
Nondiagonal charged lepton Yukawa matrix: Effects on neutrino mixing in supersymmetry

Giovanna Cottin, Marco Aurelio Dı́az, and Benjamin Koch
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It is known that the neutrino UPMNS matrix contains the diagonalization of the mass matrix of the

charged leptons. In this article we study the influence of a nondiagonal mass matrix for charged leptons on

the neutrino phenomenology in two specific R-parity violating supersymmetric models. Our analytical

and numerical results for those models reveal important corrections due to a nontrivial charged lepton

sector. Especially sensitive are the solar and reactor mixing angles.
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I. INTRODUCTION

Supersymmetric models which incorporate small viola-
tions of R parity [1] are of special interest in the context of
neutrino phenomenology [2]. It has been shown that they
can give rise to neutrino masses and mixing angles that are
compatible with experimental data. In specific models this
is achieved by either taking into account low scale gravity
effects, or by including loop effects in the neutrino propa-
gator [3–7].

While neutrino masses and mixings are considered
‘‘new physics’’ beyond the standard model (SM), the
masses, mixing angles and phase of the other nine fermions
are described, within the SM, by using 13 independent
parameters. It has however been pointed out that in models
motivated by supersymmetric gauge unification, the num-
ber of free parameters can be reduced to eight [8,9]. In
those grand unified theories (GUT), also the lepton mass
matrix is nondiagonal and therefore has to be diagonalized
in order to reproduce the observed charged lepton masses
me, m�, m�.

Given the success of those approaches, it is natural to
seek the combination of the supersymmetric description
for the neutrino sector with the supersymmetric description
of the mass sector of the other fermions. The well-known
neutrino UPMNS matrix contains also a part that originates
from the charged fermion mass sector, a fact which is
studied in some cases [10,11], but neglected in most cases
in the context of bilinear R-parity violation (BRpV). Given
a nondiagonal charged lepton sector, a combination of the
neutral and charged sectors is typically nontrivial. In this
paper it will be studied how at low energy the GUT fermion
mass matrices [8,9] affect the predictions of neutrino mod-
els with R-parity violation [5,6]. The models studied in the
neutrino context are split supersymmetry (SS) and partial
split supersymmetry (PSS), linked each to corresponding
well known examples of charged lepton mass matrix tex-
tures. The conceptual frame of this combination of two
viable and successful ideas and its realization in terms of
explicit models is shown in Fig. 1. A priory there is no
restriction when combining models for charged leptons

with models for neutrinos. We decided to study two spe-
cific examples as shown in Fig. 1.

II. NEUTRAL AND CHARGED FERMIONS
IN BRPV

In the supersymmetric models we are studying here,
tree-level contributions to neutrino masses and mixings
arise from the neutrino-neutralino mixing due to bilinear
R-parity violation. In general, when writing down the
gauge invariant terms that violate R parity one can consider
Lagrange terms that contain three fields (trilinear) and
terms that contain two fields (bilinear). In the context of
SS all the trilinear terms are irrelevant since they contain
heavy scalars that are integrated out of the effective theory.
In BRpV models neutralinos mix with neutrinos such

that a 7� 7 mass matrix is generated. In the base c T
0 ¼

ð�i ~B; i ~W0; ~H0
d;

~H0
u; �e; ��; ��Þ the corresponding terms in

the Lagrangian are grouped as

L N ¼ �1
2ðc 0ÞTMNc

0; (1)

with the mass matrix introduced in blocks [4],

MN ¼ M�0 mT

m 0

 !
; (2)

This neutralino/neutrino mass matrix is diagonalized with
the rotation matrix,

N ¼ N 0

0 UT
�

 !
1� 1

2�
T� �T

�� 1� 1
2��

T

 !

� N 0

0 UT
�

 !
N �; (3)

with � ¼ mM�1
�0 at first order in perturbation theory. The

matrix N � allows a block diagonalization such that

N �MNN T
� ¼ M�0 0

0 Meff
�

 !
; (4)

with Meff
� ¼ �mM�1

�0 m
T . Matrices N and U� further

diagonalize the neutralino mass matrix M�0 and the effec-

tive neutrino mass matrix Meff
� , respectively,
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N 0

0 UT
�

 !
M ��0 0

0 Meff
�

 !
NT 0

0 U�

 !

¼ Mdiag

��0 0

0 Mdiag
�

0
@

1
A: (5)

We call these eigenstates F0
i with i ¼ 1; . . . 7.

As we will see, in order to correctly define the neutrino
mixing angles we need to study the charged lepton sector
as well. In BRpV charginos mix with charged leptons
forming the following mass terms:

LC ¼ � 1

2
ðcþT; c�TÞ 0 MT

C

MC 0

 !
cþ

c�

 !
; (6)

where the basis is c�T ¼ ð�i ~W�; ~H�
d ; e

�
L ;�

�
L ; �

�
L Þ and

c�T ¼ ð�i ~Wþ; ~Hþ
u ; e

þ
R ;�

þ
R ; �

þ
R Þ. We divide the 5� 5

mass matrix into blocks [4],

MC ¼ M�þ Y

mc M‘

 !
: (7)

This chargino/charged lepton mass matrix is not symmetric
thus it is diagonalized by two matrices:

UMCV T ¼ Mdiag
C ; (8)

where we first look for a block diagonalization, as in the
neutral case, performed by matrices U� and V �.

Neglecting Y (small Yukawa couplings and sneutrino vac-
uum expectation values) we find

U� ¼ 1� 1
2�

T
L�L �T

L

��L 1� 1
2�L�

T
L

 !
;

V � ¼ 1� 1
2�

T
R�R �T

R

��R 1� 1
2�R�

T
R

 !
; (9)

with �L ¼ mcM
�1
�þ and �R ¼ M‘mcM

�1
�þ ðM�1

�þ ÞT . In the

small lepton masses and small BRpV parameters approxi-
mation, �R can be neglected. This implies that to first order

on BRpV parameters the chargino and the charged lepton
mass matrices are unchanged by the block diagonalization,

Meff
�þ ¼ M�þ ; Meff

‘ ¼ M‘: (10)

The full diagonalization is accomplished with

U ¼ U 0

0 VL

 !
U�; V ¼ V 0

0 VR

 !
V �; (11)

where

UM�þVT ¼ Mdiag

�þ ; VLM‘V
T
R ¼ Mdiag

‘ : (12)

The matricesM
diag

�þ andM
diag
‘ contain the final chargino and

charged lepton masses. We call these eigenstates F�
i with

i ¼ 1; . . . 5.

III. GUT MOTIVATED ANSATZ FOR CHARGED
LEPTONS MASS MATRIX

Grand unified theories provide a well-motivated frame-
work to study nondiagonal charged lepton mass matrices.
The most studied grand unification gauge groups are SUð5Þ
and SOð10Þ, which break down to the SM gauge group
SUð3Þ � SUð2Þ �Uð1Þ. In addition, the GUT can be
embedded into supersymmetry. In this context, different
proposals for a charged lepton mass matrix are postulated
at the GUT scale. In the following subsections we will
study two GUT examples based on the two groups men-
tioned above.

A. Georgi-Jarlskog ansatz

We consider first the Georgi-Jarlskog ansatz [8] for the
charged lepton mass matrix, introduced in the context of an
SUð5Þ GUT theory, and reanalyzed in [9] for a supersym-
metric SOð10Þ GUT group. Written in the notation of
the later article, the charged lepton mass matrix depends
on three parameters D, E, and F, which we assume real.
We have

M‘ ¼ vffiffiffi
2

p
0 F 0

F �3E 0

0 0 D

0
BB@

1
CCA; (13)

which essentially does not change after renormalization
group equation (RGE) running effects. The matrix is pro-
portional to v when the low energy theory contains only
one Higgs doublet (for example, split supersymmetry).
In the case it contains two Higgs doublets (for example
partial split supersymmetry) the replacement v ! vd must
be made.

FIG. 1. Conceptual flow chart of how the basic ideas of a
nondiagonal charge lepton Yukawa matrix and split supersym-
metric neutrino models are combined and studied.
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If we assume E is positive, the eigenvalues are

m‘1 ¼
v

2
ffiffiffi
2

p ð�3Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9E2 þ 4F2

p
Þ

m‘2 ¼
v

2
ffiffiffi
2

p ð�3E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9E2 þ 4F2

p
Þ m‘3 ¼

vffiffiffi
2

p D:

(14)

These eigenvalues, up to a possible sign, are equal tome ¼
0:511 MeV, m� ¼ 105:7 MeV, and m� ¼ 1777 MeV, re-

spectively [12], fixing the parameters in the charged lepton
Yukawa matrix to F ¼ 4:22� 10�5, E ¼ 2:01� 10�4,
and D ¼ 1:02� 10�2.

It is clear that only one angle is enough to parametrize

Mdiag
‘ ¼ VLM‘V

T
R . Since M‘ is symmetric, the diagonal-

ization matrix has the following form:

VL ¼ VR ¼
cos� sin� 0

� sin� cos� 0

0 0 1

0
BB@

1
CCA; tan2� ¼ 2F

3E
:

(15)

This angle is such that j sin�j � 0:0695.

B. Giudice ansatz

The second ansatz we consider was introduced by
G. Giudice [13] in the context of supersymmetric GUT.
The charged lepton mass matrix is

M0
‘ ¼

vdffiffiffi
2

p
0 F 0

F �3E 2E

0 2E D

0
BB@

1
CCA; (16)

whose Yukawa couplings do not change after running.
The implications of this type of ansatz in terms of
neutrino textures have been investigated in [14–16]. We
will associate this ansatz with partial split supersymmetry,
hence the mass matrix is proportional to vd. The hierarch-
ical nature of the charged lepton and quarks necessitates
F � E � D. In this approximation we find the following
eigenvalues:

m‘1 �
vdffiffiffi
2

p F2

3E
m‘2 �

vdffiffiffi
2

p
�
�3E� 4

E2

D

�

m‘3 �
vdffiffiffi
2

p
�
Dþ 4

E2

D

�
: (17)

Imposing the experimental values of the charged leptons
into these results we find Fc� ¼ 4:17� 10�5, Ec� ¼
1:97� 10�4, and Dc� ¼ 1:02� 10�2. Note that these

Yukawa parameters grow with tan�. Notice also that the
numerical value of the parameters F, E, and C differ only
slightly with respect to the ones obtained for the previous
ansatz (for v ¼ vd , cos� ¼ 1). This is related to the fact
that the charged lepton masses are hierarchical.

The mass matrix M0
‘ in Eq. (16) is diagonalized by the

following matrix:

V0
L ¼ V 0

R �
1 � F

3E 0

F
3E 1 2E

D

0 � 2E
D 1

0
BB@

1
CCA; (18)

where we have neglected smaller terms. We parametrize
this rotation matrix with two angles,

V 0
L ¼

cos�0 sin�0 0

� sin�0 cos�0 0

0 0 1

0
BB@

1
CCA

1 0 0

0 cos�0 sin�0

0 � sin�0 cos�0

0
BB@

1
CCA;

tan2�0 � 2F

3E
; tan2�0 � � 4E

D
: (19)

These angles are such that j sin�0j � 0:070 and j sin�0j �
0:036. Notice that V 0

Lð�0 ¼ 0; �0 ¼ �Þ ¼ VLð�Þ. There
exist of course more models for the structure of the charged
lepton matrix [17], but we will focus in our study on the
two models mentioned above.

IV. UPMNS AND W BOSON COUPLING
TO FERMIONS

Charged and neutral fermion couplings to the W boson
are essential for the UPMNS matrix of neutrino mixing
angles because they define the base where charged leptons
are diagonal. In BRpV models the situation is complicated
by the fact that charginos mix with charged leptons, as we
saw in the previous chapter. The relevant coupling is

with

Ocnw
Lij ¼ �g

�
N j2Ui1 þ 1ffiffiffi

2
p

�
N j3Ui2

þ X3
k¼1

N j;4þkUi;2þk

��

Ocnw
Rij ¼ �g

�
N j2V i1 þ 1ffiffiffi

2
p N j4V i2

�
(20)

In first approximation in 	=M� we use

N ¼ N N�T

�UT
�� UT

�

 !
; U ¼ U U�T

L

�VL�L VL

 !
;

V ¼ V 0

0 VR

 !
(21)

and find for the charged lepton and neutrino coupling toW
Bosons the following:
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Therefore, the neutrino mixing angles are defined by

UPMNS ¼ VLU�: (22)

Notice that theUPMNS matrix coincides with the matrix that
diagonalizes the neutrino mass matrix, U�, only when
the charged leptons are diagonal in the original basis.
Otherwise, there is an extra contribution from the
left matrix VL that diagonalizes the charged lepton mass
matrix [11].

Using the following convention for the neutrino angles:

UPMNS ¼
1 0 0

0 c23 s23e
i
13

0 �s23e
�i
13 c23

0
BB@

1
CCA

�
c13 0 s13e

i
13

0 1 0

�s13e
�i
13 0 c13

0
BB@

1
CCA

�
c12 s12e

i
12 0

�s12e
�i
12 c12 0

0 0 1

0
BB@

1
CCA (23)

and assuming this matrix is real (
ij ¼ 0), the general

structure for the mixing angles considering the Giudice
ansatz for the charged leptons (19) is given by

sin�
ðV0

L�1Þ
13 ¼ sin�

ðV0
L¼1Þ

13 þ s0�s23c13

tan�
ðV0

L�1Þ
23 ¼ tan�

ðV0
L¼1Þ

23

�
1þ s0�

�
t23 þ 1

t23

�
� s0�

t13
s23

�

tan�
ðV0

L�1Þ
12 ¼ tan�

ðV0
L¼1Þ

12

�
1þ s0�

c23
c13

�
t12 þ 1

t12

��
; (24)

where we have used the fact that the angles �0 and �0 are
small. A general form of this kind of expansion was given
in [11]. Analogous expressions for the Georgi-Jarlskog
ansatz are obtained by the substitution V 0

L ! VL, �
0 ¼ 0,

and �0 ! �.

V. SPLIT SUPERSYMMETRY WITH FLAVOR
BLIND DIMENSION FIVE

In split supersymmetry [18] all scalars are very heavy,
for simplicity degenerated at a mass ~m, except for one
Higgs doublet. Integrating out the heavy scalars the SS
Lagrangian includes

LSS 3�
�
m2HyHþ�

2
ðHyHÞ2

�
� Yu

�QLuRi�2H
�

� Yd
�QLdRH� Ye

�LLeRH�M3

2
~G ~G�M2

2
~W ~W

�M1

2
~B ~B�� ~HT

ui�2
~Hd � 1ffiffiffi

2
p Hyð~gu� ~Wþ ~g0u ~BÞ ~Hu

� 1ffiffiffi
2

p HTi�2ð�~gd� ~Wþ ~g0d ~BÞ ~Hd þH:c:; (25)

The last two terms are the Higgs-gaugino-Higgsino inter-
actions, with couplings ~g induced by integrating out the
heavy scalars.
Split supersymmetry with violation of R parity [19]

includes the extra terms

LRpV
SS 3 	i ~H

T
ui�2Li � 1ffiffiffi

2
p aiH

Ti�2ð�~gd� ~W þ ~g0d ~BÞLi

þ H:c:: (26)

The first term corresponds to the usual bilinear violation of
R parity, which mixes Higgsinos with leptons through the
mass parameters 	i. The terms proportional to the ai
parameters are generated as effective terms in the SS
Lagrangian after integrating out the sfermions.

A. Neutrinos and neutralinos in SS

Nowwe specify the neutrino-neutralino mixing described
in Sec. II for the split supersymmetric case. The upper left
block in Eq. (4) corresponds to the neutralino sector,

MSS
�0 ¼

M1 0 � 1
2
~g0dv

1
2
~g0uv

0 M2
1
2
~gdv � 1

2
~guv

� 1
2
~g0dv

1
2
~gdv 0 ��

1
2
~g0uv � 1

2
~guv �� 0

0
BBBBBB@

1
CCCCCCA; (27)

where M1, M2 are the gaugino masses, � is the Higgsino
mass, and v ¼ 246 GeV is the Higgs vacuum expectation
value. The neutralino/neutrino mixing is equal to

mSS ¼
� 1

2
~g0da1v

1
2
~gda1v 0 	1

� 1
2
~g0da2v

1
2
~gda2v 0 	2

� 1
2
~g0da3v

1
2
~gda3v 0 	3

0
BB@

1
CCA; (28)

with 	i and ai the BRpV parameters described in Eq. (26).
Therefore, in split supersymmetry the effective neutrino
mass matrix is given by

Meff
� ¼ �mSSðMSS

�0 Þ�1ðmSSÞT

¼ v2

4 detMSS
�0

ðM1~g
2
d þM2~g

02
d Þ

�2
1 �1�2 �1�3

�2�1 �2
2 �2�3

�3�1 �3�2 �2
3

0
BB@

1
CCA;

(29)

with �i ¼ ai�þ 	i. The determinant of the neutralinomass
matrix is found to be
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detMSS
�0 ¼ ��2M1M2 þ 1

2v
2�ðM1~gu~gd þM2~g

0
u~g

0
dÞ

þ 1
16v

4ð~g0u~gd � ~gu~g
0
dÞ2: (30)

For our numerical calculations we neglect the running of the
~g couplings.
Since the effective neutrino mass matrix has only one

nonzero eigenvalue, at tree level only the atmospheric mass
squared is generated, and the solar mass squared difference
remains null. In split supersymmetry this does not change
when we add quantum corrections to the neutrino mass
matrix. This is a well-known fact in BRpV split supersym-
metry [20]. Nevertheless, it has been noticed that gravity
contributions via dimension-five operators, can generate a
solar mass when the operator is suppressed by a reduced
Planck mass, as in models with extra dimensions [21].
Following Ref. [5], we include a contribution to the neu-
trino mass matrix induced by gravity,

MG
� ¼ �g

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA; (31)

where �g � v2=MX parametrizes the size of the contribu-

tion. This parameter has units of mass, is proportional
to the Higgs vacuum expectation value squared v2, and
inversely proportional to the reduced Planck massMX. The
equality of all entries in the matrix symbolizes the
expected flavor blindness of the gravitational interactions.

Assuming that the charged lepton mass matrix is already
diagonal, it was shown in Ref. [5] that neutrino mass
squared differences predict values �g � 3� 10�3 eV.

This corresponds to a reduced Planck mass MX � 2�
1016 GeV, remarkably close to the GUT mass scale. In
addition, maximal atmospheric mixing predicts sin2�sol ¼
1=3, well within the 3� experimental result sin2�sol ¼
0:305� 0:075. In the following we will explore the effects
of a nondiagonal charged lepton mass matrix.

B. Charged leptons and charginos in SS

In SS the chargino block in Eq. (7) has the following
structure:

M�þ ¼
M2

1ffiffi
2

p ~guv

1ffiffi
2

p ~gdv �

0
@

1
A; (32)

with all the parameters already defined in the previous sec-
tions. The charged lepton mass matrix has the usual form

Mij
‘ ¼ Yij

‘ v=
ffiffiffi
2

p
, with Y‘ the lepton Yukawa couplings.

The mixing between charginos and charged leptons is
given by the matrices

mc ¼

1ffiffi
2

p ~gda1v �	1

1ffiffi
2

p ~gda2v �	2

1ffiffi
2

p ~gda3v �	3

0
BBBB@

1
CCCCA (33)

and

Y ¼
0 0 0

� 1ffiffi
2

p Y1i
‘ aiv � 1ffiffi

2
p Y2i

‘ aiv � 1ffiffi
2

p Y3i
‘ aiv

 !
: (34)

Since lepton masses are so much smaller than chargino
masses and R-parity violating terms ai are also small, it is
usually a good approximation to neglect the effect of the
matrix Y, as we did in the diagonalization process in
Sec. II.
Notice that the charged lepton Yukawa matrix does not

need to be diagonal. This point is nontrivial, and has
consequences on the neutrino mixing angles in our models
as we will see in the next chapters.

C. Effects on neutrino parameters in SS

The effective neutrino mass matrix, including BRpV
terms and a gravity induced contribution from a flavor
blind dimension-five operator in models with extra dimen-
sions, is

Mij
� ¼ A��

i�j þ�g: (35)

It is obtained by summing Eqs. (29) and (31), with the
coefficient A� being read from Eq. (29). The neutrino mass
parameters are not changed by the charged lepton contri-
butions [5],

�m2
sol ¼ �2

g

j ~v� ~�j4
j ~�j4 þOð�3

gÞ

�m2
atm ¼ A2

�j ~�j4 þ 2A��gð ~v 	 ~�Þ2 þOð�2
gÞ;

(36)

but the mixing angles are corrected. Considering the diag-
onalization matrix from Georgi-Jarlskog ansatz in Eq. (15),
and using the convention in Eq. (23) for neutrino angles,
we find

sin�13 ¼ c�1 þ s�2

j ~�j þOð�gÞ tan�23 ¼ c�2 � s�1

�3

þOð�gÞ

tan�12 ¼ 1

j ~�j
�
cð�2

2 þ �2
3 � �1�2 � �1�3Þ þ sð�2

1 þ �2
3 � �1�2 � �2�3Þ

cð�3 � �2Þ þ sð�1 � �3Þ
�
þOð�gÞ;

(37)

where c ¼ cos� and s ¼ sin�. These relations are a special case of the general formulae in Eq. (24).
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From this we can learn the following. First, the 3�
upper bound sin2�13 < 0:035 [22] implies that a good
approximation, as in [5], is �2

1 � �2
2 þ �2

3. Therefore,
the correction on sin2�13 may be very significant since
both terms in c�1 þ s�2 are comparable. Second, the
correction on the atmospheric angle is of a second order,
since s and �1=j ~�j are small. Third, the correction on the
solar angle is typically of the order of s (� 7%), which is
non-negligible. In Sec. VII these effects are studied
numerically.

VI. PARTIAL SPLIT SUPERSYMMETRY

In partial split supersymmetry all sfermions are heavy,
for simplicity degenerate with a mass ~m, while the two
Higgs doublets remain at the weak scale [6,19,23]. The
Lagrangian includes

LPSS 3 �
�
m2

1H
y
dHd þm2

2H
y
uHu �m2

12ðHT
d	Hu þ H:c:Þ

þ 1

2
�1ðHy

dHdÞ2 þ 1

2
�2ðHy

uHuÞ2 þ �3ðHy
dHdÞ

� ðHy
uHuÞ þ �4jHT

d	Huj2
�
þ Yu �uRH

T
u	qL

� Yd
�dRH

T
d	qL � Ye �eRH

T
d	lL � 1ffiffiffi

2
p Hy

u ð~gu� ~W

þ ~g0u ~BÞ ~Hu � 1ffiffiffi
2

p Hy
d ð~gd� ~W � ~g0d ~BÞ ~Hd þ H:c:

(38)

The first two lines correspond to the Higgs potential of
a two Higgs doublet model, where the quartic couplings
have boundary conditions at ~m that connect to the
supersymmetric models above ~m. In the third line we
include the Yukawa couplings, while in the forth
one we have the Higgs-Higgsino-gaugino couplings.
These Y and ~g couplings in PSS differ from the corre-
sponding ones in SS in their RGE and their boundary
conditions at ~m.

BRpV is introduced in PSS with the terms,

L RpV
PSS ¼ 	i ~H

T
u	Li � 1ffiffiffi

2
p biH

T
u	ð~gd� ~W � ~g0d ~BÞLi þ H:c:;

(39)

where the origin of the second term is analogous as in SS:
they are generated as effective terms after integrating out
the heavy sfermions.

A. Neutrinos and neutralinos in PSS

The neutralino sector of the neutrino/neutralino mass
matrix in PSS has the following form:

MPSS
�0 ¼

M1 0 � 1
2
~g0dvd

1
2
~g0uvu

0 M2
1
2
~gdvd � 1

2
~guvu

� 1
2
~g0dvd

1
2
~gdvd 0 ��

1
2
~g0uvu � 1

2
~guvu �� 0

0
BBBBBB@

1
CCCCCCA:

(40)

It differs only slightly from SS in Eq. (27): it is apparent in
Eq. (40) that there are two different vacuum expectation
values, as in theminimal supersymmetric standard model,
and as it was mentioned before the ~g couplings have differ-
ent RGE and boundary conditions. The mixing submatrix
has also only minor differences,

mPSS ¼
� 1

2
~g0db1vu

1
2
~gdb1vu 0 	1

� 1
2
~g0db2vu

1
2
~gdb2vu 0 	2

� 1
2
~g0db3vu

1
2
~gdb3vu 0 	3

0
BB@

1
CCA: (41)

The neutrino effective mass matrix in PSS takes the form,

Meff
� ¼ M1~g

2
d þM2~g

02
d

4 detMPSS
�0

�2
1 �1�2 �1�3

�2�1 �2
2 �2�3

�3�1 �3�2 �2
3

0
BB@

1
CCA; (42)

with �i ¼ �bivu þ 	ivd, and with the determinant of the
neutralino submatrix equal to

detMPSS
�0 ¼ ��2M1M2 þ 1

2vuvd�ðM1~gu~gd þM2~g
0
u~g

0
dÞ

þ 1
16v

2
uv

2
dð~g0u~gd � ~gu~g

0
dÞ2: (43)

Despite these differences, the tree-level neutrino mass
matrix in Eq. (42) also has only one nonzero eigenvalue,
generating an atmospheric mass difference but not a solar
mass difference. Nevertheless, as oppose to the SS case, in
PSS quantum corrections do lift the symmetry of the tree-
level matrix, generating a corrected neutrino mass matrix
that looks like,

Mij
� ¼ A�i�j þ C	i	j; (44)

where the tree-level value Að0Þ can be read from Eq. (42).
One-loop diagrams correct it into the value A, and generate
the constant C. The matrix in Eq. (44) has only one null
eigenvalue, thus a nonzero atmospheric and solar mass
difference. A quadratic constant B that mixes �i and 	j
is also generated in general, but can be adjusted to zero by
choosing an appropriate value for the arbitrary renormal-
ization scale of dimensional regularization.
This mechanism depends strongly on the bi terms in the

definition of �i. The origin of those terms is that above the
splitting scale ~m the Higgs scalars gauge eigenstates mix
with sneutrinos gauge eigenstates. This happens for the
CP-even real parts and the CP-odd imaginary parts.
Because of this mixing one might define the real part
of sneutrinos (sis, t

i
s) in the CP-even Higgs mass eigen-

states (h, H). It has been shown that for the real part
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sis ��bic� ��c�vi=vu and that tis ��bis� �
�s�vi=vu. The relations for the imaginary parts are analo-
gous [19]. Thus, the existence of a nonzero bi term in
indicates that actually Higgs Bosons, at any energy scale
below ~m will have a small sneutrino component. This
means that the original sneutrinos (interaction eigenstates)
are not completely decoupled at those scales. It is further
instructive to notice that the bi are proportional to the
sneutrino vacuum expectation value, which implies that it
disappears for a restored SUð2Þ symmetry. This fact is
important in order to understand this model in context of
some general theorems on neutrino masses [24,25].

B. Charged leptons and charginos in PSS

The chargino block in PSS has the following structure:

M�þ ¼ M2
1ffiffi
2

p ~guvu

1ffiffi
2

p ~gdvd �

 !
: (45)

The difference with the SS case in Eq. (32) lies in the fact
that now we have two vacuum expectation values vu and
vd (as in the minimal supersymmetric standard model),
and that the ~g couplings, defined in Eq. (38), are numeri-
cally different.

The mixing between charginos and charged leptons
is given by the matrices

mc ¼
1ffiffi
2

p ~gdb1vd �	1
1ffiffi
2

p ~gdb2vd �	2
1ffiffi
2

p ~gdb3vd �	3

0
BB@

1
CCA (46)

and

Y ¼
0 0 0

� 1ffiffi
2

p Y01i
‘ bivd � 1ffiffi

2
p Y02i

‘ bivd � 1ffiffi
2

p Y03i
‘ bivd

 !
;

(47)

where Y0 is the charged lepton Yukawa matrix in our
second ansatz. The dimensionless parameter bi plays the
same role as ai in SS.

As in SS, in this scenario we consider the charged lepton
Yukawa coupling matrix as nondiagonal, and we consider
its effect in the relation between neutrino parameters and
observables.

C. Effects on neutrino parameters in PSS

The neutrino mass matrix in PSS is given by Eq. (44),
and in what we call tree-level dominance scenario, defined

by A2j ~�j4 
 C2j ~	j4, the neutrino mass differences are
found to be

�m2
atm � A2j ~�j4; �m2

sol � C2 j ~	� ~�j4
j ~�j4

: (48)

These expressions are not changed by the presence of a
nontrivial diagonalization matrix VL for the charged lepton
mass matrix.

The three normalized eigenvectors of the neutrino mass
matrix in Eq. (44) in the tree-level dominance scenario are,
in first approximation,

~e 1 ¼ ~	� ~�

j ~	� ~�j
; ~e2 ¼

~�� ð ~	� ~�Þ
j ~�� ð ~	� ~�Þj

; ~e3 ¼
~�

j ~�j
;

(49)

and they form the columns of the U� matrix. The neutrino
mixing angles written in terms of the approximated mixing
angles (when VL ¼ 1) are displayed in Eq. (24), while their
expressions written in terms of the BRpV parameters
[analogous to Eq. (37)] are more involved, and we display
them in terms of the eigenvector components, and in the
approximation sin�0, sin�0 � 1,

sin�13 ¼ e31 þ s�0e32 tan�23

¼ e32
e33

�
1þ s�0

�
e32
e33

þ e33
e32

�
� s�0

e31
e32

�

tan�12 ¼ e21
e11

�
1þ s�0

�
e22
e21

� e12
e11

��
; 1

(50)

where eij refers to the component j of the eigenvector ~ei.

The numerical effect will be shown in the next section.

VII. NUMERICAL RESULTS

In this analysis, prediction of neutrino parameters is
done by using numerical methods to find the eigenvalues
and eigenvectors that correspond to U� and VL. Using
them, we find neutrino mass differences and mixing angles,
and compare them with values from experimental mea-
surements. We also study how a nondiagonal Yukawa
matrix can influence the neutrino observables, specifically
neutrino mixing angles.
The agreement with the experimental boundaries at the

3�-level was quantified by calculating [22,26,27]

�2 ¼
�
103�m2

atm � 2; 45

0; 31

�
2 þ

�
105�m2

sol � 7; 64

0; 55

�
2

þ
�
sin2�atm � 0; 515

0; 125

�
2 þ

�
sin2�sol � 0; 315

0; 045

�
2

þ
�
sin2�rea � 0; 018

0; 017

�
2
; (51)

where �atm ¼ �23, �sol ¼ �12, and �reac ¼ �13. We accept
values of �2 < 1 to be consistent with experimental results.

A. Split SUSY

Our parameter space in SS can be classified into four
type of variables. First supersymmetric parameters like the
bino mass M1, the wino mass M2, the Higgsino mass �,
and the ratio between vacuum expectation values tan�,
whose effect can be all concentrated into the parameter
A� defined in Eq. (35). Second the BRpV parameters �i,
which give rise to an atmospheric mass. Third the gravity
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parameter �g responsible for a solar mass. Fourth the

charged lepton GUT parameters E, F, D which define
the angle � in Eq. (15).

We scan the parameter space varying randomly A�, the
BRpV parameters �i, and the gravity parameter �g, look-

ing for a solution with good prediction for the neutrino
parameters. In order to compare easily with PSS we define
�i ¼ vd�i and A ¼ A�=v

2
d for the SS case. As a working

point we choose the numerical values given in Table I, with
the values of M1, M2, �, and tan� as an example of a set
that leads to the corresponding value for A. The charged
lepton GUT parameters are fixed to their values inferred by
the Georgi-Jarlskog ansatz in Eq. (13), which lead to
sin� � �0:0695 (Note that there is an ambiguity on the
sign of sin�, and we have chosen the negative one as a
working example). This solution is in good agreement with
all neutrino observables, with the predictions shown in
Table II.

In Fig. 2 (left) we plot the logarithm of �2 as contour
regions in the�1 and�3 plane, with fixed values for all the

other parameters as indicated in Table I, plus sin� �
�0:0695. Good solutions to neutrino observables are rep-
resented by the white region, corresponding to �2 < 1. We
see that the contours are not symmetric under a �1 sign
change. This is due to the �2 term corresponding to the
reactor angle in Eq. (51), and can be understood from
Eq. (37). We see that the correction to the reactor angle
due to a nondiagonal charged lepton mass matrix is large
because, in addition to the fact that j sin�j � cos�, we
also have j�2j 
 j�1j compensating the previous disba-
lance. Therefore, sin�13 is not symmetric under a change in
the sign of �1 unless it is accompanied by a corresponding
change in the sign of �2.
In order to see the effect of the diagonalization of the

charged lepton mass matrix, we compare the same effect as
before but now setting sin� ¼ 0, which is equivalent to a
diagonal charged lepton mass matrix. This is done in Fig. 2
(right), where we have the analogous contour plot for �2.
One sees that for the chosen point in parameter space, the
allowed (white) region for the case sin� � �0:0695
(Fig. 2, left) is smaller than the corresponding region for
the case sin� ¼ 0 (Fig. 2, right). This means that points in
parameter space consistent with neutrino observables when
the diagonalization of the charged lepton mass matrix is
neglected, can actually be inconsistent when this diagonal-
ization is taken into account (Of course, this has been done

TABLE I. Solutions for the parameters. This values gives
�2 ¼ 0:356.

SUSY parameters Value Scanned range Units

M1 177 [40, 500] GeV

M2 300 [80, 100] GeV

j�j 392 [0, 1000] GeV

tan� 25.1 [2, 50] 	 	 	
A �3:53 	 	 	 eV=GeV4

BRpV parameters Value Scanned range Units

�1 0.0109 �1; 1½ � GeV2

�2 �0:0873 �1; 1½ � GeV2

�3 0.0814 �1; 1½ � GeV2

Gravity parameter Value Scanned range Units

�g 0.00291 [0,0.005] eV

TABLE II. SS predictions for neutrino observables given the
values in Table I, and sin� � �0:0695.

Observable Solution Units

�m2
atm 2:44� 10�3 eV2

�m2
sol 7:61� 10�5 eV2

sin2�atm 0.532 	 	 	
sin2�sol 0.290 	 	 	
sin2�rea 0.0195 	 	 	
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FIG. 2 (color online). �2 as a function of the BRpV parameters �1 and �3 for sin� � �0:0695 (left) and sin� ¼ 0 (right), keeping
the rest of the parameters as indicated in Table I.
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keeping several parameters fixed as discussed earlier,
therefore, the above result should be considered as a proof
of existence case rather than a generalized result.) In
addition, as it can be seen from Eq. (37), an approximated
symmetry under the �1 sign change is reestablished in the
case of sin� ¼ 0. This is because in this case sin2�rea is
insensitive to this sign. In the same limit tan�atm is inde-
pendent of �1, while tan�sol stays sensitive to �1 and its
sign. In our study we restrict to positive values of sinð�Þ but
a generalization to negative values is also possible.

The previous conclusions are confirmed when we study
separately the effect on �2 from the neutrino angles. We
remind the reader that the neutrino masses are not affected
by the diagonalization matrix in the charged lepton sector,
as we explained below Eq. (35). In addition, the effect of
the nondiagonal charged lepton matrix on the atmospheric
angle is relatively small. The solar and reactor angles

however get significant changes after the inclusion of
charged lepton diagonalization effects. To show this we
define

�2
s2sol ¼

�
sin2�sol � 0; 315

0; 045

�
2
;

�2
s2rea ¼

�
sin2�rea � 0; 018

0; 017

�
2
;

(52)

which are the isolated contributions to �2 from the solar
and reactor angles, respectively. In Fig. 3 we have �2

s2sol,

with sin� � �0:0695 in the left frame and sin� ¼ 0 in the
right one. We see important differences in the shape of the
allowed region (white). Nevertheless the overall signifi-
cance is decreased because the contribution from the solar
angle to �2 is relatively small. On the other hand, in Fig. 4
we have �2

s2rea with an analogous difference between left
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FIG. 3 (color online). �2
s2sol as a function of the BRpV parameters �1 and �3 for sin� � �0:0695 (left) and sin� ¼ 0 (right),

keeping the rest of the parameters as indicated in Table I.
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and right frames. The shift in the allowed region from left
( sin� � �0:0695) to right ( sin� ¼ 0) is much smaller
than in the solar angle case, but the numerical contribution
to �2 from the reactor angle is much larger, making the
reactor angle the most decisive factor in the influence of
the diagonalization of the charged lepton mass matrix. One
further sees that although the overall �2 seems to be
symmetric in �1 for the diagonal case, the individual
contributions (especially sin2�sol) do not have such a sym-
metry. Thus, the fact that the ‘‘alien’’ in Fig. 2 closes one
‘‘eye’’ for the nondiagonal charged lepton matrix is ac-
tually not a general feature. We also mention that the
prediction in [5] that �g ¼ Oð0:01Þ eV is not affected by

the scenario where the charged lepton mass matrix is not
diagonal, since �g is in first approximation restricted only

by mass differences.

B. Partial split SUSY

In PSS the parameter space consists of, first, the super-
symmetric parameters Bino mass M1, Wino mass M2,
Higgsino mass �, tan�, and Higgs masses mh and mA,
which define the constants A and C in Eq. (44); second, the
BRpV parameters �i and 	i; and third, the charged lepton
Yukawa parameters E, F, and D, which define the angles
sin�0 and sin�0 in (19).
As we did for the previous model, we perform a scan

over parameter space and look for solutions with predic-
tions on neutrino observables compatible with experimen-
tal data, represented by the value of �2 < 1 as given in
Eq. (51). Aworking scenario satisfying this criteria is given
in Table III. The effect of the first 6 parameters is in the
values of A and C which enter in the neutrino mass matrix.
The scale Q is chosen such that there is no mixing term
between � and 	. The scenario is completed with the
values of the BRpV parameters �i and 	i. In Table IV
we have the predictions for the neutrino observables in this
model, which gives a value of �2 ¼ 0:88.
Similarly to the previous model, in Fig. 5 (left) we have

the logarithm of �2 as contour regions in the 	3-	1 plane,
with all the other parameters fixed at their values in Table III,
plus sin�0 ¼ 0:070 and sin�0 ¼ 0:036 (In this case we have
chosen positive signs). Thewhite region corresponds to�2 <
1, i.e. points that satisfy the experimental constraints.

TABLE III. Chosen values for PSS. This values gives �2 ¼
0:88.

SUSY parameters Value Scanned range Units

M1 119 [40 500] GeV

M2 339 [80 100] GeV

j�j 456 [01000] GeV

tan� 5.71 [2,50] 	 	 	
mh 130 [114 140] GeV

mA 1963 [500 6000] GeV

A �2:73 	 	 	 eV=GeV4

C 0.282 	 	 	 eV=GeV2

Q 1048 	 	 	 GeV

BRpV parameters Value Scanned range Units

�1 0.0317 �1; 1½ � GeV2

�2 �0:0022 �1; 1½ � GeV2

�3 0.0738 �1; 1½ � GeV2

	1 0.034 �1; 1½ � GeV

	2 0.264 �1; 1½ � GeV

	3 0.372 �1; 1½ � GeV

TABLE IV. PSS predictions for neutrino observables given the
values in Table III.

Observable Solution Units

�m2
atm 2:43� 10�3 eV2

�m2
sol 7:66� 10�5 eV2

sin2�atm 0.495 	 	 	
sin2�sol 0.323 	 	 	
sin2�rea 0.0026 	 	 	
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FIG. 5 (color online). �2 in dependence of 	2 and 	3, while the other parameters are fixed around the central value from Table III. On
the left-hand side sin�0 ¼ 0:070 and sin�0 ¼ 0:036 was used, while on the right-hand side a diagonal charged lepton matrix was used.
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Neglecting the effects of the diagonalization of the charged
lepton mass matrix corresponds to set sin�0 ¼ sin�0 ¼ 0,
and when this is done we find �2 ¼ 2:81, meaning that a
good point couldhave beenmissed if the charged leptonmass
matrix diagonalization had not been taken into account
(Again this is done keeping several parameters fixed). This
is one example where a modified charged lepton matrix,
allows to include new good parameter points. Since some
points are excluded and others are included the nondiagonal
charged leptonmatrix actually provokes a deformation of the
allowed parameter space. This can be seen graphically from
Fig. 5 (right)which is the analogous to the previous figure but
neglecting the charged lepton mass matrix diagonalization.

It is useful to study the individual dependence of the
neutrino angles on the charged lepton rotation matrix
angles �0 and �0. In Fig. 6 we have solar angle (left) and
reactor angle (right) as a function of sin�0 for three differ-
ent values of sin�0. In both cases the dependence on sin�0 is

stronger that the dependence on sin�0, as can be noticed
from Eqs. (50), where we see that the solar and reactor
angles depend at first order only on sin�0, and a dependen-
cy on sin�0 appears only at second order. Although the
dependency of the solar angle on sin�0 is strong, it varia-
tion on the chosen range for sin�0 maintains the solar angle
within its 3� experimental region. On the contrary, the
reactor angle being also very sensitive to sin�0, can escape
from below the experimental widow, while keeping its
value well below the upper 3� bound. Therefore, a lower
bound on the reactor angle already constraints the model.
In Fig. 7 we have a similar plot for the dependence of the

atmospheric angle on sin�0 for three different values of
sin�0. As opposed to the previous cases, for the atmospheric
angle the dependence is stronger on sin�0 rather than on
sin�0. From Eq. (50) we see that despite the fact that tan�23
depends at first order on both angles, sin�0 is multiplied by
the reactor angle and makes its influence much smaller. In
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any case, over the chosen range for sin�0, the atmospheric
angle does not leave the 3� experimental window.

In a related numerical analysis we plot in Fig. 8 the
allowed region (defined by �2 < 1) in the sin�0– sin�0
plane, with the effect of the different neutrino angle 3�
bounds shown as solid lines. Here we confirm that the
atmospheric angle restricts the values of sin�0, while the
solar and reactor angles restrict the values of sin�0. The
typical value for the charged lepton mixing angles in the
Giudice ansatz are sin�0 ¼ 0:036 and sin�0 ¼ 0:07, and �0
will start to be probed if the error in the atmospheric angle
diminishes by a few times. On the other hand, the value of
�0 can be probed with an improvement on the lower bound
of the reactor angle, and with an improvement on the upper
bound of the solar angle.

C. Complex parameters

One can also allow for complex parameters in the model.
A general study with complex parameters is beyond the
scope of this article. Nevertheless, in order to illustrate the
effects of such generalization, we allow a small set of
parameters to be complex. If one allows for a complex
Hermitian VL in the charged lepton sector by replacing
F ! F 	 ei
F and E ! E 	 ei
E one finds that those two
phases factorize out in the UPMNS matrix of our models
and do not contribute to physically observable angles or
phases. This changes however if one allows for complex
RpV parameters, like, for example,

	1 ¼ j	1jei
	1 : (53)

Please note that the procedure of integrating out the heavy
fields lead to the definition of the RpV parameter �i ¼
�bivu þ 	ivd. Thus, by virtue of (53), also �1 will get a
complex phase �1 ¼ j�1jei
� ¼ �b1vu þ j	1jei
	1vd.
Since the influence of the 	 parameters is small in most
of the observables (notable exceptions are neutrino physics
and LSP decays), we do not evaluate the effects of those
complex parameters on possible observables of CP viola-
tion. In order to gain an analytical understanding we will
study (53) with the approximations of the type of (49).
However, since the 	1 now also contains complex values
one has to make sure that the matrix U� � ð ~	1; ~	2; ~	3Þ is
also unitaryUy

�U� ¼ U�U
y
� ¼ 1. This is achieved by some

(partial) complex conjugations in the eigenvectors 	2 and
	3. A further modification with respect to the solution (49)
is imposed by the numerical working scenario, which turns

out to be loop dominated (A2j ~�j4 � C2j ~	j4). With those
two adjustments the eigenvectors read

~e 1 ¼ � ~	� ~�

j ~	� ~�j
; ~e2 ¼ ~	� ð ~�� ~	Þ�

j ~	� ð ~�� ~	Þ�j
;

~e3 ¼
~	�

j ~	j :
(54)

After taking into account taking into account that for
complex matrices one has UPMNS ¼ VLU

�
� [11], this ap-

proximation allows to obtain analytic expressions for the
neutrino mixing angles

sinð�13Þ ¼
��������	1 cosð�

0Þ � 	2 sinð�0Þ
j ~	j

�������� tanð�23Þ ¼
��������	2 cosð�

0Þ cosð�0Þ � 	1 sinð�0Þ cosð�0Þ � 	3 sinð�0Þ
	3 cosð�0Þ þ ð	2 cosð�0Þ þ 	1 sinð�0ÞÞ sinð�0Þ

��������
tanð�12Þ ¼

��������ð�2	1	2 ��1ð	22 þ 	23Þ þ�3	1	3Þ cosð�0Þ þ ð�2ð	�1	1 þ 	23Þ ��1	
�
1	2 ��3	2	3Þ sinð�0Þ

j ~	jðð�3	2 ��2	3Þ cosð�0Þ þ ð�3	1 ��1	3Þ sinð�0ÞÞ
��������: (55)

Those approximated solutions turn out to reproduce
roughly the numeric working scenario. They work espe-
cially well for the solar angle which agrees with the
numerical solution at a precision of about 1%. Since both
�1 and 	1 became complex, the measured value of sinð�12Þ

gets modified. This is now compared to the corresponding
observable as defined in (52). As one can see in Fig. 9, the
introduction of complex parameters, such as 
	1 can lead
to significant modifications to observable mixing angles
such as j sinð�12Þj2. Very similar effects would appear in

FIG. 9 (color online). �2
s2sol is plotted in the (	2 [GeV], 	3

[GeV]) plane for the complex parameter 
	1 ¼ 0:02. The white
region is �2

s2sol < 1 and the complementary colored region is

�2
s2sol > 1. The dotted line shows how this contour would look

like for 
	1 ¼ 0. The rest of the parameters are chosen according
to Table III. The red dot represents this numerical working
scenario for purely real values.
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the context of the previously studied gravity-motivated
model where the complex phase (53) would lead to a phase
of �1 ¼ a1�þ 	1.

VIII. SUMMARY

It is a known fact that the Yukawa matrix of the charged
leptons does not have to be diagonal. In order to see how
the usual assumption in BRpV studies of a diagonal
charged lepton Yukawa matrix affects neutrino observ-
ables, we studied the impact of a nondiagonal charged
lepton Yukawa matrix on the neutrino sector of split super-
symmetric models. This was done by using two different
ansätze for the charged lepton matrix. It was found that the
mass differences between the different neutrino species are
effectively insensitive to the charged lepton sector. This
confirms the usual assumption of a diagonal charged lepton
matrix with this respect. However, when studying the
neutrino mixing angles it was found that the form of the
mass matrix of the charged leptons indeed can provoke
significant changes in the observables. We found that
especially the solar and reactor mixing angles are sensitive

to this effect, whereas the atmospheric angle shows a
somewhat weaker dependence. Thus, it has been shown
that the usual assumption in BRpV analysis of a diagonal
mass matrix for charged leptons, can lead to important
deformation in the allowed parameter space and mistakes
in the interpretation of experimental data. In other words,
within given models like the ones studied in this article, a
parameter point that agrees with the experimental neutrino
data in the context of a diagonal charged lepton matrix, is
likely to disagree with the data in the context of a non-
diagonal charged lepton matrix or vice versa.
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