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We obtain the electromagnetic form factors of the nucleon, in the space-like region, using three-point function
Finite Energy QCD Sum Rules. The QCD calculation is performed to leading order in perturbation theory in
the chiral limit, and also to leading order in the non-perturbative power corrections. For the Dirac form factor,
F1(q

2), we get a very good agreement with the data for both the proton and the neutron, in the currently accessible
experimental region of momentum transfers. Unfortunately this is not the case, though, for the Pauli form factor
F2(q

2), which has a soft q2-dependence proportional to the quark condensate < 0|q̄q|0 >.

The determination of the electromagnetic nu-
cleon form factors is an old standing problem in
QCD. For a review, see [1]. Calculations based on
perturbative QCD (PQCD), together with sum
rules estimates for the nucleon wave function, are
difficult to compare with data due to the extreme
asymptotic nature of these theoretical results.
Recently, a new analysis based on light-cone QCD
Sum Rules [2] has been carried out improving the
agreement with data from within a factor 5-6 to
a factor of two. Here we attempt a Finite En-
ergy QCD Sum Rules (FESR) determination of
the Dirac F1(Q2) and of the Pauli F2(Q2) form
factors, in the region of experimentally accessible
momentum transfers. The QCD-FESR approach
is interesting, since power corrections associated
to vacuum condensates of different dimensions de-
couple at leading order in PQCD.

As it is well known this technique is based
on the Operator Product Expansion (OPE) of
current correlators and on the notion of quark-
hadron duality [3]. Our calculation will be
done to leading order in PQCD, in the chi-
ral limit including also the leading-order non-
perturbative power corrections associated to the
quark-condensate and to the four-quark conden-
sate.

By considering the interpolating current with

proton quantum numbers

ηN (x) = εabc

[
ua(x)(Cγα)ub(x)

]
(γ5γαdc(x)), (1)

and the electromagnetic current

Jμ
EM (y) =

2
3
ū(y)γμu(y) − 1

3
d̄(y)γμd(y) , (2)

we are interested in the three-point correlator

Πμ(p2, p′2, Q2) = i2
∫

d4x

∫
d4y ei(p′·x−q·y)

〈0 ∣∣T{ηN (x)JEM
μ (y)η̄N (0)}∣∣ 0〉 , (3)

where Q2 ≡ −q2 = −(p′ − p)2 ≥ 0 is fixed. See
Fig.1. The current Eq.1 couples to a nucleon of
momentum p and polarization s according to

〈0 |ηN (0)|N(p, s)〉 = λNu(p, s), (4)

where u(p,s) is a nucleon spinor and λN is a
phenomenological parameter that gives us the
current-nucleon coupling. This parameter has
been estimated, for example, using two-point
QCD sum rules involving the current ηN [4]-[5].

Going to the hadronic sector, after inserting a
one-particle nucleon state, the three-point func-
tion (3) can be written in terms of the nucleon
form factors F1(Q2) and F2(Q2), defined as

〈k1 s1

∣∣JEM
μ (0)

∣∣ k2 s2〉 = ūN (k1, s1)

×
[
F1(q2)γμ +

iκ

2MN
F2(q2)σμνqν

]
uN (k2, s2) , (5)
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where q2 = (k2 − k1)2, and κ is the anomalous
magnetic moment in units of nuclear magnetons
(κp = 1.79 for the proton, and κn = −1.91 for
the neutron). The form factors F1,2(q2) are re-
lated to the electric and magnetic (Sachs) form
factors GE(q2), and GM (q2), measured in elastic
electron-proton scattering experiments, accord-
ing to

GE(q2) ≡ F1(q2) +
κq2

(2m)2
F2(q2) , (6)

GM (q2) ≡ F1(q2) + κF2(q2) , (7)

where Gp
E(0) = 1, Gp

M (0) = 1 + κp for the pro-
ton, and Gn

E(0) = 0, Gn
M (0) = κn for the neutron.

Next we compute the hadronic spectral function
by inserting a complete set of intermediate nu-
cleonic states in (3) and computing the double
discontinuity in the complex p2 ≡ s, p′2 ≡ s′

plane. If we stay with s, s′ < 2.1GeV 2, i.e. be-
low the Roper resonance, we can approximate the
hadronic spectral function by the single-particle
nucleon pole plus a continuum with thresholds s0

and s′0 (s0, s
′
0 > M2

N ) that we expect will coincide
with the PQCD spectral function (local duality).
In this way we get

ImΠμ(s, s′, Q2)|HAD = π2 λ2
N δ(s − M2

N )

×δ(s′ − M2
N ){F1(q2)Aμ +

iκ

2MN
F2(q2)Bμν

qν}Θ(s0 − s)

+ ImΠμ(s, s′, Q2)
∣∣∣
PQCD

Θ(s − s0) , (8)

where for simplicity we set s0 = s′0 and Aμ and
Bμν correspond to the following tensor structures

Aμ = /p′γμ/p + MN (/p′γμ + γμ/p) + M2
Nγμ (9)

and

Bμν = /p′σμν/p + MN (/p′σμν + σμν/p) + M2
Nσμν . (10)

Going to the QCD sector, to leading order in
PQCD and in the chiral limit, we have to cal-
culate the imaginary part of the diagram shown
in Fig.1. The important point is that there are
several Lorentz structures, analogous to those we
found in the hadronic sector. Before invoking lo-
cal duality it is necessary to choose a particular

k1
k2

k3

k4

p

q

p’
x

y

0

Figure 1. The three-point function, eq. 3, to
leading order in PQCD

Lorentz structure present both in the QCD as well
as in the hadronic sectors.

The term /p′γμ/p turns out to be appropriate. It
allows to project F1(Q2) since this structure does
not appear together with F2(Q2) in the hadronic
spectral function. On the other hand, due to van-
ishing traces, the quark condensate to be consid-
ered later, also does not involve this structure. In
principle, however, there are four quark conden-
sate terms associated with such structure. How-
ever, those terms do not contribute to the FESR
since the associate double discontinuity vanishes.
After a very lengthy calculation, the imaginary
part of the perturbative expression of the corre-
lator, associated to the desired structure /p′γμ/p,
can be written as

ImΠμ(s, s′, Q2) = /p′γμ/p
(
α + β[−323 Q12−

Q10P10(s, s′) − 10 Q8P8(s, s′) + Q6P6(s, s′)
+ Q4P4(s, s′) − Q2P2(s, s′) − P0(s, s′)]) + . . .(11)

In the equation above the dots denote the terms
associated to other Lorentz structures and we
have introduced

β−1 = 4608π2[q4 +(s − s′)2 + 2Q2(s + s′)]
5
2

α =
323 Q2 + 378 (s − s′)

4608π2,
(12)
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and the set of polynomials Pi(s, s′) given by
P10 = 1993s + 1237s′,
P8 = 512s2 + 323ss′ + 134s′2,
P6 = −7010s3 + 1188ss′2 + 550s′3,
P4 = −5395s4 +7010s3s′+2610s2s′2 +3146ss′3 +
2165s′4

P2 = (s − s′)2(2213s3 − 2589s2s′ − 3099ss′2 −
1567s′3)
P0 = −378(s − s′)4(s2 − 2ss′ − s′2)

It is interesting to mention that we got both
explicit terms, where the desired tensor structure
was there from the beginning, as well as implicit
terms, i.e. those terms where the tensor struc-
ture emerged only after performing the integrals.
The next step is to invoke global quark-hadron
duality in the frame of the FESR, which, as we
mentioned, are organized according to dimension-
ality. The FESR of leading dimensionality are∫ s0

0

ds

∫ s0−s

0

ds′ ImΠ(s, s′, Q2) |HAD=
∫ s0

0

ds

∫ s0−s

0

ds′ ImΠ(s, s′, Q2) |QCD . (13)

We have chosen a triangular region to integrate
in the s, s′ plane, but the result is quite indepen-
dent from the integration region [6] and [7]. In
this way one obtains

F1(Q2) =
1

9216 π4 (Q2 + 2 s0)λN
2

×(A + B ln(
Q2

Q2 + 2s0
)), (14)

where we have defined
A = 2 s0(96Q6 +297 Q4 s0 +158 Q2 s0

2−112 s0
3)

and
B = 3(Q2+2 s0) (32 Q6+67Q4s0+7Q2s0

2−21s0
3).

Notice that in the previous equation we have
the standard logarithmic singularity arising from
the chiral limit. The leading asymptotic term
turns out to be

lim
Q2→∞

Q4 F1(Q2) =
11 s5

0

2560 π4 λ2
N

. (15)

Qualitatively, this asymptotic behaviour agrees
with expectations. From QCD sum rules for two-
point functions involving the nucleon current (1)

Figure 2. Theoretical results (solid line) versus
corrected experimental [9] data on F1(Q2)

it has been found [3]-[5] that λN � (1 − 3) ×
10−2GeV3, and

√
s0 � (1.1 − 1.5)GeV. The

higher values of λN and s0 come from Laplace
sum rules [4], and the lower values are from
a FESR analysis [5] which yields the relation
s3
0 = 192π4λ2

N . After fitting Eq.(14) to the
experimental data, as corrected in [9], we find
λN = 0.011GeV3, and s0 = 1.2GeV2, in line with
the values discussed above. Numerically, s0 is
well below the Roper resonance peak, thus justify-
ing the model used for the hadronic spectral func-
tion. The predicted form factor F1(q2) is shown
in Fig.2 (solid line) together with the data. The
agreement is quite impressive.

From the two leading power corrections in the
OPE, without gluon exchange, the one propor-
tional to the quark condensate does not con-
tribute to F1(Q2), while the other, proportional
to the four-quark condensate, has a vanishing
double discontinuity in the (s, s′) complex plane.

In order to extract F2(Q2), we have to consider
the leading-order non-perturbative corrections to
the OPE, which in this case corresponds to the
quark condensate. In this context see [11].

In the case of the proton, the contribution in-
volving the up-quark condensate vanishes (due to
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Figure 3. Experimental data on GE(Q2) for the
neutron [12], together with the theoretical results

vanishing traces) and therefore we only have a
piece proportional to 〈d̄d〉. Our choice of Lorentz
structure in this case is /qγμ, which appears in the
QCD sector as well as in the hadronic sector mul-
tiplying F2(Q2) but not F1(Q2). We refer to the
original article [10] for the full expressions. Here
we will give only the final result that emerges form
the FESR

F2(Q2) = − 〈d̄d〉
24κp MN π2 λ2

N

[2s0(Q2 + s0)

+Q2 (Q2 + 2s0) ln(
Q2

Q2 + 2s0
)] . (16)

The problem is that the asymptotic behavior does
not agree with the expectations. We find

lim
Q2→∞

F2(Q2) = − 〈d̄d〉
18κp MN π2 λ2

N

×(
s3
0

Q2
− s4

0

Q4
+ ...) , (17)

and we would expect F2(Q2) to fall faster than
F1(Q2) at least by a factor of 1/Q [8]. A com-
parison of F2(Q2) from equation (16) with data
shows a disagreement at the level of a factor two,
which cannot be improved adjusting the values of

λ and s0. The main reason behind the disagree-
ment is the soft q2-dependence of F2(Q2).

We can do the same analysis for the neutron
form factors. It turns out that F1n(Q2) for the
neutron is numerically very small and consistent
with zero, except near Q2 = 0 due to the diver-
gence in the chiral limit. Since F1n(Q2) ≈ 0, the
Sachs form factor is proportional to F2n(Q2). In
Fig.3 we show a plot of the electric Sachs form
factor for the neutron. At low Q2 there is rea-
sonable agreement with the experimental data.
However, for higher momentum transfers the dis-
agreement turns out to be serious due to the soft
1/Q2 behavior of F2n(Q2).
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