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Correlation and multipolar effects in the dielectric response of particulate matter:
An iterative mean-field theory
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A systematic approach for treating correlations and multipolar effects in particulate matter is

proposed. The method consists of an iterative extension of the Maxwell-Garnett (MG) mean-field

approach. The first iterate beyond MG that involves up to three-particle correlations is solved fully

to all multipolar orders using Kirkwood s superposition approximation and yields a simple im-

proved formula for the composite dielectric constant at low filling. We find that at 5%%uo filling reso-
nances that originate in multipolar couplings carry about 6%%uo of the total strength. Our results

reproduce accurately low-density measurements on pure argon.

I. INTRODUCTION

The Maxwell-Garnett (MG) formula is the standard
expression used to obtain the dielectric response of a di-
lute ensemble of inclusions in a matrix in the long-
wavelength limit. ' Its justification rests on two basic as-
sumptions. One is that excitations of dipolar character
only are important. The other is that space correlations
between such excitations may be ignored. The validity of
these assumptions has been questioned extensively in the
past especially when the formula is applied to a not so di-
lute sample. The strength of multipolar contributions
to the local field where each particle sits is not negligible
when the inclusions are close, and the induced multipoles
become important. Also, in a disordered sample the local
field differs from site to site, a fact that the MG formula
ignores.

We here present a simple scheme that allows for sys-
tematic corrections to the MG formula, where both mul-
tipolar effects and space correlations are included. The
novelty of our approach is that it retains the central
mean-field concept that characterizes the MG solution.
To introduce the basic idea, consider a random distribu-
tion of Ã identical inclusions of dipole polarizability o. ,
and volume vp embedded in a matrix of dielectric con-
stant ep and total volume V placed in an external uniform
electric field Ep. For simplicity, assume the sample to be
a thin slab and the applied field to point in the direction
perpendicular to the parallel faces of the slab, which we
call the z direction. The excitations in a given particle
are coupled to all other inclusions through the local field
it experiences. In the dipole approximation the moment
in the ith inclusion is given by

p;=a, E+gt, .p
J

The quantity in parentheses is the local field. E is the
average field in the matrix in the absence of inclusions

while the sum represents the contribution from all the
other inclusions, with t, a tensor of purely geometric
character. Equation (1) represents a set of 3N linear
equations whose exact solution is known in principle but
remains impractical to compute when X is large, save for
highly symmetrical arrays. The MG approximation for
a random distribution of inclusions is to replace each di-
pole p, in the right of Eq. (1) by the average value over
sites (p) =pz, and thereafter take the same average of
the entire Eq. (1). The resulting equation may be easily
solved for p =u, ffE, where a,ff is the effective polarizabili-
ty of a particle in the presence of the others. One gets for
the inverse of this quantity

1 1 8~
(jef a, 3vp

where f =Nvo/V is the filling fraction of the inclusions.
Wt. have used the expression for the average dipole cou-
pling'

8a
&tij zz=

3
f

J 3vp
(3)

Equation (2) gives the response of an inclusion in the
standard MG theory. As we shall see in Sec. II, a fully
multipolar treatment yields no corrections to Eq. (2) in
this approximation. Our theory extends the basic MG
approach just described, applying it to iterates of the
multipolar version of Eq. (1). As the iteration proceeds,
higher and higher correlation orders are included and
multipole coupling becomes important from the first-
order correction onwards. While MG is recognized as
valid at low densities, our iterates represent improved
versions of the same MG approach and may be viewed as
approximations reliable at progressively higher densities.

In Sec. II we develop our extension of the MG- scheme
to cover correlations and multipolar excitations, and
present a full solution up to three-particle correlations.
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In Sec. III this solution is analyzed in the spectral repre-
sentation and in Sec. IV we present our discussion.

II. EXTENDED MAXWELL-GARNETT THEORY

A fully multipolar version of Eq. (1) may be written in
a spherical-harmonic basis Yl (r). Calling qi, the mul-

tipole moment of order l, m excited at site i it reads

qim; =&3j'4~~10;&1,1& oE+ X Bi'm, 'qi
I'm'j

where

(4)

I

Y,*+i (r, )

~lmi +Imi him

V

bi'm'
(

1)l'+m'+1
Im

1/2
41r(2l + 1) (l + l'+ m —m ')!(l + l' —m +m ')!

(2l'+ 1)(2l +2l'+1) (l +m)!(l —m)!(l'+m')!(l' —m')!

Here alml is the polarizability of the inclusion at site i in
the presence of the dielectric matrix, and

An iterative solution of Eq. (4) may be obtained by suc-
cessive substitution of itself into the right-hand side of
the equation. The average dipole polarization may then
be expressed in terms of the average of all powers of the
coupling (5). In practice however, only a few terms in the
expansion may be calculated, by diagrammatic or other
methods, "' and their relative significance to the exact
solution is unclear. We propose instead to stop the itera-
tion process after n steps and thereafter use the MG
decoupling scheme described in Sec. I. This defines an
nth-order approximation that introduces corrections to
the MG formula in a systematic way keeping the basic
and very successful physical idea that underlies this for-
mula.

We shall first show that the zeroth-order approxima-
tion yields exactly the dipolar MG formula since higher
multipole couplings do not contribute to the MG local
field. For simplicity we assume in what follows the parti-
cles to be identical and spherically symmetric, so that
almi=al. In the zeroth order of the theory outlined
above the moments in the right-hand side of Eq. (4) are
directly replaced by an average &ql & and thereafter an
average is taken of the resulting expression. This yields
for the average dipole moment p =(4'/3)' &q, o & in our
slab geometry

1/2

E+ 4~
CXi

3 Up

The first term is the standard dipolar MG result Eq. (2)

while the second represents corrections due to higher
multipoles. The prime in the sum means that l & 1.
Averages are to be taken over sites i or, equivalently, over
a statistical ensemble of configurations characterized by a
distribution function p(r„rz, . . . , riv) for the X identical
inclusions in the sample. The sum over sites j in Eq. (7)
includes two-particle couplings and its average may be
expressed in the form

z BID/) =(N 1 la|h |0
J

X J J 1+2 p2(r„r2)dr, dr&, (8)
~12

where the p-particle distribution p~(r„r2, . . . , r~ ) is

defined as the integral of the distribution p over the posi-
tions of N —p particles. In a homogeneous sample
p2=p(r12) so one of the integrals in (8) simply yields a
factor V. The orthogonality of spherical harmonics
makes the remaining integral over angles vanish. Thus
the last term in (7) is zero and there are no multipolar
corrections to the MG formula within the standard
theory.

To go beyond MG we iterate Eq. (4) once and obtain

qlmi 3'~4~ +loi ~l, limo+ X +10,j Blmi
J

+ 2 lmi Bl'm 'j ql "m "k
I'm'j I"m "k

l'm'j
III Ilk

We replace as before in the right-hand side the moments

by their average and then take an overall average, thus
completing the steps that define the first-order approxi-
mation in our theory. For identical and spherically sym-
metric particles we obtain

1/2
8 lr 1 f E + 4 lr

Uo
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1 —g & gB™JB lok
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(10)
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where the average needed now is

(
I I II II I /II II

Xko Bi'm'q =(X —1) B ioi BI m '2 'pz(ri, rz)dridrz
jk

+(X—1)(X—2) f f fB&oi B&.™zp3(r&, rz, r3)dr&drzdr3 .

Using translational invariance and the properties of
spherical harmonics we obtain for the first integral in the
right-hand side, using (5) and (6),

4m pz(r)[(I'+I) —m' ]a,a& V dr2l'+3 r

(12)

The second term in Eq. (11) is more difficult to evaluate
since it involves the coupling of three particles: the mul-
tipole at site 3 excites a multipole at site 2 which in turn
contributes to the dipole excitation at site 1. For the
three-particle distribution function we use the superposi-
tion approximation

p3(1,2, 3)= V pz(1, 2)pz(2, 3)pz(3, 1) .

For brevity of notation we use here and in what follows
the particle label to denote its position vector. The in-
tegral of interest has the form

I = V B' B™3P2 1,2 P2 2, 3

Xpz(3, 1)dr, drzdr3 .

Adding and subtracting 1/V from the last factor in the
integrand we split I in two separate integrals:

I=I)
—I2,

&&
= V f drzB', p, Pz(1, 2) Vf dr3B~', 2 Pz(2, 3},

dr2B ]()) p2 1,2

X f dr3B&', ,z pz(2, 3)[1—V pz(1, 3)] .

I, is just the product of two integrals whose form was al-

ready discussed in connection with (7), and has the value,
using Eq. (3),

r 2
8m ~i

~l', 1 ~m ', 0~1",1~m ",0

The integral over r3 in I2 has its main contribution com-
ing from a small volume U centered at r& since the bracket
in the integrand approaches zero about a diameter away
from the center of the inclusion at such location. An ap-
proximate value is obtained replacing this integral by
upz(2, 1)B&' z', where the effective volume u is defined by

vpz(2, 1)=f dr3pz(2, 3)[1—V pz(1, 3)] . (14)

The replacement is exact for a dilute hard-spheres system
[pz(ax)=e(x —2)/V, with x =r,z/a and e the unit-
step function], and r&2) 4a. Then the integral involves
the average over a spherical volume, of the potential due
to a multipole outside such volume, and this equals the

(l'+1) —m'
2~+2 i-, & m", 0 .2l'+ 3 r

From the above results we obtain, after some algebra,

x(x gl - jg kk)

m' jk

(15)

(16)

The quantity P& =a&/a '+' is a dimensionless polarizabil-
ity, defined in terms of the particle radius
a =(3uo/4')'~, and

Hi=(2l+1)2 ' ' f0
1 —fg(x) dx, (17)

U0 X

where g (x)= V pz(ax) is the usual pair correlation func-
tion, a function of f in general. Equation (16) represents
the average dipolar excitation produced by the multipoles
l", m" through the intermediacy of the multipoles l', m'.
Because of the Kronecker 6 functions the only nonzero
couplings are dipole to dipole. Thus the triple sum in Eq.
(10) makes no contribution to the average dipole moment.
For a dilute hard-spheres system, we obtain from (17)
(l &1)

H(=1 — [2l(11X2 ' —1}
I (I —1)

—3(2 ' —1)]+4
(18)

H =1——(31—6ln2) .1 4

The integral I2 also appears in other treatments of
correlations. ' ' A different method of evaluation has
been given, which starts by taking a directional average
of the couplings and thereafter uses Fourier transforms. '

For a dilute hard-spheres system this method yields qual-
itatively similar results to our Eq. (18) (see Appendix).
We have also evaluated Eq. (17) using a virial expan-
sion' as wel1 as the Percus-Yevick pair correlation func-
tion for the hard-sphere model' and have in all cases ob-

potential at the center of the sphere. Then v =8U0. For
2a &r&2 (4a the replacement is an approximation even
for hard spheres. In the latter case we get, from (14),
5. 5vo ( u =x (3—x /16)uo (8vo. This yields

Iz= V dr, zBioi B&. z vPz(riz)2 1'm '2 1"m "1 2
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tained similar results.
Substituting (16) in Eq. (10), we get for the effective in-

clusion polarizability

1 + 8rr f 4rrf
3Vp 3VO

l+1.
221+1+ 1j=1

1 — fa,8~
3VO

(19)

(20)

Equation (19) is our final result for the first iterate correc-
tion to the MG formula. The first two terms are just the
MG result Eq. (2) while the last term is the fully multipo-
lar correction due to three-particle correlations. Note
that the strength of these correlations at each multipole
order is proportional to the quantities H& defined above.
We remark the simplicity of this result. Higher-order ap-
proximations may be obtained by iterating further Eq. (3)
over itself and then proceeding with averages in the
manner illustrated in the first two orders of approxima-
tion treated above. Averages, however, become more and
more difficult to compute as four- and more-particle
correlations are included, and at present we have not
gone beyond first order.

Equation (19) gives the effective inclusion polarizability
in terms of which the average dielectric constant E of the
composite medium may be expressed. The total polariza-
tion in the sample is the sum of two contributions: that of
the inclusions and that of the dielectric matrix. Using
the fact that in a thin-slab placed in a perpendicular field
the displacement vector is the field due solely to the fixed
external charges, the ensuing identity
1 —1/F=(1 —1/eo)+4vr&a, fr/Veo yields

Ep

4~
1 — o.,~

0

(21)

We remark that u, z is defined as the effective response of
the inclusion to the average field E that would exist in the
dielectric matrix in the absence of any inclusions, and
equals the field Ep due to the fixed external charges only
if the dielectric constant of the matrix E0=1. With the
aid of Eqs. (19) and (21) one gets the relation

E+2Ep

E Ep
(22)

which is of the Clausius-Mossotti form, with the correc-
tion term Q given by (20).

III. SPECTRAL REPRESENTATION

A convenient way to exhibit the structure present in
the dielectric function Eq. (21) is through its spectral rep-
resentation. It is defined by the expression' '

fpl
G(n')

&0 0 (e/eo —1) '+n'

Here E is the complex dielectric constant of the in-

clusions. The spectral density G(n) is a real, positive
definite quantity that measures the strength of the mode
of depolarization factor n. The structure in this function
determines the structure in the optical-absorption
coefficient, for instance. It is a function of geometry only
and obeys the sum rules

f G(n')dn'=1, (24)

1—n'G(n')dn'= (25)
0 3

Letting e = 1 —(n +is) ', Eq. (23) may be inverted to get

G(n)= lim Im
1 . F( —n is—)

~fs o Ep
(26)

1G(n)=—
2

1 ——5 n —+ +1 1 f fz
z 3 2 6

1+—
2

1+—6 n —+—1 1 f fz
Z 3 2 6

(27)

where z =(1+8H, /9f)' . There are two modes of
different strength. Figure 1 shows the position of the
modes [Fig. 1(a)] and strengths [Fig. 1(b)] for H

&
as given

in Eq. (18). The dashed line is the (single mode) MG re-
sult, which also follows the average depolarization factor
given by Eq. (25). The labels (

—
) and (+) represent the

first and second terms in Eq. (27), respectively. Note that
at filling f, =0.149 the (+ ) mode joins the MG solution,
reaching strength one. At the same filling the (

—
) mode

reaches zero strength. At higher fillings the solution
gives unphysical results. This is a feature common to
other approximate theories, only that the value of f, ob-
tained in each theory is different. We believe that it
arises from the approximations made in the computation
of I2. In particular, we have found our results to be quite
sensitive to the value of this integral. In Sec. II we
showed replacement (14) to be exact for x =r, z/a ) 4,
and only approximate in the other relevant interval
2 (x (4. If in this latter interval we set
u(x) =7'x(3 —x /16)+8(1 —y) for the effective volume,
the parameter y may be used conveniently to modify the
value of Iz. The function u (x) and its derivative are con-
tinuous at x =4. For y =1 one obtains the form derived
in Sec. II. Decreasing y moves the critical filling to
higher values without altering the shape of the curves in
Fig. 1. For instance, setting y=0. 674 yields f, =7r/6,
the filling fraction at which spheres in a cubic lattice
touch. Thus a decrease of y from a value of one to this
latter value, which changes the area under the curve u (x)

Knowledge of E in terms of E then allows one to get the
spectral density.

In the standard MG approximation one easily finds
from Eqs. (2), (21), and (26), G(n)=5(n —(1 f)/3). —
There is a single mode of weight one at n =(1 f)/3. —
Our first iterate solution Eq. (19) yields a spectral density
with a more complex structure. The simplest expression
is obtained in the dipole (l =1, only) approximation.
From Eqs. (19) and (23) we get, in the dilute limit for
hard spheres [go(x)=e(x —2)],
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by just 4% without altering its form, increases the value
of f, by a factor larger than 3. This illustrates the sensi-
tivity of results at moderate- and high-filling fractions to
how the integral I2 is evaluated.

Carrying multipoles higher than the dipole makes the
structure in G(n) richer. The modes in our dilute hard-
spheres model may be obtained from the zeros of the
function

fx 1+1 II,P(x)=x f——
x 2f (—, 2 '+'+1 1+(c(/3)(x —1)

(28)

where x = 1 —3n is the unknown, cI = (2l + 1)/I, and L is

the highest multipole order considered. Once a solution
is known, its strength is given, as obtained from (26), by
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FIG. 2. Weight of resonances introduced by multipolar cou-
plings (l ~ 2), not included in Fig. 1.
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The function (28) is a polynomial of order L + 1 and has
as many zeros. The spectral density associated with the
first iterate Eq. (19) consists therefore of L +1 6 func-
tions that represent the resonances of the system. We
have calculated these resonances in the range 0 &f &f,
using Eq. (18), and found them to be a sequence where
the first two are those given in Fig. 1(a) slightly displaced,
while the rest are distributed at higher values of n, mak-
ing the overall spectrum wider. However, the weights of
the latter, though not negligible, are small at the filling
fractions considered. This was to be expected since, as is
known, higher multipoles become relevant when the dis-
tance between particles is less than three-particle radii '

and this is the average distance in a sample with
f =0.155. Figure 2 shows the total weight of the new
resonances, those not included in Fig. 1(b), as a function
of filling fraction. As the figure shows, the inhuence of
high multipoles is less than 6/o in the low-filling range we
display. At higher fillings multipolar excitations should

C
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0
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y) -0.40.

~u
Q)
—-0.70.

0.0-
0.0

fi(ling fraction

-1.00.
2.50 2.75 3.00 3.25

Energy (eV)
3.50

FIG. 1. Position (a) and strength (b) of resonant modes in the
dipole approximation. The dashed line represents the MG ap-
proximation. For curve labels see text.

FIG. 3. Absorption spectrum for silver particles in gelatin at
filling f =0.05. Curves are for the extended Maxwell-Garnett
first iterate solution in the dipole (D) and multipole (M) ap-
proximations, and for the Maxwell-Garnett (MG) solution.
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become more important, yet our results show a decrease
in their weight. As discussed earlier, the results are
influenced by the approximations made when deriving
Eq. (18), and the anomaly may be healed by using a value
of y smaller than one. Based on Figs. (1) and (2) we be-
lieve Eq. (19) to be accurate below f -0.05.

Figure 3 (dashed line) shows the resonance region ob-
tained using Eqs. (18), (23), and (27) for silver spheres em-
bedded in gelatin at 5% filling, in the dipole (I =1 only)
approximation. The difference with the MG solution
(chain-dashed line) is small due to the small filling frac-
tion, but not negligible. Notice that two peaks are visible
and that the resonance region is broader than that given
by the MG formula, in agreement with experiment.
The multipolar result (solid line) gives a still wider ab-
sorption region.

1.86 ~8
R, 8

Q~ oo 0

1.85
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0
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8

IV. CONCLUSION

We have proposed an iterative scheme that defines suc-
cessive corrections to the Maxwell-Garnett formula. Our
theory is different from previous ones in that we keep the
essential mean-field approach that characterizes this
latter expression. The standard way of correcting the
MCi formula is to iterate Eq. (1) many times and keep
terms up to some power of the polarizability, usually the
second power. In this latter approach to first order in
the polarizability one gets, for the effective inclusion po-
larizability,

1+F1 t; e1,
J

(30)

which agrees with the MG result (2) only to first order in
the filling fraction f. Although this is precisely the order
up to which the MG formula is believed to be exact, its
results are usually accepted at higher values of f since,
save for the width of the Mie resonance, they follow the
qualitative features of experiment. As we have shown,
our theory improves precisely upon the width of the ab-
sorption peak. Also, our theory includes an arbitrary or-
der of multipolar excitations, which as we show give a
non-negligible contribution to absorption even at low
values of f. We have discussed the first iterate correction
only. Higher iterates involve correlations of four- and
more-particle correlation functions, which we have not
attempted to evaluate. Their effect on the response of the
system is currently under study and will be reported else-
where. Accurate formulas for high-filling fractions
would require knowledge of such iterates.

Experiments with argon gas have found an increase in
the Clausius-Mossotti (CM) expression C(f)=uo(e —I)/
f (8+2) with density, followed by a decrease. ' In or-
der to check our theory we have calculated this quantity
using our Eqs. (18), (20), and (22), keeping up to quadru-
polar terms since the highest-pole polarizability we found
in the literature for argon was the quadrupole. We use
the polarizabilities a, = 1.494 A and a2 = 1.957 A ob-
tained bv Lahiri and Mukherji, and the radius
a =1.54 A listed in the Campbell periodic table. Fig-
ure 4 shows our results (solid line) together with the ex-
perimental results of Refs. 25 (circles) and 26 (squares).
The agreement is remarkable in the range shown. While

i I I

200 400
N ( amagat )

600

FIG. 4. Clausius-Mossotti expression as a function of density
for pure argon. Circles and squares are experimental results
from Refs. 26 and 27, respectively. The solid line is our first
iterate result keeping up to quadrupolar terms. The horizontal
(dashed) line represents the Maxwell-Garnett approximation.

at low density we regard our theory as accurate, at higher
densities the agreement with experiment could be fortui-
tous. In fact the density at which the curve crosses the
CM value in Fig. 4 is sensitive to both the values of the
polarizabilities and the atomic radius taken in the
definition of the filling fraction f. Values found in the
literature for the polarizability show discrepancies and
the atomic radius is not a well-defined quantity. It is also
possible that the actual shape of the experimental curve
for argon may be affected by a decrease in the polarizabil-
ity with density, an effect we have not taken into ac-
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APPENDIX

Following Felderhof' we obtain for a dilute hard-
spheres system

2I+1
H, =l—,, f g C(k, l)F(l —2k),

h=0
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where C(0, l)=C(l, l)=1 and, for other values of k, C(k, l)=(2k —1)!!(2l—2k —1)!!/k!(l—k)!. Also

+2& )+ 4+2u —&3w
(1 & )

2 —u —t 3w 2( —1)'—u +2&3w

with u =cos(~s/3) and w =s sin(~s/3).
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