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Phase fluctuations in a laser with atomic memory effects
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We calculate phase fiuctuations of the phase operator defined by Pegg and Barnett [Europhys.
Lett. 6, 483 (1988); J. Mod. Opt. 36, 7 (1989); Phys. Rev. A 39, 1665 (1989)) in a laser with atomic
memory eAects. First, we compute the phase fluctuations of a laser, using the Scully-Lamb theory.
In a single curve of &(AP)') versus time, we obtain the expected behavior: natnely, for Dt —1 the
Schawlow-Townes linewidth and for t &&D ' the phase fluctuations corresponding to a random
phase. As we include the atomic memory eA'ects, we obtain a noise reduction for times of the order
of the atomic decay time.

I. INTRODUCTION

In quantum optics the phase fluctuations of elec-
tromagnetic fields play an essential role, since in physical
systems such as lasers they are associated with a loss of
coherence of the field. Up to now, semiclassical and phe-
nomenological approaches have been employed to deter-
mine phase Auctuations. This fact is closely related to
the absence of a we11-behaved quantum phase operator.

In a series of recent papers, Pegg and Barnett'
defined a phase operator, Ps, constructed with the use of
sharply defined phase states. Their definition is

II. FLUCTUATION OF Qe
IN THE SCULLY-LAMB LASER THEORY

In order to compute of the fluctuations of a physical
observable, we need to know the density operator. In the
Scully-Lamb ' laser theory, the density matrix is known,
when the diagonal elements reach their stationary values.
We consider, as an initial condition, that the laser is in a
coherent state (in the limit s ~ ao ):

(2.1)

m=0

and the phase states are defined as

~0 &= pe' -" n&,s+1„ (1.2)

where r and go are, respectively, the amplitude and phase
of the coherent state. Thus the density matrix at time t is
given by

( )= — ' ") ( ) '~o'" ' —&&2DT( —t)'! ) &+n t Qtl

where
~
n ) are the occupation number states. The

~
0 )

form an orthonormal basis of a (s +1)-dimensional Hil-
bert space. Their eigenvalues are

0 =OO+ m, rn =0, 1, . . . , S,277

s+1 (1.3)

where Oo is arbitrary and defines a particular basis set.
After the calculation of the physical quantities, the s ~~
limit is taken.

In Sec. II we compute the Auctuations of the phase
operator, using the Scully-Lamb ' theory, as a function
of an adimensional time, for an extensive range of the pa-
rameters. Finally, in Sec. III we include the atomic
memory efFects, where one can use long-lived atoms as an
active medium. Recent results show that the atomic
memory efFects can lead to a reduction of spontaneous
emission noise for short measurement times. Also in
this section we find the density matrix and calculate the
phase Auctuations, and obtain indeed a reduction in the
phase noise for measurement times of the order of the
atomic lifetime.

(2.2)

=y0' &0. ~l ~0. &
—y0 & 0. ~l ~0 & ',

m

(2.3)

where we have used

y, ~0 . &=0,~0, & . (2.4)

We notice from Eq. (2.3) that &0 ~p~0 ) is the proba-
bility distribution of the eigenvalues 0 . It is straightfor-
ward to calculate &0 ~p~0 ) from Eq. (2.2) as

where D is the decay constant of the ofF-diagonal matrix
elements. In the classical limit, the decay constant is as-
sociated to the phase difFusion.

In order to determine the variance of Ps, we calculate
the averages by tracing over the phase states, so

&(~y, )'& =&y', &
—&y. &'
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(2.5)

djstribution:n define a 'lit densityuous
' ' ' E . (2.3), one can define auous limit in Eq.Ifweta ek the continuous

(gI)) s +1
(0~ ~0)P '(0)=

2—1/2Dt ( n —I)—cos[(go —0)(n-—l) ]ev'I!
21+2e
n=1 1 —0
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It is simple to prove that this probability is normalized
in the range [0O, 0O+2vr].

With Eq. (2.9) we can determine the variance of Po for
all times. In Fig. 1 we show P(0, $o) for r =10 . For Dt
small, there is a strong peak at the center of the interval.
As Dt increases, this peak is less and less pronounced,
and for Dt )) 1 the distribution is already Aat, with
P (0, go) 1—/27r.

The density matrix, Eq. (2.2), has two temporal limits.
For t =0, we have a coherent state, namely

P(0, (0)=P '(0)

(2.1 1)

The other limit is t ~ oo, p is diagonal in the
~
n ) repre-

sentation, which corresponds to a system with a random
phase and phase variance equal to ~ /3. A way of seeing
this is as follows:

P ( 0, go ) = lim
1

~ (m'a )

1= lim 2' v'~

—(go+2k~ —0)
+exp + +exp

k=0 a k=1
((Q —&+ 2~&) li2 2 ((Q —6) —2~) la

dx e dx e
(g(

—0) /a ( gQ
—0—2m. l) /a

—(jo—2k~ —0)

a

(2.12)

which is the result one should expect if one has a uniform distribution (random phase) over a 2~ interval.
We assume that at t =0 we had the laser in the coherent state. This of course assumes that, in the erst place, we are

well above threshold, so that we have Poissonian statistics. In the second place, t is the phase measurement time, so
that t very small implies that during this measurement we do not allow the phase to diffuse or even the atom to decay.
Now, go is the phase of the coherent state (initial) and 00~00+2m is the interval. Since all go have equal probability, on
the average, go will be in the center of the interval, that is go=~+0o. Alternatively, one would require physically that
((hfdf) ) is 00 independent, which implies a symmetrical distribution in the [00,00+2~] interval. This is only satisfied
if the above condition is verified. Using this and Eq. (2.12), after a straightforward calculation (Appendix A) we get, for
the phase fluctuations,

1
co

, +Dt +4~'g k'
4r k=1

m+2'—(k + 1)
a

—4(rra )' g k exp
k=1

—( ~+ 2vrk )——exp
a

—[ sr +2~( k +—1 ) ]
a

(2.13)

where 4(y) is the error function and a is given by (2.10).
In Fig. 2 we plot Eq. (2.13) in a logarithmic scale. We

see that in an extensive range of the adimensional param-
eter Dt, the fluctuations are linear with Dt. This depen-
dence corresponds to the Schawlow-Townes linewidth. '

Moreover, notice that when Dt ))1, Eq. (2.13) converges
rapidly to m. /3.

III. ATOMIC MEMORY IN A LASER

ering atomic memory effects, is given by '"

(3.1)

where I is the atomic decay constant. For some typical
lasers, the ratio I /D can take values between 10 and
1010

We will demonstrate that in order to include atomic
memory efFects, we must perform the following change:

The atomic memory effects are found when the mea-
surement times are of the order of the atomic decay time.
Experimentally, this can be achieved with atoms with
long lifetimes in the active medium. Recent results show
that these effects yield to a reduction of spontaneous
emission noise. The phase fluctuations of a laser, consid-

(3.2)

in Eq. (2.2).
In Appendix B, from Ref. 11, we have derived the mas-

ter equation for the field density operator, up to order g .
If we drop the index f in Eq. (B9), we have

p(t)= iggf (t, t )[C (ap —pa —)+B (a p —pa )]
J

—g dt' t, t e t' —t 2 aa p+paa —2a pa +D a ap+pa a —2apa +Lp,
J

(3.3)
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with

f (t, t, ) =B(t,t, )e (3.4)

Here, t is the injection time of the jth atom into the laser cavity. B(t) is the step function and Lp accounts for the
damping of the field through cavity losses. ' The coeflicients A, , B,, Ct, and D are given by Eqs. (B7) and (B8).

In order to find the time behavior of the oft'-diagonal elements of p, we take the N, N +p matrix elements of Eq. (3.3).
The result is

PNN+p= 'graf j ' + PN+l, N+p PNN+p l—
J

+ —iggf (t, ti )Bi(&N pN l N+ p +N +P + 1PN N+ p+ l )
J

g—j dt'gf(t, t, )B(t' t))/1, [(—2N+P+2)p —2&N(N+P)p, , ]0

g —f dt'gf(t, t, )B(t' t )D)[(2—N+P)p —2&( N+1)(N +P +I) p, , ]0

21'(2N+P)PNN+ p+1+(N + 1)(N+P + 1)PN+ l N+ p+ l ~

where y is the cavity decay constant and R is the pump rate.
%'e now expand A, D and B,c to zero and first order in g, respectively. Moreover, we will perform the following

changes: e~&N and e*~&N+ 1. This is equivalent to taking e as a classical electromagnetic field. The result is

2

PN —l, N+p N(N+ + 1)PNN+p+1]

2

+2 ( I e ) N(N +P)pN l N+p+l+ &(N + l)(N +P + 1)pN+l N+p+l

2

(1—e ')(2N +P +2)+——(2N +P) pp2 2 R X,Ã+P

To obtain Eq. (3.6) the g has been replaced by R jdt , assuming a regu. lar injection. '

In Appendix C we show that the solution of Eq. (3.6) is given by

D(t)
PNN+p(t)=PNN+p(t =0)exp

(3.6)

(3.7)

where

D (t) =p Dt+ (e "'—1)
1

I /D
(3.8)

Thus, we proved Eq. (3.2).
Using Eq. (2.13) with the above-mentioned substitution, we readily get

I2 oo

((~y)') = ' +4~' y k' C
k=1

vr+2vr(k + I )—
( r2)I/2

—~+2~k
( i2)l/2

—4(era' )' g k exp
k=1

—
( —~+2~k)

i2

—[ sr+2~(k + 1)]-
i2 (3.9)

with

a —2 +Dt + (
' —1)-42 ' I/D (3.10)

In Fig 3we plo. t Eq. (3.9) for I /D between 10 and
10 . In this figure we notice a noise reduction for
I; -I '. This reduction is more noticeable when I /D is
small. This can be achieved in a micromaser rather than
a laser. '
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m2/3 The present model is based on the Scully-Lamb laser
theory and we assumed a large number of photons, with
steady-state Poissonian photon statistics. The laser near
the threshold or with a small number of photons requires
a different model, and it is planned to be the subject of a
future publication.

—5-

—5 —4 —3 —2 —1 0 1

lag' O {Dt)
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FIG. 3. Phase Auctuations vs time (Dt) with atomic memory
effects. The various curves correspond to the following:r/D=;. . . ., r/D=10'; —.—.—., r/D=10'; ———
I /D = 10', ——,F'/D = 10 . We notice a reduction of noise in
the t = I ' region. The stronger noise reduction corresponds to
the smaller (I /D). For all the curves we took r = 10 .

IV. SUMMARY

To summarize, we found, using the Pegg and Barnett
formalism, the full-time behavior of the phase Auctua-
tions in a laser. For very short times {ofthe order of the
atomic decay times) we found a phase noise quieting.

l

APPENDIX A

Here we determine the phase Auctuations in the laser
with the Scully-Lamb theory. Using Eqs. (2.2) and (2.6)
we get

(p, ) =
( 2)1/2

Oo+ 2n
X g J d88 exp

k= —~

—(gp+ 2vrk —8)
a2

I

(A 1)

where a is given by 2.10. Performing a change of vari-
ables, we find

(Ps)=, g I d8(8+gp 2~k)e-
(zra )' k= „—+2 k

—m+2m(k — ) g2g 2 —m —2m'(k —j. ) g2g 2

(~g ) „, . ~+2~k- —m. —2~k
(A2)

To obtain Eq. (A2), we used the condition gp 8p+vr as discussed in Sec. II. From parity considerations, the second
term in Eq. (A2) vanishes. Thus, we obtain

((I),) =g, .

We now calculate the fiuctuations of Ps.

&(~y, )') =&(y,—&y, ))'&

2, g I d8(8 —2rrk) exp
(era )'

k
— +2 k

—02

a

(A3)

(A4)

It is easily to show that

, +Dt +4~ yk' e
4r k=1

—4(~a )' g k exp
k=1

—( vr+ 2vrk)—
a

—exp
—[—m. +2m(k + I )]

a
(A5)

where 4(x) is the error function.

APPENDIX B

Here, for completeness, we derive a master equation
for the field density operator pf(t) in a laser with atomic
memory effects.

The model consists of three level atoms that are inject-
ed in a laser cavity, in the upper excited state. The upper

(B1)

with

I

atomic levels interact with a mode of the radiation, and
these levels decay to the ground state with a rate I . The
Hamiltonian is given by"

H=&~~'~+&(E. I~ &&~l+Eblb &&bl+Elc&&cl),
J

+Ag+e(t —t, ) V, ,
J
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V =a OJ+oJ a .J (82} pI(t)=e ' pI(t) . (85)

Here, crJ is the atomic polarization, while a and a are,
respectively, the creation and annihilation operators.
B(t) is the step function and g specifies the coupling con-
stant between atoms and field.

The evolution of the physical system p is given by
Liouville equation. It is convenient to change this equa-
tion from the Schrodinger to the interaction picture. '

Tracing over the atoms, we get

Equation (84) is the same as for a single, nondecaying
atom. This problem is known as the Jayners-Cummings
model. ' Thus, the initial value of the density operator
p in a matrix notation:

A. B
Pf(0)= C D (86)

J J

with

p (t)= —i+6(t t, )t—r„,[V, ,p, (t)]+L.p
J

(83) A~
=cos (gti +ee }

BJ = sin(2gt, +ee*),lE

2&ee*

(87a)

(87b)

where the term Lp accounts for the damping of the
field. ' For simplicity, we have assumed resonance be-
tween the upper atomic levels and the mode of the field,
i e w =(e eb)lfi

To derive an equation motion for p~(t), we will assume
that the evolution of an atom is independent of all other
atoms. In addition, we neglect the inhuence of the cavity
damping in the interaction of the field with a single atom.
Thus, an effective equation for p~ is given by

and

C =B*,

D =sin (gt +ee* for t (0,

A =1,
B =C =D =0 for t ~0.

(87c)

(87d)

(Bga)

(Bgb)

p, (t) =p, (0) ig I—dt '6(t —t, )[ V, ,p, (t')], (84)
Here, e is a classical electromagnetic field and t is the in-

jection time of the jth atom in the cavity.
Now, to obtain the field density operator, we substitute

Eqs. (84)—(88) into (83). The result is

p (t)= iggf (t, t )[C,(—ap pa)+Bt(a p ——p a )]
J

g I—dt'gf (t, t )B(t' —t )[2 (aa p +p aalu —2a p a)+D (asap~a a —2ap~a )]+LpI .
J

(89)

Equation (89) is the master equation for the field densi-
ty operator p, when we include atomic memory effects in
the laser.

APPENDIX C

where R is atomic pump rate and y is the cavity decay
constant. Furthermore, we define

1 NA:— Xo, 5=, n] =

In this Appendix, we determine the decay law of the
off-diagonal matrix elements when we include atomic
memory effects in a laser, by using the 6-expansion
method. '

We define a large parameter 2Vo as
and

(N+p)
fl2 = ptv tv+ (t)—:h (n, , n2 ),r

&o

w:—Rt .
R

(C I) If we use definitions (Cl) and (C2) in Eq. (3.6) we find

g2
h ( nn, )2=re '[(n, +)5h (n, +,Sion)

—[(n, +5)n2]'~ h(n„n2 — )I

2

+ e "'[nih (n, —5, n2) —[n&( z+n5)]' h (ni, n2+5)j
2

+0 (l —e "')(n, n2)' h(n„5, nz —5)+[(n, +5)(n~+5)]' h(n, +5,nz+5)

g2
(1—e "')[2n2+(2 —p)5]+ —,'(2n2 —p5) h (ni, n2) . (C3)
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Expanding Eq. (C3) in 5, we easily obtain a Fokker-Planck equation for h (n „nz, r):

h(n„nz, r)= h(n„nz, r)+5 a, + az h(n„nz, r)+ zP, +2 Pz+ zP3 h(n, , nz, r),
2 Bn c)n 2 Qn Qn Q Qn

with

(C4)

—rte "'[2n
&
+5—[(n

&
+5)(nz+5)]' —(n &nz

)'

+8 (1—e "')[(n&+5)(n z+5)]'~ +(n&nz)'r + (e ' —1)[2nz+(2 —p)5] —
—,'(2nz —p5) .

The coefficients a,. , p can be obtained from Eq. (C3).
However, we are interested in p. In a straightforward
calculation, we get

where p, (n, ) is a stationary function that depends on the
photon statistics.

The exponent in (C9) can be written, now in real time,

2/2
p= [1+8 (1—2e ')],

4n)

where we have approximated

1P6
(n, nz)'r =n, + —,'p5 ——

n]

(C6)

(C7)

D(t)= f pdr=p Dt+ —(e "'—1)
D —rt

0 I

with

(C10)

[(n, +5)(nz+5)]'~ =n, + 1+—5——
n2

(C8) 2g R
I 2 (Cl 1)

Using the usual ansatz of Scully et al. , one can write

h (n „nz, r) =p, (n, )exp —
—,
' @dr

Here, X, is the average photon number, D is the usual
Schawlow-Townes linewidth. Moreover, to obtain (C10),
we have used 2g I -y.
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