect significant difference in climate using the 

Kolmogorov-Smirnov test (King et al., 2015; Mahlstein et al., 2011; Mahlstein et al., 
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2012a; Mahlstein et al., 2012b), although the statistical power of the test is neither 

reported nor used to identify the ToE year with a given probability. 

ToE has been estimated almost exclusively for the entire world (Giorgi and Bi, 

2009; Hawkins and Sutton, 2012), or at large scales including China, (Sui et al., 2014) 

and India (Akhter et al., 2018). Nevertheless, management decisions and adaptation 

strategies are implemented locally, where climate variability can differ considerably 

from that of the GCM projections. Moreover, a probabilistic approach in the 

identification of ToE is needed to incorporate its uncertainty in decision-making. 

Lehner et al. (2017) analyze different sources of uncertainty and demonstrated that 

GCM biases in variability significantly impact ToE detection. To the best of our 

knowledge the work of Akhter et al. (2018) is the only one considering these biases to 

estimate ToE using a Quantile Mapping Bias Correction.  

At the current time, we have only found two works that estimate local ToE 

over streamflow. The first one corresponds to the initiative CIG - Time of Emergence 

(http://toe.cig.uw.edu) developed by the Climate Impacts Group and the Center for 

Data Science of the University of Washington (University of Washington, 2015). This 

initiative designed several tools -at the prototype level- to determine the ToE for 35 

climatic variables using Variable Infiltration Capacity model (VIC) (Liang et al., 1994, 

1996). Streamflow is one of the ToE variables estimated during different times of the 

years across counties, watersheds and major rivers of the Pacific Northwest in the 

USA. The second study in which ToE was computed for streamflow is that of Leng et 

al., (2016), who also analyzed streamflow projections from the VIC driven by 97 

downscaled and bias-corrected CIMP5 climate projections over the conterminous 

United States (Reclamation 2014). Both studies were developed in north hemisphere, 
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particularly the USA, local hydroclimate ToE for the south pacific region of Latin 

America yet needs to be estimated. 

From our literature review, we detected three important issues that should be 

better addressed, especially for the pacific coast of the southern hemisphere: (1) 

accounting for GCM biases in variability by considering both local climatic conditions 

and GCM projections when identifying the ToE; (2) determining the local ToE at a 

basin scale; and (3) determining the probability of certainty in the identification of the 

ToE. To cope with these issues, this chapter proposes a methodology to identify ToE 

for precipitation and temperature at a local scale. This methodology uses the statistical 

power to identify significant differences between climate series with natural variability 

and series that also incorporate GCM trend percentiles. We evaluated the methodology 

on the southern hemisphere pacific coast, by using three Chilean river basins under 

four representative concentration pathway (RCP) scenarios. 

4.2. METHODOLOGY 

4.2.1. CLIMATE TIME SERIES GENERATION 

We use the climate time series generator method proposed by Chadwick et al. 

(2018a), which considers (1) the extraction of long-term trends from a GCM group, 

and (2) the generation of two sets of annual climate time series: a stationary one and 

another one incorporating these trends. The trends are extracted from the changes of a 

GCM group for each RCP. Precipitation mean changes from the GCM projection G 

(Fig. 4-1a) are obtained by the ratio between the moving averages of the GCM 

precipitation (𝑀𝐴𝑃𝑡,𝐺) and the average from the GCM control period (𝐴𝑃𝑡𝑜,𝐺), where 

t and 𝑡𝑜 are the last year of the moving window and the control period, respectively. 
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This ratio is called normalized moving average (𝑁𝑀𝐴𝑃𝑡,𝐺) (Fig. 4-1d). The trends are 

built using all the 𝑁𝑀𝐴𝑃𝑡,𝐺 from each RCP (Fig. 4-1b). For each year t an empirical 

cumulative distribution function (CDF) of all the 𝑁𝑀𝐴𝑃𝑡,𝐺 is fitted (Fig. 4-1c). Finally, 

the trend percentile with a non-exceedance probability 𝑝1, 𝑁𝑀𝐴𝑃𝑡,𝑝1, is obtained from 

the CDFs of each year (Fig. 4-1f). Note that 𝑁𝑀𝐴𝑃𝑡,𝑝1 corresponds to a statistical 

mapping of the changes from a GCM group, and several trend percentiles can be used 

to map the dispersion among the group of GCM results. 

An analogous process is undertaken for precipitation standard deviation. The 

trend percentile of the standard deviation (𝑁𝑀𝑆𝐷𝑃𝑡,𝑝2) with a non-exceedance 

probability 𝑝2 is randomly generated considering the average correlation with the trend 

percentile 𝑝1 of the mean, which is chosen. For temperature, a similar process for 

extracting the trends is applied, but the normalized moving difference between moving 

average of temperature and the average of the control period of the GCM is used 

instead. 

For the generation of annual climate series of data (Fig. 4-1e), in each station 

of interest probability distribution functions (PDFs) 𝑓𝑌(𝑦, 𝜃) are fitted to the observed 

annual records of the variable Y (temperature or precipitation) through the estimation 

of the parameter set 𝜃 using the mean 𝜇 and standard deviation 𝜎. These PDFs are used 

to generate stationary time series of precipitation and temperature (Fig. 4-1g): 

𝑌𝑖 = 𝐹𝑌
−1(𝑢, 𝜃) = 𝐹𝑌

−1(𝑢, 𝜇, 𝜎)    (4.1) 

where u is a random uniform number [0,1], and 𝑌𝑖 is the ith annual precipitation or 

temperature value randomly generated for the stationary set of climate. 
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Figure 4-1: Representation of the future climate generation. From each 

GCM´s precipitation series (a) the normalized moving average is obtained (d). 

Several percentiles of the normalized moving average (b and c) are used to build 

the GCM trends associated with different percentiles (f). The annual time series 

generator (e) is used to obtain the stationary set of climate (g), and is also 

combined with the trends to obtain the non-stationary set of climate (h). Finally, 

the KS-test is applied each year to compare both sets of climates (i) and assess 

whether they belong to the same population. 

A second set of annual climate data combines the GCMs trend percentiles and 

the local climate PDFs 𝑓𝑌(𝑦, 𝜃) (Fig. 4-1h), case in which the parameter set 𝜃 change 

in time according to the GCMs. Hence, this set is a GCM ensemble that incorporates 
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the natural variability. Under this approach, the value of the climatic variable at any 

time for a given 𝑝1 and RCP is the value obtained from the PDF, but with mean 𝜇∗ and 

standard deviation 𝜎∗ that change through time according to the trends: 

𝑌𝑡,𝑖,𝑝1 = 𝐹𝑌
−1(𝑢, 𝜃) = 𝐹𝑌

−1(𝑢, 𝜇∗(𝑡, 𝑝1), 𝜎
∗(𝑡, 𝑝2))    (4.2) 

where 𝑌𝑡,𝑖,𝑝1 is the ith annual precipitation or temperature value randomly generated, 

using the trend percentile 𝑝1 of the mean, for the non-stationary set of climate. The 

value of 𝜇∗ and 𝜎∗ in Eq. (4.2) at any particular year t for precipitation are calculated 

from the historical mean (𝜇) and standard deviation (𝜎) and the multiplicative 

normalized change rates: 

𝜇∗(𝑡, 𝑝1) = 𝜇 ∙ 𝑁𝑀𝐴𝑃𝑡,𝑝1 (4.3) 

𝜎∗(𝑡, 𝑝2) = 𝜎 ∙ 𝑁𝑀𝑆𝐷𝑃𝑡,𝑝2   (4.4) 

For temperature, 𝜇∗ and 𝜎∗ are obtained using the additive changes rates:  

𝜇∗(𝑡, 𝑝1) = 𝜇 + 𝐷𝑀𝐴𝑇𝑡,𝑝1    (4.5) 

𝜎∗(𝑡, 𝑝2) = 𝜎 + 𝐷𝑀𝑆𝐷𝑇𝑡,𝑝2 (4.6) 

 

4.2.2. IDENTIFYING TOE  

To identify the ToE, the Kolmogorov-Smirnov test (KS-test) is used to 

evaluate whether or not the two sets of climate data generated for each year belong to 

the same population (null hypothesis 𝐻𝑜) (Fig. 4-1i). A value of 1 is assigned if the 

hypothesis is rejected and 0 otherwise: 

𝐾𝑆𝑡,𝑗 = {
1        if 𝐻𝑜 is rejected        
0        if 𝐻𝑜 is not rejected

    (4.7) 
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where KS is the result of the hypothesis test for year t of the repetition j of the test. 

Thus, the ToE corresponds to the year when the GCM trend makes the two sets of 

climate generated with Eq. (4.1) and (4.2) significantly different. Such difference is 

assessed by means of the statistical power (hereafter denoted power) of the KS-test 

(i.e. the probability of rejecting the null hypothesis when the alternative hypothesis is 

correct: 

1 − 𝛽 =
∑ 𝐾𝑆𝑡,𝑗
𝑅 
𝑗=1

𝑅
    (4.8) 

where the power (1 − 𝛽) is empirically estimated as the percentage of time the 

hypothesis 𝐻𝑜 is rejected. A mean power larger than a threshold value K (e.g., K = 0.6) 

implies the identification of the ToE with probability K of making the correct 

assessment. 

To reduce computational time and obtain the power from several KS-tests, a 

bootstrapping approach is implemented. A large number of climate series (i.e. 3000, 

corresponding to the total size N1) are produced for each set of generated climate (i.e. 

the stationary climate and for each of the GCM trend percentiles). Through the 

bootstrapping, R samples of size N2 are randomly selected from each set of generated 

climate, for which the KS-test is applied with a significance level 𝛼 = 1%. A value of 

𝑁2 = 1,062.76 ≈ 1,000 is determined by restricting the maximum difference between 

the cumulative distribution function of the two sets of climate data to 0.05 (i.e. 𝑑0.01 =

1.63 √𝑁2⁄ = 0.05)  (Massey, 1951), whereas R = 100 to obtain a power value with 2 

significant digits. Hence, over two repetitions, only 𝑁2/𝑁1 = 1/3 of the sample size is 
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expected to be repeated. Nonetheless, a sensitivity analysis evaluating different values 

of 𝛼, 𝑁1, 𝑁2, and R is presented in the results section. 

4.3. STUDY AREA AND CLIMATE SERIES 

The methodology was applied to three Mediterranean basins in Chile, ranging 

from semi-arid to humid (Fig. 4-2): the Limarí, the Maipo and the Maule river basins 

(i.e. average precipitations of 341, 452 and 2397 mm, respectively). These basins have 

the Pacific Ocean to the west and the Andes Mountains to the east and are 

representative of climate conditions in central Chile (Table 4-1). Annual rainfall 

increases from north to south, while the temperature tends to decrease. Conversely, the 

values of the coefficient of variation (CV) reflect a decreasing inter-annual 

precipitation with latitude, having values of 0.61, 0.44 and 0.34 for Limarí, Maipo and 

Maule, respectively. The historical record used is restricted on one side by year 1976 

to avoid the effect of a shift in the Pacific Decadal Oscillation that occurred between 

1975 and 1976 (Boisier and Aceituno, 2006; Bown and Rivera, 2007; Giese et al., 

2002; Rosenblüth et al., 1997; Trenberth, 1990; Trenberth and Stepaniak, 2001) and, 

on the other end, by year 2005, the historical control period of the GCMs (Taylor et 

al., 2012).  

We considered 49 realizations of 20 GCMs (Table D1, from Appendix D) from 

the fifth Coupled Model Intercomparison Project (Taylor et al., 2012) under RCP 

scenarios 2.6, 4.5, 6.0 and 8.5 (Moss et al., 2010). Because each one of the GCMs was 

assumed to have the same weight, the inverse of the number of realizations of each 

GCM is used as weighting factor for each one of the 45 GCM projections (Chadwick 

et al., 2018). 
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Figure 4-2: Case study basins and their locations in central Chile. 
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Table 4-1: Annual mean, standard deviation and coefficient of variation (CV) for precipitation and temperature recorded at rain gauges 

in the case study basins. 

Basin Station Years Latitude Longitude 
Elevation 

[m] 

Mean 

Precip. 

[mm] 

Std. Dev. 

Precip. 

[mm] 

CV 

Precip. 

Mean 

Temp. 

[°C] 

Std. Dev. 

Temp. 

[°C] 

CV 

Temp. 

Limarí 
Las 

Ramadas 
(1978-2005) 31° 01' 11” S 70° 35' 11” W 1,380 341.45 209.81 61% 16.25 0.542 3.3% 

Maipo 
Cerro 

Calán 
(1978-2005) 33° 23' 42” S 70° 32' 12” W 848 452.17 200.98 44% 16.30 0.401 2.5% 

Maule Armerillo (1978-2005) 35° 42' 04” S 71° 04' 38” W 492 2397.18 807.24 34% 13.98 1.124 8.0% 
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4.4. RESULTS AND DISCUSSION 

4.4.1. TIME OF EMERGENCE 

 

Figure 4-3: Power of the hypothesis test resulting over time and for different 

GCM trend percentiles of the mean, which represent the ToE of precipitation (a to f) 

and temperature (g to l) for the Limarí (first column), Maipo (second column) and 

Maule (third column) basins under RCPs 6.0 (first and third row) and 8.5 (second 

and fourth row). Black lines indicate the first and last year with power of 0.25 and 

0.75 for the GCM 25th, 50th and 75th percentiles. 

Fig. 4-3 shows the KS-test power for precipitation and temperature for each 

year under RCPs 6.0 (first and third row) and 8.5 (second and fourth row) for the three 

study basins. We used nineteen trend percentiles of the mean (5%, 10%,…, 95%) to 

characterize the GCM uncertainty (Fig. 4-3, y-axis). Black lines indicate the transition 
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zone of the ToE, identifying the first and last year with power of 0.25 and 0.75 for the 

25th, 50th and 75th percentiles of the GCM trends. If the 0.75 threshold is never 

exceeded during the entire period, the transition zone is assumed to be beyond 2100. 

Under RCP 6.0, changes in precipitation for approximately 20% and 10% of 

the GCMs do not emerge by 2100 in the Limarí (Fig. 4-3a) and the Maipo basin (Fig 

4-3b) respectively, whereas for the Maule basin (i.e. the basin with the least inter-

annual precipitation variability) the ToE takes place before 2100 for all the GCMs 

(Fig. 4-3c). Note also the sensitivity of the power to different trend percentiles, as the 

ToE associated with a power of 0.75 delays more than 60 years when considering the 

75th trend percentile instead of the 25th one. Under RCP 8.5 the ToE for precipitation 

has not completely emerged by 2100 only for the Limarí basin (Fig. 4-3d), as the last 

computed ToE occurs close to 2100 in the Maipo basin (Fig. 4-3e), and between years 

2050-2060 in the Maule basin (Fig. 4-3f). Again, the trend percentile impacts 

considerably the ToE identification, although the location also plays a significant role. 

Indeed, the ToE associated with a power of 0.75 delays more than 80 years for the 

Limarí basin when comparing the 25th and 75th percentile; this delay is reduced to ~20 

years for the Maule basin. This difference among basins is most likely due to their 

different CV values (Table 4-1). Under RCP 6.0, the ToE manifests before 2100 in the 

Limarí basin for the highest percentiles of precipitation produced by a few of the GCM 

projections predicting increasing precipitation, as opposed to most of the GCM 

projections that predict future reductions. Shorter transitions of 10 years or less tend 

to be associated with the GCMs predicting higher precipitation reductions (below 30th 

percentile). Overall, the basin with the shortest transition zone is the Maule river basin 

(Fig. 4-3c and 4-3f). Finally, the transition zone for temperature occurs before 2020 
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for the three basins under RCPs 6.0 and 8.5 (Fig. 4-3g to 4-3l). Moreover, after 2030 

there is a complete certainty (i.e. power of 1) that temperature differs from the 

historical one for all the GCMs in all the basins, with the ToE of the Maule basin being 

the last one. The impact of the trend percentile over ToE for temperature is much 

smaller than that for precipitation. 

 
Figure 4-4: Average power trough time representing the ToE of precipitation (a 

to d) and temperature (e to h) for the Limarí, Maipo and Maule basins under 

RCPs 2.6 (a and e), 4.5 (b and f), 6.0 (c and g) and 8.5 (d and h). The circle 

marker indicates the ToE associated with a power of 0.6. 

Fig. 4-4 shows the annual power average for each basin and RCP, which 

combines the 19 trend percentiles. For all the RCPs, the ToE of precipitation (Fig. 4-

4a to 4-4d) occurs first in the Maule basin (dotted blue line) and last in the Limarí 
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basin (solid red line). If 0.6 is adopted as the threshold power value, under RCP 2.6 

the ToE of precipitation would occur in years 2049, 2038 and 2028 for the Limarí, 

Maipo and Maule basins, respectively (Fig. 4-4a), while under RCP 8.5, these years 

are 2034, 2038 and in 2024 (Fig. 4-4d). None of the basins reach the power of 0.9 

under RCP 2.6 (Fig. 4-4a), while only the Maule basin reaches a power value of 0.9 

under RCP 4.5 (Fig. 4-4b). By 2100, Maule is the only basin with a power value of 1 

under RCP 6.0 (Fig. 4-4c), while under RCP 8.5 the Maule and the Maipo basins reach 

a power of 1 by year 2070 and 2100, respectively (Fig. 4-4d). Limarí is the only basin 

that has a power below 0.9 under the four RCPs. Overall, for more pessimistic RCP 

scenarios ToE occurs earlier with a greater degree of certainty. 

ToE for temperature occurs at the beginning of the century regardless of the 

RCP or basin (Fig. 4-4e to 4-4h). By the year 2020 both Limarí and Maipo basins have 

reached power values of 1 for temperature regardless the RCP, whereas the Maule 

basin reaches power values of 1 for temperature by year 2025 under all four RCPs. 

These results suggest that temperature changes significantly for all the GCMs and 

RCPs. 

4.4.2. SENSITIVITY ANALYSIS 

An analysis was performed to study the sensitivity of the transition zone (i.e. 

first and last year with power of 0.25 and 0.75) to changes in the parameters values 

involved in the approach (i.e. N1, N2, R and 𝛼). The analysis is performed for 

precipitation in the Maipo basin under RCP 8.5, although the results are similar for the 

other basins and RCPs. Changing N1 does not have a clear impact on the ToE year 

(Table 4-2), while the ToE is detected sooner when increasing N2. Furthermore, R does 
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not impact the results, although a minimum number of repetitions is required for the 

identification of the years with power values of 0.25 and 0.75. Lastly, as expected, 

increasing 𝛼 reduces the ToE year. In fact, as 𝛼 and, to a larger extent, N2 affect the 

results by changing the value of the KS-test statistic, they must be selected carefully. 

Overall, we emphasize the relevance of a sensitivity analysis like the one presented.  

Table 4-2: Sensitivity analysis of the first and last years in the transition zone (i.e 

power of 0.25 and 0.75), for the precipitation in the Maipo basin under RCP 8.5. 

Parameters used in subsection 4.4.1 are marked in gray. 

  Total Size (N1) 

Power 1500 3000 5000 8000 12000 17000 

0.25 2014 2016 2016 2016 2017 2016 

0.75 2044 2042 2043 2042 2045 2044 

  Sample Size (N2)  

Power 50 100 250 500 1000 2000 

0.25 2059 2048 2032 2022 2016 2010 

0.75 >2100 >2100 2085 2059 2043 2031 

  Number of Repetitions (R) 

Power 25 50 100 250 500 1000 

0.25 2016 2016 2016 2015 2016 2015 

0.75 2044 2043 2046 2040 2045 2040 

  Level of Significance (𝛼)  

Power 1% 2% 3.5% 5% 7.5% 10% 

0.25 2016 2013 2012 2011 2008 2007 

0.75 2047 2041 2035 2035 2032 2031 

  

 

4.5. CONCLUSIONS 

This work proposes a method to detect the emergence of climate change at a 

basin scale using trend percentiles of the GCMs projections and local climate 

information. By means of the statistical power, the method identifies differences 

between stationary historical climate and the non-stationary local climate generated 
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using these projections. Thus, the method enables the comparison of the ToE at 

different locations under a specific RCP scenario with an uncertainty assessment of a 

large group of GCMs. Moreover, it provides information to prioritize the 

implementation of local risk assessment and adaptation measures. 

From the analysis of three Mediterranean basins in Chile (i.e. Limarí, Maipo 

and Maule), the precipitation ToE occurs later for higher values of the local coefficient 

of variation (CV). Thus, climate change signal emerges from the local climate first in 

the Maule basin, and then in the Maipo and Limarí basins. Nevertheless, the 

relationship between ToE and CV among different locations may not hold for other 

cases, as the ToE also depends on the strength of the GCMs signal. Furthermore, the 

chosen GCM trend percentile significantly impact the ToE detection due to differences 

in the strength of the climate signal. Thus, the ToE associated with a given power can 

be delayed in several decades when considering different trend percentiles.  

As expected, the implementation of the statistical test to differentiate the 

changing climate from the stationary climate affects the ToE identification. The 

parameters impacting this implementation are those affecting the acceptance or 

rejection of the KS-test (i.e. the sample size and the level of significance 𝛼). 

Overall, under a continuous change the emergence cannot be assigned to a 

single year, unless threshold values of those evolving metrics (statistical power for this 

study) reflecting the climate dynamics are defined. Nevertheless, there will not be a 

total certainty that the change has taken place by exceeding the defined threshold 

values.  
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5. CHAPTER 5: COPING WITH WATER SCARCITY IN A DRYING 

BASIN: A PROGRESSIVE REDUCTION OF WATER ALLOCATION 

AS A RESERVOIR OPERATION STRATEGY UNDER CLIMATE 

CHANGE SCENARIO 

5.1. INTRODUCTION 

Water management has been interested in optimal reservoir operation policies 

for a long time. Optimal operation has been studied by using different approaches and 

techniques, such as linear programming (e.g. Datta and Houck 1984; Yoo 2009), 

nonlinear programming (e.g. Lall and Miller 1988; Simonovic and Marino 1982; Sinha 

et al. 1999), or dynamic programming (e.g. Bras et al. 1983; Stedinger et al. 1984). 

The reservoir operation performance is typically evaluated trough performance 

indexes, with reliability, resiliency and vulnerability (RRV) (Hashimoto et al. 1982) 

being the most widely used (Moy et al. 1986; Kjeldsen and Rosbejerg 2004; 

Kundzewicz and Kindler 1995; Fowler 2003; 2007; Goharian et al., 2017; Zhang et 

al., 2017; Alameddine et al., 2018). The RRV approach implies a multi objective 

problem, having a tradeoff among the indexes that are correlated to a certain extent 

(Moy et al. 1986; Bayazit and Ünal 1990; Srinivasan and Philipose 1996, 1998; Zhang 

et al., 2017). Water management attempts to avoid extreme failures, which are 

typically worse than several minor failures (Draper and Lund 2004; Hashimoto et al. 

1982; Shih and ReVelle 1994, 1995; Srinivasan and Philipose 1996, 1998). Increasing 

the storage by holding water to reduce future larger losses, although compromising 

immediate benefits, is known in reservoir operation as hedging (Srinivasan and 

Philipose 1998). This concept has been extensively addressed in the literature (Eum et 
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al. 2011; Jain 2014; Shiau 2009, 2011; Shih and ReVelle 1994, 1995), and its optimal 

value is obtained when the marginal benefit of water release is equal to the marginal 

benefit of storage (Damper and Lund 2004). 

Costs and benefits analysis tools are fundamental for designing and operating 

water infrastructure projects, as well as estimating the involved system performance 

(Bras et al. 1983; Datta and Burgos 1984; Datta and Houck 1984).  Such analyses must 

consider uncertainty, a key challenge in water resources planning and management. 

Typically, uncertainty in water management has been characterized and quantified by 

assuming stationarity. Nonetheless, hydro-climatic variables are changing due to 

climate change, and thus decision making should no longer assume a stationary future 

(Milly et al. 2008; Milly et al. 2015). Several studies have focused on quantifying 

climate variability and trends in precipitation and temperature under future scenarios, 

and their potential effects over water resources (e.g. Fowler et al., 2005; Mondal et al., 

2010; Walton et al., 2017; Shi et al., 2018; Smitha et al., 2018). Other studies have 

assessed the impacts of these changes on water management systems and infrastructure 

(e.g. Fowler et al., 2007; Kim and Kaluarachchi, 2009).  Typically, these studies adopt 

a top-down approach starting with the climate projections from General Circulation 

Models (GCM) for different representative concentration pathways (RCP) scenarios. 

These projections are downscaled to the domain of interest, and used to simulate 

specific impacts over different sectors, activities or components of the environment, 

such as infrastructure, crops, cities, ecosystems (Wilby and Dessai 2010; Kiparsky et 

al. 2012). Unfortunately, this approach is associated with an increasing cascade of 

uncertainty (Wilby and Dessai 2010), which makes decision making very difficult 

(Hallegatte 2009).  
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Some studies have broadly analyzed different sources of uncertainty under 

climate change, by measuring reservoir operation’s performance (Brekke et al., 2009; 

Georgakakos et al., 2012; Steinschneider et al., 2015a, 2015b; Whateley and Brown, 

2016). Moreover, some studies recently evaluated the uncertainty of climate change 

on the reservoir performance using RRV indexes (Steinschneider and Brown, 2012; 

Adeloye et al., 2016; Schlef et al., 2017; Soundharajan et al., 2016; Chadwick et al. 

2018b). Adeloye et al. (2016) studied the impact of hedging under climate change. To 

the best of our knowledge, only Chadwick et al. (2018b) and Soundharajan et al. 

(2016), who deepened the initial assessment by Adeloye et al. (2016), have evaluated 

the variability of reservoir performance indexes under climate change impact 

assessment. Because Soundharajan et al. (2016) and Adeloye et al. (2016) used a delta 

change approach (e.g. Vicuña and Dracup 2007; Hay et al. 2000; Diaz-Nieto and 

Wilby 2005; Minville et al. 2008) to incorporate climate change, the impacts of a 

continuously changing climate was not evaluated. In fact, an assessment of a reservoir 

performance through time in which this continuously changing climate is considered, 

would allow evaluating an adaptation strategy based on a continuously varying water 

allocation goals. Such task has been performed before (Vicuña et al. 2010), to the best 

of our knowledge, it has not been addressed considering an uncertainty assessment 

using a special treatment that incorporates several GCMs and the four RCPs, as would 

be required for a robust result, as discussed by Chadwick et al. (2018a). 

The objective of this chapter is to evaluate the performance of two different 

reservoir water allocation strategies under an uncertain and continuously changing 

climate, which are restricted to maintain historical levels of reliability. The strategies 

are compared against the historical water allocation goal, and include a (1) single and 
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permanent reduction (i.e. constant), and (2) a progressive reduction in time of the water 

allocation goal. In the assessment we use RRV indexes to evaluate the reservoir 

performance within a probabilistic framework, which considers both local variability 

and the uncertainty induced by several GCMs. The method is applied to the Paloma 

Reservoir System, located in the Limari river basins in the Semiarid Mediterranean 

region of Chile. The outline of this chapter is as follows: section 5.2 describes the study 

area and its reservoir system; section 5.3 explains the details of the different methods 

involved in the evaluation; section 5.4 shows the results and the discussion; and section 

5.5 presents the main conclusions. 

5.2. THE LIMARÍ RIVER BASIN AND THE PALOMA RESERVOIR 

SYSTEM 

The Limarí River basin is a semiarid snow dominated basin with an area of 

11,800 km2 and is located in north central Chile, with its outlet at 30º43’51’’S, 

71º42’01’’W. The available monthly records of precipitation and temperature for 

period 1971-2005 (i.e. historical period) shows a large spatial variation in 

precipitation, increasing from the coast to the Andes, and from north to south, with 

annual average ranging from 100 to 300 mm. Precipitation occurs mostly during 

autumn and winter (May to August), and snow accumulates in the upper half of the 

basin. The inter-annual variability of precipitation is high (i.e. coefficient of variation 

of 0.65 - 0.75 for different gauge) due mostly to the El Niño Southern Oscillation 

(ENSO). Stream flow from melting is significant during spring and summer 

(September to January).  
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The Limarí basin has the Paloma reservoir system, which supplies water to 

approximately 500 km2 of irrigated land and drinking water to the city of Ovalle 

(110,000 inhabitants). The system is composed of the Paloma, Cogotí, and Recoleta 

reservoirs, whose capacities are 750, 150, and 100 Mm3 respectively (i.e. a total of 

1000 Mm3 for the system) (Fig. 5-1). This capacity exceeds largely 400 Mm3, the 

average annual inflows to the system, which allows the control of the inter-annual 

variability caused by ENSO. The intra-annual stream flow variability is naturally 

regulated by the snow accumulation and melting processes. Because of climate 

change, spring and summer flows are expected to shift into the winter (Vicuña et al., 

2011; 2012). Thus, the reservoir system should participate more actively in controlling 

this variability in the future.  
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Figure 5-1: The Limarí river basin and its location in central Chile. 

The current operation rule of the reservoir system was developed by Ferrer et 

al. (1978), who simulated the inter-annual variability and various allocation scenarios 

based on precipitation and streamflow data from 1944 to 1976. They estimated annual 

volumes of 138 and 220 Mm3 for the 3- and 4-year moving average of the annual 

inflows to the system with 85% of exceedance probability. The large difference 

between these two values led them to conclude that a wet year is expected to follow 

three dry years. Hence, three years was considered to be the critical period for the inter-
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annual planning of the reservoir system, leading to a single annual allocation decision 

that works on the long-term horizon (Ferrer et al., 1978).  

The stored volume S (m3) in reservoir j at a year t+1 is given by: 

𝑆𝑗
𝑡+1 = 𝑆𝑗

𝑡 − 𝑂𝑗
𝑡 + 𝐼𝑗

𝑡 − 𝐸𝑗
𝑡 − 𝑆𝑝𝑗

𝑡   (5.1) 

where 𝑂 , I and Sp are the outflow, inflow and spilled water, respectively (m3), and 𝐸 

is the net evaporation from the reservoir (m3), given by: 

𝐸𝑗
𝑡 = 𝐴𝑗

𝑡(𝑆𝑗
𝑡) ∙ (𝑒𝑗

𝑡 − 𝑃𝑗
𝑡)   (5.2) 

Where e is the evaporation (m), P is the precipitation (m), and A is the surface 

area (m2), which is related to the water stored. S is restricted to the range defined by 

the maximum storage capacity 𝑀𝑆 (m3) and the dead storage 𝐷𝑆 (m3): 

𝐷𝑆𝑗  ≤ 𝑆𝑗
𝑡 ≤ 𝑀𝑆𝑗   (5.3) 

The annual allocated water in year t+1 (𝑂𝑗
𝑡+1) is function of the stored water in 

the system composed of M reservoirs at year t (𝑆𝑇
𝑡 = ∑ 𝑆𝑗

𝑡𝑀
𝑗=1 ). If 𝑆𝑇

𝑡  exceeds a 

threshold or restrain bound (RB), a fix amount 𝛼𝑗
𝑡 is allocated from reservoir j. 

Otherwise the allocated water is a fraction r of the total storage.   

𝑂𝑗
𝑡+1 = {

𝛼𝑗
𝑡            if 𝑆𝑇

𝑡 ≥ 𝑅𝐵

𝑟𝑡 ∙ 𝑆𝑗
𝑡        if 𝐷𝑆𝑗 ≤ 𝑆𝑇

𝑡 < 𝑅𝐵

0           if 0 ≤ 𝑆𝑇
𝑡 < 𝐷𝑆𝑗

 (5.4) 

Ferrer et al. (1978) determined constant values of  = 240, 40 and 40 Mm3 for the 

Paloma, Recoleta and Cogotí reservoirs respectively, as well as values of 𝑅𝐵 = 500 

Mm3 and 𝑟𝑡 = 0.5. Thus, if the system storage exceeds 500 Mm3, the maximum 

allowed annual water allocation is 320 Mm3. Otherwise; half of the stored water is 
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allocated.  To evaluate the impact of the constant and progressive reduction of the 

water allocation goals, the values of  and 𝑟 will be altered on this study. 

5.3. METHODOLOGY 

A suite of methods and tools were used in this study to link climate, hydrology, 

the reservoir system and its performance under different water allocation goal 

strategies. First, local climate records as well as precipitation and air temperature 

outputs from several GCMs runs under the four different RCPs were used to generate 

synthetic climate data. These climate data were used as input to a hydrologic model of 

the Limarí River basin to obtain the corresponding stream flow series. The 

performance of the reservoirs system under these stream flow scenarios is 

characterized through different performance indexes. Finally, we use these stream flow 

scenarios to assess and compare the performance of the adaptation strategies to climate 

change defined according to two goals, i.e., a constant and a progressive reduction of 

the water allocation. 

5.3.1. GCM, GREENHOUSE GASES CONCENTRATION SCENARIOS, 

DOWNSCALING METHOD AND CLIMATE TIME SERIES 

A wide range of GCMs and greenhouse gases concentration scenarios are 

needed to study and characterize the uncertainty induced by them. This study uses the 

RCPs 2.6, 4.5, 6.0 and 8.5 (Moss et al. 2010) and 49 realizations of the GCMs 

(Appendix D), defined according to the 5th phase of the Climate Model 

Intercomparison Project (Taylor et al. 2012).  We adopted the ensemble technique for 

the unbiased mapping of GCM changes to local stations proposed by Chadwick et al. 

(2018a), in which both the local climate variability and the GCMs’ statistics are 
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preserved. In the method trend percentiles are extracted from the GCM group and 

combined with annual local precipitation and temperature data generated from the 

empirical cumulative distribution function (CDF) fitted to historical records, to 

generate non-stationary local climate series for the respective percentiles. To maintain 

the historical spatial correlation and the correlation between temperature and 

precipitation, a Vector Autoregressive Model VAR(0) is used as explained in 

Chadwick et al. (2018a). 

In this study five scenarios are evaluated: a reference historical scenario (here 

after denoted stationary), and four RCPs scenarios (2.6, 4.5, 6.0 and 8.5). For the 

stationary scenario the historical climate from the period 1971-2005 is used to generate 

200 synthetic realizations of the future climate (2011-2100). For each RCP scenario, 

200 realizations of the future climates are generated using trend percentiles mapping 

the dispersion of the outcomes from the results of the group of GCM runs for each 

RCP and the local climate information. Ten equally spaced trend percentiles for the 

changes of the precipitation mean are adopted, as recommended by Chadwick et al. 

(2018a), while the trend percentiles of the precipitation standard deviation, 

temperature mean, and standard deviation are randomly selected considering the 

correlation among them (for more detail see Chadwick et al. 2018a). For each trend 

percentile 20 synthetic realizations are generated, adding a total of 200 synthetic future 

realizations for each RCP scenario. 

The annual data are disaggregated at a monthly scale through the resampling 

of historical data with a modify version of the k-NN method (Greene et al. 2012; 

Rajagopalan and Lall 1999), which preserves the intra-annual historical climate 

structure. This method compares the value of the standardized annual precipitation or 
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temperature generated for year a to be disaggregated (𝑦𝑔,𝑎) against the standardized 

historical annual value (𝑥𝑔,𝑏) of year b for the record g (note that a record is any of the 

series of precipitation or temperature data recorded within the study area). 

Furthermore, the standardization consists in subtracting the historical mean and 

dividing by the historical standard deviation. The weighted Euclidean distance (𝑑𝑏,𝑎) 

is then given by: 

𝑑𝑏,𝑎 = √∑𝑤𝑔(𝑦𝑔,𝑎 − 𝑥𝑔,𝑏)
2

𝑚

𝑔=1

    (5.5) 

where 𝑤𝑔 is the weight factor of the record g used to weight the squared differences 

between the generated and historical standardized data, and m is the total number of 

records in the study area. Equal weights were used, with 𝑤𝑔 ≥ 0 and ∑𝑤𝑔 = 1, 

because of the standardization implemented for the data before the comparison. Each 

of the b values of 𝑑𝑏,𝑎 for the data generated in year a obtained with Eq. (5.5) are used 

to sort the 𝑥𝑔,𝑏 in ascending order. The first k values of 𝑥𝑔,𝑏 with the smallest values 

of 𝑑𝑏,𝑎 are selected, and the probability 𝑝ℎ of choosing one of them is defined as: 

𝑝ℎ =
1 ℎ⁄

∑ 1 𝑖⁄𝑘
𝑖=1

    (5.6) 

where h is the ranking position in ascending order. Afterwards one of the 𝑥𝑔,𝑏 is 

randomly selected using 𝑝ℎ. The heuristic approach proposed by Lall and Sharma 

(1996) and adopted by Rajagopalan and Lall (1999) and Yates et al. (2003) suggests 

that 𝑘 = √𝐿, with L = number of years in the historical record. For this study L = 35 

years, and thus 𝑘 ≈ 6. Finally, there is a correction of climate variables of the selected 

year 𝑥𝑔,𝑏, by multiplication and addition in the case of precipitation and temperature 
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respectively, so that the chosen year fits the annual generated data 𝑦𝑔, just as in Greene 

et al. (2012). Note that other disaggregation alternatives that allow changes at the intra-

annual scale (e.g. changes in the number of rainy days or in the intensity of 

precipitation) can also be used, such as the method proposed by Thober et al. (2014). 

5.3.2. HYDROLOGICAL MODELING 

The Water Evaluation and Planning (WEAP) system (Yates et al., 2005a, b) 

was used for the hydrologic modelling in this study. WEAP uses climate information 

as input to generate streamflow in a semi-distributed scale. In the model, elevation 

bands are defined and used as hydrological units where climate, soil, topography, 

surface water hydrology and land use characteristics are specified. A WEAP model 

already set up and calibrated using historical monthly rainfall-runoff data for the 

Limarí River Basin by Vicuña et al. (2011; 2012) was available. The model was re-

calibration focused on the most recent years (1985 – 2011), which was validated using 

data from early years (1969 – 1984). Chadwick et al. (2018b) provide more details 

about this calibration of the WEAP model.  

5.3.3. PERFORMANCE INDEXES 

The performance assessment of the reservoirs system requires the definition of 

a satisfactory and unsatisfactory state. The system is considered to be in a satisfactory 

state when the water allocation goal (𝐷𝑡) is met. If in a certain time step 𝐷𝑡 is not 

satisfied, the system falls into an unsatisfactory state referred to as a failure. For the 

purpose of this study we assume that the demand does not change due to changes in 

factors affected by climate change (i.e. for example, we neglect changes in irrigation 

needs due to potential modifications in evapotranspiration rates caused by changes in 
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temperature, or changes in land-use practices). With this definition, an under the 

current operation rule, the Paloma system is on failure when the water allocation is 

below 𝐷𝑡 = ∑ 𝛼𝑗
𝑡𝑀

𝑗=1 . Note, that for the constant and progressive reduction of the water 

allocation goals scenarios, the value of  𝐷𝑡 changes, hence the RRV indexes will 

change accordingly. The performance of the Paloma system is evaluated under the 

future climate projections for the period 2011-2100 using the reliability, resilience and 

vulnerability indexes proposed by Hashimoto et al. (1982) and widely used in the 

literature (e.g., Bayazit and Ünal, 1990; Moy et al, 1986; Fowler et al, 2003; Kim and 

Kaluarachchi, 2009; Kjeldsen and Rosbejerg, 2004; Schaefli et al. 2007; Srinivasan 

and Philipose, 1996, 1998; Steinscheider and Brown 2012; Goharian et al., 2017; 

Zhang et al., 2017; Alameddine et al., 2018).  

Reliability (Rel) measures how often the system fails. This index is calculated 

as the percentage of time that the system can meet 𝐷 in the n years under evaluation.  

𝑅𝑒𝑙 = 1 −
∑ 𝑍𝑡
𝑛
𝑡=1

𝑛
 (5.7) 

where 𝑍𝑡 counts the number of years at failure: 

𝑍𝑡 =

{
 
 

 
 0            if∑𝑂𝑗

𝑡

𝑀

𝑗=1

= 𝐷𝑡

1            if∑𝑂𝑗
𝑡

𝑀

𝑗=1

< 𝐷𝑡

 (5.8) 

where t is the year from 1 up to n, the last year of the analysis. 

Resilience (Res) is a measure of how fast the system recovers once it has failed. 

It is computed as: 
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𝑅𝑒𝑠 =
∑ 𝑊𝑡
𝑛
𝑡=1

∑ 𝑍𝑡
𝑛
𝑡=1

  (5.9) 

where 𝑊𝑡 equals 1 each time step in which the system passes from failure to success 

and 0 if it stays on failure. Hence, ∑ 𝑊𝑡
𝑛
𝑡=1 ≤ ∑ 𝑍𝑡

𝑛
𝑡=1 , which implies a Res range 

between 0 (no recovery from failure or always in failure) to 1 (immediate recovery 

from failure or never in failure). 

Vulnerability is the index measuring the damage caused by a failure. In fact, 

several indexes have been used for this purpose (Kjeldsen and Rosbejerg, 2004). 

Following the approach by Srinivasan and Philipose (1996; 1998), we calculated two 

indexes for vulnerability: (1) the maximum vulnerability or maximum water deficit 

(𝑀𝑎𝑥𝑉) as used by Moy et al. (1986) and the average vulnerability or average water 

deficit (𝐴𝑣𝑔𝑉). They are given by: 

𝑀𝑎𝑥𝑉 = 𝑚𝑎𝑥 (
𝑣𝑡

𝐷𝑡
) (5.10) 

where 

𝑣𝑡 = 𝐷𝑡 −∑𝑂𝑗
𝑡

𝑀

𝑗=1

≥ 0 (5.11) 

𝐴𝑣𝑔𝑉 =
∑

𝑣𝑡

𝐷𝑡
𝑛
𝑡=1

𝑛
 

(5.12) 

Note that in Eq. (5.10) and (5.12), both vulnerabilities are standardized by D. 

Just as the other indexes, 𝑀𝑎𝑥𝑉 and 𝐴𝑣𝑔𝑉 range between 0 and 1. 

Finally, we also use the standardized average outflow (OF) as an additional 

index in our analysis, which measures the mean percentage of water that is allocated 
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by the reservoir system compared to the water allocation goal 𝐷𝑡. OF ranges between 

0 and 1and is given by:  

𝑂𝐹 =
∑

∑ 𝑂𝑗
𝑡𝑀

𝑗=1

𝐷𝑡
𝑛
𝑡=1

𝑛
 

(5.13) 

5.3.4. WATER ALLOCATION GOALS 

As the stream flow volume for the Limarí river basin is expected to decrease 

with time due to the climate change (Vicuña et al. 2011; 2012), in addition to assess 

the performance of the current (i.e. historical) allocation goal, two adaptation strategies 

are also evaluated: (1) a single constant reduction of the water allocation goal, and (2) 

a progressive reduction in time of the water allocation goal. 

Historical Water Allocation Goal 

The historical water allocation goal implies using the values of  and 𝑟 

determined by Ferrer et al. (1978) in Eq. (5.4), which are constant in time, having a 

water allocation goal 𝐷𝑡 = ∑ 𝛼𝑗
𝑡𝑀

𝑗=1 = 320 𝑀𝑚3. 

Constant Reduction of the Water Allocation Goal 

In this adaptation strategy a single fixed reduction in the water allocation goal 

is implemented for the entire future period (2011-2100) to maintain the stationary 

historical reliability for each RCP scenario. This is achieved by having 𝛼𝑗
𝑡 = 240 ∙ 𝑅, 

40 ∙ 𝑅 and 40 ∙ 𝑅 Mm3 for the Paloma, Recoleta and Cogotí reservoirs respectively, 

where 𝑅 is a reduction factor that is constant in time. Hence, the water allocation goal 

is constant but smaller than the historical and corresponds to 𝐷𝑡 = ∑ 𝛼𝑗
𝑡𝑀

𝑗=1 = 320 ∙

𝑅 𝑀𝑚3. Finally, to assure restraining the water allocation, the restrain factor 𝑟𝑡 also 

changes as follows: 
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𝑟𝑡 = {
0.5           if 𝐷𝑡 ≥ 0.5 ∙ 𝑅𝐵
𝐷𝑡

𝑅𝐵
           if 𝐷𝑡 < 0.5 ∙ 𝑅𝐵

 (5.14) 

Progressive Reduction of the Water Allocation Goal 

In this adaptation strategy, a linearly increasing reduction of the water 

allocation goal is implemented through time, starting at the initial year 𝑡0 (2011) until 

the final year 𝑡𝑓 (2100). Again, the objective is to maintain the stationary historical 

reliability for each RCP scenario. In this strategy 𝛼𝑗
𝑡 = 240 ∙ 𝑅𝑡, 40 ∙ 𝑅𝑡 and 40 ∙ 𝑅𝑡 

Mm3 for the Paloma, Recoleta and Cogotí reservoirs respectively, where 𝑅𝑡 is a 

progressive reduction factor that is given by: 

𝑅𝑡 =
𝑅𝑡𝑓 − 1

𝑡𝑓 − 𝑡0
∙ 𝑡 + 1 − (

𝑅𝑡𝑓 − 1

𝑡𝑓 − 𝑡0
) ∙ 𝑡0 (5.15) 

where  𝑅𝑡𝑓 is the final progressive reduction factor calibrated to obtain the desired 

constant reliability through time. In this case the water allocation is time dependent 

(𝐷𝑡)  and progressively reduces according to 𝐷𝑡 = ∑ 𝛼𝑗
𝑡𝑀

𝑗=1 = 320 ∙ 𝑅𝑡 𝑀𝑚3. Hence, 

the restrain factor is also time dependent (𝑟𝑡), and is given by Eq. (5.15). 

5.4. RESULTS AND DISCUSSION 

Table 5-1 summarizes the average performance of the Paloma system obtained 

using the 200-synthetic series for each one of the five scenarios (i.e., stationary climate 

and the four RCPs), for the historical allocation goal and the two adaptation strategies. 

The high reliability, outflows and maximum vulnerability, and low resilience in the 

stationary scenario shows that current operation rule, was designed to maximize the 

water allocation, restricted to a certain reliability, without considering other indexes. 

Because of the expected future water reduction, each one of the performance indexes 
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using the historical water allocation strategy worsens progressively under the different 

RCP scenarios, compared to the stationary scenario. Interestingly, for the historical 

water allocation goal the worsening in the performance of the systems under the RCP 

2.6 scenario measured by every index as compared to the stationary scenario is bigger 

than when comparing the changing in the performance between the RCP 2.6 and 8.5 

scenarios.  

Table 5-1: Average performance of the Paloma system measured by the indexes of 

reliability, resilience, maximum and average vulnerability, and outflows, under the 

three different water allocation goals, for the stationary historical scenario and the four 

RCP scenarios. 

Scenario 
Historical Water Allocation Goal 

Reliability Resilience 𝑀𝑎𝑥𝑉 𝐴𝑣𝑔𝑉 Out Flows 

Stationary 0.726 0.366 0.719 0.297 0.916 

RCP 2.6 0.591 0.292 0.787 0.362 0.843 

RCP 4.5 0.560 0.276 0.795 0.384 0.816 

RCP 6.0 0.552 0.274 0.800 0.378 0.818 

RCP 8.5 0.502 0.241 0.828 0.423 0.775 

Scenario 
Constant Reduced Water Allocation Goal 

Reliability Resilience 𝑀𝑎𝑥𝑉 𝐴𝑣𝑔𝑉 Out Flows 

RCP 2.6 0.726 0.332 0.576 0.179 0.943 

RCP 4.5 0.726 0.333 0.503 0.166 0.941 

RCP 6.0 0.726 0.325 0.491 0.151 0.948 

RCP 8.5 0.726 0.297 0.464 0.157 0.942 

Scenario 
Progressive Reduction of the Water Allocation Goal 

Reliability Resilience 𝑀𝑎𝑥𝑉 𝐴𝑣𝑔𝑉 Out Flows 

RCP 2.6 0.726 0.327 0.655 0.223 0.935 

RCP 4.5 0.726 0.315 0.632 0.211 0.937 

RCP 6.0 0.726 0.316 0.618 0.200 0.942 

RCP 8.5 0.726 0.299 0.609 0.201 0.942 
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Table 5-2: Calibrated values of the constant reduction factor (𝑹) and the progressive 

reduction factor (𝑹𝒕𝒇) to maintain the stationary historical reliability for each RCP 

scenario. 

Scenario 𝑅 𝑅𝑡𝑓 

RCP 2.6 0.705 0.388 

RCP 4.5 0.618 0.223 

RCP 6.0 0.614 0.220 

RCP 8.5 0.508 0.040 

 

The values of the constant reduction factor (𝑅) and the final progressive 

reduction factor (𝑅𝑡𝑓) calibrated to obtain the stationary historical reliability of 0.726 

are listed for the four RCP scenarios in Table 5-2. The constant reduction strategy 

designed to maintain the reliability of the stationary scenario (Table 5-1) also improves 

the performance of every index, except for the resilience, which slightly decreases 

from 0.366 to 0.332. Nevertheless, a significant reduction in the water allocation is 

produced. In fact, the standardized outflow index improves as there is a reduction in 

the water allocation (𝐷𝑡).  Even for the less severe RCP 2.6 scenario a 29.5% reduction 

(i.e. 1 – R in Table 5-2) in the water allocation is required to maintain the reliability. 

Furthermore, a 49.2% reduction in the water allocation is needed to maintain this level 

of reliability under RCP 8.5. On the other hand, Table 5-2 shows that adopting the 

progressive water allocation strategy implies reductions in the water allocation of 

61.2% and 96% by year 2100 under scenarios RCP 2.6 and 8.5 respectively. Thus, the 

progressive reduction strategy requires a smaller initial reduction than the constant 

reduction, but a much greater reduction at the end of the century. Obtaining almost the 

same values of 𝑅 and 𝑅𝑡𝑓 for RCPs 4.5 and 6.0, indicate that the adaptation 

measurement that a decision-maker should implement between those scenarios is the 

same. Nevertheless, one should also analyze the uncertainty of the results associated 
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with the scenario, as Chadwick et al. (2018b) shows the RCPs with the biggest 

uncertainty for the study basin, are RCP 4.5 and 6.0. 

 

Figure 5-2: Boxplot for the indexes of reliability, resilience, maximum and 

average vulnerability, and standardized average outflow when considering the 

historical water allocation goal strategy. 

To better understand the performance of the reservoirs’ system beyond the 

average, Fig. 5-2, 5-3 and 5-4 compare the range of values of the performance indexes 

under all the climate scenarios for the historical, constant reduction and progressive 

reduction of the water allocation goal, respectively. Under the historical water 

allocation, the median performance for the four RCP scenarios is worse than for the 

stationary scenario according to all the indexes (Fig. 5-2). Nonetheless, for all the RCP 

scenarios the value of the indexes for some of the realizations may be as good as for 
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the stationary scenario. Note also that the range of indexes values under the historical 

allocation for the different RCP scenarios is larger than for the stationary scenario, 

particularly for the reliability and the standardized average outflow. The dispersion on 

the performance indexes in Fig. 5-2 is mostly due to the uncertainty coming from the 

GCMs and, to a less extent, that coming from the RCPs. This result is in agreement 

with Chadwick et al. (2018b), who showed a GCM-induced uncertainty larger than 

that from the RCPs. Nevertheless, the performance indexes showed in Fig. 5-2 are 

overall better than those reported by Chadwick et al. (2018b), because they utilized a 

commonly used quantile mapping bias correction that typically alter the GCM trends, 

as explained by Maurer and Priece (2014). This difference illustrates the potential 

impact of traditional downscaling methods that do not guarantee the preservation of 

GCMs statistical attributes. 

Both the constant (Fig. 5-3) and the progressive (Fig. 5-4) reduction of the 

water allocation goal considerably improve the performance of the reservoir system. 

In particular, there is a reduction both in the maximum and the average vulnerability, 

as well as an improvement in the standardized average outflow. In fact, the values of 

this last metric become quite constant, and better than for the case of the historical 

allocation, regardless the RCP scenario. Nonetheless, neither of the strategies reduces 

the reliability range as compared to the historical allocation goal in any of the four 

RCP scenarios. The overall performance of the reservoir under both adaptation 

strategies is quite similar, with the vulnerability indexes being the ones for which more 

differences are identified. Indeed, there is an overall larger reduction in the maximum 

vulnerability associated with the constant water allocation reduction strategy, although 

a larger variability for this index across the different RCPs is also observed. 
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Figure 5-3: Boxplot for the indexes of reliability, resilience, maximum and 

average vulnerability, and standardized average outflow when considering the 

constant reduction of water allocation goal strategy. 
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Figure 5-4: Boxplot for the indexes of reliability, resilience, maximum and 

average vulnerability, and standardized average outflow when considering the 

progressive reduction of water allocation goal strategy. 

The previous results summarize the average performance for the entire future 

period (2011-2100). To better understand the performance of the reservoir system 

across time, Fig. 5-5 compares the dynamics of different impact measurements 

calculated from the 200 synthetic realizations for each year and climate scenario. The 

three water allocation goals through time are presented in millions of m3 (Mm3) on the 

first column, while the other columns show the different impacts measurements: (1) 

the mean number of failures as a percentage of the 200 synthetic realizations of each 

one of the five scenario (second column); (2) the mean failure indicating the average 

water scarcity for each year, of the 200 synthetic realizations per scenario, which is 
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standardized by between 0 and 1, by dividing by 𝐷𝑡(third column); and (3) the mean 

water allocation, which is the average water allocated for each year in the 200 synthetic 

realizations per scenario, which is also standardized by between 0 and 1 by dividing 

by 𝐷𝑡 (fourth column). The historical water allocation goal of 320 Mm3 (Fig. 5-5a) 

must be reduced to 225 Mm3, 198 Mm3, 196 Mm3 and 162 Mm3 for RCP 2.6, 4.5, 6.0 

and 8.5, respectively (Fig. 5-5e) under the constant reduction strategy. On the other 

hand, the progressive reduction of the water allocation implies a linear reduction 

starting from the historical value of 320 Mm3 up to values of 124 Mm3, 71 Mm3, 70 

Mm3 and 13 Mm3 by year 2100, under the RCP 2.6, 4.5, 6.0 and 8.5 scenarios, 

respectively (Fig. 5-5i). 

If the historical water allocation strategy is maintained, the number of failures 

at the beginning of the study period (2011) is similar for the five climate scenarios 

(Fig. 5-5b). As climate changes through time, the number of failure constantly 

increase, leading to failure in 70% of the realizations under RCP 8.5 by year 2100. 

This percentage of failure is only 25% under the stationary scenario (Fig. 5-5b). These 

results are similar also for the mean standardized failure and the mean standardized 

water allocation metrics, which systematically worsens trough time (Fig. 5-5c and 5-

5d).
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Figure 5-5: Impacts in terms of the percentage of failures (second column), the mean standardized level of failures (third column) 

and the mean standardized water allocation (fourth column) under the different climatic scenarios of the historical (first row), 

constant reduction (second row) and progressive reduction (third row) water allocation goal. The first column shows the temporal 

evolution of the water allocation goal associated with each strategy.
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By adopting a constant reduction of the water allocation to maintain the 

historical reliability under the different RCP scenarios, failures are almost non-existent 

in year 2011 (Fig. 5-5f). After this year, the number of failures constantly increase to 

eventually exceed the number obtained for the stationary climate by 2060. Both the 

mean standardized failure (Fig. 5-5g) and the mean standardized water allocation (Fig. 

5-5h) also behave in a similar manner. Both impact measurements reflect a 

performance better than for the stationary climate at the beginning of the study period 

but become worse by year 2060 up to 2100. Finally, the progressive reduction of the 

water allocation maintains the number of failures almost constant in time for the five 

climate scenarios (Fig. 5-5j). On the other hand, both the mean standardized failure 

(Fig. 5-5k) and the mean standardized water allocation (Fig. 5-5l) slightly improves 

with time for the RCP. Nonetheless, these improvements implied a reduction of 60 to 

95% in the water allocation depending on the RCP scenario (Table 5-2); which 

illustrate the complex future this river basin and their stakeholders will likely face. 

Considering the magnitude of the reductions in water allocation to maintain the 

percentage of failure constant, to change the paradigm by increasing water usage 

efficiency and using alternative sources of water, as recommended by Gleick (2000), 

might not be enough. Some uncertainties are not considered in this analysis, such as 

the uncertainty of the hydrological model or in expected land-use scenarios, and future 

studies should analyze them to see if the abovementioned results still hold. 

5.5. CONCLUSION 

This work evaluates two reservoir system operation strategies to cope with 

water scarcity in a drying basin due to climate change. The two strategies are designed 
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to maintain the stationary historical reservoir reliability, these strategies are: a constant 

and a progressive reduction of the water allocation goal. Both strategies are compared 

against maintaining the historical water allocation goal. The methodology is applied 

to the Paloma Reservoir System located in the Limarí River basin, a semiarid 

Mediterranean basin in Chile, which is getting drier with climate change. The 

following conclusions are emphasized: 

- The difference in the reservoir performance between the stationary scenario and 

RCP2.6 is bigger than the difference between RCP 2.6 and 8.5, regardless of the 

performance index or allocation goal strategy. The GCMs project that even for the 

less severe climate change scenario, there are severe changes expected in the 

Limarí hydroclimatic conditions, such as an expected reduction of a 60% in the 

available water under RCP 2.6. 

- A single constant reduction in the water allocation goal at the beginning of the 

study period almost completely eliminates failures, while at the end of the study 

period the reservoir system is expected to fail more than the stationary historical 

one, regardless of the climate change scenario.  

- The uncertainty of future climate projections is too big to establish the optimal 

progressive water reduction rate with a high degree of certainty. Despite of this, a 

progressive reduction over time of the water allocation allows maintaining 

constant the level of failure trough time. Nonetheless, this reduction also implies a 

significant reduction in the water to be allocated to the water users in the basin, 

illustrating the complex future expected for this basin. 

Because for the Limarí river basin a drier future is consistently predicted by the 

GCMs, a progressive adaptation strategy seems to be a good strategy for the 
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management of the reservoir system. However, such strategy may not necessarily be 

the best option in other locations with different climate projections. Further research 

is needed to narrow the uncertainty related to climate change projections to properly 

calibrate the progressive adaptation strategy here proposed. Regardless the big 

uncertainty in the analysis, one can conclude that new water infrastructure and 

improvements in water efficiency are not enough to maintain the current reliability of 

the system. Thus, severe water allocation reductions are also needed. Most certainly 

the solution will have to be related to new sources of water, such as desalination, and 

a big reduction in the allocated water. These changes will certainly not only have a 

great economic impact in the region, but it will affect the ecosystem as well. 

 Some relevant aspects to be considered in future research are (1) the analysis 

of uncertainty associated with the hydrological model, (2) the consideration of future 

changes in the water demand caused by climate change, (3) the explicit evaluation of 

more sophisticated reservoir operation rules and water allocation goals, and (4) the 

explicit incorporation of  the time of emergence evaluated in chapter 4 into climate 

change adaptation plans.   
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6. CHAPTER 6: SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

This research has explored the General Circulation Models (GCMs) induced 

uncertainty in different steps of climate change impact studies and proposes 

methodologies to cope with these uncertainties and consider its impact over hydraulic 

systems, particularly reservoir systems. The most relevant result is the proposed 

methodology that combines both the information of a group of GCMs as well as the 

local climate information to generate future climate time series of data for climate 

change impact studies. Moreover, this methodology was used in two problems of great 

interest: (1) the identification of the time of emergence of climatic variables at local 

scales, and (2) the assessment of climate change impacts over the future performance 

of a reservoir system, as well as adaptation strategies to cope with these impacts.  

The first hypothesis of this work (the uncertainty induced by the GCMs and 

their realizations significantly alters the results of a climate change impact study) was 

validated by means of analyzing the impact of climate change-induced uncertainty on 

the operation of large reservoirs, by assessing and quantifying the relative contribution 

of the GCM’s, their realizations and RCP scenarios to the overall uncertainty. From 

this validation the following conclusions are obtained: 

- The main contribution to the overall uncertainty in the performance comes from 

the GCMs, particularly for the early future. This uncertainty is larger than that 

from the RCPs and can cause significant changes in the assessment of the 

reservoir performance.  

- The intra-GCMs (i.e. several realizations of a single GCM) uncertainty is 

comparable to the inter-GCM (i.e. among GCMs) uncertainty. This is a relevant 
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issue as multiple GCM realizations are generally not considered when studying 

climate change impacts on water systems.  

- Counterintuitively, the uncertainty associated with the GCMs differ for different 

RCPs. Overall, there is more uncertainty associated with scenarios RCP 4.5 and 

RCP 6.0, followed by RCP 8.5, while the uncertainty for RCP 2.6 was the 

minimum. Additional studies are needed to determine whether this result holds 

for other locations. 

- As expected, a strong correlation between the performance indexes and the 

percentage of change of precipitation simulated by the GCMs (PC) was found. 

Hence, to reduce the uncertainty of the reservoir system performance, the PC 

uncertainty must be reduced.  

- Given the non-linear relationships among the RRV indexes, they provide 

complementary and relevant information about the current operation rule under 

different climate conditions. Only the standardized average outflow can be 

ignored, due to its strong correlation with reliability and average vulnerability. 

 The second hypothesis of this work (the climate generated by statistically 

merging the changes in precipitation and temperature from a group GCM and local 

statistics gives the same results as statistically generating climate from each GCM 

projection of the group used individually) was validated by the means of developing 

an approach more suitable to cope with GCM uncertainty when dealing with climate 

change studies at the basin scale. From this validation the following conclusions are 

obtained: 
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- The proposed method that generates climate by merging GCM statistics, with 

local climate statistics outperforms other commonly used downscaling and/or 

bias correction approaches. 

- Results obtained using GCM pre- and post-analysis are very similar. On average 

there is less than a 0.4% difference between the probabilities of future years 

below different precipitation thresholds estimated with both methods. 

- Using 5 to 10 trend percentiles obtained from the GCM pre-analysis is clearly 

better than using the single trend of the median GCM ensemble, as in the last 

case the uncertainty or discrepancy among the group of GCM is not formally 

taken into account. The GCM pre-analysis has the advantage of building GCM 

ensembles that incorporate not only the mean or median, but also the entire range 

of climate projections of a group of GCM. 

- The GCM pre-analysis is able to simulate accurately the percentiles of the mean 

and the standard deviation of the temperature and precipitation of a group of 

GCM. The percentiles of the skewness and coefficient of variation are less well 

represented. 

 The third hypothesis of this work (it is possible to identify at a basin scale the 

time at which the climate change emerges, by using GCM projections and local climate 

statistics) was validated by means of proposing a methodology to estimate the time of 

emergence at local scales, considering both GCMs outputs and basin climatic 

conditions. From this validation the following conclusions are obtained: 

- It is possible to identify local time of emergence with the methodology proposed 

in this study. 
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- The ToE for precipitation is identified first in the Maule, then the Maipo and 

finally in the Limarí. These results are related to the local climate coefficient of 

variation, as the higher the variation is, the later the ToE occurs. The relationship 

between the ToE and the coefficient of variation may not hold for other cases 

because the ToE also depends on the strength of the climate signal. 

- The trend percentile chosen to detect the ToE has a significant impact over the 

year detected. 

 The fourth hypothesis of this work (a dynamic water allocation goal is better 

than a single modification of the water allocation goal on a drying basin due to climate 

change) was validated by means of evaluating the impact of progressive changes in 

climate over reservoir performance measured by performance indexes, and possible 

adaptation strategies to cope with this impact. From this validation the following 

conclusions are obtained: 

- The difference in the reservoir performance between the stationary scenario and 

RCP2.6 is bigger than the difference between RCP 2.6 and 8.5, regardless of the 

performance index or allocation goal strategy. The GCMs project that even for 

the less severe climate change scenario, severe changes are expected for the 

Limarí hydroclimatic conditions, such as a reduction of a 60% in the available 

water under RCP 2.6. 

- A single constant reduction over the water allocation goal at the beginning of the 

study period almost completely eliminates failures, while at the end of the study 

period the reservoir system is expected to fail more than under the stationary 

historical climate, regardless of RCP scenario.  
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- The uncertainty of future climate projections is too big to establish the optimal 

progressive water reduction rate with a high degree of certainty. Despite of this, 

a progressive reduction over time of the water allocation allows maintaining 

constant the level of failure trough time. Nonetheless, this reduction also implies 

a significant reduction in the water to be allocated to the water users in the basin, 

illustrating the complex future expected for this basin. 

Future research is needed to answer some open questions associated with this 

dissertation. In addition to extent the application of the method here proposed to 

identify the local time of emergence for climatic variables to other locations in Chile 

and elsewhere, it is of relevance to study the feasibility of detecting the time of 

emergence in river flows discharges by coupling the approach here presented with a 

hydrological model. Also, future studies should explicitly evaluate incorporating the 

time of emergence in the adaptation strategies to climate change. Regarding our 

finding related to the assessment of adaptation strategies in the operation of reservoir, 

it is suggested to study in detail the potential application of the continuously changing 

water allocation goals here proposed, and the implication of other type of uncertainty 

in the assessment, particularly the coming from hydrological modeling uncertainty. 

Finally, potential applications of the developed methods among stake holders, water 

users and decision makers should be evaluated. 
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APPENDIX A: PERCENTAGE OF CHANGE OF THE RAW GCM 

GCMs used in the study and the corresponding Percentage of Change (PC) of 

precipitation for different RCPs without downscaling. 

Table A1: GCM list and their precipitation change percentage.  

Number GCM Realization 
RCP 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 

1 ACCESS1.0 r1i1p1 Na -0.07 Na -0.05 

2 BCC-CSM1.1 r1i1p1 -0.01 -0.08 -0.07 -0.11 

3.1 CanESM2 r1i1p1 -0.11 -0.17 Na -0.22 

3.2 CanESM2 r2i1p1 -0.14 -0.16 Na -0.13 

3.3 CanESM2 r3i1p1 -0.20 -0.26 Na -0.22 

3.4 CanESM2 r4i1p1 -0.02 -0.02 Na -0.03 

3.5 CanESM2 r5i1p1 0.03 -0.04 Na -0.08 

4.1 CCSM4 r1i1p1 -0.04 -0.07 -0.04 -0.08 

4.2 CCSM4 r2i1p1 0.05 0.02 0.13 -0.06 

4.3 CCSM4 r3i1p1 0.00 0.03 -0.01 -0.04 

4.4 CCSM4 r4i1p1 -0.02 0.03 -0.02 -0.02 

4.5 CCSM4 r5i1p1 0.01 0.05 0.01 -0.05 

5.1 CNRM-CM5 r10i1p1 Na Na Na -0.03 

5.2 CNRM-CM5 r1i1p1 Na -0.04 Na -0.02 

5.3 CNRM-CM5 r2i1p1 Na Na Na -0.01 

5.4 CNRM-CM5 r4i1p1 Na Na Na -0.03 

5.5 CNRM-CM5 r6i1p1 Na Na Na -0.08 

6.1 CSIRO-Mk3.6.0 r10i1p1 -0.15 -0.21 -0.24 -0.35 

6.2 CSIRO-Mk3.6.0 r1i1p1 0.02 0.02 -0.02 -0.09 

6.3 CSIRO-Mk3.6.0 r2i1p1 -0.22 -0.38 -0.33 -0.33 

6.4 CSIRO-Mk3.6.0 r3i1p1 -0.14 -0.15 -0.10 -0.29 

6.5 CSIRO-Mk3.6.0 r4i1p1 -0.15 -0.18 -0.21 -0.30 

6.6 CSIRO-Mk3.6.0 r5i1p1 -0.17 Na -0.29 -0.24 

6.7 CSIRO-Mk3.6.0 r6i1p1 -0.05 -0.03 -0.08 -0.23 

6.8 CSIRO-Mk3.6.0 r7i1p1 -0.24 -0.29 -0.25 -0.37 

6.9 CSIRO-Mk3.6.0 r8i1p1 -0.10 -0.32 -0.31 -0.35 

6.10 CSIRO-Mk3.6.0 r9i1p1 -0.16 -0.23 -0.24 -0.30 

7 FGOALS-g2 r1i1p1 -0.06 -0.08 Na -0.19 

8 GFDL-CM3 r1i1p1 -0.17 -0.23 -0.21 -0.22 

9 GFDL-ESM2G r1i1p1 -0.19 -0.30 -0.28 -0.37 

10 GFDL-ESM2M r1i1p1 -0.14 -0.24 -0.29 -0.34 

11.1 GISS-E2-R r1i1p1 0.06 0.05 0.10 0.10 

11.2 GISS-E2-R r2i1p1 Na 0.06 Na Na 

11.3 GISS-E2-R r3i1p1 Na 0.11 Na Na 

11.4 GISS-E2-R r4i1p1 Na 0.07 Na Na 

11.5 GISS-E2-R r5i1p1 Na 0.16 Na Na 

12 INM-CM4 r1i1p1 Na 0.04 Na 0.02 
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Table A1: (Continued) 

Number GCM Realization 
RCP 

2.6 

RCP 

4.5 

RCP 

6.0 

RCP 

8.5 

13.1 IPSL-CM5A-LR r1i1p1 Na -0.24 -0.23 -0.32 

13.2 IPSL-CM5A-LR r2i1p1 Na -0.24 Na -0.37 

13.3 IPSL-CM5A-LR r3i1p1 Na -0.27 Na -0.38 

14 IPSL-CM5A-MR r1i1p1 -0.26 -0.30 Na -0.39 

15 MIROC5 r1i1p1 -0.07 -0.16 -0.11 -0.18 

16 MIROC-ESM r1i1p1 -0.21 -0.29 -0.27 -0.38 

17 
MIROC-ESM-

CHEM 
r1i1p1 -0.19 -0.21 -0.23 -0.32 

18.1 MPI-ESM-LR r1i1p1 -0.04 -0.21 Na -0.28 

18.2 MPI-ESM-LR r2i1p1 -0.01 -0.19 Na -0.25 

18.3 MPI-ESM-LR r3i1p1 -0.14 -0.14 Na -0.30 

19 MRI-CGCM3 r1i1p1 -0.02 0.00 Na -0.05 

20 NorESM1-M r1i1p1 -0.08 -0.08 -0.04 -0.09 

 

Note: Na corresponds to GCM and RCP combinations that were not available or not 

used for this study.  
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APPENDIX B: GENERATION OF CORRELATED DATA 

To preserve the spatial correlation and the correlation between temperature and 

precipitation, we use the correlation matrix of the historical annual data to generate 

correlated uniform random numbers u [0-1]. Using 𝑦 = 𝐹𝑌
−1(𝑢, 𝜃) we obtain random 

values of temperature and precipitation in each station that preserve the observed 

correlation. Random uniform numbers are produced using a Vector Autoregressive 

Model VAR(0), although a VAR(1) model can also be used in case temporal 

correlation were to be considered. Indeed a VAR(1) model was tested in the 

application here reported, but results are not presented as autocorrelation is not 

statistically significant for annual observed data. In the implementation of the VAR(0) 

model correlated random numbers following a standardized normal distribution are 

first generated (step 1), and subsequently transformed into uniformly distributed 

correlated values, using the correlation matrix for space transformation described by 

Hotelling and Pabst (1936) (step 2). In particular, in step 1 we apply the Cholesky 

factorization of the correlation matrix in the normal space to transform uncorrelated to 

correlated normally distributed random values. In step 2 the inverse normal 

distribution transforms these numbers into uniform correlated values.  
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Table B1: Meteorological stations in the Limarí basin measuring Precipitation (P) and 

Temperature (T). 

Station Variable 
Elevation 

(m) 
Latitude Longitude 

Pabellón P 1,920 
30º 24' 12'' 

S 

70º 33' 08'' 

W 

Las Ramadas P, T 1,380 
31º 01' 11'' 

S 

70º 35' 11'' 

W 

Tascadero P 1,230 
31º 00' 58'' 

S 

70º 40' 28'' 

W 

Cogotí 18 P 840 
31º 05' 12'' 

S 

70º 57' 08'' 

W 

Recoleta 

Embalse 
P 350 

30º 30' 36'' 

S 

71º 06' 07'' 

W 

Paloma Embalse P, T 320 
30º 41' 48'' 

S 

71º 02' 18'' 

W 

El Tomé P 420 
30º 49' 12'' 

S 

70º 58' 08'' 

W 

Punitaqui P 280 
30º 49' 35'' 

S 

71º 15' 37'' 

W 

Ovalle DGA P 220 
30º 36' 12'' 

S 

71º 12' 08'' 

W 
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Table B2: Comparison between observed (Obs) and simulated annual statistics using the annual climate generator (Gen) for precipitation 

(P) and temperature (T) gauges in the Limarí basin. 

 Pabellon 
Las 

Ramadas 
Tascadero 

Cogotí 

18 

Recoleta 

Embalse 

Paloma 

Embalse 

El 

Tomé 
Punitaqui 

Ovalle 

DGA 

Las 

Ramadas 

Paloma 

Embalse 

Variable P (mm) P (mm) P (mm) P (mm) P (mm) P (mm) P (mm) P (mm) P (mm) T(°C) T(°C). 

Mean (Gen) 162.5 340.9 299.8 192.7 110.4 139.3 173.3 170.5 110.4 16.25 17.22 

Mean (Obs) 163.0 341.5 300.4 192.6 110.1 139.1 173.2 170.3 109.8 16.25 17.22 

Std. Dev.  (Gen) 103.5 208.9 202.2 132.9 81.3 100.9 124.0 134.8 78.7 0.55 0.34 

Std. Dev.  (Obs) 104.4 209.8 203.5 133.0 80.9 100.7 123.9 134.6 78.0 0.54 0.34 

A. Corr*. (Gen) 0.94 1.00 0.98 0.92 0.89 0.92 0.94 0.92 0.88 -0.42 0.32 

A. Corr*. (Obs) 0.94 1.00 0.98 0.93 0.89 0.92 0.94 0.92 0.88 -0.43 0.33 
* Annual correlation (A. Corr.) is computed between annual precipitation in Las Ramadas gauge and the rest of the rain gauges and 

temperature measurements in the basin
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To verify the method, we tested it in replicating stationary annual climate of 

nine precipitation stations and two temperature stations located in the Limarí basin 

(Table B1). We generated 10,000 years of stationary annual precipitation and 

temperature correlated data from the stations listed in Table B1, to obtain the results 

presented in Table B2. As shown in Table B2, the proposed method successfully 

replicates the mean, standard deviation and correlation among precipitation and 

temperature in the different stations. 
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APPENDIX C: GENERAL CIRCULATION MODELS USED IN 

CHAPTER 3 

Table C1: General Circulation Models (GCMs) used in this study. 

 

Number GCM Name 
GCM 

Realization  
Number GCM Name 

GCM 

Realization 

1 ACCESS1.0 r1i1p1  23 CSIRO-Mk3.6.0 r5i1p1 

2 
BCC-

CSM1.1 
r1i1p1 

 
24 CSIRO-Mk3.6.0 r6i1p1 

3 CanESM2 r1i1p1  25 CSIRO-Mk3.6.0 r7i1p1 

4 CanESM2 r2i1p1  26 CSIRO-Mk3.6.0 r8i1p1 

5 CanESM2 r3i1p1  27 CSIRO-Mk3.6.0 r9i1p1 

6 CanESM2 r4i1p1  28 FGOALS-g2 r1i1p1 

7 CanESM2 r5i1p1  29 GFDL-CM3 r1i1p1 

8 CCSM4 r1i1p1  30 GFDL-ESM2G r1i1p1 

9 CCSM4 r2i1p1  31 GFDL-ESM2M r1i1p1 

10 CCSM4 r3i1p1  32 GISS-E2-R r1i1p1 

11 CCSM4 r4i1p1  33 INM-CM4 r1i1p1 

12 CCSM4 r5i1p1 
 

34 
IPSL-CM5A-

LR 
r1i1p1 

13 CNRM-CM5 r10i1p1 
 

35 
IPSL-CM5A-

LR 
r2i1p1 

14 CNRM-CM5 r1i1p1 
 

36 
IPSL-CM5A-

LR 
r3i1p1 

15 CNRM-CM5 r2i1p1 
 

37 
IPSL-CM5A-

MR 
r1i1p1 

16 CNRM-CM5 r4i1p1  38 MIROC5 r1i1p1 

17 CNRM-CM5 r6i1p1  39 MIROC-ESM r1i1p1 

18 
CSIRO-

Mk3.6.0 
r10i1p1 

 
40 

MIROC-ESM-

CHEM 
r1i1p1 

19 
CSIRO-

Mk3.6.0 
r1i1p1 

 
41 MPI-ESM-LR r1i1p1 

20 
CSIRO-

Mk3.6.0 
r2i1p1 

 
42 MPI-ESM-LR r2i1p1 

21 
CSIRO-

Mk3.6.0 
r3i1p1 

 
43 MPI-ESM-LR r3i1p1 

22 
CSIRO-

Mk3.6.0 
r4i1p1 

 
44 MRI-CGCM3 r1i1p1 

       45 NorESM1-M r1i1p1 
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APPENDIX D: GENERAL CIRCULATION MODELS USED IN 

CHAPTER 4 AND 5 

Table D1: General Circulation Models (GCM) and RCP scenarios used in this study. 

  GCM Name Realization RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

1 ACCESS1.0 r1i1p1  x  x 

2 BCC-CSM1.1 r1i1p1 x x x x 

3 CanESM2 r1i1p1 x x  x 

4 CanESM2 r2i1p1 x x  x 

5 CanESM2 r3i1p1 x x  x 

6 CanESM2 r4i1p1 x x  x 

7 CanESM2 r5i1p1 x x  x 

8 CCSM4 r1i1p1 x x x x 

9 CCSM4 r2i1p1 x x x x 

10 CCSM4 r3i1p1 x x x x 

11 CCSM4 r4i1p1 x x x x 

12 CCSM4 r5i1p1 x x x x 

13 CNRM-CM5 r10i1p1    x 

14 CNRM-CM5 r1i1p1  x  x 

15 CNRM-CM5 r2i1p1    x 

16 CNRM-CM5 r4i1p1    x 

17 CNRM-CM5 r6i1p1    x 

18 CSIRO-Mk3.6.0 r10i1p1 x x x x 

19 CSIRO-Mk3.6.0 r1i1p1 x x x x 

20 CSIRO-Mk3.6.0 r2i1p1 x x x x 

21 CSIRO-Mk3.6.0 r3i1p1 x x x x 

22 CSIRO-Mk3.6.0 r4i1p1 x x x x 

23 CSIRO-Mk3.6.0 r5i1p1 x  x x 

24 CSIRO-Mk3.6.0 r6i1p1 x x x x 

25 CSIRO-Mk3.6.0 r7i1p1 x x x x 

26 CSIRO-Mk3.6.0 r8i1p1 x x x x 

27 CSIRO-Mk3.6.0 r9i1p1 x x x x 

28 FGOALS-g2 r1i1p1 x x  x 

29 GFDL-CM3 r1i1p1 x x x x 

30 GFDL-ESM2G r1i1p1 x x x x 

31 GFDL-ESM2M r1i1p1 x x x x 

32 GISS-E2-R r1i1p1 x x x x 

33 GISS-E2-R r2i1p1  x   

34 GISS-E2-R r3i1p1  x   

35 GISS-E2-R r4i1p1  x   
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Table D1: (Continued) 

  GCM Name Realization RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

36 GISS-E2-R r5i1p1  x   

37 INM-CM4 r1i1p1  x  x 

38 IPSL-CM5A-LR r1i1p1  x x x 

39 IPSL-CM5A-LR r2i1p1  x  x 

40 IPSL-CM5A-LR r3i1p1  x  x 

41 IPSL-CM5A-MR r1i1p1 x x  x 

42 MIROC5 r1i1p1 x x x x 

43 MIROC-ESM r1i1p1 x x x x 

44 
MIROC-ESM-

CHEM 
r1i1p1 x x x x 

45 MPI-ESM-LR r1i1p1 x x  x 

46 MPI-ESM-LR r2i1p1 x x  x 

47 MPI-ESM-LR r3i1p1 x x  x 

48 MRI-CGCM3 r1i1p1 x x  x 

49 NorESM1-M r1i1p1 x x x x 

 


