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A B S T R A C T

A large variety of antipredator defenses are exhibited by plants, animals and microbes in nature. A deep
understanding of the dynamic consequences of prey responses to predation risk is essential for building a
comprehensive theory of food webs. Here we present a simple classification of prey defenses based on the
sensitivity of prey immunity to predation respect to abundances of prey and predators. Only three out of
six defense types have been analytically studied in the context of predator–prey dynamics, which reveals
a serious gap in our current knowledge of ecological interactions. In this study we present a mathematical
analysis on a widely occurring type of prey defense whose behavior has not been established in exact
terms. The study model considers prey whose average immunity to predators is enhanced by predator
abundance. This case, known as inducible defenses, has been reported for a wide array of species. Our
results reveal a rich dynamic behavior, in which the predator-prey system exhibits either one, two or
three positive equilibrium points, with up to two attractors. Thus, inducible defenses constitute a
mechanism that could drive alternative stable states even in very simple food web models.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most relevant features determining the dynamics of
ecological food webs is the ability of prey to avoid being killed by
their predators (Fryxell and Lundberg, 1997; Kondoh, 2007).
Antipredator defenses prevent prey losses as well as predator
feeding, thus affecting the transfer of energy and matter through
trophic paths. Moreover, empirical and theoretical studies have
shown that the expression of antipredator defenses may exert
strong influences on the long-term stability of populations and
communities (Matsuda et al., 1996; Bolker et al., 2003; Krivan and
Sirot, 2004; Ramos-Jiliberto, 2003; Vos et al., 2004).

The analysis of mathematical models has been crucial for the
development of ecological knowledge and food web theory in
particular. Early theoretical studies on antipredator defenses
focused on understanding the dynamical consequences of the
use of physical refuges by prey. Simple physical refuges have a fixed
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capacity to protect a number of prey, independent on actual prey
population size (McNair, 1986). Another reasonably well studied
form of prey defenses consists of the suppression, by a given fixed
amount, of the average vulnerability of prey to being killed by their
predators (González-Olivares and Ramos-Jiliberto, 2003). These
prey attributes are termed constitutive defenses, and include any
trait that may impede encounters with and successful attacks from
predators. In addition, a different kind of defensive traits involves
the density-dependent temporal suppression of prey vulnerability
to predation (Tollrian and Harvell, 1999). This type of defenses,
often called inducible defenses, are phenotypic prey responses to
variations in population size of their predators, but can also be
modulated by prey density (Tollrian et al., 2015). The underlying
mechanisms by which prey exhibit some kind of immunity to
predators are diverse, such as development of spines, chemicals,
special color patterns, behavioral avoidance, hiding, shifts in life-
history traits, among many others.

Predator–prey theory has been at the core of modern ecological
knowledge and has exhibited notable developments (Berryman,
1992; Abrams, 2000) during the last decades. However, to gain a
deeper understanding of the collective behavior of communities,
ecosystems, and particularly food webs, we require building a
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comprehensive theory of predator–prey interactions that should
incorporate a rigorous understanding of prey responses to
predation risk. A major challenge toward this goal is to address
the wide variety of behavioral, morphological and life-historical
defenses, either constitutive or inducible, observed in nature,
which are known to exert specific effects on food web stability
(Ramos-Jiliberto et al., 2007).

In order to classify the different forms of prey defenses into few
manageable types, consider the conceptual model shown in Fig. 1.
This idealized picture includes consumptive and non-consumptive
effects of predators. We root this model in that prey exhibit some
trait Tx which determines their immunity to predators. Examples
of such traits include thickness of shells or covers, body
transparency, spine length, concentration of chemical compounds,
hiding or avoidance behaviors, among others. For modeling
purposes, we consider trophic interactions governed by the
biomass conversion principle (Ramos-Jiliberto, 2005) and thus
modeled by Gause-type equations (Freedman, 1980). A family of
simple food chain models that satisfy our assumptions is:

dni

dt
¼ eiFiðni�1; Ti�1; TiÞ � bini½ �ni � Fiþ1ðni; Ti; Tiþ1Þniþ1 ð1Þ

where ni is the population size of a species of trophic level i,
parameter ei represents conversion efficiency of food into
population biomass and bi is a self interference coefficient due
to intraspecific competition for fixed resources. Functions Fi are the
functional responses of predators of trophic level i, which depend
on the density of prey of trophic level i � 1, and the expression of
defensive traits Ti in both prey and predators. Defensive traits of
prey lead to decreasing their own mortality rate due to predation,
whereas defensive traits of predators lead to decreasing their
feeding rates on prey due to non-consumptive effects exerted by
upper predators. Hereafter we further assume that non-consump-
tive effects of predation, and therefore fitness costs of defenses, are
negligible and that functional responses are linear respect to prey
availability.

In addition, we consider that the defensive trait set Tx
determines the immunity of prey to predation, defined here as
R = xr/x, where xr represents the prey biomass that is immune to
predation and x is total prey population biomass. Thus, prey
availability to predators is represented by x(1 � R). A one-prey-
one-predator system derived from (1) satisfying the above
assumptions reduces to

dx
dt

¼ r 1 � x
K

� �
x � qx 1 � Rð Þy

dy
dt

¼ pxð1 � RÞ � cð Þy
;

ð2Þ
Fig. 1. Conceptual model of prey defenses. Predators of abundance y consume prey
of abundance x which in turn consume resources of abundance k. Consumption rate
is governed by functional responses F. Prey x exhibit some set of traits Tx which
suppresses predator's functional response F and consumptive effects (CE). In
addition, the defensive traits exert some non-consumptive effects (NCE), usually a
reduction in prey's functional response. Trait expression could be triggered by an
increase in either predator abundance, prey abundance or both (dashed lines).
where x ¼ x tð Þ and y ¼ y tð Þ indicate prey and predator population
size (in biomass units), with m ¼ r; K; d; q; p; cð Þ 2 R6

þ. The param-
eters have the following biological meanings: r is the intrinsic per
capita prey growth rate, K is the prey carrying capacity, q is the per
capita predator consumption rate, p is the efficiency at which
predators convert consumed prey into new predator biomass and c
is the natural death rate of predators. Prey population grows
according to the logistic model in the absence of predation, and it is
killed at a rate proportional to the product of prey availability and
predator biomass abundance. Predator population gains biomass
from prey consumption and decays at a constant per capita natural
rate. However, antipredator defenses differ qualitatively in the
mechanisms that trigger the expression of defensive traits Tx and
determine prey immunity R (Table 1). We propose a classification
of prey defenses into six basic types, according to the sensitivity of
R to prey and predator densities. Here we assume that R should not
decrease with predator abundance y, to be considered an
antipredator response. All other cases are included in Table 1. A
contemporary theory of food webs should consider qualitative
results established by the analytical study of this variety of
antipredator prey responses, at least included in the most simple
predator-prey models such as (2). As shown in the last column of
Table 1, to our knowledge half of the basic types of antipredator
defenses has not been yet analytically studied even within the
most simple predation models. This reveals a serious gap in our
current knowledge of ecological interactions. In this study we
contribute to fill this gap, by studying mathematically the
dynamical consequences of a simple predator-prey model of the
type of (2) and including the triggering mechanism R = dy.

2. The model

In this study we analyze model (2) assuming R = dy. The study
system is represented by the following ordinary differential
equations that belong to the classes of Kolmogorov-type and
Gause-type models (Freedman, 1980).

Xm :

dx
dt

¼ r 1 � x
K

� �
x � q x 1 � dyð Þy

dy
dt

¼ p x 1 � dyð Þ � cð Þy

8><
>: ð3Þ

Here, we assume that the immunity to predators of an average
prey, R, is proportional to predator biomass abundance y, i.e. R = dy,
with d � 0 and 1 � dy > 0. The assumption that immunity to
predators increases with predator biomass has been supported by
numerous empirical studies (Tollrian and Harvell, 1999). This kind
of defensive responses corresponds to what has been called
inducible defenses, and the study of their population dynamics
consequences in realistic biological scenarios has been carried out
using mainly numerical tools (Ramos-Jiliberto, 2003). The lack of
previous analytical studies on this type of defenses and their
recognized importance in shaping the ecological and evolutionary
dynamics of populations (Tollrian and Harvell, 1999) motivates
conducting this research. System (3) or vector field Xm is defined at

V ¼ fðx; yÞ 2 R2
0j x � 0; y � 0g ¼ Rþ

0 � Rþ
0 ; ð4Þ

The equilibrium points are P0 = (0, 0), PK = (K, 0) and Pe = (xe, ye), with
ye ¼ rp

cq 1 � xe
K

� �
xe, where xe is solution of a third degree polynomial

equation. The equilibrium Pe lies in V, if and only if, xe< K.
With d = 0, the equilibrium points of system (3) are 0; 0ð Þ, K; 0ð Þ

and the unique equilibrium point at the interior of the first

quadrant Pe ¼ c
p;

r pK�cð Þ
qpK

� �
. Constructing a Lyapunov function (Goh,

1980) it can be proved that the point Pe is globally asymptotically
stable, if and only if, c < pK. Moreover, the point (K, 0) is globally



Table 1
A classification of triggering mechanisms of antipredator defenses.

Assumption Simple
expression

Biological meaning Key references

@R
@x ¼ 0, @R@y ¼ 0 R = d Constitutive defenses

@R
@x ¼ 0, @R@y > 0 R = dy Induced defenses This study

@R
@x > 0, @R@y ¼ 0 R = dx Group defenses Not found

@R
@x > 0, @R@y > 0 R = dxy Encounter-driven

defenses
Not found

@R
@x < 0, @R@y ¼ 0 R = d/x Fixed-capacity refuges

@R
@x < 0, @R@y > 0 R = dy/x Risk-induced defenses lez-Olivares and Ramos-Jiliberto (2004), Haque et al. (2014); lez-Olivares and Ramos-Jiliberto (2004), Haque

et al. (2014)
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asymptotically stable, if and only if, c � pK. In the rest of this article
we show our main analytical results for d > 0.

3. Main results

To simplify the calculus we first perform a reparameterization
and time rescaling of system (3), establishing the properties
presented below. Relevant demonstrations of the stated model
properties are given in Appendix A. To help the reader non-familiar
with mathematical jargon, in the Discussion section we mention
the parts of our results (Lemmas and Theorems presented in this
section) that serve as the basis for the main conclusions of our
study.

Proposition 1. System (3) is topologically equivalent to

Zh :

du
dt

¼ 1 � u � 1 � Nvð Þvð Þu
dv
dt

¼ B u 1 � Nvð Þ � Cð Þv

8><
>: ð5Þ

with h ¼ B; C; Nð Þ 2 R2
þ, B ¼ p K

r , C ¼ c
pK and N ¼ d r

q.

Remark 2. 1. We have constructed the diffeomorphism

(Chicone, 2006) ’ : V � R�!V � R, so that

’ðu; v; tÞ ¼ Ku; rqv; rt
� �

¼ ðx; y; tÞ.The Jacobian matrix of ’ is

D’ u; v; tð Þ ¼
K 0 0
0

r
q

0

0 0 r

0
B@

1
CAAs det D’ u; v; tð Þ ¼ K r2

q > 0, then ’ is

a diffeomorphism preserving the time orientation. The new
vector field Zh = ’ � Xm associated to differential equations
system (5), is defined at

V ¼ u; vð Þ 2 R2
0=u � 0; v � 0

� � ¼ Rþ
0 � Rþ

0 : ð6Þ
Fig. 2. The bifurcation curves defining the stability domains of the study model. In regio
found in regions II and III respectively. In regions L1 and L2 three equilibrium points 
The equilibrium points of system (5) are

O ¼ ð0; 0Þ; Q1 ¼ 1; 0ð Þ and Qe ¼ ue;
1
C
ð1 � ueÞue

� 	
; ð7Þ

where ueis a solution of the cubic polynomial equation

p uð Þ ¼ Nu3 � Nu2 þ Cu � C2 ¼ 0 ð8Þ

The equilibrium point Qe lies in V, if and only if, ue< 1.
Using the Descartes Rule, it is easy to see that Eq. (8) may have

up to three positive roots, but it always has a positive real root
denoted by u1 = E. For the point Qe to be positive, it must be satisfied
that E < 1.

From the quotient between p uð Þ and the binomial u � E it could
be possible to obtain the other two solutions, as the reader could
verify (Proof of Lemma 5, Appendix A).

To determine the nature of the hyperbolic equilibrium point we
need the Jacobian matrix of system (5) which is

DZhðu; vÞ ¼ 1 � 2u � v þ Nv2 � 1 � 2Nvð Þu
B 1 � Nvð Þv B u � C � 2Nuvð Þ

� 	
ð9Þ

Further properties of system (5) are:

Lemma 3. (a) The set G ¼ u; vð Þ 2 V=0 � u � 1; 0 � v � 1
N

n o
is

an invariant and compact region.(b) Solutions are bounded.

After showing that the trajectories are bounded, we can
consider that system (5) is a well-posed model (Berryman et al.,
1995), since the point 0; 1ð Þ in the compactified system (Perko,
2001) is a saddle point.

We note that if 1 � Nv < 0, then du
dt > 0 and dv

dt < 0. In such a case
system (5) would lose its biological sense in the frame of a
predator–prey interaction.
n I there is no interior equilibrium points, while one and two positive equilibria are
exist.



114 E. González-Olivares et al. / Ecological Complexity 32 (2017) 111–120
Furthermore, for system (5), the set G is a compact region. Then
the set

G ¼ u; yð Þ 2 V=0 � x � K; 0 � y � 1
d


 �

is a compact region for system (3). So, in both cases the Poincaré–
Bendixon Theorem holds.

Lemma 4. Nature of the equilibrium points located on the axesFor
all parameter values we obtain that(a) The singularity (0, 0) is a
saddle point.(b) The singularity (1, 0) is a saddle point.

Lemma 5. Number of positive equilibrium pointsFrom Eq. (8) we
obtained:(a) It has a unique positive real root, denoted by u1 = E < 1,
if and only if D =�3EC � C � E2 + E < 0, that is, E 1�E

3Eþ1 < C < E,(b) It
has two positive real roots, one of them of multiplicity two, if and
only if D =�3EC � C � E2 + E = 0, or else, C ¼ E 1�E

3Eþ1 < E; in this case,

u2 ¼ u3 ¼ 1�E
2 ,(c) It has three positive real roots, if and only if

D =�3EC � C � E2 + E > 0, or else, C < E 1�E
3Eþ1 < E.

We note that the difference C � E ¼ E 1�Eð Þ
3Eþ1 � E ¼ �4 E2

3Eþ1 < 0.

Thus, the curve C ¼ E 1�Eð Þ
3Eþ1 locates under the straight line C = E.

Here we define in the parameter space the subset

L ¼ E; Cð Þ 2 Rþ
0

� �2
=C <

E 1 � Eð Þ
3E þ 1


 �

(a) If E; Cð Þ 2L, then there are three positive values for the abscissa.
(b) If E; Cð Þ is over the curve, this is, if D =�3EC � C � E2 + E = 0 or

C ¼ Eð1�EÞ
1þ3E . Thus, there are two positive values for the abscissa,

one of them of multiplicity two.
(c) If E; Cð Þ 2 E; Cð Þ 2 Rþ

0

� �2
=Eð1�EÞ

1þ3E < C < E
n o

, that is, E; Cð Þ is

between the curve and the straight line; therefore, a unique
value for the abscissa exists.

For this abscissa value, the bifurcation diagram is given in Fig. 2.
From the quotient between the cubic polynomial p(u) and the

binomial (u � E) we obtain a quadratic expression, and since the

remainder is zero, we get N ¼ C E�Cð Þ
E2 1�Eð Þ (see Proof of Lemma 5,

Appendix A). Then system (5), as a function of the new parameter
E, can be written as

Zl :

du
dt

¼ 1 � u � 1 � C E � Cð Þ
E2 1 � Eð Þ

v

  !
v

  !
u

dv
dt

¼ B u 1 � C E � Cð Þ
E2 1 � Eð Þ

v

  !
� C

  !
v

8>>>><
>>>>:

ð10Þ

with l ¼ E; C; Bð Þ 2 Rþ
0

� �3 and E < 1, and equilibrium points 0; 0ð Þ,
1; 0ð Þ and ue; veð Þ that satisfies the nullcline equations 1 � u �

1 � C E�Cð Þ
E2 1�Eð Þv

� �
v ¼ 0 and v ¼ u�C

uN ¼ 1�Eð Þ u�Cð ÞE2
uC E�Cð Þ .

The Jacobian matrix of system (10) is

DZlðu; vÞ ¼
1 � 2u � v þ C E � Cð Þ

E2 1 � Eð Þ
v2

2C E � Cð Þ
E2 1 � Eð Þ

v � 1

  !
u

B 1 � C E � Cð Þ
E2 1 � Eð Þ

v

  !
v B u � C � 2C E � Cð Þ

E2 1 � Eð Þ
uv

  !
0
BBBB@

1
CCCCA:
Rescaling the time by T ¼ t
E2 1�Eð Þ, system (10) can be rewritten as

~Zl :

du
dT

¼ 1 � uð ÞE2 1 � Eð Þ � ðE2 1 � Eð Þ � C E � Cð ÞvÞv
� �

u

dv
dT

¼ B uðE2 1 � Eð Þ � C E � Cð ÞvÞ � C
� �

v;

8><
>:

ð11Þ
for which we show some numerical examples in Appendix B.

Theorem 6. Nature of the unique positive equilibriumAssuming
D =�3EC � C � E2 + E < 0, that is, E 1�E

3Eþ1 < C < E, then the unique
positive equilibrium is globally asymptotically stable (Fig. A.1 ).

Theorem 7. Two positive equilibrium pointsFor D =�3EC � C �
E2 + E = 0, i.e., C ¼ 1�Eð ÞE

3Eþ1 , there exist two positive equilibrium points
(Fig. A.2 ). Then:

(a) The point (E, 3E + 1) is an attractor
(b) The point 1�E

2 ; ðEþ1Þð3Eþ1Þ
4E

� �
is a non hyperbolic saddle-node

(Arrowsmith and Place, 1992).
(c) In particular if E ¼ 1

3, the three equilibrium points collapse and
1
3; 2
� �

is a non hyperbolic attracting point (Fig. A.3 ).

In the following, we assume that D =�3EC � C � E2 + E > 0, or

C < 1�Eð ÞE
3Eþ1 , thus, three positive equilibrium points exist in the phase

plane.

Theorem 8. Relative position of the equilibrium pointsIn the
abscissa the three equilibrium points lie in the interval]C, 1[.
Therefore, the equation p(u) = 0 has three positive real roots u1, u2
and u3. Moreover,

(a) C < u2< u3<1
(b) We have u1< u2< u3, or u2< u1< u3, or u2< u3< u1.

We define the following subregions within the parameter
space:

L1 ¼ ðE; CÞ 2 L=E
1 � 2E
2 � 3E

< C < E
1 � E
3E þ 1

and E <
1
3


 �

L2 ¼ ðE; CÞ 2 L=E
1 � 2E
2 � 3E

< C < E
1 � E
3E þ 1

and E >
1
3


 �

where L ¼ ðE; CÞ 2 Rþ
0

� �2
= 0 < C < E 1�E

3Eþ1

n o
Then, for the equilibria at the interior of the first quadrant, we

have

(A) u1< u2< u3, if (E, C) 2 L1.
(B) u2< u1< u3, if ðE; CÞ 2 L � L1 [ L2

� �
(C) u2< u3< u1, if (E, C) 2 L2.

In Fig. 2 we display these conditions.
Since the three equilibrium points lie at the nullclines 1 � u �

ð1 � NvÞv ¼ 0 and u(1 � Nv) � C = 0, then the Jacobian matrix can be
written as

D~Zlðu; vÞ ¼ �u ð2Nv � 1Þu
Bð1 � uÞ �BNuv

� 	

From the predator nullcline we have that v ¼ u�C
uN . Then, for any

of the equilibrium point at the interior of the first quadrant we
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have:

D~Zlðu; vÞ ¼ �u u � 2C
Bð1 � uÞ �Bðu � CÞ

� 	
;

Therefore,

detD~Zlðu; vÞ ¼ Bð2u2 � ð3C þ 1Þu þ 2CÞ;
and

trD~Zlðu; vÞ ¼ �u � Bðu � CÞ < 0:

Then, the nature of these equilibrium points depends only on the
determinant of its Jacobian matrix.

Theorem 9. Nature of the equilibrium point E; 1�Eð ÞE
C

� �

(a) If r=2E2� 3EC + 2C � E > 0, or, C < E 2E�1
3E�2, the point E; 1�Eð ÞE

C

� �
is a

local attractor and the order u1< u2< u3 or u2< u3< u1 holds.
(b) If r=2E2� 3EC + 2C � E < 0, the point E; 1�Eð ÞE

C

� �
is a saddle point

and the order u2< u1< u3 holds (Fig. A.4 ).

Theorem 10. Nature of equilibrium points ðu2; v2Þ and ðu3; v3Þ.

(a) If r=2E2� 3EC + 2C � E > 0, the order u1< u2< u3 or u2< u3< u1
holds.
� If the order is u1< u2< u3, the point ðu2; v2Þ is a saddle point
and ðu3; v3Þ is a local attractor.

� If the order is u2< u3< u1, the point ðu3; v3Þ is a saddle point and
ðu2; v2Þ is a local attractor.

(b) If r=2E2� 3EC + 2C � E < 0, both points ðu2; v2Þ and ðu3; v3Þ are
local attractors.

4. Discussion

The development of ecological theory has been catalyzed by the
use of mathematical models of living systems. In studying
ecological models, it is often preferable to adopt a mixed strategy
of mathematical analysis of simple theoretical models and
numerical analysis of more realistic and complex models. Realistic
models, often composed of many state variables, nonlinear
functional relationships and a large number of parameters, are
virtually impossible to study by analytical methods and thus we
are forced to use numerical approximations via computer
simulations. Although the numerical approach strategy gives
valuable insights on the functioning of ecological systems, major
drawbacks arise since (a) nonlinearity often generates a high
sensitivity of solutions to variation in parameter values, and (b)
most often, we lack information about true parameter values. This
imply that the obtained conclusions might be highly biased by the
particular choice we made about the set of parameter values and
the exact form of functional relationships. Analytical approaches
are exact and general, but limited to very simple models. However,
the formal analysis of even the most simple model provides the
skeleton of theories and a main source of specific hypotheses to be
tested by numerical simulations.

In this study we present an analytical examination of a
predator-prey model incorporating inducible defenses. Our goal
was to contribute to the development of a comprehensive theory of
food web dynamics that considers prey reactions to predator risk.
Mathematically, our study system belongs to the Kolmogorov type
models (Freedman, 1980), in which the coordinate axes are
invariant sets. Also, the model obeys mass-action (Berryman et al.,
1995) and biomass conversion (Ramos-Jiliberto, 2005) principles.
We verified that for any set of parameter values the equilibrium
points (0, 0) and (K, 0) of our model are saddle points, which
implies that both populations always coexist. Moreover, there is a
wide range of parameter values for which the system has a unique
positive equilibrium point (see Lemma 5) being this globally
asymptotically stable (see Theorem 6). Other, more complex
system behaviors are discussed below.

4.1. Alternative stable states

The dynamics of system 2ð Þ are quite different from other
simple models that incorporate prey defenses. In particular, our
study system could simultaneously present, under certain circum-
stances determined by parameter values, two feasible stable points
at which (positive) population trajectories could end. Our analysis
revealed the existence of a region within the parameter space for
which three positive equilibrium points coexist (see Lemma 5). In
this case (see Theorems 9 and 10), two equilibrium points are
attractors (locally asymptotically stable points) and a third one is a
saddle point, which is a type of unstable equilibrium point that
exhibits a stable (attracting) and an unstable (repelling) manifold
in the state-variable space. A curve appeared in the phase plane,
called separatrix, determined by the stable manifold of the saddle
point, that splits the state-variable space into two basins of
attraction. Each basin defines a subset of population trajectories
which tend to reach a given attractor.

When there is a single feasible equilibrium point in the system,
the properties of the studied model coincide with those obtained
in Almanza-Vásquez et al. (2012), where the fraction of the prey
population using refuges is described by a prey-dependent
saturated function.

The existence of two attracting equilibrium points is an
interesting property of this analyzed model, since a simple and
widely observed mode of prey defenses was shown able to
generate alternative stable states (Scheffer et al., 1993; Folke et al.,
2004; Knowlton, 2004). Given that multiple basins of attraction
exist in some systems such as the one studied here, strong enough
displacements from a stable state could lead the state variables to
reach a different stable state. This phenomenon is known as phase
shift and constitutes an explanation to abrupt shifts in ecological
conditions, such as the change form clear to turbid waters in
shallow lakes, changes in vegetation cover or pest outbreaks (see
Schröder et al., 2005 for a review of empirical evidence).

4.2. Refuges, prey defenses and system stability

It has become common among ecologists to affirm that the use
of refuges by a fraction of the prey population exerts a stabilizing
effect. This is more commonly found when predator–prey
interactions are represented by deterministic continuous time
models (Sih, 1987). This assertion has been verified in a Lotka–
Volterra model described by a nonlinear ordinary differential
system, by considering the abundance of hidden prey xr is a fixed
quantity xr = d (González-Olivares and Ramos-Jiliberto, 2012;
Harrison, 1979; Ma and Wang, 2015; Maynard Smith, 1974; Taylor,
1984) or, in our conceptual frame (Table 1) when the average prey
vulnerability to predators decreases with prey density. This result
can also be extended when the prey population exhibits a self-
regulated growth, i.e. the prey growth rate described by the logistic
equation. In such cases there is a single positive equilibrium point,
which is globally asymptotically stable (Collings,1995; lez-Olivares
and Ramos-Jiliberto, 2003, 2004; González-Olivares and Ramos-
Jiliberto, 2004), property that can be proven by constructing a
Lyapunov function (Goh, 1980). An important consequence of this
kind of defensive responses is that the equilibrium population size
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of prey is increased while the predator population size is decreased
(González-Olivares and Ramos-Jiliberto, 2004, 2012; Ma et al.,
2009a, 2009b). Another common way to study the effects of
defensive responses on predator–prey dynamics has been consid-
ering that a variable amount of prey, directly proportional to prey
population size, protects from predation via exploiting physical
refuges (Yang and Zhang, 2016). This is equivalent to consider that
prey exhibit some constant level of immunity to predation, R = d,
which describes what is known as constitutive defenses. By
incorporating this function on any Gause-type model (Freedman,
1980), the new system has the same properties of the original. This
is proven in González-Olivares and Ramos-Jiliberto, 2003 (see
Theorem 1), where it is shown that the only change obtained in the
dynamics of the system is a reduction of the carrying capacity K,
without altering the stability properties of equilibria. The general
conclusions from these studies is that incorporating prey defenses
in form of refuges that protect a constant number of prey, or
equivalently prey immunity that decreases with prey density, leads
to a stronger stabilizing effect on population dynamics, compared
to refuges protecting a constant proportion of prey, or equivalently
a constant average prey vulnerability (Srinivasu and Gayitri, 2005).

In Collings, 1995; lez-Olivares and Ramos-Jiliberto (2004)
Collings, 1995, it is shown that the interpretation of the stabilizing
role of prey defenses can not be assumed to be general since for
more complex models the use of refuges can exert a locally
destabilizing effect, due to the emergence of stable limit cycles that
define an oscillatory behavior of populations (Srinivasu and
Gayitri, 2005). Other predator–prey models that incorporate
antipredator defenses have been analytically studied in McNair
(1986). On the other hand, Haque et al. (2014) present a model
assuming that average prey immunity is directly related to
predator abundance, but also inversely related to prey abundance.
A similar model was partially studied in González-Olivares and
Ramos-Jiliberto (2004). Haque et al. (2014) showed the existence
of conditions in terms of parameter values for which there are
three interior equilibria, being two of them locally asymptotically
stable points and the third one a saddle point, similar to what we
found in this study for a markedly different model of prey defense.
In addition, McNair (1986) presented a study of systems with more
complex interactions incorporating prey defenses, which were
analyzed in Hausrath (1994), thus proving the existence of a
unique stable limit cycle (Chicone, 2006).

The model we studied here exhibits a novel behavior, as
compared to defense modes analyzed in the bulk of previous
studies. Remarkably, incorporating inducible defenses in its most
simple way into the Lotka–Volterra model with logistic prey
growth, drives an asymptotic behavior that is more diverse than
previously thought. Particularly, depending on parameter values,
the system (3) and its equivalent form (5) will exhibit either one or
two stable states. In the case of exhibiting two alternative stable
states, the population trajectories of both prey and predators
approach either a low or a high final state, in dependence on initial
conditions and stochastic forces that could shift the trajectories to
another basin of attraction. Finally, it can be demonstrated (see
Proof of Theorem 6 in Appendix A) that no oscillatory attractors
exist in the studied system, at least for biologically feasible (i.e.
positive) values of the state variables.

4.3. Final remarks

Most known species have developed a wide array of strategies
to face predation in order to maximize fitness. Here we present a
simple framework that classifies antipredator strategies into six
major forms, according to the driving variables that determine
immunity of prey to predators (Table 1). Nevertheless, the vast
majority of theoretical studies have only considered two of these
major types of defenses: constant average immunity (Chen et al.,
2012; Devi, 2012, 2013; Ma et al., 2009a, 2009b, 2013; Sarwardi
et al., 2012; Wang and Wang, 2012; Wang and Ma, 2014) and
average immunity decreasing with prey density (Chen et al., 2009;
Devi, 2013; Ji and Wu, 2010; Li et al., 2017; Tao et al., 2011; Tang
et al., 2014; Yang and Zhang, 2016). A third case, the one of risk-
induced defenses (Table 1) has been studied in a much lesser
extent. In this study we analyze the case where average prey
immunity to predators is directly related to predator density. This
is the most simple way to model inducible defenses, an
antipredator strategy that is known to be widespread on earth
(Tollrian and Harvell, 1999). Inducible defenses are a form of
behavioral flexibility or phenotypic plasticity, which provides the
advantage of activating the defense mechanisms (e.g. refuge use,
spine development, etc.) only when predation risk is perceived by
prey. Nevertheless, the ability to activate and deactivate defenses
in response to predation risk is costly, and therefore this strategy is
evolutionary favored only in variable or unpredictable environ-
ments (Tollrian and Harvell, 1999). Although inducible defenses
has been studied numerically in more sophisticated models
(Ramos-Jiliberto, 2003; Vos et al., 2004; Ramos-Jiliberto et al.,
2007, 2008a, 2008b), fully analytical studies are scarce. Such
mathematical work is necessary for strengthen the ecological
theory of food web interactions. Next steps in this vein should
include the mathematical analysis of the two types of defenses
that, to our knowledge, have not been evaluated in the context of
predator-prey models: those in which average prey immunity
increases with its own population density (see Table 1). Other
challenges for future research include improving the biological
realism of the studied models by incorporating fitness costs of
defenses for the prey, interactions between predation risk and
other sources of stress (Heine-Fuster et al., 2017) and further
progress in multispecies contexts (Ramos-Jiliberto and Garay-
Narvaez, 2007; Garay-Narvaez and Ramos-Jiliberto, 2009).
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Appendix A.

Here, the main properties of the study model are demonstrated.

Proof of Proposition 1. Using the change of variables and time
rescaling given by the function

’ : R2
þ � R ! R2

þ � R;

such that

’ u; v; tð Þ ¼ K u;
r
q
v; rt

� 	
¼ x; y; tð Þ;

then, we obtain the new system

Um :

du
dt

¼ r 1 � uð Þ � 1 � d
r
q
v

� 	
v

� 	
u

dv
dt

¼ p Ku 1 � d
r
q
v

� 	
� c

� 	
v:

8>><
>>:

Zm :

du
dt

¼ 1 � u � ð1 � d
r
q
vÞv

� 	
u

dv
dt

¼ pK
r

u 1 � d
r
q
v

� 	
� c
pK

� 	
v:

8>><
>>:
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Proof of Lemma 3. (a) If u = 1, then du
dt ¼ �ð1 � NvÞv <0, for

1 � Nv > 0,for any sign of dv
dt.

If v ¼ 1
N, then dv

dt < 0, and the trajectories cross to interior G.
Moreover, the axes u = 0 and v ¼ 0, are invariant sets. Then, the

set G is an invariant region.
(b) We define the new function

w tð Þ ¼ u tð Þ þ 1
S
v tð Þ:

The time derivative of w along a solution of system (5) is

dw
dt

¼ du
dt

þ 1
S
dv
dt

¼ ð1 � uÞ u � Mð Þ � Qvð Þu2 þ u � vð Þv:

Now,

dw
dt

þ aw ¼ ð1 � uÞ u � Mð Þ � Qvð Þu2 þ u � vð Þv þ a u þ 1
S
v

� 	
¼ H

with a being a parameter to be determined.
The right hand side of the above relation can be written as:

H ¼ va � Bu2 þ Bu þ Bua � BCv
B

Let a = BC; thus,

H ¼ BC þ 1ð Þu � u2 ¼ � u � BC þ 1ð Þ
2

� 	2

þ BC þ 1ð Þ2
4

:

so,

dw
dt

þ BCw � BC þ 1ð Þ2
4

:

Let d ¼ BCþ1ð Þ2
4 . Thus, there exists d > 0, such that

0 � dw
dt

þ BCw � d;

being a first order linear inequality.
Applying the theorem on differential inequality (Birkhoff and

Rota, 1982), we obtain

w u; vð Þ � d
BC

þ w u 0ð Þ; v 0ð Þð Þ � d
BC

� 	
exp �BCtð Þ:

Clearly, when t ! 1, then 0 � w u; vð Þ � d
BC, and the solutions of

system 5ð Þ are bounded.
Moreover, there exists a set

B ¼ u; vð Þ 2 V=w u; vð Þ � d
BC

þ e; 8e > 0

 �

where B is the region in which all the solutions of system 5ð Þ that

start in V are confined. &

We note that the region G is compact.

Proof of Lemma 4. (a) Evaluating the Jacobian matrix at (0, 0)
we have that

DZhð0; 0Þ ¼ 1 0
0 �BC

� 	

DZhð1; 0Þ ¼ �1 �1
0 Bð1 � CÞ

� 	

with detDZh(1, 0) =� B(1 � C) < 0 and (1, 0) being a saddle point. &
Proof of Lemma 5. Using the quotient between p uð Þ and the
binomial u � E, i.e.,

Nu3 � Nu2 þ Cu � C2

u � E
¼ Nu2 þ �N þ ENð Þu þ C � EN þ E2N

þ NE3 � NE2 þ CE � C2

u � E

we obtain

NE3 � NE2 þ CE � C2 ¼ 0;

that is, N ¼ C E�C
E2 1�Eð Þ, with C < E < 1.

Nu2 � N 1 � Eð Þu þ C � EN þ E2N ¼ 0:

E � Cð Þu2 � 1 � Eð Þ E � Cð Þu þ EC 1 � Eð Þ ¼ 0;

whose solutions are

u2 ¼ 1
2 E � Cð Þ 1 � Eð Þ E � Cð Þ �

ffiffiffiffiffiffi
W

p� �
;

u3 ¼ 1
2 E � Cð Þ 1 � Eð Þ E � Cð Þ þ

ffiffiffiffiffiffi
W

p� �
;

with W ¼ 1 � Eð Þ E � Cð Þ �3EC � C � E2 þ E
� �

.

D ¼ �3EC � C � E2 þ E;

that is, C ¼ E 1�Eð Þ
3Eþ1 is a bifurcation curve in the parameter space. &

Proof of Theorem 6. Let u = E be; then, we have that v ¼ 1�Eð ÞE
C

and the Jacobian matrix of 5ð Þ is

D~Zl E;
1 � Eð ÞE

C

� 	
¼ �E �2C þ E

B 1 � Eð Þ �B E � Cð Þ
� 	

;

and

detD~Zl E;
1 � Eð ÞE

C

� 	
¼ B 2E2 � 3EC þ 2C � E

� �
:

r ¼ 2E2 � 3E E
1 � E
3E þ 1

� 	
þ 2E

1 � E
3E þ 1

� E ¼ E
3E � 1ð Þ2
3E þ 1

> 0

trD~Zl E;
1 � Eð ÞE

C

� 	
¼ �E � B E � Cð Þ < 0

and the point E; 1�Eð ÞE
C

� �
is an attractor.

Zh :

du
dt

¼
�
ð1 � uÞ � ð1 � NvÞv

�
u

dv
dt

¼ B
�
uð1 � NvÞ � C

�
v

¼
¼

Pðu; vÞ
Gðu; vÞ ;

8><
>:

@ PGð Þ
@u

þ @ QGð Þ
@u

¼ �1
v
� BN < 0:

Proof of Theorem 7. (a) The Jacobian matrix is

D~ZlðE; 3E þ 1Þ ¼
�E

ð5E � 1ÞE
3E þ 1

Bð1 � EÞ � 4E2B
3E þ 1

0
BB@

1
CCA;



Fig. A.2. For B = 1, C = 0, 1 and E = 0, 2, there exists two interior equilibrium points,
one of them being a non-hyperbolic saddle point and the other an attractor (stable)
point.

Fig. A.1. For B = 1, C = 0.2 and E = 0.5, the unique interior equilibrium point E; ð1�EÞE
C

� �
is globally asymptotically stable.
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obtaining that

detD~Zl E; 3E þ 1ð Þ ¼ EB 3E � 1ð Þ2
3E þ 1

> 0;

and

trðE; 3E þ 1Þ ¼ �E � 4B
E2

3E þ 1
< 0

for which the point (E, 3E + 1) is an attractor.

D~Zl
1 � E
2

;
E þ 1ð Þ 3E þ 1ð Þ

4E

� 	
¼

�1
2
ð1 � EÞ 1

2
1 � Eð Þ2
3E þ 1

1
2
B 1 þ Eð Þ �1

2
B
1 � E2

3E þ 1

0
BB@

1
CCA;

obtaining that

detD~Zl
1 � E
2

;
E þ 1ð Þ 3E þ 1ð Þ

4E

� 	
¼ 0;

and

trD~Zl
1 � E
2

;
E þ 1ð Þ 3E þ 1ð Þ

4E

� 	
¼ �1

2
1 � E þ B

1 � E2

3E þ 1

  !
< 0:

Proof of Theorem 8. (a1) Clearly u2< u3.(a2) Considering the
difference u2� C we have

u2 � C ¼ 1
2 E � Cð Þ 1 � E � 2Cð Þ E � Cð Þ �

ffiffiffiffiffiffi
W

p� �

which is dependent on the numerator

F ¼ 1 � E � 2Cð Þ E � Cð Þ �
ffiffiffiffiffiffi
W

p

1 � E � 2Cð Þ E � Cð Þ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Eð Þ E � Cð Þ �3EC � C � E2 þ E

� �r

which is fulfilled if 1 � E � 2C > 0 or C < 1�E
2 .

1 � E � 2Cð Þ E � Cð Þð Þ2 � 1 � Eð Þ E � Cð Þ �3EC � C � E2 þ E
� �

> 0

or,

4C2 1 � Cð Þ E � Cð Þ > 0;

which is always true for C < E < 1.

D ¼ �3EC � C � E2 þ E ¼ �3E
1 � E
2

� 	
� 1 � E

2

� 	
� E2 þ E

¼ �1
2

1 � Eð Þ E þ 1ð Þ < 0;

therefore, u2 is not a real number; then, u2> C.

u3 � 1 ¼ 1
2 E � Cð Þ

ffiffiffiffiffiffi
W

p
� 1 þ Eð Þ E � Cð Þ

� �

G ¼
ffiffiffiffiffiffi
W

p
� 1 þ Eð Þ E � Cð Þ < 0

or,

1 � Eð Þ �3EC � C � E2 þ E
� �

� 1 þ Eð Þ2 E � Cð Þ < 0

or,

�4E2 1 � Cð Þ < 0

which is always true for C < E < 1

�4E2 1 � Cð Þ > 0
is obtained; then, u3< 1

u1 � u3 ¼ 1
2 E � Cð Þ ð3E � 1Þ E � Cð Þ �

ffiffiffiffiffiffi
W

p� �
:

r ¼ 2E2 � 3EC þ 2C � E;

a new bifurcation curve. Clearly, if r=0, we have C ¼ E 2E�1ð Þ
3E�2 .

u1 � u2 ¼ 1
2 E � Cð Þ 3E � 1ð Þ E � Cð Þ þ

ffiffiffiffiffiffi
W

p� �
;

we also obtain that the relative position of equilibrium points
depend on the quantity r. &

Proof of Theorem 9. From Theorem 6 we have

detD~Zl E;
1 � Eð ÞE

C

� 	
¼ B 2E2 � 3EC þ 2C � E

� �

then, the behavior of this equilibrium point is dependent on the
quantity

r ¼ 2E2 � 3EC þ 2C � E:

&

Proof of Theorem 10. Considering Theorem 8 about the nature

of equilibrium point E; 1�Eð ÞE
C

� �
and because trD~Zl u; vð Þ ¼

�u � B u � Cð Þ < 0. &

Appendix B.



Fig. A.3. For B = 1, the particular case in which the three equilibrium points collapse
into the non-hyperbolic attractor 1

3; 2
� �

.

Fig. A.4. Case u2< u1< u3. Existence of three interior equilibrium points, one of
them being a hyperbolic saddle point whose stable manifold splits the behavior of
the trajectories. The two other points are a focus attractor and a node attractor.
Parameter values are B = 1, C = 0.05 and E = 0.2.
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