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ABSTRACT

The estimation and monitoring of land surface temperatures (LST) over an area is rel-

evant in the study of a diversity of environmental process because is one of the fundamental

physical properties that governs the energy interaction between the Earth’s surface and the

atmosphere at local and global scales. Currently LST measurements over wide areas are

obtained from satellites. However, remotely sensed LST does not have the temporal res-

olution required for adequate tracking and analysis of quick changes, whose monitoring is

especially necessary in disaster management and early warning systems of hydrometeoro-

logical processes. Hence, a data fusion strategy to combine air temperature measurements

from wireless sensor network (WSN) and satellite LST acquisitions is proposed for online

estimation and forecasting of LST images with high temporal and spatial resolutions. The

proposed approach can also be employed to reconstruct missing data or to smooth LST

satellite images that may be coarse because of reprojection and resampling artifacts. The

proposed spatio-temporal estimation method can provide LST estimates every 15 minutes

with an average RMSE of 2.21 ◦C. The proposed WSN and satellite data fusion strategy can

be extended to other applications and is not limited to air temperature and LST measure-

ments. Considering that the approach can provide LST estimates between satellite passes

or even when there is a cloud cover, the approach can provide a valuable tool for future

environmental monitoring and hidrometeorological research.

Keywords: Land Surface Temperature (LST), Wireless Sensor Network (WSN),

Deep Learning, Sensor Fusion, Real-Time.
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RESUMEN

La estimación y el monitoreo de la temperatura superficial del terreno (LST, por sus

siglas en inglés) sobre un área es relevante en el estudio de una diversidad de procesos

ambientales debido a que es una de las propiedades fı́sicas fundamentales que gobiernan

la interacción energética entre la superficie de la Tierra y la atmósfera tanto a escalas loc-

ales como globales. Actualmente las mediciones de LST sobre grandes áreas son obten-

idas por satélites. Sin embargo, la LST medida de forma remota no posee la resolución

temporal requerida para un adecuado seguimiento y análisis de cambios rápidos, cuyo

monitoreo es especialmente necesario en la gestión de desastres y en sistemas de alerta

temprana de procesos hidrometeorológicos. Por lo tanto, se propone una estrategia de

fusión de datos para combinar mediciones de temperatura del aire provenientes de redes

inalambricas de sensores (WSN, por sus siglas en inglés) y mediciones satelitales de LST

para realizar estimaciones en tiempo real y predicciones de imágenes de LST con una alta

resolución temporal y espacial. El enfoque propuesto incluso puede ser utilizado para re-

construir datos faltantes o para suavizar imágenes de LST que puedan ser de baja resolución

debido a efectos de reproyecciones y remuestreo de datos. El método propuesto para la es-

timación espacio-temporal puede proveer estimaciones de LST cada 15 minutos con un

RMSE promedio de 2.21 ◦C. La estrategia propuesta para la fusión de datos entre WSN y

satélites puede ser extendida a otras aplicaciones y no está limitada a la temperatura del aire

y mediciones de LST. Considerando que el enfoque puede proporcionar estimaciones de

LST entre pasos de satélites e incluso cuando existe cobertura de nubes, el enfoque puede

probar ser una herramienta valiosa para futuras investigaciones de monitoreo ambiental e

hidrometeorológico.

Palabras Claves: Temperatura Superficial del Terreno, Redes Inalámbricas de

Sensores, Aprendizaje Profundo, Fusión de Sensores, Tiempo Real.
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Chapter 1. INTRODUCTION

Land surface temperature (LST) is one of the fundamental physical properties that

governs the energy interaction between the Earth’s surface and the atmosphere at local and

global scales (Li et al., 2013). Thus accurate measurement of LST is of primary importance

in a variety of fields, such as biogeochemical studies, climate and environmental monitor-

ing, ecology, hydrology, and meteorology, among other (Li et al., 2013; Buyantuyev &

Wu, 2010; Wan, 2008, 1999a). However, accurately measuring LST of large regions with

adequate temporal resolution is a challenge. Satellite sensors are the main source of LST

data over wide areas, but with limited spatio-temporal resolutions (Khan et al., 2011; Quan

et al., 2018) that are required for adequate tracking and analysis of quick changes, whose

monitoring is especially necessary in disaster management and early warning systems of

hydrometeorological processes (Pinto et al., 2015; Contreras Vargas et al., 2016; Martinis

et al., 2013; Joyce et al., 2009).

The existing strategies to improve temporal resolution of remotely sensed variables

either rely on geostationary satellites, such as GOES (Wu et al., 2015; Sun & Pinker, 2003),

Feng-Yun Quan et al. (2018), or on multi-source satellite data fusion techniques (J. Zhang,

2010), typically combining Landsat and MODIS observations (Hilker et al., 2009; Shen

et al., 2016; Parastatidis et al., 2017), or SAR and multispectral imagery Butenuth et al.

(2011); Martinis et al. (2013). Although new geostationary satellites like GOES-16 and

GOES-17 satellites can provide high temporal resolution imagery every 5 to 15 minutes, i.e.

three time faster than previous probes, the estimation of LST is still limited by the coarser

resolution of geostationary sensors (> 2 km in current GOES) and cloud cover (Inamdar

et al., 2008; Wu et al., 2015; B. Huang et al., 2013). On the other hand, the variations

of LST during the day cycle cannot be measured fast enough using multi-source satellite

data fusion strategies due to the temporal resolution of the existing sensors (Zhan et al.,

2013), even if recently good progress in hourly LST estimation has been achieved by Quan

et al. (2018), who have developed a spatio-temporal multi-satellite data fusion model that
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combines the geostationary Feng-Yu 2F, with Modis and Landsat measurements to achieve

1-hour sampling intervals, 100 m spatial resolution, and 2.5 ◦C RMSE errors on average.

In the above context, the main contribution of this work is the development of a method

for online estimation and prediction of LST with high temporal and spatial resolutions. The

novelty of the approach lies in the formulation of a data fusion strategy based on deep learn-

ing to combine satellite data with measurements obtained from a ground network of spa-

tially distributed sensors that are wirelessly connected (wireless sensor network; WSN).

The survey work of J. Zhang (2010) had pointed out that future improvements in accur-

acy and spatio-temporal resolution would require high-level fusion techniques combining

satellite and terrestrial sensor networks, which despite the rapid technological development,

remained an open challenge. Using ground-level measurements to improve estimates de-

rived from remotely sensed data is not a new idea, but rather an essential aspect of build-

ing, calibrating and correcting models to obtain estimates of different variables of interest.

Many approaches build and calibrate models off-line in different domains, from grassland

and biomass measurement (Friedl et al., 1994) to improved LST estimation (Vidal, 1991).

More recent works propose data fusion strategies of satellite data with ground sensors to

improve time-series estimates of solar radiation (Mieslinger et al., 2014), the concentra-

tion of particulate material PM2.5 (Lv et al., 2016), and LST (Ke et al., 2013). However,

these studies have focused their efforts on the estimation of aggregated data on a daily or

seasonal basis, and to the best of our knowledge, the proposed method is the first one to

provide an approach for real-time satellite and WSN data fusion capable of estimating re-

motely sensed data from ground-level measurements, unlike the existing approaches that

rely on multi-source satellite data fusion techniques (J. Zhang, 2010).

It is to be noted that the proposed approach is validated with a WSN involving only

eight nodes deployed by the authors (Aldunate & Oberli, 2018; Contreras Vargas et al.,

2016) in the Quebrada de Ramón watershed, which is part of the Andes mountain range in

central Chile, covering an area of 4×5 km (N-S×W-E), with abrupt topography spanning

2



altitudes between 877 and 1751 m a.s.l. The WSN nodes correspond to 8 pixels (2%

of the image) and allow to estimate the LST in the remaining area corresponding to a

25×25 km region with less than 1.4 ◦C error. An important advantage of using WSN

measurements is that high temporal-resolution WSN data not only allows to produce LST

maps with the same high temporal resolution of the WSN, but can yield measurements

even during periods in which the cloud cover affects the satellite data. Thus the method can

be used to reconstruct missing values in LST satellite images or to repair image artifacts

produced by map reprojections. In contrast to multi-source satellite data fusion techniques,

the proposed approach can be thought of as methodology to estimate remotely sensed data

from ground-level measurements obtained from a WSN with very low spatial resolution

but higher sampling frequency than standard satellite acquisitions.

This paper is organized as follows. The data sources and the study area are described

in Section 2. The proposed approach, including the notation and preliminary definitions

are explained in Section 3. The performance results of the approach, as well as that of its

spatial and temporal components, are presented in Section 4, followed by final concluding

remarks in Section 5.
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Chapter 2. DATA SOURCES AND STUDY AREA

The proposed method for generating high temporal resolution LST images uses two

sources of data: air temperature measurements from a WSN, and historical data of LST

satellite images. The WSN comprises eight nodes with a temporal resolution of 15 minute

located at the Quebrada de Ramón basin (33◦ 26′ 29′′ S, 70◦ 27′ 36′′ W) on the east of San-

tiago city over the foothills of the Andes mountain range, as illustrated in Fig. 2.1a. Each

temperature sensor is implemented using an integrated circuit sensor SHT21 by Sensirion

AG, with a measurement accuracy of ±0.3 ◦K. As for the remotely sensed data, we em-

ployed imagery produced by NASA’s MODIS satellites TERRA and AQUA. The accur-

acy of the current MODIS LST measurements is within 0.5 ◦K, (Wan, 2014); see (Wan,

1999b) for further details on the theoretical basis for LST computation. Specifically, LST

products MOD11 and MYD11 Level-2 were selected because of their spatial resolution

(1 km) and high availability about every six hours per day of the combined TERRA and

AQUA products. The MOD11 A MODIS LST image of the study area showing the 1 km

pixels is presented in Fig. 2.1b
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70.5667°W 70.5129°W 70.4591°W 70.4052°W 70.3514°W

3

5

6

74

2
1
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2 3
4 5
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(B)
FIGURE 2.1. Distribution of WSN nodes in the study area: (a) satellite view, (b)
view on MODIS LST MOD11/MYD11 Level-2 image.

Wireless sensor network data was collected from August 2016 to June 2018, taking

samples every 10 minutes, representing 64,224 air temperature measurements for each one
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of the nodes. The location, altitude and positions of each sensor of the network are presen-

ted in Table 2.1.

TABLE 2.1. WSN sensor node locations.

Sensor ID Latitude Longitude
Altitude

(m a.s.l.)

Corresponding

Position in the

LST Image

1 -33.434 -70.516 877.8 (8,4)

2 -33.431 -70.511 947.7 (8,5)

3 -33.433 -70.501 999.6 (8,6)

4 -33.439 -70.502 1166.7 (9,5)

5 -33.440 -70.501 1236.3 (9,6)

6 -33.448 -70.495 1471.7 (10,6)

7 -33.434 -70.485 1338.1 (9,7)

8 -33.426 -70.478 1751.4 (7,8)

Remotely sensed data was acquired from 24 February 2000 to 26 June 2018, amounting

to 27,198 land surface temperature images. Only very few images with no available data

for any of the pixels within the study area were removed from the data set. The histograms

of LST images along years and day times are shown in Fig. 2.2. It is possible to observe

in Fig. 2.2a that the production of MODIS MOD11 and MYD11 LST images covering the

study area has been practically constant since 2004, with roughly 1600 images per year.

The times of the day at which most of the images were acquired by the satellites are 3 AM,

6 AM, 3 PM and 6 PM, as shown in Fig. 2.2b.

5
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FIGURE 2.2. Histograms of LST data showing the distribution of acquisitions by
year and hour of the day.
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Chapter 3. PROPOSED APPROACH

This section explains the proposed method, starting with the basic notation and defini-

tions that will be useful for a clear exposition of the approach and its different stages.

3.1. Notation and Preliminary Definitions

In order to explain the proposed data fusion approach, it will be useful to firstly explain

the notation adopted to represent measurements from the distinct data sources with different

spatio-temporal resolutions.

3.1.1. Wireless Sensor Network Data

Data from a WSN can be represented as a matrix WM×N , where M is the number of

sampling instants (measurements) and N is the number of sensor nodes in the network. An

element wi,j ∈ WM×N corresponds to the i-th sample acquired by the j-th sensor node

in the network. Missing elements for which it was not possible to obtain a measurement

sample wi,j will be denoted by ∅. A set of samples from all N sensor nodes of the network

at instant i is denoted by wi,∗. These acquisition times are stored in a vector t whose com-

ponents are denoted by ti. The difference between two consecutive components of t is fixed

and equal to the sampling period of the network, Tw, i.e. ti+1 − ti = Tw, i = 0, 1, . . . ,M .

Estimated measurements at time ti will be indicated by ŵti,∗, while predicted measure-

ments k sampling intervals ahead at time ti+k = ti + kTw using information until time ti

will be denoted by ŵti+k|ti,∗. Missing network measurement samples ∅ at sampling in-

stant i will be replaced by imputed values denoted by w̄i,∗ through an imputation process

explained in the following section. It is to be noted that sampling instants ti cannot be

replaced simply by index i because satellite measurements take place at different chrono-

logical time instants and distinct non-uniform sampling intervals. Therefore, this way of

indexing the WSN estimations and forecasts is necessary to avoid confusion.

7



3.1.2. Satellite Imagery Data

Satellite LST data can be represented as a multidimensional matrix SP×R×C , i.e. a

stack of P matrices with R rows and C columns. Here P corresponds to the total num-

ber of satellite acquisitions or passes. The p-th matrix (LST image or map) in the stack

is denoted by Sp,∗,∗, and an the value of an element of that image Sp,∗,∗ in row u and

column v is denoted by sp,u,v, or for brevity as sp,rj , when rj = (uj, vj) corresponds

to the pixel in which the j-th sensor node of the WSN is located. Each satellite acquis-

ition p ∈ [1, 2, . . . , P ] can be associated with a sampling instant τp, stored in a vector

τ . Estimated images at time ti ∈ t will be denoted by Ŝti,∗,∗, while predicted images k

sampling intervals ahead for sampling intervals T = Tw using information up to time ti,

i.e. predicted at time t′ = ti + kT = t + kTw, will be denoted by Ŝti+k|ti,∗,∗. The image

with acquisition time τ closest to WSN time ti will be denoted by Sti,∗,∗ = Sp,∗,∗, with

p = argminp∈{1,2,...,P},τp∈τ ‖ti − τp‖. It is to be noted that Sti,∗,∗ is not an acquisition at

time ti, but simply an image Sti,∗,∗ ∈ SP×R×C and should not be confused with estim-

ated images at time ti denoted by Ŝti,∗,∗. Considering the previous definitions, it should be

observed that estimated or predicted LST maps can be computed at rate equivalent to the

sampling period Tw of the WSN.

3.2. Proposed Method

A process with different stages that model the temporal evolution of the air temperature

measurements inWM×N acquired by the WSN and their relation to satellite LST measure-

ments in SP×R×C is developed using deep neural networks (DNN) to estimate LST im-

ages Ŝti+k|ti,∗,∗ at ti. All estimation stages employ fully connected multi-layer perceptron

DNNs (Goodfellow et al., 2016), except for process that performs the temporal forecasting

of air temperatures, which a recurrent neural network (RNN). RNN are DNN that have

connections that form a directed graph over the elements of a sequence, thus can capture

the dynamic temporal behavior of time sequences. More specifically, the underlying units

of the implemented RNN are long short-term memory (LSTM) networks, which are well

8



known for their ability to classify and make predictions based on time series data (Good-

fellow et al., 2016).

The proposed method involves three main stages, which are shown in the block dia-

gram of Fig. 3.1. First, the WSN measurements wi,∗ at time ti are passed to the imputer

responsible for replacing possible missing data ∅ by estimates w̄i,∗. The second stage gen-

erates predictions w̄ti+k,∗ of future WSN measurements k sampling periods ahead. The

forecasted values are employed in the last stage to produce LST estimates Ŝti,∗,∗ and fore-

casts Ŝti+k,∗,∗, at instants k = 1, 2, . . . ,. The proposed strategy relies on the fact that the

temporal resolution of the WSN is much higher than the one of the satellites. Hence,

when a satellite image is received, it is always possible to match the acquisition with a

measurement from the WSN. On the other hand, satellite derived LST measurements and

air temperatures measured by the WSN sensor nodes are correlated and exhibit continuity

properties. The average rate of change of WSN air temperature measurements in the study

area is 0.015 ◦C/min, which is relatively slow. On the other hand, the sampling period of

the WSN ensures the data is acquired frequently enough, well above the Nyquist frequency

required to reconstruct LST considering the daily/yearly cycle of LST temperatures. In fact,

the frequency spectrum of the temperature data shows that the Nyquist frequency would be

around 6 · 10−4 Hz, while the WSN sampling frequency is 1/600 Hz ≈ 1.67 · 10−3 Hz,

which is about 3 times the Nyquist frequency.
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ŵti+k|ti,∗

Forecasted WSN
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Image

If k = 0, the result
would be the estimation

Ŝti,∗,∗

Wireless Sensor Network
Forecasting Model

Wireless Sensor Network
to Satellite Image Model

Imputer

FIGURE 3.1. Main stages of the proposed method: imputation, WSN forecasting,
LST estimation and forecasting.

A spatio-temporal representation of the WSN and satellite data fusion process for LST

estimation and forecasting is presented in Fig. 3.2. The air temperature measurements wi,j ,

= 1, 2, 3, . . . , N are shown in the bottom level of Fig. 3.2. The measurement wi,2 if the

second sensor node is missing, thus is connected by a dotted line to the second level, which

represents the imputation stage that will replace wi,2 = ∅ by w̄i,2. The third level carries

out the computation of temperature forecasts w̄ti+k|ti,j , j = 1, 2, . . . , N for the N nodes in

the WSN network using a LSTM-RNN (Goodfellow et al., 2016). In the fourth level, the

forecasted air temperatures w̄ti+k|ti,j , j = 1, 2, . . . , N are converted to LST estimates at the

locations of the sensor nodes using air-to-land surface temperature model fj : w̄ti+k|ti,j →
s̄ti+k|ti,rj that yields LST estimates s̄ti+k|ti,rj at the location of each of the sensor nodes

j = 1, 2, . . . , N . It is to be noted that a model fj based on multilayer perceptrons is

learnt for each sensor node location from historical LST data in SP×R×C and the WSN

10



data in WM×N . Finally, another spatial estimation model, also implemented using DNNs

of multilayer perceptrons generates LST estimates Ŝti,∗,∗ and forecasts Ŝti+k,∗,∗, at instants

k = 1, 2, . . . ,. The following subsections explain each individual stage in more detail.

wi,1

wi,2 = ∅

wi,n

Wireless Sensor
Network

Air Temperature
Measurements

( )

wi,1

w̄i,2

Imputation Model

ŵti+k,1

ŵti+k,2

Wireless Sensor Network
Forecasting Model
(Temporal Prediction)

f(ŵti+k,1,a)

Land Surface Temperature
Estimation from Sensor
Air Temperature (f)
(One model per Sensor)

Auxiliary
Variables (a)

(day of the year,
hour of the day,

year)

Satellite Image Estimation
from Land Surface Temperature

(One model per output pixel)
(Spatial Estimation)

ŝti+k,0,3

(1)

(2)

(3)

(4)

(5)

(6)

FIGURE 3.2. Spatio-temporal representation of the WSN and satellite data fusion
process for LST estimation and forecasting.

3.2.1. Imputation Process

Missing data due to errors in data acquisition is a common problem in environmental

research. These gaps of information are an important obstacle for the prediction of time-

series because normally prediction processes require data to be continuously fed without

interruptions (Junninen et al., 2004). Usual methods for imputing missing data are based on

simple algorithms, such as mean substitution, interpolation, smoothing, and curve fitting,

or statistical methods based on regression analysis, or autoregressive models. However, the

11



former are not suited for inferring variables with high time dependence and a strong season-

ality like temperature. On the other hand, standard time series analysis and autoregressive

models yield unsatisfactory results with datasets that present large periods of missing data.

Therefore, the proposed imputation process to replace possible missing values wi,j = ∅

at sampling instant i of one or more sensor nodes j = 1, 2, . . . , N , by estimates w̄i,j re-

lies on the close relationship between measurements of the network’s sensors and the fact

that is very unlikely to have intermittence in many sensors simultaneously. To this end, a

multilayer perceptron DNN is implemented to capture the relationship between the sensor

nodes of the WSN and produce sensor outputs for the missing ones from the available ones.

One novel aspect of the implemented neural network is that the model takes into account

information about sensor failures to adjust the imputation process accordingly. The inform-

ation about sensor failure is used as an input of the neural network as will be explained next.

The percentage of missing values for each one of the sensors nodes in the WSN dataset

computed over a total of M = 64, 224 measurement instants are shown in Fig. 3.3a. On

the other hand, the histogram of simultaneously missing values in a measurement (wi,∗)

shown in Fig. 3.3b confirms that there are always at least two operational sensor nodes, or

three operational nodes 99.95% of the time considering the total number of nodes isN = 8.

Only less than 3% of the measurements have 2 missing values at the same time and less than

1.5% of the measurements have three missing values simultaneously. It is also to be noted

that each sensor node of the WSN has a different probability of including missing data as

can be seen in Fig. 3.3a. Assuming failures of sensor nodes in the WSN are statistically

independent, the event of having missing values in the measurement of j-th node of the

WSN can be modeled as a Bernoulli-distributed random variable Xj ∼ B(1, pj), where

pj is the probability of finding a missing value in the j-th component of the measurement

vector wi,∗ at any time instant i. The probability pj of having missing values in node

j = 1, 2, . . . , N is computed from the data inWM×N and summarized in Table 3.1.
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FIGURE 3.3. Missing values in the wireless sensor network measurements.

TABLE 3.1. Probabilities pj of finding a missing value for each sensor node of the WSN.

1 2 3 4 5 6 7 8

0.1457 0.1109 0.0884 0.1863 0.1036 0.1245 0.1846 0.2033

A training dataset WT composed of 49,727 measurements in WM×N was employed

to build the DNN model. The first step of the training process involved the removal of

measurement vectors with empty data from the training dataset, leaving only a subset of

23,784 complete measurements per sensor. Then 23,784 realizations taking values 0 or

1 were drawn from Bernoulli distributions Yj ∼ B(1, 1 − pj) with j = 1, 2, . . . , 8. The

process Yj simulates good sensor measurements that do not have missing values. The

realizations of Yj for each of the nodes was stored in an auxiliary matrix A with the same

size to that of the training dataset, as shown in Fig. 3.4. After building matrix A, a new

matrix B = (WT ◦A+ ¬A ·∅) was constructed, where ◦ is the Hadamard product, was

constructed to simulate missing values with a sensor failure rate equivalent to that of the

WSN. The empty values were treated as hyperparameters of the training process, which

were replaced by a constant value corresponding to the mean temperature registered by the

sensor node. The inputs to the DNN during the training process were the rows of A and
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B, while the outputs were the values of wi,∗. It should be noted that the rows of A act

as auxiliary vectors that encode the presence or absence of data in a component of wi,∗ as

shown by the inputs to the neural network illustrated in Fig. 3.5. The main parameters of the

neural network implemented for the imputation process are shown in Table 3.2. The idea

behind the proposed learning strategy to build the imputation model is that by telling the

neural network which sensors have good data, it can focus the learning effort on the useful

input data, this in turn allows the neural network to learn better the stochastic behavior of

the WSN node failures and how to handle missing measurements at any given instant.

Wireless Sensor Network Data WT

1 2 3 . . . 8

15.09 14.31 13.40 . . . 11.42

14.34 13.99 13.08 . . . 15.41

18.52 18.31 17.34 . . . 19.45
...

...
...

...
...

17.93 17.85 16.84 . . . 18.97

Auxiliary Matrix A

1 2 3 . . . 8

1 1 1 . . . 1

1 1 0 . . . 0

0 1 1 . . . 1
...

...
...

...
...

1 0 1 . . . 1

B = (WT ◦A+ ¬A ·∅)

1 2 3 . . . 8

15.09 14.31 13.40 . . . 11.42

14.34 13.99 ∅ . . . ∅
∅ 18.31 17.34 . . . 19.45
...

...
...

...
...

17.93 ∅ 16.84 . . . 18.97

w∗,1

wi,∗

Realizations of

Y3(1− p3)

FIGURE 3.4. Preprocessing of the training dataset for the imputation model.

TABLE 3.2. Main parameters of the DNN implemented for the imputation process.

Optimizer Error Activations Layers Size

LM-BFGS RMS TANH

Input: 16

Hidden: (200, 200)

Output: 8
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FIGURE 3.5. Graphical representation of the neural network for the imputation
process. The true sizes of each layer and number of hidden layers are shown in
Table 3.2.

The testing procedure for the proposed imputation model was identical to the one de-

scribed for the training process, with the difference that the outputs of the neural network

were compared to the actual values in order to calculate the reconstruction errors. The er-

ror calculation employs only the outputs corresponding to the missing values and not the

whole reconstructed vector of measurements w̄i,∗. The root-mean squared error (RMSE) of

the imputed values w̄i,∗ compared to the ground truth are summarized in Table 3.3, which

shows an average temperature RMSE of 0.65 ◦C when there is only one missing value, and

0.77 ◦C where there are four missing values. The results of the imputation process applied

to some sequences with missing measurements can be visualized in Fig. 3.6 as highlighted

(darker) dots.
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TABLE 3.3. RMSE for the reconstruction made by the imputation process. The last
column shows the error and standard deviation for any number of missing inputs.

Number of sensors

failing simultaneously
1 2 3 4

1 to 7

(Operational)

RMSE (◦C) 0.606 0.673 0.711 0.766 0.648

Std. Dev. (◦C) 0.031 0.023 0.062 0.307 0.015

01-01 06
01-01 08

01-01 10
01-01 12

01-01 14
01-01 16

01-01 18
01-01 20

12

14

16

18

20

22

24

26

28

°C

2
3
4
5
6

FIGURE 3.6. Example of missing values computed by the imputer process using
the remaining sensors, using original missing data.

3.2.2. Wireless Sensor Network: Forecasting Model

The model to forecast air temperature measurements ŵti+k|ti,∗ using the WSN temper-

ature estimates ŵti,∗ is implemented using a recurrent neural network (RNN) with LSTM

(Long Short-Term Memory) units because of its greater ability to describe the temporal
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dynamics of time series as previously mentioned. The purpose of this model is to pre-

dict future values of the WSN air temperature measurements at the sensor node locations

that will be used in the following stage to produce the LST estimates Ŝti,∗,∗ and forecasts

Ŝti+k,∗,∗, at instants k = 1, 2, . . . ,.

A graphical representation of the LSTM-RNN employed for air temperature forecast-

ing is presented in Fig. 3.7. The main parameters of the LSTM-RNN are summarized in

Table 3.4. The number of measurement time instants ism = 12 and the forecasting horizon

is k = 5 time intervals. It is to be noted (see Fig. 3.7) that air temperature acquisition time

and day of the year are used as inputs represented by a 4-component vector that encodes the

daily and yearly cyclic behavior. More specifically, given a cyclic variable f0 with values

in an interval [a, b), a representation that encodes the periodic behavior of f0 over intervals

[a, b) is given by a tuple (f1, f2), where:

f1 = cos

(
2πf0
b− a

)
,

f2 = sin

(
2πf0
b− a

)
.

(3.1)
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FIGURE 3.7. Graphical representation of the LSTM-RNN for the forecasting
model. The true sizes of each layer and number of hidden layers are shown in
Table 3.4.

TABLE 3.4. Main parameters of the LSTM-RNN for WSN air temperature fore-
casting. LSTM unit parameters are highlighted in bold fonts.

Optimizer Error Activations Layers Size

ADAM RMS
Hyperbolic tangent (Regular)

Hard sigmoid (Recurrent)

Input: 10

Hidden: (200)

Output: 96

The LSTM-RNN was trained with WSN data from January 1 to April 13, 2018, amount-

ing to 9,792 measurements per sensor. WSN measurements from April 14 to May 31, 2018,

corresponding to 4,687 measurements per sensor, were employed for testing. Missing val-

ues were filled by the imputer proposed in Section 3.2.1. The LSTM-RNN was trained to

predict the measurements of each sensor at multiple time steps in the future using six pre-

vious consecutive measurements and their corresponding acquisition times as input. Each
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output comprehends between one to twelve time steps in the future with each time-step cor-

responding to 15 minutes. The forecast errors for future sampling instants k = 1, 2, . . . , 12

are shown in Table 3.5. A comparison of the ground truth and the forecasted air temperat-

ure values one sampling instant ahead (k = 1) and twelve sampling instants ahead (k = 12)

are shown in Fig. 3.8 and 3.9, respectively.

TABLE 3.5. RMSE of the forecasted air temperatures ŵti+k|ti,∗ [◦C] for the loca-
tions of the WSN sensor nodes at different time steps k = 1, 2, . . . , 12.

1 2 3 4 5 6
0.682 0.704 0.767 0.858 0.961 1.066

7 8 9 10 11 12
1.166 1.255 1.331 1.405 1.469 1.534

2018-04-14
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2018-04-20

2018-04-21

2018-04-22
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26
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FIGURE 3.8. One step forecast (15 min.) for sensor j = 3 during an eight day period.

19



2018-04-14

2018-04-15

2018-04-16

2018-04-17

2018-04-18

2018-04-19

2018-04-20

2018-04-21

2018-04-22

12

14

16

18

20

22

24

26 Ground Truth

Prediction

FIGURE 3.9. Twelve step forecast (3 hrs.) for sensor j = 3 during an eight day period.

3.2.3. Land Surface Temperature Estimation From Air Temperature Sensors

Some studies have used land surface temperature to obtain extrema or mean air tem-

perature (L.-w. Zhang et al., 2013; Benali et al., 2012; Vancutsem et al., 2010; R. Huang

et al., 2015; Kloog et al., 2014). To the best of our knowledge there is no published work

to date that has tried the opposite, i.e. obtaining land surface temperature from air tem-

perature measurements, or to compute the instantaneous relationship between these two

variables. However, the correlation between land surface temperature, in particular the

MODIS derived LST and air temperature has been shown in (Mutiibwa et al., 2015) to

be strong, suggesting that it would be possible to obtain a model to infer LST from air

temperature measurements. Thus here a set of Air to Land Surface Temperature models

fj : w̄ti+k|ti,j → s̄ti+k|ti,rj , j = 1, 2, . . . , N , that yields LST estimates s̄ti+k|ti,rj at the

location rj of each of the sensor nodes j = 1, 2, . . . , N from forecasted air temperatures

w̄ti+k|ti,j is developed using DNNs of multilayer perceptrons.
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A graphical representation of the DNN that implements the model fj : w̄ti+k|ti,j →
s̄ti+k|ti,rj is shown in Fig. 3.10. The main parameters of the DNN model are summarized

in Table 3.6. The inputs to each network are the air temperature measured by the sensor

w̄ti+k|ti,j , the time of the day and the day of the year, both encoded using Eq. (3.1), as in

the case of the temperature forecasting model explained in the previous section. Includ-

ing the time of the day and day of the year allows the DNN to learn the cyclical nature

of daily temperatures and their seasonality along the year, greatly improving the accuracy

of the DNNs’ output. However, unlike the DNN model for air temperature estimation and

forecasting, the DNNs that estimate the LST s̄ti+k|ti,rj use only the air temperature value

w̄ti+k|ti,j corresponding to the sensor node j and not the set w̄ti+k|ti,j of all air temperature

values of the WSN. It was observed that taking the measurements from other sensors as

input to model the LST in the position of a given sensor node was detrimental to the per-

formance of the neural network. The results obtained in the design phase also showed that

shallow networks with just one hidden layer worked better for the purpose of estimating

LST from air temperature measurements at the location of each sensor node.

FIGURE 3.10. Graphical representation of the neural network model implemented
to estimate LST from air temperature measurements at the location rj of each WSN
sensor node. The true sizes of each layer and number of hidden layers are shown in
Table 3.6.
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TABLE 3.6. Main parameters of the DNN models implemented to estimate LST
from air temperature measurements at the location of each WSN sensor node.

Optimizer Error Activations Layers Size

LM-BFGS RMS ReLU

Input: 5

Hidden: 100

Output: 1

The training process employed 600 samples amounting to 66% of the WSN and MODIS

data collected before 2018, the remaining data was employed for testing (300 samples).

The LST estimation RMSE values are summarized in Table 3.7 for each air-to-LST model

associated to each node in the WSN. An example of the good match between LST values

estimated from air temperature measurements obtained from the sensing node j = 6 using

the neural network model built are presented in Fig. 3.11.

TABLE 3.7. RMSE values for LST estimated from air temperature measurements
at each sensor node using the Air to Land Surface Temperature models.

Air to Land Surface Temperature

RMS Errors per Sensor Model (◦C)

1 2 3 4 5 6 7 8

2.009 2.091 2.359 1.904 2.364 2.121 2.494 2.003
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FIGURE 3.11. LST estimation from 100 samples of air temperature measurements
in the evaluation set of sensor node j = 6.

3.2.4. Spatial Estimation of LST from WSN Measurements

This last process implements a spatial estimation model using DNNs of multilayer per-

ceptrons to generate LST estimates Ŝti,∗,∗ and forecasts Ŝti+k,∗,∗, at instants k = 1, 2, . . . ,

for the area of interest from the set sti,∗ = {sti,r1 , sti,r1 , . . . , sti,rN} of LST values at each

sensor node location as illustrated in Fig. 3.12. A graphical representation of the DNN

implemented for the spatial LST estimation is shown in Fig. 3.13. The main parameters of

the spatial LST estimation model are summarized in Table 3.8. A neural network for each

pixel location of the satellite image was trained. The inputs to each model are the set sti,∗

of land surface temperatures at the sensor node locations, the time and day of the year, both

encoded using Eq. (3.1) as for the previous models in order to take into account the cyclic
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nature and seasonality of the data. The models were trained using 7,700 pairs of input-

output MODIS LST data collected before the year 2018. An amount of 3,300 input-output

samples were used for testing.

wi,1

wi,2

wi,n

LST Estimates from
Sensor Air Temperature
(One model per sensor)

Pixel-LST from
Estimated LST at Sensor Locations

(One model per output pixel)
(Spatial Estimation)

LST estimate
for pixel (0, 5)

(ŝti,0,5)

Air temperature
measurements

from the Sensors
in the WSN

Estimated LST
for each pixel corresponding
to the location of the sensors

1

1

2

2

FIGURE 3.12. Spatial LST estimates from LST estimates obtained at the WSN
node locations using the WSN air temperature measurements.
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FIGURE 3.13. Graphical representation of the neural network that models the re-
lationship between the LST estimates at a given location, e.g. (r, c) = (0, 5) and
the LST estimated at each sensor node. The true sizes of each layer and number of
hidden layers are shown in Table 3.8.

TABLE 3.8. Main parameters of the DNN model relating LST estimates at the
sensor node locations and LST estimates at other locations.

Optimizer Error Activations Layers Size

ADAM RMS ReLU

Input: 12

Hidden: (200, 200, 200)

Output: 1

A sequence of 100 samples of the estimated LST and their corresponding ground truth

for pixel (0, 0) (upper-left corner) is shown in figure 3.14 to provide a visualization of the

accuracy of the estimates. The LST estimation RMSE values for each pixel are shown in

figure 3.15a. The RMSE values in figure 3.15a correspond to those obtained with models

built using the sensor nodes at their real location. It is possible to notice that the largest

errors are concentrated in the lower right area of the image. This is due to the fact that

there is another watershed (Maipo Valley) separated by a small dividing range; see figure

2.1a. Hence, the WSN air temperature measurements at the western drainage basin of the

Quebrada de Ramón are not very representative of the temperatures in the other basin.
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It is possible to simulate the redistribution of the sensors using a sequence of satellite

LST measurements and treating the values at certain pixels as ground sensor measure-

ments. Figure 3.15b shows that when eight hypothetical sensors are distributed over a

larger area, instead of concentrated in a single region, the RMS error decreases. Hence,

future deployments of WSN could implement similar models as the one proposed here to

find optimal locations for the sensors. In this study, the sensors of the WSN were concen-

trated in area due to limits in the communication range because the nodes are solar-powered

maintenance-free nodes that are not connected to a standard power distribution grid.

0 20 40 60 80 100
Test Sample

0

10

20

30

40

50

LST
(°C)

Ground Truth
Estimation

FIGURE 3.14. An example of LST estimates for pixel (0,0) using the LST estim-
ates at the sensor node locations (RMSE: 1.601 ◦C).
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FIGURE 3.15. Land surface temperature RMSE for each pixel model for their re-
spective testing sets.

The LST estimation RMSE is affected not only by the location of the sensors, but

also by the number of available sensors. The influence of the number of ground sensors

available on the LST estimation RMSE is shown in Figure 3.16a using the sensors at their

actual location. The mean RMSE decreases when more sensors are added to the network

as expected. The standard deviation practically remains the same independently from the

number of sensors added; see Fig. 3.16a. It also was observed in simulations that when

more sensors are uniformly added over a larger area, at the points of Fig. 3.15b, the mean

LST estimation error decreases faster than when more sensors are added closer to each

other within a smaller area; see Fig. 3.16b.
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of sensors (Fig. 3.15b). The blue line is the
same graph as the one in Fig. 3.16a, and is dis-
played for reference.

FIGURE 3.16. Variation of the RMSE when the number of sensors of the WSN is
modified.

3.2.5. Spatial Reconstruction of LST Image from LST Measurements at the Sensor

Nodes

The proposed approached can be employed to reconstruct LST satellite images with

missing data if a set of LST measurements at the location of the sensor nodes is available

and treated as outputs of the process that predicts LST measurements from air temperat-

ures measured by the WSN. To this end, the stage that estimates LST from air temperature

measurements, which was explained in Section 3.2.3 and illustrated as the lower block

in the diagram of Fig. 3.12, is removed. Hence, the LST reconstruction process shown

in Fig. 3.17 only employs the spatial LST estimation stage shown in the upper block of

Fig. 3.12. It is to be noted that the spatial estimation block could be retrained using satel-

lite LST measurements at other locations different to those of the sensor nodes ir order

to implement a reconstruction process that learns the spatial and temporal characteristics

of the LST evolution in the area. It also should be noticed that at least one satellite LST

measurement is necessary because the imputation process can be employed to estimate the

temperatures at the locations of the remaining WSN nodes. However, the reconstructed
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LST image will have a larger estimation errors than when there are more LST measure-

ments at the locations of each node available as input to the neural network as discussed in

the previous section.

Pixel-LST from
LST at Specified Locations
(One model per output pixel)

(Spatial Estimation)

Original LST measurements
from a subset of pixels

Estimated LST
measurements

sp,u,v ŝti,u′,v′

FIGURE 3.17. Spatial LST reconstruction from satellite LST measurements ob-
tained at the locations of at least one of the sensor nodes

.

The proposed LST reconstruction approach provides an alternative to methods that

rely on typical spatial interpolation. Standard spatial interpolation procedures often can-

not model the topographical and temporal features, thus yielding accuracies that are not

suitable for many applications (Zeng et al., 2015). Furthermore, unlike other methods that

consider spatio-temporal features in their model to perform the reconstruction, our method

does not need other LST images that are near in time to the defective LST image (Zeng et

al., 2015; B. Huang et al., 2013).
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Chapter 4. RESULTS

The spatio-temporal LST estimation, forecasting and reconstruction results obtained

with the proposed WSN and satellite data fusion method are discussed in the next sections.

In the computation of the RMSE, the MODIS LST measurements are treated as ground

truth. Thus for an estimated LST image Ŝti,∗,∗, the RMSE with respect to the corresponding

p-th satellite LST measurement is given by:

RMSEp =

√√√√ 1

RC

R∑

u=1

C∑

v=1

(
sp,u,v − ŝti,u,v

)2
, p = 1, 2, . . . , P.

The average RMSE and the RMSE’s standard deviation can be computed using the values

RMSEp, for the LST satellite images Sp,∗,∗, p = 1, 2, . . . , P , in the collection. The follow-

ing results employed P = 80 images acquired during 2018. Each image isR×C = 20×20

pixels.

4.1. LST Spatial Estimation

The averaged RMSE of the estimated LST is 2.21 ± 0.39 ◦C with confidence level

95%. The standard deviation of the RMSE for the collection of estimated LST images

obtained with the proposed approach was 1.8 ◦C. Considering average span of the diurnal

LST variation in the area at the same time of year was 37.4 ◦C, the mean relative error

percentage (RMSE/span) is 5.9%, while the mean relative error percentage of a MODIS

LST image would be 1.3% assuming all pixels have a 0.5◦C error.

Compared to the best approaches reported in the literature that employ multi-satellite

data fusion techniques, such as the STITFM approach by Wu et al. (2015), which uses

groups of satellites (Landsat and MODIS) in addition to one geostationary satellite (GOES/SEVIRI)

to obtain LST estimates, the proposed approach achieves a similar accuracy levels with ad-

ditional benefit of providing measurements at twice the frequency of STITFM. Table 4.1

summarizes the performance of the proposed approach compared to that of the STITFM

reported in (Wu et al., 2015).
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TABLE 4.1. Comparison between the proposed LST estimation approach and the
multi-satellite data fusion method for LST estimation proposed by Wu et al. (2015).

Method
Average

Temporal Resolution
RMSE (◦C)

Proposed approach 15 min. 2.2

STITFM (Two Satellites) 30 min. 3.3

STITFM (Three Satellites) 30 min. 2.2

An example of the spatial LST estimates obtained with the proposed WSN and satellite

data fusion approach is presented in Fig. 4.1, which shows a sequence of virtual satellite

images generated at a higher temporal rate than that of the MODIS products. The first im-

age in Fig. 4.1 coincides with a MODIS acquisition at time t0 = 17:25 (UTC-3) on January

3, 2018 (Chilean Summer). Subsequent images, Fig. 4.1 (b) through (g) correspond to the

LST estimates very 15 minutes. The sequence shows a peak in land surface temperature at

18:25, 2:31 hours before sunset. The last estimated image, Fig. 4.1 (g) is compared to the

ground truth image from MODIS in Fig. 4.1 (h), at time t0 = 18:55 (UTC-3). The RMSE of

the spatial LST estimates is 1.42 ◦C. The perceived similitude between the estimated image

and the ground truth is remarkable.
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FIGURE 4.1. Spatial LST estimates every 15 minutes starting at Jan. 3, 2018,
17:25 (UTC-3). The RMS error between the estimation at time t6 and its corres-
ponding ground truth is 1.212 ◦C.
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4.2. LST Spatial Reconstruction

If the LST measurements obtained from MODIS are used instead of those obtained

from the WSN to estimate the LST values in the remaining pixels, for example, to recon-

struct a satellite image with missing data except at the locations of the sensor nodes, the

average RMSE of the estimated LST image decreases to 1.49 ± 0.14 ◦C with confidence

level 95%. The RMSE’s standard deviation for the collection of reconstructed LST satel-

lite images was 0.64 ◦C. The mean relative error percentage for the reconstruction using

the same evaluation scenario is 3.7%.

An example of LST MODIS images with randomly generated missing areas is shown

in Figs. 4.2 (a), (d) and (g). The proposed WSN and satellite data fusion approach was

employed to spatial LST estimates at the corresponding time instants, shown in Figs. 4.2

(b), (e) and (h). Finally, the missing areas in Figs. 4.2 (a), (d) and (g) are patched with the

pixel values of Figs. 4.2 (b), (e) and (h), to obtain the reconstructed images in Figs. 4.2 (c),

(f) and (i), respectively.
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(E) Ŝt1,∗,∗

0.0 3.5 7.0 10.5 14.0 17.5

0.0

3.5

7.0

10.5

14.0

17.5 10

8

6

4

2

0

2

4

°C

(F) S̄t1,∗,∗

0.0 3.5 7.0 10.5 14.0 17.5

0.0

3.5

7.0

10.5

14.0

17.5

(G) S̊t2,∗,∗

0.0 3.5 7.0 10.5 14.0 17.5

0.0

3.5

7.0

10.5

14.0

17.5
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FIGURE 4.2. MODIS LST acquisitions with randomly generated missing areas
(a), (d) and (g); estimated LST images (b), (e) and (h); and reconstructed im-
ages (c), (f) and (i) at time t0 = May 10, 2018, 18:30, t1 = June 1, 2018, 05:50 and
t2 = January 14, 2018, 18:55 (UTC-3).

4.3. LST Spatio-Temporal Forecasting

The proposed WSN and satellite data fusion approach can also be employed for LST

spatio-temporal forecasting using the WSN forecasting model presented in Section 3.2.2 to

predict future air temperature measurements. The predicted values of future air temperature
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measurements are then used to forecasts of future LST images. The evaluation of the spatio-

temporal forecasting model with the test data yield a small RMSE of 1.42 ◦C. Fig. 4.3 shows

the predicted LST images computed every 15 minutes, starting at t0 = March 6, 2018, 04:00

(UTC-3), towards the end of the summer, 3:34 hours before sunrise. The last forecasted

image (Fig. 4.3g) is compared to the actual satellite measurement (Fig. 4.3h) at the corres-

ponding time. Once again, a remarkable resemblance between the forecasted LST image

and the ground truth can be appreciated.
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FIGURE 4.3. LST spatio-temporal forecasts every 15 minutes starting at t0 =
March 6, 2018, 04:00 (UTC-3). The RMS error between the forecast at time t6
and its corresponding ground truth is 1.420 ◦C.
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4.4. LST Reprojection Refinement

The transformations that associate remote sensor measurements to a specific map pro-

jection involve resampling methods to handle the discrete data. For example, the MODIS

Reprojection Tool (MRT) supports three resampling methods: nearest neighbor, bilinear,

and cubic convolution. It has been reported that bilinear and cubic convolution methods

produce artifacts in the reprojected images and introduce high extrema values. On the other

hand, the nearest neighbor algorithm does not introduce artificial values, but can generate

significant resolution losses (Neteler, 2010). The proposed approach may be employed

to produce smoother LST images taking LST measurements at some image locations as

sensor node temperature measurements.

The capability of the proposed approach to generate spatially smoothed LST images

that preserve the features of the original measurement and spatio-temporal characteristics

learnt by the estimation model are presented in Fig. 4.4, which shows LST images ob-

tained using the nearest neighbor reprojection algorithm in Figs. 4.4 (a), (c) and (e), and

the output obtained in Figs. 4.4 (b), (d) and (f) when the proposed LST spatial estim-

ation approach described in Section 3.2.4 is fed with the LST values of the reprojected

images in Figs. 4.4 (a), (c) and (e) acquired at time instants t0 = January 11, 2018, 14:05,

t1 = January 26, 2018, 19:20, and t2 = February 8, 2018, 05:05. The results show that the

proposed WSN and satellite data fusion approach can be used to refine the coarser LST

reprojected measurements yielding a smoothed reconstruction that is consistent with the

topographical features of the terrain.
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(C) Št1,∗,∗

0.0 3.5 7.0 10.5 14.0 17.5

0.0

3.5

7.0

10.5

14.0

17.5

34

36

38

40

42

°C
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FIGURE 4.4. MODIS LST acquisition with reprojection distortions (a), (c) and
(e) and the corresponding refined LST estimated images (b), (d) and (f) at time
t0 = January 11, 2018, 14:05, t1 = January 26, 2018, 19:20 and t2 = February 8,
2018, 05:05 (UTC-3). 38



Chapter 5. CONCLUSION

An approach for wireless sensor network (WSN) and satellite data fusion capable of

delivering LST estimates and forecasts at a higher rate than the satellite revisit frequency

was presented. To the best of our knowledge, this is the first proposal of a strategy for WSN

and satellite data fusion. This allows to combine the higher temporal resolution of the WSN

with the higher spatial resolution and larger area coverage of the satellite observations. The

approach employs deep neural networks to describe each of the main stages of the LST

estimation process, which includes: (i) an imputation model to estimate missing WSN

terrestrial air temperature measurements, (ii) a forecasting model for prediction of future

WSN air temperature measurements, (iii) a model to estimate LST from air temperature

measurements, and (iv) a spatial LST estimation model from LST values computed at the

location of the WSN nodes. The last stage can be modified to render the proposed approach

useful for spatial reconstruction of LST images that have missing data or to smooth LST

image acquisitions that are coarse due to reprojection and resampling artifacts. The RMSE

of the spatial LST estimation is on average 2.21 ◦C on average for an area of 20 × 20 km

with an 8-node WSN deployed in a 5 × 4 km region located at the Quebrada de Ramón

basin east of the city of Santiago, Chile. A similar RMSE was obtained for LST forecasts

in a 1.5-hour forecasting horizon. The mean relative error percentage obtained considering

the temperature span of the average diurnal LST variation is less than 6%.

The proposed WSN and satellite data fusion strategy can be useful for the applica-

tions and is not limited to air temperature and LST measurements. Ongoing research is

concerned with the study of the effects of fog and wind measured at the ground level, and

model refinements in the presence of cloud cover, in order to improve the accuracy of estim-

ated LST images. Thus the approach may provide a valuable tool for future environmental

monitoring and hidrometeorological research.
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