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Accelerated Motion Corrected Three-Dimensional
Abdominal MRI Using Total Variation Regularized
SENSE Reconstruction

Gastao Cruz,1* David Atkinson,2 Christian Buerger,3 Tobias Schaeffter,1

and Claudia Prieto1,4

Purpose: Develop a nonrigid motion corrected reconstruction

for highly accelerated free-breathing three-dimensional (3D)
abdominal images without external sensors or additional scans.

Methods: The proposed method accelerates the acquisition by
undersampling and performs motion correction directly in the
reconstruction using a general matrix description of the acquisi-

tion. Data are acquired using a self-gated 3D golden radial phase
encoding trajectory, enabling a two stage reconstruction to esti-

mate and then correct motion of the same data. In the first stage
total variation regularized iterative SENSE is used to reconstruct
highly undersampled respiratory resolved images. A nonrigid

registration of these images is performed to estimate the complex
motion in the abdomen. In the second stage, the estimated
motion fields are incorporated in a general matrix reconstruction,

which uses total variation regularization and incorporates k-space
data from multiple respiratory positions. The proposed approach

was tested on nine healthy volunteers and compared against a
standard gated reconstruction using measures of liver sharpness,
gradient entropy, visual assessment of image sharpness and

overall image quality by two experts.
Results: The proposed method achieves similar quality to the

gated reconstruction with nonsignificant differences for liver
sharpness (1.18 and 1.00, respectively), gradient entropy (1.00
and 1.00), visual score of image sharpness (2.22 and 2.44),

and visual rank of image quality (3.33 and 3.39). An average
reduction of the acquisition time from 102 s to 39 s could be

achieved with the proposed method.
Conclusion: In vivo results demonstrate the feasibility of the
proposed method showing similar image quality to the stand-

ard gated reconstruction while using data corresponding to a
significantly reduced acquisition time. Magn Reson Med

75:1484–1498, 2016. VC 2015 The Authors. Magnetic
Resonance in Medicine published by Wiley Periodicals,
Inc. on behalf of International Society for Magnetic
Resonance.
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INTRODUCTION

Respiratory motion is a major source of artifacts in
abdominal imaging, causing ghosting and blurring in the
reconstructed image (1). In two dimensions, a simple
approach to reduce these artifacts is to acquire the image
during breathhold(s). Unfortunately, breathholding is dif-
ficult in three dimensions without compromising resolu-
tion/scan time; therefore, a three-dimensional (3D) free-
breathing acquisition is desired. Free-breathing acquisi-
tion is usually performed using respiratory gating techni-
ques (2). Respiratory gating monitors the position of the
diaphragm in the superior–inferior (SI) direction using
external sensors, navigator echoes or self-gating. External
sensors require additional preparation and provide only
a relative measurement of diaphragm displacement (3).
Navigator echoes do not have these limitations, but can
interfere with image acquisition (e.g., disrupting the bal-
anced steady state free precession acquisition) (4). Self-
gating techniques (5) extract motion information from
the acquired data itself, in general using the central k-
space profile. Respiratory gating only accepts data within
a small gating window, minimizing motion artifacts at
the expense of additional scan time. Moreover, in sub-
jects with highly irregular breathing patterns, drift in
respiratory motion can lead to scan termination due to
low scan efficiency. Respiratory gating monitors SI trans-
lational motion, although it is known that abdominal
acquisitions are corrupted by large nonrigid components
of motion (6–8).

In cardiac imaging, several approaches have been pro-
posed for motion compensation. In (9), SI motion is esti-
mated by means of self-navigation, enabling the
estimation of data weighting factors from the distance to
a reference respiratory phase. This information is then
used in a weighted iterative reconstruction with total
variation regularization to reduce respiratory artifacts.
More complex 3D affine motion has been estimated
from 3D low resolution image navigators and used to
correct the actual acquisition in image space (10).
An alternative approach (11) estimates 3D affine motion
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from respiratory resolved images and uses it to correct
the acquired k-space before reconstructing the image. In
Prieto et al (12), motion is estimated similarly, but is
then corrected directly in the Cartesian reconstruction
using the General Matrix Description (GMD) (13). Addi-
tional solutions have been proposed to correct the more
complex nonrigid abdominal motion. A pixel-by-pixel
translation correction has been used to correct nonrigid
motion (14) using local autofocus (15). This technique
requires the acquisition of additional navigator echoes
as well as triggering and gating of a portion of the
acquired data. A self-gated motion corrected approach is
proposed in Buerger et al (16), where nonrigid motion is
estimated from undersampled respiratory resolved

images. A motion compensated image is then obtained

by warping all undersampled images to a common respi-

ratory position. However, this image-based approach has

two major limitations: (i) aliasing artifacts of each

undersampled motion state are warped to the common

respiratory position and may persist in the final image,

and (ii) the averaging of multiple motion states may lead

to blurring in the final image. The latter effect has been

shown for abdominal and cardiac images in (17,18)

when compared with the GMD approach. GMD corrects

motion directly during the reconstruction process;

although a previous estimation of the motion is

required. This motion has been estimated from low-

resolution training acquisitions (19) or from a computa-

tionally expensive coupled motion reconstruction and

motion estimation problem based on external sensors

(20). These approaches have been demonstrated for fully

and over-sampled acquisitions only. Here, we propose a

highly accelerated GMD-based method to correct non-

rigid motion in undersampled 3D isotropic abdominal

images.
The motion estimation step of the proposed

approach is an extension of the one used in (16) to
account for undersampled acquisitions. Data are
acquired under free breathing with a self-gated golden-
radial phase encoding (G-RPE) trajectory (21,22), ena-
bling the reconstruction of highly undersampled
images at various motion states (respiratory bins).
Unlike Buerger et al (16), where iterative SENSE recon-
struction (23) was sufficient to independently recon-
struct the bins, here we propose to reconstruct all
motion states simultaneously using a spatial and tem-
poral total variation regularized iterative SENSE (TV-
SENSE) approach, allowing reliable motion estimation
from bins with higher undersampling factors than
those reported in (16). Additionally, in the proposed
method motion compensation is performed directly in
the reconstruction, incorporating parallel imaging
information and spatial total variation regularization
(TV-GMD). The proposed approach was tested on nine
healthy volunteers and compared against a standard
gated reconstruction.

METHODS

The proposed framework can be divided into five steps
(Figs. 1b,c). In the first step, data are acquired with a

self-gated 3D golden-radial phase encoding (G-RPE) tra-
jectory during free breathing. These data are sequentially
assigned into different motion states, yielding a set of
highly undersampled k-spaces Kb at the completion of
the acquisition (step 2). Each bin is reconstructed with
TV-SENSE (step 3), producing undersampled respiratory
resolved images Ib. In the next step, nonrigid motion is
estimated using image registration of Ib. Finally, the esti-
mated motion is used to reconstruct a motion corrected
image using TV-GMD.

Image Acquisition

G-RPE (21,22) combines a regularly sampled Cartesian
readout (kx) in SI direction with a radial phase encoding
order in the ky-kz plane, where radial profiles are sepa-
rated by the golden angle hG¼ 111.25� (Figure 1a, top). A
G-RPE acquisition can be undersampled radially by skip-
ping readouts within each radial profile and angularly
by acquiring fewer radial profiles (Figure 1a, bottom).
This trajectory provides a quasi-uniform k-space distri-
bution regardless of the number of profiles used (24),
ensuring an optimal distribution of profiles in k-space
for different length of data acquisition. Additionally, the
central k-space readout (red line in Figure 1b) is
acquired every N � TR seconds where is N the number
of readouts within a radial profile and TR is the repeti-
tion time, allowing for respiratory self-navigation. If the
acquisition time for the radial profile (N � TR) is fast
enough, respiratory motion within the radial profile can
be considered negligible and the central k-space readout
can be used to navigate the entire radial profile.

Data Binning

We identify the respiratory position of each radial profile
by inferring the diaphragm displacement in the (SI) read-
out direction as described in Buerger et al (25). This self-
navigated respiratory signal is used to group the acquired
data into different respiratory positions. During this pro-
cess, referred as data binning, the radial profiles in each
bin will not be equally spaced by the golden angle as
they depend on the breathing cycle (16). Therefore a
quasi-uniform k-space distribution is not guaranteed for
any bin. k-Space gaps may generate artifacts in Ib and
affect subsequent motion estimation. Thus, it is impor-
tant to ensure that each bin has adequate coverage of k-
space for reliable motion estimation. The artifact level in
Ib is predicted using the maximum angle between two
radial profiles (a), similar to (25). To guarantee that the
image quality of Ib is sufficient for reliable motion esti-
mation we perform an adaptive binning that forces each
bin to have ab (maximum angle between two radial pro-
files in bin b) smaller than a predetermined amax (deter-
mined empirically). To minimize intra-bin motion, only
bins with a bin window (wb) smaller than a maximum
bin window (wmax) are accepted.

Here, we perform an adaptive binning (Figs. 1d,e) with
constraints to ensure reliable motion estimation. This
process is controlled by 4 parameters: maximum overall
undersampling factor (Rmax), the maximum angle (amax),
the maximum bin window size (wmax) and the minimum
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gating efficiency (GEmin). Gating efficiency (GE) is given
by:

GE ¼ Accepted Profiles

Total Profiles Acquired
[1]

Respiratory bins are chosen such that within each bin,
ab<amax (to limit reconstruction artifacts), and
wb<wmax (to limit intra-bin motion). To limit undersam-
pling artifacts in the final reconstruction of the complete
dataset, a minimum amount of data to respect Rmax is
enforced. A potential bin is first generated at the
end-exhale position with a bin window size equal to the

image resolution. The bin window is increased until it
has enough data to comply with the amax constraint (Fig.
1d). If the bin window size exceeds wmax the bin is dis-
carded to minimize intra bin motion, otherwise it is
accepted. A sliding window is used to initialize a poten-
tial bin in the next respiratory position and the process
in Figure 1d is repeated.

Once the considered data thus far have been binned,
the algorithm tests if the selected dataset satisfies the
minimum gating efficiency. If the current gating effi-
ciency is less than GEmin (Fig. 1e), then an additional
radial profile is considered and the binning process is

FIG. 1. a: Top: Diagram of the golden radial phase encoding (GRPE) trajectory. Cartesian readouts (kx direction) are acquired with a

radial order in the phase encoding plane (ky – kz). Consecutive radial profiles (numbered 1, 2, and 3) are separated by the golden angle
hG¼111.25�. a: Bottom: Diagram of GRPE undersampling in the phase encoding plane. Angular undersampling is achieved by skipping

complete radial profiles (full gray radial profiles), while radial undersampling is performed along each radial profile by uniformly skipping
readouts (gray readouts along radial profiles 1, 2, and 3). b,c: Diagram of the proposed approach in five steps. The acquisition is com-
prised of two parts: step 1. Image is acquired with 3D G-RPE; step 2. The central k-space line yields a respiratory signal which is used

to bin data. The reconstruction is divided into 3 parts: step 3. Binned datasets are simultaneously reconstructed with TV-SENSE; step
4. Motion is estimated by image registration (LREG) of the binned reconstructions; step 5. The estimated motion is used in the motion

compensated reconstruction. Only the acquired data are needed to produce a motion compensated image. Adaptive data binning is
performed in two steps: d: Each bin is initialized with a window size wb. If ab is larger than amax, wb is increased, providing additional
data for this bin. This process is repeated until amax is respected. If the final wb is larger than wmax, the bin is discarded; otherwise it is

accepted. e: Insufficient data cause a significant fraction of bins to be discarded, leading to a poor gating efficiency (GE). If GE is
smaller than GEmin, an additional radial profile is considered and the full dataset (including the newly considered radial profile) is re-

binned. This process terminates when the GEmin, amax and wmax constraints are simultaneously respected.
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restarted (back to Figure 1d). Data binning terminates
once enough motion states are adequately populated
(ab<amax, wb<wmax) and the complete dataset satisfies
the condition GE>GEmin.

Reconstruction of Respiratory Bins

The undersampled bins are simultaneously reconstructed
with total variation regularized iterative SENSE (TV-
SENSE) (26,27) given by:

Î b ¼ arg minIb
fjjEIb � Kbjj22 þ ksTV s þ ktTV tg [2]

where Kb is the acquired data at each bin b, E is the
encoding matrix including coil sensitivities, gridding
and Fourier transformation, Ib the binned images to be
reconstructed, TVs represents the 3D spatial total varia-
tion (intra-bin) and TVt the temporal total variation in
the respiratory direction (inter-bin). The l2-norm is the
data consistency term. TVs is the sum of absolute differ-
ences in each bin; TVt is the sum of absolute differences
between adjacent bins. Both of these transforms are l1-
norms operating in image space, defined as:

TV s ¼ jjrsIbjj1 [3]

TV t ¼ jjrtIbjj1 [4]

where rs and rt represent the 3D spatial gradient and
the 1D temporal gradient, respectively. The parameters
ks and kt define the balance between total variation reg-
ularization and data consistency. The TVs term removes
noise-like aliasing in the image and sharpens the main
edges in the image, e.g., the diaphragm–lung boundary,
allowing better image registration. Large ks values
enhance these effects at the expense of additional blur-
ring (due to over-smoothing). While blurring limits the
accuracy of subsequent image registration, aliasing
introduces errors in Ib that can make the registration
fail altogether. Hence, we use a large value for ks to
reconstruct artifact-free respiratory bins and allow reli-
able motion estimation. The TVt removes additional ali-
asing in areas where there is little motion, like the
central part of the liver. Large kt values will introduce
blurring in regions with large motion, e.g., diaphragm–
lung boundary. Thus, we use small kt values to distin-
guish motion states. Here, the TVt term amounts to a
small regularization compared with TVs, yielding minor
improvements in the reconstructed image. The values
for ks and kt were determined empirically by inspecting
the output reconstructions of four training datasets cov-
ering the expected range of undersampling factors and
respiratory amplitudes and choosing values that
removed the most background aliasing without signifi-
cantly blurring the image.

To accelerate bin reconstruction, a data consistency
reconstruction (i.e. ks and kt set to zero) is used as the
starting estimate for TV-SENSE. This approach acceler-
ates convergence and delivers a good approximation of
the reconstructed image. These reconstructions are pre-
conditioned (23) by intensity correction (from coil sensi-
tivities) and a Voronoi based density compensation

function (28), as our data acquisition (G-RPE) is non-
Cartesian.

Motion Estimation

A 3D nonrigid respiratory motion model is obtained
from image registration of reconstructed bin images to a
common respiratory position. This is done using the
LREG tool (29), which performs an intensity based regis-
tration through a succession of local affine registrations,
starting from a global affine down to small image blocks.
The resulting deformation field is thus nonrigid.

Image Reconstruction

The final undersampled image is reconstructed using a
spatial total variation regularized GMD approach, based
on the formalism introduced in Batchelor et al (13). The
GMD approach is described by:

K ¼
X

b
AbFScUbI ¼ EI [5]

where I is the ideal (motionless) image, Ub are the spa-
tial transformations for bin b obtained with LREG, Sc are
the coil sensitivities for coil c, F is the forward Fourier
transform, Ab is a logical matrix that selects the k-space
lines acquired for bin b, and K is the acquired multi-
channel k-space data. Equation [5] is in the reference
frame of the coils, where they are assumed to remain
static. I may be obtained by inverting the encoding oper-
ator E. Practical inversion of E is obtained with iterative
methods such as the conjugate gradient (CG). The CG
requires a symmetric positive-definite matrix, thus we
apply the method to the equivalent normal equation:

EHK ¼ EHE
� �

I [6]

where EH is the Hermitian transpose of E.
The proposed approach uses undersampled data, which

results in noise amplification in the reconstructed motion
corrected images due to poor conditioning of the inversion.
This happens for two reasons: first, if the object moves out-
side the field-of-view (FOV) then information is perma-
nently lost; second, correcting for motion within the FOV
may cause k-space inconsistencies, causing some samples
to overlap and creating k-space gaps. This effectively
increases the undersampling factor (R), which contributes
to making Eq. [6] undetermined (30). Furthermore, in prac-
tice the motion is not known exactly and errors in motion
estimation can further contribute to the poor conditioning
of this problem. It has been shown how multiple channels
improve the condition of the motion reconstruction prob-
lem for fully sampled images (30). To reduce the effect of
poor conditioning in undersampled datasets we include
spatial total variation regularization TVs in the GMD recon-
struction (TV-GMD), given by:

Î ¼ arg minIfjjEI � K jj22 þ ksTV sg [7]

This is solved with a nonlinear conjugate gradient
reconstruction using the solution to the nonregularized
approach as a starting estimate, similar to the previous
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description of the bin reconstruction. In the TV-GMD
reconstruction, the TVs term is used to remove noise-like
aliasing with small ks values. The ks for the TV-GMD
was determined empirically by choosing a value that
reduces the remaining artifacts without significantly
affecting image sharpness.

Data Acquisition

Nine healthy volunteers were scanned under free-
breathing on a 1.5 Tesla (T) clinical scanner (Philips

Achieva, Philips Healthcare, Best, The Netherlands)
using a 32-channel cardiac coil. Written informed con-

sent was obtained according to institutional guidelines.
Data were acquired with a balanced steady state free pre-

cession sequence with the following parameters: 287 �
287 � 287 mm isotropic FOV, 1.75 � 1.75 � 1.75 mm

isotropic resolution, (TR/TE)¼ 3/1.43 ms, flip angle 30�.
During acquisition, each radial profile was uniformly

undersampled in the radial direction by a factor of 2. For
the resulting reconstructed matrix size of 164 � 164 �
164, we need 256 radial profiles to approximately fulfil
the Nyquist criterion in the angular direction, assuming

a quasi-uniform profile distribution. During the scan,
820 radial profiles were acquired to guarantee all volun-

teers provided enough data for different reconstruction
approaches, including the self-gated reconstruction

which has a low scan efficiency.

Simulations

The proposed approach estimates motion from highly
undersampled respiratory resolved bin reconstructions
(Ib). A pseudo-random distribution of radial profiles is
sampled at each respiratory bin, depending on the
breathing pattern. This may result in large k-space gaps
that can introduce artifacts in the reconstructed images.
Specifically, k-space gaps affect the image point spread
function by broadening the main lobe/increasing side
lobe amplitude, which results in blurring/aliasing arti-
facts (24). Blurring and residual artifacts may hinder sub-
sequent image registration, producing inaccurate motion
fields. A simulation was conducted in one representative
volunteer to study the relationship between the maxi-
mum angle between two radial profiles (amax) and the
accuracy of motion estimation. An end-inhale image (F)
was reconstructed with 25 different numbers of radial
profiles (p), from fully sampled (256 profiles) to highly
undersampled (26 profiles). The obtained undersampled
images (Fp) were registered to a reference fully sampled
end-exhale image (Fr). The obtained motion fields were
then compared with the ground-truth: the registration
between Fr and F. We measure the average displacement
error in the motion field e(a) similar to (25):

e að Þ ¼

PN
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U
!

a Kpð Þ nð Þ � U
!

Fr nð Þ
� �2

r

N
[8]

where Ua(Kp) is the motion field between Fp and Fr, UFr

is the motion field between F and Fr, and the sum is
taken over all the voxels (N being the total number of
voxels in the image).

Comparison with Image Based Motion Compensation

A preliminary study was performed to compare the
approach described in Buerger et al (16), hereby referred
as image-based motion compensation (IMC) with the pro-
posed TV-GMD. To evaluate the effects of blurring and
residual artifacts in motion estimation, bin reconstruc-
tions using the amax value, obtained by means of simula-
tions, were performed using iterative SENSE (as in IMC)
and with the proposed TV-SENSE. Motion fields
between neighboring bins of representative volunteers
were obtained by means of LREG. A comparison of
motion estimation obtained from undersampled SENSE
and TV-SENSE bin reconstructions was made by com-
puting their displacement errors to motion fields
obtained from a dataset 3� oversampled in the angular
direction (considered as ground truth). Additionally, all
nine datasets were reconstructed with IMC, using the
same amount of data as the TV-GMD reconstruction.
This resulted in a total of 160 6 37 acquired profiles for
both TV-GMD and IMC reconstructions. IMC reconstruc-
tion was performed with iterative SENSE (23), taking
approximately 1 h. IMC and TV-GMD reconstructions
were compared by means of measures of liver sharpness
and gradient entropy. TV-GMD reconstruction and the
comparison metrics are described in more detail in the
following section.

In Vivo Experiments

The same acquired data were used retrospectively to pro-
duce a 2� undersampled non-motion corrected (NMC)
reconstruction (2� undersampling in radial direction, no
undersampling in angular direction), a 2� undersampled
5 mm self-gated reconstruction (2� undersampling in
radial direction, no undersampling in angular direction),
and a highly undersampled TV-GMD reconstruction (2�
undersampling in radial direction, 1.8� undersampling
in angular direction, on average). This resulted in a total
of 256, 414 6 147 and 160 6 37 acquired profiles for the
NMC, gated and TV-GMD reconstructions.

The following binning parameters were used:
amax¼ 13.75� (determined according to the previous sec-
tion); wmax¼5 mm (same value as the gating window);
GEmin¼ 80% (set to remove outliers in the respiratory
cycle). Furthermore, to avoid remaining undersampling
artifacts in the final motion corrected reconstruction a
maximum undersampling factor (Rmax) of 4 was used.
Therefore, the proposed method was set to reconstruct a
minimum of 128 radial profiles, equivalent to 2� angular
undersampling and 2� radial undersampling. This
resulted in data being grouped into three to five bins
(varying per volunteer), with bin undersampling factors
ranging from 5.2� to 18.9� (average of 9.5�). The
motion corrected datasets were undersampled from a
minimum of 2.1� to a maximum of 4� (average of 3.6�).
Table 1 presents values for undersampling factors, gating
efficiency, acquisition time, number of acquired profiles,
number of profiles per bin, number of bins, and bin win-
dow sizes. The respiratory bins were reconstructed with
TV-SENSE. The initial l2-norm reconstruction ran with
10 iterations, with ks¼0 and kt¼ 0. This result was used
as a starting estimate for the reconstruction with ks¼ 0.2
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and kt¼0.1 (corresponding to 9.6 � 10�6 and 4.8 � 10�6,
respectively, in terms of the average jj.jj‘ norm of the
images), three iterations. The reconstructed bins were
registered to estimate the motion for the TV-GMD recon-
struction. The initial data consistency GMD reconstruc-
tion ran with five iterations, ks¼ 0. The following TV-
GMD reconstruction used ks¼ 0.0001 (corresponding to
4.8 � 10�9, in terms of the average jj.jj‘ norm of the
images) and five iterations. Additionally, data were
reconstructed with GMD (4 iterations) for additional
comparison with TV-GMD. It took approximately 1.5 h
to reconstruct bins (TV-SENSE) and an additional 1.5 h
for the motion compensated reconstruction (TV-GMD) on
a 12-core implementation. The gated and nonmotion cor-
rected images were reconstructed with iterative SENSE
(23), both taking approximately 5 min to reconstruct.
Coil sensitivities were estimated from a reference scan.
All images were reconstructed using Matlab (The Math-
Works, Natick, MA).

To observe the effect of undersampling in the final
motion corrected reconstruction, data from two represen-
tative volunteers were reconstructed with the proposed
method with undersampling factors of 4�, 3�, 2�, and
1�, using the same estimated motion as described above.

The proposed TV-GMD approach was compared with
the gated reconstruction by means of liver sharpness,
gradient entropy, visual image scoring and ranking (31).
The liver sharpness and gradient entropy metrics were
computed on a set of 10 coronal slices. To compute liver

sharpness, twenty-five 1D profiles were manually

selected across the liver–lung interface. The sharpness

measure for each profile was obtained by the maximum

gradient normalized to the maximum intensity, similar

to Botnar et al (32). Gradient entropy has previously

been used in motion correction as an optimization cost

function that favors distinct boundaries and reduced arti-

facts and was ranked 1 of 24 image quality metrics stud-

ied (33). Here we use local gradient entropy as an image

quality metric, similar to Vuissoz et al (34). The total

gradient entropy of the image is given by the mean of the

local gradient entropies. All liver sharpness and gradient

entropy values were normalized to the reference gated

values. We present the gradient entropy results inverted

to allow easier comparison with the other metrics (the

higher the metric the better the image). Two experts (a

radiologist with 14 years of experience in MRI and an

image processing researcher with 18 years of experience

in MRI) were asked to “score the sharpness of the main

boundaries and features of the images” on a scale of 0

(extreme blurring) to 4 (no blurring) and “rank the over-

all image quality based on existing artifacts, ghosting

and blurring” from 1 (worst) to 4 (best). Statistical signif-

icance of gradient entropy and liver sharpness was eval-

uated using a paired t-test (P-value of 1%); statistical

significance of expert sharpness score and quality rank

was evaluated using a Wilcoxon signed rank test (P-

value of 1%).

FIG. 2. Plot of the mean motion field error as a function of the number of radial profiles used for bin reconstruction. Several a values
are marked in the graph. Respiratory bin reconstruction for the volunteer studied for 3 different a values are shown: (a) a¼5�, (b)
a¼13.75�, and (c) a¼16.25�. For a�13.75�, motion field errors are kept below 1.1 voxels.

Table 1
Acquisition and reconstruction information for non-motion corrected (NMC), gated, GMD and TV-GMD reconstructions.

Acquisition and reconstruction NMC Gated GMD TV-GMD

Number of bins 1 1 3-5 3-5
Gating/Bin windows (mm) 11.1 6 3.5 5.00 2.76 6 1.1 2.76 6 1.1
Number of profiles per bin 256 256 49 6 16 49 6 16

Number of profiles acquired 256 414 6 147 160 6 37 160 6 37
Number of profiles reconstructed 256 256 148 6 37 147 6 37

Acquisition time (s) 62.98 101.79 6 36.21 39.36 6 9.13 39.36 6 9.13
Gating efficiency (%) 100 67 6 15 93 6 7 93 6 7
Undersampling factor 2 2 3.6 6 0.5 3.6 6 0.5

Accelerated Motion Corrected Abdominal MR 1489



RESULTS

Simulations

Figure 2 shows the mean voxel error in the registration
deformation field decreasing with the increasing number
of radial profiles. Angular gaps values (a) resulting for
different number of radial profiles are displayed through-
out the graph. For values lower than a¼ 13.75� the mean
voxel error in the motion fields remains below 1.1

voxels. For a values larger than 13.75� the error in the
motion fields start increasing significantly. Based on this
simulation, we chose to set amax¼ 13.75�.

Comparison with Image Based Motion Compensation

Figures 3a–c show bin images of volunteer 2 for a zero-
filled reconstruction, iterative SENSE and TV-SENSE for
resulting undersampling factors (R) of �11�, �15�, and

FIG. 3. Reconstructions of bins 1, 2, and 3
with 46, 33 and 27 radial profiles (correspond-

ing to undersampling factors R of 11, 15 and
19, respectively). a: Zero-filled reconstruc-
tions. b: Iterative SENSE used in (16), signifi-

cant aliasing remains. c: TV-SENSE, most
aliasing is eliminated. d: k-Space sampling

locations in the phase encoding plane for bins
1, 2, and 3. e–h: Motion estimation errors (in
voxel units) between neighboring bins for TV-

SENSE and iterative SENSE bin reconstruc-
tions for two volunteers. Color coded motion

estimation errors are overlaid on the anatomi-
cal reconstruction. Iterative SENSE motion
estimation (f–h) shows increased local errors,

whereas TV-SENSE provides more reliable
motion estimation (e–g).
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�19� for bins 1, 2, and 3, respectively. Iterative SENSE
reconstruction, as used in Buerger et al (16), shows resid-
ual artifacts (Fig. 3b). These artifacts are significantly
reduced with a TV-SENSE reconstruction, while only
introducing minor blurring (Fig. 3c).

The improvement in motion estimation accuracy with
the proposed TV-SENSE in comparison to previously
shown iterative SENSE can be seen in Figures 3e–h, for
two representative volunteers. Image registration of
SENSE reconstructions can produce local errors

FIG. 4. Coronal (top), sagittal (middle) and axial (bottom) slices for volunteers 2 and 4 (including zoom-in images, arrows point out some

main differences). a: Image based motion correction (IMC) for volunteer 2 with 4� undersampling at 100% gating efficiency. Residual
aliasing may be seen in all slice orientations. Additionally, some blurring is introduced by IMC. b: Proposed TV-GMD for volunteer 2 with
4� undersampling at 100% gating efficiency. Residual aliasing is reduced and image structures appear sharper when compared with

IMC. c: IMC for volunteer 4 with 4� undersampling at 100% gating efficiency. Residual aliasing is not significant in this volunteer, but
the IMC still introduces additional blurring to the image. d: TV-GMD for volunteer 4 with 4� undersampling at 100% gating efficiency. A

sharper reconstruction is obtained with the TV-GMD.
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(yellow-red regions in Figures 3f,h) as the LREG
algorithm attempts to register aliasing artifacts. TV-
SENSE removes most of these artifacts, enabling reliable
motion estimation (corresponding blue-green regions in
Figures 3e,g).

Figure 4 shows multiple slice orientations of two vol-
unteers for image-based motion compensation (IMC) and
TV-GMD reconstructions. If undersampling artifacts from
different motion states fail to cancel out, residual aliasing
may arise in IMC as shown in Figure 4a for volunteer 2.

FIG. 5. Coronal (top), sagittal (middle) and axial (bottom) slices for volunteer 1 with maximum respiratory amplitude of 14.8 mm (includ-
ing zoom-in images, arrows point out some main differences). NMC (non-motion corrected): 2� undersampled at 100% gating effi-

ciency. Several structures in the image are corrupted by motion. Gated: 2� undersampled at 60% gating efficiency. Most structures are
sharper than the NMC. GMD: 3.5� undersampled at 80% gating efficiency. The GMD is sharper than the NMC, but presents remaining

undersampling artifacts. TV-GMD: 3.5� undersampled at 80% gating efficiency. The total variation regularization improves under-
sampled reconstruction at the expense of minor blurring.
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This aliasing is significantly reduced with the TV-GMD
(Fig. 4b). Results for volunteer 4 using IMC (Fig. 4c)
present less residual aliasing, but additional blurring is
introduced (which can be seen in both volunteers).
In contrast, the TV-GMD corrects motion without

introducing this additional blurring (Fig. 4d). TV-GMD
and IMC presented liver sharpness values of 1.18 and
0.98, respectively, and gradient entropy values of 1.00
and 0.98, both statistically different with a P-value of
1%.

FIG. 6. Coronal (top), sagittal (middle) and axial (bottom) slices for volunteer 2 with maximum respiratory amplitude of 8.2 mm (including
zoom-in images, arrows point out some main differences). NMC (non-motion corrected): 2� undersampled at 100% gating efficiency.

Some blurring is visible in image structures and the liver–lung border. Gated: 2� undersampled at 77% gating efficiency. There is no
significant improvement, as the gated reconstruction uses a 5 mm window. GMD: 4� undersampled at 96% gating efficiency. The high
undersampling creates a strong noise-like aliasing. TV-GMD: 4� undersampled at 96% gating efficiency. The total variation regulariza-

tion improves GMD undersampled reconstruction at the expense of some minor blurring, despite using only 128 radial profiles.
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In Vivo Experiments

Figure 5 shows multiple slice orientations for the non-

motion corrected, gated, GMD and TV-GMD reconstruc-

tions for volunteer 1. In Figure 5, it can be seen that TV-

GMD and gated reconstructions yield images of similar
quality, correcting most ghosting and blurring present in
the non-motion corrected (NMC). The gated and NMC
reconstructions have an undersampling factor of 2�,
while the GMD and TV-GMD resulted in an undersam-
pling of 3.5� for this volunteer. Remaining artifacts from
undersampling and noise amplification can be observed
in the GMD reconstruction (Fig. 5). This effect is

consistent across all volunteers and increases for higher
undersampling factors. Comparison between GMD and
TV-GMD highlights how TV regularization improves the
conditioning of the reconstruction. Figure 6 shows multi-
ple slice orientations for volunteer 2, where the GMD
and TV-GMD reconstructions resulted in an undersam-
pling of 4�, compared with 2� for the gated and NMC.
The TV-GMD presents a sharper reconstruction than the
gated (Fig. 6), due to the fact that the resulting binning
windows were smaller (2.76 mm average) than the gating
window (5 mm). Note that undersampling artifacts are
stronger for this case, but still can be reduced by TV
regularization.

FIG. 7. a: Coronal slices for vol-
unteer 3 reconstructed with TV-

GMD at undersampling factors
(R) of 4�, 3�, 2�, and 1�, cor-
responding to 128, 170, 256,

and 512 radial profiles, respec-
tively. The gated and nonmotion
corrected (NMC) reconstructions

have an undersampling factor of
2. A signal-to-noise improvement

is visible as more data are used
for the reconstruction. Vessel
features benefit particularly from

this additional data. b: Coronal
slices for volunteer 4 recon-

structed with TV-GMD at under-
sampling factors (R) of 4�, 3�,
2�, and 1�, corresponding to

128, 170, 256, and 512 radial
profiles, respectively. The gated

and non-motion corrected (NMC)
reconstructions have an under-
sampling factor of 2. Small, low

contrast features in the image
become better defined with the

TV-GMD reconstruction and
benefit from the lower under-
sampling factors.
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Reconstructions for the TV-GMD at various undersam-
pling factors in two volunteers are shown in Figures
7a,b. As expected, undersampling artifacts decrease with
increasing data used. The proposed method is flexible in
the choice of the maximum undersampling factor of the
reconstructed image which may be useful for clinical
applications that require specific signal-to-noise ratios.

Bar plots of the average acquisition times, undersam-
pling factors, gradient entropies, liver sharpness, sharp-
ness score, and image quality rank over all nine

volunteers are shown in Figure 8. When comparing with
the gated reconstruction, the TV-GMD reconstruction
reduces the average scan time from 101 to 34 s. The gra-
dient entropy indicates the TV-GMD and gated recon-
structions have the best image quality (1.00 and 1.00,
respectively), significantly better than NMC (0.97) and
GMD (0.95). Image rank from visual assessment agreed
with gradient entropy, marking TV-GMD (3.33) just
below the gated (3.39), significantly better than NMC
(1.61) and GMD (1.67). Image sharpness score from

FIG. 8. Bar plots comparing the performance of the non-motion corrected (NMC), gated, GMD and proposed TV-GMD reconstructions
in terms of average acquisition time (a), average undersampling factor (b), average liver sharpness (c), expert sharpness score (0:

extreme blurring to 4: no blurring) (d), average (inverse) gradient entropy (e), and expert overall quality rank (1: worst to 4: best) (f). Stat-
istically different results with a P-value of 1% are marked with (*).
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visual assessment yielded similar values between the
TV-GMD (2.22) and gated (2.44), differentiating them
from the NMC (1.17). Liver sharpness measures were not
as sensitive as expert sharpness evaluation, but pre-
sented a similar behavior, marking TV-GMD as the best
(1.18), followed by GMD (1.12) and gated (1.00), signifi-
cantly better than NMC (0.90).

DISCUSSION

The proposed approach accelerates the acquisition by
means of undersampling and 3D nonrigid motion correc-
tion, reducing the average scan time by 2.6� when

compared with a gated acquisition. Here, motion is esti-
mated (TV-SENSE) from highly undersampled respira-
tory resolved images and corrected in the reconstruction
(TV-GMD) of the undersampled final data set. Gradient
entropy and image quality ranking present similar values
for the TV-GMD and gated reconstructions, distinguish-
ing them as superior to the NMC and GMD. The noise-
like aliasing present in the GMD reconstruction is
responsible for the worse values in gradient entropy. The
liver sharpness and expert sharpness score show the TV-
GMD removes motion-induced blurring (visible in the
NMC) to a similar level as the gated reconstruction. In
cases of uniform breathing the TV-GMD achieves sharper

FIG. 9. Coronal slices for a non-
motion corrected (NMC) G-RPE

2� radially undersampled, Carte-
sian navigator gated (5 mm) 2�
undersampled and TV-GMD G-

RPE 2� radially undersampled
for two volunteers. The Cartesian

gated and TV-GMD approaches
compensate motion to a compa-
rable degree. Residual motion is

still present in the Cartesian
gated (ghosting, yellow dotted
arrows) and TV-GMD (minor blur-

ring, red full arrows).
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reconstructions than the gated as it uses binning win-
dows (2.76 mm average) smaller than the gated window
(5 mm).

This experiment was carried out retrospectively to
compare different approaches, but the decision to stop a
running acquisition once enough data have been
acquired could be performed prospectively. This process
requires a 1D FFT and a cross-correlation (to obtain the
self-navigation signal), followed by the adaptive binning
algorithm, taking less than 3 ms to compute. One limita-
tion of the proposed method is the 3 hour reconstruction
time. Reconstruction times increase with both the
amount of data used and the number of bins. The bottle-
neck in these reconstructions is the nonuniform Fourier
transform, which may be accelerated by GPU implemen-
tations (35). Another solution to this problem would be
to use Cartesian trajectories with similar properties to
the G-RPE, such as G-CASPR (12,36) or VDRad (37).

Note that the proposed approach requires a superior–
inferior readout for self-navigation and alternative navi-
gation strategies will be needed for trajectories with read-
outs in other directions. Another limitation is error
propagation from motion estimation. If the estimated motion
is not accurate, this can lead to artifacts in the TV-GMD
reconstruction (results not shown here). Here we force every
bin to respect amax to guarantee accurate and reliable motion
estimation. The proposed method is limited to inter-bin
motion correction, thus a significant fraction of k-space
remains uncorrected in the form of intra-bin motion. In this
work, we perform motion compensated reconstructions with
undersampling factors up to 4�. At high undersampling fac-
tors, over-regularization with total variation may create
piecewise smoothing artifacts therefore an appropriate selec-
tion of a regularization parameter is needed.

It has been shown that GMD is capable of nearly per-
fect motion correction when the motion fields are known
exactly (13). Thus, future improvements should target
the motion estimation. First, self-navigation may be
improved by using multiple coil information (38), as
opposed to the single coil approach used here. Second,
the number of bins may be increased by lowering the bin
window size, wmax. This approach requires longer
acquisitions and additional reconstruction time. How-
ever intra-bin motion and total variation artifacts of the
motion corrected images should be reduced. Third, bin
quality may be improved by introducing pseudo-random
sampling in the radial direction, which may improve
both motion estimation and motion compensated recon-
struction. The value amax was determined from a single
volunteer study and although it provided successful
reconstructions for all nine volunteers, further investiga-
tion may provide a more optimal setting.

A preliminary study was performed to compare the pro-
posed approach with a Cartesian gated acquisition. 2�
undersampled Cartesian navigator gated (5 mm) and G-RPE
datasets were acquired on two healthy volunteers using the
same parameters as before. Figure 9 shows coronal slices
for a non-motion compensated (NMC) G-RPE 2� radially
undersampled, Cartesian gated 2� undersampled (AP
direction) and TV-GMD G-RPE 2� radially undersampled
for two volunteers. These initial results show that Cartesian
gated and TV-GMD remove most motion artifacts present

in the NMC images. However, residual motion in the Carte-
sian gated creates coherent ghosting, whereas in TV-GMD
it creates minor blurring. Further studies in patients will
be needed for clinical validation.

CONCLUSIONS

A motion compensated reconstruction framework for
accelerated 3D abdominal imaging has been presented.
The proposed approach does not require additional
training data or external sensors. Motion is estimated
from highly undersampled data and incorporated into
the reconstruction. In vivo results demonstrate the
potential of the proposed method to provide similar
image quality as a gated acquisition while reducing scan
times by a factor of 2.6.
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