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ABSTRACT

Reinforced concrete (RC) building models consider several modeling assumptions that

influence the accuracy of the predicted seismic response. Moreover, their nonlinear re-

sponse is strongly dependent on the concrete model adopted. This study evaluates the

epistemic uncertainty inherent to modeling of RC both at the linear building response

level and at the non-linear material response level.

The first part of this thesis quantifies the epistemic uncertainty inherent in modeling

assumptions by evaluating the seismic response of six instrumented RC free-plan build-

ings. Four linear modeling assumptions were studied: (1) the type of finite element used;

(2) the in-plane and out-of-plane stiffness of the diaphragms; (3) the type of soil-structure-

interaction model considered; and (4) the decision where to apply fixity to the base. The

response’s uncertainty was first evaluated comparing predicted and measured periods us-

ing ambient vibrations. Additionally, global seismic response parameters such as story

shears, torques, and drifts were compared between a reference model and a set of variant

models. In general, uncertainties identified in the core forces were larger than in the story

forces, and also larger at the basements than in the upper levels.

The second part of this thesis evaluates the uncertainty associated with the inelastic

constitutive concrete models for three-dimensional (3D) and plane-stress formulations.

Five concrete models were considered: (i) the Hyperbolic Drucker-Prager (DPH) plastic

model; (ii) the Lubliner-Lee-Fenves (LLF) plastic-damage model; (iii) the Wu-Li-Farı́a

(WLF) model; (iv) the Farı́a-Oliver-Cervera (FOC) model; and (v) the total strain rotating

(ROT) smeared-crack model. New analytical expressions for the numerical integration of

the updated stress, and the consistent tangent operator were derived for all models. Results

were validated with simple numerical experimental tests subjected to several stress states.

Unilateral effects, strain-rate effects, mesh size, and strain-localization phenomenon were

evaluated using these models. Furthermore, validated finite element recommendations

xx



were proposed to improve the convergence of the models studied, most notably the use of

a smoothed consistent tangent operator and the incorporation of a viscous-regularization

technique. Finally, it is concluded that the most important source of epistemic uncertainty

of the material models is observed in the dissipated energy and the linearized stiffness of

the last unloading-loading cycle in most simulated tests.

Keywords: epistemic uncertainty, free-plan buildings, reinforced concrete, seis-

mic response, finite elements, diaphragm stiffness, soil-structure inter-

action, basements, instrumentation, plastic-damage models, smeared-

crack models, stress updated integration, return-mapping algorithms,

projected return-mapping, consistent tangent operator, strain-softening,

strain-localization, viscous-regularization
xxi



RESUMEN

Los modelos de edificios de hormigón armado (HA) consideran distintos supuestos

de modelización que influyen en la precisión para la predicción de la respuesta sı́smica.

Además, su respuesta no lineal depende fuertemente del modelo de hormigón adoptado.

Este estudio evalúa la incertidumbre epistémica inherente a los supuestos de modelización

de HA tanto a nivel de respuesta lineal del edificio como a nivel de respuesta no lineal del

material.

La primera parte de esta tesis cuantifica la incertidumbre epistémica inherente en los

supuestos de modelización mediante la evaluación de la respuesta sı́smica de seis edifi-

cios instrumentados de HA del tipo planta libre. Se estudiaron cuatro supuestos de mod-

elización lineal: (i) el tipo de elemento finito utilizado; (ii) la rigidez en el plano y fuera

del plano de los diafragmas; (iii) el tipo de modelo de interacción suelo-estructura consid-

erado; y (iv) la decisión sobre dónde aplicar el empotramiento a la base. La incertidumbre

de la respuesta se evaluó primero comparando los perı́odos simulados con los medidos us-

ando vibraciones ambientales. Además, se compararon parámetros globales de respuesta

sı́smica, como las fuerzas por piso, torques y desplazamientos entrepiso, entre un modelo

de referencia y un conjunto de modelos variantes. En general, las incertidumbres asoci-

adas en las fuerzas de corte del núcleo de muros fueron mayores que las fuerzas por piso

y también mayores en los subterráneos que en los niveles superiores.

La segunda parte de esta tesis evaluó la incertidumbre asociada con los modelos consti-

tutivos inelásticos de hormigón para la formulaciones tri-dimensional (3D) y de tensiones

planas. Se consideraron cinco modelos de hormigón: (i) el modelo plástico hiperbólico

de Drucker-Prager (DPH); (ii) el modelo de plasticidad y daño de Lubliner-Lee-Fenves

(LLF); (iii) el modelo de Wu-Li-Farı́a (WLF); (iv) el modelo de Farı́a-Oliver-Cervera

(FOC); y (v) el modelo de grieta difusa total strain rotating (ROT). Se derivaron nuevas

xxii



expresiones analı́ticas para la integración numérica de la tensión actualizada y el oper-

ador tangente consistente para todos los modelos. Los resultados se validaron con prue-

bas experimentales numéricas simples sometidas a diferentes estados de tensiones. Los

efectos unilateral, la velocidad de deformación, el tamaño de la malla, y el fenómeno

strain-localization se evaluaron usando estos modelos. Además, se propusieron recomen-

daciones de elementos finitos validadas para mejorar la convergencia de los modelos es-

tudiados, en particular el uso de un operador tangente consistente suavizado y la incor-

poración de una técnica de regularización viscosa. Finalmente, se concluyó que la fuente

más importante de incertidumbre epistémica de los modelos de materiales se observa en la

energı́a disipada y la rigidez linealizada del último ciclo de descarga-carga en la mayorı́a

de las pruebas simuladas.

Palabras claves: incertidumbre epistémica; edificios de plan libre, hormigón armado, re-

spuesta sı́smica, elementos finitos, rigidez del diafragma, interacción

suelo-estructura, subterráneos, instrumentación, modelos de plasticidad

y daño; modelos smeared-crack, integración de la tensión actualizada,

algoritmos de retorno; algoritmos de retorno proyectados; operador

tangente consistente, strain-softening, strain-localization, regularización

viscosa.
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INTRODUCTION

0.1. Overview of this thesis

This research begins with the study of the epistemic uncertainty inherent in linear models

of the so-called free-plan reinforced concrete (RC) buildings. These buildings are com-

monly used in Chile for office space, and characterized by three main structural compo-

nents: a central shear wall core, a perimeter frame, and a post-tensioned slab that connects

the two seismic and vertical-load carrying elements. The motivation of this part of the

thesis is two-fold. First, to study the epistemic uncertainty present in computing the lin-

ear dynamic response of these structures under different modeling assumptions, following

the same procedures as engineers currently use in design practice. And second, to try to

unravel the most significant components controlling the seismic response of these struc-

tures, which at the time of this work had yet not been exposed to strong ground shaking.

However, due to the good seismic performance of free-plan buildings in the 2010, Maule

Chile earthquake, the main focus of this research shifted toward evaluating the epistemic

uncertainty of residential shear wall buildings. More than 40 of these latter buildings

presented an unexpected and rather brittle failure of some of the shear walls primarily in

the first basement and lower stories. Consequently, in the attempt to model typical dam-

aged shear wall structures using non-linear finite element (FE) models, aimed to better

understand their seismic response, we encountered in different software serious numerical

convergence problems of these models. These difficulties forced us to study and possi-

bly improve the convergence characteristics of some of these models. Thus, the second

part of this thesis is completely dedicated in Chapters 2 and 3 to study in detail the three-

dimensional (3D) and plane-stress available FE models used for concrete, and propose

consistent formulations for all of them. Reinforcing steel models were also used and im-

proved. This task ended up being very complex and interesting from a research perspec-

tive, so the study of epistemic uncertainty and convergence of complete buildings, moved



2

one step down into the epistemic uncertainty of the finite elements used in constructing

the FE non-linear models required for these structures. This is the sequence and rationale

of the material presented in this thesis work, and is reflected in the two different examples

of epistemic uncertainty considered in Chapters 1 and 2. An obvious next step of this

work is to construct the complete 3D models of typically damaged shear wall structures

in 2010, and evaluate the epistemic uncertainty at the aggregated structural model level.

This evaluation enables the designer to predict and validate the seismic response using as

benchmark the damaged structures, but also to propose for the thousands of similar resi-

dential structures, the implementation of a consistent retrofit strategy similar to that used

for the damaged buildings strengthened after the 2010, Chile earthquake.

0.2. Description of problem

The predicted seismic response of RC structures is strongly dependent on the modeling

assumptions used in their computational simulations. The uncertainty generated by these

assumptions is within the realm of epistemic uncertainty and is due to the lack of knowl-

edge associated with each assumption and parameter considered in the model.

Until the 1990’s, RC shear-wall buildings were the predominant type of structure used

in residential and commercial buildings in countries such as Chile, New Zealand and the

US. However, in the past decade, RC free-plan buildings have become more popular for

office buildings use. Basically, they consider a lateral force resisting system composed by

a shear wall core and a RC moment-resisting perimeter frame, both coupled in bending

and shear usually by a post-tensioned floor slab. Before the 2010 Maule, earthquake in

Chile, no building of this class had been tested in a real earthquake ”experiment”, and

there existed significant uncertainty and questions about their potential seismic behavior.

Fortunately, a good performance of these structures was observed after the earthquake

(Naeim et al., 2011; Lemnitzer, Massone, Skolnik, de la Llera, & Wallace, 2014) probably

due to an adequate structural design, a detailed structural review process, and the excellent

local soil conditions.
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Several models exist to evaluate the seismic response of RC buildings, from simplified

models using a single beam (e.g. Encina & de la Llera, 2013; Sepúlveda, de la Llera, &

Jacobsen, 2012) to complex FE models to asses super-tall buildings (Besjak, McElhatten,

& Biswas, 2010; Lu, Lu, Zhang, & Ye, 2011). Recent technical documents provide guide-

lines to create structural models for tall buildings, e.g., PEER/ATC-72 (ATC-72, 2010)

and LATBSDC (LATBSDC, 2014), which focus on Performance-Based Seismic Design

(PBSD) procedures. However, these guidelines provide limited prediction capability for

building simulations and are a source of inherent epistemic uncertainty. Moreover, free-

plan buildings are particularly sensitive to model uncertainty given their low structural

redundancy. These modeling assumptions include aspects such as the in-plane and out-

of-plane diaphragm stiffness considered for each floor slab, the soil-structure interaction

effects (SSI) considered, and the fixity level of the structure to the ground. These effects

and others can have a large influence in the seismic response. Moreover, some of these

modeling assumptions are still today a matter of discussion in design offices.

With the advent of supercomputers, complex inelastic constitutive concrete models are

more common today in FE structural software and in engineering design offices. However,

these inelastic models may lead to considerably different results due to the use of different

input parameters and assumptions, which generates uncertainty in the responses and de-

sign. Thus, it is necessary to improve the qualitative and quantitative epistemic uncertainty

inherent in these concrete models.

Concrete as a quasi-brittle material exhibits a strongly nonlinear behavior due to crack-

ing in tension and crushing in compression. Cracking generates an asymmetric damage

behavior between the tension and compression regimes, and an irreversible strength and

stiffness degradation (Krajcinovic, 1996). Tension is characterized by strain-softening

behavior after peak strength due to crack propagation, whereas concrete in compression

exhibits nonlinear hardening, non-negligible plastic strains, and volumetric expansion due

to dilatancy. Moreover, pressure-sensitive behavior is observed when subject to lateral

confinement, followed by material compaction under high confinement loads. Also, in
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cyclic loading cases, the cracks can close under load reversals from tension to compres-

sion with partial stiffness recovery, phenomenon known as unilateral effect (Mazars et al.,

1990; Ramtani, 1990). In addition, it is observed that concrete strength depends on strain

rate due to growth delay of internal micro-cracks with strain-rate (Suaris & Shah, 1985).

In the last three decades, several 3D and plane-stress constitutive models have been

proposed to simulate the mechanical characteristics of concrete under multi-axial loading

conditions. Five main groups of models can be identified: (i) plastic models, based on

flow theory of plasticity to describe the irreversible plastic strains and hardening behav-

ior, (Drucker & Prager, 1952; Willam & Warnke, 1975; DiMaggio & Sandler, 1971); (ii)

damage models, based on continuum damage mechanics (CDM) (Kachanov, 1958) and

defined within the thermodynamics of irreversible processes to predict the stiffness degra-

dation and strain-softening behavior caused by micro-crack propagation (Mazars, 1984;

J. Simo & Ju, 1987; Faria, Oliver, & Cervera, 1998; Wu, Li, & Faria, 2006; Voyiadjis,

Taqieddin, & Kattan, 2008); (iii) plastic-damage models, which combine plasticity and

CDM theories (Lubliner, Oliver, Oller, & Oñate, 1989; J. Lee & Fenves, 1998; Armero &

Oller, 2000; Wu et al., 2006; Taqieddin, Voyiadjis, & Almasri, 2012); (iv) fracture mod-

els, based on the nonlinear fracture mechanics theory to simulate the anisotropic behavior

through crack planes of degradation (Rashid, 1968; Bažant, 1982; Rots, 1988; Cervera &

Chiumenti, 2006); and (v) mixed models, which are a combination of the latter models

(Červenka & Papanikolaou, 2008; Behbahani, Barros, & Ventura-Gouveia, 2015).

Most of these concrete models require a numerical implementation in a FE software

at the integration point element level using shell and solid type elements. These models

are commonly used to simulate complex geometries and multi-axial loading conditions.

Moreover, the elaboration of a robust, reliable, and efficient numerical algorithm is key

to correctly simulate the behavior of more complex RC structures like the ones that failed

in 2010. For strain-driven models, two steps are required for the numerical implementa-

tion: (i) the algorithm to evaluate the updated stress tensor; and (ii) the construction of a

consistent stiffness matrix according to the equations used in the updated stress. Several
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numerical algorithms exist in the literature for the numerical implementation of concrete

models (e.g. J. C. Simo & Hughes, 1998; de Souza Neto, Peric, & Owen, 2008). It is also

well-known that local concrete models are susceptible of numerical convergence prob-

lems and spurious mesh responses due to the strain-localization phenomenon (Pijaudier-

Cabot & Bažant, 1987). Enhancement and robustness of these models can be improved

by different methods, such as higher-order gradients models (Peerlings, de Borst, Brekel-

mans, & de Vree, 1996), non-local integral models (Pijaudier-Cabot & Bažant, 1987), and

viscous-regularization models (Needleman, 1988). The latter approach includes a numer-

ical viscosity in the constitutive equations, which significantly improves the convergence

properties, and is broadly used for its relative implementation simplicity.

Plane-stress concrete models are commonly used with shell elements to model RC

walls, slabs and membranes, where one element dimension is much smaller than the oth-

ers, and the out-of-plane stress of the element is negligible. Moreover, multi-layered shell

elements are adequate to simulate an accurate distribution of in-plane and out-of-plane

concrete stresses with a considerable reduction in CPU time relative to solid elements (e.g.

Chacón, de la Llera, Hube, Marques, & Lemnitzer, 2017). The plane-stress formulation

and its numerical implementation for a material is very different from the 3D-case, due to

the additional constraint imposed to satisfy the condition of zero normal stress. Indeed, to

account for plastic effects, the radial return-mapping algorithm used in the 3D-case case is

not valid for the plane-stress condition, and hence, the consistent plastic operator cannot

be obtained explicitly. Consequently, the use of specific formulations and algorithms are

required for plane-stress models.

0.3. Main questions

According to the provided background and literature review, several questions drive

this research:
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• Which are the most critical assumptions in modeling and computing the seis-

mic response of RC free-plan buildings?; how significant are these sources of

epistemic uncertainty?

• It is possible to unify inputs and notation of different stress-strain constitutive

models for concrete used in FE software?

• Can numerical convergence of these models be improved without a significant

loss of accuracy in the estimation of the response?

• What is the epistemic uncertainty generated by these different stress-strain con-

stitutive models in simple benchmark examples?

• Are the 3D and plane-stress formulations compatible?

0.4. Hypothesis

The main hypotheses of this research are that:

• The epistemic uncertainty inherent in RC free-plan buildings may lead to sig-

nificant discrepancies in the structural responses computed, which, in turn, may

lead to unsafe building designs.

• Modeling assumptions lead to significant epistemic uncertainty in the seismic

response and design of RC free-plan buildings.

• It is possible to recast five well-known local continuum stress-strain constitu-

tive concrete models using consistent notations and algorithms to successfully

implement them in existing FE software.

• The numerical convergence properties of these concrete models may be im-

proved by using a smooth tangent stiffness operator and by adding numerical

damping without sacrificing significant numerical accuracy.

• The epistemic uncertainty in the numerical response of an example of a simple

concrete prism is useful to identify the sensitivity of the adopted nonlinear stress-

strain constitutive models.
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• The response and convergence properties of the selected inelastic stress-strain

concrete models can be made essentially independent of the FE formulation

adopted.

0.5. Objective and organization of the thesis

The main objective of this thesis is to evaluate the epistemic uncertainty associated

with structural and modeling assumptions in RC structures at different model scales, rang-

ing from the complete structure to the finite element level. This is done in two parts: (i)

uncertainty of linear building models of free-plan buildings (Part I); (ii) uncertainty of

inelastic stress-strain constitutive concrete models using a 3D formulation (Part II); and

(iii) uncertainty of inelastic stress-strain constitutive concrete models, but employing a

plane-stress condition (Part II). This research is organized in the following chapters.

Chapter 1 deals with the epistemic uncertainty in the seismic response of RC free-plan

buildings using linear models. Thereby, the following modeling aspects are evaluated:

(1) the type of finite elements used; (2) the in-plane (axial) and out-of-plane (bending)

stiffness of the diaphragm; (3) the simplified SSI model; and (4) the building connection

at the basement level. The rationale behind the selection of these four modelling aspects is

predominantly based on true assumptions made in engineering practice, which are known

to generate controversies during the review process of building projects. Six existing free-

plan buildings, located in Santiago, Chile were considered. For each building, a detailed

FE model was built using the software packages ETABS and ANSYS. Additionally, a

Response Spectrum Analysis (RSA) was carried out to estimate the following response

parameters: vibration periods, shear stresses, overturning moment to shear stress ratio,

dynamic eccentricity, lateral displacements, and lateral and torsional inter-story drifts. The

model uncertainty is estimated from a relative comparison using the mean and standard

deviations of results using predicted ratios between variant models and reference models.

This part also includes a comparison between measured and estimated building periods

for the first four vibration modes.
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Because in the non-linear case the building response is strongly controlled by the fi-

nite element selection, Chapter 2 is dedicated to compare at the finite-element scale the

response of five different stress-strain constitutive concrete models and provide all the

details necessary for an effective numerical implementation of the 3D formulation. The

five concrete models studied are: (i) the hyperbolic Drucker-Prager (DPH) plastic model;

(ii) the Lubliner-Lee-Fenves (LLF) plastic-damage model; (iii) the Wu-Li-Farı́a (WLF)

model; (iv) the Farı́a-Oliver-Cervera (FOC) model; and (v) the total strain rotating (ROT)

smeared-crack model. A complete description of these models is presented using a con-

sistent tensorial notation, which by itself is a relevant result. Also, numerical convergence

issues and their solution strategies are also presented for these models. Moreover, detailed

algorithms for the numerical implementation of the updated stress tensor, and new explicit

expressions for the algorithmic consistent tangent stiffness tensors of the models are de-

veloped and described. Also, a consistency check between models of input parameters,

such as uniaxial laws and fracture energy, is presented. Furthermore, numerical examples

using basic benchmark tests subject to monotonic and cyclic loading conditions under uni-

axial, biaxial, and triaxial stress states are presented to demonstrate the capabilities of the

proposed implementations. The unilateral effect, the strain-rate effect, the mesh size influ-

ence, and the strain-localization phenomena are discussed between the different models.

Additionally, the numerical model for the compression failure mode of a test specimen is

illustrated as an example of application. Finally, the epistemic uncertainty in the uniaxial,

biaxial, and triaxial stress loads, in the unilateral effect, and in the strain-rate cases are

evaluated with a set of response parameters with respect to the experimental benchmark

tests.

Furthermore, Chapter 3 develops the numerical implementation of the five concrete

models mentioned above for the plane-stress formulation, considering a consistent nota-

tion and a vectorized format. Similar to the 3D-case, numerical algorithms for the updated

stress vector, and new expressions for the algorithmic consistent tangent stiffness matrix

of the models are derived. Moreover, the same experimental benchmark tests considered
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for the 3D-case are presented to demonstrate the capabilities of the proposed algorithms

and implementations.

Finally, Chapter 4 presents a summary of the most important conclusions obtained

relative to the epistemic uncertainty in each of the two parts of this work, focused on the

building and the element scale.
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1. EPISTEMIC UNCERTAINTY IN THE SEISMIC LINEAR RESPONSE OF RC

FREE-PLAN BUILDINGS

During past decades reinforced concrete (RC) free-plan buildings have become a com-

mon structural layout in seismically prone countries such as Chile. Typical lateral force

resisting systems in these buildings consist of a combination of core shear walls, a RC

moment-resisting perimeter frame, and a post tensioned floor slab that couples the core

and perimeter frame, which essentially works as an in-plane or out-of-plane diaphragm

(Encina & de la Llera, 2013). Typical story heights (N ) range from 18 to 25 stories above

ground, and 4 to 8 stories below ground. Fundamental periods for free-plan buildings usu-

ally exceed the rule of thumb for frame structures N/10. Prior to the Maule, Chile earth-

quake, in 2010 (Mw = 8.8), little or no information about the seismic performance of these

structures was available in the literature. Despite the large magnitude of this earthquake

and the severe shaking records in Santiago, these buildings showed good performance, and

essentially remained in the linear range without major structural or non-structural damage

(Naeim et al., 2011; Lemnitzer et al., 2014). This performance can be attributed to good

structural design, a detailed structural review process, and favorable local soil conditions.

A variety of building models have been proposed to evaluate building response param-

eters of structures under dynamic loading. One example is a simplified model that rep-

resents the building as a single beam with shear deformations, warping, and a diaphragm

with bending stiffness, the latter being essential to adequately represent the seismic behav-

ior of these structures (Encina & de la Llera, 2013; Sepúlveda et al., 2012). On the other

extreme, complex Finite Elements Models (FEM) have been used to assess medium-rise

buildings (Zekioglu, Willford, Jin, & Melek, 2007; Shin, Kang, & Grossman, 2010) and

super-tall buildings (Besjak et al., 2010; Lu et al., 2011). Current standards and techni-

cal documents provide guidelines on how to create structural models for tall buildings,

e.g., PEER/ATC-72 (ATC-72, 2010) and LATBSDC (LATBSDC, 2014) with a focus on

Performance-Based Seismic Design (PBSD), which principally establishes different cate-

gories of behavior for different earthquake intensity levels.
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Current literature however, is scarce on the quality of the prediction capabilities of

these models, their inherent epistemic uncertainty and their effect on building design and

loading responses. Free-plan buildings are particularly sensitive to this epistemic uncer-

tainty given their simplicity and low redundancy. In order to quantify epistemic uncer-

tainty at least three methodologies are identified: (i) stochastic FEM where variables dis-

tribute according to a Probability Density Function (PDF) (Hardyniec & Charney, 2012);

(ii) sensitivity analyses, where some assumed variables lie on a range of possible discrete

values (Sousa et al., 2012); and (iii) empirical data and reduction of uncertainty though

model calibrations using real data (Brownjohn, Pan, & Deng, 2000; H. Liu, Goel, Bai,

Scott, & Kono, 2006). The primary objective of the first part of this thesis is the assess-

ment of epistemic uncertainty inherent to modelling assumptions rather than parametric

variations. Modelling assumptions intrinsically yield larger response variations and typi-

cally generate most of the discussion in the review process of building projects since there

is little information and guidelines in practice on how to consider them in building design.

Uncertainty resulting from small variations within a parameter (e.g. Young’s modulus,

damping, element dimensions, live loads, mass, and soil stiffness) have been studied by

other researchers (LATBSDC, 2014; ASCE/SEI-7-10, 2013; ATC-83, 2012) and should

be routinely evaluated during parametric sensitivity studies within the design process.

Recent studies (Encina & de la Llera, 2013) as well as empirical evidence after the

2010 Maule earthquake have validated the significance of floor diaphragms in the be-

havior of free-plan buildings. In common practice diaphragms are modeled with infinite

in-plane rigidity and a reduced out-of-plane (bending) flexibility. This assumption allows

an important reduction in the number of Degrees Of Freedom (DOF) of the model as well

as in computational time. Several studies (Ju & Lin, 1999; Saffarini & Qudaimat, 1992)

have examined the implications of this modeling assumption and demonstrated that this

assumption mainly affects low-rise buildings with short periods and small out-of-plane

diaphragm stiffness relative to the stiffness of the lateral-load resisting system. By consid-

ering the in-plane deformation of the floor slab, the periods and displacements increase,

and the seismic stresses decrease (Fouad, Ali, & Mustapha, 2012). Conversely, when the
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rigid diaphragm assumption is applied at levels with abrupt changes in lateral stiffness,

such as the transition zone between the first level and the basements, a significant shear

stress is generated in the core walls; also known as back-stay effect (Rad & Adebar, 2009).

For high-rise buildings, out-of-plane diaphragm stiffness becomes significant (Fouad et al.,

2012; D.-G. Lee, Kim, & Chun, 2002).

Another important parameter when assessing the dynamic response of free-plan build-

ings is the constraint of the surrounding soil and the interaction thereof with the basement

floors of the structure. Generally, Soil-Structure Interaction (SSI) increases internal damp-

ing, lengthens the vibration periods, increases the lateral displacements of the structure,

and changes the stresses at the base depending on the frequency content of the seismic

motion as well as the dynamic characteristics of the soil and structure (Tabatabaiefar &

Massumi, 2010; Moehle, 2015; Mylonakis & Gazetas, 2000). Several approximations

have been made for SSI models in high-rise buildings (Naeim, Tileylioglu, Alimoradi, &

Stewart, 2010; Li, Lu, Lu, & Ye, 2014); most of which use simplified models, i.e. the soil

is represented by a discrete arrangement of springs and dampers to provide computational

efficiency with reasonable accuracy.

Current seismic codes do not provide explicit recommendations on how to model base-

ments, the number of levels to include in the structural model or how to connect the model

to the ground. This leads to discretional interpretations on “how and where” to apply the

minimum shear requirements for building design. Incorporating basements in the model

usually generates an increase in building periods and displacements, as well as a reduction

in seismic stresses for elements above ground level (D.-G. Lee & Kim, 2001).

This chapter presents in Section 1.1 the structural configuration, geometrical descrip-

tion, and vibration periods and modes of six real RC free-plan buildings, located in San-

tiago, Chile. Moreover, the metric considered to quantify the epistemic uncertainty for

these buildings is illustrated in Section 1.2. Further, Section 1.3 summarizes the seismic

response of these class of buildings through a response spectrum analysis elaborated by

FE models in ETABS and ANSYS. Also, this section estimates the epistemic uncertainty
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considering different finite element types. Moreover, Sections 1.4 to 1.6 quantifies the

epistemic uncertainty of the diaphragm stiffness, the type of soil-structure constraints, and

the building fixity level, respectively.

It should be noted that the recommendation of a “most accurate” model is beyond

the scope of this thesis, as the selection of modeling techniques influences the building

response and the selection of a “most suitable approach” depends on the specific needs

and allowances of the respective project. Hence, quantitative comparisons will enable the

reader in making proper case-based decisions.

1.1. Selected Buildings

Figs. 1.1.1 and 1.1.2 depict photographs, elevations and floor plans of all six buildings se-

lected for this study and referred to hereafter as Buildings A through F. All buildings have

RC cores of shear walls, a RC perimeter frame, post tensioned RC slabs and are founded

on firm soil (ASCE site class C (ASCE/SEI-7-10, 2013)). Basic geometric data are sum-

marized in Tables 1.1.1 and 1.1.2. All buildings were designed according to the Chilean

code NCh433 (NCh433, 1996) and ACI-318 (ACI-318, 2005). The materials specified are

concrete H35 (f ′c = 30 MPa) and reinforcement steel of type A630-420H (fy = 420 MPa).

Four of the investigated buildings (i.e. A, C, E and F) were occupied and operating at

the time of the earthquake, the other two buildings were close to construction completion.

None of the structures suffered any relevant structural or content damage (Naeim et al.,

2011; Lemnitzer et al., 2014).

The selected buildings have between 19 and 24 stories and between 4 and 8 basements.

The total building height (Ht) varies from 73 m to 105 m. The plan aspect ratio (Bx/By)

varies between 1.0 and 3.3. With the exception of Building D, all basements have aspect

ratio (Bbx/Bby) smaller than for that of the superstructure. The slenderness ratio (Ht/B)

varies between 2.4 and 5.0. The typical floor area (A) varies between 299 m2 and 2826 m2;

the basement floor area (Ab) varies between 1023 m2 and 7361 m2; and the floor area ratio



14

0.
0 

 
10

   
 

20
   

 

30
   

 

40
   

 

50
   

 

60
   

 

70
   

 

80
   

 

90
   

 

0 
   

L
ev

el
s 

in

m
et

er
s

0
1

0
1

0
2

0
m

e
s
c
. 
1:

80
0

B
ui

ld
in

g 
w

it
h 

an
 o

pe
n 

fi
rs

t 
st

or
y 

of
 

qu
ad

ru
pl

e 
he

ig
ht

 (
14

 m
).

 R
ec

ta
ng

u-

la
r 

an
d 

L
-s

ha
pe

 f
lo

or
 p

la
n 

ab
ov

e 
an

d 

be
lo

w
 

gr
ou

nd
 

le
ve

l, 
re

sp
ec

ti
ve

ly
; 

re
gu

la
r 

in
 

he
ig

ht
. 

B
as

em
en

ts
 

co
n-

ne
ct

ed
 t

o 
B

ui
ld

in
g 

C
. T

he
 P

er
im

et
er

 

F
ra

m
e 

(P
F

) 
in

cl
ud

es
 t

w
o 

w
al

ls
 o

f 
up

 

to
 1

.2
m

 in
 th

ic
kn

es
s.

 

L
ea

ni
ng

 b
ui

ld
in

g 
fa

ca
de

 w
it

h 
a 

3.
3 

de
gr

ee
 

in
cl

in
at

io
n,

 
sh

if
te

d 

th
ei

r 
fl

oo
r 

pl
an

 u
p 

to
 4

.4
 m

, 
w

it
h 

th
e 

P
F

 h
av

in
g 

le
an

in
g 

co
lu

m
ns

 

w
hi

ch
 f

ol
lo

w
 t

he
 i

nc
li

na
ti

on
 o

f 

th
e 

fl
oo

r 
pl

an
s,

 b
ut

 t
he

 c
or

e 
w

al
ls

 

ar
e 

st
ra

ig
ht

. 
S

qu
ar

e 
fl

oo
r 

pl
an

 

ab
ov

e 
an

d 
be

lo
w

 g
ro

un
d 

le
ve

ls
.

B
ui

ld
in

g 
w

it
h 

an
 

or
ga

ni
c 

sh
ap

e 

fl
oo

r 
pl

an
 a

nd
 e

cc
en

tr
ic

 c
or

e 
w

al
ls

 

w
hi

ch
 i

s 
pa

rt
 o

f 
th

e 
P

F
; 

re
gu

la
r 

in
 

he
ig

ht
, 

bo
th

, 
ab

ov
e 

an
d 

be
lo

w
 

gr
ou

nd
 

le
ve

l. 
B

as
em

en
ts

 
co

n-

ne
ct

ed
 

to
 

B
ui

ld
in

g 
A

. 
T

he
 

co
l-

um
ns

 o
f 

th
e 

P
F

 h
av

e 
an

 L
-s

ha
pe

 

cr
os

s 
se

ct
io

n.

B
ui

ld
in

g 
w

it
h 

2 
in

de
pe

nd
en

t 
to

w
er

s,
 i

nt
er

co
n-

ne
ct

ed
 b

y 
a 

la
rg

e 
ba

se
m

en
t 

an
d 

by
 2

 t
ru

ss
 

br
id

ge
s 

of
 4

 s
to

ri
es

 e
ac

h,
 m

ad
e 

of
 p

os
t 

te
n-

si
on

ed
 s

la
bs

, 
tr

us
se

s 
an

d 
sl

id
in

g 
su

pp
or

ts
, 

al
-

lo
w

in
g 

re
la

ti
ve

 
m

ot
io

n 
be

tw
ee

n 
to

w
er

s.
 

R
ho

m
bo

id
al

 
fl

oo
r 

pl
an

 
w

it
h 

sy
m

m
et

ry
 

be
-

tw
ee

n 
to

w
er

s;
 r

eg
ul

ar
 in

 h
ei

gh
t.

B
ui

ld
in

g 
w

it
h 

a 
se

m
i-

ov
al

 s
ha

pe
 

fl
oo

r 
pl

an
 

ab
ov

e 
an

d 
be

lo
w

 

gr
ou

nd
 

le
ve

l;
 

an
d 

re
gu

la
r 

in
 

he
ig

ht
. I

t h
as

 a
 tu

ne
d 

m
as

s 
da

m
p-

er
s 

ne
xt

 t
o 

ea
ch

 e
dg

e 
of

 t
he

 p
la

n 

at
 th

e 
22

th
 s

to
ry

; 1
60

 T
on

 e
ac

h.

B
ui

ld
in

g 
w

it
h 

tr
ap

ez
oi

da
l 

fl
oo

r 
pl

an
 a

bo
ve

 a
nd

 b
el

ow
 

gr
ou

nd
 

le
ve

l;
 

re
gu

la
r 

in
 

he
ig

ht
. E

cc
en

tr
ic

 c
or

e 
w

al
ls

 

cl
os

e 
to

 t
he

 P
F

; 
ir

re
gu

la
r 

in
 

he
ig

ht
. 

P
od

iu
m

 o
n 

th
e 

fi
rs

t 

tw
o 

le
ve

ls
.

84
.2

L
24

-1
4.

3

B
514

.0

L
4

57
.3

38
.1

C
or

e 
w

al
ls

3.
3°

4.
4

84
.0

L
24

-1
8.

2

B
6

56
.130

.3

81
.7

L
23 -2

3.
5

B
7

59
.6

32
.9

74
.9

L
22

-2
4.

7

B
8

11
9.

2

41
.6

41
.6

71
.9

L
21

-1
8.

0

B
6

11
9.

4

80
.0

60
.4

L
19

-1
2.

8

B
4

A
B

C
D

E
F

27
.0

26
.6

Fi
gu

re
1.

1.
1.

O
ve

rv
iew

,e
lev

at
io

n,
an

d
br

ie
fd

es
cr

ip
tio

n
of

th
eb

ui
ld

in
gs

.



15

(A/Ab) ranges from 0.26 to 0.38. The thickness of RC floor slabs range from 16 cm to

28 cm. Considering the core area (Ac) as the space used by elevators and staircases, the

space efficiency (ηA = 1 − Ac/A) in all buildings is over 84%. The thicknesses of the

RC core walls (ec) range between 20 cm in the top stories to 130 cm in the first stories.

The measured wall density with respect to the floor area in each direction in a typical story

(ρxw, ρyw) varies between 0.68% and 2.82%, but is usually less than 1.5%, i.e., about half the

amount of the 1985 Chilean shear wall buildings, which is 2.8% on average (Jünemann,

de la Llera, Hube, Cifuentes, & Kausel, 2015). In addition, the vertical density in the

typical story (ρv), defined as the total area of vertical structural elements divided by floor

area, varies between 3.1% and 6.2%.

Table 1.1.1. Geometric parameters of analyzed buildings: N and Nb= number of stories above ground and
below ground level, respectively; H= building height above ground level; Ht= total building height; h
and hb= story height above ground and below ground level, respectively; Bx, By= typical building plan

dimensions; Bxb, Byb= typical basement plan dimensions; B =min (Bx, By).

Building Number Height Story Floor plan Aspect Slender
of stories (m) height (m) dimension (m) ratio ratio

N+ Nb H Ht h hb Bx ×By Bxb ×Byb Bx/By Bxb/Byb Ht/B

A 24 + 5 84.2 98.5 3.3 2.6 38.1 × 23.2 57.3 × 67.2 1.6 1.2 4.2
B 24 + 6 84.0 102.2 3.5 2.6 33.4 × 30.3 53.8 × 56.1 1.1 1.0 3.3
C 23 + 7 81.7 105.2 3.5 2.6 32.9 × 48.2 59.6 × 65.9 1.5 1.1 3.2
D 22 + 8 74.9 99.6 3.3 2.6 41.6 × 41.7 119.2 × 63.3 1.0 1.9 2.4
E 21 + 6 71.9 89.9 3.3 2.6 80.0 × 24.5 119.4 × 46.0 3.3 2.6 3.7
F 19 + 4 60.4 73.2 3.2 2.8 30.2 × 14.5 48.3 × 29.4 2.1 1.6 5.0

Table 1.1.2. Geometric parameters of analyzed buildings (continuation of Table 1.1.1).

Building Floor area Floor Space Core wall Shear wall Vertical Core wall
(m2) ratio efficiency, ηA thickness, ec density (%) density, ρv width (m)

A Ac Ab A/Ab (%) (cm) ρxw ρyw (%) lxc × l
y
c

A 874 137 3378 0.26 84 25-100 0.68 1.09 3.06 15.8 × 8.9
B 929 148 2963 0.31 84 25-130 1.56 2.82 6.18 11.9 × 12.4
C 1131 174 3932 0.29 85 20-110 0.71 0.80 3.24 15.3 × 15.0
D 2826 394 7361 0.38 86 25-120 0.99 1.19 3.87 14.1 × 20.0
E 1553 174 5053 0.31 89 25-85 0.93 0.98 4.01 19.2 × 9.8
F 299 34 1023 0.29 89 20-65 2.03 1.52 5.15 7.2 × 6.3
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In order to evaluate the uncertainty in estimating vibration periods and modes of the

structural models, instruments were deployed to record ambient vibrations in all six build-

ings. Two tri-axial accelerometers were installed at the roof of each building: a princi-

pal accelerometer (1) placed at the approximate geometric center of the floor plan and

a secondary (2) accelerometer placed at the farthest corner. The configuration shown in

Fig. 1.1.3a captures the three accelerations (ẍ1[t], ÿ1[t], z̈1[t]) at the geometric center of the

plan layout as well as the torsional acceleration of the floor diaphragm (θ̈[t]). The torsional

acceleration is obtained using small displacement approximation (Fig. 1.1.3b) from:

θ̈[t] =
1

a2 + b2
{a (ÿ2[t]− ÿ1[t])− b (ẍ2[t]− ẍ1[t])} (1.1.1)

where a and b are the sensor distances as defined in Fig. 1.1.3b, and were estimated accord-

ing to building plans. It is completely true that any measurement has its own uncertainty.

However, like with any laboratory experiment, the period measurements are assumed to

be the true value, and such experimental uncertainty is considered to be of much smaller

magnitude than the one associated with the studied modelling assumptions.

Recorded signals were processed as follows: (i) base line correction in the time do-

main; (ii) double integration of accelerations to displacements; (iii) conversion to fre-

quency domain; and (iv) application of a Butterworth filter type 2. Following this pro-

cedure, the Power Spectral Density (PSD) is estimated in each direction, i.e.: Gx[w] =

|X[w]|2tr, where |X[w]| is the modulus of discrete Fourier transform of the signal x[t] at
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Table 1.1.3. Instrumentally measured periods (T ) and directions of the first 4 modes, periods ratio T2/T1,
T3/T1, and ratio of first torsional period to first lateral period Tθ1/Tlat1, ratio of building height above
ground level to first lateral period (H/Tlat1), ratio of total building height to first lateral period (Ht/Tlat1),
and estimation of the fundamental period according to nominal frame building rule (N/10), for the 6 build-

ings.

Period (s) Period ratio Ratio (m/s) Period frame

Building T1 T2 T3 T4 T2/T1 T3/T1 TΘ1/Tlat1 H/Tlat1 Ht/Tlat1 bldg. N/10 (s)

A1 2.831 Y 2.310 X 2.182 Θ 0.737 Θ 0.82 0.77 0.77 29.7 34.8 2.4
A2 2.778 Y 2.381 X 2.174 Y 0.758 X 0.86 0.78 − 30.3 35.5 2.4
B 2.263 X 1.652 Y 1.383 Θ 0.619 X 0.73 0.61 0.61 37.1 45.2 2.4
C 2.507 X 1.708 Y 0.755 X 0.557 Θ 0.68 0.30 0.22 32.6 42.0 2.3
D-Right 2.416 X 1.683 Y 1.230 Θ 0.737 Z 0.70 0.51 0.51 31.0 41.2 2.2
D-Left 2.430 X 1.641 Y 1.234 X 0.732 X 0.68 0.51 − 30.8 41.0 2.2
E 2.356 Y 1.959 Θ 1.307 X 0.700 Y 0.83 0.56 0.83 30.5 38.2 2.1
F 1.638 Y 1.305 X 0.875 Θ 0.457 Θ 0.80 0.53 0.53 36.9 44.7 1.9

1 Ambient vibration measurements (November 2010 - November 2012); 2 Aftershock measurements
(March 2010).

a frequency w, and tr is the total duration of the record. In order to identify the predomi-

nant direction, and to enable comparisons between measurements in different directions, a

normalized PSD was used: 〈G〉x[w] = Gx[w]/
∑N

j Gx[wj], where
∑N

j Gx[wj] consider

the sum of N discrete terms of Gx[w].

Table 1.1.3 shows the back-calculated vibration periods (T ) and the predominant di-

rection of the first four modes for all buildings. The first building periods range between

1.638 s and 2.831 s. Furthermore, except for Buildings C and F which have very asym-

metric floor plans, the first three periods of all buildings are larger than 1 s. This structural

flexibility is apparent when comparing the building periods with the reference periods

of frame buildings with similar height (N/10) as shown in Table 1.1.3 (last column). A

general similarity between the first building periods of each structure can be seen when

comparing the period ratios T2/T1 and T3/T1 as depicted in Table 1.1.3. Except for Build-

ing C, ratios vary between 0.51 and 0.86. Additionally, among the first four building

modes, at least one of the modes shows strong lateral-torsional coupling, with ratios of

(TΘ1/Tlat1) varying between 0.22 and 0.77. This observation confirms that these build-

ings are torsionally stiff. Building D for example, was equipped with instrumentation in
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each tower and yielded very similar periods. However, despite the building symmetry, the

direction of modes matches only for the first two modes.

The ratio of building height above ground level to first lateral period (H/Tlat1) typ-

ically ranges between 30 and 35 for frame buildings and between 60 and 70 for wall

buildings and is used as a proxy of the building stiffness. In Buildings A-F, the ratio

H/Tlat1 varies between 29.7 m/s and 37.1 m/s (Table 1.1.3)), which according to a previ-

ously proposed classification (Guendelman, Guendelman, & Lindenberg, 1997); classifies

these structures as flexible (H/Tlat1 < 40 m/s). However, if the total building height

is considered (Ht), the ratio Ht/Tlat1 increases to 34.8 m/s and 45.2 m/s, which makes

Buildings A and E as flexible structures, while the rest as structures with normal stiffness

(40 < Ht/Tlat1 < 70 m/s).

In addition to ambient vibration measurements carried out by the authors in Building

A, previously recorded aftershock measurements (Lemnitzer et al., 2014) were used to

verify the first four periods of the building. Data were obtained via tri-axial accelerometers

placed in the roof corners of the building. Measurements collected over four continuous

days captured two aftershocks, one of them being a Mw = 5.1 earthquake on 18/03/2010.

Aftershock data are labeled A2 in Table 1.1.3 and are compared with the ambient vibration

measurements. The ratio between the first four periods obtained for the two records varies

between TDYN/TAMB = 0.98 and 1.03, and match the predominant direction of the first two

modes. The similitude of these periods validates the use of ambient vibrations.

1.2. Estimation of the epistemic uncertainty

In order to estimate and compare the epistemic uncertainties of the structural models con-

sidered in this analysis (i.e. referred to as variant models), a reference model was defined

by selecting common seismic design assumptions (ATC-72, 2010; LATBSDC, 2014) and

following Chilean design practice, i.e.: (1) slabs have finite in-plane and out-of-plane

stiffness; (2) SSI effects are not included, i.e., model are fixed at the base; (3) basements
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are included in the model; (4) RC is assumed to behave elastic, isotropic, and remains

uncracked; (5) uncracked section stiffnesses (gross cross section properties) are assumed

for the structural elements, where the contribution of the reinforcement is not accounted

for; (6) the mass of the building includes 25% of live loads; and (7) a dynamic con-

crete Young’s modulus Edyn = 1.2Ec was assumed (Lydon & Balendran, 1986), where

Ec is the static Young’s modulus according to ACI-318: Ec = 4700
√
f ′c with f ′c in MPa.

With these assumptions, vibration periods similar to measured periods are obtained, as

described later.

The seismic response of the buildings is estimated using modal RSA using the elastic

design spectrum of the Chilean seismic base-isolation code, NCh2745 (NCh2745, 2003),

corresponding to a firm soil with a PGA of 0.41g, a maximum pseudo-acceleration of

1.2g, and a 5% damping ratio. This spectrum was used for two reasons: (i) fits very

well the ground motion data generated during the Maule, Chile earthquake; and (ii) the

peer structural design review process of all these buildings was done using this design

spectrum. The seismic response is computed with at least 80% of the cumulative effective

modal mass (Cm) in each lateral direction (X and Y ). The spectrum in both directions

is taken into account independently, and the modal responses are combined by Complete

Quadratic Combination (CQC) method. The building responses were obtained by adding

the responses from gravitational and seismic actions. Seismic masses were used in the

models to obtain their dynamic properties (periods and mode shapes), which are then used

in RSA.

The response parameters considered in this study are (Fig. 1.2.4): (1) periods of the

first four modes (T ); (2) story shear (Vt) and shear carried by the core walls (Vc), both

expressed as a percentage of the total seismic weight (Wt) (Fig. 1.2.4a); (3) the ratio of

overturning moment to story shear, λt = Mt/Vtlt, and the corresponding ratio for the

core walls, λc = Mc/Vclc, where Mt is the building overturning moment using a horizon-

tal axis passing through the vertical projection of the centroid of the accumulated story

masses above the considered level (CMt), Mc is similar to Mt, but passes through the
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Figure 1.2.4. Definition of response parameters to measure epistemic uncertainty: (a) story shears and over-
turning moment; (b) eccentricity; and (c) floor displacements and inter-story drifts.

vertical projection of the centroid of the accumulated masses of core walls above the con-

sidered level (CMc) (Fig. 1.2.4a)−the X- and Y -coordinates of these projections changes

in different stories if the geometry (i.e. wall mass) changes−, lt is the typical building

width (Bx, By: above ground level and Bxb, Byb: below ground level, respectively, Ta-

ble 1.1.1) in the direction of analysis, and lc is the typical wall width in the direction of

analysis (lxc ,lyc Table 1.1.2); (4) normalized eccentricity, ē = (Tt/Vt)/lt, where Tt is the

torque with respect to a vertical axis passing through the centroid CMt, and is equivalent

to the distance between the centroid CMt and the centroid of accumulated stiffness (CSt)

in each story (Fig. 1.2.4b), divided by the plan width lt; (5) displacement of the geometric

center of the diaphragm (uc) in each floor; (6) lateral inter-story drift, δu = ∆u/h, where

∆u is the maximum relative displacement of each floor in the direction of analysis and h

is the inter-story height (Fig. 1.2.4c); and (7) torsional inter-story drift, δθ = ∆θ/h, where

∆θ is the relative rotation between consecutive floors (Fig. 1.2.4c), and is determined as

the average rotation between the center of the diaphragm and each of the four (or more)

corners of the floor (Eq. (1.1.1)).

The uncertainty of the response parameters for each modeling assumption is evaluated

by analyzing the ratio of respective variant models (Rv) and reference model (R0) results.

These ratios are grouped by building as well as analysis directions (X and Y ). Shear force

(Vt and Vc) uncertainties are evaluated at four levels: at mid-height of the tower (H/2), at
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the base of the first story (L1), at the base of the first basement (B1), and at the base of the

foundation level (BF). For all other responses, the uncertainty is evaluated only at levels

where extreme values occur. The uncertainty of the ratios Rv/R0 is characterized by its

minimum and maximum values, and the standard deviation (σ). Hereby graphical results

are provided for the buildings that show the largest uncertainties to demonstrate the scatter

of data due to the input assumptions.

1.3. Effect of the finite element type and characterization of the seismic response

This section quantifies the epistemic uncertainty with respect to different finite element

types and summarizes the seismic response of the free-plan buildings. All six buildings

were modeled in ETABS (ET) (ETABS, 2013), with results being considered reference

results due to the popularity and usability of this software in engineering firms. Two

variant models were developed in ANSYS (ANSYS, 2018): four buildings (A, C, D and

F) in ANSYS Parametric Design Language mode (AP), and four buildings (A, B, E and F)

in ANSYS Workbench mode (AW). The finite elements used to model beams, columns,

slabs and walls for each FEM model are shown in Fig. 1.3.5. In addition to the modeling

assumptions described previously, each model considers the following:

MPC184

BEAM44 with

rigid ofset

Wall-wall joint

Beam-column

joint

SHELL SHELL181

ET AP AW

SOLID185

CONTA174

TARGE170

BEAM with

rigid offset

Prism

Tetrahedral

Figure 1.3.5. Finite element type and connection among structural elements: (a) ET; (b) AP; and (c) AW
models, respectively.
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(i) ) For ET models (Fig. 1.3.5a), the beams and columns were modeled using 2-node

Timoshenko frame type elements with six DOFs per node, and rigid offset elements in

beam-column joints. The walls and slabs were modeled using 4-node shell type elements

with six DOFs per node and the Mindlin-Reissner formulation. All structural element

connections considered mass overlap as well as a compatible mesh. Masses in the ele-

ments were assigned to the horizontal DOFs of the nodes. For all beams embedded in

slabs, the moment of inertia of rectangular beams was multiplied by a β-coefficient to ac-

count for the real position of the neutral axis and includes the correct effective width of the

slab. Therefore, the β-coefficient leads to the correct moment of inertia of the T-shaped

or L-shaped cross sections. The effective slab width was estimated following ACI-318

(ACI-318, 2005) recommendations, and the β-coefficient was calculated as: β = Icomp/Io,

where Icomp is the moment of inertia of the composite cross section, and Io is the moment

of inertia of the rectangular section.

(ii) For AP models (Fig. 1.3.5b), beams and columns were modeled similarly to the

ET models (BEAM44). The walls and slabs were represented via 4-node shell type ele-

ments with six DOFs per node using the Bathe-Dvorkin formulation (Bathe & Dvorkin,

1986) (SHELL181). All structural element connections consider mass overlap as well as

a compatible mesh. Masses for the elements in this case were assigned to the six DOFs of

the nodes, and similarly to the ET models, the moment of inertia of beams embedded in

the slab was corrected by the β-coefficient.

(iii) For AW models (Fig. 1.3.5c), all structural elements were modeled using 8-node

brick elements (SOLID185) with three DOFs per node and a Simplified Enhanced Strain

formulation (J. Simo, Armero, & Taylor, 1993). The mesh was generated independently

for each structural element and contact elements (CONTA174 and TARGE170) were used

to connect the nodes of two elements, since meshes of adjacent elements were incom-

patible, as shown in Fig. 1.3.5c. Consequently, mass overlap was not generated in the

connection of two elements. Masses in the elements were assigned to the three DOFs of

the nodes.
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Table 1.3.4 compares the number of nodes and elements in each FEM model based on a

maximum mesh size of 1.5 m. Compared with the ET models, the AP models present 20%

more nodes and 80% more elements, and the AW models between 9 and 14 times more

nodes and between 10 to 17 times more elements. The total seismic weight (Wt) of the ET

models varies between 130.2 MN (Building F) and 1431.1 MN (Building D). In general,

the weight of the super-structure ranges between 50% and 61% of the total weight of the

structure. The maximum difference of the seismic weight between the ET-AP models is

less than 2.2%, and for the ET-AW models less than 4.3%. The AW models are always

lighter than the ET models, since the AW models do not consider mass overlap.

Table 1.3.4. Comparison between FEM models.

Total seismic weight1, Wt Computation time2

Building Nodes Elements (MN) Dif. (%) (hrs)

ET ET:AP:AW ET ET:AP:AW ET ET-AP ET-AW ET ET:AP:AW

A 43,652 1 : 1.1 : 11 46,416 1 : 1.1 : 10 364.2 1e-3 2.6 3.2 45 : 1 : 22
B 59,494 1 : − : 10 63,119 1 : − : 12 532.5 − 4.3 3.1 1.2 : − : 1
C 77,730 1 : 1.0 :− 82,568 1 : 1.6 : − 640.5 -8e-4 − 6.0 15 : 1 : −
D 90,132 1 : 1.1 :− 103,895 1 : 1.8 : − 1431.1 2.2 − 21.6 39 : 1 : −
E 90,912 1 : − : 9 95,456 1 : − : 11 680.8 − 3.3 32.3 9 : − : 1
F 17,690 1 : 1.2 : 14 19,330 1 : 1.2 : 17 130.2 8e-4 2.8 0.4 6 : 1 : 11
1: Includes 25% of live load; ′−′: model not built; 2: Using a computer Intel Xeon R© 3.33 GHz processor

with 47.9 Gb RAM

For the ET models, 100 modes were calculated using eigenvalues and eigenvectors,

and for the AP and AW models, 250 modes were obtained using the Block Lanczos al-

gorithm (Grimes, Lewis, & Simon, 1994). Because the AP and AW models consider the

vertical masses, a larger amount of modes relative to ET are required to obtain similar

effective modal masses Cm in the horizontal directions. Computer limitations impede the

use of more modes in the AW models. The computational time to obtain the vibration

modes in the ET models is 6 to 45 times greater than for the AP models, and 1.2 to 9

times greater than for the AW models, with the exception of Building F, where the AW

model is twice slower than the ET model (Table 1.3.4). This difference in computation
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time is attributed to the different methods used to calculate the modal coordinates in each

software. The ANSYS algorithm is significantly faster than that of ETABS.

Table 1.3.5 summarizes the periods and predominant direction of the first four modes

in all three models. The fundamental periods of the buildings range from 1.61 s to 3.13 s,

and the first three periods of all models are larger than 1 s, except for Building F. The

directions of the translational modes also coincide among models. However, this is not

the case for the torsional modes, which differ between models.

Table 1.3.5. Periods (T ) and corresponding predominant direction of FEM models. Units: second

Building ET AP AW

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

A 2.9258 Y 2.4144 X 2.0752 Θ 0.7383 Y 3.1262 Y 2.4471 X 2.2110 Y 0.7840 Y 2.7119 Y 2.2768 X 1.9035 Y 0.6926 Y
B 2.2652 X 1.8146 Y 1.3959 Θ 0.6367 X - - - - 2.1597 X 1.7686 Y 1.3099 Y 0.6104 X
C 2.7227 X 1.8742 Y 1.0654 Θ 0.8213 X 2.7127 X 1.8604 Y 1.0767 X 0.8264 X - - - -
D 2.8212 X 1.9564 Θ 1.7905 Y 0.8271 X 2.7765 X 1.9410 X 1.7736 Y 0.8205 X - - - -
E 2.6084 Y 1.9056 Θ 1.2981 X 0.6887 Y - - - - 2.3723 Y 1.7754 Θ 1.2600 X 0.6488 Y
F 1.6169 Y 1.2173 X 0.8552 Θ 0.4364 Y 1.6610 Y 1.2836 X 0.9227 X 0.4604 Y 1.6053 Y 1.2332 X 0.8267 X 0.4368 Y

Note: Values in parenthesis associated to the number of the mode; ′−′: model not built.

The uncertainty of the vibration periods is evaluated using Fig. 1.3.6. Fig. 1.3.6a com-

pares the first four periods identified in Table 1.3.5 for the three models of Building A.

The AP model predicts the longest periods, and the AW model the shortest. The largest

difference between the estimated periods is 15.3% for the first mode, and 16.2% for mode

three. Fig. 1.3.6b shows the ratio between the periods of the AP and AW models normal-

ized with respect to the ET models for the first four modes of all six buildings. For mode

one, a close-up with eight period ratios obtained with the available models is presented,

summarized by a box-plot on the left of Fig. 1.3.6b. The box-plots used hereafter have a

rectangle whose length is the difference between the first and third quartile, a mean x̄ rep-

resented by an intermediate horizontal line, a median represented by a rhombus, whiskers

equivalent in width to two standard deviations (2σ), and outliers which fall outside the

range (x̄±σ). For the first normalized period there is an estimated uncertainty of the mod-

els that varies from 0.91 to 1.07 with σ = 5.2%. For modes one through four, Fig. 1.3.6b

also shows the envelope of normalized periods. It is observed that the periods of the AP
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models are up to 8% longer than the ET models, and the AW periods are up to 9.1% shorter

than the ET models.
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Figure 1.3.6. Period variation according to finite element type: (a) periods of Building A; (b) periods of the
AP and AW models normalized by the ET model values for the 6 buildings.

Comparisons between analytical periods and those obtained from ambient vibrations

for all six buildings are shown in Fig. 1.3.7. The AW models is the one that leads to small-

est error in the prediction of vibration periods, which for the first four modes yield errors

of 13% or less, and can be attributed to the advantage of using solid finite elements. Con-

trary, the ET and AP models generally overestimate the periods for the first four modes,

and errors vary from 7% shorter to 48% longer than the measured values. For the first

two modes, the theoretical models may differ up to 17% with respect to measured val-

ues. Considering all models, Building F represents the structure with the smallest error

in predicting the period of the first four modes. The largest difference occurs in the ET

and AP models of Buildings C and D, with errors up to 48% in the third and fourth mode.

The complexity associated with modeling the bridges connecting the towers in Building

D significantly affects the accuracy of the FEM model. In general, the models predict the

predominant direction of the first two modes in good agreement with the instrumentation,

with the sole exception of Building D in which only the first mode matches.

A comparison of the vertical distribution of selected response parameters for all three

models is shown in Figs. 1.3.8 and 1.3.9 for Building A. The story shear Vt at level BF

in the Y -direction predicted by the three models varies between 17.9% and 19.3% of the

seismic weight (Fig. 1.3.8a). The mean difference between the three models considering
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and (b) represent total story and core wall responses, respectively. Black and grey lines in plot (c) represent

eccentricity in X- and Y -direction, respectively.

all stories is 14.3%. The core shear Vc at level L1 in the Y -direction varies between 9.1%

and 9.9% of the seismic weight, which is equivalent to a ratio Vc/Vt between 0.85 and 0.88.

The same ratio Vc/Vt at level BF is considerably smaller (about 0.27) due to the transfer
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inter-story drift (δθ). Black and grey lines represent responses in X- and Y -direction, respectively.

of shear forces from the core to the perimeter walls. The ratio of overturning moment to

story shear λt at level L1 in the X-direction varies between 0.95 and 1.02 as shown in

Fig. 1.3.8b. For the core walls this ratio (λc), at level B1, varies between 3.13 and 3.35.

The normalized eccentricity ē is shown in Fig. 1.3.8c and varies between 0.03 and 0.20

as well as 0.28 and 1.26 in the X-direction (ēy) and Y -direction (ēx), respectively. The

Y -direction shows the largest differences among the three models, with a mean difference

in all stories of 18.4%.

A comparison of displacements, drifts, and plan rotations between the three models is

shown in Fig. 1.3.9. Again, the Y -direction shows the largest differences among models.

The mean difference between the model predictions at all evaluated stories is 7.7%, 5.8%

and 30.0% for uc, δu and δθ, respectively, in the Y -direction, and 1.5%, 3.4% and 17.7%

for these same responses in the X-direction.
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Similar results were obtained for the other five buildings though details are omitted

for the sake of brevity. The values of response parameters for all ET models in the X-

and Y -directions are: (i) the base story shear of the six buildings range between 19%

and 30% of the seismic weight, and the peak shear ratio Vc/Vt occurs between the first

and fourth story, and ranges between 35% and 99%; (ii) the peak overturning moment

to story shear ratio varies between 0.6 and 2.1 and the corresponding peak of core wall

ratio varies between 2.5 and 6.6; (iii) the peak normalized eccentricity varies between 0.1

and 0.5, which is indicative of large lateral-torsional coupling; (iv) the roof displacement

of the center of the diaphragm varies between 20 cm and 50 cm; (v) the peak inter-story

lateral drift varies between 5 h and 11 h, and is predicted at about 3/4 of the height

above ground level (3/4H); and (vi) the peak torsional inter-story drifts varies between

2/1000 ◦/m and 19/1000 ◦/m, and also occur at 3/4H .

The variability of the predicted seismic response for the six buildings, using the three

models is shown in Fig. 1.3.10. The responses of variant models (AP and AW) are nor-

malized with respect to the reference models (ET), and uncertainty is shown for the two

directions of analysis (X and Y ). The standard deviation (σ) and the range between max-

imum and minimum of these ratios are shown in the accompanying table. The standard

deviation of all the normalized parameters is less than 11%. Larger uncertainty is obtained

for core shear Vc than for the story shear Vt, especially for basements (B1 and BF), where

the normalized shear Vc varies between 0.81 and 1.28. Also, largest uncertainty is identi-

fied for λc, ē and δθ, with standard deviations of 8.8%, 8.6%, and 10.7%, respectively.

1.4. Effect of diaphragm stiffness

In order to evaluate the uncertainty generated by modeling the diaphragm stiffness of the

free-plan buildings, the ET models were used to study four different diaphragm assump-

tions in all buildings as shown in Fig. 1.4.11: (i) a semi-rigid diaphragm (DS), which

considers the in-plane and out-of-plane bending stiffness of the shell elements of the slab

at each floor (reference model); (ii) a semi-rigid diaphragm, which is identical to DS but



30

Total
Core

Max
Min
(%)

1.09 (1.08)
0.90 (0.91)

1.07 (1.14)
0.94 (0.94)

1.06 (1.28)
0.95 (0.86)

1.00 (1.17)
0.83 (0.81)

1.07 (1.23)
0.99 (0.90)

1.19
0.81

1.03
0.94

1.08
0.95
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Figure 1.3.10. Response parameters of the AP and AW models normalized by the ET model results in the 6
buildings: box-plot diagram (top); and maximum, minimum and standard deviation σ (%) (bottom) (Values

in parenthesis associated with the core walls.)

without bending stiffness (DSo); (iii) a rigid in-plane diaphragm (DR), which considers

an infinite in-plane stiffness but includes the out-of-plane bending stiffness of the shell

elements at each floor; and (iv) a rigid in-plane diaphragm, but without bending stiffness

(DRo).
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Figure 1.4.11. Models considered in the study of diaphragm stiffness.

The advantage of the imposed in-plane constraint in the DR and DRo models is that it

reduces the number of DOFs by 1.4 and 1.7 times compared to the DS and DSo models,

and consequently the computational time of the periods and vibration modes is reduced

by 1.5 and 7.4 times, respectively. Fig. 1.4.12a compares the first four periods obtained

for the four diaphragm assumptions for Building A. For the first four periods, the DSo
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model consistently predicts longest periods and the DR model predicts the shortest. The

difference among models in the estimation of the first period is 18.5%, with a maximum of

23.6% for the first four periods. Fig. 1.4.12b shows the periods of the DSo, DR and DRo

models normalized with respect to the DS values. For mode one, a box-plot is shown for

the data. In this case, the ratio of the periods varies between 0.95 and 1.27 with σ = 10.4%.

Using the DS models as a reference, the first four periods of the DR models are up to 10%

shorter. On the contrary the first four periods of the DSo models are between 4% to 27%

longer. Also, the first period of the DRo models are up to 19% longer. It is interesting to

note that the difference of the four diaphragm models can result in 37% difference for the

first four modes, especially if the bending stiffness of the diaphragm is ignored. Moreover,

the smallest errors occur for TDR/TDS, which somewhat supports the historical assumption

of using the DR model in practice.
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Figure 1.4.12. Period variation according to stiffness diaphragm models: (a) periods of Building A; (b)
periods of the DSo, DR, DRo models normalized by the DS model results for the six buildings.

Fig. 1.4.13a shows the vertical distribution of story shear Vt and core shear Vc in X-

direction of Building B using the four diaphragm modeling assumptions described above.

The estimation of shear Vt among models showed a mean difference for all stories of

26.2%. Similarly, Vc has a mean difference of 34.1% for all stories above ground level,

and up to 47.9% if basements are included. With respect to the effects of in-plane stiffness,

shears Vt and Vc in the DR and DRo models are consistently bigger for all floors, compared

to those yielded by the DS and DSo models. This increase is evident at the basements,

and may reach up to 11.1% between the DRo and DSo models at level BF. In addition,
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Figure 1.4.13. Story and normalized shears for the four different diaphragm stiffness: (a) Vertical distribution
of story shear ratio Vt/Wt and core shear ratio Vc/Wt for Building B in the X-direction; (b) box-plot of
the X- and Y -directions shears Vt and Vc for the DSo, DR and DRo models, normalized by the DS model
results in the six buildings and at levels H/2, L1, B1, and BF, respectively. Black and grey lines in plot (a)

represent total story and core wall shear, respectively.

core shear Vc observed to be 3.6 and 3.7 times larger in the DR and DRo models at level

B1 than those of the DS and DSo models, respectively. This leads to Vc being up to 22%

greater than Vt. Recall that this abrupt increase in force for the core walls can be attributed

to the back-stay effect, as identified in the literature (Moehle, 2015). With respect to the

bending stiffness, shears Vt and Vc of the DSo and DRo models are smaller than the DS and

DR models, respectively (at all floors) with an observed maximum of 23.3% and 18.4%,

respectively. The exception occurs at the basements, where the DS-DSo models and the

DR-DRo look very similar.

The effect caused by each diaphragm assumption in the estimation of shears Vt and Vc

is evaluated by normalizing the results by the DS results. Fig. 1.4.13b shows these ratios

in a box-plot format for all six buildings at four different levels (H/2, L1, B1, and BF) by

taking into account the results in both directions (X and Y ). At building mid-height level

((H/2), the normalized shears Vt and Vc of the DSo and DRo models average 0.86 and
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0.89, respectively, with a minimum of 0.75. In addition, for the DR model, the normalized

shears Vt and Vc are 1.06 on average, with a maximum of 1.15. Consequently, for the

higher levels, the effect of the bending stiffness in the shear forces is more relevant than

the in-plane stiffness. For the other levels (L1, B1, and BF), the mean of the normalized

shears Vt and Vc of the DSo models varies between 0.92 and 1.05. The normalized shears

Vt of the DR and DRo models increase mainly at level BF with a mean of 1.06 and a

maximum of 1.15. It is apparent that a high degree of variability exists in the normalized

shear Vc at levels L1, B1, and BF for the DR and DRo models due to the back-stay effect.

Therefore, level L1 shows a mean of 1.13 and σ = 14.6%; level B1 a mean of 3.07, with

a maximum of 4.29, and σ = 73.2%; and level BF a range between 0.57 and 1.71 with

σ = 31.4%.

Fig. 1.4.14 shows all normalized response parameters for the six buildings in X- and

Y -directions in box-plot format. The standard deviation (σ) and the range between maxi-

mum and minimum of these ratios are shown in the accompanying table. Due to the change

in bending stiffness of the diaphragm, the normalized shears Vt and Vc above ground level

(H/2 and L1) vary between 0.75 and 1.44 with σ = 13.3%. Contrary, minor uncertainty

is observed in normalized shear Vt due to change in in-plane stiffness of the diaphragm,

which varies at the basements B1 and BF between 0.88 and 1.17 with σ = 6.4%. However,

the back-stay effect causes the normalized shear Vc at the basements (B1 and BF) to vary

much more significantly, namely between 0.57 and 4.29 with σ = 112.2%. The same effect

applies to the normalized ratio λc, which varies between 0.71 and 2.24 with σ = 30.6%. In

terms of standard deviation the uncertainty of the normalized forces of the core walls (Vc

and λc), indicated in parenthesis in Fig. 1.4.14, is greater than for the normalized total

forces (Vt and λt). The uncertainty of normalized displacement uc and normalized drift δu

is smaller, with σ = 9.3%, unlike the normalized drift δθ which has σ = 32.1%.



34

Total
Core

Max
Min
(%)

1.10 (1.15)
0.76 (0.75)

1.19 (1.44)
0.85 (0.88)

1.17 (4.29)
0.88 (0.89)

1.15 (1.71)
0.91 (0.57)

1.04 (2.24)
0.81(0.71)

1.51
0.62

1.14
0.91

1.33
0.93

1.80
0.27

9.7 (10.9) 7.6 (13.3) 6.1 (112.2) 6.4 (25.2) 5.9 (30.6) 15.7 5.1 9.3 32.1
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Figure 1.4.14. Response parameters of the DSo, DR and DRo models normalized by the DS model results in
the six buildings: box-plot diagram (top); and maximum, minimum and standard deviation σ (%) (bottom).

(Values in parenthesis associated with the core walls.)

1.5. Effect of the soil constraints

To study the uncertainty associated with the type of soil-structure constraints, the AP

models of four buildings were used (A, C, D and F), and combined with five soil modeling

assumptions as shown in Fig. 1.5.15: (i) fixed support (SF) of the structure to the base

(reference model); (ii) vertical support (SV)−structure is supported elastically at the base

in the vertical direction only; (iii) horizontal support (SH)−analogous to SF but including

the lateral flexibility of the soil in contact with the basement perimeter walls; (iv) lateral

and vertical support (SS)−combination of SV and SH; and (v) complete fixity (SB)−with

all embedded elements fixed to the ground. In all models lateral displacements at the base

level are assumed to be fixed.

To generate the SV, SH and SS soil models, a common soil profile was developed as

each of the buildings is located on soil profiles with relatively similar properties. The

stratigraphy summarized in Table 1.5.6 shows a rather soft layer of surface soil in the up-

per 1.5 m, followed by a very dense sandy gravel with increasing relative density (Dr)

in depth. The sites can be categorized as site class C per ASCE-7 (ASCE/SEI-7-10,

2013). The shear wave velocity (Vs) for all soil strata is greater than 500 m/s. The

modulus of vertical subgrade reaction (Kv) was taken as 174.1 N/cm3 and assumed to
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Figure 1.5.15. Soil-structure interaction assumptions in the studied models.

be constant. The modulus of horizontal subgrade reaction (Kh) for this non-cohesive

soil is proportional to depth (z) and follows existing recommendations (MOP, 2014), i.e.:

Kh(z) = 2.2f(1 + 3.3ds/D)(z/D), where D =Hb − ds; Hb is the height of basements; ds

is the depth of the soil between ground surface and the start of the soil stratum; and f is a

coefficient for each soil stratum with values 0, 24.5 and 34.3 N/cm3, respectively. More-

over, as a response spectrum is carried out, each soil moduli is amplified by a dynamic

factor Fsis = 1.9.

Table 1.5.6. Typical soil stratigraphy characteristic in the building studied.

Depth (m) Soil class Relative density, Dr (%)

0.0 - 1.5 Poor soil −
1.5 - 5.5 Dense sandy gravel <65
+5.5 Dense sandy gravel >80

An important parameter controlling the soil-structure inertial effects in tall buildings

is the structure-to-soil stiffness ratio (Ht/VsT1) (ATC-83, 2012). Inertial effect should be

considered if this ratio is greater than 0.1 (Tabatabaiefar & Massumi, 2010). As the soil

in these buildings is stiff (Vs> 500 m/s) and the ratio Ht/T1 varies between 34.8 m/s and

60.4 m/s, the parameter Ht/VsT1 varies between 0.07 and 0.09, which is less than 0.1.

Therefore, Ht/VsT1 can be considered insignificant and the analysis is dominated by the

soil stiffness only. Please consider that the soil damping was neglected.
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Figure 1.5.16. SSI modeling assumptions: (a) basements walls in contact with the soil; (b) foundation beams;
(c) foundation slabs; and (d) isolated column footing.

In the SV, SH and SS models, the soil is modeled with uncoupled Winkler springs

(COMBIN4) and Terzaghi’s criterion to estimate spring stiffnesses (Terzaghi, 1955). For

perimeter walls, slabs, and foundation beams, axial springs are considered as shown in

Fig. 1.5.16a-c. For isolated column footings, rotational springs are added (Fig. 1.5.16d).

For vertical springs in walls, beams, columns, and slabs, the stiffness of the structural

elements is larger than that of the soil, thus the spring stiffness in the j-th node is based

on the overall dimensions of the foundation element, i.e.: kvj =FsisKvφBφRAj , where

φB = (B+0.3)2/4B2 and φR = (2+B/L)/3 are adjustment factors for non-cohesive soils;

Aj is the tributary area of the j-th node; and L and B are the length and width of the

foundation element, respectively. For lateral springs associated with perimeter walls, the

spring stiffness in the j-th node is: khj (z) =FsisKh(z)φjAj , where φj = (aj+0.3)2/4a2
j and

aj =
√
Aj the equivalent width of the tributary area. Finally, for isolated column footings,

the vertical and two rotational spring stiffness is calculated with a FEM model for each

footing (Fig. 1.5.16d).

Fig. 1.5.17a compares the first four building periods obtained with the five different

soil models for Building A. The SV models were found to always predict the longest

periods, and the SB models the shortest. The first period estimates yielded by all SSI

models showed the largest variance of 12.9%. Fig. 1.5.17b shows the first four periods of

the SV, SH, SS and SB models normalized with respect to the SF values in Buildings A, C,
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D and F. For mode one, the normalized ratio varies between 0.97 and 1.18 with σ = 6.0%.

Using the SF models as a reference, the first periods of the SV and SS models are up to

18% and 14% longer, respectively; on the contrary, the first four periods of the SH and SB

models are between 3% and 10% shorter, respectively.
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Figure 1.5.17. Period variation according to the soil-structure model used: (a) periods of Building A; (b)
periods of the SV, SH, SS, SB models normalized by the SF model values for Buildings A, C, D and F.

Fig. 1.5.18a shows the vertical distribution of story shear Vt in the X-direction of

Building F for the five soil models. In all models, the story shears above ground level are

very similar with a maximum difference of 3.4%. However, the SH, SS, and SB models

reduce the shear Vt at level BF, with a minimum of 3.1% of the seismic weight, i.e. 7.7

times less than the value of the SF model. On the other hand, the SV model generates a

slight (6%) increase in the base story shear Vt relative to the SF model.

The variations in estimating shears Vt and Vc resulting from the different soil models

are analyzed by normalizing the results by the SF results. Fig. 1.5.18b shows a box-plot of

the shear ratios for Buildings A, C, D and F at four levels (H/2, L1, B1 and BF), and both

directions (X and Y ). While the normalized shears Vt and Vc above ground level (H/2

and L1) are practically constant (0.8-1.1) in all models, the distribution of these shears at

basements (B1 and BF) depends on the soil model. Normalized shears Vt for the SH, SS

and SB models decrease at lower levels. At level B1, it drops to a mean of 0.53-0.90 and

at level BF to a mean of 0.23-0.53. This effect is not observed in the SV model, which

shows up to 10% increase at level BF. Normalized shear Vc increases at the basements for

the SV and SS models, reaching at level B1 a mean of 1.17-1.22 and at level BF a mean of
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Figure 1.5.18. Story and normalized shears for the five different soil-structure models: (a) vertical distribu-
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shears Vt and Vc for the SV, SH, SS and SB models, normalized by the SF model results in the Buildings A,

C, D and F, and at four levels H/2, L1, B1 and BF, respectively.

2.02-2.64 (with a maximum of 3.6-4.8), respectively. Additionally, the normalized shear

Vc of the SH and SB models reach more variability at level BF ranges between 0.3 and

1.7.

Fig. 1.5.19 shows all normalized response parameters in both directions (X and Y ) in

box-plot format. The standard deviation (σ) and the range between maximum and mini-

mum of these ratios are shown in the accompanying table. Normalized shears Vt and Vc

above ground level (H/2 and L1) vary between 0.80 and 1.10 with σ = 6.1%; these nor-

malized shears show greater variability in the lower basements; where shears vary between

0.24 and 1.64 with σ = 27.3% at level B1, and between 0.03 and 4.79 with σ = 106.8% at

level BF. Analogously, normalized overturning moment to shear ratios λt and λc vary

between 0.37 and 4.73 with σ = 94.2%, and the normalized eccentricity ē varies between

0.49 and 3.16 with σ = 42.8%. The standard deviation of the normalized shear Vc is greater
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than that for Vt at all levels. The origin of the high variability of the shear and overturn-

ing moments at basements stems from the use of different soil elements and stiffnesses

considered in each model, which in turn modifies the forces and reactions of the struc-

ture. Independently of this observation, the normalized parameters uc, δu and δθ have low

variability with maximum σ = 16.7%.

Total
Core

Max
Min
(%)

1.05 (1.10)
0.90 (0.80)

1.00 (1.03)
0.87 (0.80)

1.05 (1.64)
0.24 (0.56)

1.10 (4.79)
0.03 (0.30)

4.73 (1.97)
0.95 (0.37)

3.16
0.49

1.23
0.87

1.14
0.93

1.08
0.12
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Figure 1.5.19. Responses parameters of the SV, SH, SS and SB models normalized by the SF model results
in Buildings A, C, D and F: box-plot diagram (top); and maximum, minimum and standard deviation σ (%)

(bottom). (Values in parenthesis associated with the core walls.)

1.6. Uncertainty associated to assumed building fixity level

To investigate the uncertainty associated with “where” the building is assumed to be fixed,

the AP (Buildings A, C, D and F) and AW (Buildings A, B, E and F) models were used

with different number of basements levels ranging from a model without basements to

modeling all underground levels. A model with n-basements will be called Un and will

be fixed to the ground at the bottom of n-th level at depth zn. To isolate this effect, SSI

effects have been omitted in the analysis. In this section U0 is the reference model.

Fig. 1.6.20a compares the first four building periods obtained by modifying the amount

of basements and the fixity level of Building A. As expected, the U5 model predicts the

longest periods, and the U0 model the shortest. The difference in the estimation of the

first period is 10.9% and the maximum difference for the first four periods is 15.5%.
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1 ) depending on the normal-

ized depth of the basements (zn/Hb) for the six buildings.

Fig. 1.6.20b shows the elongation of the first period (T n1 /T
0
1 ) for the AP and AW building

models as a function of the normalized depth of the basement (zn/Hb); this ratio varies

between 10% and 18% with σ = 2.6%.
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Figure 1.6.21. Building response for different number of basements in the models: (a) story shear ratio
Vt/Wt of Building A in X-direction (AP models); (b) normalized depth of basements (zn/Hb) versus nor-
malized story shear at level L1 (rn1 =V nt1/V

0
t1) in all six buildings and the X- and Y -directions, respectively.

Analogously, Fig. 1.6.21a shows the story shear Vt in Building A in the X-direction as

a function of the number of basements. Vt varies between 14.0% (U4) and 15.9% (U0) of
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the seismic weight, i.e. a maximum reduction of 11.7% with respect to U0. Fig. 1.6.21b-

c show the story shear Vt at level L1 of model Un (V n
t1) normalized with respect to U0

(V 0
t1) expressed as a ratio rn1 =V n

t1/V
0
t1, for all six buildings in the X- and Y -direction,

respectively. A value rn1 less than one implies that the story shear at level L1 is reduced

when the building model is fixed at n-th level. In other words, if the minimum code design

shear is imposed at the n-th level, the base shear at level L1 could be less than the minimum

base design shear. The shear Vt at level L1 may in principle increase or decrease as the

number of basements is added depending on the model and the direction of analysis. For

example, the ratio rn1 in Buildings C and E in the X-direction reach a minimum of 0.84

and 0.96, respectively. Furthermore, rn1 in Buildings B and F in the Y -direction reach

1.2 and 1.1, respectively. In all cases, these peak values of the ratio rn1 occur for zn/Hb

between 0.37 and 1.
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buildings: box-plot diagram (top); and maximum, minimum and standard deviation σ (%) (bottom). (Values

in parenthesis associated with the core walls.)

Fig. 1.6.22 shows all normalized response parameters for the six buildings in both di-

rections (X and Y ) in box-plot format. As before, normalization is performed by dividing

all Un responses by the reference U0 response. The standard deviation (σ) and the range

between maximum and minimum of these ratios are shown in the accompanying table. The

variability of the normalized shears Vt and Vc ranges at level L1 between 0.67 and 1.23
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with σ = 10.5%. Both responses, Vt and Vc, show similar variability. In terms of standard

deviation and range, the uncertainty of the normalized core wall shear and overturning

moment at levels H/2 and L1, shown in parenthesis, is greater than that the normalized

total quantities. On the other hand, large variability exists for the normalized parameters

ē and δθ, ranging between 0.67 and 1.95 with σ = 14.1% and 14.5%, respectively. Analo-

gously, the normalized displacement uc varies between 1.00 and 1.36 with σ = 10.8%, and

the normalized drift δu has σ = 6%. The standard deviation of all normalized responses is

less than 15%.

1.7. Summary and main results

This chapter evaluates the epistemic uncertainty of four major modelling assumptions,

which typically generate debate during the structural design review process of building

projects. These assumptions are: (1) the type of finite elements used; (2) the type of floor

diaphragm considered; (3) the soil-structure interaction model used at the basements and

foundation levels; and (4) the correct level of fixity for the model. In this quantification of

epistemic uncertainty, aftershock and ambient vibration measurements together with the

predicted elastic response of six reinforced concrete buildings located in Santiago, Chile

were considered. The uncertainty of response parameters for each modeling assumption

was evaluated by analyzing the ratio of predicted results from the variant models relative

to the reference models. The main results obtained from this part are:

• The AW models with solid elements provided the best estimates of the first four

building periods, with errors smaller than 13% relative to measured periods. For

the three models considered (ET, AP and AW), a maximum error of 17% and

48% was found for the first two and four vibration period predictions, respec-

tively. Although large, these errors are common when compared to experimental

validation cases.
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• The standard deviation of the different parameter response ratios obtained for

the three models (ET, AP and AW) was less than 11%. Consequently, consider-

ing the higher computational cost involved in the AW model, and the relatively

low values of epistemic uncertainty, the ET and AP models with shell and unidi-

mensional beam elements are recommended for estimating dynamic responses

in these free-plan buildings.

• The assumed diaphragm stiffness was found to be a relevant source of epistemic

uncertainty. Variations in the diaphragm stiffness for the first four buildings pe-

riods may reach values up to 10% and down to 27%, respectively. These varia-

tions are measured relative to the reference model, which considers in-plane and

out-of-plane diaphragm stiffness (DS model). The variation of the in-plane stiff-

ness of the diaphragm generated a large variation of the predicted shear forces

in the core walls. Normalized shear for the core, varied between 0.57 and 4.29

times for the first basement, and the standard deviation of this ratio was 112%.

This large variation is attributed to the back-stay effect. Since current computer

software allows modeling of the diaphragm stiffness, it is recommended to con-

sider the in-plane stiffness of the diaphragm in the basements to reduce this

back-stay effect in FEM models. For shear forces in higher stories, the effect

of the bending stiffness of the diaphragm becomes larger than the effect of the

in-plane stiffness. The normalized story shear and core shear at mid-height of

the buildings (H/2) varied between 0.75 and 1.44, and was mainly influenced

by the out-of-plane stiffness.

• Shear forces at the basement levels were found to be strongly dependent on the

type of soil-structure interaction model used. Normalized story shear at the base-

ment varied between 0.03 and 4.79 times, with a standard deviation of 106.8%.

Above the ground level, the normalized story shears and core shears were found

to be similar among models. Due to this large uncertainty, it is recommended to

do sensitivity analysis of the building model including and neglecting the con-

tribution of lateral soil stiffness to obtain an envelope of the expected responses.
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Please recall also that in many cases the lateral soil stiffness physically disap-

pears during the lifespan of the building due to a neighbour construction, and

the sensitivity analysis is in such case mandatory.

• The influence of the level at which the structural model is considered fixed to

the ground leads to changes in the first vibration period of the buildings from

+10% to +18% relative to the reference model without basements. No clear

trend was observed for the story shear value at the first story as more basements

were added into the structural model and the fixity levels moves down. Nor-

malized base shear varied between 0.84 and 1.2 times relative to the reference

model, and depending at which level the code minimum design base shear is

imposed into the model, different fixity assumptions may lead to conservative

or non-conservative designs. In all buildings cases, peak responses occurred as

the fixity level was imposed at intermediate underground levels. Furthermore,

the standard deviation of all normalized responses was less than 14.5%. Due

to the epistemic uncertainty associated with the building fixity level, it recom-

mended to elaborate at least two models with different fixed levels and generate

an envelope of story shears and element forces. The code minimum design shear

should consider the envelope of these two models to avoid under design of the

superstructure.

• Finally, from the studied responses it is concluded that larger uncertainty was

identified for core wall forces (shear and overturning moment) than for story

forces. Additionally, larger uncertainty was identified for story and core shear

at the basements (B1 and BF) than for shears in the upper levels (H/2 and

L1). Since free-plan buildings are characterized by having limited structural

elements, the epistemic uncertainty of these quantities are relevant and should

be accounted for in building design. One possible option to include these un-

certainties is to consider the ranges and the standard deviations of the responses

ratios presented herein, or otherwise, by considering the envelope of different

buildings models.



45

The epistemic uncertainties evaluated in this article are limited to the linear elastic re-

sponse of free-plan buildings and do not necessarily carry over to other structure types or

inelastic behavior of these systems.
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2. EPISTEMIC UNCERTANTY OF 3D CONTINUUM STRESS-STRAIN CON-

CRETE MODELS AND CONSISTENT NUMERICAL IMPLEMENTATION

The use of more sophisticated inelastic stress-strain constitutive models in finite ele-

ment (FE) analysis of structures and systems is becoming more common today in engi-

neering practice. However, such models lead in many cases to different results, which is

a concern for a designing structures. Indeed, quantifying this epistemic uncertainty in-

herent in these models is one of the objectives of the second part of this thesis, since it

may lead to practical recommendations that increase trust in the obtained results. How-

ever, this is not a simple task since all available models use different parameters, notations

and assumptions. This work also aims to provide a consistent notation and computational

implementation for these models.

The quasi-brittle material behavior of concrete exhibits a pronounced nonlinear be-

havior associated with cracking in tension and crushing in compression. Tensile behav-

ior is characterized by an elastic response until the tensile strength. For larger strains,

strength softening occur due to crack propagation. This crack opening process is also fol-

lowed by shear stress transfer degradation due to deterioration of the aggregate interlock.

Thus, cracking induces damage anisotropy characterized by a non-symmetrical behavior

between tensile and compressive regimes with an irreversible strength and stiffness degra-

dation due to the propagation of micro-crack nucleation (Krajcinovic, 1996). Moreover, it

is observed that the energy dissipated to form a unit area of crack surface (Gf ) is relatively

constant, and can be considered as a material parameter (Hillerborg, Modéer, & Petersson,

1976; van Vliet & van Mier, 1995; Nakamura & Higai, 2001).

In contrast, concrete in compression exhibits the formation of considerable irreversible

inelastic strains, which increase with the confinement and inelastic volumetric expansion

(dilatancy). Under uniaxial compressive stress, nonlinear hardening is present at the pre-

peak stage followed by a strength-softening stage. The complexity of this concrete behav-

ior increases for multiaxial stress conditions. On the one hand, the compressive strength

increases with lateral confinement, showing that concrete is a pressure-sensitive material.
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Furthermore, a material densification (or compaction) due to collapse of micro-porosities

is observed under high-confining stresses. And on the other hand, under cyclic load-

ing conditions, the micro-cracks close under load reversals from tensile to compression;

thus showing a partial stiffness recovery (unilateral effect). It is also well known the de-

pendence of concrete strength with strain rates, due to the fact that growth of internal

microcracking is delayed at high strain rates.

In the past, several two-dimensional (2D) and three-dimensional (3D) constitutive

models have been proposed to described the mechanical behavior of concrete under multi-

axial stress paths. Together, the definition of a robust model and its correct computational

implementation, are key aspects to correctly simulate the behavior of complex reinforced

concrete (RC) structures. These models respond to the taxonomy of plastic, damage,

plastic-damage, fracture, and mixed models.

Plastic concrete models are based on the plastic flow theory, which describes the be-

havior of irreversible plastic strains and hardening under multi-axial stress conditions. For

concrete, these models use a non-associated flow rule to describe the dilatancy, kinematic

or isotropic hardening, and load path-dependence. They also, include a single- or multi-

surface yield criterion to describe the limit compressive regime (Mohr-Coulomb, (Drucker

& Prager, 1952; Willam & Warnke, 1975; DiMaggio & Sandler, 1971; Bigoni & Piccol-

roaz, 2004)), which include pressure-sensitive behavior, and for other hand the tensile

regimes, such as the commonly used Rankine (tension cut-off) criterion. Comprehen-

sive overviews and comparison of plastic concrete models area available in (Chen, 1982).

However, these models do not consider the damage process phenomenon associated with

the stiffness degradation, the unilateral effect and the strain-softening.

Damage concrete models are based on continuum damage mechanics (CDM) theory

(Kachanov, 1958; Mazars & Pijaudier-Cabot, 1989; Krajcinovic, 1996), which is based

on the thermodynamics of irreversible processes, where the Helmoltz free energy (HFE)

is defined to establish the constitutive relation using internal variables. Damage models

can predict the degradation of the elastic stiffness tensor and the strain-softening behavior
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caused by the irreversible propagation of micro-cracks. Critical to these models are the

appropriate selection of the damage criteria, and the damage variables, which serve as a

macroscopic approximation to describe the micro-cracking process (Voyiadjis & Kattan,

2005). Several damage criteria have been proposed depending on the relationship between

nominal (damaged) and effective (undamaged) configurations. For instance, these crite-

ria are: (i) equivalent strain-based (Mazars, 1984; Mazars & Pijaudier-Cabot, 1989); (ii)

stress-based (Ortiz, 1985; J. Simo & Ju, 1987); (iii) energy-based (Carol, Rizzi, & Willam,

2001); and (iv) Damage Energy Release Rate-based (DERR)-based (Faria et al., 1998; Wu

et al., 2006). According to the damage variable adopted, CDM models can be classified

as: (i) scalar, where one or more scalars are used to characterize the isotropic damage

process

As the name suggests, plastic-damage models combine the plasticity and CDM the-

ories. Usually, the combination is based on isotropic hardening plasticity with either

isotropic (scalar), or anisotropic (tensor) damage. Isotropic damage is widely used due to

its simplicity to combine different types of plastic models, and can be classified according

to the type of relation between the plastic and damage component. A first group asummes

a plasticity formulation on the effective (undamaged) space (Lubliner et al., 1989; Yazdani

& Schreyer, 1990; Faria et al., 1998; J. Lee & Fenves, 1998; Comi & Perego, 2001; Wu et

al., 2006; Contrafatto & Cuomo, 2006; Cicekli, Voyiadjis, & Abu Al-Rub, 2007; Voyiadjis

et al., 2008; Taqieddin et al., 2012). A second group adopts a strong-coupling approach

in which plasticity is formulated in the nominal (damaged) stress space (Luccioni, Oller,

& Danesi, 1996; Voyiadjis et al., 2008; Armero & Oller, 2000). In general, coupled rela-

tions are more complex than decoupled, and their implementation is not straightforward.

Moreover, plastic-damage models formulated in the effective space are numerically more

stable and attractive (Abu Al-Rub & Voyiadjis, 2009).

Fracture concrete models are based on the nonlinear fracture mechanics theory, where

cracking can be simulated either by a discrete or a smeared crack approach. In discrete
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crack models, the discontinuity of the strain field becomes explicit in simulating the initia-

tion and propagation of dominant cracks. In contrast, in the smeared-crack models, cracks

are smoothed in certain portions of the structure (inducing a length scale in the equations)

to capture the deterioration process through a constitutive law (Bažant, 1982; Cervera &

Chiumenti, 2006). Within the smeared-crack models, they are classified according to the

formation of a crack planes of degradation, or axes of orthotropy, such as fixed crack mod-

els (Rashid, 1968; Gupta & Akbar, 1984; de Borst, 1986), rotating crack models (Cope,

Rao, Clark, & Norris, 1980; Rots, 1988; TNO DIANA, 2018), multi-directional mod-

els (e.g. multi-fixed orthogonal and non-orthogonal crack models, (Maekawa, Pimanmas,

& Okamura, 2003; Ventura-Gouveia, 2011), microplane model (Bažant, 1984; Caner &

Bažant, 2013), among other theories.

Finally, mixed models combine more than one of the previous models. As an example,

plastic-damage smeared crack, or fracture-plastic models, where plasticity and fracture

mechanics are respectively used to describe compression and cracking-tension regimes

(de Borst, 1986; Červenka & Papanikolaou, 2008; Behbahani et al., 2015).

Tipically, concrete models are implemented on finite elements (FE) softwares, which

requires the evaluation of the constitutive equations at every integration point of each ele-

ment. Shell and solid elements are used for a best representation of strain and stress field

distributions through complex geometries. Accuracy in these elements is strongly de-

pendent on the algorithmic implementation and the integration techniques adopted (Krieg

& Krieg, 1977; J. C. Simo & Taylor, 1985). For strain-driven models, two main algo-

rithmic steps are needed: (i) the integration of an updated stress tensor given a strain

increment; and (ii) the elaboration of a stiffness matrix according to the equations in-

volved in the updated stress. The use of implicit integration schemes with return-mapping

algorithms (RMA) is usual for plastic and plastic-damage models, whereas explicit in-

tegration schemes are used for damage and smeared crack models. A broad variety of

algorithms for numerical implementation of concrete models are available in the literature

(e.g. J. C. Simo & Hughes, 1998; de Souza Neto et al., 2008).
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Most of these algorithms are implemented using local models, where the stress at each

integration point dependens only on the respective strain. However, it is well known that

convergence problems are common in local models of materials with softening behav-

ior and stiffness degradation due to strain-localization (Bažant, 1976). More specifically,

when the uniaxial laws exhibits a negative slope, or more generally, when the stiffness

matrix is no longer positive-definite, damage and strain localize in a zone of vanishing

volume and the FE solutions exhibit spurious mesh sensitivity to size and alignment, giv-

ing unreliable results (Pijaudier-Cabot & Bažant, 1987). Thus, local models require the

incorporation of an intrinsic length scale in the continuum equations to properly account

for the strain-localization phenomenon. A useful and simple technique to correct this

in current FE softwares is the fracture energy FE-regularization, originally proposed by

(Bažant, 1982). This technique assumes that the energy dissipation takes place in a band

of a certain width, which is irrespective of the element size. Thus, the uniaxial laws at the

integration points are modified such that the energy dissipated by a completely degraded

FE equals a constant value, which depends on the fracture energy of the material and the

element size. In each element, the width of the fracture zone is referred as the charac-

teristic length lc. Mesh-objetive responses at post-peak regimes when strain-localization

occurs are obtained with this method (de Borst, 1986; Bažant, 1982). However, this tech-

nique is inadequate to overcome the ill-posed solutions present at the post-peak regime

(Bažant & Jirǎsek, 2002).

Well-posed numerical solutions can be obtained by enhancing the local models us-

ing several techniques, so-called localization limiters: (i) higher-order continua, where

additional kinematic variables are added to displacement field, (e.g. Cosserat theory and

micropolar model, Tejchman & Wu, 1993; Eringen, 1999); (ii) higher-order gradients,

which incorporates the gradient of strain field, (e.g. gradient-enhanced models, Peerlings

et al., 1996; Abu Al-Rub & Voyiadjis, 2009); (iii) a non-local media with the stresses as

a function of the mean strain measured in a certain representative volume of the material

centered at that point, (e.g. non-local integral models, Pijaudier-Cabot & Bažant, 1987;

Comi, 2001); and (iv) incorporation of rate-dependent terms (e.g. viscous-regularization
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method, Needleman, 1988; Wang, Sluys, & de Borst, 1998; J. Liu, Lin, Fu, & Zhong,

2011). An extensive review of nonlocal models in the liteature is presented in (Bažant

& Jirǎsek, 2002; Jirásek, 1998). Further, special technique analyses are suggested to

overcome the nonlinear issues with bifurcation points present in materials with softening

regimes, such as explicit dynamic analysis (LS-DYNA, 2018) and arc-length techniques

(Riks, 1979; M. Crisfield, 1981).

Among posibilities, viscous-regularization aproach is the most adequate and easier to

implement for plastic and damage concrete models such as models studied in this thesis.

Visco-elastic and/or visco-plastic models (e.g. (Duvaut & Lions, 1972; Perzyna, 1966))

were developed to describe strain-dependent material behavior and help in regularizing

rate-independent plastic or damage models. The basic idea of this approach is to add a

numerical viscosity into the numerical integration of the equations, which converts the

stiffness operator into a positive-definite matrix even in a strain-softening regime. This

technique improves greatly the convergence at the expense of an over-stress condition that

depends on a strain-rate increment.

The objective of this chapter is to compare the response of five different 3D continuum

constitutive concrete models and provide all the details necessary for a correct numerical

implementation. Because we aim to evaluate the epistemic uncertainty implicit in these

models, several tests are run to compute differences between models. Hence, a second

objective of this work is to try to bound this uncertainty and cast it in a form useful to the

design engineering profession.

This chapter presents in Section 2.1 a complete description of the five continuum con-

crete models using a consistent notation. Section 2.2 is devoted to explain numerical

convergence issues and their solution strategies for these models. Detailed algorithms for

numerical implementation of the updated stress tensor are provided in Section 2.3. More-

over, new analytical explicit expressions for the algorithmic consistent tangent stiffness

tensors of the models are described in Section 2.4. Also, a consistency check of input

model parameters, such as uniaxial laws and fracture energy definition is presented in
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Section 2.5. Further, numerical examples using basic benchmarks tests subject to mono-

tonic and cyclic loading conditions under uniaxial, biaxial and triaxial stress states are

presented in Section 2.6 to demonstrate the capabilities of the proposed implementations.

Moreover, the unilateral effect, the strain-rate effect, the mesh size influence and strain-

localization phenomena are discussed among models. Also, the compression failure mode

of a test specimen is illustrated as an example of application. Additionally, Section 2.7

evaluate the epistemic uncertainty associated to nonlinear response of inelastic constitu-

tive concrete models with a set of response parameters with respect to the experimental

benchmark tests mentioned above. Finally, appendix B provides some useful conversion

rules of tensors and their operations to a vectorized form for the computational implemen-

tation of models.

2.1. Description of concrete models

This section summarized the equations of the five continuum concrete models consid-

ered in this article. Also, include some modifications adequate to improve the convergence

of models.

2.1.1. Drucker-Prager Hyperbolic (DPH) model

This plastic model, so-called the ”Extended Drucker-Prager” model was defined by

(Drucker & Prager, 1952) and modified by (ANSYS, 2018; ABAQUS, 2018). Is a simpli-

fication of Mohr-Coulomb model and have been used to simulate soil or cohesive mate-

rials, like concrete. First, the strain tensor ε is decomposed additively into its elastic, εe,

and plastic part, εp as follow

ε = εe + εp. (2.1.1)

Then, for the case of linear elasticity, they can be related to the Cauchy stress tensor σ

by

σ = De : (ε− εp), (2.1.2)
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where De is the fourth-order linear-elastic tensor (see appendix 1 for their definition). The

yield criterion is defined as

F (σ, α) := ηp+
√

3J2 − ξc(α), (2.1.3)

where the hydroestatic stress p is included to simulate the pressure-dependent behavior and

the asymmetric tensile/compressive strength of concrete; η and ξ are material parameters

chosen according to the required approximation to the Mohr-Coulomb criterion or fitted

to uniaxial/biaxial tensile and compressive strength of concrete; and c(α) is the cohesion

hardening law, which is taken as function of the equivalent plastic strain α. The later

variable is defined as α :=
∫ t

0
‖ε̇p‖dt. Its assumed an exponential relation for the cohesion

hardening law c(α) as

c(α) := cu + (cy − cu)e(−α/αo), (2.1.4)

where cu = Rcy and αo = cu/Eo, with R > 1 an experimental fitted parameter. Discus-

sion of parameters η and ξ are detailed in Section 2.5. Fig. 2.1.1 shown the shape of DPH

yield surface represented in different views. In addition, the figure include the initial yield

surface for the LLF and WLF model.

For other hand, a hyperbolic shape is adopted for the flow potential, and is defined as

G(σ) := η̄p+
√

3J2 + ε2, (2.1.5)

where η̄ is a constant that depends of the dilatancy angle and ε is a eccentricity parameter

that controls the shape of surface near of tensile regime, generally used less than 0.001

(ABAQUS, 2018). Observe that this flow potential is a smoothed surface (C2-class) that

avoid the singularity at the cone′s apex present in the classical Drucker-Prager model,

giving an unique flow direction in this region. Also, note that this flow potential converts

to the classical Drucker-Prager model when ε = 0. Then, the non-associated flow rule for
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Figure 2.1.1. Yield criterion of DPH, LLF and WLF models: (a) 3D view in principal stress; (b) deviatoric
π-plane; (c) tensile/compressive meridians in Rendulic plane; and (d) biaxial-stress plane. The following
parameters are used. Common for all f

′

t=6 MPa, f
′

c=20 MPa, f
′

b = 1.16f
′

c. For the LLF and WLF models
σ̄+ = f

′

t , σ̄
− = f

′

c, ω
± = 0 and Kc=0.7.

the plastic strain tensor is given by

ε̇p := γ̇N , (2.1.6)

where γ is the plastic operator andN denotes the flow tensor expressed as

N :=
∂G

∂σ
=

3

2r
s+

η̄

3
I, (2.1.7)

with r =
√
q2 + ε2 and q =

√
3J2. Hence, using Eq. (A.1.5) and due that tr(s) = 0, it

follows that the volumetric strain rate can be estimated as

ε̇v := εev + ε̇pv = K−1p+ γ̇η̄, (2.1.8)
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where εev and εpv are the elastic and plastic volumetric strain, respectively. It can observed

that η̄ controls the inelastic volumetric strain rate (dilatancy). For the other hand, the

evolution law for the equivalent plastic strain is stated as

α̇ := γ̇ξ. (2.1.9)

Finally, the loading-unloading Karush-Kuhn-Tucker (KKT) and the consistency con-

dition, respectively, are expressed as

γ̇ ≥ 0, F (σ, γ) ≤ 0, γ̇F (σ, γ) = 0, (2.1.10)

F (σ, γ) = Ḟ (σ, γ) = 0. (2.1.11)

2.1.2. Lubliner-Lee-Fenves (LLF) model

This plastic-damage model, so-called ”Barcelona” model, was first developed by (Lubliner

et al., 1989) and later improved by (J. Lee & Fenves, 1998). First, using Lemaitre′s strain

equivalent hypothesis (Lemaitre, 1989), the nominal stress tensor σ associated with the

damage state is related to the effective stress σ̄ corresponding to the undamaged state as

follows

σ := (1− ω)σ̄, (2.1.12)

where ω is the isotropic damage variable, with ω ∈ [0, 1].

Plastic component

To calculate this component, its assumed the so-called effective stress space plasticity,

which is related to the effective stress tensor σ and is dependent (coupled) of damage

component (Wu et al., 2006). First, two hardening scalar variables κ± are stated to control

the positive/negative part of plastic-damage component, respectively. (Lubliner et al.,
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1989) define normalized variables for uniaxial case as follows

κ± :=
1

g±

∫ α±

0

σ±(α±)dα±, (2.1.13)

which correspond to accumulated area under positive/negative uniaxial stress-equivalent

plastic strain law (σ± − α±), respectively, with κ± ∈ [0, 1] and g± =
∫∞

0
σ±(α±) dα± are

the total area under their respective stress law. Note that positive values are used for σ±.

Moreover, the positive/negative equivalent plastic strain α± are defined as

α± :=

∫
| ˙̂εp±|dt, (2.1.14)

where ˙̂εp+ = ˙̂εpmax and ˙̂εp− = − ˙̂εpmin, with ˙̂εpmax,min are the maximum and minimum eigen-

values ratio of principal plastic strain tensor εp, respectively. Then, the Eq. (2.1.13) can

be written in an incremented format as

κ̇± =
1

g±
σ±(α±)α̇±. (2.1.15)

Moreover, in case for multi-axial condition, the evolution law of variables κ± in a

vectorized format κ = [κ+, κ−]T is defined as

κ̇ := W
(

ˆ̄σ,κ
)
· ˙̂εp · 1, (2.1.16)

W
(

ˆ̄σ,κ
)

:=

φ( ˆ̄σ)σ+(κ+)/g+ 0 0

0 0
(
φ( ˆ̄σ)− 1

)
σ−(κ−)/g−

 ,
where ˆ̄σ is the principal effective stress tensor; ˙̂εp = diag

(
˙̂εp1, · · · , ˙̂εpN

)
is the ratio of

principal plastic strain tensor, which is filled in an algebraic order (e.g. ˙̂εp1 > · · · > ˙̂εpN ); 1

is a vector filled of ones of length N ; and φ( ˆ̄σ) is a weight factor ∈ [0, 1], defined as

φ( ˆ̄σ) :=


0, ˆ̄σi = 0∑N

i=1〈ˆ̄σi〉+∑N
i=1|ˆ̄σi|

, otherwhise
. (2.1.17)
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An adequate conversion of uniaxial stress laws from the relation σ± − α± to σ± −

κ±, using Eq. (2.1.13) is necessary to generate. Detail of this conversion is discussed in

Section 2.5.1. For the other hand, similar to stated in the DPH model, the hyperbolic

Drucker-Prager criterion defined by Eq. (2.1.5) is used for the flow potential. Moreover,

due that any isotropic material satisfy the relation G(σ̄) = Ĝ( ˆ̄σ) and that p, J2 and r

are invariants in the effective stress space
(
(̄·) = (̂̄·)

)
, the flow potential in the principal

effective space can be rewritten as

Ĝ
(

ˆ̄σ
)

= η̄p̄+
√
J̄2 + ε2. (2.1.18)

Then, the non-associated flow rule satisfy the relation in the principal space as

˙̂εp = γ̇ ˆ̄N , (2.1.19)

ˆ̄N :=
∂Ĝ

∂ ˆ̄σ
=

3

2r̄
ˆ̄s+

η̄

3
Î, (2.1.20)

where ˆ̄N is the principal effective flow tensor. Thus, Eq. (2.1.16) can be rewritten as

κ̇ = γ̇H
(

ˆ̄σ,κ
)
, (2.1.21)

where H
(

ˆ̄σ,κ
)

= W
(

ˆ̄σ,κ
)
· ˆ̄N · 1. For the other hand, the yield criterion is first

established by (Lubliner et al., 1989) in the effective space as

F̄
(

ˆ̄σ
)

:= ηp̄+
√

3J̄2 + β〈ˆ̄σmax〉+ − (1− α)c, (2.1.22)

where α =
(
f
′

b − f
′
c

)
/
(
2f
′

b − f
′
c

)
, β = (1 − α)f

′
c/f

′
t − (1 + α) and c is the cohesion

parameter (constant). Typical experimental values of the ratio f ′b/f
′
c for concrete ranges

from 1.10 to 1.16, yielding values of α between 0.08 and 0.12. Later, (J. Lee & Fenves,

2001) modify this function, adjusting the parameters to distinguish the different evolution
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of strength under tension and compression as follows

β(κ) := (1− α)
σ̄−(κ−)

σ̄+(κ+)
− (1 + α), c(κ−) := σ̄−(κ−), (2.1.23)

where σ̄± are the positive/negative uniaxial effective stress law, respectively. Additionally,

(J. Lee & Fenves, 2001) include in the yield criterion a parameter δ to account the triaxial

compression behavior. Thus, the yield criterion can be redefined finally as

F̄
(

ˆ̄σ,κ
)

:= ηp̄+
√

3J̄2 + β(κ)〈ˆ̄σmax〉+ − δ〈ˆ̄σmax〉− − (1− α)c(κ−), (2.1.24)

where δ = 3(1−Kc)/(2Kc − 1) denotes the ratio of corresponding values of
√
J2 under

tensile meridian and compressive meridian stress states for any given value of hydrostatic

pressure I1 and its assumed constant (Lubliner et al., 1989). Experimental values of Kc

ranges in the interval [2/3, 1], which gives a value of δ ∈ [0, 3].

Damage component

(J. Lee & Fenves, 1998) define the damage variable ω as follows

ω := 1−
[
1− s( ˆ̄σ)ω+(κ+)

] [
1− ω−(κ−)

]
, (2.1.25)

where s( ˆ̄σ) = so + (1 − so)φ( ˆ̄σ) is a variable to represent the stiffness recovery from

compression to tensile load state and ω±(κ±) are uniaxial positive/negative damage laws,

respectively, which are in function of hardening variables κ±. These damage laws are

fitted experimentally and are generally known in terms of equivalent plastic strain α±, e.g.

the common exponential relation is used as

ω±(α±) = 1− exp(−C±α±), (2.1.26)

with C± an experimental parameter that control the unloading branch of response. Due

this, its required an adequate conversion from ω± − α± to ω± − κ± laws as explained in
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Section 2.5.1. Moreover, (ABAQUS, 2018) redefine the damage variable ω as follow

ω := 1−
[
1− s−( ˆ̄σ)ω+(κ+)

] [
1− s+( ˆ̄σ)ω−(κ−)

]
, (2.1.27)

with s±( ˆ̄σ) are the stiffness recovery functions defined as

s+( ˆ̄σ) := 1− z+
c φ( ˆ̄σ), s−( ˆ̄σ) := 1− z−c

(
1− φ( ˆ̄σ)

)
, (2.1.28)

with z±c ∈ [0, 1] are a stiffness recovery factor from tensile to compression load state and

vice versa. Empirical evidence shown that compressive stiffness is recovered upon crack

closure as the load changes from tension to compression (z+
c ≈ 1). However, tensile

stiffness is not recovered as the load changes from compression to tension once crushing

micro-cracks have developed (z−c ≈ 0). Thus, the uniaxial positive/negative stress σ± laws

can be related to respective effective stress σ̄± laws as follows

σ±(κ±) =
[
1− ω±(κ±)

]
σ̄±(κ±). (2.1.29)

Viscous component

Additionally, the model can include strain-rate dependency with a visco-plastic model,

which improve the convergence in strain-softening regimes. To this, the nominal stress

tensor σ is now converted to their respective viscous component σv, and is defined as

σv := (1− ωv)σ̄v, (2.1.30)

where ωv is the viscous damage variable and σ̄v is the effective viscous stress tensor.(J. Lee

& Fenves, 2001) calculate this component using the (Duvaut & Lions, 1972) visco-plastic

model, which is stated in the effective stress space as

ε̇vp :=
1

µv
Ce : (σ̄v − σ̄), (2.1.31)

σ̄v := De : (ε− εvp), (2.1.32)
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with εvp is the visco-plastic strain tensor and µv is the numerical viscosity parameter and

is equivalent to the relaxation time. Thus, combining both expressions gives the follow

relation

ε̇vp = − 1

µv
(εvp − εp). (2.1.33)

Moreover, the evolution law of viscous-damage variable ωv is defined as

ω̇v := − 1

µv
(ωv − ω). (2.1.34)

2.1.3. Wu-Li-Farı́a (WLF) model

This plastic-damage model, was first developed by (Faria et al., 1998) and later mod-

ified by (Wu et al., 2006). Two variants are developed for this model: one aproach that

include the plastic and damage components (WLF) and other one with pure damage be-

havior (WLF0). First, assume that the effective stress tensor σ̄ are splitted into positive

σ̄+ and negative σ̄− parts, to account separately the cracking (tension) and shear (com-

pression) damage mechanisms for degradation of concrete (Ladeveze, 1983; Ortiz, 1985),

using the follow decomposition

σ̄± :=
N∑
i=1

〈ˆ̄σi〉±Eii
σ̄ = P± : σ̄, (2.1.35)

P± :=
N∑
i=1

H±(ˆ̄σi)
(
Eii
σ̄ ⊗Eii

σ̄

)
, (2.1.36)

where P± are the fourth-order projection tensors, with symbol ′±′ denoting ’+’ or ’-

’ as appropriate, ˆ̄σi denote the i−th eigenvalue of tensor σ̄ and Eii
σ̄ is the i−th eigen-

projector tensor associated to σ̄ (see Eq. (A.1.9)). This decomposition satisfy the relations

σ̄ = σ̄+ + σ̄− and P+ + P− = I . Next, in order to establish the intended constitutive
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law, (Wu et al., 2006) define the total elasto-plastic HFE ψ potential as follows

ψ(εe,ω,κ) := ψe(εe,ω) + ψp(κ,ω), (2.1.37)

ψe(εe,ω) = (1− ω+)ψe+o (εe) + (1− ω−)ψe−o (εe), (2.1.38)

ψp(κ,ω) = (1− ω+)ψp+o (κ) + (1− ω−)ψp−o (κ), (2.1.39)

where ω± = ω±(r±) are positive/negative scalar damage variables ∈ [0, 1], respectively,

which are in function of the damage thresholds r± that controls the size of damage sur-

faces; ω = [ω+, ω−]T denotes the damage vector; ψe±o are the undamaged elastic HFE

potential and are equals to the strain energy per unity of volume, i.e. ψe±o = 1
2
σ̄ : εe; and

ψp±o are the undamaged plastic HFE potential. Moreover, the Eq. (2.1.37) can be reordered

as

ψ(εe, ω+, ω−,κ) := (1− ω+)ψ+
o (εe,κ) + (1− ω−)ψ−o (εe,κ), (2.1.40)

where ψ±o is the positive/negative total undamaged elasto-plastic HFE potential and are

written as

ψ±o = ψe±o + ψp±o . (2.1.41)

For the other hand, the nominal Cauchy stress tensor can be defined as

σ :=
∂ψe

∂εe
. (2.1.42)

Then, using the relation ∂ψe±o
∂εe

= σ̄± and Eqs. (2.1.41), (2.1.35) and (2.1.38), this stress

tensor is expressed as

σ :=
[
(1− ω+)P+ + (1− ω−)P−

]
: σ̄ =

(∑
ℵ

(1− ωℵ)Pℵ
)

: σ̄, (2.1.43)

where ℵ denote index summation for ’+’ and ’-’ part as appropriate hereafter.
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Plastic component

Similar to the LLF model, its assumed the effective stress space plasticity, where the

plastic component is calculated in terms of the effective stress tensor σ̄ and in this case, is

independent (decoupled) of damage component (Wu et al., 2006). Due to this condition,

they can include the plastic component as an option, conversely to the LLF model.

(Wu et al., 2006) assume the Lee-Fenves yield criterion as stated in Eq. (2.1.24), with

the parameter δ = 0, and the classical Drucker-Prager flow potential criterion (ε = 0).

However, its recommend the use of a flow potential as defined in Eq. (2.1.5). For the other

hand, similar to the LLF model, two hardening parameters κ± are proposed to control the

positive/negative plastic component which are assumed as the positive/negative equivalent

plastic strain α± defined as α± =
∫
| ˙̂ε±| dt. Then, for multi-axial condition, these harden-

ing parameters are stated as κ+ = φ( ˆ̄σ)α+ and κ− = −(1− φ( ˆ̄σ))α−, with φ( ˆ̄σ) defined

in Eq. (2.1.17). Then, the rate of hardening vector κ = [κ+, κ−]T is defined similar to the

Eq. (2.1.21), but with the matrixW ( ˆ̄σ) given by

W ( ˆ̄σ) :=

φ ( ˆ̄σ
)

0 0

0 0 φ
(

ˆ̄σ
)
− 1

 . (2.1.44)

In addition, the positive/negative effective uniaxial stress σ̄±(κ±) laws are required.

(Wu et al., 2006) assume a linear relation as follows

σ̄±(κ±) = f±o + J̄±κ κ
±, (2.1.45)

where f±o is the positive/negative initial stress, which are chosen for convenience in the

range f+
o ∈ [0, f

′
t ] and f−o ∈ [0, f

′
c], respectively, and J̄±κ = E±t Eo/(Eo − E±t ), with E±t

are the hardening slope.
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Damage component

For the damage component, its required a specific definition for the undamaged elasto-

plastic HFE potential ψ±o . For one hand, (J. Simo & Ju, 1987) assume that ψ±o can be as

the positive/negative elastic strain energy per unit of volume and expressed as

ψ±o (εe) :=
1

2

(
σ̄± : Ce : σ̄

)
. (2.1.46)

However, this HFE potential is more adequate in tensile regimes where contribution of

plastic part is much smaller than the compression ones. Hence, for compressive regimes,

(Wu et al., 2006) define the following HFE potential that include the biaxial and triaxial

compression effects as follow

ψ−o (εe) := bo

(
ηp̄+

√
3J̄2 − δ〈ˆ̄σmax〉−

)2

, (2.1.47)

where bo is a material parameter (defined in (Wu et al., 2006)) and η = 3α. Next, the

tensile and shear thermodynamic forces or Damage Energy Release Rate-based (DERR),

Y ±, can be defined as

Y ± := −∂ψ
±

∂ω±
= ψ±o (2.1.48)

Then, the positive/negative damage criteria are defined as

F±d (Y ±, r±) := g±d (Y ±)− g±d (r±) ≤ 0, (2.1.49)

where g±d (·) can be any monotonically increasing scalar function. Using the Eqs. (2.1.46)

and (2.1.47), these functions can be postulated as convenience as gd(·)± =
√

2Eo(·) and

gd(·)− =
√

(·)/bo, respectively. Thus, the positive/negative DEERs can be rewritten as

Y ± :=
√

2Eoψ±o =
√
Eo (σ̄± : Ce : σ̄), (2.1.50)

Y − :=

√
ψ−o
bo

= ηp̄+
√

3J̄2 − δ〈ˆ̄σmax〉−. (2.1.51)
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Moreover, the evolution damage laws can be defined analogously to the classical plas-

ticity, where the flow rule, the loading-unloading and the consistency conditions of damage

component are defined, respectively, as

ω̇± = γ̇±d
∂g±d
∂Y ±

, (2.1.52)

γ̇±d = ṙ± ≥ 0, F±d (Y ±, r±) ≤ 0, γ̇±d F
±
d (Y ±, r±) = 0, (2.1.53)

F±d (Y ±, r±) = Ḟ±d (Y ±, r±) = 0. (2.1.54)

Its follow using Eqs. (2.1.53) and (2.1.54), that the damage thresholds r± are non-

decreasing functions that satisfy the relations

r± = max

(
r±o ,max

[0,t]
(Y ±)

)
, (2.1.55)

ṙ± = Ẏ ±, (2.1.56)

where r±o are the initial damage thresholds. Assuming an uniaxial behavior and using

Eqs. (2.1.50) and (2.1.51), these values can be calculated as r±o = σ±o and r−o = (1 −

α + δ)σ−o , respectively, where σ±o are stress onset the nonlinear behavior. Although, its

adequate adjust the negative initial threshold as r−o = (1− α)σ−o .

Finally, the positive/negative damage ω±(r±) laws are generally derived of exper-

imental cracking process. (Mazars, 1984) define an exponential relation for the posi-

tive/negative component, respectively, given by

ω+(r+) := 1− 1

z̄+

(
1− A+ + A+eB

+(1−z̄+)
)
, (2.1.57)

ω−(r−) := 1− 1

z̄−

(
1− A− + A−z̄−eB

−(1−z̄−)
)
, (2.1.58)

where z̄± = r±/r±o and A± and B± are experimental parameters fitted with the frac-

ture energy FE-regularization method explained in Section 2.5. This damage laws can be

converted to an equivalent stress-strain σ±(ε±) relation and vice versa, being these last

commonly more known and used than the respective damage laws.
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Viscous component

Additionally, the model can include rate-dependent viscous regularization. Originally,

(Faria et al., 1998) propose the use of Perzyna viscous model to the damage component of

model, which involve an iterative process to solve the updated solution. In order to get a

simplified solution, its proposed the use of (Duvaut & Lions, 1972) viscous model in the

plastic and damage components of model. Thus, the nominal viscous stress tensor σv is

defined as

σv :=
∑
ℵ

(1− ωℵ)σ̄vℵ, (2.1.59)

σ̄v± = P±v : σ̄v, P±v :=
N∑
i=1

H±0
(
ˆ̄σvi
) (
Eii
σ̄v ⊗E

ii
σ̄v

)
, (2.1.60)

where σ̄v is the effective viscous stress tensor given by Eq. (2.1.32) and P±v are their

positive/negative projected tensors, respectively. Moreover, for the damage component,

the evolution law of damage thresholds variables r± are defined as

ṙ± := − 1

µv

(
r± − Y ±

)
. (2.1.61)

2.1.4. Farı́a-Oliver-Cervera (FOC) model

This plastic-damage model was proposed by (Faria et al., 1998). Take identical as-

sumptions than the WLF model for the damage and viscous components, and use a sim-

plified representation for the plastic component, explained as follows.

Plastic component

Although, the formulation of the WLF model provides a strict framework to represent

the evolution of plastic strain tensor, numerical implementation gives time consuming

solving process. (Faria et al., 1998) proposed a simplified evolution law for the plastic
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strain tensor as follow

ε̇p := γ̇σ̄, (2.1.62)

γ̇ = Eoχ
〈εe : ε̇〉+

(σ̄ : σ̄)
, (2.1.63)

where χ = B+H+(ω̇+) + B−H+(ω̇−) ≥ 0 is a material parameter to control the rate

intensity of plastic deformation, with B± parameters associated to positive/negative com-

ponent of stress, respectively; Heaviside function H(·)+ is used for active progressive

damage rate of respective stress component; and McAulay 〈·〉+ function enable one to set

a non-negative value for the product (ε̄e : ε̇) required to ensure positive dissipation.

2.1.5. Total strain rotating crack (ROT) model

This smeared-crack model was developed by (Cope et al., 1980; Gupta & Akbar, 1984)

and enhanced by (Rots, 1988; TNO DIANA, 2018). We proposed a simple and robust

formulation than past.

Damage component

First, assume the so-called the ”total strain” formulation present in the hypo-elastic

materials, i.e. that stress tensor σ depends only of total strain tensor ε. Next, its assumed

that a set of orthogonal crack planes rotates according to direction of principal strain tensor

ε̂. Then, using a spectral decomposition of strain tensor ε (Eq. (A.1.8)), satisfy the relation

ε = V εε̂V
T
ε =

N∑
i=1

ε̂iE
ii
ε , (2.1.64)

where V ε is the orthogonal normalized eigenvectors matrix, ε̂i is the i-th eigenvalue and

Eii
ε the i-th eigen-projector tensor (Eq. (A.1.9)).

According only to this condition, the model lack of memory for the damage evolution,

where the loading and unloading follows the same path (hypo-elastic). Thus, in order to
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add an irreversible damage process, a i-th positive/negative damage strain variables α±i
are defined for respective principal strain direction ε̂i. Then, the evolution law for these

damage variables satisfy the relation

α̇±i := z±i
˙̂εi, (2.1.65)

where z±i = 1 − r±i and r±i = H±0 (α±i − ε̂i) are the damage threshold variables. Now,

calling the damages strain vector as follow α = [α+,α−]T , with α± = [α±1 , · · · , α±N ]T ,

Eq. (2.1.65) can be rewritten in a vectorized format as

α̇ = Z (ε̂,α) · ˙̂ε · 1, (2.1.66)

Z (ε̂,α) =

Z+

Z−

 , Z± = diag
(
z±1 , · · · , z±N

)
.

It should be noted the similarity of this expression with Eq. (2.1.16). For the other

hand, the i-th principal stress σ̂i evaluated in their respective principal strain direction is

given by

σ̂i := m+
i h

+
i +m−i h

−
i , (2.1.67)

wherem±i = H±1/2(ε̂i) and h±i = σ±(α±i )g±i , with σ±(α±i ) are the uniaxial positive/negative

stress laws, respectively, and g±i are variables to control the loading/unloading stress. As-

suming a secant unloading to origin (no plastic strains), the variables g±i can be defined

as

g±i := 1− α±i − ε̂i
α±i

=
ε̂i
α±i

, (2.1.68)

with g±i ∈ [0, 1], where g±i = 1 in case of loading and g±i < 1 for unloading. Finally,

the model assume the principle of co-axiality (Bažant, 1983), i.e. the principal stress

directions coincide with the principal strain directions, for which satisfy the relation

σ =
N∑
i=1

σ̂iE
ε
ii. (2.1.69)
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Viscous component

Additionally, its suggested include a viscous model to improve the convergence of

model. For this, the Duvaut-Lions viscous model can be incorporated as follows

α̇v±i := − 1

µv
(αv±i − α±i ), (2.1.70)

where αv±i are the i-th viscous damage strain variable. Then, the i-th principal viscous-

stress σ̂vi is expressed as

σ̂vi = m+
i h

v+
i +m−i h

v−
i , (2.1.71)

hv±i = σ±(αv±i )gv±i , gv±i =
ε̂i
αv±i

. (2.1.72)

Thus, the viscous-stress tensor σv is given by

σv :=
N∑
i=1

σ̂viE
ii
ε . (2.1.73)

It should be noted that, this model can be extended to simulate the biaxial effects, such

as biaxial strength in compression-compression (CC) regime or compression softening

in tension-compression one. In both cases, it can be extended by means of modify the

uniaxial stress-strain law as function of complete principal stress/strain tensor, i.e. σ± =

σ±(ε̂, σ̂). Complex derivatives involve this process and is beyond the scope of this work.

2.1.6. Resume of concrete models

Table 2.6.7 shown the main capabilities for described concrete models. Classification

of models (plastic, damage, plastic-damage), strain-softening behavior, stress state effects

(biaxial or triaxial), unilateral effect and strain-rate effect are mentioned. Also, the table

lists the inelastic inputs parameters.
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Table 2.1.1. Properties of concrete models and their input parameters.

Strain Biaxial Triaxial Unilateral Strain-rate Inelastic inputs

Model Class softening effect effect effect effect Scalar Uniaxial laws

DPH plastic X η, η̄, ξ, ε c(α)

LLF plastic-damage X X X X X f
′
c, f

′
b, Kc, η̄, ε, µv, z±c σ±(κ±), ω±(κ±)

WLF plastic-damage X X X X X f
′
c, f

′
b, Kc, η̄, ε, µv σ̄±(κ±), ω±(r±)

WLF0 damage X X X X X f
′
c, f

′
b, Kc, µv ω±(r±)

FOC plastic-damage X X X X X f
′
c, f

′
b, Kc, B± ω±(r±)

ROT damage X X X µv σ±(ε±), σ−max(ε)

2.2. Convergence issues and solution strategies

Inner the possibilities of local models, three strategies are suggested and probed by

authors to achieve a good convergence.

2.2.1. Stress updated algorithm

Determination of an adequate stress updated algorithm is necessary to give robust

convergence for numerical models (Krieg & Krieg, 1977; J. C. Simo & Taylor, 1985).

The following suggestions are proposed.

• Avoid singularities in the range of solution for all variables to be solved.

• Choice of an adequate initial value and no-null derivatives in the variables to

be solved is a key issue in the Newton′s method to give a correct convergence.

Also, its better solve an unique scalar variable rather than a system of equa-

tions, specially when their magnitudes are very different. An example of this, its

recommended to solve the scalar variable qn+1 rather than the deviatoric stress

tensor sn+1 for the plastic component of the DPH, LLF and WLF models.

• Its highly recommended to avoid zero slope stages in the uniaxial stress laws

(e.g. perfectly elasto-plastic) to give an unique plastic/damage consistency op-

erator γ or γd, respectively. Zero slope is typically present in the residual stress

under post-peak stage. To fix this, include a small value for the slope, say

10−5 × Eo.



70

2.2.2. Tangent stiffness operator

Special attention are given to the tangent stiffness operator, due to sensitivity of this

operator in the convergence of models at a finite element level. We propose the following

recommendations for this operator.

• Its recommended that all variables involved in this operator be of C1-class (con-

tinuous derivative), taking special attention in strain-softening regimes. One

way to remedy this in the plastic component of models, is avoid singularities

in the yield function and especially in the flow potential function by means of

smoothed C2-class functions. Example of this occur in the DPH model, where

the flow potential function has been modified by a smooth hyperbolic shape

surface (Eq. (2.1.5)) to give unique derivatives at the apex′s zone of cone (ten-

sile regime). Another example happens in the LLF and WLF models, where the

Heaviside functionH± is present in the yield criterion (Eqs. (2.1.22) and (2.1.24)).

To improve the convergence of model, its recommended replace this stepped

function by a C1-class approximated function H̃±(·) expressed by Eq. (A.1.22).

In addition, the use of C1-class functions its recommended also for the uniaxial

laws (σ − ε, σ − κ or ω − r). To this purpose, we recommend to replace a por-

tion of the uniaxial law by a smoothed function in all breaks points, as shown in

Fig. 2.2.2a. Inner the possibilities, the Hermite polynomial interpolation, cubic

spline curves or any three-order polynomial can be used as a smoothed function.

For the sake of simplicity, it can use a three-order polynomial p(x) given by

p(x) := a0 + a1x+ a2x
2 + a3x

3, (2.2.74)

where the constants a0 to a3 are given by

a0 = f1 − x1[E1 + x1(c1 + 2)], a1 = E1 + x1(2c1 + 3c2),

a2 = −(c1 + 3c2), a3 =
c2

x1

,
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with c1 and c2 are expressed as

c1 =
(2E1 + E2)∆x− 3∆f

(∆x)2
, c2 =

(E1 + E2)∆x− 2∆fx1

(∆x)3
,

where ∆x = x2 − x1 is the length of portion of the uniaxial law replaced by the

smoothed function, with x1 and x2 are the abscissa before and after of respective

break point, ∆f = f2−f1 and (f1,E1) and (f2,E2) are the values of uniaxial law

and their derivative evaluated in x1 and x2, respectively. An adequate portion

∆x is key to gives a correct smooth function. Thus, for positive uniaxial laws,

a value of ∆x = 5 × 10−1xo is recommended, where xo is the abscissa onset

the non-linear behavior and for negative ones a value of ∆x = 5 × 10−2xy is

adequate, where xy is the abscissa associated at the peak response.

• For non-symmetric stiffness matrices, its required the use of a unsymmetric

Newton-Rapson solver method to get an adequate response. Its observed that

the LLF and WLF models are specially sensitive to this condition. Moreover,

when is forced a symmetrization of the consistent stiffness matrix (Dn+1 =

1
2
(Dn+1 + DT

n+1)) in this models, a ”saw-tooth” shape response are generated,

specially in the softening regimes and in biaxial and triaxial load states.

• Its well known that strain-softening behavior can generate a loss of positive-

definite value of stiffness tensor and consequently a non-convergence of FE

model. One way to remedy this, is to include a numerical viscous-plastic model

in damage or plastic-damage models. The Duvaut & Lions, 1972 model is more

appropriate for the regularization of the rate-independent damage and plastic-

damage models, because the Perzyna model fails to converge to the rate-independent

backbone model in some cases (J. Lee & Fenves, 1998). The LLF, WLF, FOC

and ROT models can include a viscous-regularization in their formulation using

Duvaut-Lions model.
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  Smoothed 

  polynomial

  Original function

(a)

(b)

modified

zones

(c)

  Original function

  (modified zone)

Figure 2.2.2. Smoothed function for uniaxial laws: (a) generic uniaxial law f(x); (b) derivarive of f(x) and
(c) smoothed polynomial used.

2.2.3. Additional recommendations

• We recommend the use of a linear algebra software (MATLAB, PYTHON) to

check the adequate implementation and response of models.

• Its necessary to check the calculation of derivatives involved in the stiffness

operator, e.g. compare the exact derivatives with their first-order approximation

such as ∂f
∂x
≈ (f [xj+1]− f [xj]) /∆x, with ∆x = xj+1 − xj .

• Finally, for a correct computational implementation of numerical algorithms, its

required that all tensors and their operations must be converted into adequate

vector or matrix representation (vectorization and matricization). Thus, the

second-order tensors are vectorized using Voigtś notation, whereas four-order

tensors are converted into matrix standard format. Details of these conversions

are explained in appendix B.
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2.3. Stress updating algorithms

Numerical integration of constitutive equations requires of an algorithm to update the

stress tensor and internal state variables at each integration point given a known strain

increment. More specifically, given a (pseudo-) time increment ∆t = tn+1 − tn, it is

assumed that at time tn the strain tensor εn, the stress tensor σn and the internal state

variables αn are known. Then, the algorithm determine the updated stress tensor σn+1 at

time tn+1 for a given strain increment ∆ε = ∆tε̇.

Thereby, for one hand, the plastic component of models is commonly evaluated with a

backward Euler (implicit) scheme. Return-mapping algorithms are the most used, where a

trial elastic-predictor step and a plastic-corrector step are required (J. C. Simo & Hughes,

1998). Generally, this method lead implicit non-linear equations which are solved by

means of an iterative Newton′s method. For the other hand, the damage component of

models is generally evaluated with an explicit scheme, with the exception of coupled

plastic-damage models, which require the simultaneous solution of both components.

2.3.1. Trial elastic-predictor step

The elastic-trial step assume that the strain increment produces purely elastic deforma-

tion, where plastic deformation and evolution internal variables q are frozen (εp tr
n+1 = εpn

and qtr
n+1 = qn). Thus, the trial elastic strain and trial stress tensor are given by

εe tr
n+1 = εn+1 − εpn, (2.3.75)

σtr
n+1 = De : (εn+1 − εpn) = σn + De : ∆εn+1, (2.3.76)

where ∆εn+1 = εn+1 − εn. Next, the trial state can be converted into the update solution

if satisfy the condition

F tr
n+1 = F (σtr

n+1, q
tr
n+1) ≤ 0. (2.3.77)
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This means that trial state lies within the elastic domain on the yield surface. In this

case, the stress and internal variables are updated as (·)n+1 = (·)tr
n+1. Otherwise, the trial

step is not admissible, causing plastic response, being required any plastic-corrector step

or a return-mapping algorithm to determine the update state.

2.3.2. Plastic-corrector step

The plastic-corrector step adjust the trial elastic-predictor step to give a correct updated

stress. First, the updated plastic strain tensor εpn+1 is derived from linearization of flow rule

as stated in Eq. (2.1.6)

εpn+1 = εpn + ∆γNn+1. (2.3.78)

Then, inserting this relation into Eq. (2.3.76), the updated stress tensor σn+1 is written

as

σn+1 = σtr
n+1 −∆γDe : Nn+1. (2.3.79)

Thus, the only variable necessary to be solved is the discrete consistent operator ∆γ,

which is calculated according to their respective equations for each numerical model.

2.3.3. DPH model

The numerical stress integration of this model is based by the classical elastic-predictor

(Section 2.3.1) and plastic-corrector step, the later explained as follow. First, substituting

Eq. (2.1.7) into Eq. (2.3.79) and using Eq. (A.1.7), the updated stress tensor σn+1 is given

by

σn+1 = σtr
n+1 −∆γ

(
3µ

rn+1

sn+1 + η̄KI

)
, (2.3.80)
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where rn+1 =
√
q2
n+1 + ε2 and qn+1 =

√
3J2n+1 , with J2n+1 = 1

2
‖σn+1‖2. Then, the

deviatoric and hydrostatic parts of this expression can be decomposed as

sn+1 = str
n+1 −

3µ∆γ

rn+1

sn+1, (2.3.81)

pn+1 = ptr
n+1 − η̄K∆γ. (2.3.82)

Its easy to see that the updated deviatoric stress sn+1 is proportional, or geometrically

parallel, to their respective trial stress str
n+1. This condition obeys to the radial return-

mapping scheme (J. C. Simo & Hughes, 1998), i.e. equivalently expressed as

sn+1

‖sn+1‖
=

str
n+1

‖str
n+1‖

, (2.3.83)

sn+1

qn+1

=
str
n+1

qtr
n+1

. (2.3.84)

Substituting Eq. (2.3.84) into Eq. (2.3.81), the updated deviatoric stress tensor reads

as

sn+1 = fdevs
tr
n+1, (2.3.85)

where fdev = 1− 3µ∆γwn+1/q
tr
n+1, with wn+1 = qn+1/rn+1. Then, replacing Eq. (2.3.84)

into Eq. (2.3.85), the variable qn+1 can be written as

qn+1 = qtr
n+1 − 3µwn+1∆γ. (2.3.86)

On the other hand, the updated equivalent plastic strain is obtained from the discrete

version of Eq. (2.1.9) as

αn+1 = αn + ξ∆γ. (2.3.87)

Moreover, the updated cohesion law can be called as cn+1 = c(αn+1). Then, sub-

stituting Eqs. (2.3.86) and (2.3.82) into updated version of Eq. (2.1.3), the consistency
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condition can be written as

Fn+1 = ηpn+1 + qn+1 − ξcn+1 = 0

= η(ptr
n+1 − η̄K∆γ) + qtr

n+1 − 3µwn+1∆γ − ξcn+1. (2.3.88)

Thus, the discrete consistency operator ∆γ can be computed in a partially closed form

as

∆γ =
qtr
n+1 + ηptr

n+1 − ξcn+1

3µwn+1 + ηη̄K
=
f1n+1

f2n+1

, (2.3.89)

where f1n+1 = f1(∆γ) and f2n+1 = f2(qn+1). Even so, note that its required an iterative

process to calculate ∆γ, e.g. Newton′s method. For this, its convenient assume that the

discrete consistency operator ∆γ is in function of variable qn+1, i.e. ∆γ = ∆γ(qn+1).

Then, it required solve first the variable qn+1 and then obtain the consistency operator ∆γ.

Box 1 shown the algorithm suggested to solve the variable ∆γ for this model. The residual

function and their total derivative are given by

R (qn+1,∆γ(qn+1)) = −qn+1 + qtr
n+1 − 3µwn+1∆γ, (2.3.90)

dR

dqn+1

=
∂R

∂qn+1

+
∂R

∂∆γ

∂∆γ

∂qn+1

, (2.3.91)

where the derivatives involved in this expression are

∂R

∂qn+1

= −1− 3µa0∆γ,
∂R

∂∆γ
= −3µwn+1, (2.3.92)

∆γ

∂qn+1

= − 3µa0∆γ

(f2n+1 + Jαξ2)
, (2.3.93)

with a0 = ε2/r3
n+1 and Jα := ∂cn+1

∂αn+1
the hardening modulus. Also, the recommended

values for the number of iterations and tolerances are: Niter = 20, Tol1 = 10−20, Tol2 =

10−5 and Tol3 = 10−2.
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Box 1 :Algorithm to solve ∆γ for the DPH model

q0
n+1 = qtr

n+1, c0
n+1 = c(αn), ∆γ0 = 0 . Set initial value

for j ≤ Niter do
rjn+1, wjn+1, αjn+1, cjn+1, ∆γj . Use Eqs. (2.3.87) and (2.3.89)

Rj = R
(
qjn+1,∆γ

j
)

. Residual function (Eq. (2.3.90))

dRj =
dRj

dqn+1

(
qjn+1,∆γ

j
)

. Total derivative (Eq. (2.3.91))

dqj = −Rj/dRj
qj+1
n+1 = qjn+1 + dqj . Update solution

qj+1
n+1 = max

(
qj+1
n+1, T ol1

)
. Adjust solution

if
(
|Rj |< Tol2 and |dqj |< Tol3q

j
n+1

)
or
(
dqj ≤ Tol1

)
then

exit

2.3.4. LLF model

The numerical stress integration of this model is composed by three steps: (i) an

elastic-predictor step (Section 2.3.1); (ii) a plastic-corrector step with an implicit scheme

to evaluate the updated effective stress tensor σ̄n+1; and (iii) a damage-corrector step with

an explicit scheme to evaluate the updated damage variables ωn+1 and the nominal stress

tensor σn+1. The development of plastic and damage steps are explained as follow.

Plastic component

First, due that the DPH and LLF share identical flow potential criterion, Eqs. (2.3.80)

to (2.3.86) are also valid for this model, but expressed in the effective space (̄·). For the

other hand, due that yield criterion is defined in terms of invariants and principal stresses,

its convenient and efficient the use of Spectral Return Mapping Algorithm (SRMA) (J. Lee

& Fenves, 1998). SRMA assume four conditions: (1) the effective stress tensor can be

decomposed as σ̄n+1 = V ˆ̄σn+1V
T , where ˆ̄σn+1 and V is the eigenvalue diagonal matrix

and the eigenvector matrix of updated stress tensor σ̄n+1, respectively; (2) any eigenvector

of trial effective stress tensor is also an eigenvector of updated effective stress tensor, i.e.

σ̄tr
n+1 = V ˆ̄σtr

n+1V
T ; (3) any isotropic material satisfy the relation G(σ) = Ĝ(σ̂), which

imply that N̄n+1 = V ˆ̄Nn+1V
T ; and (4) substituting these expressions into the effective
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expression of Eq. (2.3.80), the updated principal effective stress tensor is given by

ˆ̄σn+1 = ˆ̄σtr
n+1 −∆γDe : ˆ̄Nn+1. (2.3.94)

Moreover, using this expression, is easy to obtain the relation ∆ε̂pn+1 = ∆γ ˆ̄Nn+1. It

should be noted that variables p̄, q̄, r̄ and w̄ are invariants in effective space, i.e.
(
(̄·) = (̂̄·)

)
.

Also note that, due that yield criterion and hardening variables κ± are expressed in terms

of maximum and minimum effective principal stresses, its necessary reordering the eigen-

values and their respective eigenvectors in a descending order (ˆ̄σ1 ≥ · · · ≥ ˆ̄σN ). Jacobi′s

method is recommended to calculate the eigenvalues and eigenvectors of any symmetric

real tensor (Golub & van der Vorst, 2000).

Analogously to the DPH model, Eq. (2.3.83) is also valid, but now expressed in the

principal effective space as

ˆ̄sn+1 =
q̄n+1

q̄tr
n+1

ˆ̄str
n+1. (2.3.95)

Using this expression, the updated principal effective flow tensor ˆ̄N , given by Eq. (2.1.20),

can be written as
ˆ̄Nn+1 =

3

2
w̄n+1

ˆ̄ttrn+1 +
η̄

3
I, (2.3.96)

where ˆ̄ttrn+1 = ˆ̄str
n+1/q̄

tr
n+1. Moreover, their positive/negative part are denoted as

ˆ̄n±n+1 =
3

2
w̄n+1

ˆ̄ttr±n+1
+
η̄

3
, (2.3.97)

with ˆ̄ttr±n+1
= Î : ˆ̄ttrn+1. Next, introducing Eq. (2.3.96) into Eq. (2.3.94) and using Eq. (A.1.7),

the principal effective stress tensor can be written as

ˆ̄σn+1 = ˆ̄σtr
n+1 −∆γ ˆ̄B0n+1 , (2.3.98)
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where ˆ̄B0n+1 = 3µw̄n+1
ˆ̄ttrn+1 + η̄KI . Also, the maximum updated principal effective

stress ˆ̄σ+n+1 = Î+ : ˆ̄σn+1, is expressed as

ˆ̄σ+n+1 = ˆ̄σtr
+n+1

−∆γˆ̄b0+n+1 , (2.3.99)

where ˆ̄σtr
+n+1

= Î+ : ˆ̄σtr
n+1 and ˆ̄b0+n+1 = 3µw̄n+1

ˆ̄ttr+n+1
+ η̄K.In addition,Eqs. (2.3.86)

and (2.3.82) can be rewritten in the effective space as

p̄n+1 = p̄tr
n+1 − η̄K∆γ, (2.3.100)

q̄n+1 = q̄tr
n+1 − 3µw̄n+1∆γ. (2.3.101)

For the other hand, linearization of updated hardening variableκn+1, given by Eq. (2.1.21),

can be expressed as

κn+1 = κn + ∆γHn+1

(
ˆ̄σn+1,κn+1

)
. (2.3.102)

Although, its convenient take their positive and negative part as

κ±n+1 = κ±n + ∆γh±n+1, (2.3.103)

where h±n+1 = ˆ̄n±n+1ϕ
±
n+1, with ˆ̄n±n+1 = Î± : ˆ̄Nn+1 and the variables ϕ±n+1 defined as

ϕ±n+1 := θ±1n+1
θ±2n+1

, (2.3.104)

and with θ±1n+1
and θ±2n+1

defined as

θ+
1n+1

:= φ( ˆ̄σn+1), θ−1n+1
:= −

[
1− φ( ˆ̄σn+1)

]
, (2.3.105)

θ+
2n+1

:= σ+(κ+
n+1)/g+, θ+

2n+1
:= σ−(κ−n+1)/g−. (2.3.106)
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In addition, the updated parameters β(κ) and c(κ−), given by Eq. (2.1.12), can be

expressed as

βn+1 = (1− α)
σ̄−(κ−n+1)

σ̄+(κ+
n+1)

− (1 + α), cn+1 = σ̄−(κ−n+1). (2.3.107)

Finally, substituting Eqs. (2.3.99), (2.3.100) and (2.3.101) into Eq. (2.1.24), the con-

sistency condition is written as

Fn+1 = ηp̄n+1 + q̄n+1 + βn+1〈ˆ̄σ+n+1〉+ − δ〈ˆ̄σ+n+1〉− − (1− α)cn+1 = 0

= η
(
p̄tr
n+1 − η̄K∆γ

)
+ q̄tr

n+1 − 3µw̄n+1∆γ

+ ρ̂1

(
ˆ̄σtr

1 −∆γˆ̄b0+n+1

)
− (1− α)cn+1 = 0, (2.3.108)

where ρ̂1 = β̂1 + δ̂1, with β̂1 = βn+1H̃
+(ˆ̄σ+n+1), δ̂1 = δH̃−(ˆ̄σ+n+1) and H̃±(·) a C1-class

approximation of Heaviside function (see Eq. (A.1.22)). Thus, the discrete consistency

operator ∆γ can be computed, similarly to the DPH model, in a partially closed form as

∆γ =
ηp̄tr

n+1 + q̄tr
n+1 + ρ̂1 ˆ̄σtr

+n+1
− (1− α)cn+1

ηη̄K + 3µw̄n+1 + ρ̂1
ˆ̄b0+n+1

=
f̄1n+1

f̄2n+1

, (2.3.109)

where f̄in+1 = f̄i(κn+1,∆γ(κn+1)), with i = 1, 2. Its observed that a nested iterative

process is required to obtain variables ∆γ and κ±n+1. Box 2 shown the algorithm used

to calculate both variables. Three steps are involved: (i) set an initial value of variables

κ, q and ˆ̄σ equal to the previous step; (ii) solve the consistency operator ∆γ using the

algorithm described in Box 1, which is identical to the DPH model, but using the effective

stress space in their expressions and the derivative ∂∆γ
∂qn+1

is expressed as

∂∆γ

∂qn+1

=

(
b8n+1 − b9n+1 −∆γb11n+1

)
∆γ(

f̄2n+1 − b7n+1 + ∆γb10n+1

) , (2.3.110)

where b8n+1 to b11n+1 are scalar parameters. A detailed calculation of this derivative is

explained in 1; and (iii) solve the hardening variables κ using the Newton′s method. For
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this, Eq. (2.3.102) is used as the residual function and rewritten as

Q
n+1

(
κn+1,∆γ, ˆ̄σn+1

)
= κn + ∆γHn+1

(
κn+1, ˆ̄σn+1

)
− κn+1. (2.3.111)

Thus, the total derivative of this residual function with respect to κn+1 is given by

dQ
n+1

dκn+1

=
∂Q

n+1

∂κn+1

+
∂Q

n+1

∂∆γ

∂∆γ

∂κn+1

+
∂Q

n+1

∂Hn+1

(
∂Hn+1

∂ ˆ̄σn+1

∂ ˆ̄σn+1

∂∆γ

∂∆γ

∂κn+1

+
∂Hn+1

∂κn+1

)
= −I2 +

(
Hn+1 + ∆γ

∂Hn+1

∂ ˆ̄σn+1

∂ ˆ̄σn+1

∂∆γ

)
⊗ ∂∆γ

∂κn+1

+ ∆γ
∂Hn+1

∂κn+1

, (2.3.112)

where I2 = diag(1, 1) and the derivatives involved are expressed as

∂Hn+1

∂ ˆ̄σn+1

=
(

ˆ̄Y n+1 ⊗ ˆ̄Φn+1

)
+ a3

(
ˆ̄Zn+1 ⊗ ˆ̄ttrn+1

)
,

∂∆γ

∂κn+1

=
1

(f̄2n+1 − L1n+1)
l0n+1

∂ ˆ̄σn+1

∂∆γ
= − ˆ̄B0n+1 + 9µ2ā2w̄n+1∆γˆ̄ttrn+1,

∂Hn+1

∂κn+1

= ˆ̄Un+1. (2.3.113)

A detailed calculation of these derivatives are explained in 2. Also, to get an adequate

convergence of model, is recommended use tolerances of Tol4 = 1 − 10−10 to adjust the

solution values and Tol5 = 10−5 to check the residual function.

Damage component

An explicit evaluation of updated damage variable ωn+1 (Eq. (2.1.27)) are generated

according to updated hardening variables κ±n+1 calculated in the plastic component of

model.

Viscous component

First, assume that the rate of a generic variable x can be expressed as ẋ = ∆x/∆t, with

∆t is the load step increment. Then, using this relation in the linearization of Eqs. (2.1.33)
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Box 2 :Algorithm to solve κn+1 for the LLF model

κ± 0
n+1 = κ±n , q̄0

n+1 = q̄tr
n+1, ˆ̄σ0

+n+1
= ˆ̄σtr

+n+1
. Set initial value

for j ≤ Niter do
σ̄±(κ± jn+1), βjn+1, cjn+1, H̃±(ˆ̄σj+n+1

) . Use Eqs. (2.1.29), (2.3.99) and (2.3.107)
q̄jn+1, ∆γj , ˆ̄σjn+1 . Solve with Box 1 and Eq. (2.3.98)

Qj = Qn+1

(
κjn+1,∆γ

j , ˆ̄σjn+1

)
. Residual, Eq. (2.3.111)

dQj =
dQ

n+1

dκn+1

(
κjn+1,∆γ

j , ˆ̄σjn+1

)
. Total derivative, Eq. (2.3.112)

dκj = −
(
dQj

)−1
Qj

κj+1
n+1 = κjn+1 + dκj . Update solution

κj+1
n+1 = min

(
κjn+1, T ol41

)
. Adjust solution

if
(
‖Qj‖ ≤ Tol5

)
then

exit

and (2.1.34), the updated visco-plastic strain tensor εvp and the viscous-damage variable

ωv can be expressed as

εvpn+1 = ζvε
vp
n + (1− ζv)εpn+1 (2.3.114)

ωvn+1 = ζvω
v
n + (1− ζv)ωn+1, (2.3.115)

where ζv = (1+∆t/µv)
−1. Then, substituting the Eq. (2.3.114) into Eq. (2.1.32) and with

some algebraic manipulation, the updated effective viscous-stress tensor can be expressed

in a convenient way as

σ̄vn+1 = ζv (σ̄vn + De : ∆εn) + (1− ζv)σ̄n+1 (2.3.116)

Finally, the updated viscous-stress tensor can be expressed as

σvn+1 =
(
1− ωvn+1

)
σ̄vn+1. (2.3.117)

It should be noted that if µv/∆t → 0 (ζv = 0) the solution relaxed to the rate-

independent (or inviscid) response.
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2.3.5. WLF model

Plastic component

The numerical stress integration of this model is identical to the LLF model, except

for three considerations: (1) the parameter δ present in the yield criterion of Eq. (2.1.24)

is null; (2) the matrix Hn+1 of Eq. (2.3.102) depends only of stress tensor ˆ̄σ, for which

the variables θ±2 = 1 and the derivative ∂H
∂κ

, given by Eq. (2.3.113), is null; and (3) its

observed that a tolerance to check the residual function of Tol5 = 10−10 can be used

without convergence troubles.

Damage component

Giving the updated effective stress tensor σ̄n+1 calculated in the plastic component,

the positive/negative part of effective stress tensor σ̄±n+1 are evaluated using Eq. (2.1.35).

Next, evaluating the DERRs, Y ±, according to their definition established by Eq. (2.1.50)

or Eq. (2.1.51), and assuming an active damage process (Eq. (2.1.55)), the updated damage

threshold are stated. Finally, and explicit evaluation of damage variables ω±n+1(r±n+1) is

generated.

Viscous component

The updated viscous stress vector σvn+1 is calculated using Eq. (2.1.59), where the

effective viscous stress vector σ̄vn+1 is evaluated using Eq. (2.3.116). Also, the visco-

plastic strain vector εvpn+1 is evaluated with Eq. (2.3.114). Moreover, the updated damage

variables depends of updated damage thresholds variables r±n+1, which are obtained using

a linearization of Eq. (2.1.61) as follows

r±n+1 = ζvr
±
n + (1− ζv)Y ±n+1. (2.3.118)
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2.3.6. FOC model

Plastic component

First, the discretization of Eqs. (2.1.62) and (2.1.63) gives

εpn+1 = εpn + ∆γσ̄n+1, (2.3.119)

∆γ =
Eoχn+1

‖σ̄n+1‖2
Ce : 〈σ̄n+1 : ∆εn+1〉+, (2.3.120)

where χn+1 = B+H+(∆ω+
n+1)+B−H+(∆ω−n+1) and ∆εn+1 = εn+1−εn, with ∆ω±n+1 =

ω±n+1 − ω±n . Next, using the relation of Eq. (2.3.79), with Nn+1 = σ̄n+1, the updated

effective stress tensor is given by

σ̄n+1 = σ̄tr
n+1 −

Eoχn+1

‖σ̄n+1‖2
〈σ̄n+1 : ∆εn+1〉+σ̄n+1 (2.3.121)

It should be noted that σ̄n+1 is proportional, or geometrically parallel, to σ̄tr
n+1, ana-

logically to deviatoric stress tensor as in the classical plasticity models, e.g. Eq. (2.3.83).

Thus, satisfy the following relation

σ̄n+1

‖σ̄n+1‖
=

σ̄tr
n+1

‖σ̄tr
n+1‖

. (2.3.122)

Replacing this expression into Eq. (2.3.121), the updated effective stress tensor can be

rewritten as

σ̄n+1 = mtr
n+1σ̄

tr
n+1, (2.3.123)

mtr
n+1 = 1− Eoχn+1

n0n+1

〈n1n+1〉+, (2.3.124)

where n0n+1 = (σ̄tr
n+1 : σ̄tr

n+1) and n1n+1 = (σ̄tr
n+1 : ∆εn+1). It should be noted that, as the

Heaviside function is present in the variable χn+1, it required an iterative process to solve

σ̄n+1. Box 3 shown an efficient and robust algorithm to solve the updated effective stress

tensor σ̄n+1.
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Box 3 :Algorithm to solve σ̄n+1 for the FOC model

v1 = [0, 1, 0, 1]T , v2 = [0, 0, 1, 1]T . Set combinatory vectors
for j ≤ 4 do

hj1 = v1[j], hj2 = v2[j] . Trial Heaviside values
χjn+1 = B+hj1 +B−hj2, mtr j

n+1 . Use Eq. (2.3.124)
σ̄j = mtr j

n+1σ̄
tr
n+1 . Trial effective stress

σ̄j ± = P± : σ̄j . Positive/negative effective stress (Eq. (2.1.36))
Y ±j . DEER′s, according to Eq. (2.1.50) or Eq. (2.1.51)
F± jd = Y ±j − r±n . Positive/negative damage criteria (Eq. (2.1.49))

if
(
hj1 = H+

(
F+ j
d

))
and

(
hj2 = H+

(
F− jd

))
then

exit
σ̄n+1 = σ̄j . Update effective stress

Finally, replacing Eq. (2.3.122) into Eq. (2.3.119), the updated plastic strain tensor is

derived as

εpn+1 = εpn + (1−mtr
n+1)Ce : σ̄tr

n+1. (2.3.125)

Also, note that as Eq. (2.3.122) is valid either in 3D as in plane stress condition, this

algorithm can be used in both cases.

2.3.7. ROT model

Damage component

Assuming an explicit integration scheme for the linearization of Eq. (2.1.65), the up-

dated positive/negative i-th damage strain variable α±i is expressed as

α±in+1
= α±in + z±in+1

∆ε̂in+1 (2.3.126)

where z±in+1
= 1 − r±in+1

and ∆ε̂in+1 = ε̂in+1 − ε̂in , with r±in+1
= H±0 (α±in − ε̂in+1). Note

that the term α±in+1
inner the Heaviside function is used to get an explicit scheme. So,

the evaluation of updated stress tensor σ is explicit (Eq. (2.1.69)) using the relations of

Eqs. (2.1.67) and (2.1.68), where m±in+1
= H±1/2(ε̂in+1) and the variables h±in+1

and g±in+1
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are written, respectively, as

h±in+1
= σ±(α±in+1

)g±in+1
, g±in+1

=
ε̂in+1

α±in+1

. (2.3.127)

Viscous component

Taking the linearization of Eq. (2.1.70), the updated positive/negative i-th viscous-

damage strain αv±i can be expressed as

αv±in+1
= ζvα

v±
in

+ (1− ζv)α±in+1
. (2.3.128)

Finally, the evaluation of updated viscous-stress tensor σv (Eq. (2.1.73)) is explicit

using the relations of Eqs. (2.1.71) and (2.1.72).

2.4. Consistent tangent tensors

Additionally to the algorithm necessary to calculate the updated stress tensor, a ma-

terial stiffness tensor is required for the solution. Continuum tangent stiffness tensor is

derived for material models according to derivation of continuum constitutive equations

as stated in Section 3. However, for numerical integration of model, is necessary to cal-

culate the algorithmic consistent tangent tensor dσn+1

dεn+1
, which are developed by computing

the derivatives of equations involved in the stress updated algorithm. Complex derivatives

involve this operator, but are necessary to achieve a second-order convergence at the struc-

tural level, rather than continuum tangent stiffness (J. C. Simo & Hughes, 1998). Only in

explicit schemes, continuum and consistent stiffness tensors are identical. For the devel-

oped models, all these derivatives can be obtained analytically. Therefore, the consistent

tangent operator can be written in an explicit expression. For sake the of simplicity of the

presentation, is omitted the subscript n+1 in all updated variables.
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2.4.1. Trial-predictor step

Using Eqs. (2.3.75) and (2.3.76), the differential of the trial elastic strain εe tr and the

stress tensor σ are, respectively, given by

dεe tr = dε, (2.4.129)

dσtr = De : dε. (2.4.130)

It follow that in the derivation of consistent tangent stiffness tensor all trial variables

(·)tr have a no-null differential, contrary as in the calculation of stress updated algorithm,

where their derivatives are neglected.

2.4.2. DPH model

First, using Eqs. (2.3.83) and (A.1.4) and the relation q =
√

3J2, with J2 = 1
2
‖s‖2, the

unitary tensor of updated deviatoric stress can be rewritten as

M =
str

‖str‖
=

√
6µ

qtr
θe tr. (2.4.131)

Then, inserting this expression into Eq. (A.1.14) and using Eq. (2.4.129), the differen-

tial of trial equivalent stress qtr is given by

dqtr =
6µ2

qtr
θtr : dεtr =

√
6µM : dεtr. (2.4.132)

Next, the differential of relations r =
√
q2 + ε2 and w = q/r are given by dr = wdq

and dw = a0dq, with a0 = ε2/r3. Then, inserting this expressions into the differential of

Eq. (2.3.86) and with some algebraic manipulation, the differential of updated variable q

can be written as

dq = a1

(
dqtr − 3µwd∆γ

)
, (2.4.133)
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where a1 = (1 + 3µa0∆γ)−1. Moreover, using these relations, the differential of the

variable fdev = 1− 3µ∆γw/q is given by

dfdev = −3µ

qtr

(
a3d∆γ + a4∆γdqtr

)
, (2.4.134)

where a3 = w(1−3µa2∆γ) and a4 = a2−w/qtr, with a2 = a0a1. Then, using this relation

and Eq. (2.4.131), the differential of updated deviatoric stress tensor (Eq. (2.3.85)) can be

expressed as

ds = 2µfdevdθ
e tr −

√
6µM

(
a3d∆γ + a4∆γdqtr

)
. (2.4.135)

For the other hand, using the relation of Eq. (A.1.15), the differential of updated hy-

drostatic stress p (Eq. (2.3.82)) is given by

dp = K
(
I : dεe tr − η̄d∆γ

)
. (2.4.136)

In addition, using Eq. (2.3.87) and the chain rule, the differential of updated cohesion

law can be written as

dc =
∂c

∂α
dα = Jαξd∆γ, (2.4.137)

where Jα := ∂c
∂α

is the cohesion hardening modulus. Then, using Eqs. (2.4.133), (2.4.136)

and (2.4.137), the differential of the yield criterion at consistency condition, given by

Eq. (2.3.88), can be expressed as

dF = ηdp+ dq − ξdc = 0

= ηK
(
I : dεe tr − η̄d∆γ

)
+ a1

(
dqtr − 3µwd∆γ

)
− Jαξ2d∆γ. (2.4.138)

Thus, using Eq. (2.4.132), an explicit expression for the differential of consistency

operator ∆γ can be obtained as

d∆γ = a6

(
a1

√
6µM + ηKI

)
: dεe tr = G : dεe tr, (2.4.139)
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where a6 = (a5 +Kηη̄ + Jαξ
2)
−1, with a5 = 3µa1w. Hence, using Eqs. (2.4.135),

(2.4.136), (2.4.139) and (A.1.12), the differential of updated stress tensor is expressed

as

dσ =
[
2µfdevId −

√
6µa3(M ⊗G)− 6µ2a4∆γ(M ⊗M)

+K(I ⊗ I)− η̄K(I ⊗G)
]

: dεe tr. (2.4.140)

Finally, after some straightforward manipulation, an explicit expression for elasto-

plastic consistent tangent operator is written as

Dep = c1Id + c2(M ⊗M ) + c3(M ⊗ I) + c4(I ⊗M ) + c5(I ⊗ I), (2.4.141)

where the constants c1 to c6 are given by

c1 = 2µfdev, c2 = −6µ2(a1a3a6 + a4∆γ), c3 = −
√

6µKηa3a6,

c4 = −
√

6µKη̄a1a6, c5 = K (1− ηη̄Ka6) .

2.4.3. LLF model

Plastic component

The plastic component of the consistent tangent stiffness tensor is calculated from

differential of the effective stress tensor. First, due that the LLF and DPH model share

identical flow potential, Eqs. (2.4.131) to (2.4.136) are valid for this model, but expressed

in the principal effective space (̂̄·). Next, the differential of the principal effective flow

tensor, given by Eq. (2.3.96), can be expressed as

d ˆ̄N =
3

2

(
ā4

ˆ̄ttrdq̄tr + ūdˆ̄str + ā5
ˆ̄ttrd∆γ

)
, (2.4.142)

where ā4 = ā2 − ū and ā5 = −3µā2w̄, with ā2 = ā0ā1, ā1 = 1 + 3µā0∆γ, ā0 = ε2/r̄3

and ū = w̄/q̄tr. Then, the positive/negative part of flow tensor can be expressed as ˆ̄n± =
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I± : ˆ̄N . Thus, their differential are given by

dˆ̄n± =
3

2

(
ā4

ˆ̄ttr±dq̄tr + ūÎ± : dˆ̄str + ā5
ˆ̄ttr±d∆γ

)
, (2.4.143)

where ˆ̄ttr± = Î± : ˆ̄ttr. Next, the differential of tensor ˆ̄B0, given by Eq. (2.3.98), is expressed

as d ˆ̄B0 = 3µd(w̄ˆ̄t) = 2µd ˆ̄N . Then, using this relation and Eq. (2.3.98), the differential

of the updated principal effective stress tensor ˆ̄σ is given by

dˆ̄σ = dˆ̄σtr − ˆ̄B0d∆γ −∆γd ˆ̄B0

= dˆ̄σtr +A6d∆γ +A7dq̄tr + ā8dˆ̄str, (2.4.144)

where A6 = − ˆ̄B0 − 3µā5∆γˆ̄ttr, A7 = −3µā4∆γˆ̄ttr and ā8 = −3µū∆γ. Moreover, the

differential of the maximum principal effective stress ˆ̄σ+ = Î+ : ˆ̄σ is given by

dˆ̄σ+ = Î+ : d ˆ̄σtr + a6+d∆γ + a7+dq̄tr + ā8Î
+ : dˆ̄str, (2.4.145)

where a6+ = Î+ : A6 and a7+ = Î+ : A7. For the other hand, the differential of variable

φ( ˆ̄σ) (Eq. (2.1.17)) is written as dφ = ˆ̄Φ : d ˆ̄σ, with ˆ̄Φ defined as

ˆ̄Φ :=
∂φ

∂ ˆ̄σ
= diag

(
∂φ

∂ ˆ̄σ1

, · · · , ∂φ
∂ ˆ̄σN

)
, (2.4.146)

being their i-th component ∂φ
∂ ˆ̄σi

expressed as

∂φ

∂ ˆ̄σi
=
[
H+

0 (ˆ̄σi)− φ( ˆ̄σ)
(
2H+

0 (ˆ̄σi)− 1
)] 1∑n

i=1|ˆ̄σi|

It should be noted, that this expression considered the stepped Heaviside function, due

that variable φ ∈ [0, 1]. It can observed that this condition not cause convergence troubles

in the model. Then, the differential of variables θ±1 and θ±2 (Eqs. (2.3.105) and (2.3.106),

respectively) are given by dθ±1 = dφ and dθ±2 = J±κ
g±

dκ±, with J±κ := ∂σ±

∂κ±
are the pos-

itive/negative hardening modulus, respectively. Hence, the differential of variables ϕ±,
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defined in Eq. (2.3.104), are given by

dϕ± = θ±2
ˆ̄Φ : d ˆ̄σ +

1

g±
θ±1 J

±
κ dκ±. (2.4.147)

Moreover, using this relation, the differential of variables h±, defined in Eq. (2.3.103),

are expressed as

dh± = θ±2 ˆ̄n± ˆ̄Φ : d ˆ̄σ + b̂±10dκ± + ϕ±dˆ̄n±, (2.4.148)

where b̂±10 = 1
g±
θ±1 J

±
κ

ˆ̄n±. Thus, using Eq. (2.4.143), Eq. (2.4.144) and Eq. (2.4.148), the

differential of positive/negative hardening variables κ±, given by Eq. (2.3.103), can be

written as

dκ± = ĉ±1 d∆γ + ∆γ
(
ĉ±2 dq̄tr + Ĉ±3 : dˆ̄str + Ĉ±4 : d ˆ̄σtr + b̂±10dκ±

)
, (2.4.149)

with ĉ±1 , ĉ±2 , Ĉ±3 and Ĉ±4 are expressed as

ĉ±1 = h± + ∆γ

(
Ĉ±4 : A6 +

3

2
ā5ϕ

±ˆ̄ttr±

)
, ĉ±2 = Ĉ±4 : A7 +

3

2
ā4ϕ

±ˆ̄ttr±,

Ĉ±3 = ā8Ĉ
±
4 +

3

2
ūϕ±Î±, Ĉ±4 = θ±2 ˆ̄n± ˆ̄Φ.

Hence, solving this linear equation for the differential of variable κ± gives

dκ± = c±1 d∆γ + ∆γ
(
c±2 dq̄tr +C±4 : d ˆ̄σtr +C±3 : dˆ̄str

)
, (2.4.150)

where c±1 , c±2 , C±3 and C±4 are multiple of their respective variables ĉ±1 , ĉ±2 , Ĉ±3 and

Ĉ4± by a factor of b̂±20 = (1 − ∆γb̂±10)−1. In addition, the differential of uniaxial posi-

tive/negative effective stress law σ̄± are expressed as

dσ̄± = J̄±κ dκ±, (2.4.151)

where J̄±κ := ∂σ̄±

∂κ±
denotes the positive/negative effective hardening modulus, respectively.

Taking the derivative of Eq. (2.1.29) with respect to the hardening variables κ±, gives a
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expression for this modulus

J̄±κ =
J±κ + Ω±κ σ̄

±

1− ω±
, (2.4.152)

with J±κ := ∂σ±

∂κ±
and Ω±κ := ∂ω±

∂κ±
. Moreover, the differential of variable c (Eq. (2.3.107))

is given by dc = dσ̄ = J̄−κ dκ−. Hence, using Eq. (2.4.151), the differential of updated

variable β (Eq. (2.3.107)) can be written as

dβ = c4∆γ + ∆γ
(
c5dq̄tr +C6 : d ˆ̄σtr +C7 : ˆ̄str

)
, (2.4.153)

where c4, c5, C6 and C7 are expressed as

c4 = m+c−1 −m−c+
1 , c5 = m+c−2 −m−c+

2 ,

C6 = m+C−4 −m−C+
4 , C7 = m+C−3 −m−C+

3 ,

withm± = (1−α)J̄∓κ
σ̄±

(c+)2
. Next, using Eqs. (2.4.133) and (2.4.136) in the effective space

an Eqs. (2.4.150), (2.4.151), (2.4.153) and (A.1.24), the differential of yield criterion at

consistency condition, given by Eq. (2.3.108), is written as

dF̄ = ηdp̄+ dq̄ + dβ〈ˆ̄σ1〉+ + βd〈ˆ̄σ1〉+ − δd〈ˆ̄σ1〉− − (1− α)dc = 0

= ηKI : dεe tr − g0d∆γ + g1dq̄tr +G2 : d ˆ̄σtr +G3 : dˆ̄str, (2.4.154)

where g0, g1,G2 andG3 are expressed as

g0 = ηη̄K + 3µā1w̄ − 〈ˆ̄σ+〉+c4 + (1− α)J̄−κ c
−
1 − ρ̂3a6+,

g1 = ā1 + ∆γ
[
〈ˆ̄σ+〉+c5 − (1− α)J̄−κ c

−
2

]
+ ρ̂3a7+,

G2 = ∆γ
[
〈ˆ̄σ+〉+C6 − (1− α)J̄−κ C

−
4

]
+ ρ̂3Î

+,

G3 = ∆γ
[
〈ˆ̄σ+〉+C7 − (1− α)J̄−κ C

−
3

]
+ ā8ρ̂3Î

+,

where ρ̂3 = ρ̂2 ˆ̄σ1 + ρ̂1, with ρ̂1 = βH̃+(ˆ̄σ+) − δH̃−(ˆ̄σ+) and ρ̂2 = β ∂H̃
+

∂ ˆ̄σ+
− δ ∂H̃

−

∂ ˆ̄σ+
.

Then, using Eqs. (2.4.132), (A.1.19) and (A.1.20), the differential of discrete consistency
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operator ∆γ can be solved of Eq. (2.4.154) as

d∆γ =
1

g0

(
ηKI : dεe tr + g1dq̄tr +G2 : d ˆ̄σtr +G3 : dˆ̄str

)
=

1

go

(
ηKI + g1

√
6µM̄ +G4 + 2µG5

)
: dεe tr = Ḡ : dεe tr, (2.4.155)

where G4 = G2 : F σ̄ : De and G5 = G3 : F σ̄ : Id are second-order tensors. Thus,

using Eqs. (2.4.135) and (2.4.136) in effective space and Eq. (2.4.155), the differential of

updated effective stress tensor can be expressed as

dσ̄ =
[
2µfdevId +

√
6µa3

(
M̄ ⊗ Ḡ

)
+ 6µ2a4∆γ

(
M̄ ⊗ M̄

)
+K (I ⊗ I)− η̄K

(
I ⊗ Ḡ

)]
: dεe tr. (2.4.156)

Finally, introducing the left side of Eq. (2.4.155) into this relation, the effective elasto-

plastic consistent tangent tensor is written as

D̄ep = c1Id + c2

(
M̄ ⊗ M̄

)
+ c3

(
M̄ ⊗ I

)
+ c4

(
I ⊗ M̄

)
+ c5 (I ⊗ I) + c6

(
M̄ ⊗G4

)
+ c7 (I ⊗G4)

+ c8

(
M̄ ⊗G5

)
+ c9 (I ⊗G5) , (2.4.157)

where c1 to c9 are constants given by

c1 = 2µfdev, c2 = −6µ2(ā3 + ā4∆γ), c3 = −
√

6µā3g0,

c4 = −
√

6µη̄Kg1, c5 = K(1− η̄g0), c6 = −
√

6µā3,

c7 = −η̄K, c8 = −2
√

6µ2ā3, c9 = −2µη̄K.

Damage component

First, calling the variables t+c = −z+
c and t−c = z−c , the differential of stiffness recovery

functions s±, defined in Eq. (2.1.28), are expressed as ds± = t±c dθ±1 = t±c dφ. Also,

the differential of uniaxial damage laws ω± are given by dω± = Ω±κ dκ±, where Ω±κ :=
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∂ω±

∂κ±
. Then, expressing both relations in a vectorized format as s = [s+, s−]T and ω =

[ω+, ω−]T , their differentials are written as

ds = M̂1 : d ˆ̄σ, dΩ = M̂ 2dκ, (2.4.158)

where M̂1 is a three-order tensor andM 2 a matrix, both expressed as

M̂1 =

t+c
t−c

⊗ ˆ̄Φ, M̂ 2 = diag
(
Ω+
κ ,Ω

−
κ

)
.

For other hand, introducing Eqs. (2.4.132), (A.1.19) and (A.1.20), but expressed in the

effective space, the differential of hardening variables κ± in a vectorized format dκ =

[dκ+, dκ−]T can be written as

dκ = c1d∆γ + ∆γ
(
c2dq̄tr +C4 : d ˆ̄σtr +C3 : dˆ̄str

)
= c1d∆γ + ∆γK : dεe tr, (2.4.159)

whereK =
√

6µ
(
c2 ⊗ M̄

)
+C4 : Fσ̄ : De + 2µC3 : F σ̄ : Id is a three-order tensor; c1

and c2 are vectors and C3 and C4 are three-order tensors, both expressed as

c1 =

c+
1

c−1

 , c2 =

c+
2

c−2

 , C4 = [C+
4 ,C

−
4 ], C3 = [C+

3 ,C
−
3 ].

Next, the differential of damage variable ω, given by Eq. (2.1.27), can be expressed as

dω = u1 · ds+ u2 · dΩ, (2.4.160)

where u1 and u2 are vectors given by

u1 =

s1ω
−

s2ω
+

 , u2 =

s2s
−

s1s
+

 .
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In addition, substituting Eqs. (2.4.158), (2.4.159) and (A.1.19) (this later expressed in

the effective space) and the relation dσ̄ = D̄ep : dεe tr, with D̄ep given by Eq. (2.4.157),

into Eq. (2.4.160), the differential of damage variable ω can be rewritten as

dω = V1 : d ˆ̄σ + v2 · dκ

=
[
V1 : F σ̄ : D̄ep + v2 ·

(
c1 ⊗ Ḡ+ ∆γK

)]
: εe tr, (2.4.161)

where V1 = u1 · M̂1 is a second-order tensor and v2 = M̂ 2 · u2 a vector. For the other

hand, the differential of updated stress tensor, given by Eq. (2.1.12), is expressed as

dσ = −σ̄dω + (1− ω)dσ̄. (2.4.162)

Finally, introducing them Eq. (2.4.161) and the relation dσ̄ = Dep : dεe tr (Eq. (2.4.157))

into this relation, the elasto-plastic-damage consistent tangent stiffness tensor is written as

Depd = [(1− ω)I − (σ̄ ⊗ V1) : F σ̄] : D̄ep − (σ̄ ⊗ v2) ·
(
c1 ⊗ Ḡ+ ∆γK

)
. (2.4.163)

Viscous component

Using Eq. (2.3.116) and the relation dσ̄ = Dep : dεe tr into this relation (Eq. (2.4.157)),

the differential of updated effective viscous-stress tensor σv can be expressed as

dσ̄v =
(
ζvDe + (1− ζv)D̄ep

)
: dεe tr. (2.4.164)

Moreover, using Eq. (2.3.115), the differential of the visco-damage variable ωv is given

by

dωv = (1− ζv)dω. (2.4.165)

Moreover, the differential of updated viscous stress tensor σv (Eq. (2.3.117)) can be

written as

dσv = (1− ωv)dσ̄v − σ̄vdωv. (2.4.166)
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Finally, substituting Eqs. (2.4.164), (2.4.165) and (2.4.161) into this relation, the visco-

plastic-damage consistent tangent stiffness tensor is expressed as

Dvpd = ζv(1− ωv)De + (1− ζv)
{

[(1− ωv)I − (σ̄v ⊗ V1) : F σ̄] : D̄ep

− (σ̄v ⊗ v2) ·
(
c1 ⊗ Ḡ+ ∆γK

)}
. (2.4.167)

2.4.4. WLF model

Plastic component

This component is identical to the LLF model, with the exception that θ±2 = 1 and

δ = 0 (Eqs. (2.3.106) and (2.3.108), respectively). Thus, dθ±2 = 0, b̂±10 = 0 and ρ̂i = β̂i,

with i = 1, , 3.

Damage component

Using Eq. (A.1.18), the differential of positive/negative part of the effective stress

tensor (Eq. (2.1.35)) are given by

dσ̄± =
N∑
i=1

H±0 (ˆ̄σi)E
ii
σ̄dˆ̄σi +

N∑
i=1

〈ˆ̄σi〉±dEii
σ̄

=

(
N∑
i=1

H±0 (ˆ̄σi)
(
Eii
σ̄ ⊗Eii

σ̄

)
+ 2

N∑
i=1,j>i

g±ij
(
Eij
σ̄ ⊗Eij

σ̄

))
: dσ̄ = S± : dσ̄,

(2.4.168)

where g±ij is defined as

g±ij :=


〈ˆ̄σi〉± − 〈ˆ̄σj〉±(

ˆ̄σ±i − ˆ̄σ±j
) , ˆ̄σi 6= ˆ̄σj

H±0 (ˆ̄σi), ˆ̄σi = ˆ̄σj.
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So, during an active damage process, the Eq. (2.1.56) is satisfied. Then, using the

chain rule, the differential of updated positive/negative damage law ω± are expressed as

dω± =
∂ω±

∂r±
dr± = Ω±r dY ±, (2.4.169)

where Ω±r := ∂ω±

∂r±
. Then, the differential of positive/negative DEER ,Y ±, are calculated

according to their definition. Thus, using Eqs. (2.1.50) to (2.4.168) and using the stepped

Heaviside function H±0 (·), their respective differentials are given by

dY ± =
Eo

2Y ±
(
σ̄ : Ce : S± + σ̄± : Ce

)
: dσ̄ = L± : dσ̄, (2.4.170)

dY − =

(
α1 +

3

2q̄
s̄+ δH−0 (ˆ̄σ1)E+

σ̄

)
: dσ̄ = L− : dσ̄, (2.4.171)

where E+
σ̄ is the eigen-projector associated to the maximum principal effective stress ˆ̄σ+.

Next, using Eq. (2.1.43), the differential of updated stress tensor is given by

dσ =
∑
ℵ

[
(1− ωℵ)dσ̄ℵ − σ̄ℵdωℵ

]
. (2.4.172)

Finally, introducing Eqs. (2.4.169), (2.4.168) and (2.4.170) (or Eq. (2.4.171)) into this

expression and using the relation σ̄ = D̄ep : εe tr (Eq. (2.4.157)), which considers the ob-

servations mentioned in the plastic component of this model, the plastic-damage consistent

tangent stiffness tensor is written as

Dpd =

[
I −

∑
ℵ

(
Wℵ + Rℵ

)]
: D̄ep, (2.4.173)

where W± = ω±S± and R± = Ω±r (σ̄± ⊗L±) are fourth-order tensors.

Viscous component

First, using Eq. (2.3.118), the differential of threshold variable r± is given by

dr± = (1− ζv)dY ±. (2.4.174)
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Then, using this relation, Eq. (2.4.170) or Eq. (2.4.171) and the chain rule, the differ-

ential of positive/negative damage variables ω± are given by

dω± =
∂ω±

∂r±
dr± = Ω±r (1− ζv)L± : dσ̄. (2.4.175)

Moreover, the differential of positive/negative viscous stress tensor, given by Eq. (2.1.60),

is expressed as

dσ̄v± = S±v : dσ̄v, (2.4.176)

where S±v are the derivative of positive/negative projector tensor of σ̄v. Then, using this

relation, the differential of viscous-stress tensor σv is expressed as

dσv =
∑
ℵ

[
(1− ωℵ)Sℵv : dσ̄v − σ̄vℵdωℵ

]
. (2.4.177)

Finally, substituting Eqs. (2.4.164) and (2.4.175) and the relation dσ̄ = D̄ep : dε

(Eq. (2.4.157)) into Eq. (2.4.177) and with some straightforward manipulation, the visco-

plastic-damage consistent tangent stiffness tensor can be expressed as

Dvpd = αµ

(
I −

∑
ℵ

Wℵ
v

)
: De+(1−ζv)

(
I −

∑
ℵ

(
Wℵ

v + Rℵv
))

: D̄ep, (2.4.178)

where W±
v = ω±S±v and R±v = Ω±r (σ̄v± ⊗L±). It should be noted that the tensors L±

are calculated using inviscid variables.

2.4.5. FOC model

Plastic component

First, the differential of variables n0 and n1, given by Eq. (2.3.124), are expressed as

dn0 = 2
(
σ̄tr : dσ̄tr

)
, dn1 = ∆ε : dσ̄tr + σ̄tr : dε. (2.4.179)



99

Also, assuming that the variable χ is constant during the plastic process and using

Eq. (2.3.123), the differential of updated effective stress tensor σ̄ is given by

dσ̄ = dσ̄tr − Eoχ

n0

[
n0σ̄

trd〈n1〉+ + n0〈n1〉+dσ̄tr − 〈n1〉+σ̄trdn0].(2.4.180)

Then, using Eqs. (2.3.124), (A.1.1) and (A.1.24), taking the stepped Heaviside func-

tion H+
0 (·) and with some straightforward manipulation, the effective component of the

consistent tangent stiffness tensor is given by

D̄ep =
[
c1I + c2

(
σ̄tr ⊗∆ε

)
+
(
σ̄tr ⊗ σ̄tr

)
: (c3I + c2Ce)

]
: De, (2.4.181)

where c1 = mtr, c2 = −(1−mtr)/n1 and c3 = 2(1−mtr)/n0.

2.4.6. ROT model

Damage component

First, the differential of i-th updated damage variable α±i , stated in Eq. (2.3.126), can

be expressed as

dα±i = dz±i ∆ε̂i + z±i dε̂i = z±i dε̂i. (2.4.182)

Next, the tangent and secant slope of positive/negative uniaxial stress-strain law can

be defined as K±i := ∂σ±

∂α±i
and S±i := σ±i /α

±
i , respectively. Then, using this relation, the

differential of updated variables h±i and g±i , given by Eq. (2.3.127), are written as

dh±i = g±i K
±
i z
±
i dε̂i + σ±dg±i dg±i =

1

α±i
(1− g±i z±i )dε̂i. (2.4.184)

Thus, using all these relations, the differential of i-th updated principal stress σ̂i, stated

in Eq. (2.1.67), can be written as

dσ̂i =

(∑
ℵ

mℵi
[
Kℵi p

ℵ
i + Sℵi (1− pℵi )

])
dε̂i = Jiidε̂i, (2.4.185)
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where p±i = g±i z
±
i . Moreover, using Eq. (A.1.17) and the relation dσ̂i = ∂σ̂i

∂ε̂
: dε̂, this

differential can expressed as

dσ̂i =
∂σ̂i
∂ε̂

:
∂ε̂

∂ε
: dε = Ji : F ε : dε,

Ji = diag

(
∂σ̂i
∂ε̂1

, · · · , ∂σ̂i
∂ε̂N

)
= diag (Ji1, · · · , JiN) .

Then, using this relation and Eq. (A.1.18), the differential of updated stress tensor σ,

defined in Eq. (2.1.69), can be expressed as

dσ =
N∑
i=1

[(
Eii
ε ⊗ Ji

)
: F ε + 2σ̂i

N∑
j 6=i

1

(ε̂i − ε̂j)
(
Eij
ε ⊗Eij

ε

)]
: dε. (2.4.186)

Finally, with some algebraic manipulation, the damage consistent tangent stiffness

tensor is written as

Dd =

(
N∑
i=1

(Eii
ε ⊗ Ji)

)
: F ε + 2

N∑
i=1,j>i

gεij
(
Eij
ε ⊗Eij

ε

)
, (2.4.187)

where gεij is defined as

gεij :=


(σ̂i − σ̂j)
(ε̂i − ε̂j)

, ε̂i 6= ε̂j

∂σ̂i
∂ε̂i

= Jii, ε̂i = ε̂j.

Note that the first term of right hand side is associated to local principal stiffness

and the second term arises from rotation of principal strains. It can be demonstrated that,

neglecting the damage variables, this expression is identical to obtained by (M. A. Crisfield

& Wills, 1989). Also, note the similitude of the second term of this expression with

Eq. (2.4.168).
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Viscous component

First, using Eq. (2.4.182), the differential of i-th updated viscous damage strain, given

by Eq. (2.3.128), can be expressed as

dαv±i = (1− ζv)z±i dε̂i. (2.4.188)

Moreover, using this relation, the differential of updated variables hv±i and gv±i (Eq. (2.1.72))

are given by

dhv±i = gv±i Kv±
i zv±i dε̂i + σ±dgv±i (2.4.189)

dgv±i =
1

αv±i

[
1− (1− ζv)gv±i zv±i

]
dε̂i, (2.4.190)

where Kv±
i := ∂σv±

∂αv±i
. Thus, using this relation and with some straightforward manipula-

tion, the differential of i-th updated principal viscous stress, stated in Eq. (2.4.189), can

be written as

dσ̂vi =

(
ζv
∑
ℵ

mℵi S
vℵ
i + (1− ζv)

∑
ℵ

mℵi
[
Kvℵ
i pvℵi + Svℵi (1− pvℵi )

])
dε̂i

= Jviidε̂i, (2.4.191)

where pv±i = gv±i z±i and Sv±i := σ±/αv±i . Finally, using this relation and Eq. (A.1.18),

the viscous-damage consistent tangent stiffness tensor is given by

Dvd =

(
N∑
i=1

(Eii
ε ⊗ Jvi )

)
: F ε + 2

N∑
i=1,j>i

gvεij
(
Eij
ε ⊗Eij

ε

)
, (2.4.192)

where Jvi = diag (Jvi1, · · · , JviN), with their j-th diagonal component given by Jvij = ∂σ̂i
∂ε̂j

,

and gvεij is expressed as

gvεij :=


(σ̂i − σ̂j)
(ε̂i − ε̂j)

, ε̂i 6= ε̂j

∂σ̂i
∂ε̂i

= Jvii, ε̂i = ε̂j,
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In addition, Table 2.4.2 shown the conditions for which the consistent tangent stiffness

tensor is non-symmetrical in each one of models developed.

Table 2.4.2. Conditions for a non-symmetrical consistent tangent stiffness tensor.

Model Non-symmetric condition

DPH η 6= η̄

LLF always
WLF ν > 0

FOC ν > 0

ROT never1

1 Is non-symmetrical if the model is extended to include
the biaxial effects.

2.5. Consistency check of input material parameters

This section are devoted to generate an conversion of input parameters among the

concrete models described. Two key aspects are studied: conversion of uniaxial laws and

conversion of fracture energy for the FE-regularization.

2.5.1. Conversion of uniaxial laws

Basically, the tensile/compression uniaxial stress-strain laws σ± − ε± are the most

known and adequate to fit with experimental concrete tests. However, for each concrete

model used in this work a specific uniaxial law it required as input, as explained in Sec-

tion 2.1 and summarized in Table 2.6.7. Thus, there is necessary generate a conversion

from the uniaxial stress-strain laws to the required uniaxial law of each model. In addition,

a conversion from ω − α to ω − κ is explained.
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Relation between σ± − ε± and σ± − α±

The uniaxial stress-strain σ± − ε± laws can be converted to stress-equivalent plastic

strain σ± − α± relation using the following expression

ε± = α± +
σ±(ε±)

Eo
. (2.5.193)

A simple conversion can be obtained in the case of piecewise-linear stress laws. In

other case, an implicit expression exists for σ±(α±), in which given a value of α±, its

necessary find their corresponding value of ε± that satisfy the relation of Eq. (2.5.193).

Newton′s method is suggested to solve this problem, where the residual function and their

total derivative are expressed as

R(ε±) = ε± − σ±(ε±)

Eo
− α±, dR

dε±
= 1− J±ε

Eo
, (2.5.194)

with J±ε := dσ±

dε±
. An initial value of α± + σ±o and a correction step of ε± = |ε±| are

necessary to achieve a good convergence of solution, where σ±o is the stress onset non-

linear behavior. Also, a tolerance of Tol1 = 10−10 is recommend to check the residual

function. In addition, using Eq. (2.5.193), the derivative dσ±

dα±
can be obtained as

dσ±

dα±
=

EoJ
±
ε

(Eo − J±ε )
. (2.5.195)

Relation between σ± − ε± and σ± − κ±

For the LLF model, this relation can be obtained according to the definition of hard-

ening variables κ±, where given a value of κ±, the corresponding value of ε± is calcu-

lated. Thus, an implicit expression exist for σ±(κ±) and can be solved by the Newton′s

method. If the LLF model is used, Eq. (2.1.13) gives the relation between κ± and α± and

Eq. (2.5.193) between α± and ε±, respectively. Hence, the residual function and their total
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derivative are expressed as

R(ε±) =
1

g±

∫ α±

0

σ±(α±) dα± − κ±

=
1

g±

{∫ ε±

ε±o

σ±(ε±)dε± − 1

2Eo

[
(σ±(ε±))2 − (σ±o )2

]}
− κ±

=
1

g±
F (ε±)− κ±,

(2.5.197)

dR

dε±
=

1

g±
dF

dε±
=
σ±

g±

(
1− J±ε

Eo

)
, (2.5.198)

where ε±o = σ±o /Eo. An initial value of ε±o is suggested. For the other hand, Eq. (2.1.15)

can be rewritten as dα±

dκ±
= g±

σ±
. Hence, using this relation, Eq. (2.5.195) and the chain rule,

the derivative dσ±

dκ±
is given by

dσ±

dκ±
=
dσ±

dα±
dα±

dκ±
=

EoJ
±
ε g
±

(Eo − J±ε )σ±
. (2.5.199)

Relation between σ± − ε± and ω± − r±

In the WLF and FOC models, this relation can be established according to the defini-

tion of DEERs Y ± used. Considering an active damage process (Y ± = r±), neglecting

the plastic strains and under an uniaxial behavior, a linear relation for the positive/negative

effective stress tensor can be derived as σ̄± = Eoε, where σ̄± is the effective uniaxial law

and ε the uniaxial total strain. Then, using Eqs. (2.1.50) and (2.1.51), the DEERs Y ± can

be expressed, respectively, as

Y ± = |σ̄±| = Eox
± = r±, (2.5.200)

Y − = ασ̄− + |σ̄−| = Eox
−(1− α + δ) = r−, (2.5.201)

where x± = |ε|. Moreover, both expressions can be rewritten in a compact format as

r± = Eox
±η±, where η± = 1 and η− = 1 − α + δ if Eqs. (2.1.50) and (2.1.51) are

used, respectively. Hence, using the relation Eq. (2.1.29), the damage laws ω± and their
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derivative dω±

dr±
are expressed, respectively, as

ω±(r±) = 1− η±

r±
σ±
(

r±

η±Eo

)
,

dω±

dr±
=

[
σ±
(

r±

η±Eo

)
− r±Jε
η±Eo

]
η±

(r±)2
. (2.5.202)

Relation between σ± − ε± and c− α

To elaborate this conversion, first is necessary relate the parameters ξ and η with the

uniaxial/biaxial compression/tensile strength of concrete. Table 2.5.3 list two options

to fit this parameters, where f±y and f±yb are the stress onset non-linear behavior of ten-

sion/compression uniaxial/biaxial stress-strain law, respectively.

For one hand, if an elasto-plastic stress-strain law relationship exist, for the Case A,

the parameters f±y are equals to the uniaxial tensile/compressive f±p strength of concrete

(=f ′t or f ′c, respectively), whereas for the Case B, the parameters f±yb are equals to their

respective biaxial f±pb strength (=f ′tt or f ′b, respectively). Then, the conversion is trivial,

i.e. c = cy. Conversely, in a nonlinear stress-strain relation, only the pre-peak branch

of stress-strain law can be converted to respective cohesion law due that this last relation

must be something non-decreasing function ( ∂c
∂α
> 0).

Table 2.5.3. Analytical expressions of parameters η, ξ and cy of Drucker-Prager model fitted with different
approximations.

Case Inputs η ξ cy

A f+
y , f−y 3 sin(φ)(∗) 2 cos(φ) f+

y f
−
y tan(φ)/(f−y − f+

y )

B f+
yb, f

−
yb

3

2
sin(φ)(∗∗) 2 cos(φ) f+

ybf
−
yb tan(φ)/(f−yb − f

+
yb)

Cases= A: fitted with the stress onset non-linear behavior of uniaxial tension/compression stress-strain
relation of concrete f+y and f−y , respectively and B: fitted with the stress onset non-linear behavior
of biaxial tension/compression stress-strain relation of concrete f+yb and f−yb, respectively. (∗): φ =

sin−1
(
(f−y − f+y )/(f+y + f−y )

)
, (∗∗): φ = sin−1

(
(f−yb − f

+
yb)/(f

+
yb + f−yb)

)
.
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Relation between ω± − α± and ω± − κ±

This relation can be solved using the same methodology as used for the relation σ± −

ε±/σ± − κ±. First, the variable ε± is calculated given a value of κ± using the above

methodology. Hence, the variable α± can be evaluated as α± = ε± − σ±(ε±)
Eo

and then

obtain the respective value of the damage variable ω±(α±). Finally, using the relation
dα±

dκ±
= g±

σ±
and the chain rule, the derivative dω±

dκ±
is given by

dω±

dκ±
=
dω±

dα±
dα±

dκ±
=

Ω±αg
±

σ±
, (2.5.203)

where Ω±α := dω±

dα±
. Finally, Table 2.5.4 resume the steps necessaries to do all these conver-

sions, with the exception of cohesion hardening law.

2.5.2. Conversion of fracture energy

Fracture energy FE-regulariation is an common technique that induce a length scale

in the constitutive equations and that is able to remove the spurious mesh-dependency

observed in the numerical simulations when strain-localization ocurrs. This method is

based in the experimental evidence, where the energy dissipated to form a unit area of

crack surface Gf are considered as a material property (Hillerborg et al., 1976; van Vliet

& van Mier, 1995; Nakamura & Higai, 2001). This dissipated energy can be distinguished

into tensile fracture energyG+
f (cracking) and compression fracture energyG−f (crushing).

(Bažant, 1982; Hillerborg et al., 1976) shown that the tensile/compression fracture en-

ergyG±f are related with the FE-regularized energy per unit of volume g±f = G±f /lc, where

lc is the characteristic length of FE element. The characteristic length lc vary according the

size and type of finite element used. Thus, for linear shell elements lc =
√

2A, complex

shell elements lc =
√
A and solid brick elements lc = 3

√
V , being A the area and V the

volume of the finite element, respectively.
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(a)

(c)

(b)

(d)

C

Figure 2.5.3. Schematic definition of FE-regularized concrete fracture energy g±f = G±f /lc in uniaxial stress
laws: (a) σ+ − ε+; (b) σ+ − α+; (c) σ− − ε− and (d) σ− − α−.

Three definitions of fracture energy are discussed: (i) tensile regimes; (ii) compression

ones; and (iii) thermodynamically dissipation. Fig. 2.5.3 shown the graphical represen-

tation of these definitions in uniaxial stress laws, whose are explained in the following

sections.

Tensile fracture energy

For a tensile regime, exist a broad consensus, available with several studies realized

in the past (Hillerborg et al., 1976; Bažant, 1982), that shown that the energy dissipated

per unit of volume in the post-peak stress-displacement relation G+
f is the adequate to be

included in the FE-regularization of concrete models, i.e.

g+
fA :=

∫ ∞
ε+o

σ+(ε+)dε+ = A+
ε . (2.5.204)
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and which correspond to the depicted area in Fig. 2.5.3a. Moreover, its possible convert

this definition using a stress-equivalent plastic strain σ+ − α+ law as follows. First, using

Eq. (2.5.193), the total energy dissipated under the σ+ − α+ relation is given by A+
α =∫∞

0
σ+(α+)dα+ = A+

o + A+
ε , where A+

o = 1
2Eo

(σ+
o )2, with σ+

o the stress onset non-linear

behavior. Then, an equivalent energy to g+
fA can be defined as

g+
fB :=

∫ ∞
0

σ+(α+)dα+ − 1

2E0

(σ+
0 )2 =

∫ ∞
α+
x

σ+(α+)dα+, (2.5.205)

which correspond to depicted area of Fig. 2.5.3b, with α+
x an unknown positive value.

Note that this expression is different from the stated by (Lubliner et al., 1989).

Compression fracture energy

In contrast, the definition of compression fracture energy is scarce (Vonk, 1992; van

Vliet & van Mier, 1995; Jansen & Shah, 1997; Nakamura & Higai, 2001), being matter

of discussion. For one hand, (Nakamura & Higai, 2001) define the compression fracture

energy dissipated per unit of area as

g−fN := σ−p (ε−p − ε−1 ) +

∫ ∞
ε−p

σ−(ε−)dε−, (2.5.206)

where ε−1 =
ε−p
2

. However, its convenient redefined slightly this expression as follows

g−fA :=
(σ−p )2

2Eo
+

∫ ∞
ε−p

σ−(ε−)dε− = A−1 + A−ε , (2.5.207)

which correspond to coloured area of Fig. 2.5.3c. Similar to tensile regime, its possible

convert this definition using a σ− − α− law. Thus, the energy dissipated in the post-peak

σ− − α− law is defined as

g−fB :=

∫ ∞
α−p

σ−(α−)dα− = A−α , (2.5.208)
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and is associated to depicted area of Fig. 2.5.3d. Then, using Eq. (2.5.193), this expression

can be related to Eq. (2.5.207) as follows A−α = A−1 + A−ε , i.e. g−fA = g−fB. It should be

noted that this definition is agree with the stated by (Lubliner et al., 1989).

Thermodynamical dissipation energy

In damage models, the fracture energy can be defined as the total dissipation energy as

follow

g±fC =

∫ ∞
t0

γ̇±dt, (2.5.209)

where γ̇ denotes the ratio of total dissipated energy and is evaluated according to HFE po-

tential established. According to the second principle of thermodynamics, any irreversible

process satisfies the Clausius-Duhem inequality, whose reduced form is expressed as

γ̇ := −ψ̇ + σ : ε̇ ≥ 0. (2.5.210)

Next, assume that the WLF or FOC model are used. Then, using Eqs. (2.1.41),

(2.1.42), (2.1.38) and (2.1.39), the differentiation of Eq. (2.1.37) with respect to time yields

γ̇ = σ : ε̇−
(
∂ψe

∂εe
: ε̇e +

∂ψp

∂κ
· κ̇+

∂ψ

∂ω+
ω̇+ +

∂ψ

∂ω−
ω̇−
)

(2.5.211)

= σ : ε̇p − ∂ψp

∂κ
· κ̇+ ψ+

o ω̇
+ + ψ−o ω̇

−. (2.5.212)

Now, if only the damage behavior is assumed (non-plastic strains), the positive/negative

part of the ratio of dissipation energy can be reduced to γ̇± = ψ±e ω̇
±. Also, assuming an

positive/negative uniaxial behavior with an undamaged or effective stress σ̄±, the undam-

aged energy is given by ψ±e = (σ̄±)2

2Eo
. Moreover, using the chain rule, the rate of damage

variable can be expressed as ω̇± = dω±

dr±
dr±

dt
. Thus, using these relations and Eq. (2.5.203),
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the dissipation energy can be rewritten as

g±fC :=
1

2Eo

∫ ∞
r±o

(σ̄±)2dω
±

dr±
dr± =

1

2Eoη±

∫ ∞
r±o

(
σ± − r±dσ

±

dr±

)
dr±

=
1

2

∫ ∞
x±0

(
σ± − xdσ

±

dx±

)
dx±. (2.5.213)

Finally, assuming that the uniaxial σ±− ε± and their respective σ±− α± laws depicts

closed regions. Then, applying the Green′s theorem into this relation, it can demonstrated

that

g±fC =

∫ ∞
0

σ±(ε±)dε± =

∫ ∞
0

σ±(α±)dα±, (2.5.214)

which represents the total area under σ± − ε± and σ± − ε± laws, respectively, and are

depicted in dashed area as shown in each plot of Fig. 2.5.3. It should be noted that this

result are agree with mentioned in (Oliver et al., 1990; J. Lee & Fenves, 1998). This imply

that in the LLF model the variable g± satisfy the relation g± = g±fC .

In addition, to include the plastic component of the dissipated energy in the plastic-

damage models, its necesary consider the plastic terms of Eq. (2.5.212). Complex equa-

tions are involved in this process due to sofistication of concrete models developed and are

beyond the scope of this article. A complete development of this terms can be encountered

in (Cervera, Tesei, & Ventura, 2018).

2.5.3. Example of application

An example is elaborated to shown the conversion among uniaxial laws and the differ-

ent definitions of fracture energies stated. Exponential relation of (Mazars, 1984; Oliver

et al., 1990) is used both for tensile as the compressive regime. Table 2.5.5 shown the an-

alytical expressions for stress-strain σ − ε laws, their derivatives ∂σ
∂ε

and the accumulated

area under σ − ε law F (ε). Additionally, table contains the damage laws ω(r) and their

derivatives ∂ω
∂r

converted according to Eq. (2.5.203).
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Calibration of inputs parameters A± and B± are generated according to different defi-

nition of tensile/compression fracture energy stated. Table 2.5.6 shown analytical expres-

sions for this parameters. In addition, to avoid the snap-back in the uniaxial stress-strain

laws, a maximum value for lc is determined. Fig. 2.5.4 shown the uniaxial σ± − ε± laws

and the equivalent σ±− α±, σ±− κ± and ω±− r± laws applying their respective conver-

sions.

(a) (b) (c)

(d) (e) (f)

Figure 2.5.4. Example of conversion of uniaxial laws among σ− ε, σ−α, σ− κ and ω− r relations for the
exponential model of (Mazars et al., 1990; Oliver et al., 1990): (a-c) tensile regime and (d-f) compressive
regime. The following parameters are used: Eo=30 GPa, f

′

t=5 MPa, f
′

c=30 MPa, lc=500 mm, C+=6000
and C−=100.

2.6. Validation examples

In this section, a set of numerical examples are used to validate the capabilities of the

constitutive concrete models described in Section 2.1. Taking the numerical algorithms
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Table 2.5.6. Calibration of inputs parameters and upper limit of characteristic length lc according to fracture
energy definition.

Fracture energy

Model Parameter g±fA = g±fB g±fC

ExpoP A+ 1 1

B+ Ĵ−1
t

(
Ĵt − 1

2

)−1

lc,max - 2Jt
ExpoN A− 1 1

B−†
(

1
2 +

√
Ĵc + 1

4

)
/Ĵc

(
1
2 +

√
Ĵc − 1

4

)(
Ĵc − 1

2

)−1

lc,max
1
2ηJc

2
5ηJc

Jt =
G+

f Eo

f2
t

, Jc =
G−f Eo

f2
o

, Ĵt = Jt
lc

, Ĵc = Jc
lc

, † Parameters fo and B− are calculated in an

iterative process (see Appendix F). 3 Values calculated according to condition dσ
dε ∈ [0, Eo]→ B− ∈ [0, 1].

An tolerance of η = 0.9 is chosen for convenience.

presented in Sections 2.3 and 2.4, the five concrete models were implemented in the soft-

ware (ANSYS, 2018) throught user-material FORTRAN77 routines (USERMAT.f). These

material routines works at Gauss integration point level of each finite element.

Five class of experimental benchmark test are simulated with a single-element ac-

cording to loading conditions: (i) uniaxial cyclic tension and compression; (ii) biax-

ial monotonic; (iii) triaxial monotonic; (iv) uniaxial cyclic tension-compression and (v)

strain-rate effect and numerical viscosity. Also, the strain-localization and fracture-energy

FE-regularization are discussed with a fictitious example. In addition, the compression

failure mode of a test specimen varying their slenderness is illustrated as an example of

application.

All examples were modeled using 8-node isoparametric solid element (SOLID185)

with three Degree Of Freedom (DOF) at each node using 2x2x2 Gauss integration scheme

and B̄-formulation (selective reduced integration method) (Hughes, 1980). All models,

except the DPH model, assume an exponential relation for the positive/negative uniax-

ial stress laws given by Eqs. (2.1.57) and (2.1.58), respectively. An adequate conversion
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among uniaxial laws required for each concrete model is generated, as explained in Ta-

ble 2.5.4. Table 2.6.7 list the material parameters adopted for each benchmark test. Addi-

tional parameters are listed in the figure of each example.

Table 2.6.7. List of parameters used in the concrete models.

B H Eo ν f
′
t f

′
c G+

f
† G−f

† Kc

Author Test mm mm GPa - MPa MPa N/mm N/mm -

Gopalaratnam & Shah, 1985 uniaxial tension 82.6 82.6 31.0 0.18 3.48 27.6 0.04 11.38 1.0
Karsan & Jirsa, 1969 uniaxial compression 82.6 82.6 31.7 0.2 3.48 27.6 0.04 11.38 1.0
Kupfer et al., 1969 biaxial 200 50 31.0 0.15 3.5 32.06 2.0 80.0 1.0
Imran & Pantazopoulou, 1996 triaxial 54 115 19.0 0.22 5.0 47.4 1.0 50.0 0.7
Mazars et al., 1990 unilateral effect 80 80 16.4 0.2 1.4 18.1 0.011 7.0 1.0
Suaris & Shah, 1985 strain-rate effect 100 100 34.0 0.22 5.37 46.8 0.5 20.0 1.0
- strain-localization 100 600 32.0 0.0 5.0 39.0 4.0 40.0 1.0
van Vliet & van Mier, 1995 slenderness of specimen 100 50-200 27.8 0.2 6.0 36.34 2.0 5.7 (1)

† values used in the WLF0 as reference. (1) see Fig. 2.6.16. For all cases: f
′

b = 1.16f
′

c, ε=0.001, z+c =0,
z−c =1, f+o = f

′

t and µv = 0, unless otherwise indicated.

DPH

LLF

WLF

FOC ROT

(a) (b) (c)

(d) (e)

     Test

with plastic strain (WLF)

only damage (WLF
0
)

     Backbone FE model      Cyclic FE model

,

Model  N/mm    N/mm

0.03         5.5

0.04       11.38

0.007       5.3

0.0168     5.3

0.04       11.38

LLF

WLF
0

WLF

FOC

ROT

Figure 2.6.5. Validation of concrete models under uniaxial cyclic tension test of (Gopalaratnam & Shah,
1985): (a) DPH model; (b) LLF model; (c) WLF0 and WLF models; (d) FOC model; and (e) ROT
model. The following additional parameters are used. For the DPH model: f+y =3.48 MPa, f−y =12 MPa,
a0 = 3cu/Eo, R=1; LLF model: C+=6500, C−=7500; and WLF model: f−o =20 MPa, E+

t =0.16Eo,
E−t =0.48Eo.
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with plastic strain (WLF)

only damage (WLF0)

Model  N/mm    N/mm

0.03         5.50

0.04       11.38

0.007       5.30

0.0168     5.30

0.04       11.38

LLF

WLF
0

WLF

FOC

ROT

     Test      Backbone FE model      Cyclic FE model

,

DPH

LLF

WLF

FOC ROT

(a) (b) (c)

(d) (e)

Figure 2.6.6. Validation of concrete models under uniaxial cyclic compression test of (Karsan & Jirsa, 1969):
(a) DPH model; (b) LLF model; (c) WLF model; (d) FOC model; and (e) ROT model. The following
additional parameters are used. For the DPH model: f+y =3.48 MPa, f−y =12 MPa, a0 = 3cu/Eo, R=1; LLF

model: C+=6500, C−=7500; and WLF model: f−o =20 MPa, E+
t =0.16Eo, E−t =0.48Eo.

2.6.1. Uniaxial cyclic tests

Numerical concrete models are compared with uniaxial cyclic tensile and compressive

loading-unloading and reloading experimental data reported by (Gopalaratnam & Shah,

1985) and by (Karsan & Jirsa, 1969), respectively. Figs. 2.6.5 and 2.6.6 shown the re-

sponse of the five concrete models under tensile and compressive loads, respectively. FE

models are elaborated with a single-element cube of 82.6 mm. Its assumed a characteristic

length of lc=82.6 mm and a pure uniaxial stress state for the boundary constraints.

In general, it can observed that in all models, except for the DPH model, fits well with

the post-peak backbone response of experimental tests, where the WLF0 and ROT models

gives the best approximation. Although, both models fail in the unloading branch, due that

neglects the plastic strains (pure damage only). Also note that these models have identical

responses them, although are elaborated with formulations completely different.
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In contrast, the unloading branch of the LLF, WLF and FOC models fits close to exper-

imental response due that incorporate the plastic and damage components in their formu-

lations. In plastic-damage models, its required adjust the parameters to fit simultaneously

the backbone curve and the unloading branch. Thus, the first half of residual backbone is

mainly influenced by the parameters of the plastic component and the last half by the frac-

ture energy G±f . Moreover, the parameters C±, E±t and B± for the LLF, WLF and FOC

models, respectively, controls the backbone and slope of unloading branch in a coupled

manner, i.e. when their values are reduced cause an increase in the slope of unloading

branch and consequently reduce the backbone response.

The follows additional observations are considered. For the tensile regime, in all mod-

els, except the LLF model, the peak stress do not fit exactly with the experimental value

due to the incorporation of smoothed polynomial function in the uniaxial laws (see Sec-

tion 2.2). For other hand, the value of fracture energy G±f used in the plastic-damage

models to fit the experimental tests is less than in the damage models. This is due to that

the plastic component induce an additional dissipation of energy that is not taken account

in the FE-regularization (Section 2.5).

For the FOC model, it has observed the influence of strain increment size ∆ε in the

response, where an gradual over-stress response is caused with a relative large strain incre-

ments. In the same way, its observed a difference between cyclic and backbone responses,

gradually incremented over the last unloading/loading cycles, but that disappear with a

relative small ∆ε. Both conditions are due to explicit integration scheme used in the nu-

merical algorithm to calculate the plastic strain tensor. In addition, it can observed the

influence of parameter B− in the tensile response.

2.6.2. Biaxial monotonic tests

All the concrete models, except the ROT model, are compared with biaxial monotonic

test of (Kupfer et al., 1969). This test is performed with a constant biaxial loading ratio

of a = σ1/σ2, where σ1 and σ2 are the stresses imposed. FE models are elaborated with a
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single-element of 200×50 mm of base and 200 mm of height. Its assumed a characteristic

length of lc = 200 mm and a pure biaxial stress state for the boundary constraints, as

observed in the experimental test. A stress-controlled test are performed up to reach the

peak stress, with the exception of the uniaxial case (a = 0) simulated with displacement-

controlled. The inputs parameters are chosen by means to fit the cases a=0, 1 and 0.52

simultaneously.

Fig. 2.6.7 shown the axial stress σ1 vs axial ε1 and the lateral strains ε2 and ε3, respec-

tively, for the WLF model and using a loading ratio of a=0, 1 and 0.52. This model use

a DEER given by Eq. (2.1.51) to include the biaxial strength. It can observed a good fit

with the pre-peak stress response of experimental test and a relatively good adjust exist

in the lateral strains, especially when a=0.52. In general, the same observations are con-

cluded in all models. Fig. 2.6.8 shown the biaxial peak strength surface for the DPH,

,

,

WLFTest

Figure 2.6.7. Validation for the WLF model under biaxial test of (Kupfer et al., 1969). The following addi-
tional parameters are used: G+

f =0.5 N/mm, G−f =35 N/mm, f−o =12 MPa, E+
t = 0.3Eo and E+

t = 0.65Eo.

WLF0, WLF, FOC and LLF models under different combination of biaxial loading ratios

a = σ1/σ2. For the DPH model, the parameters η and ξ are fitted with tension/compression

biaxial strength of concrete. Also, for the WLF0 and WLF models, the DEER given by
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Figure 2.6.8. Biaxial peak strength surface for the DPH, WLF0, WLF, FOC and LLF models and the biaxial
test results of (Kupfer et al., 1969). For the DPH model the following parameters are used f+y =3.5 MPa and

f−y = f
′

b .

Eq. (2.1.51) is used to include the biaxial strength. In addition, the response of the WLF0

model using the Eq. (2.1.50) is compared.

It can observed, that all models fits close with the experimental results, specially in

compression-compression (C-C) regime, where are influenced by the Drucker-Prager yield

criterion. The major differences among models occur in the tension-compression (T-C)

regimes. The exception ocurr with the DPH and WLF01 model. For the the first, fit well

only in the equal biaxial loading ratio a = 1 and the second one fit well in the T-C regime,

but with a reduced strength in the C-C regime. Both observations are obtained such as

expect in the literature (de Souza Neto et al., 2008; Mazars, 1984; J. Simo & Ju, 1987).
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Additionally, it can observed, similar to uniaxial case, a less value of fracture energy

is required in the plastic-damage models than damage models to fit with experimental

results. Conversely to the uniaxial case, under certain conditions, an increment in the

value of compression fracture energy cause a reduction in the backbone response.

2.6.3. Triaxial monotonic tests

The LLF, WLF0, WLF and FOC models are compared with monotonic lateral confin-

ing triaxial test of (Imran & Pantazopoulou, 1996). A cylindrical specimen of D=54 mm

of diameter and H=115 mm of height was tested. Moreover, for the sake of simplicity,

a single-element prism of base B × B of equal area than the cylinder is simulated (i.e.

B =
√
πD/2). Its assumed a characteristic length of lc =

3
√
B2h and a pure triaxial stress

state for the boundary constraints. Seven confining pressure levels are applied: 0 (uni-

axial), 2.15, 4.3, 8.6, 17.2, 30.1 and 43.0 MPa. The loading paths protocol used was the

follow. A first phase during which the confining pressure po was gradually increased to

a specified level while the specimen was unrestrained in the axial direction (hydroestatic

pressure). Beyond that stage, an axial compressive stress σ̄3 is gradually applied under

displacement-control, while the level of confining pressure was maintained constant. The

input material parameters are chosen in order to fit simultaneously the seven levels of con-

fining pressure. Some convergence trouble are observed in the simulations, for which a

numerical viscosity of µv/∆t = 0.001 is incorporated in all models.

Fig. 2.6.9a-b shown the normalized total axial compressive stress σ3/f
′
c (σ3 = σ̄3 +po)

vs the axial ε3 and the lateral εlat strain for the WLF and LLF models, respectively. For

the WLF model, it can observed a gradual strength and ductility level as it increases the

confining pressure, such as observed experimentally. A relatively good correlation exist

in all cases for the pre-peak response and the peak strength. The best correlation occur in

the cases po=8.6 MPa and po=17.2 MPa (medium-level pressure). Conversely, the largest

difference between the estimated peak strength is 6.94% for the case po=43.0 MPa. Also,

lateral strain values are similar to experimental ones. Similar observations are obtained for
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the LLF model (Fig. 2.6.9b), with the exception of a considerable over-strength in the pre-

peak stage for the cases po=30.1 MPa and po=43.0 MPa (high-level pressure). Although,

the peak strength is increased only in a 6.9%. Analogous results with the LLF model are

observed for the WLF0 and FOC models.

Fig. 2.6.9c resume the normalized peak stress σ3max/f
′
c vs the confining pressure po ap-

plied for the four models. Note the similitude with the compression meridian of Fig. 2.1.1.

A well fit correlation is observed, specially at low to medium-confining levels. However,

its noted a over-strength of 3.1% and 6.9% in the cases po=30.1 and 43 MPa, respectively

(high-confining), whereas a relatively lower values (up to 4.3%) exists for the cases po=4.3,

8.6 and 17.2 MPa (low- to medium-confining). In both cases, this is due to incorporation

of triaxial confinement in the equations throughout the constant parameter δ (Eqs. (2.1.24)

and (2.1.51)). More sophisticated models are required to fit close with experimental results

in overall range of confining pressures (Zhang, Zhang, & Chen, 2010).

Fig. 2.6.9d-e shown the normalized total stress σ3/f
′
c vs the volumetric strain εv (=

ε1 + 2εlat) for the WLF and LLF models, respectively. For the WLF model, its observed a

low level of dilatancy upon the post-peak regime in all confining levels, such as observed

experimentally. Contrary, for the LLF model, a reduction in the volume in all range of

confining pressures are measured. This last condition is noticed also in the WLF0 and

FOC models.

2.6.4. Uniaxial cyclic tension-compression test

To validate the unilateral effect, the LLF, WLF0, WLF, FOC and ROT models are

compared with the uniaxial cyclic test of (Mazars et al., 1990). This test was first subjected

to uniaxial tension followed by uniaxial compression in parallel directions. FE models are

elaborated with a single-element cube of 80 mm of width. Its assumed a characteristic

length of lc=80 mm and a pure uniaxial stress state for the boundary constraints.
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Figure 2.6.9. Validation of concrete models under triaxial test of (Imran & Pantazopoulou, 1996): (a-b)
normalized total stress σ3/f

′

c vs axial ε1 and lateral εlat strain for the WLF and LLF model, respectively;
(c) normalized peak stress σ3max

/f
′

c vs confining pressure po for LLF, WLF0, WLF and FOC models; and
(d-e) normalized total stress σ3/f

′

c vs volumetric strain εv for the WLF and LLF models. The following
additional parameters are used. For the LLF model: C+=1000, C−=200 and the WLF model: f−o =35 MPa,

E+
t = 0.5Eo and E+

t = 0.25Eo.

Fig. 2.6.10 shown the axial stress σ1 vs axial strain ε1 of this models. It also included

the response of the LLF model with three values of stiffness recovery factor z−c (0, 0.5

and 1). It can noticed that all models recovery the initial elastic stiffness once the load

goes into the compression state (step 2 and 4). The exception occur, obviously, in the

LLF model when z−c =0.5 and 0, due that this parameter controls the value of recovery

compression stiffness. Moreover, its observed that all models, with the exception of the

WLF0 and ROT models, take the compression backbone branch close to experimental data

(step 4), due that include plastic strain in their formulations. In addition, its observed that

the LLF, WLF and FOC models recovery the damaged stiffness obtained in the last cycle
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of tension (step 3) when the load goes from compression to tension state (step 6). This

condition is also shared by the WLF0 and ROT models (not shown in the plot) and is so-

called that the models have ”damage memory”, which is agree with the thermodynamic of

irreversible process.

z

y
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u

w

xv

,
Test
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0
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Figure 2.6.10. Validation of the LLF, WLF0, WLF, FOC and ROT models under uniaxial cyclic tension-
compression test of (Mazars et al., 1990). The following additional parameters are used. For the LLF
model: C+=12000, C−=200; WLF model: f−o =12 MPa, E+

t = 0.3Eo and E−t = 0.4Eo; and FOC model:
B+=0.54 and B−=0.75.

2.6.5. Strain-rate tests

Experimentally, the strain-rate effect is important under impulsive loading (impacts

or explosions), but already important under earthquake loading, with rates of straining ε̇

ranges between 10−6/s to 10−1/s. Then, due that the all models, except the DPH model, can
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simulate the rate-dependent behavior throught of incorporation of a visco-elastic/visco-

plastic model, they are compared with the strain-rate test of (Suaris & Shah, 1985). FE

models are elaborated with a single-element cube of 100 mm of width. Its assumed a char-

acteristic length of lc=100 mm and a pure uniaxial stress state for the boundary constraints.

Two uniaxial tests are performed, one for tension and other for compression, both with a

range of straining rates ε̇ between 10−6/s to 1/s. The material parameters are fitted with

the tests loaded with a strain-rate of ε̇=10−6/s (pseudo-static). For the sake of simplicity,

a numerical viscosity µv = 2 × 10−3 s is used in all cases. Also, a constant number of

steps Ns=150 and a maximum displacement of δmax=0.25 mm for tension and -0.55 mm

for compression are used, for which the time increment used is given by ∆t = |δmax|
Nsε̇

.

Fig. 2.6.11a-b shown the normalized uniaxial tension/compression viscous stress σv1/σ
0
1max

vs uniaxial strain ε1, respectively, for the WLF0 model, where σ0
1max denotes the peak in-

viscid stress (f ′t and f ′c, respectively). In both plots, for high straining rates, an increment

of up to 3.4 and 1.1 times respect to the inviscid case (ε̇=10−6/s) is observed for tension

and compression, respectively. Moreover, its denoted an over-estimation of 59.4% in the

tensile peak stress respect to experimental test, whereas a lower-estimation of 12.4% exist

for the compression peak stress. Similar observations are derived using the other models.

Fig. 2.6.11c shown the peak stress ratio σv1max/σ
0
1max or Dynamic Increase Factor (DIF)

vs the applied strain-rate ε̇ for all models, where σ0
1max denotes the peak stress at invis-

cid response. As can observed, peaks strengths grow continuously as straining rates are

increased, becoming clearly distinguishable from the inviscid response upon a strain-rate

value of 10−2/s. Also noted, that the tensile response is largest than the compressive one

in overall range of straining rates analyzed, growing up to 6 times respect to the inviscid

response. In addition, the FE results shown that the DIF is underestimated as compared to

the both experiments for the small strain-rates ε̇ < 10−1/s and overestimated for the large

strain rates ε̇ ≥ 2.5 × 10−1/s. To get a best estimation with respect to the experimental

tests, its required modify the visco-plastic model used, e.g the modified Perzyna model

proposed by (Faria & Oliver, 1993; Faria et al., 1998).
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Figure 2.6.11. Validation of strain-rate effect in the concrete models under monotonic uniaxial tests of
(Suaris & Shah, 1985): (a-b) normalized uniaxial tensile/compressive stress σv1/σ

0
1max

vs uniaxial strain
ε1 for the WLF0 model, respectively; and (c) peak stress ratio σv1max

/σ0
1max

or Dynamic Increase Factor
(DIF) vs the applied strain-rate ε̇ for the LLF, WLF0, WLF, FOC and ROT model under tensile and compre-

sive loads.

2.6.6. Effect of the numerical viscosity

In order to investigate the effects of numerical viscosity in the response, a numeri-

cal test are generated varying the numerical viscosity-time increment ratio µv/∆t for the

WLF model. This adimensional parameter is related to the variable ζv = (1 + ∆t/µv)
−1

(Eq. (2.3.114)) required for the stress updated algorithms of models. For the sake of sim-

plicity, the material parameters used are the same than in the strain-rate effect simulation.

Uniaxial tensile load is applied in a single-element varying the relation µv/∆t in a range

between 10−6 (inviscid) to 50.
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Fig. 2.6.12a shown the uniaxial viscous stress-strain σv1 − ε1 response with different

values of µv/∆t. Similar to Fig. 2.6.11c its observed an gradual over-stress response pro-

portional to the increased value of the numerical viscosity. Moreover, Fig. 2.6.12b shown

the respective axial stiffness-strain ∂σv1
∂ε1
− ε1 response for one integration point of the FE

model. Similar to the stress response, a gradual increment of axial stiffness is presented

as increasing the value of µv/∆t, up to get a positive value although a strain-softening

regimes exists. This key advantage can convert into a positive-definite the consistent tan-

gent stiffness tensor and is demonstrated that expand the range of convergence of the

models in strain-softening regimes.

inviscid

inviscid

positive

definite

Figure 2.6.12. Variation of uniaxial response using different values of the ratio numerical viscosity/time
increment µv/∆t for the WLF model: (a) uniaxial viscous stress-strain σv1 − ε1 relation and (b) axial

stiffness-strain ∂σv
1

∂ε1
− ε1 relation for one integration point of the FE model.

2.6.7. Strain-localization and FE-regularization

Strain-localization phenomena is present in local models with strain-softening behav-

ior. Imperfection of material properties, irregularities in the geometry and non-symmetrical
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boundary/load conditions can induce the formation of this phenomena. The fracture en-

ergy FE-regularization is an popular technique that introduce a length scale in the consti-

tutive equations and that is able to remove the spurious mesh-dependency observed when

strain-localization exists. It should be noted that, ignoring the FE-regularization, local

models with strain-softening behavior can correctly describe the damage only when re-

main uniformly distributed (perfect material). In order to study this phenomena in the
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Figure 2.6.13. Description of FE models used in two tests: (a) strain-localization and (b) compression of a
specimen test.

concrete models developed, two uniaxial tests are performed, one for tension and other

for compression, varying the number of finite elements (i.e. varying their characteristic

length lc). For the sake of simplicity, a prism of 100 × 100 mm of base and 600 mm

of height is divided into 2, 3 and 4 elements. Also, its assumed a pure uniaxial stress

state for the boundary constraints (Fig. 2.6.13a). Table 2.6.7 list the material parame-

ter used. The election of parameters Eo, f
′
c and G±f are chosen in order to satisfy the

range of characteristic length lc admissible by the uniaxial compression stress law given

by Eq. (2.3.77). In order to induce the localization phenomena, one of elements (shaded

element) has been reduced slightly their uniaxial tension/compression strength (f ′t /f
′
c) than

others elements (0.99 times), for tensile/compressive load case, respectively. In addition,

due that some convergence trouble are observed in the simulations, a numerical viscosity

of µv/∆t = 0.05 is incorporated in all models.
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Fig. 2.6.14a-b shown the normalized uniaxial tensile stress σ1/σ1max vs post-peak dis-

placement δ1pp for the WLF0 and WLF model, respectively, varying the mesh size of

model, whereas Fig. 2.6.14c-d shown the respective compressive response for the WLF0

and LLF, respectively. Additionally, the figure shown the failure mode of their respec-

tive specimens, through the field of damage variable ω±. The post-peak displacement

is defined as δ1pp := δ − δo, where δ is the total displacement of specimen and δo the

displacement at peak response.

Its observed in all models with imperfection a mesh-objectivity response and the dam-

age zone occur only in the modified element, such as expected in literature. However,

in the case without imperfection, two kinds of response are observed. For one hand, the

response for the WLF0 model is mesh-dependent with an uniform strain field, either in

tension as in compression. This condition is due that the FE-regularization modify the

uniaxial stress-strain law despite exist an uniform strain field in the model. Then, its

concluded that this technique is only necessary when the damage zone localize. For other

hand, the LLF and WLF models (with the exception of one case lc=300 mm) gives a mesh-

objectivity response. This atypical condition can be attributed first to the non-symmetric

consistent tangent stiffness tensor and largely to numerical errors induced in the iterative

process to calculate the plastic component.

Similar observations can be concluded in the other cases as explained as follows. All

models gives a mesh-objectivity response and the damage zone is localized in one element

(modified element) when a perturbation exists in the material. In contrast, not all the

models have an uniform strain field in the case without imperfections. Its observed that

the WLF and FOC models localize with a tensile load, whereas the LLF model localize

both in the tension as in the compression case. In contrast, the WLF0 and ROT models not

localize using a perfect material.
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Figure 2.6.14. Comparison the normalized uniaxial stress σ1/σ1max
vs post-peak displacement δ1pp using

three FE mesh sizes: 150 mm, 200 mm and 300 mm: (a-b) tensile response for the WLF0 and WLF models,
respectively; and (c-d) compressive response for the WLF0 and LLF models, respectively. The following
additional parameter are used. For the LLF model: C+=6000, C−=500; and WLF model: f−o =20 MPa,

E+
t = 0.5Eo and E−t = 0.5Eo.

2.6.8. Variation of slenderness specimen in a compression test

Experimentally, the compressive strength of a concrete test specimen is influenced by

several factors. Avoiding effects associated to the concrete mixture characteristic (normal

or high strength concrete) or the strain-rate effects, three main factors affects in the re-

sponse: the specimen slenderness or height-to-width ratio H/B; the election of boundary

constrains imposed in the loading platens used in the experiments; and geometrical effects

(cylinder/prism and specimen size). Round-robin tests were perfomed in the past to guess

this problem (van Mier et al., 1997).

Its observed by several authors (van Vliet & van Mier, 1995; Vonk, 1992), in com-

pression test where a reduced friction exist between the test specimen and the loading

platens (e.g. steel brushes, thin layers of Teflon and grease or stearic acid), their compres-

sive strength is relatively independent of slenderness of specimen tested. Conversely, in

test where a high friction (e.g. dry steel platens) is present, the compressive strength is
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inversely proportional to the slenderness of specimen, i.e, the larger the height, the lower

the strength. For a slenderness values upper 2 the peak strength tends to the case with low

friction (pure uniaxial). This condition is due that the lateral shear stresses presents in the

loading platens induce triaxially confining pressure at the boundary of the specimen.

Numerical simulation of experimental test performed by (van Vliet & van Mier, 1995)

are generated to shown the response and failure mode. Four prisms specimens of 100 ×

100 mm of base, with different slenderness H/B are simulated, three of them H=50, 100

and 200 mm of height are identical to the experimental test and one additional fictitious

specimen of 400 mm of height is considered.

Fig. 2.6.13b shown a schematic representation of the FE model generated. A mesh

of 16.6 mm is used. Fixed boundary restraints are imposed in both ends to simulated the

high friction provided by dry steel platens. The material input parameters of models are

calibrated with a specimen of 100 × 100 × 50 mm and with low friction (uniaxial case)

that was included as part of the experimental program.

Fig. 2.6.15 shown of compressive response of four FE models varying the height of

specimen and using the WLF model. It can observed a good correlation in the post-peak

response with the experimental results. The highest value in the compressive strength

occur for the specimen of 50 mm of height. Also, its observed a over-estimation of resis-

tance for the specimen of 50 mm, whereas an under-estimation exists for the specimens

of 100 and 200 mm. In both cases, similar to concluded in the triaxial test simulation, is

due to incorporation of triaxial confinement parameter δ in the equations. Similar obser-

vations occurs with the other models. Fig. 2.6.15 shown the variation of compressive peak

strength with respect to the slenderness of a test specimen for the LLF, WLF0, WLF and

FOC models. It can observed a good correlation with experimental results and with a sim-

ilar response among them. In all cases, the compressive strength tends to the uniaxial peak

strength f ′c (low friction case) with a slenderness value over two, such as recommended in

ACI code. In addition, Fig. 2.6.17 shown the failure mode of experimental specimens and
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Figure 2.6.15. Simulation of compressive response of a test specimen varying their slenderness for the WLF
concrete model using the experimental test of (van Vliet & van Mier, 1995). The following additional

parameters are used: Kc=0.74, f−o =30 MPa, E+
t = 0.8Eo and E−t = 0.8Eo.
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Figure 2.6.16. Comparison of compressive peak strength vs slenderness of a test specimen for the LLF,
WLF0, WLF and FOC models.

their respective numerical simulations for the LLF, WLF0, WLF and FOC models varying

their slenderness.
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Figure 2.6.17. Comparison of failure mode of test specimen varying their slenderness for the LLF, WLF0,
WLF and FOC models under the monotonic test of (van Vliet & van Mier, 1995).

2.7. Estimation of the epistemic uncertainty

To measure the epistemic uncertainties on inelastic constitutive concrete models studied,

five types of response parameters were considered: (1) peak stress σp and respective strain

εp of the monotonic stress-strain curve; (2) dissipated energy of the monotonic Ḡm stress-

strain curve; (3) dissipated energy of the first Ḡc1 , last Ḡc∞ , and total Ḡc loading-unloading

cycle of stress-strain curve, respectively; (4) linearized least square stiffness of hardening

branch K̄h, and softening branch K̄s, of monotonic stress-strain curve, respectively; and

(5) first, K̄c1 , and last K̄c∞ linearized least square stiffnesses in loading-unloading cycle,

respectively. Fig. 2.7.18 illustrates these parameters for clarification.
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The uncertainty of inelastic concrete models is measured in only six experimental

tests cases: (i) the uniaxial cyclic tension test; (ii) the uniaxial cyclic compression test;

(iii) a biaxial monotonic test; (iv) a triaxial monotonic test; (v) the uniaxial cyclic tension-

compression test; and (vi) a strain-rate case, for both tensile and compressive loading.

For all these cases, the uncertainty is measured as the ratio of simulated concrete models

Rnum relative to experimental test results Rexp. The uncertainty of the ratios Rnum/Rexp is

characterized by its minimum, maximum values, and the standard deviation σ.

Cycle i
Last cycle

Monotonic energy,

Cyclic energy,

Figure 2.7.18. Definition of response parameters to measure epistemic uncertainty in inelastic concrete mod-
els.

Fig. 2.7.19 summarize a box-plot of the uniaxial cyclic tension and compression simu-

lation with the five class of output parameters defined. The box-plots considered hereafter

contains a rectangle whose length is the difference between the first and third quartile, a

median x̄ represented by an intermediate horizontal line, a mean represented by a rhom-

bus, whiskers equivalent in width to two standard deviations (2σ), and outliers which fall

outside the range (x̄± σ).

It can observed up to 47% less amount of energy dissipated by the first loading-

unloading cycle Ḡc1 of numerical simulations than experimental test, with a considerable

uncertainty of up to σ = 20.6%, both in compression as in tensile regime. Similarly, up to

40% more flexible is the first loading-unloading stiffness K̄c1 , mainly due to WLF0 and

ROT models, which unloads to origin. Conversely, there are up to 2.68 and 2.41 times
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more energy dissipated by monotonic Ḡm, and cyclic stress-stain curve Ḡc, respectively

(excepting in compressive load) by numerical simulations than in the experimental test,

both in tensile as compressive case, mainly due to DPH plastic model. Furthermore, a

high variability exist for the energy dissipated by the last cycle Ḡc∞ , with σ = 112.2% for

tensile case, and by loading-unloading stiffness of last cycle Kc∞ , both in tension as in

compression regime, with σ = 262.6% and 175.6%, respectively.

In contrast, for tensile regime, the variables σp, εp, and K̄h gives a good fit adjustment

in all concrete models, with a standard deviation less than 10%, whereas for compressive

regime, the variables σp, Ḡm, and Ḡc gives a σ ¡ 15%. Finally, its concluded that the most

important source of epistemic uncertainty in tensile regime is observed by the energy

dissipated Gc∞ and linearized stiffness K̄c∞ in the last loading-unloading cycle, with a

standard deviation of 112.2% and 262.6%, respectively, whereas for tensile regime the

variable K̄c∞ gives a considerable uncertainty, with σ = 175.6%. The main reason of this

high uncertainty is due to the differences in the taxonomy of stress-strain constitutive

concrete models considered (plastic, damage or plastic-damage).
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Figure 2.7.19. Response parameters of the numerical concrete models normalized by the experimental
benchmark test results in the uniaxial cyclic tension and respective compression test: box-plot diagram
(top); and maximum, minimum and standard deviation σ (%) (bottom). (Values in parenthesis associated

with the uniaxial cyclic compression simulation.)

Fig. 2.7.20a-b shown the box-plot of response parameters for the biaxial and triaxial

monotonic simulations, respectively. For the biaxial case, the box-plot for each variable

correspond to combination of all stress ratios simulated a = σ1/σ2 with a= 0, 1, and
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0.52, whereas for triaxial case, each box-plot combine all confining pressure simulated,

po from 0 to 43 MPa. For one hand, a good fit adjust exist for all response variables

measured, with a medium-level of uncertainty less than 30%. For other hand, a low-level

of uncertainty is observed for the peak stress σp, with σ = 4%, whereas a high uncertainty

is observed in the variables εp, Ḡm, and K̄h, with a standard deviation of 83.7%, 58.9%

and 55.2%, respectively. Later, this uncertainty is due to simplicity of term considered in

the constitutive concrete equations to simulate the triaxial effect.
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Figure 2.7.20. Response parameters of the numerical concrete models normalized by the experimental
benchmark test results: (a) biaxial monotonic; and (b) triaxial monotonic. Box-plot diagram (top); and

maximum, minimum and standard deviation σ (%) (bottom).

Fig. 2.7.21a-b shown the box-plot for the uniaxial cyclic tension-compression (uni-

lateral effect) and strain-rate case, respectively. For one hand, the standard deviation of

all parameters is less than 10%, with the exception of the variables Ḡm and K̄c∞ , where

σ=25.9% and 38.3%, respectively. For other hand, a good fit correlation exist for strain-

rate simulations less than ε̇ < 10−1/s, in all concrete models, as both in tensile as in

compressive regimes, with values that ranges between 0.71 and 1.05 times the experimen-

tal tests results. Conversely, for a strain-rate over 1/s, higher values are observed of up to

2.74 and 1.52 times, for tensile and compressive load, respectively. Thus, combining all

strain-rate cases in an unique box-plot, gives a standard deviation of 44.0% and 14.2%,

for tensile and compressive load, respectively. Both observations demonstrates that there

are more uncertainty in tensile regime than in compressive one.
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Figure 2.7.21. Response parameters of the numerical concrete models normalized by the experimental
benchmark test results: (a) uniaxial cyclic tension-compression; and (b) strain-rate test. Box-plot diagram
(top); and maximum, minimum and standard deviation σ (%) (bottom). (In both cases, values in parenthesis

associated with the compressive load case.)

2.8. Summary and main results

This chapter study the epistemic uncertainty in five continuum stress-strain local consti-

tutive concrete models for the three dimensional finite element formulation. The models

considered are the most commonly used in the literature for plastic, plastic-damage and

fracture mechanics of concrete. Convergence problems were encountered under certain

conditions, especially in strain-softening regimes. Herein, a complete description of these

models in a common notation was presented, providing all the necessary steps required

to ensure adequate convergence and a consistent numerical implementation. Analytical

expressions for the updated stress algorithms and new explicit expressions for the algo-

rithmic consistent tangent stiffness tensor were developed. Also, a consistency check of

input model parameters, such as uniaxial laws and fracture energy definition is discussed.

The conversion from tensors and tensor operations to the vectorized format are provided

for computational convenience. Numerical examples of benchmark tests under uniaxial,

biaxial, and triaxial stresses demonstrated the capabilities of the proposed implementa-

tions. Moreover, the unilateral and strain-rate effects, the mesh size influence, and the

strain-localization phenomenon are evaluated for each model. Further, the compression

failure mode of a test specimen is illustrated as an example of application. The main

results obtained from these part are:
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• The construction of a robust updated stress algorithm consistent with the exact

linearization of the evolution laws is necessary to get an adequate response of

the models. Implicit schemes with return-mapping algorithms are preferred for

the plastic component of models, whereas explicit schemes are sufficient for the

damage ones. A counterexample of this happens with the FOC model, since its

response is sensitive to the load step-size due to the explicit integration scheme

used to compute the plastic component. Also, the election of an adequate initial

value, non-zero derivatives, and a unique scalar variable to be solved rather than

a system of equations, are critical for the convergence of Newton′s method used.

The latter is critical to solve the plastic component of models. Examples of this

occur in the solution of the consistency operator of the DPH, LLF and WLF

models.

• The correct derivation of the consistent tangent stiffness tensor is also critical

in achieving convergence of the models. For the sake of numerical convergence

we recommend the use of continuous and smooth derivatives (C1-class) for this

operator. Analogously, we recommend the use of smooth C2-class functions

for the flow potential of the DPH model; the C1-class approximated Heaviside

function in the yield criterion of the LLF and WLF models; and the use of C1-

class functions for the uniaxial laws (σ − ε, σ − κ or ω − r) in all models. In

addition, the use of any asymmetric Newton-Raphson solver is mandatory if the

stiffness matrix is non-symmetric. It is apparent that the LLF and WLF models

are very sensitive to this condition under biaxial and triaxial loadings.

• Including a viscous model in the constitutive equations is a simple and robust

technique to overcome convergence problems caused by the strain-localization

phenomena in local models. This technique includes an artificial numerical vis-

cosity in the equations to convert the stiffness tensor into a positive-definite ma-

trix despite of the existence of strain-softening regimes. However, this comes at

the expense of a gradual strength over-estimation depending on the strain-rate

increment. This method has been used in the plastic and damage components of
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the LLF, WLF, FOC and ROT models using the Duvaut-Lions model. It is rec-

ommended to use a ratio of numerical viscosity to load step increment between

0.001 and 1.0 to get an adequate convergence without compromising accuracy

in the response.

• All models, with the exception of the DPH model, can simulate the strain-

softening behavior correctly. Also, the LLF, WLF and FOC models can predict

the inelastic strains and stiffness degradation, whereas the WLF model without

plastic strains (WLF0) and the ROT model both unload to the origin, i.e. they

are pure damage models. It should be noted that the WLF0 and ROT models

give identical responses in all cases, although they work with formulations that

are completely different.

• All models, except the ROT model, incorporate the biaxial effect adequately

since they include the Drucker-Prager yield criterion in their equations. In con-

trast, only the LLF, WLF and FOC models can simulate the triaxial effect cor-

rectly. Moreover, these models have been validated with a confining pressure up

to 43 MPa, giving a good correlation with experimental results. More complex

models may be required to simulate higher confinement pressure levels. In addi-

tion, the volumetric expansion (dilatancy) is only simulated by the WLF model,

whereas the other two models present a reduction in volume (compaction) for

all ranges of confining pressures.

• With the exception of the DPH model, all models can simulate the unilateral

effect correctly, in which the unloading compression stiffness is recovered once

the load goes from tension to compression (crack-closure), and the unloading

tension stiffness is obtained in the reverse case (crack-opening). Both condi-

tions denote that the models have ”damage memory”, which agrees with the

thermodynamics of irreversible processes.

• Excepting the DPH model, all models can simulate the strain-rate effect by

means of the Duvaut-Lions visco-plastic model. It is observed that the tensile

response is more sensitive to the strain-rate increments than the compression one
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for all models. However, a poor fit is obtained relative to experimental test. In

that case, the use of other models such as the Perzyna model is required.

• All models give a mesh-objective response with a localized damaged zone if a

perturbation exists in the material of a FE model. Conversely, not all of the mod-

els have an uniform strain field in cases without imperfections, where the WLF

and FOC models localize under tensile loads, whereas the LLF model localizes

both in tension and compression. In contrast, the WLF0 and ROT models do not

localize if we have a perfect material.

• It can observed that the unloading-loading linearized stiffness of the last cycle

K̄c∞ , both for the uniaxial cyclic tension as well as in compressive test, is the

most important sources of epistemic uncertainty, with a standard deviation of

the normalized results of 262.6% and 175.6%, respectively. Moreover, a con-

siderable level of uncertainty is observed in the energy dissipated by the last

unloading-loading uniaxial tensile cycle Ḡc∞ , with σ=112.2%. This high uncer-

tainty is due to the different concrete models considered, i.e. plastic, damage

and plastic-damage types.

• Furthermore, a standard deviation of 83.7%, 58.9% and 55.2% was estimated

for the strain at peak stress εp, energy dissipated by monotonic stress-strain

curve Ḡm, and linearized stiffness of hardening branch of monotonic stress-

strain curve K̄h, respectively, in triaxial monotonic tests, considering a confin-

ing pressure of up to 43 MPa. Also, a significant source of uncertainty occurs

in the peak stresses σp for the strain-rate case with strain-rates ε̇ over 1/s, both

in tension as in compression loads, where the simulations gives values of up

to 2.74 times respect to experimental tests. A standard deviation of 44.0% and

14.2% was also obtained in this case, for tensile and compressive load, respec-

tively, leading more uncertainty in tensile loads than in compressive ones. This

is due to the use of the visco-plastic Duvaut-Lions model, used herein as a first

approximation to simulate strain-rate effects given its simpler numerical imple-

mentation.
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• In contrast, low uncertainty is observed in the peak stress σp, in the six test

cases, excepting the strain-rate test, with a standard deviation less than 12.8%.

Moreover, the dissipated energy by the monotonic curve Ḡm, for the uniaxial

cyclic compression and tensile branch of uniaxial tension-compressive test is

less than 7.3%.
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3. CONTINUUM STRESS-STRAIN CONCRETE MODELS AND CONSISTENT

NUMERICAL IMPLEMENTATION FOR PLANE-STRESS CONDITION

Plane-stress constitutive models are widely used with shell elements to model RC

walls, slabs and membranes. Because concrete is a brittle material that exhibits a strongly

nonlinear response associated with the propagation of cracking, its correct modeling in

practice is difficult and requires substantial expertise and robust numerical algorithms to

achieve convergence. These analyses are critical given the brittle performance observed in

reinforced concrete shear wall buildings during recent earthquakes (Jünemann et al., 2015;

Jünemann, de la Llera, Hube, Vásquez, & Chacón, 2016). The plane-stress condition

arises in structural elements in which one dimension is much smaller than the others and

the element is subjected to loads perpendicular to the thickness. The proper formulation

and numerical implementation of plane stress is very different from the full 3D-case, and

hence, this chapter describes in detail this formulation and implementation.

Shell finite elements are commonly used to simulate plane-stress conditions. Indeed,

multi-layered shell type elements are best suited to represent an accurate distribution of in-

plane and out-of-plane concrete stresses, with a considerable reduction of computational

cost relative to the use of solid finite elements (Chacón et al., 2017). Accuracy in these el-

ements is strongly dependent on the algorithmic implementation and the integration tech-

niques adopted (Krieg & Krieg, 1977; J. C. Simo & Taylor, 1985). For strain-driven

models, these algorithms seek to: (i) the integration of the updated stress vector given the

strain increment; and (ii) the computation of the stiffness matrix according to the updated

stresses. The use of implicit integration schemes with return-mapping algorithms (RMA)

is typical for plastic and plastic-damage models, whereas explicit integration schemes are

used for damage and smeared crack models. A large variety of algorithms for numerical

implementation of these models are available in the literature (J. C. Simo & Hughes, 1998;

de Souza Neto et al., 2008), but this article focuses on the plane-stress case, which also

had some numerical features different from the 3D-case.
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Specifically, if a strain-driven model is used, an additional constraint is imposed to sat-

isfy the condition of zero normal stress. Moreover, to account for plastic effects, the radial

return-mapping algorithm used in the 3D-case formulation is not valid for the plane-stress

condition, and hence, the consistent operator cannot be obtained explicitly. Consequently,

the use of specific algorithms for plane-stress is mandatory. Three approaches are com-

monly adopted to solve this problem: (i) to include the plane-stress constraint within the

3D algorithm equations considering a nonlinear iterative solver at the Gauss point level

(Aravas, 1987; Dodds, 1987; Klinkel & Govindjee, 2002); (ii) the use of standard 3D

algorithms at the Gauss point level with the plane-stress condition added as a structural

constraint at global level (de Borst, 1991); or (iii) the use of plane stress-projected equa-

tions, in which the plane-stress constraint is enforced within the equations at the Gauss

point level (Schreyer, Kulak, & Kramer, 1979; Jetteur, 1986; J. C. Simo & Taylor, 1986).

In general, the first two options are more adequate for complex plastic models at the ex-

pense of an additional computational cost. In contrast, the projected plane-stress method

is a direct, exact, and efficient computationally procedure that involves only the in-plane

stress and strain components. However, more complex equations are involved in the nu-

merical integration of the projected plane-stress approach, that can only be formulated for

relatively simple models. The latter method is more popular than the two former ones

(J. Lee & Fenves, 1998; Lourénço, de Borst, & Rots, 1998; J. C. Simo & Hughes, 1998;

de Souza Neto et al., 2008; Valoroso & Rosati, 2009).

The objective of this chapter is to provide, in a common vectorized notation, the nu-

merical implementation of the plane-stress formulation for the same five concrete models

considered in the past chapter.

This chapter presents in Section 3.1 a complete description of the set concrete models

considered. A detailed development of the algorithms for numerical implementation of the

updated stress vector for the plane-stress condition is provided in Section 3.2. Moreover,

new explicit analytical expressions for the algorithmic consistent tangent stiffness matrix

of such models are presented in Section 3.3. Furthermore, numerical examples using
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basic benchmarks tests subject to monotonic and cyclic loading conditions under uniaxial

and biaxial stresses are presented in Section 3.4 to demonstrate the capabilities of these

concrete models. In addition, the unilateral effect, strain-rate effects, mesh size influence

and strain-localization phenomena are discussed for each model.

3.1. Description of concrete models

This section summarized the equations of the five continuum concrete models consid-

ered in this article. Also, include some modifications adequate to improve the convergence

of models. For the sake of simplicity, all equations are described in a vectorized and ma-

trix format according to an adequate conversion of their respective tensors, considering

only the components associated to in-plane behavior ((·)11, (·)22, (·)12), unless otherwise

stated. Details of this conversion can be founded in Appendix B.

3.1.1. Drucker-Prager Hyperbolic (DPH) model

This plastic model, so-called the ”Extended Drucker-Prager” model was defined by

(Drucker & Prager, 1952) and modified by (ANSYS, 2018; ABAQUS, 2018). Is a simpli-

fication of Mohr-Coulomb model and have been used to simulate soil or cohesive mate-

rials, like concrete. First, the strain vector ε is decomposed additively into its elastic, εe,

and plastic part, εp, as follow

ε = εe + εp. (3.1.1)

Then, for the case of linear elasticity, they can be related to the Cauchy stress vector σ

by

σ = De(ε− εp), (3.1.2)

where De is the linear-elastic stiffness matrix (see Eq. (A.2.6) for their definition). The

yield criterion is defined as

F (σ, α) := ηp+
√

3J2 − ξc(α), (3.1.3)
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where the hydroestatic stress p is included to simulate the pressure-dependent behavior

and the asymmetric tensile/compressive strength of concrete; η and ξ are material param-

eters chosen according to the required approximation to the Mohr-Coulomb criterion or

fitted to uniaxial/biaxial tensile and compressive strength of concrete; and c(α) is the co-

hesion hardening law, which is taken as function of the equivalent plastic strain α. The

later variable is defined as α :=
∫ t

0
‖ε̇p‖dt. It is assumed an exponential relation for the

cohesion hardening law c(α) as

c(α) = cu + (cy − cu)e(−α/ao), (3.1.4)

where cu = Rcy and αo = cu/Eo, with R > 1 an experimental fitted parameter. Discus-

sion of parameters η and ξ are detailed in Section 2.5.

For other hand, a hyperbolic shape is adopted for the flow potential, and is defined as

G := η̄p+
√
q2 + ε2, (3.1.5)

where η̄ is a constant that depends of the dilatancy angle, ε is a eccentricity parameter

that controls the shape of surcafe near of tensile regimes, generally used less than 0.001

(ABAQUS, 2018) and q =
√

3J2. For the plane stress condition, the invariant J2 can be

correctly expressed as J2 = 1
2
σTPσ (see Eq. (A.2.6)). Observe that this flow potential

is a smoothed surface (C2-class) that avoid the singularity at the cone′s apex present in

the classical Drucker-Prager model, giving an unique flow direction in this region. More-

over, the projected region of the plane-stress condition for this flow potential gives always

a smoothed function (C2-class) whatever value of eccentricity adopted. Then, the non-

associated flow rule for the plastic strain vector is given by

ε̇p := γ̇n, (3.1.6)
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where γ is the plastic operator and n denotes the flow vector expressed as

n :=
∂G

∂σ
=

3

2r
Pσ +

η̄

3
1, (3.1.7)

with r =
√
q2 + ε2. Also, the evolution of equivalent plastic strain α is stated as

α̇ := γ̇ξ. (3.1.8)

Finally, the loading-unloading Karush-Kuhn-Tucker (KKT) and consistency condi-

tions, respectively, are expressed as

γ̇ ≥ 0, F (σ, γ) ≤ 0, γ̇F (σ, γ) = 0 (3.1.9)

F (σ, γ) = Ḟ (σ, γ) = 0 (3.1.10)

In addition, the out-of-plane plastic strain εp33, can be derived considering all compo-

nents of strain tensor (in-plane and out-of-plane). Then, using Eq. (A.2.8), the second-

order flow tensorN3 is expressed as

N3 :=
∂G

∂σ3

=
3

2r
s3 +

η̄

3
I3, (3.1.11)

where subscripts ”3” denotes the 3D second-order tensor (see appendix 2), s3 is the de-

viatoric stress tensor (Eq. (A.2.5)) and I3 = diag(1, 1, 1) the second-order unitary tensor.

Thus, the evolution law of out-of-plane plastic strain is written as

ε̇p33 = γ̇

[
− 1

2r
(σ11 + σ22) +

η̄

3

]
(3.1.12)

Moreover, using Eq. (A.2.9) and due that tr(s3) = 0, its follows that the volumetric

strain rate can be estimated as

ε̇v = εev + ε̇pv = K−1p+ γ̇η̄, (3.1.13)
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where εev and εpv are the elastic and plastic volumetric strain, respectively, and K the Bulk

moduli. It can observed that η̄ controls the inelastic volumetric strain rate (dilatancy).

3.1.2. Lubliner-Lee-Fenves (LLF) model

This plastic-damage model, so-called ”Barcelona” model, was first developed by (Lubliner

et al., 1989) and later improved by (J. Lee & Fenves, 1998). First, using Lemaitre′s strain

equivalent hypothesis (Lemaitre, 1989), the nominal stress vector σ associated with the

damage state is related to the effective stress σ̄ corresponding to the undamaged state as

follows

σ := (1− ω)σ̄, (3.1.14)

where ω is the isotropic damage variable, with ω ∈ [0, 1].

Plastic component

To calculate this component, its assumed the so-called effective stress space plasticity,

which are related to the effective stress vector and is dependent (coupled) of damage com-

ponent (Wu et al., 2006). First, two hardening scalar variables κ± are stated to control the

positive/negative part of plastic-damage component, respectively. (Lubliner et al., 1989)

define normalized variables for uniaxial case as follows

κ± :=
1

g±

∫ α±

0

σ±(α±) dα±, κ̇± =
1

g±
σ±(α±)α̇±, (3.1.15)

which correspond to accumulated area under positive/negative uniaxial stress-equivalent

plastic strain law (σ± − α±), respectively, with κ± ∈ [0, 1], g± =
∫∞

0
σ±(α±) dα± are

the total area under their respective stress law. Note that positive values are used for σ±.

Moreover, the positive/negative equivalent plastic strain α± are defined as

α± =

∫
| ˙̂εp±|dt, (3.1.16)
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where ˙̂εp+ = ˙̂εpmax and ˙̂εp− = − ˙̂εpmin, with ˙̂εpmax,min are the maximum and minimum eigen-

values ratio of principal plastic strain vector εp, respectively. Moreover, in case for multi-

axial condition, the evolution law of variables κ± in a vectorized format κ = [κ+, κ−]T is

defined as

κ̇ := W ( ˆ̄σ,κ) ˙̂εp (3.1.17)

W ( ˆ̄σ,κ) := diag

[
φ( ˆ̄σ)

σ+(κ+)

g+
,
(
φ( ˆ̄σ)− 1

) σ−(κ−)

g−

]
,

where ˙̂εp =
[

˙̂εp1,
˙̂εp2

]T
is the ratio of principal plastic strain vector, which is filled in an

algebraic order (e.g. ˙̂εp1 >,
˙̂εp2); and φ( ˆ̄σ) is a weight factor ∈ [0, 1], defined as

φ( ˆ̄σ) :=


0, ˆ̄σi = 0∑N

i=1〈ˆ̄σi〉+∑N
i=1|ˆ̄σi|

, otherwhise
(3.1.18)

An adequate conversion of uniaxial stress laws from the relation σ± − α± to σ± −

κ±, using Eq. (3.1.15) is necessary to generate. Detail of this conversion is discussed

in Section 2.5.1. For the other hand, similar to stated in the DPH model, the hyperbolic

Drucker-Prager criterion as defined by Eq. (3.1.5) is used for the flow potential. Moreover,

due that any isotropic material satisfy the relation G(σ̄) = Ĝ( ˆ̄σ) and that p, J2, and r

are invariants in the effective stress space
(
(̄·) = (̂̄·)

)
, the flow potential in the principal

effective space can be rewritten as

Ĝ
(

ˆ̄σ
)

= η̄p̄+
√
J̄2 + ε2 (3.1.19)

Then, the non-associated flow rule satisfy the relation in the principal space as

˙̂εp = γ̇ ˆ̄n, (3.1.20)

ˆ̄n :=
∂Ĝ

∂ ˆ̄σ
=

3

2r̄
P̂ ˆ̄σ +

η̄

3
1̂, (3.1.21)
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where n̂ is the principal effective flow vector. Thus, Eq. (3.1.17) can be rewritten as

κ̇ = γ̇H
(

ˆ̄σ,κ
)
, (3.1.22)

whereH( ˆ̄σ,κ) = W ( ˆ̄σ,κ) ˆ̄n. Finally, the yield criterion is first established by (Lubliner

et al., 1989) and later modified by (J. Lee & Fenves, 2001) as follow

F̄
(

ˆ̄σ,κ
)

:= ηp̄+
√

3J̄2 + β(κ)〈ˆ̄σmax〉+ − (1− α)c(κ−), (3.1.23)

where α = (f
′

b − f
′
c)/(2f

′

b − f
′
c) and β(κ) and c(κ−) are parameters to distinguish the

different evolution of strength under tension and compression given by

β(κ) := (1− α)
σ̄−(κ−)

σ̄+(κ+)
− (1 + α), c(κ−) := σ̄−(κ−), (3.1.24)

where σ̄± are the positive/negative uniaxial effective stress law, respectively. Typical ex-

perimental values of the ratio f ′b/f
′
c for concrete ranges from 1.10 to 1.16, yielding values

of α between 0.08 and 0.12. It should be noted that this yield function do not include the

triaxial effect as proposed by (J. Lee & Fenves, 2001) due to plane-stress condition.

In addition, similar to the DPH model, using Eqs. (3.1.12) and (A.2.7) expressed in

the effective stress space, the evolution law for the plastic εp33 and elastic εe33 out-of-plane

strain are given, respectively, by

ε̇p33 = γ̇

[
− 1

2r̄
(σ̄11 + σ̄22) +

η̄

3

]
, (3.1.25)

εe33 = − ν

Eo
(σ̄11 + σ̄22) . (3.1.26)

Moreover, using this relations and Eq. (A.2.9), the volumetric strain rate can be esti-

mated as

ε̇v = εev + ε̇pv = K−1p̄+ γ̇η̄ (3.1.27)
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Damage component

(ABAQUS, 2018) define the damage variable ω as

ω := 1−
[
1− s−( ˆ̄σ)ω+(κ+)

] [
1− s+( ˆ̄σ)ω−(κ−)

]
, (3.1.28)

where s±( ˆ̄σ) are stiffness recovery functions and ω±(κ±) positive/negative damage laws,

respectively. For one hand, the stiffness recovery functions s± can be defined as

s+ := 1− z+
c φ( ˆ̄σ), s− := 1− z−c (1− φ( ˆ̄σ)), (3.1.29)

where z±c ∈ [0, 1] are a stiffness recovery factor from tensile to compression load state

and viceversa. Empirical evidence shown that compressive stiffness is recovered upon

crack closure as the load changes from tension to compression (z+
c ≈ 1). However, tensile

stiffness is not recovered as the load changes from compression to tension once crushing

micro-cracks have developed (z−c ≈ 0). For other hand, the positive/negative damage laws

ω±(κ±) laws are fitted experimentaly and generally known in terms of equivalent plastic

strain α±, e.g. a common exponential relation is used as

ω±(α±) = 1− exp(−C±α±), (3.1.30)

with C± an experimental parameter that control the unloading branch of response. Due

this, its required an adequate conversion from ω± − α± to ω± − κ± laws as explained in

Section 2.5. Thus, the uniaxial positive/negative stress σ± laws can be related to respective

effective stress σ̄± laws as follows

σ±(κ±) =
[
1− ω(κ±)

]
σ̄±(κ±). (3.1.31)

Viscous component

Additionally, the model can include strain-rate dependency with a visco-plastic model,

which improve the convergence in strain-softening regimes. To this, the nominal stress
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vector σ is now converted to their respective viscous component σv, and is defined as

σv = (1− ωv)σ̄v, (3.1.32)

where ωv is the viscous damage variable and σ̄v is the effective viscous stress vector.

(J. Lee & Fenves, 2001) calculate this component using the (Duvaut & Lions, 1972) visco-

plastic model, which is stated in the effective stress space as

ε̇vp :=
1

µv
Ce(σ̄

v − σ̄), (3.1.33)

σ̄v := De(ε− εvp), (3.1.34)

with εvp is the visco-plastic strain vector and µv is the numerical viscosity parameter and

is equivalent to the relaxation time. Thus, combining both relation gives

ε̇vp = − 1

µ
(εvp − εp). (3.1.35)

Moreover, the evolution law of viscous-damage variable ωv is defined as

ω̇v := − 1

µv
(ωv − ω). (3.1.36)

3.1.3. Wu-Li-Farı́a (WLF) model

This plastic-damage model, was first developed by (Faria et al., 1998) and modified by

(Wu et al., 2006). Two variants are developed for this model: one aproach that include the

plastic and damage components (WFL) and other one with pure damage behavior (WFL0).

First, assume that the effective stress vector σ̄ are splitted into positive σ̄+ and negative

σ̄− parts, to account separately the cracking (tension) and shear (compression) damage

mechanisms for degradation of concrete (Ladeveze, 1983; Ortiz, 1985), using the follow
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decomposition

σ̄± :=
N∑
i=1

〈ˆ̄σi〉±eiiσ̄ = P±σ̄, (3.1.37)

P± :=
N∑
i=1

H±(ˆ̄σi)
(
eiiσ̄ ⊗ eiiσ̄

)
R, (3.1.38)

where P± are the projection matrices, with symbol ′±′ denoting ’+’ or ’-’ as appropriate,

ˆ̄σi denote the i−th eigenvalue of mapped tensor σ̄2 and ei is the i−th eigen-projector

vector associated to σ̄ (see appendix A). This decomposition satisfy the relations σ̄ =

σ̄+ + σ̄− and P+ + P− 6= I . Next, in order to establish the intended constitutive law,

(Wu et al., 2006) define the total elasto-plastic HFE potential as follows

ψ(εe,ω,κ) := ψe(εe,ω) + ψp(κ,ω), (3.1.39)

ψe(εe,ω) = (1− ω+)ψe+o (εe) + (1− ω−)ψe−o (εe), (3.1.40)

ψp(κ,ω) = (1− ω+)ψp+o (κ) + (1− ω−)ψp−o (κ), (3.1.41)

where ω± = ω±(r±) are positive/negative scalar damage variables ∈ [0, 1], respectively,

which are in function of the damage thresholds r±, that controls the size of damage sur-

faces; ω = [ω+, ω−]T denotes the damage vector; ψe±o are the undamaged elastic HFE

potential and are equals to the strain energy per unity of volume. Thus ψe±o = 1
2
σ̄Tεe; and

ψp±o are the undamaged plastic HFE potential. Moreover, the Eq. (3.1.39) can be reordered

as

ψ(εe, ω+, ω−,κ) := (1− ω+)ψ+
o (εe,κ) + (1− ω−)ψ−o (εe,κ) (3.1.42)

where ψ±o is the positive/negative total undamaged elasto-plastic HFE potential and are

written as

ψ±o = ψe±o + ψp±o (3.1.43)
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For the other hand, the nominal Cauchy stress vector can be defined as

σ :=
∂ψe

∂εe
(3.1.44)

Then, using the relation ∂ψe±o
∂εe

= σ̄± and Eqs. (3.1.44), (3.1.37) and (3.1.40), this stress

vector is expressed as

σ :=
[
(1− ω+)P+ + (1− ω−)P−

]
σ̄ =

(∑
ℵ

(1− ωℵ)P ℵ
)
σ̄ (3.1.45)

where ℵ denote index summation for ’+’ and ’-’ part as appropriate hereafter.

Plastic component

Similar to the LLF model, the effective stress space plasticity, which are related to the

effective stress vector, but in this case is independent (decoupled) of damage component

(Wu et al., 2006). Although, the damage component depends of the variables stated in the

plastic component. Due to this condition, they can include the plastic component as an

option, conversely to the LLF model.

(Wu et al., 2006) assumed a Lee-Fenves yield criterion as stated in Eq. (3.1.23). Also,

its assumed a flow potential criterion as defined in Eq. (3.1.5). For the other hand, sim-

ilar to the LLF model, two hardening parameters κ± are proposed to control the posi-

tive/negative plastic component and are defined as the positive/negative equivalent plastic

strain α±, where α± =
∫
| ˙̂ε±| dt. Then, for multi-axial condition, these hardening pa-

rameters are stated as κ+ = φ( ˆ̄σ)α+ and κ− = −
[
1− φ( ˆ̄σ)

]
α−, with φ( ˆ̄σ) defined in

Eq. (3.1.18). Then, the rate of hardening vector κ = [κ+, κ−]T is defined similar to the

Eq. (3.1.17), but with the matrixW ( ˆ̄σ) given by

W ( ˆ̄σ) := diag
[
φ( ˆ̄σ), φ( ˆ̄σ)− 1

]
. (3.1.46)
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In addition, the effective uniaxial stress σ̄±(κ±) laws are required. (Wu et al., 2006)

assume a linear relation as follows

σ̄±(κ±) = f±o + J̄±κ κ
±, (3.1.47)

where f±o is the positive/negative initial stress, which are chosen for convenience in the

range f+
o ∈ [0, f

′
t ] and f−o ∈ [0, f

′
c], respectively, and J̄±κ = E±t Eo/(Eo − E±t ) with E±t

are the hardening slope.

Damage component

For the damage component, its required a specific definition for the undamaged elasto-

plastic HFE potential. For one hand, (J. Simo & Ju, 1987) assume that ψ±o can be as the

positive/negative elastic strain energy per unit of volume and expressed as

ψ±o (εe) :=
1

2

(
σ̄+ TCeσ̄

)
. (3.1.48)

However, this HFE potential is more adequate in tensile regimes where contribution of

plastic part is much smaller than the compression ones. Hence, for compressive regimes,

Wu et al. define the following HFE potential that include the biaxial compression effect

as follow

ψ−o (εe) := bo

(
ηp̄+

√
3J̄2

)2

, (3.1.49)

where bo is a material parameter (defined in (Wu et al., 2006)) and η = 3α. Next, the

tensile and shear thermodynamic forces or Damage Energy Release Rate-based (DERR),

Y ±, can be defined as

Y ± := −∂ψ
±

∂ω±
= ψ±o (3.1.50)

Then, the positive/negative damage criteria are defined as

Fd := g±d (Y ±)− g±d (r±) ≤ 0, (3.1.51)
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where gd(·) can be any monotonically increasing scalar function. Using the Eqs. (3.1.48)

and (3.1.49), these functions can be postulated as convenience as gd(·)± =
√

2Eo(·) and

gd(·)− =
√

(·)/bo, respectively. Thus, the positive/negative DEERs can be rewritten as

Y ± :=
√

2Eoψ±o =
√
Eo (σ̄± TCeσ̄) (3.1.52)

Y − :=

√
ψ−o
bo

= ηp̄+
√

3J̄2. (3.1.53)

Moreover, the evolution damage law can be defined analogously to the classical plas-

ticity, where the flow rule, the loading-unloading and the consistency conditions of damage

component are defined, respectively, as

ω̇± = γ̇±d
∂g±d
∂Y ±

(3.1.54)

γ̇±d = ṙ± ≥ 0, F±d ≤ 0, γ̇±d F
±
d = 0, (3.1.55)

F±d = Ḟ±d = 0. (3.1.56)

Its follow using Eqs. (3.1.55) and (3.1.56), that the damage thresholds r± are non-

decreasing functions that satisfy the relations

r± = max

(
r±o ,max

[0,t]
(Y ±)

)
, (3.1.57)

ṙ± = Ẏ ±, (3.1.58)

where r±o are the initial damage thresholds. Assuming an uniaxial behavior and us-

ing Eqs. (3.1.52) and (3.1.53), these values can be calculated as r±o = σ±o and r−o =

(1 − α)σ−o , respectively, where σ±o are stress onset the nonlinear behavior. Finally, the

positive/negative damage ω±(r±) laws are generally derived of experimental cracking pro-

cess. (Mazars, 1984) define an exponential relation for the positive/negative component,
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respectively, given by

ω+(r+) := 1− 1

z̄+

(
1− A+ + A+eB

+(1−z̄+)
)
, (3.1.59)

ω−(r−) := 1− 1

z̄−

(
1− A− + A−z̄−eB

−(1−z̄−)
)

(3.1.60)

where z̄± = r±/r±o and A± and B± are experimental parameters fitted with the frac-

ture energy FE-regularization method explained in Section 2.5. This damage laws can

be converted to an equivalent stress-strain σ±(ε±) relation and viceversa, being these last

commonly more known and used than the respective damage laws.

Viscous component

Additionally, the model can include rate-dependent viscous regularization. Its pro-

posed the use of (Duvaut & Lions, 1972) viscous model in the plastic and damage com-

ponents of model. Thus, the nominal viscous stress vector σv is defined as

σv :=
∑
ℵ

(1− ωℵ)σ̄vℵ, (3.1.61)

σ̄v± = P±v σ̄
v, P±v :=

N∑
i=1

H±0
(
ˆ̄σvi
) (
eiiσ̄v ⊗ e

ii
σ̄v

)
, (3.1.62)

where σ̄v is the effective viscous stress vector given by Eq. (3.1.34) and P±v are their

positive/negative projected tensors, respectively. Moreover, for the damage component,

the evolution law of damage thresholds variables r± are defined as

ṙ± := − 1

µv

(
r± − Y ±

)
. (3.1.63)

3.1.4. Farı́a-Oliver-Cervera (FOC) model

This plastic-damage model was proposed by (Faria et al., 1998). Take identical as-

sumptions than the WLF model for the damage and viscous components, and use a sim-

plified representation for the plastic component, explained as follows.
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Plastic component

Although, the formulation of WLF model provides a strict framework to represent

the evolution of plastic strain, numerical implementation gives time consuming solving

process. (Faria et al., 1998) proposed a simplified evolution law for the plastic strain

vector as follow

ε̇p := γ̇σ̄, (3.1.64)

γ̇ = Eoχ
〈εe T ε̇〉+

(σ̄TRσ̄)
, (3.1.65)

where χ = B+H+(ω̇+) + B−H+(ω̇−) ≥ 0 is a material parameter to control the rate

intensity of plastic deformation, with B± a parameter associated to positive/negative com-

ponent of stress, Heaviside function H(·)+ is used for active progressive damage rate of

respective stress component, and McAulay 〈·〉+ function enable one to set a non-negative

value for the product (ε̄e · ε̇) required to ensure positive dissipation.

In addition, due that the flow rule is proportional to the stress vector, its follow that

˙ε33
p = 0. Also, the elastic part of out-of-plane strain is expressed by Eq. (3.1.26). Hence,

using Eq. (A.2.9), the volumetric strain rate can be estimated as

ε̇v = εev + ε̇pv = (K−1 + 3γ̇)p̄ (3.1.66)

3.1.5. Total strain rotating crack (ROT) model

This smeared-crack model was developed by (Cope et al., 1980; Gupta & Akbar, 1984)

and enhanced by (Rots, 1988; TNO DIANA, 2018). We proposed a simple and robust

formulation than past.

Damage component

First, assume the so-called the ”total strain” formulation present in the hypo-elastic

materials, i.e. that stress vector σ depends only of total strain vector ε. Next, its assumed
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that a set of orthogonal crack planes rotates according to direction of principal strain vector

ε̂. Then, using a spectral decomposition of strain vector ε, satisfy the relation

ε =
N∑
i=1

ε̂ie
ii
ε = Eεε̂ (3.1.67)

where ε̂i is the i-th eigenvalue, eiiε the i-th eigen-projector vector and Eε the eigen-

projector matrix (Eq. (A.2.11)).

According only to this condition, the model lack of memory for the damage evolution,

where the loading and unloading follows the same path (hypo-elastic). Thus, in order to

add an irreversible damage process, a i-th positive/negative damage strain variables α±i
are defined for respective principal strain direction ε̂i. Then, the evolution law for these

damage variables satisfy the relation

α̇±i := z±i
˙̂εi (3.1.68)

where z±i = 1−r±i and r±i = H±0 (α±i − ε̂i) are the damage threshold variables. Now, call-

ing the damage strain vector as followα = [α+,α−]T , withα± = [α±1 , α
±
2 ]T , Eq. (3.1.68)

can be rewritten in a vectorized format as

α̇ = Z(ε̂,α) ˙̂ε, (3.1.69)

Z(ε̂,α) =

Z+

Z−

 , Z± = diag
(
z±1 , z

±
2

)

It should be noted the similarity of this expression with Eq. (3.1.17). For the other

hand, the i-th principal stress σ̂i in their respective principal strain ε̂i is given by

σ̂i := m+
i h

+
i +m−i h

−
i (3.1.70)



158

wherem±i = H±1/2(ε̂i) and h±i = σ±(α±i )g±i , with σ±(α±i ) are the uniaxial positive/negative

stress laws, respectively, and g±i are variables to control the loading/unloading stress. As-

suming a secant unloading to origin (no plastic strains), the variables g±i can be defined

as

g±i := 1− α±i − ε̂i
α±i

=
ε̂i
α±i

(3.1.71)

with g±i ∈ [0, 1], where g±i = 1 in case of loading and g±i < 1 for unloading. Finally, the

model assume the principle of co-axiality, that is, the principal stress directions coincide

with the principal strain directions i.e. satisfy the relation

σ :=
N∑
i=1

σ̂ie
ii
ε = Eεσ̂ (3.1.72)

Viscous component

Additionally, its suggested include a viscous model to improve the convergence of

model. For this, the Duvaut-Lions viscous model can be incorporated as follows

α̇v±i := − 1

µv
(αv±i − α±i ) (3.1.73)

where αv±i are the i-th viscous damage strain variable. Then, the i-th principal viscous-

stress σ̂vi is expressed as

σ̂vi = m+
i h

v+
i +m−i h

v−
i , (3.1.74)

hv±i = σ±(αv±i )gv±i , gv±i =
ε̂i
αv±i

(3.1.75)

Thus, the viscous-stress tensor σv is given by

σv :=
N∑
i=1

σ̂vi e
ε
i = Eεσ̂v (3.1.76)

It should be noted that, this model can be extended to simulate the biaxial effects, such

as biaxial strength in compression-compression (CC) regime or compression softening
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in tension-compression one. In both cases, it can be extended by means of modify the

uniaxial stress-strain law as function of complete principal stress/strain vector, i.e. σ± =

σ±(ε̂, σ̂). Complex derivatives involve this process and is beyond the scope of this work.

3.2. Stress updating algorithms

Numerical integration of constitutive equations requires of an algorithm to update the

stress vector and internal state variables at each integration point given a known strain

increment. More specifically, given a (pseudo-) time increment ∆t = tn+1 − tn, it is

assumed that at time tn the strain vector εn, the stress vector σn and the internal state

variables αn are known. Then, the algorithm determine the updated stress vector σn+1 at

time tn+1 for a given strain increment ∆ε = ∆tε̇.

Thereby, for one hand, the plastic component of models is commonly evaluated with a

backward Euler (implicit) scheme. Return-mapping algorithms are the most used, where a

trial elastic-predictor step and a plastic-corrector step are required (J. C. Simo & Hughes,

1998). Generally, this method lead implicit non-linear equations which are solved by

means of an iterative Newton′s method. Specifically, for the plane stress condition, the

projected-return mapping algorithm is adopted as solution for plastic and plastic-damage

models. Thus, an enforcement of the consistency condition is used to reduce the solution

to a simple nonlinear equation. For the other hand, the damage component of models is

generally evaluated with an explicit scheme, with the exception of coupled plastic-damage

models, which require the simultaneous solution of both components.

3.2.1. Trial elastic-predictor step

The elastic-trial step assume that the strain increment produces purely elastic deforma-

tion, where plastic deformation and evolution internal variables q are frozen (εp tr
n+1 = εpn
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and qtr
n+1

= q
n
). Thus, the trial elastic strain and trial stress vector are given by

εe tr
n+1 = εn+1 − εpn, (3.2.77)

σtr
n+1 = De(εn+1 − εpn) = σn +De∆εn+1, (3.2.78)

where ∆εn+1 = εn+1 − εn. Next, the trial state can be converted into the update solution

if satisfy the condition

F tr
n+1 = F (σtr

n+1, q
tr
n+1) ≤ 0. (3.2.79)

This means that trial state lies within the elastic domain on the yield surface. In this

case, the stress and internal variables are updated as (·)n+1 = (·)tr
n+1. Otherwise, the trial

step is not admissible, causing plastic response, being required any plastic-corrector step

or a return-mapping algorithm to determine the update state.

3.2.2. Plastic-corrector step

The plastic-corrector step adjust the trial elastic-predictor step to give a correct updated

stress. First, the updated plastic strain vector εpn+1 is derived from linearization of flow rule

as stated in Eq. (3.1.6)

εpn+1 = εpn + ∆γnn+1. (3.2.80)

Then, inserting this relation into Eq. (3.1.1), the updated stress vector σn+1 is written

as

σn+1 = σtr
n+1 −∆γDenn+1. (3.2.81)

Thus, the only variable necessary to be solved is the discrete consistent operator ∆γ,

which is calculated according to their respective equations for each numerical model.
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3.2.3. DPH model

The numerical stress integration of this model is based by the classical elastic-predictor

(Section 3.2.1) and plastic-corrector step, the later explained as follow. First, the updated

expression of flow vector n, given by Eq. (3.1.7), is given by

nn+1 =
3

2rn+1

Pσn+1 +
η̄

3
1, (3.2.82)

where rn+1 =
√
q2
n+1 + ε2, with qn+1 =

√
3
2
zn+1 and zn+1 = σTn+1Pσn+1. Moreover,

multiplying both sides of Eq. (3.2.81) by the compliance stiffness matrixCe (Eq. (A.2.4))

and introducing them Eq. (3.2.82), gives the updated stress vector as follow

σn+1 = An+1σ
tr
n+1 −

η̄

3
∆γΞn+11, (3.2.83)

where An+1 = Ξn+1Ce, with Ξn+1 is the modified (algorithmic) elastic tangent matrix

given by

Ξn+1 = (Ce + tn+1∆γP )−1 , (3.2.84)

and tn+1 = 3
2rn+1

. Now, it can probed that the matrices P and Ce share identical eigen-

vectors, for which they can be decomposed in a spectral format as

P = QT P̄Q, Ce = QT C̄eQ, (3.2.85)

where P̄ and C̄e are the eigenvalues matrices defined as

P̄ := diag

(
1

3
, 1, 2

)
, C̄e := diag

(
1− ν
E

,
1

2µ
,

1

µ

)
, (3.2.86)

andQ is the orthogonal
(
Q−1 = QT

)
eigenvector matrix given by

Q =
1√
2


1 1 0

−1 1 0

0 0
√

2

 . (3.2.87)
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Then, its follow that the matrices Ξn+1 andAn+1 can be decomposed in their spectral

representation as Ξn+1 = QT Ξ̄n+1Q and An+1 = QT Ān+1Q, respectively, where Ξ̄n+1

and Ān+1 are expressed as

Ξ̄n+1 =
(
C̄e + tn+1∆γP̄

)−1

= diag

[(
1− ν
E

+
∆γtn+1

3

)−1

,

(
1

2µ
+ ∆γtn+1

)−1

,

(
1

2µ
+ ∆γtn+1

)−1
]
,

Ān+1 = diag
(
ā1n+1 , ā2n+1 , ā2n+1

)
= diag

[
(1 + λtn+1∆γ)−1 , (1 + 2µtn+1∆γ)−1 , (1 + 2µtn+1∆γ)−1] , (3.2.88)

with λ = E
3(1−ν)

. Now, using the stress vector transformation τ tr
n+1 = Qσtr

n+1 and re-

placing the relation Eq. (3.2.88) into Eq. (3.2.83), gives a final expression for the updated

stress vector as follow

σn+1 = QT
(
Ān+1τ

tr
n+1 −

η̄

3
∆γΞ̄n+1Q1

)
= QT B̄n+1τ

tr
n+1 (3.2.89)

= Bn+1σ
tr
n+1, (3.2.90)

whereBn+1 = QT B̄n+1Q, with B̄n+1 given by

B̄n+1 = diag
(
b̄1n+1 , b̄2n+1 , b̄2n+1

)
= diag

(
g1n+1 ā1n+1

τ tr
11n+1

, ā2n+1 , ā2n+1

)
, (3.2.91)

and g1n+1 = τ tr
11n+1

−
√

2λη̄∆γ. On the other hand, the updated equivalent plastic strain is

obtained from the discrete version of Eq. (3.1.7) as

αn+1 = αn + ξ∆γ. (3.2.92)

Moreover, the updated cohesion law can be called as cn+1 = c(αn+1). It should be

noted that the discrete consistency operator ∆γ can not be expressed in a explicit form

such as in 3D formulation Eq. (2.3.89). Then, it required solve this operator in an iterative

process e.g. Newton′s method. Box 1 shown the algorithm suggested to solve the variable
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∆γ for this model. In this case, the residual function is the yield criterion, which enforced

the consistency condition at the solution, and is expressed, using Eq. (A.2.6), as

Fn+1 = ηpn+1 + qn+1 − ξcn+1

=
η

3
1Tσn+1 +

√
3

2

√
zn+1 − ξcn+1, (3.2.93)

and their derivative with respect to ∆γ is given by

∂Fn+1

∂∆γ
=

√
2η

3

∂b̄1n+1

∂∆γ
τ tr

11n+1
+

3

4qn+1

∂zn+1

∂∆γ
− ξ2Jα. (3.2.94)

A detailed calculation of this expression is explained in 1. Additionally, the recom-

mended values for the number of iterations and tolerances are: Niter = 20, Tol1 = 10−20,

Tol2 = 10−5 and Tol3 = 10−2.

Box 4 :Algorithm to solve ∆γ for the DPH model

∆γ0 = 0, q0
n+1 = qtr

n+1, g0
2n+1

= gtr
2n+1

. Set initial value
for j ≤ Niter do

zjn+1, rjn+1, pjn+1, αjn+1, cjn+1 . Use Eqs. (3.2.82) and (3.2.92)
Rj = Fn+1

(
∆γj

)
. Residual function (Eq. (3.2.93))

dRj =
∂Fn+1

∂∆γ

(
∆γj

)
. Total derivative (Eq. (3.2.94))

d∆γj = −Rj/dRj
∆γj+1 = ∆γj + d∆γj . Update solution
∆γj+1 = max(∆γj+1, T ol1) . Adjust solution
if
(
|Rj |< Tol2 and |d∆γj |< Tol3∆γj

)
or
(
d∆γj ≤ Tol1

)
then

exit

In addition, taking the linearization of Eq. (3.1.12), gives the updated out-of-plane

plastic strain εp33 as

εp33n+1
= εp33n + ∆γ

[
− 1

2rn+1

(
σ11n+1 + σ22n+1

)
+
η̄

3

]
(3.2.95)

Also, using Eq. (3.1.13), the updated volumetric strain is given by

εvn+1 = εvn +K−1pn+1 + ∆γη̄ (3.2.96)
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3.2.4. LLF model

The numerical stress integration of this model is composed by three steps: (i) an

elastic-predictor step (Section 3.2.1); (ii) a plastic-corrector step with an implicit scheme

to evaluate the updated effective stress tensor σ̄n+1; and (iii) a damage-corrector step with

an explicit scheme to evaluate the updated damage variables ωn+1 and the nominal stress

tensor σn+1. The development of plastic and damage steps are explained as follow.

Plastic component

First, due that the DPH and LLF share identical flow potential criterion, Eqs. (3.2.82)

to (3.2.94) are also valid for this model, but expressed in the effective space (̄·). For the

other hand, due that yield criterion is defined in terms of invariants and principal stresses,

its convenient and efficiency the use of Spectral Return Mapping Algorithm (SRMA)

(J. Lee & Fenves, 1998). SRMA assume four conditions: (1) the effective stress vec-

tor can be decomposed as σ̄n+1 = Eσ̄
ˆ̄σn+1, where ˆ̄σn+1 and Eσ̄ is the eigenvalue vector

and the eigen-projector matrix of updated stress vector σ̄n+1, respectively (see 2); (2)

any eigenvector of trial effective stress vector is also an eigenvector of updated effec-

tive stress vector, i.e. σ̄tr
n+1 = Eσ̄

ˆ̄σtr
n+1; (3) any isotropic material satisfy the relation

G(σ) = Ĝ(σ̂), which imply that n̄n+1 = Eσ̄
ˆ̄nn+1; and (4) substituting these expressions

into Eq. (3.2.81), the updated principal effective stress vector is given by

ˆ̄σn+1 = ˆ̄σtr
n+1 −∆γD̂e

ˆ̄nn+1 (3.2.97)

Moreover, using this expression, is easy to obtain the relation ∆ε̂pn+1 = ∆γ ˆ̄nn+1.

It should be noted that variables p̄, q̄, r̄, z̄ and t̄ are invariants in effective space, i.e.(
(̄·) = (̂̄·)

)
. Also note that, due that yield criterion and hardening variables κ± are ex-

pressed in terms of maximum and minimum effective principal stresses, its necessary

reordering the eigenvalues and their respective eigenvectors in a descending order (ˆ̄σ1 ≥

· · · ≥ ˆ̄σN ).



165

Then, the updated expression of the effective principal flow vector, given by Eq. (3.1.21),

is written as

ˆ̄nn+1 =
3

2r̄n+1

P̂ ˆ̄σn+1 +
η̄

3
1̂, (3.2.98)

where r̄n+1 =
√
q̄2
n+1 + ε2, q̄n+1 =

√
3
2
z̄n+1 and z̄n+1 = ˆ̄σTn+1P̂ ˆ̄σn+1. Next, multi-

plying both sides of Eq. (3.2.97) by matrix Ĉe (see Eq. (A.2.16)) and introducing them

Eq. (3.2.98), gives the updated principal effective stress vector as

ˆ̄σn+1 = Ân+1
ˆ̄σtr
n+1 −

η̄

3
∆γΞ̂n+11̂, (3.2.99)

where Ân+1 = Ξ̂n+1Ĉe with Ξ̂n+1 is given by

Ξ̂n+1 =
(
Ĉe + t̄n+1∆γP̂

)−1

, (3.2.100)

and t̄n+1 = 3
2r̄n+1

. Similar to the matricesP andCe, the matrices P̂ and Ĉe share identical

eigenvectors and can be decomposed in their spectral format as

P̂ = Q̂T ˆ̄PQ̂, Ĉe = Q̂T ˆ̄CeQ̂, (3.2.101)

where ˆ̄P and ˆ̄Ce are the eigenvalues matrices given by

ˆ̄P = diag

(
1

3
, 1

)
, ˆ̄Ce = diag

(
1− ν
E

,
1

2µ

)
, (3.2.102)

and Q̂ is the orthogonal eigenvector matrix given by

Q̂ :=
1√
2

 1 1

−1 1

 . (3.2.103)

Its follows that the matrices Ξ̂n+1 and Ân+1 can be decomposed in their spectral format

as Ξ̂n+1 = Q̂T ˆ̄Ξn+1Q̂ and Ân+1 = Q̂T ˆ̄An+1Q̂, respectively, where ˆ̄Ξn+1 and ˆ̄An+1 are
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expressed as

ˆ̄Ξn+1 =
(

ˆ̄Ce + t̄n+1
ˆ̄P
)−1

= diag

[(
1− ν
E

+
∆γt̄n+1

3

)−1

,

(
1

2µ
+ ∆γt̄n+1

)−1
]
,

ˆ̄An+1 = diag
(
ˆ̄a1n+1 , ˆ̄a2n+1

)
= diag

[
(1 + λt̄n+1∆γ)−1 , (1 + 2µt̄n+1∆γ)−1] . (3.2.104)

Now, using the stress vector transformation ˆ̄τ tr
n+1 = Q̂ ˆ̄σtr

n+1 and replacing these rela-

tions into Eq. (3.2.99), gives a final expression for updated stress vector as

ˆ̄σn+1 = Q̂T
(

ˆ̄An+1
ˆ̄τ tr
n+1 −

η̄

3
∆γ ˆ̄Ξn+1Q̂1̂

)
= Q̂T ˆ̄Bn+1

ˆ̄τ tr
n+1 (3.2.105)

= B̂n+1
ˆ̄σtr
n+1, (3.2.106)

where B̂n+1 = Q̂T ˆ̄Bn+1Q̂, with ˆ̄Bn+1 given by

ˆ̄Bn+1 = diag
(

ˆ̄b1n+1 ,
ˆ̄b2n+1

)
= diag

(
ĝ1n+1

ˆ̄a1n+1

ˆ̄τ tr
1n+1

, ˆ̄a2n+1

)
, (3.2.107)

and ĝ1n+1 = ˆ̄τ tr
1n+1
−
√

2λη̄∆γ. Moreover, the maximum updated principal effective stress

is expressed as ˆ̄σ+n+1 = 1̂T+ ˆ̄σn+1. For the other hand, linearization of updated hardening

variable κn+1 (Eq. (3.1.22)) can be expressed as

κn+1 = κn + ∆γHn+1( ˆ̄σn+1,κn+1). (3.2.108)

Although, its convenient take their positive and negative part as

κ±n+1 = κ±n + ∆γh±n+1, (3.2.109)
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where h±n+1 = ˆ̄n±n+1ϕ
±
n+1, with ˆ̄n±n+1 = 1̂T± ˆ̄nn+1 and the variable ϕ±n+1 are defined as

ϕ±n+1 := θ±1n+1
θ±2n+1

, (3.2.110)

and with θ±1n+1
and θ±2n+1

defined as

θ+
1n+1

:= φ( ˆ̄σn+1), θ−1n+1
:= −

[
1− φ( ˆ̄σn+1)

]
, (3.2.111)

θ+
2n+1

:= σ+(κ+
n+1)/g+, θ+

2n+1
:= σ−(κ−n+1)/g−. (3.2.112)

In addition, the updated parameters β and c (Eq. (3.1.24)) can be expressed, respec-

tively, as

βn+1 = (1− α)
σ̄−(κ−n+1)

σ̄+(κ+
n+1)

− (1 + α), cn+1 = σ̄−(κ−n+1). (3.2.113)

Finally, the yield criterion at consistency condition (Eq. (3.1.23)) is written as

Fn+1 = ηp̄n+1 + q̄n+1 + βn+1〈ˆ̄σ1〉+ − (1− α)cn+1 = 0. (3.2.114)

Its observed that a nested iterative process is required to obtain variables ∆γ and κ±n+1.

Box 5 shown the algorithm used to calculate both variables. Three steps are involved:

(i) set an initial value of variables κ, q and ˆ̄σ+ equal to the previous step; (ii) solve the

consistency operator ∆γ using the algorithm described in Box 4 which is identical to the

DPH model, but using the effective stress space in their expressions and the derivative
∂F̄n+1

∂∆γ
is given by

∂F̄n+1

∂∆γ
=

√
2η

3

∂b̄1n+1

∂∆γ
ˆ̄τ tr
11n+1

+
3

4q̄n+1

∂z̄n+1

∂∆γ
+ ˆ̄σ+n+1

(
b̂7 + ∆γb̂8

)
+ β̂1

∂ ˆ̄σ+n+1

∂∆γ

− (1− α)
(
b−3 + ∆γb−4

)
. (3.2.115)

A detailed calculation of this derivative is explained in 2; and (iii) solve the hardening

variables κ using the Newton′s method. For this, Eq. (3.2.106) is used as the residual
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function and rewritten as

Q
n+1

(κn+1,∆γ, ˆ̄σn+1) = κn + ∆γHn+1(κn+1, ˆ̄σn+1)− κn+1. (3.2.116)

Thus, the total derivative of this residual function with respect to κn+1 is given by

dQ
n+1

dκn+1

=
∂Q

n+1

∂κn+1

+
∂Q

n+1

∂∆γ

∂∆γ

∂κn+1

+
∂Q

n+1

∂Hn+1

(
∂Hn+1

∂ ˆ̄σn+1

∂ ˆ̄σn+1

∂∆γ

∂∆γ

∂κn+1

+
∂Hn+1

∂κn+1

)
= −I2 +

(
Hn+1 + ∆γ

∂Hn+1

∂ ˆ̄σn+1

∂ ˆ̄σn+1

∂∆γ

)
⊗ ∂∆γ

∂κn+1

+ ∆γ
∂Hn+1

∂κn+1

, (3.2.117)

where I2 = diag(1, 1) and the derivatives involved are expressed as

∂Hn+1

∂ ˆ̄σn+1

=
(

ˆ̄y
n+1
⊗ ˆ̄Φn+1

)
+

(
ˆ̄zn+1 ⊗

∂ ˆ̄nn+1

∂ ˆ̄σn+1

)
,

∂∆γ

∂κn+1

=
1

L1

l0n+1
,

∂ ˆ̄σn+1

∂∆γ
= Q̂T ∂

ˆ̄Bn+1

∂∆γ
ˆ̄τ tr
n+1,

∂Hn+1

∂κn+1

= ˆ̄Un+1 (3.2.118)

A detailed calculation of these derivatives are explained in 3. Also, is recommended

tolerances of Tol4 = 1− 10−10 to adjust the solution values and Tol5 = 10−5 to check the

residual function, giving an adequate convergence of model.

In addition, taking the linearization of Eq. (3.1.25) and using Eq. (3.1.26), the updated

plastic εp33 and elastic εe33 out-of-plane strain are given, respectively, as

εp33n+1
= εp33n + ∆γ

[
− 1

2r̄n+1

(
σ̄11n+1 + σ̄22n+1

)
+
η̄

3

]
, (3.2.119)

εe33n+1
= − ν

Eo

(
σ̄11n+1 + σ̄22n+1

)
. (3.2.120)

Also, using Eq. (A.2.9), the updated volumetric strain is given by

εvn+1 = εvn +K−1p̄n+1 + ∆γη̄ (3.2.121)
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Box 5 :Algorithm to solve κn+1 for the LLF model

κ0
n+1 = κn, q̄0

n+1 = q̄tr
n+1, ˆ̄σ0

+n+1
= ˆ̄σtr

+n+1
. Set initial value

for j ≤ Niter do
σ̄±n+1(κ± jn+1), βjn+1, H̃+(ˆ̄σj+n+1

) . Use Eqs. (3.1.31) and (3.2.113)
qjn+1, ∆γj , ˆ̄σjn+1, φ . Solve with Box 4 and Eq. (3.2.106)

Qj = Qn+1

(
κjn+1,∆γ

j , ˆ̄σjn+1

)
. Residual, Eq. (3.2.116)

dQj =
dQ

n+1

dκn+1

(
κjn+1,∆γ

j , ˆ̄σjn+1

)
. Total derivative, Eq. (3.2.117)

dκj = −(dQj)−1Qj

κj+1
n+1 = κjn+1 + dκj . Update solution

κj+1
n+1 = min

(
κjn+1, T ol41

)
. Adjust solution

if
(
‖Qj‖ ≤ Tol5

)
then

exit

Damage component

An explicit evaluation of updated damage variable ωn+1 (Eq. (3.1.28)) are generated

according to updated hardening variables κ±n+1 calculated in the plastic component of

model.

Viscous component

Assuming that the rate of a generic variable x can be expressed as ẋ = ∆x/∆t, with

∆t is the load step increment. Then, using this relation in the linearization of Eqs. (3.1.35)

and (3.1.36), the updated visco-plastic strain vector εvpn+1 and the viscous-damage variable

ωvn+1 can be expressed, respectively, as

εvpn+1 = ζvε
vp
n + (1− ζv)εpn+1, (3.2.122)

ωvn+1 = ζvω
v
n + (1− ζv)ωn+1, (3.2.123)

where ζv = (1 + ∆t/µv)
−1. Then, substituting the Eq. (3.2.122) into updated version of

Eq. (3.1.34) and with some algebraic manipulation, the updated effective viscous-stress
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vector can be expressed in a convenient way as

σ̄vn+1 = ζv(σ̄
v
n +De∆εn) + (1− ζv)σ̄n+1. (3.2.124)

Finally, the updated viscous-stress vector can be expressed as

σvn+1 = (1− ωvn+1)σ̄vn+1 (3.2.125)

It should be noted that if µv/∆t → 0 (ζv = 0) the solution relaxed to the rate-

independent (or inviscid) response.

3.2.5. WLF model

Plastic component

Numerical stress integration of this model is identical to the LLF model, except for

two considerations: (1) the matrix W of Eq. (3.1.46) depends only of , the matrix Hn+1

of Eq. (3.2.108) depends only of stress vector ˆ̄σ, for which the variables θ±2 = 1 and the

derivative ∂H
∂κ

, given by Eq. (3.2.118), is null; and (2) its observed that a tolerance to check

the residual function of Tol5 = 10−6 can be used without convergence troubles.

Damage component

Giving the updated effective stress vector σ̄n+1 calculated in the plastic component,

the positive/negative part of effective stress vector σ̄±n+1 are evaluated using Eq. (3.1.37).

Next, evaluating the DERR Y ± according to the definition established (Eq. (3.1.52) or

Eq. (3.1.53)), and assuming an active damage process (Eq. (3.1.57)), the updated damage

threshold are stated. Finally, and explicit evaluation of damage variables ω±n+1(r±n+1) is

generated.
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Viscous component

The updated viscous stress vector σvn+1 is calculated using Eq. (3.1.61), where the

effective viscous stress tensor σ̄vn+1 is evaluated using Eq. (3.2.124). Also, the visco-

plastic strain vector εvpn+1 is evaluated with Eq. (3.2.122). Moreover, the updated damage

variables depends of updated damage thresholds variables r±n+1, which are obtained using

a linearization of Eq. (3.1.63) as follows

r±n+1 = ζvr
±
n + (1− ζv)Y ±n+1. (3.2.126)

3.2.6. FOC model

Plastic component

First, the discretization of Eqs. (3.1.64) and (3.1.65) gives

εpn+1 = εpn + ∆γσ̄n+1, (3.2.127)

∆γ =
Eoχn+1

‖σ̄n+1‖2
Ce〈σ̄Tn+1∆εn+1〉+, (3.2.128)

where ∆εn+1 = εn+1−εn and χn+1 = B+H+(∆ω+
n+1)+B−H+(∆ω−n+1), with ∆ω±n+1 =

ω±n+1 − ω±n . Next, using the relation of Eq. (3.2.81) with nn+1 = σ̄n+1, the updated

effective stress vector is given by

σ̄n+1 = σ̄tr
n+1 −

Eoχn+1

‖σ̄n+1‖2
〈σ̄Tn+1∆εn+1〉+σ̄n+1 (3.2.129)

It should be noted that σ̄n+1 is proportional, or geometrically parallel, to σ̄tr
n+1. Thus,

satisfy the following relation
σ̄n+1

‖σ̄n+1‖
=

σ̄tr
n+1

‖σ̄tr
n+1‖

. (3.2.130)
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Replacing this expression into Eq. (3.2.129), the updated effective stress tensor is given

as

σ̄n+1 = mtr
n+1σ̄

tr
n+1, (3.2.131)

mtr
n+1 = 1− Eoξn+1

n0

〈n1〉+, (3.2.132)

where n0 = (σ̄tr
n+1 · σ̄tr

n+1) and n1 = (σ̄tr
n+1 · ∆εn+1). It should be noted that, as the

Heaviside function is present in the variable χn+1, it required an iterative process to solve

σ̄n+1. Box 3 shown an efficient and robust algorithm to solve the updated effective stress

tensor σ̄n+1.

Box 6 :Algorithm to solve σ̄n+1 for the FOC model

v1 = [0, 1, 0, 1]T , v2 = [0, 0, 1, 1]T . Set combinatory vectors
for j ≤ 4 do

hj1 = v1[j], hj2 = v2[j] . Trial Heaviside values
ξj = B+hj1 +B−hj2, mj

n+1 . Use Eq. (3.2.132)
σ̄j = mj

n+1σ̄
tr
n+1 . Trial effective stress

σ̄j ± = P±σ̄j . Positive/negative effective stress
Y ±j . DEER′s, according to Eq. (3.1.52) or Eq. (3.1.53)
F j ±d = Y ±j − r±n . Positive/negative damage criteria (Eq. (3.1.51))

if
(
hj1 = H+(F j +

d )
)

and
(
hj2 = H+(F j −d

)
then

exit
σ̄n+1 = σ̄j . Update effective stress

Finally, replacing Eq. (3.2.130) into Eq. (3.2.127), the updated plastic strain vector is

derived as

εpn+1 = εpn + (1−mtr
n+1)Ce : σ̄tr

n+1. (3.2.133)
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3.2.7. ROT model

Damage component

Assuming an implicit integration scheme for the linearization of Eq. (3.1.68), the up-

dated positive/negative i-th damage strain variable α±i is expressed as

α±in+1
= α±in + zin+1(α

±
in
, ε̂in+1)∆ε̂in+1 , (3.2.134)

where zin+1 = 1 − rin+1 and ∆ε̂in+1 = ε̂in+1 − ε̂in , with r±in+1
= H±0 (α±in − ε̂in+1). Note

that the term α±in+1
inner the Heaviside function is used to get an explicit scheme. So,

the evaluation of updated stress vector σ is explicit (Eq. (3.1.72)) using the relations of

Eqs. (3.1.70) and (3.1.71), where m±in+1
= H±1/2(ε̂in+1) and the variables h±in+1

and g±in+1

are written, respectively, as

h±in+1
= σ±(α±in+1

)g±in+1
, g±in+1

=
ε̂in+1

α±in+1

. (3.2.135)

Viscous component

Taking the linearization of Eq. (3.1.73), the updated positive/negative i-th viscous-

damage strain αv±i can be expressed as

αv ±in+1
= ζvα

v ±
in

+ (1− ζv)α±in+1
. (3.2.136)

Finally, the evaluation of updated viscous-stress vector σv (Eq. (3.1.76)) is explicit

using the relations of Eqs. (3.1.74) and (3.1.75).

3.3. Consistent tangent tensors

Additionally to the algorithm necessary to calculate the updated stress vector, a ma-

terial stiffness matrix is required for the solution. Continuum tangent stiffness matrix is

derived for material models according to derivation of continuum constitutive equations
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as stated in Section 3.1. However, for numerical integration of model, is necessary to

calculate the algorithmic consistent tangent matrix dσn+1

dεn+1
, which are found by computing

the derivatives of equations involved in the stress updated algorithm. Complex derivatives

involve this operator, but are necessary to achieve a second-order convergence at the struc-

tural level, rather than continuum tangent stiffness (J. C. Simo & Hughes, 1998). For the

developed models, all these derivatives can be obtained analytically. Therefore, the con-

sistent tangent operator can be written in an explicit expression. For sake the of simplicity

of the presentation, we omitted the subscript n+1 in all updated variables.

3.3.1. Trial-predictor step

Using Eqs. (3.2.77) and (3.2.78), the differential of the trial elastic strain εe tr and the

stress vector σ are, respectively, given by

dεe tr = dε, (3.3.137)

dσtr = De : dε (3.3.138)

It follow that in the derivation of consistent tangent stiffness matrix all trial variables

(·)tr have a no-null differential, contrary as in the calculation of stress updated algorithm,

where their derivatives are neglected.

3.3.2. DPH model

First, the differential of variables ā1, ā2 and g1, given by Eqs. (3.2.91) and (3.2.88),

are expressed, respectively, as

dā1 = −λā2
1(u∆γdz + td∆γ), dā2 = −2µā2

2(u∆γdz + td∆γ),

dg1 = dτ tr
1 −
√

2η̄λd∆γ, (3.3.139)



175

with u = − 9
8r3

. Then, taking this relations, the differential of matrix B̄, given by

Eq. (3.2.91), is written as follows

dB̄ = diag
(
db̄1, db̄2, db̄2

)
= diag

{
1

(τ tr
11)2

[
τ tr

11(ā1dg1 + g1dā1)− g1ā1dτ tr
11

]
, dā2, dā2

}
= B̄1dτ tr

11 + B̄2d∆γ + B̄3dz, (3.3.140)

where B̄1, B̄2 and B̄3 are given by

B̄1 = diag

(√
2λā1η̄∆γ

(τ tr
11)2

, 0, 0

)
,

B̄2 = diag

(
− ā1λ

τ tr
11

(
ā1tg1 +

√
2η̄
)
,−2µā2

2t,−2µā2
2t

)
,

B̄3 = diag

(
−λā

2
1ug1∆γ

τ tr
11

,−2µā2
2u∆γ,−2µā2

2u∆γ

)
.

Then, differential of matrixB (Eq. (3.2.90)) is expressed as

dB = QTdB̄Q

= B1dτ tr
11 +B2d∆γ +B3dz, (3.3.141)

where Bi = QT B̄iQ, with i = 1, , 3. Moreover, using the relation Eq. (3.2.90), the

variable z = 2J2 (Eq. (A.2.6)) can be expressed as z = σtrTBPBσtr. Then, using

the relations 1T+Q = 1√
2
1T , dτ tr

11 = 1T+Qdσtr and Eq. (3.3.141), the differential of this

variable is given by

dz = 2σtrTBP
(
Bdσtr + dBσtr

)
= 2

[(
vTdevB +

ξ1√
2
1T
)

dσtr + ξ2d∆γ + ξ3dz

]
, (3.3.142)
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where vdev = Pσ and ξi = vTdevBiσ
tr, with i = 1, , 3. Then, the differential of variable z

can be solved of this expression as

dz = ξ0

[(
vTdevB +

ξ1√
2
1T
)

dσtr + ξ2d∆γ

]
, (3.3.143)

with ξ0 = (1/2 − ξ3)−1. Then, using Eqs. (3.3.143) and (3.3.141), the differential of

updated stress vector σ, given by Eq. (3.2.90), can be expressed as

dσ = dBσtr +Bdσtr

= A5dσtr + a6d∆γ, (3.3.144)

whereA5 and a6 are given by

A5 =
1√
2

(B1 + ξ0ξ1B3)
(
σtr ⊗ 1

)
+
[
ξ0B3

(
σtr ⊗ vdev

)
+ I
]
B,

a6 = (B2 + ξ0ξ2B3)σtr.

In addition, using Eq. (3.2.92) and the chain rule, the differential of updated cohesion

law can be written as

dc =
∂c

∂α
dα = Jαξd∆γ, (3.3.145)

where Jα := ∂c
∂α

is the cohesive hardening modulus. Then, using Eqs. (3.3.143), (3.3.144)

and (A.2.21), the differential of consistency condition for the yield criterion, given by

Eq. (3.2.93), can be expressed as

dF =
η

3
1Tdσ +

3

4q
dz − ξ2Jαd∆γ = 0

= gT
0

dσtr + g0d∆γ, (3.3.146)

where gT
0

and g0 are expressed as

gT
0

=
η

3
1TA5 +

3ξ0

4q

(
vTdevB +

ξ1√
2
1T
)
, g0 =

η

3
1Ta6 +

3ξ0ξ2

4q
− ξ2Jα. (3.3.147)
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Then, the differential of consistency operator ∆γ is solved as

d∆γ = − 1

g0

gT
0

dσtr = gTdσtr. (3.3.148)

For other hand, using the relations Eqs. (3.3.143) and (3.3.144), the differential of flow

vector n is given by

dn =
3

2r3
P

(
r2dσ − 3

4
σdz

)
= A0dσtr + a1d∆γ, (3.3.149)

whereA0 and a1 are written as

A0 =
3

2r
PA5 + ξ0u

[
(vdev ⊗ vdev)B +

ξ1√
2

(vdev ⊗ 1)

]
,

a1 =
3

2r
Pa6 + ξ0ξ2uvdev

For other hand, using Eq. (3.2.81), the differential of updated stress vector can be

written in a conveinet format as

dσ = De

[
Cedσ

tr −∆γdn− nd∆γ
]
. (3.3.150)

Hence, inserting Eqs. (3.3.148) and (3.3.149) into this relation, gives a final expression

for the differential of updated stress vector as

dσ = De

[
Ce −∆γ

(
A0 + a1 ⊗ g

)
− (n⊗ g)

]
dσtr. (3.3.151)

Finally, using Eq. (3.3.137), an explicit expression for the elasto-plastic consistent

tangent stiffness matrix can be written as

Dep = De

[
Ce −∆γ

(
A0 + a1 ⊗ g

)
− (n⊗ g)

]
De. (3.3.152)
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In addition, the 1 include an alternative derivation of this operator considering the

differential of updated stress vector directly, rather than use Eq. (3.2.90) as in this case.

3.3.3. LLF model

Plastic component

The plastic component of the consistent tangent stiffness matrix is calculated from the

differential of the effective stress tensor. To this, firstly, the differential of variables ˆ̄a1, ˆ̄a2

and ĝ1, given by Eqs. (3.2.104) and (3.2.106), are expressed as

dˆ̄a1 = −λˆ̄a2
1(ū∆γdz̄ + t̄d∆γ), dˆ̄a2 = −2µˆ̄a2

2(ū∆γdz̄ + t̄d∆γ),

dĝ1 = dˆ̄τ tr
1 −
√

2η̄λd∆γ, (3.3.153)

where ū = − 9
8r̄3

. Now, taking these relations, the differential of matrix ˆ̄B, given by

Eq. (3.2.107), is expressed as

d ˆ̄B = diag
(

dˆ̄b1, d
ˆ̄b2

)
= diag

{
1

(ˆ̄τ tr
1 )2

[
(ˆ̄a1dĝ1 + ĝ1dˆ̄a1)ˆ̄τ tr

1 − ĝ1ˆ̄a1dˆ̄τ tr
1

]
, dˆ̄a2

}
= ˆ̄B1dˆ̄τ tr

1 + ˆ̄B2d∆γ + ˆ̄B3dz, (3.3.154)

where ˆ̄B1 to ˆ̄B3 are expressed as

ˆ̄B1 = diag

(√
2ˆ̄a1η̄λ∆γ

(ˆ̄τ tr
1 )2

, 0

)
,

ˆ̄B2 = diag

(
−

ˆ̄a1λ

ˆ̄τ tr
1

(
ˆ̄a1t̄ĝ1 +

√
2η̄
)
,−2µˆ̄a2

2t̄

)
,

ˆ̄B3 = diag

(
−

ˆ̄a2
1λθ̂ĝ1∆γ

ˆ̄τ tr
1

,−2µˆ̄a2
2θ̂∆γ

)
.
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Then, the differential of matrix B̂ (Eq. (3.2.107)) is given by

dB̂ = Q̂Td ˆ̄BQ̂

= B̂1dˆ̄τ tr
1 + B̂2d∆γ + B̂3dz̄, (3.3.155)

where B̂i = Q̂T ˆ̄BiQ̂, with i = 1, , 3. Moreover, using the relation Eq. (3.2.106), the

variable z̄ = 2J̄2 (Eq. (A.2.18)) can be expressed as z̄ = ˆ̄σtrB̂P̂ B̂ ˆ̄σtr. Thus, using the

relations dˆ̄τ tr
1 = 1T+Q̂dˆ̄σtr and 1T+Q̂ = 1√

2
1̂T , the differential of variable z̄ is expressed as

dz̄ = 2ˆ̄σtrT B̂P̂
(
B̂dˆ̄σtr + dB̂ ˆ̄σtr

)
= 2

[(
ˆ̄vTdevB̂ +

ξ̂1√
2
1̂T

)
dˆ̄σtr + ξ̂2d∆γ + ξ̂3dz̄

]
, (3.3.156)

where ξ̂i = ˆ̄vTdevB̂i
ˆ̄σtr, with i = 1, , 3. Then, the differential of variable z̄ can be solved as

dz̄ = ξ̂0

[(
ˆ̄vTdevB̂ +

ξ̂1√
2
1̂T

)
dˆ̄σtr + ξ̂2d∆γ

]
, (3.3.157)

with ξ̂0 = (1/2 − ξ̂3)−1. Then, using Eqs. (3.3.157) and (3.3.155), the differential of the

updated principal effective stress vector ˆ̄σ is given by

dˆ̄σ = dB̂ ˆ̄σtr + B̂dˆ̄σtr

= Â5dˆ̄σtr + â6d∆γ, (3.3.158)

where Â5 and â6 are given by

Â5 =
1√
2

(
B̂1 + ξ̂0ξ̂1B̂3

) (
ˆ̄σ ⊗ 1̂

)
+
[
ξ̂0B̂3

(
ˆ̄σtr ⊗ ˆ̄vdev

)
P̂ + Î

]
B̂,

â6 =
(
B̂2 + ξ̂0ξ̂2B̂3

)
ˆ̄σtr.
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Moreover, the differential of maximum principal effective stress ˆ̄σ+ = 1̂T+dˆ̄σ can be

expressed as

dˆ̄σ+ = âT5+dˆ̄σ + â6+d∆γ, (3.3.159)

where âT5+ = 1̂T+Â5 and â6+ = 1̂T+â6. Next, using Eqs. (3.3.157) and (3.3.158), the

differential of the principal effective flow vector, given by Eq. (3.2.98), can be expressed

as

dˆ̄n =
3

2r̄3
P̂

(
r̄2dˆ̄σ − 3

4
ˆ̄σdz̄

)
= Â0dˆ̄σtr + â1d∆γ, (3.3.160)

where Â0 and â1 are given by

Â0 =
3

2r̄
P̂ Â5 + ūξ̂0

[(
ˆ̄vdev ⊗ ˆ̄vdev

)
B̂ +

ξ̂1√
2

(
ˆ̄vdev ⊗ 1̂

)]
,

â1 = t̄P̂ â6 + ūξ̂0ξ̂2 ˆ̄vdev.

Moreover, the differential of positive/negative part of effective principal flow vector

ˆ̄n± = 1̂T± ˆ̄n are given by

dˆ̄n± = â± T0 dˆ̄σtr + â±1 d∆γ, (3.3.161)

where ˆ̄a±0 = 1T±
ˆ̄A0 and â±1 = 1̂T±â1. In addition, using Eq. (3.3.157), the differential of

effective flow vector n̄ (Eq. (3.2.82) in effective space) is expressed as

dn̄ =
3

2r̄3
P

(
r̄2dσ̄ − 3

4
σ̄dz̄

)
,

= Ā0dˆ̄σtr + ā1d∆γ + Ā2dσ̄, (3.3.162)
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where Ā0, ā1 and Ā2 are given by

Ā0 = ūξ̂0

[(
v̄dev ⊗ ˆ̄vdev

)
B̂ +

ξ̂1√
2

(
v̄dev ⊗ 1̂

)]
,

ā1 = ūξ̂0ξ̂2v̄dev, Ā2 = t̄P .

For the other hand, the differential of updated variable φ (Eq. (3.1.18)) is written as

dφ = ˆ̄ΦTdˆ̄σ, with ˆ̄Φ defined as

ˆ̄Φ =
∂φ

∂ ˆ̄σ
= diag

(
∂φ

∂ ˆ̄σ1

,
∂φ

∂ ˆ̄σ2

)
, (3.3.163)

being their i-th component ∂φ
∂ ˆ̄σi

expressed as

∂φ

∂ ˆ̄σi
=
[
H+
o (ˆ̄σi)− φ(2H+

o (ˆ̄σi)− 1)
] 1∑N

i=1|ˆ̄σi|
(3.3.164)

It should be noted, that this expression considered the stepped Heaviside function, due

that variable φ ∈ [0, 1]. It can observed that this condition not cause convergence troubles

in the model. Then, the differential of variables θ±1 and θ±2 (Eqs. (3.2.111) and (3.2.112),

respectively) are given by dθ±1 = dφ and dθ±2 = J±κ
g±

dκ±, with J±κ := ∂σ±

∂κ±
are the pos-

itive/negative hardening modulus, respectively. Hence, the differential of variables ϕ±,

defined in Eq. (3.2.110), are given by

dϕ± = θ±2
ˆ̄ΦTdˆ̄σ +

1

g±
θ±1 J

±
κ dκ±. (3.3.165)

Moreover, using this relation, the differential of variables h±, defined in Eq. (3.2.109),

are expressed as

dh± = θ±2 ˆ̄n±Φ̂Tdˆ̄σ + b̂±10dκ± + ϕ±dˆ̄n±, (3.3.166)

where b̂±10 = 1
g±
θ±1 J

±
κ

ˆ̄n±. Next, using this relation and Eqs. (3.3.161) and (3.3.158), the

differential of updated positive/negative hardening variables κ±, given by Eq. (3.2.109),
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can be written as

dκ± = ĉ±1 d∆γ + ∆γ
(
ĉ± T2 dˆ̄σtr + b̂±10dκ±

)
, (3.3.167)

with ĉ±1 and ĉ±2 expressed as

ĉ±1 = h± + ∆γ
(
θ̂±2 ˆ̄n±Φ̂T â6 + ϕ±â±1

)
, ĉ± T2 = θ̂±2 ˆ̄n±Φ̂T Â5 + ϕ±â± T0 .

Hence, solving this linear equation for the differential of variable κ± gives

dκ± = c±1 d∆γ + ∆γc± T2 dˆ̄σtr, (3.3.168)

where c±1 and c±2 are multiple of their respective variables ĉ±1 and ĉ±2 by a factor of b̂±20 =(
1−∆γb̂±10

)−1

. In addition, the differential of uniaxial positive/negative effective stress

law σ̄± (= c±) are expressed as

dσ̄± = J̄±κ dκ±, (3.3.169)

where J̄±κ := ∂σ̄±

∂κ±
denotes the respective effective hardening modulus. Then, using this

relation and Eq. (3.3.168), the differential of variable β (Eq. (3.2.113)) is given by

dβ = c4∆γ + ∆γcT6 dˆ̄σtr, (3.3.170)

where c4 and c6 are expressed as

c4 = m+c−1 −m−c+
1 , c6 = m+c−2 −m−c+

2 ,

with m± = (1 − α)J̄∓κ
σ̄±

(σ̄+)2
. It should be noted that, for this model only the uniaxial

σ± and ω± laws are known. Then, using the relation Eq. (3.1.31), the positive/negative

effective hardening modulus J̄±κ can be derived as

J̄±κ =
J±κ + Ω±κ σ̄

±

1− ω±
, (3.3.171)
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with J±κ := ∂σ±

∂κ±
and Ω±κ := ∂ω±

∂κ±
. Next, using Eqs. (3.3.159), (3.3.169), (3.3.170),

(3.3.158), (A.1.24) and (A.2.24), the differential of yield criterion at consistency con-

dition, given by Eq. (3.2.114), is written as

dF̄ =
η

3
1̂Tdˆ̄σ +

3

4q̄
dz̄ + 〈ˆ̄σ+〉+dβ + βd〈ˆ̄σ+〉+ − (1− α)dσ̄− = 0

= ĝ0d∆γ + ˆ̄gT
0

dˆ̄σtr, (3.3.172)

where ĝ0 and ˆ̄gT
0

are expressed as

ĝ0 =
η

3
1̂T â6 +

3ξ̂0β̂2

4q̄
+ 〈ˆ̄σ+〉+c4 + β̂3â6+ − (1− α)J̄−k c

−
1 ,

ˆ̄gT
0

=
η

3
1̂T Â5 +

3ξ̂0

4q̄

(
ˆ̄vTdevB̂ +

ξ̂1√
2
1T

)
+ β̂3â

T
5+

+ ∆γ
[
〈ˆ̄σ+〉+cT6 − (1− α)J̄−k c

− T
2

]
,

with β̂3 = β̂2 ˆ̄σ1 + β̂1, β̂1 = βH̃+(ˆ̄σ1) and β̂2 = β dH̃
+

dˆ̄σ1
. Then, the differential of the discrete

consistency operator ∆γ can be solved directly of Eq. (3.3.172) as

d∆γ = − 1

ĝ0

ˆ̄gT
0

dˆ̄σtr = ĝT
0

dˆ̄σtr. (3.3.173)

Now, the differential of updated effective stress vector can be derived in the same

manner that Eq. (3.3.150), but expressed in the effective space as

dσ̄ = dσ̄tr −De (∆γdn̄− n̄d∆γ) . (3.3.174)

Then, using the relation dˆ̄σtr = F σ̄dσ̄tr (see Eq. (A.2.22)) and substituting Eqs. (3.3.173)

and (3.3.162) into this expression, the differential of updated effective stress vector can be

rewritten as

dσ̄ = De

[
Ce −∆γ

(
ā1 ⊗ ĝ0

+ Ā0

)
F σ̄ −

(
n̄⊗ ĝ

0

)
F σ̄

]
dσ̄tr −∆γDeĀ2dσ̄.

(3.3.175)
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Finally, solving the updated effective stress vector of this expression and introducing

the relation Eq. (3.3.138), the effective elasto-plastic consistent tangent matrix is written

as

D̄ep = Ξ∗
[
Ce −∆γ

(
ā1 ⊗ ĝ0

+ Ā0

)
F σ̄ −

(
n̄⊗ ĝ

0

)
F σ̄

]
De, (3.3.176)

where Ξ∗ = (Ce + t̄∆γP )−1. It should be noted that, this matrix is well-posed indepen-

dent of input material parameters used.

Damage component

First, calling the variables t+c = −z+
c and t−c = z−c , the differential of stiffness recovery

functions s±, defined in Eq. (3.1.29), are expressed as ds± = t±c dθ±1 = t±c dφ. Also,

the differential of uniaxial damage laws ω± are given by dω± = Ω±κ dκ±, where Ω±κ :=

∂ω±

∂κ±
. Then, expressing both relations in a vectorized format as s = [s+, s−]T and ω =

[ω+, ω−]T , respectively, their differentials are written as

ds = M̂1dˆ̄σ, dΩ = M̂ 2dκ, (3.3.177)

where M̂ 1 andM 2 are expressed as

M̂ 1 =

t+c
t−c

⊗ ˆ̄Φ, M̂ 2 =

Ω+
κ 0

0 Ω−κ

 .
For other hand, using Eq. (3.3.168), the differential of hardening vector κ = [κ+, κ−]T

are expressed as

dκ = c1d∆γ + ∆γCT
2 dˆ̄σtr, (3.3.178)

where c1 and C0 are expressed as

c1 =

c+
1

c−1

 , C2 =
[
C+

2 ,C
−
2

]
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Next, the differential of damage variable ω (Eq. (3.1.28)) is given by

dω = uT1 ds+ uT2 dΩ, (3.3.179)

where u1 and u2 are written as

u1 =

s1ω
−

s2ω
+

 , u2 =

s2s
−

s1s
+

 ,
with s1 = 1−s−ω+ and s2 = 1−s+ω−. In addition, substituting Eq. (3.3.177) and the rela-

tions dˆ̄σ = F σ̄dσ̄, dˆ̄σtr = F σ̄ = dσ̄tr (Eq. (A.2.22)) and dσ̄ = D̄epdε
tr (Eq. (3.3.176))

into Eq. (3.3.179), the differential of damage variable ω can be rewritten as

dω = vT1 dˆ̄σ + vT2 dκ

=
[
vT1F σ̄D̄ep + vT2

(
c1 ⊗ ĝ0

+ ∆γCT
2

)
F σ̄De

]
dε, (3.3.180)

where vT1 = uT1 M̂ 1 and vT2 = uT2 M̂ 2. For the other hand, the differential of updated

stress vector (Eq. (3.1.14)) is given by

dσ = −σ̄dω + (1− ω)dσ̄. (3.3.181)

Finally, introducing Eq. (3.3.180) and the relation dσ̄ = D̄epdε
tr (Eq. (3.3.176)) into

this relation, the elasto-plastic-damage consistent tangent matrix is expressed as

Depd = [(1− ω)I − (σ̄ ⊗ v1)F σ̄] D̄ep − (σ̄ ⊗ v2)
(
c1 ⊗ ĝ0

+ ∆γCT
2

)
F σ̄De.

(3.3.182)
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Viscous component

Using Eq. (3.2.124) and the relation dσ̄ = D̄epdε
tr (Eq. (3.3.176)), the differential of

updated effective viscous-stress vector can be expressed as

dσ̄v =
(
ζvDe + (1− ζv)D̄ep

)
dε. (3.3.183)

Moreover, using Eqs. (3.2.122) and (3.2.123), the differential of visco-plastic strain

vector εvp and visco-damage variable ωv are given, respectively, by

dεvp = (1− ζv)dεp, (3.3.184)

dωv = (1− ζv)dω. (3.3.185)

Finally, substituting these relations and Eqs. (3.3.183) and (3.3.180) into the differ-

ential of Eq. (3.2.125), the visco-plastic-damage consistent tangent matrix is expressed

as

Dvpd = ζv(1− ωv)De + (1− ζv)
{

[(1− ωv)I − (σ̄v ⊗ v1)F σ̄] D̄ep

− (σ̄v ⊗ v2)
(
c1 ⊗ ĝ0

+ ∆γCT
2

)
F σ̄De }.

In addition, 2 include an alternative derivation of this operator considering the differ-

ential of updated stress vector directly, rather than use Eq. (3.2.106) as in this case.

3.3.4. WLF model

Plastic component

This component is identical to the LLF model, with the exception that θ±2 = 1 and

b̂±10 = 0.
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Damage component

Using Eqs. (A.2.22) and (A.2.23), the differential of positive/negative part of effective

stress tensor (Eq. (3.1.37)) are given by

dσ̄± =
N∑
i=1

H±0 (ˆ̄σi)e
ii
σ̄dˆ̄σi +

N∑
i=1

〈ˆ̄σi〉±deiiσ̄

=

(
N∑
i=1

H±0 (ˆ̄σi)(e
ii
σ̄ ⊗ eiiσ̄ ) + 2

N∑
i=1,j>i

g±ij(e
ij
σ̄ ⊗ eijσ̄ )

)
Rdσ̄ = S±dσ̄, (3.3.186)

where S± are so-called the derivative of positive/negative projector effective stress vector,

respectively, which satisfy the relations S+ + S− = I and σ̄± = S±σ̄, and g±ij is defined

as

g±ij :=


〈ˆ̄σi〉± − 〈ˆ̄σj〉±

(ˆ̄σ±i − ˆ̄σ±j )
, ˆ̄σi 6= ˆ̄σj

H±0 (ˆ̄σi), ˆ̄σi = ˆ̄σj.

So, during an active damage process, satisfy the relation Eq. (3.1.58). Then, using the

chain rule, the differential of updated positive/negative damage law ω± are expressed as

dω± =
∂ω±

∂r±
dr± = Ω±r dY ±, (3.3.187)

where Ω±r := ∂ω±

∂r±
and the differential of DEER, Y ±, are stated according their definition.

Thus, using Eqs. (3.1.52) and (3.1.53), their respective differentials are given by

dY ± =
Eo

2Y ±
(
σ̄TCeS

± + σ̄±TCe

)
dσ̄ = L±Tdσ̄, (3.3.188)

dY − =

(
α1T +

3

2q̄
v̄Tdev

)
dσ̄ = L−Tdσ̄, (3.3.189)

where v̄dev = Pσ̄. Next, using Eq. (3.1.45), the differential of updated stress vector is

given by

dσ =
∑
ℵ

[
(1− ωℵ)dσ̄ℵ − σ̄ℵdωℵ

]
. (3.3.190)
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Finally, introducing Eqs. (3.3.187), (3.3.186) and (3.3.188) or Eq. (3.3.189) and dσ̄ =

D̄epdε (Eq. (3.3.176)) into this expression, the plastic-damage consistent tangent matrix

is written as

Dpd =

[
I −

∑
ℵ

(
W ℵ +Rℵ

)]
D̄ep, (3.3.191)

where W± = ω±S± and R± = Ω±r (σ̄± ⊗ L±). It should be noted that, the terms of this

expression associated to plastic and damage component are decoupled.

Viscous component

First, using Eq. (3.2.126), the differential of positive/negative threshold variable r± are

given by

dr± = (1− ζv)dY ±. (3.3.192)

Then, using this relation, Eq. (3.3.188) or Eq. (3.3.189) and the chain rule, the differ-

ential of positive/negative damage variables ω± are given by

dω± =
∂ω±

∂r±
dr± = Ω±r (1− ζv)L± Tdσ̄. (3.3.193)

Moreover, using Eq. (3.1.62), the differential of positive/negative viscous stress vector

is expressed as dσ̄v± = S±v dσ̄v, whereS±v are the derivative of positive/negative projector

vector σ̄v (similar to Eq. (3.3.186)). Then, the differential of viscous-stress vector σv,

given by Eq. (3.1.61), is expressed as

dσv =
∑
ℵ

[
(1− ωℵ)Sℵvdσ̄v − σ̄vℵdωℵ

]
. (3.3.194)

Finally, substituting Eqs. (3.3.183) and (3.3.193) and the relation dσ̄ = D̄epdε (Eq. (3.3.176))

into Eq. (3.3.194), the visco-plastic-damage consistent tangent matrix can be expressed as

Dvpd = αµ

(
I −

∑
ℵ

W ℵ
v

)
De + (1− ζv)

[
I −

∑
ℵ

(
W ℵ

v +Rℵv
)]
D̄ep, (3.3.195)
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where W±
v = ω±S±v and R±v = Ω±r (σ̄v ± ⊗ L±). It should be noted that vectors L± are

evaluated using inviscid variables (σ̄).

3.3.5. FOC model

Plastic component

First, the differential of variables n0 and n1 of Eq. (3.2.132) are expressed as

dn0 = 2σ̄trTdσ̄tr, dn1 = ∆εTdσ̄tr + σ̄trTdε. (3.3.196)

Also, its assumed that the variable ξ is constant during the plastic process. Thus, using

Eq. (3.2.129), the differential of updated effective stress tensor is given by

dσ̄ = dσ̄tr − Eoχ

n0

[
n0σ̄

trd〈n1〉+ + n0〈n1〉+dσ̄tr − 〈n1〉+σ̄trdn0

]
.(3.3.197)

Using Eq. (3.2.132) and Eq. (A.1.24), using a stepped Heaviside function, and with

some straightforward manipulation, the effective component of consistent tangent stiffness

is given by

D̄ep =
[
c1I + c2

(
σ̄tr ⊗∆ε

)
+
(
σ̄tr ⊗ σ̄tr

)
(c3I + c2Ce)

]
De, (3.3.198)

where c1 = mtr, c2 = −(1−mtr)/n1 and c3 = 2(1−mtr)/n0.

3.3.6. ROT model

Damage component

First, the differential of updated i-th positive/negative damage variable α±i , stated in

Eq. (3.2.134), can be expressed as

dα±i = dz±i ∆ε̂i + w±i dε̂i = z±i dε̂i (3.3.199)
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Next, the tangent and secant slope of positive/negative uniaxial stress-strain law can

be defined as K±i := ∂σ±

∂α±i
and S±i := σ±i /α

±
i , respectively. Then, using Eq. (3.2.135), the

differential of variables h±i and g±i are written, respectively, as

dh±i = g±i K
±
i dα±i + σ±dg±i , dg±i =

1

α±i
(1− g±i z±i )dε̂i. (3.3.200)

Thus, using all these relations, the differential of i-th updated principal stress σ̂i, stated

in Eq. (3.1.70), is written as

dσ̂i =

(∑
ℵ

mℵi
[
Kℵi p

ℵ
i + Sℵi (1− pℵi )

])
dε̂i = j

ii
dε̂i, (3.3.201)

where p±i = g±i z
±
i . For the other hand, using Eq. (A.2.22), the differential of i-th principal

stress can be expressed as

dσ̂i =
∂σ̂i
∂ε̂

∂ε̂

∂ε
dε = jT

i
F εdε, j

i
=

[
∂σ̂i
∂ε̂1

,
∂σ̂i
∂ε̂2

]T
. (3.3.202)

Then, using this relation, the differential of updated stress vectorσ, given by Eq. (3.1.72),

is written as

dσ =
N∑
i=1

[
(eiiε ⊗ ji)F εdε+ σ̂ide

ε
ii

]
. (3.3.203)

Then, using Eq. (A.2.23), its follows that damage consistent tangent matrix is written

as

Dd =

(
N∑
i=1

(eεii ⊗ ji)

)
F ε + 2

N∑
i=1,j>i

gεij
(
eijε ⊗ eijε

)
, (3.3.204)

where gεij is defined as

gεij :=


(σ̂i − σ̂j)
(ε̂i − ε̂j)

, ε̂i 6= ε̂j

∂σ̂i
∂ε̂i

, ε̂i = ε̂j.

Note that the first term of right hand side is associated to local principal stiffness and

the second term arises from rotation of principal strains. It can be demonstrated that this
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expression, neglecting the damage variables, is identical to obtained by (M. A. Crisfield

& Wills, 1989). Also, note the similitude of the second term of this expression with

Eq. (3.3.186).

Viscous component

First, using Eqs. (3.2.136) and (3.3.199), the differential of updated i-th positive/negative

viscous damage variable can be expressed as

dαv±i = (1− ζv)w±i dε̂i. (3.3.205)

Moreover, the differential of variables hv±i and gv±i (Eqs. (3.1.74) and (3.1.75)) are

given, respectively, by

dhv±i = gv±i Kv±
i dαv±i + σ±(αv±i )dgv±i , (3.3.206)

dgv±i =
1

αv±i

[
1− (1− ζv)gv±i zv±i

]
dε̂i, (3.3.207)

where Kv±
i := ∂σ±

∂αv±i
. Thus, using these relations and with some straightforward manipu-

lation, the differential of updated i-th principal viscous stress, stated in Eq. (3.1.74), can

be written as

dσ̂vi =

{
ζv
∑
ℵ

mℵi S
vℵ
i + (1− ζv)

∑
ℵ

mℵi
[
Kvℵ
i pvℵi + Svℵi (1− pvℵi )

]}
dε̂i

= Jviidε̂i, (3.3.208)

where pv±i = gv±i z±i and Sv±i = σ±/αv±i . Finally, substituting this relation and Eq. (A.2.23)

into the differential of the viscous stress vector, given by Eq. (3.1.76), the viscous-damage

consistent tangent tensor can be expressed as

Dvd =

(
N∑
i=1

(eεii ⊗ jvi )

)
F ε + 2

N∑
i=1,j>i

gvij
(
eijε ⊗ eijε

)
, (3.3.209)
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where jv
i

=
[
∂σ̂vi
∂ε̂1
,
∂σ̂vi
∂ε̂2

]T
and gvij is defined as

gvij :=


(σ̂vi − σ̂vj )
(ε̂i − ε̂j)

, ε̂i 6= ε̂j

∂σ̂vi
∂ε̂i

, ε̂i = ε̂j.

3.4. Validation examples

In this section, a set of numerical examples are used to validate the capabilities of the

constitutive concrete models described in Section 3.1. Taking the numerical algorithms

presented in Sections 3.2 and 3.3, the five concrete models were implemented in the soft-

ware (ANSYS, 2018) throught user-material FORTRAN77 routines (USERMAT.f). These

material routines works at Gauss integration point level of each finite element.

Four class of experimental benchmark test are simulated with a single-element ac-

cording to loading conditions: (i) uniaxial cyclic tension and compression; (ii) biaxial

monotonic; (iii) uniaxial cyclic tension-compression; and (iv) strain-rate effect and nu-

merical viscosity. Also, the strain-localization and fracture-energy FE-regularization are

discussed with a fictitious example.

All examples were modeled using 4-node isoparametric shell element (SHELL181)

with six Degree Of Freedom (DOF) at each node using 2x2 Gauss integration scheme. All

models, except the DPH model, assume an exponential relation for the positive/negative

uniaxial stress laws given by Eqs. (3.1.59) and (3.1.60), respectively. An adequate conver-

sion among uniaxial laws required for each concrete model is generated, as explained in

Table 2.5.4. Table 3.4.1 list the material parameters adopted for each benchmark test. It

should be noted that identical parameters are used as in the 3D-case.



193

Table 3.4.1. List of parameters used in the concrete models.

B H Eo ν f
′
t f

′
c G+

f
† G−f

† Kc

Author Test mm mm GPa - MPa MPa N/mm N/mm -

Gopalaratnam & Shah, 1985 uniaxial tension 82.6 82.6 31.0 0.18 3.48 27.6 0.04 11.38 1.0
Karsan & Jirsa, 1969 uniaxial compression 82.6 82.6 31.7 0.2 3.48 27.6 0.04 11.38 1.0
Kupfer et al., 1969 biaxial 200 50 31.0 0.15 3.5 32.06 2.0 80.0 1.0
Mazars et al., 1990 unilateral effect 80 80 16.4 0.2 1.4 18.1 0.011 7.0 1.0
Suaris & Shah, 1985 strain-rate effect 100 100 34.0 0.22 5.37 46.8 0.5 20.0 1.0
- strain-localization 100 600 32.0 0.0 5.0 39.0 4.0 40.0 1.0
† values used in the WLF0 as reference. For all cases: f

′

b = 1.16f
′

c, ε=0.001, z+c =0, z−c =1, σ̄+
0 = f

′

t and
µv = 0, unless otherwise indicated.

3.4.1. Uniaxial cyclic tests

Numerical concrete models are compared with uniaxial cyclic tension and compres-

sion loading-unloading and reloading experimental data reported by (Gopalaratnam &

Shah, 1985) and by (Karsan & Jirsa, 1969), respectively. Figs. 3.4.1 and 3.4.2 shown the

response of the five concrete models under tensile and compressive loads, respectively. FE

DPH

LLF

WLF

FOC ROT

(a) (b) (c)

(d) (e)

     Test

with plastic strain (WLF)

only damage (WLF
0
)

     Backbone FE model      Cyclic FE model

,

Model  N/mm    N/mm

0.03         5.5

0.04       11.38

0.007       5.3

0.0168     5.3

0.04       11.38

LLF

WLF
0

WLF

FOC

ROT

Figure 3.4.1. Validation of concrete models under uniaxial cyclic tension test of (Gopalaratnam & Shah,
1985): (a) DPH model; (b) LLF model; (c) WLF0 and WLF models; (d) FOC model; and (e) ROT
model. The following additional parameters are used. For the DPH model: f+y =3.48 MPa, f−y =12 MPa,
a0 = 3cu/Eo, R=1; LLF model: C+=6500, C−=7500; and WLF model: f−o =20 MPa, E+

t =0.16Eo,
E−t =0.48Eo.
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with plastic strain (WLF)

only damage (WLF0)

Model  N/mm    N/mm

0.03         5.50

0.04       11.38

0.007       5.30

0.0168     5.30

0.04       11.38

LLF

WLF
0

WLF

FOC

ROT

     Test      Backbone FE model      Cyclic FE model

,

DPH

LLF

WLF

FOC ROT

(a) (b) (c)

(d) (e)

Figure 3.4.2. Validation of concrete models under uniaxial cyclic compression test of (Karsan & Jirsa, 1969):
(a) DPH model; (b) LLF model; (c) WLF model; (d) FOC model; and (e) ROT model. The following
additional parameters are used. For the DPH model: f+y =3.48 MPa, f−y =12 MPa, a0 = 3cu/Eo, R=1; LLF

model: C+=6500, C−=7500; and WLF model: f−o =20 MPa, E+
t =0.16Eo, E−t =0.48Eo.

models are elaborated with a single-element cube of 82.6 mm. Its assumed a characteristic

length of lc=82.6 mm and a pure uniaxial stress state for the boundary constraints.

In general, it can observed that in all models, except for the DPH model, fits well with

the post-peak backbone response of experimental tests, where the WLF0 and ROT models

gives the best approximation. Although, both models fail in the unloading branch, due that

neglects the plastic strains (pure damage only). Also note that these models have identical

responses them, although are elaborated with formulations completely different.

In contrast, the unloading branch of the LLF, WLF and FOC models fits close to exper-

imental response due that incorporate the plastic and damage components in their formu-

lations. In plastic-damage models, its required adjust the parameters to fit simultaneously

the backbone curve and the unloading branch. Thus, the first half of residual backbone is

mainly influenced by the parameters of the plastic component and the last half by the frac-

ture energy G±f . Moreover, the parameters C±, E±t and B± for the LLF, WLF and FOC

models, respectively, controls the backbone and slope of unloading branch in a coupled
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manner, i.e. when their values are reduced cause an increase in the slope of unloading

branch and consecuently reduce the backbone response.

The follows additional observations are considered. For the tensile regime, in all

models, except the LLF model, the peak stress do not fit exactly with the experimen-

tal value due to the incorporation of smoothed polynomial function in the uniaxial laws

(Eq. (2.2.74)). For other hand, the value of fracture energy G±f used in the plastic-damage

models to fit the experimental tests is less than in the damage models. This is due to that

the plastic component induce an additional dissipation of energy that is not taken account

in the FE-regularization (Section 2.5).

For the FOC model, it has observed the influence of strain increment size ∆ε in the

response, where an gradual over-stress response is caused with a relative large strain incre-

ments. In the same way, its observed a difference between cyclic and backbone responses,

gradually incremented over the last unloading/loading cycles, but that disappear with a

relative small ∆ε. Both conditions are due to explicit integration scheme used in the nu-

merical algorithm to calculate the plastic strain tensor. In addition, it can observed the

influence of parameter B− in the tensile response.

3.4.2. Biaxial monotonic tests

All the concrete models, except the ROT model, are compared with biaxial monotonic

test of (Kupfer et al., 1969). This test is performed with a constant biaxial loading ratio

of a = σ1/σ2, where σ1 and σ2 are the stresses imposed. FE models are elaborated with a

single-element of 200×50 mm of base and 200 mm of height. Its assumed a characteristic

length of lc = 200 mm and a pure biaxial stress state for the boundary constraints, as

observed in the experimental test. A stress-controlled test are performed up to reach the

peak stress, with the exception of the uniaxial case (a = 0) simulated with displacement-

controlled. The inputs parameters are chosen by means to fit the cases a=0, 1 and 0.52

simultaneously.
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Fig. 3.4.3 shown the axial stress σ1 vs axial ε1 and the lateral strains ε2 and ε3, re-

spectively, of the WLF model using a loading ratio of a=0, 1 and 0.52. This model use

a DEER given by Eq. (3.1.55) to include the biaxial strength. It can observed a good fit

with the pre-peak stress response of experimental test and a relatively good adjust exist

in the lateral strains, especially when a=0.52. In general, the same observations are con-

cluded in all models. Fig. 3.4.4 shown the biaxial peak strength surface for the DPH,

,

,

WLFTest

Figure 3.4.3. Validation for the WLF model under biaxial test of (Kupfer et al., 1969). The following addi-
tional parameters are used: G+

f =0.5 N/mm, G−f =35 N/mm, σ̄−0 =12 MPa, E+
t = 0.3Eo and E+

t = 0.65Eo.

WLF0, WLF, FOC and LLF models under different combination of biaxial loading ratios

a = σ1/σ2. For the DPH model, the parameters η and ξ are fitted with tension/compression

biaxial strength of concrete. Also, for the WLF0 and WLF models, the DEER given by

Eq. (3.1.55) is used to include the biaxial strength. In addition, the response of the WLF0

model using the Eq. (3.1.54) is compared.

It can observed, that all models fits close with the experimental results, specially in

compression-compression (C-C) regime, where are influenced by the Drucker-Prager yield

criterion. The major differences among models occur in the tension-compression (T-C)

regimes. The exception ocurr with the DPH and WLF01 model. For the the first, fit well
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Figure 3.4.4. Biaxial peak strength surface for the DPH, WLF0, WLF, FOC and LLF models and the biaxial
test results of (Kupfer et al., 1969). For the DPH model the following parameters are used f+y =3.5 MPa and

f−y = f
′

b .

only in the equal biaxial loading ratio a = 1 and the second one fit well in the T-C regime,

but with a reduced strength in the C-C regime. Both observations are obtained such as

expect in the literature (de Souza Neto et al., 2008; Mazars, 1984; J. Simo & Ju, 1987).

Additionally, it can observed, similar to uniaxial case, a less value of fracture energy

is required in the plastic-damage models than damage models to fit with experimental

results. Conversely to the uniaxial case, under certain conditions, an increment in the

value of compression fracture energy cause a reduction in the backbone response.
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3.4.3. Uniaxial cyclic tension-compression test

To validate the unilateral effect, the LLF, WLF0, WLF, FOC and ROT models are

compared with the uniaxial cyclic test of (Mazars et al., 1990). This test was first subjected

to uniaxial tension followed by uniaxial compression in parallel directions. FE models are

elaborated with a single-element cube of 80 mm of width. Its assumed a characteristic

length of lc=80 mm and a pure uniaxial stress state for the boundary constraints.

Fig. 3.4.5 shown the axial stress σ1 vs axial strain ε1 of this models. It also included the

response of the LLF model with three values of stiffness recovery factor z−c (0, 0.5 and 1).

It can noticed that all models recovery the initial elastic stiffness once the load goes into

the compression state (step 2 and 4). The exception occur, obviously, in the LLF model

when z−c =0.5 and 0, due that this parameter controls the value of recovery compression

stiffness. Moreover, its observed that all models, with the exception of the WLF0 and

ROT models, take the compression backbone branch close to experimental data (step 4),

due that include plastic strain in their formulations. In addition, its observed that the LLF,

WLF and FOC models recovery the damaged stiffness obtained in the last cycle of tension

(step 3) when the load goes from compression to tension state (step 6). This condition is

also shared by the WLF0 and ROT models (not shown in the plot) and is so-called that the

models have ”damage memory”, which is agree with the thermodynamic of irreversible

process.

3.4.4. Strain-rate tests

Experimentally, the strain-rate effect is important under impulsive loading (impacts

or explosions), but already important under earthquake loading, with rates of straining ε̇

ranges between 10−6/s to 10−1/s. Then, due that the all models, except the DPH model, can

simulate the rate-dependent behavior throught of incorporation of a visco-elastic/visco-

plastic model, they are compared with the strain-rate test of (Suaris & Shah, 1985). FE

models are elaborated with a single-element cube of 100 mm of width. Its assumed a char-

acteristic length of lc=100 mm and a pure uniaxial stress state for the boundary constraints.
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Figure 3.4.5. Validation of the LLF, WLF0, WLF, FOC and ROT models under uniaxial cyclic tension-
compression test of (Mazars et al., 1990). The following additional parameters are used. For the LLF
model: C+=12000, C−=200; WLF model: f−o =12 MPa, E+

t = 0.3Eo and E−t = 0.4Eo; and FOC model:
B+=0.54 and B−=0.75.

Two uniaxial tests are performed, one for tension and other for compression, both with a

range of straining rates ε̇ between 10−6/s to 1/s. The material parameters are fitted with

the tests loaded with a strain-rate of ε̇=10−6/s (pseudo-static). For the sake of simplicity,

a numerical viscosity µv = 2 × 10−3 s is used in all cases. Also, a constant number of

steps Ns=150 and a maximum displacement of δmax=0.25 mm for tension and -0.55 mm

for compression are used, for which the time increment used is given by ∆t = |δmax|
Nsε̇

.

Fig. 3.4.6a-b shown the normalized uniaxial tension/compression viscous stress σv1/σ
0
1max

vs uniaxial strain ε1, respectively, for the WLF0 model, where σ0
1max denotes the peak in-

viscid stress (f ′t and f ′c, respectively). In both plots, for high straining rates, an increment

of up to 3.4 and 1.1 times respect to the inviscid case (ε̇=10−6/s) is observed for tension

and compression, respectively. Moreover, its denoted a over-estimation of 59.4% in the
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tensile peak stress respect to experimental test, whereas a lower-estimation of 12.4% exist

for the compression peak stress. Similar observations are derived using the other models.

Fig. 3.4.6c shown the peak stress ratio σv1max/σ
0
1max or Dynamic Increase Factor (DIF)

vs the applied strain-rate ε̇ for all models, where σ0
1max denotes the peak stress at invis-

cid response. As can observed, peaks strengths grow continuously as straining rates are

increased, becoming clearly distinguishable from the inviscid response upon a strain-rate

value of 10−2/s. Also noted, that the tensile response is largest than the compressive one

in overall range of straining rates analyzed, growing up to 6 times respect to the inviscid

response. In addition, the FE results shown that the DIF is underestimated as compared to

the both experiments for the small strain-rates ε̇ < 10−1/s and overestimated for the large

strain rates ε̇ ≥ 2.5 × 10−1/s. To get a best estimation with respect to the experimental

tests, its required modify the visco-plastic model used, e.g the modified Perzyna model

proposed by (Faria & Oliver, 1993; Faria et al., 1998).

3.4.5. Effect of the numerical viscosity

In order to investigate the effects of numerical viscosity in the response, a numeri-

cal test are generated varying the numerical viscosity-time increment ratio µv/∆t for the

WLF model. This adimensional parameter is related to the variable ζv = (1 + ∆t/µv)
−1

(Eq. (3.2.122)) required for the stress updated algorithms of models. For the sake of sim-

plicity, the material parameters used are the same than in the strain-rate effect simulation.

Uniaxial tensile load is applied in a single-element varying the relation µv/∆t in a range

between 10−6 (inviscid) to 50.

Fig. 3.4.7a shown the uniaxial viscous stress-strain σv1 − ε1 response with different

values of µv/∆t. Similar to Fig. 3.4.6c its observed an gradual over-stress response pro-

portional to the increased value of the numerical viscosity. Moreover, Fig. 3.4.7b shown

the respective axial stiffness-strain ∂σv1
∂ε1
− ε1 response for one integration point of the FE

model. Similar to the stress response, a gradual increment of axial stiffness is presented

as increasing the value of µv/∆t, up to get a positive value although a strain-softening
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Figure 3.4.6. Validation of strain-rate effect in the concrete models under monotonic uniaxial tests of (Suaris
& Shah, 1985): (a-b) normalized uniaxial tensile/compressive stress σv1/σ

0
1max

vs uniaxial strain ε1 for the
WLF0 model, respectively; and (c) peak stress ratio σv1max

/σ0
1max

or Dynamic Increase Factor (DIF) vs the
applied strain-rate ε̇ for the LLF, WLF0, WLF, FOC and ROT model under tensile and compresive loads.

regimes exists. This key advantage can convert into a positive-definite the consistent tan-

gent stiffness tensor and is demonstrated that expand the range of convergence of the

models in strain-softening regimes.

3.4.6. Strain-localization and FE-regularization

Strain-localization phenomena is present in local models with strain-softening behav-

ior. Imperfection of material properties, irregularities in the geometry and non-symmetrical

boundary/load conditions can induce the formation of this phenomena. The fracture en-

ergy FE-regularization is an popular technique that introduce a length scale in the consti-

tutive equations and that is able to remove the spurious mesh-dependency observed when
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inviscid

inviscid

positive

definite

Figure 3.4.7. Variation of uniaxial response using different values of the ratio numerical viscosity/time in-
crement µv/∆t for the WLF model: (a) uniaxial viscous stress-strain σv1−ε1 relation and (b) axial stiffness-

strain ∂σv
1

∂ε1
− ε1 relation for one integration point of the FE model.

strain-localization exists. It should be noted that, ignoring the FE-regularization, local

models with strain-softening behavior can correctly describe the damage only when re-

main uniformly distributed (perfect material). In order to study this phenomena in the

0.99fp

fp

,

6
0
0
m
m

100mm

100mm

Figure 3.4.8. Description of FE model used in strain-localization test.

concrete models developed, two uniaxial tests are performed, one for tension and other for

compression, varying the number of finite elements (i.e. varying their characteristic length
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lc). For the sake of simplicity, a prism of 100×100 mm of base and 600 mm of height is di-

vided into 2, 3 and 4 elements. Also, its assumed a pure uniaxial stress state for the bound-

ary constraints (Fig. 3.4.8a). Table 3.4.1 list the material parameter used. The election of

parametersEo, f
′
c andG±f are chosen in order to satisfy the range of characteristic length lc

admissible by the uniaxial compression stress law given by Eq. (3.2.79). In order to induce

the localization phenomena, one of elements (shaded element) has been reduced slightly

their uniaxial tension/compression strength (f ′t /f
′
c) than others elements (0.99 times), for

tensile/compressive load case, respectively. In addition, due that some convergence trou-

ble are observed in the simulations, a numerical viscosity of µv/∆t = 0.05 is incorporated

in all models.

Fig. 3.4.9a-b shown the normalized uniaxial tensile stress σ1/σ1max vs post-peak dis-

placement δ1pp for the WLF0 and WLF model, respectively, varying the mesh size of

model, whereas Fig. 3.4.9c-d shown the respective compressive response for the WLF0

and LLF, respectively. Additionally, the figure shown the failure mode of their respec-

tive specimens, through the field of damage variable ω±. The post-peak displacement

is defined as δ1pp := δ − δo, where δ is the total displacement of specimen and δo the

displacement at peak response.

Its observed in all models with imperfection a mesh-objectivity response and the dam-

age zone occur only in the modified element, such as expected in literature. However,

in the case without imperfection, two kinds of response are observed. For one hand, the

response for the WLF0 model is mesh-dependent with an uniform strain field, either in

tension as in compression. This condition is due that the FE-regularization modify the

uniaxial stress-strain law despite exist an uniform strain field in the model. Then, its

concluded that this technique is only necessary when the damage zone localize. For other

hand, the LLF and WLF models (with the exception of one case lc=300 mm) gives a mesh-

objectivity response. This atypical condition can be attributed first to the non-symmetric

consistent tangent stiffness tensor and largely to numerical errors induced in the iterative

process to calculate the plastic component.
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Similar observations can be concluded in the other cases as explained as follows. All

models gives a mesh-objectivity response and the damage zone is localized in one element

(modified element) when a perturbation exists in the material. In contrast, not all the

models have an uniform strain field in the case without imperfections. Its observed that

the WLF and FOC models localize with a tensile load, whereas the LLF model localize

both in the tension as in the compression case. In contrast, the WLF0 and ROT models not

localize using a perfect material.

WLF
0

WLF

LLF

(a) (b)

(c) (d)

300

mm

200

mm

150

mm

300

mm

200
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150
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0
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with / imperfection300mm 200mm 150mm

uniform

strain

strain

localization

strain

localization

strain

localization

strain

localization

spurious

localization

spurious
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uniform

strain

Figure 3.4.9. Comparison the normalized uniaxial stress σ1/σ1max vs post-peak displacement δ1pp using
three FE mesh sizes: 150 mm, 200 mm and 300 mm: (a-b) tensile response for the WLF0 and WLF models,
respectively; and (c-d) compressive response for the WLF0 and LLF models, respectively. The following
additional parameter are used. For the LLF model: C+=6000, C−=500; and WLF model: f−o =20 MPa,

E+
t = 0.5Eo and E−t = 0.5Eo.

In conclusion, identical results as in the 3D-case are obtained in all test simulated, with

the exception for the mesh regularization test, where some differences in the responses of

the LLF and WLF models are observed. It should be noted that completely different

formulations are used for the plastic component of the DPH, LLF and WLF model respect

to the 3D-case, for which it can concluded that the numerical implementation of these

concrete models are correctly applied in the plane-stress case.
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3.5. Summary and main results

This chapter study the epistemic uncertainty of five plane-stress continuum stress-strain

local constitutive concrete models. As for the 3D-case, convergence problems are en-

countered in certain cases, especially in strain-softening regimes. Herein, a complete de-

scription of these models in a common vectorized and notation was presented, providing

all the necessary steps required to ensure adequate convergence and a consistent numer-

ical implementation. Analytical expressions for the updated stress algorithms and new

explicit expressions for the algorithmic consistent tangent stiffness matrices were devel-

oped. Moreover, similar to 3D-case, numerical benchmark test examples are evaluated for

each model. The main results obtained from these part are:

• The construction of a strong updated stress algorithm were necessary to get an

adequate response of the models developed. Implicit schemes with the pro-

jected return-mapping algorithm were considered for the plastic component of

models, whereas explicit schemes were used for the damage ones. Furthermore,

the consistency plastic operator of the DPH, LLF and WLF models was solved

with the iterative Newton′s method, where a choice of adequate initial value

and solution of an unique scalar variable rather than a system of equations were

mandatory to ensure the convergence of this component. Moreover, continu-

ous and smooth functions (C1-class) for the elaboration of the consistent tangent

stiffness matrix were used to achieve the convergence of these models. Smooth

yield criterion, flow potential and uniaxial laws are taken in the operator of these

models. In addition, the incorporation of the Duvant-Lions viscous model in

the constitutive equations of the LLF, WLF, FOC and ROT models was proved

as a simple and robust technique to overcome convergence problems caused by

strain-localizations in these models.

• All models, with the exception of the DPH model, simulates the strain-softening

behavior, where the LLF, WLF and FOC models predicts the inelastic strains and

stiffness degradation, whereas the WLF model without plastic strains (WLF0)
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and the ROT model both unload to the origin (pure damage models). Also, all

models, except the ROT model, incorporate the biaxial effect adequately since

they include the Drucker-Prager yield criterion in their equations. Moreover,

with the exception of the DPH model, all models simulates the unilateral and

strain-rate effects correctly. It is observed that the tensile response is more sen-

sitive to strain-rate increments than the compression response for all models.

However, a poor fit is obtained relative to experimental test.

• Moreover, all models give a mesh-objective response with a localized damaged

zone if a perturbation exists in the material of a FE model. Conversely, not all of

the models have an uniform strain field if there are no imperfections, where the

WLF and FOC models localize under tensile loads, whereas the LLF model lo-

calizes both in tension and compression. In contrast, the WLF0 and ROT models

do not localize if we have a perfect material.
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4. CONCLUSIONS

This research evaluates the epistemic uncertainty associated with computational modeling

assumptions of reinforced concrete (RC) structures using different scales ranging from

complete structures to the type of finite elements used. Because of their complexity, lin-

ear models were used to estimate the dynamic response of six RC free-plan buildings

modelled in different softwares. For the inelastic models, finite element stress-strain con-

stitutive concrete models were considered. This structure corresponds to the different

chapters of this work: (i) uncertainty of linear building models; (ii) uncertainty of stress-

strain constitutive concrete models using a three-dimensional (3D) formulation; and (iii)

uncertainty in stress-strain concrete models using a plane-stress assumption. The main

conclusions obtained in this thesis are:

• Building models with solid elements (AW) provide the best approximations to

experimentally measured periods of RC free-plan buildings, with errors smaller

than 13% for the first four periods. Models with beam and shell elements (ET

and AP), as well as for the AW models, lead to a peak error of 17% for the

predicted first two periods. In spite of this, the standard deviation of the errors

to the different response parameter ratios obtained for the three models (ET, AP

and AW) was smaller than 11%.

• The stiffness of the diaphragm is an important source of epistemic uncertainty.

Indeed, the first four periods may reach values up to 10% and down to 27%, rel-

ative to models that consider either in-plane and out-of-plane stiffnesses. More-

over, the variation of the in-plane stiffness of the diaphragm generates large un-

certainty in the shear forces of the wall mainly in the first basements due to the

so-called back-stay effect. Normalized shear forces for the core vary between

0.57 and 4.29 times in the first basement, with a standard deviation of 112%.

In contrast, the bending stiffness of the diaphragm affects story shear forces in

higher stories more than variations of the in-plane stiffness of the diaphragm.
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The normalized story and core shears at mid-height of the buildings (H/2) var-

ied between 0.75 and 1.44.

• The soil-structure interaction model considered generates larger uncertainties

in the story shears, leading to variations of the normalized story shear of the

last basement between 0.03 and 4.79 times. Also, the influence of the level of

building fixity leads to changes in the first building period from +10% to +18%

relative to a model without basements. In all cases, peak responses occurred

when the fixity was imposed at an intermediate basement level. This condition

supports the observation that selecting an arbitrary basement level to impose

the code minimum-design base shear is an incorrect practice and can generates

incorrect designs. In conditions of uncertainty of the correct level of fixity, the

designer should use the envelope of the designs generated by the different level

of fixity.

• For all studied modelling assumptions, larger uncertainties were identified for

forces at the shear wall core (shear and overturning moment) than for the story

forces. Additionally, larger uncertainties were identified for story and core shears

at the basements (B1 and BF) than for the upper levels (H/2 and L1).

• Due to the several sources of uncertainty, it is recommended to use the following

assumptions in modeling RC free-plan buildings: (i) adopt a FE model with shell

elements for walls and unidimensional frame elements for beams and columns

rather than solids elements; (ii) consider the in-plane stiffness of the diaphragms

at the basements to reduce the back-stay effect in FE models; (iii) develop two

models, one that includes and other that neglects the contribution of lateral soil

stiffness, and compute the envelope of story basement forces; (iv) generate at

least two models with different levels of fixity at the basement level, and evaluate

the envelope of story shears and element forces as well as the code minimum

design shear for each case.
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• Chapters 2 and 3 present a consistent notation description of five stress-strain

concrete models together with all ingredients necessary for a correct numeri-

cal implementation of the models. This implies analytical expressions for the

updated stress algorithms, explicit expressions for the consistent tangent stiff-

ness tensor, consistency checks of input material parameters between models,

and an adequate conversion from tensors and tensor operations to a vector for-

mat. Furthermore, numerical examples of benchmark tests were developed un-

der uniaxial, biaxial, and triaxial stresses. The unilateral and strain-rate effects,

the mesh size influence, and the strain-localization phenomena were analyzed

for all models.

• A robust updated stress algorithm was developed to ensure an adequate conver-

gence for all concrete models. Tensor notation was considered for the 3D-case,

whereas vector notation for the in-plane components of tensors were used for

the plane-stress formulation. Implicit schemes with a return-mapping algorithm

were considered for the plastic component of models, while explicit integration

schemes were used for the damage ones. Furthermore, continuous and smooth

functions (C1-class) for the elaboration of the consistent tangent stiffness ten-

sor were used to improve model convergence. Smooth functions for the yield

criterion, flow potential, and uniaxial laws were also considered to calculate the

stiffness operator of all models. In addition, the use of the Duvaut-Lions viscous

model in the constitutive equations of the LLF, WLF, FOC and ROT models

was tested as a simple and robust technique to overcome convergence problems

caused by strain-localization phenomenon. It is highly recommended to use a

ratio of numerical viscosity/load step increment between 0.001 and 1.0 to obtain

adequate convergence without overshooting the stress response.

• Several benchmark tests were simulated to describe the main capabilities of the

set of concrete models. It was observed that all models, with the exception of

the DPH model, were capable of simulating the strain-softening behavior. The
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LLF, WLF and FOC models predict the inelastic strains and stiffness degra-

dation, whereas the WLF model without plastic strains (WLF0) and the ROT

model, both, unload to the origin of the stress-strain relationship (pure damage

models). Moreover, all models, with the exception of the ROT model, incorpo-

rate the biaxial effect adequately due to the incorporation of the Drucker-Prager

yield criterion in the equations. Further, for the 3D-case, only the LLF, WLF and

FOC models can simulate the triaxial effect correctly, whereas the WLF model

can correctly simulate also the volumetric expansion (dilatancy). In addition,

with the exception of the DPH model, all models adequately simulate the uni-

lateral and strain-rate effects; however, a poor fit is observed with respect to the

benchmark experimental tests. All models give a mesh-objective response with

a localized damaged zone if a perturbation is introduced in the material of the FE

model. Conversely, some models lead to a uniform strain field for a nominally

perfect model, with the exception of the WLF and FOC models, which localize

under tensile loads, whereas the LLF model localizes both in tension as well as

compression.

• The epistemic uncertainty observed in the response of a concrete prism is enough

to asses correctly the sensitivity of these concrete models. Thus, it is concluded

that the unloading-loading linearized stiffness of the last cycle, K̄c∞ , for the uni-

axial cyclic tension and compression test, and the energy dissipated by the last

loading-unloading cycle Ḡc∞ of the uniaxial tensile test, are the most impor-

tant sources of epistemic uncertainty given the stress-strain constitutive concrete

models considered. Moreover, a significant level of uncertainty was observed

in some response variables for the triaxial monotonic tests due to the simplified

term considered in the equations to simulate this effect. Also, a considerable

source of uncertainty exist in the peak stresses for the strain-rate case for high

strain-rates over 10−1/ s, both in tension as well as in compression, with val-

ues up to 2.74 times the ones obtained through experimental tests, mainly due

to the use of the viscoplastic Duvaut-Lions model. In contrast, low uncertainty
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was observed in peak stresses σp, for all test simulations, with the exception of

strain-rate case over 10−1/s. Standard deviation values reach up to 7.3%.

• Finally, identical results were obtained for the 3D and plane-stress formulations,

despite the fact that the equations developed for the plastic component of the

models are completely different. This serves as a validation of all of the algebra

and computational implementation of the different models.
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Bažant, Z. P., & Jirǎsek, M. (2002). Nonlocal integral formulations of plasticity and

damage: Survey of progress. Journal of Engineering Mechanics, 128(11), 1119–

1149. doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

Behbahani, A. E., Barros, J., & Ventura-Gouveia, A. (2015). Plastic-damage smeared

crack model to simulate the behaviour of structures made by cement based materials.

International Journal of Solids and Structures, 73–74, 20–40. doi: https://doi.org/

10.1016/j.ijsolstr.2015.07.027

Besjak, C. M., McElhatten, B. J., & Biswas, P. (2010). Performance-based evaluation for

the 450m Nanjing Greenland Financial Center Main Tower. In Structures congress

2010 (pp. 2885–2902).

Bigoni, D., & Piccolroaz, A. (2004). Yield criteria for quasibrittle and frictional materials.

International Journal of Solids and Structures, 41(11), 2855–2878. doi: https://

doi.org/10.1016/j.ijsolstr.2003.12.024

Brownjohn, J., Pan, T., & Deng, X. (2000). Correlating dynamic characteristics from field

measurements and numerical analysis of a high-rise building. Earthquake engineer-

ing & structural dynamics, 29(4), 523–543.
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215

concrete under multiaxial stress states. International Journal of Plasticity, 22(12),

2272–2300. doi: https://doi.org/10.1016/j.ijplas.2006.03.011

Cope, R., Rao, P., Clark, L., & Norris, P. (1980). Modelling of reinforced concrete

behaviour for finite element analysis of bridge slabs. Numerical methods for non-

linear problems 1, 1, 457–470.

Crisfield, M. (1981). A fast incremental/iterative solution procedure that handles ”snap-

through”. Computers and Structures, 13(1–3), 55–62. doi: 10.1016/0045-7949(81)

90108-5

Crisfield, M. A., & Wills, J. (1989). Analysis of r/c panels using different concrete models.

Journal of Engineering Mechanics, 115(3), 578–597. doi: 10.1061/(ASCE)0733

-9399(1989)115:3(578)

de Souza Neto, E. A., Peric, D., & Owen, D. R. J. (2008). Computational methods for

plasticity: Theory and applications. John Wiley Sons, Inc.

de Borst, R. (1986). Non-linear analysis of frictional materials (Unpublished doctoral

dissertation). University of Technology, Delft, The Netherlands.

de Borst, R. (1991). The zero-normal-stress condition in plane-stress and shell elasto-

plasticity. Communications in Applied Numerical Methods, 7(1), 29–33. doi:

10.1002/cnm.1630070105

DiMaggio, F. L., & Sandler, I. S. (1971). Material models for granular soils. J. of Engng

Mech., ASCE, 97, 935–950.

Dodds, R. H. (1987). Numerical techniques for plasticity computations in finite element

analysis. Computers Structures, 26(5), 767–779. doi: https://doi.org/10.1016/0045

-7949(87)90026-5

Drucker, D. C., & Prager, W. (1952). Soil mechanics and plastic analysis for limit design.

Quarterly of Applied Mathematics, 10(2), 157–165.

Duvaut, G., & Lions, J. (1972). Les inequations en mecanique et en physique. Dunod,

Paris.

Encina, J., & de la Llera, J. C. (2013). A simplified model for the analysis of free plan

buildings using a wide-column model. Engineering Structures, 56, 738–748.



216

Eringen, A. (1999). Theory of micropolar elasticity. in: Microcontinuum field theories.

Springer, New York. doi: https://doi.org/10.1007/978-1-4612-0555-5 5

ETABS. (2013). Integrated building design software etabs nonlinear version 9.7.4, refer-

ence manual. Computer and Structures, Inc. (CSI), Walnut Creek, California.

Faria, R., & Oliver, J. (1993). A rate dependent plastic-damage constitutive model for

large scale computations in concrete structures (Tech. Rep. No. 17). CIMNE Mono-

graph, Barcelona, Spain.

Faria, R., Oliver, J., & Cervera, M. (1998). A strain-based plastic viscous-damage model

for massive concrete structures. International Journal of Solids and Structures,

35(14), 1533–1558.

Faria, R., Oliver, J., & Cervera, M. (2000). On isotropic scalar damage models for the nu-

merical analysis of concrete structures (Tech. Rep. No. 198). CIMNE Monograph,

Barcelona, Spain.

Fouad, K., Ali, Z., & Mustapha, R. (2012). Structural analyses with flexibility effect

of the floor slabs. In Proceedings of the fifteenth world conference of earthquake

engineering, lisboa, portugal.

Golub, G. H., & van der Vorst, H. A. (2000). Eigenvalue computation in the 20th cen-

tury. Journal of Computational and Applied Mathematics, 123(1), 35–65. (Nu-

merical Analysis 2000. Vol. III: Linear Algebra) doi: https://doi.org/10.1016/

S0377-0427(00)00413-1

Gopalaratnam, V. S., & Shah, S. P. (1985). Softening response of plain concrete in direct

tension. ACI Journal proceedings, 82(3), 310–323.

Grimes, R. G., Lewis, J. G., & Simon, H. D. (1994). A shifted block Lanczos algorithm

for solving sparse symmetric generalized eigenproblems. SIAM Journal on Matrix

Analysis and Applications, 15(1), 228–272.

Guendelman, T., Guendelman, M., & Lindenberg, J. (1997). Perfil bio-sı́smico de edifi-

cios. VII Jornadas Chilenas de Sismologı́a e Ingenierı́a Antisı́smica, ACHISINA, La

Serena.

Gupta, A. K., & Akbar, H. (1984). Cracking in reinforced concrete analysis. Journal of



217

Structural Engineering, 110(8), 1735–1746. doi: 10.1061/(ASCE)0733-9445(1984)

110:8(1735)

Hardyniec, A., & Charney, F. A. (2012). The effect of epistemic uncertainties in the

assessment of seismic collapse of building structures. In Proceedings of the tenth

u.s. national conference on earthquake engineering, anchorage, alaska.
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APPENDICES A. SOME USEFUL IDENTITIES

1. THREE DIMENSIONAL FORMULATION

1.1. Basic identities

First, letA,B and C second-order tensors. Then, the following identity is satisfied

A(B : C) = (A⊗B) : C = (A⊗C) : B. (A.1.1)

For the other hand, any second-order tensor can be decomposed in their deviatoric and

hydrostatic part as follow

Adev = Id : A = A− 1

3
tr(A)I, (A.1.2)

Avol =
1

3
tr(A)I =

1

3
(I : A)I, (A.1.3)

where Id is defined in Table II.0.1 and tr(·) denotes the trace of tensor. It can be probed

that Id : Id = Id. Moreover, applying this decomposition to the stress tensor σ = s+pI ,

it can be written as

s = Id : σ = 2Gθe, θe = Id : εe, (A.1.4)

p =
1

3
(I : σ) = Kεev, εev = I : εe, (A.1.5)

where s is the deviator of stress (or deviatoric stress) tensor, p the hydrostatic stress, G the

shear modulus, K the Bulk modulus, θe the deviatoric elastic strain and εev the volumetric

elastic strain. Moreover, the stress σ and elastic strain tensor εe can be related according

to the relation σ = De : εe, where De is the linear-elastic stiffness tensor given by

De = 2µId +KI ⊗ I = 2µIs + λI ⊗ I, (A.1.6)



228

where µ and λ are the Lame′s constants (µ = G). Hence, substituting Eqs. (A.1.2)

and (A.1.3) into this relation, gives the follow expression

De : A = 2µAdev +KAvol. (A.1.7)

1.2. Spectral decomposition

The spectral decomposition of a second-order tensorA is defined as

A :=
N∑
i=1

âiE
ii
A, (A.1.8)

where âi is the i-th eigenvalue and Eii
A the i-th eigen-projector tensor defined as

Eii
A = vi ⊗ vi, (A.1.9)

with vi the i-th column of eigenvector matrix V .

1.3. Differentials

First, the differential of the norm of tensor ‖A‖ = (A : A) is expressed as

d‖A‖ = ‖A‖−1 (A : dA) . (A.1.10)

Next, let c(A) a scalar variable that is in function of tensorA, andB any other tensor.

Then, the differential of productBc(A) is given by

d (Bc(A)) = c(A)dB +

(
B ⊗ ∂c

∂A

)
: dA. (A.1.11)

For the other hand, using Eq. (A.1.4) and the identity Id : Id = Id, the following

relations can be derived for the deviatoric elastic strain tensor

dθe = Id : dεe, θe : dθe = θe : dεe. (A.1.12)
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Also, using this relation, the differential of invariants J2, q =
√

3J2 and p can be

written as

dJ2 = s : ds = 4µ2(θ : dε), (A.1.13)

dq =
3

2q
s : ds =

6µ2

q
(θ : dε), (A.1.14)

dp =
1

3
(I : dσ). (A.1.15)

For other hand, (de Souza Neto et al., 2008) demonstrate that the differential of i-th

eigenvalue of tensor A is given by

dâi = Eii
A : dA. (A.1.16)

Moreover, the differential of eigenvalue tensor is written as

dÂ = FA : dA, (A.1.17)

where F = ∂Â
∂A

is a fourth-order tensor. In addition, (Faria, Oliver, & Cervera, 2000)

demonstrate that the differential of i-th eigenprojector Eii
A is expressed as

dEii
A = 2

N∑
j 6=i

1

(âi − âj)
(Eij

A ⊗E
ij
A ) : dA, (A.1.18)

where Eij
A = 1

2
(vi ⊗ vj + vj ⊗ vi). Hence, using Eqs. (A.1.4) and (A.1.17), the dif-

ferential of the principal stress and deviatoric stress tensor can be written, respectively,

as

dσ̂ = Fσ : De : dεe, (A.1.19)

dŝ = 2µFσ : Id : dεe. (A.1.20)
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1.4. Heaviside function and their approximation

The positive/negative Heaviside function H±(x, y0) are defined as

H±y0(x) = H(±x, y0) =


1, ±x > 0

y0, x = 0

0, ±x < 0

, (A.1.21)

where y0 is a arbitrary value ∈ [0, 1] (usually assume a value of 0, 1
2

or 1). Then, this

stepped function can be approximated with several C1-class functions H̃±(x), e.g.

H̃±(x) =
1

2
[1± tanh(kx)] = (1± exp(−2kx))−1 , (A.1.22)

with k is an arbitrary parameter such as limk→∞ H̃
±(x) = H±(x, 1). Then, its useful ex-

press the absolute and McAuley functions in terms of the approximated Heaviside function

as follows

|x| =
(

2H̃+(x)− 1
)
x, 〈x〉± = ±H̃±(x)x. (A.1.23)

Finally, taking this relation, the differential of absolute and McAuley function are

expressed as

d|x| =

[
2

(
dH̃+

dx
x+ H̃+

)
− 1

]
dx, d〈x〉± = ±

(
dH̃±

dx
x+ H̃±

)
dx, (A.1.24)

where dH̃−

dx
= −dH̃+

dx
.
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2. PLANE-STRESS FORMULATION

2.1. Plane-stress relations

In plane-stress condition, the Cauchy stress and strain tensor are assumed as

σ3 =


σ11 σ12 0

σ12 σ22 0

0 0 0

 , ε3 =


ε11 ε12 0

ε12 ε22 0

0 0 ε33

 . (A.2.1)

Now, mapping this tensors onto plane stress subspace, i.e. considering only the in-

plane stress and strain components for the respective tensors, gives

σ2 =

σ11 σ12

σ12 σ22

 , ε2 =

ε11 ε12

ε12 ε22

 . (A.2.2)

Then, converting this tensors to vectorized format using Voigt′s notation, gives the

respective vectors

σ = Voigt(σ2) = [σ11, σ22, σ12]T , ε = Voigt(ε2) = [ε11, ε22, 2ε12]T . (A.2.3)

Moreover, the stress σ and elastic strain vector εe can be related with the relations

σ = Deε
e and εe = Ceσ, where De and Ce are the linear-elastic stiffness/compliance

matrix, respectively and are expressed as

De =
Eo

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2

 , Ce =
1

Eo


1 −ν 0

−ν 1 0

0 0
Eo
ν

 . (A.2.4)
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Moreover, the deviatoric stress tensor s3, defined as s3 = σ3 − 1
3
I3, is expressed as

s3 =


s11 s12 0

s12 s22 0

0 0 s33

 =
1

3


2σ11 − σ22 3σ12 0

3σ12 −σ11 + 2σ22 0

0 0 −(σ11 + σ22)

 . (A.2.5)

Now, the invariants I1 = σ3 : I3 and J2 = 1
2
s3 : s3 are correctly defined in the plane

stress condition using the follow relations

I1 = 1Tσ, J2 =
1

2
σTPσ, (A.2.6)

where P is the projected matrix given by

P =
1

3


2 −1 0

−1 2 0

0 0 6


Additionally, the elastic εe33 and plastic out-of-plane strain εe33 can be derived, re-

spectively, as follow. First, the out-of-plane elastic strain εe33 is obtained from the three-

dimensional elastic stiffness tensor as

εe33 = − ν

Eo
(σ11 + σ22). (A.2.7)

In contrast, their respective plastic component εp33 depends of equations considered for

each concrete model (see Section 3.1). Although, in all cases, considering a generic flow

potential G3 expressed in terms of 3D stress tensor σ3 and other hardening variable q
3
.

Then, the flow rule is given by

ε̇p3 := γ̇N3, (A.2.8)

whereN3 := ∂G3

∂σ3
is the flow tensor. Then, the evolution laws of out-of-plain plastic strain

can be expressed as ε̇p33 = I3 : ε̇p, with I3 = diag(0, 0, 1). In addition, the evolution law
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for the volumetric strain is written as

ε̇v = εev + ε̇pv = tr(εe3) + tr(ε̇p3) =
1

K
p+ γ̇tr(N3). (A.2.9)

2.2. Spectral decomposition

The spectral decomposition of a second-order tensorA is defined as

A =
N∑
i=1

âiE
ii
A, (A.2.10)

where âi is the i−th eigenvalue and Eii
A the i−th eigen-projector tensor given by

Eii
A = vi ⊗ vi, (A.2.11)

with vi the i−th column of eigenvector matrix V . Then, this decomposition can be con-

verted for a vectorized tensor a = Voigt(A) as follow

a

N∑
i=1

âie
ii
a = Eaâ, (A.2.12)

where â = Voigt(Â) is the vectorized eigenvalue tensor Â, eiia = Voigt(Eii
A) is the i−th

vectorized eigen-projector tensor and Ea is the eigen-projector matrix written as

Ea =
[
e11
a , e

22
a , · · · , eNa

]
. (A.2.13)

Moreover, using Eqs. (A.2.4), (A.2.12) and (A.2.13), the follows identities are satisfied

Î = ET
aREa, P̂ = ET

aPEa, (A.2.14)

D̂e = ET
aR

2DeEa, Ĉe = ET
aCeEa, (A.2.15)
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where Î = diag(1, 1) and D̂e, Ĉe and P̂ are given by

D̂e =
Eo

1− ν2

1 ν

ν 1

 , Ĉe =
1

Eo

 1 −ν

−ν 1

 , P̂ =
1

3

 2 −1

−1 2

 . (A.2.16)

Then, multiplying both sides of Eq. (A.2.12) by the matrix ET
aR and using the left

side of Eq. (A.2.14), the eigenvalue vector and their respective i−th component, can be

expressed as

â = F aa, âi = eTiiRa, (A.2.17)

with F a = ET
aR. In addition, using Eqs. (A.2.14) and (A.2.12), the invariants I1 and J2

can be expressed in the principal space as

Î1 = 1̂T σ̂, Ĵ2 =
1

2
σ̂T P̂ σ̂. (A.2.18)

2.3. Differentials

Next, let c(A) a scalar variable that is in function of vectorA, andB any other vector.

Then, the differential of productBc(A) is given by

d(cb) = cdb+

(
b⊗ ∂c

∂a

)
da. (A.2.19)

For the other hand, the differential of variable z = σTPσ = 2J2 is given by

dz =
(
dσTPσ + σTPdσ

)
= 2vTdevdσ, (A.2.20)

where vdev = Pσ. Then, the differential of invariants q =
√

3J2 =
√

3
2
z and r =√

q2 + ε2 can be written as

dq =
3

4q
dz =

3

2q
vTdevdσ, dr =

3

4r
dz =

3

2r
vTdevdσ. (A.2.21)
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Now, using the relation Eq. (A.2.17), the differential of eigenvalue vector and their i-th

component are written, respectively, as

dâ = F ada, dâi = eiia
TRda. (A.2.22)

In addition, (Faria et al., 2000) demonstrate that the differential of i-th eigenprojector

vector eiia is expressed as

deiia = 2

[
N∑
j 6=i

1

(âi − âj)
(eija ⊗ eija )

]
Rda, (A.2.23)

where eij = 1
2
Voigt (vi ⊗ vj + vj ⊗ vi), with vi the i-th column of eigenvector matrix

V . In addition, using Eq. (A.2.18), the differential of invariants expressed in the principal

space q̂ =
√

3
2
ẑ and r̂ =

√
q̂2 + ε2 can be written as

dq̂ =
3

4q̂
dẑ =

3

2q̂
v̂Tdevdσ̂, dr̂ =

3

4r̂
dẑ =

3

2r̂
v̂Tdevdσ̂. (A.2.24)
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APPENDICES B. CONVERSION OF TENSORS AND THEIR OPERATIONS

TO VECTOR AND MATRIX FORMAT
This section detailed the conversion of some useful tensors and their operations to

vector/matrix representation (vectorization and matricitazion) for the 3D case (N = 3)

necessary to implement numerically the concrete models. This conversion is elaborated

keeping identical results between tensors and vectors/matrix representation.

First, to elaborate this conversion, any symmetric second-order tensorA ≡ Aij can be

written as

A =


A11 A12 A13

A22 A23

sym A33

 . (B.0.1)

Then, this tensor can be vectorized in a RN vector using Voigt’s notation as a =

Voigt(A), where Voigt(·) operation is given by

Voigt(A) = [A11, A22, A33, A12, A23, A13]T . (B.0.2)

Moreover, any third-order tensor A3 can be represented in a R2NxN matrix as A3 =

Matr3(A), where Matr3(·) operation is expressed as

Matr3(A) = [a1,a2, · · · ,aN ], (B.0.3)

where ak = Voigt(Ak) and Ak ≡ Akij . In contrast, any symmetric fourth-order tensor

A ≡ Aijkl that satisfy the condition Aijkl = Aijlk = Ajikl can be matricized in a R2Nx2N
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matrix asA = Matr4(A), where Matr4(·) is given by

Matr4(A) =



A1111 A1122 A1133 A1123 A1113 A1112

A2211 A2222 A2233 A2223 A2213 A2212

A3311 A3322 A3333 A3323 A3313 A3312

A2311 A2322 A2333 A2323 A2313 A2312

A1311 A1322 A1333 A1323 A1313 A1312

A1211 A1222 A1233 A1223 A1213 A1212


. (B.0.4)

This condition occur e.g. when a fourth-order tensor A is elaborated by two symmetri-

cal second-order tensorsB andC, thus A = B⊗C. Moreover, if the fourth-order tensor

satisfy the relation Aijkl = Aklij , their representative matrix A is symmetric. Example

of this is when a fourth-order tensor A can be defined as the product of two identical

second-order tensorsB, thus A = B ⊗B.

Table II.0.1 shown the conversion for some useful tensors and their operations used in

this article. Additionally, the following special cases are considered. The relation between

stress ε and strain tensor ε (Hooke′s law), can be converted as follows

σ = De : ε→ σ = Deε, (B.0.5)

where σ = Voigt(σ), De = Matr4(De) and ε = RVoigt(ε) is the strain vector with en-

gineering strains, thus ε = [ε11, ε22, ε33, γ13, γ23, γ12]T , which is commonly used in com-

puter software. Moreover, using this strain vector, the inverse relation can be established

as

ε = Ce : σ → ε = Ceσ, (B.0.6)

where Ce = Matr4(Ce)R2. Similarly, the inner product between any second-order ten-

sor A and the strain tensor is convert as A : ε → aTε. Also, the double inner product

among any two second-order tensors A, B and the compliance tensor Ce is converted as

A : Ce : B → aTCeb.
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For the other hand, the inner product between two eigenvalue tensors Â and B̂ can

be converted as Â : B̂ → âT b̂. Also, the relation Id : Id = Id can be converted as

→ IdRId = Id. Finally, the relations of Eqs. (A.1.19) and (A.1.20) can be converted as

follows

dσ̂ = ETRDedε dŝ = 2µETRIddε. (B.0.7)
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â
i

∂
A

=
E
ii A

-
∂
â
i

∂
A

=
e
ii
T

a
R

Fo
ur

th
-o

rd
er

de
riv

at
iv

e
ei

ge
nv

al
ue

te
ns

or
∂
Â
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APPENDICES C. CALCULATION OF SOME DERIVATIVES OF CONCRETE

MODELS FOR 3D FORMULATION
1. DETAILED CALCULATION OF DERIVATIVE ∂∆γ

∂Q
FOR LLF AND WLF MOD-

ELS

This appendix present the steps necessaries to determinate the derivative ∂∆γ
∂q

ex-

pressed in Eq. (2.3.110) required to calculate the consistency operator ∆γ for the LLF

and WLF models. Specifically, they are developed the derivatives for the LLF model,

due that is more general than the WLF model. For the sake of simplicity, is omitted the

subscript ’n + 1’ in all variables hereafter. Also, all derivatives are taken with respect to

variable q̄ and the variable ∆γ′ is denoted as the derivative ∂∆γ
∂q

.

First, using the relations r̄ =
√
q̄2 + ε2 and w̄ = q̄/r̄, it follows that their derivatives

are given by
∂r̄

∂q̄
=
q̄

r̄
,

∂w̄

∂q̄
= ā0, (C.1.1)

with ā0 = ε2/r̄3. Next, using the chain rule, the derivative of variable φ, given by

Eq. (2.1.17), is expressed as ∂φ
∂q̄

= ˆ̄Φ : ∂ ˆ̄σ
∂q̄

, where ˆ̄Φ is defined in Eq. (2.4.146). More-

over, using Eq. (2.3.98) and Eq. (C.1.1), the derivative of updated principal effective stress

tensor can be written as
∂ ˆ̄σ

∂q̄
= −

(
∆γ′ ˆ̄B0 + ∆γ ˆ̄B1

)
, (C.1.2)

where ˆ̄B0 = 3µw̄ˆ̄ttr+η̄KI and ˆ̄B1 = 3µā0
ˆ̄ttr. Similarly, using Eq. (2.3.96), the derivative

of updated principal effective flow tensor is expressed as

∂ ˆ̄N

∂q̄
=

3

2
ā0

ˆ̄ttr. (C.1.3)

Also, using the chain rule, the derivative of variables θ±1 and θ±2 (Eqs. (2.3.105) and (2.3.106))

are given by ∂θ±1
∂q̄

= ∂φ
∂q̄

and ∂θ±2
∂q̄

= 1
g±

∂σ±

∂κ±
∂κ±

∂q̄
. Then, the derivative of the variables ϕ±
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(Eq. (2.3.104)) are expressed as

∂ϕ±

∂q̄
= θ±2

∂φ

∂q̄
+

1

g±
θ±1 J

±
κ

∂κ±

∂q̄
, (C.1.4)

where J±κ := ∂σ±

∂κ±
. Hence, using the obtained relations, the derivative of the variables

h± = ˆ̄n±ϕ± are given by

∂h±

∂q̄
= −ˆ̄n±θ±2

ˆ̄Φ :
(

∆γ′ ˆ̄B0 + ∆γ ˆ̄B1

)
+ b̂±10

∂κ±

∂q̄
+ b±2 , (C.1.5)

with b̂±10 = 1
g±

ˆ̄n±θ±1 J
±
κ and b±2 = 3

2
ā0ϕ

±ˆ̄ttr±. Consequently, using this relation, the deriva-

tives of hardening variables κ± are expressed as

∂κ±

∂q̄
= b̂±30∆γ′ + b̂±40∆γ + ∆γb̂±10

∂κ±

∂q̄
, (C.1.6)

where b̂±30 = h± − ∆γ ˆ̄n±θ±2 (Φ : ˆ̄B0) and b̂±40 = b±2 − ∆γ ˆ̄n±θ±2 (Φ : ˆ̄B1). Solving this

equation, the derivative ∂κ±

∂q̄
can be rewritten finally as

∂κ±

∂q̄
= b̂±3 ∆γ′ + b̂±4 ∆γ, (C.1.7)

with b̂±3 = b̂±20b̂
±
30 and b̂±4 = b̂±20b̂

±
40, with b̂±20 = (1−∆γb̂±10)−1. Then, using these relations

and the chain rule, the derivatives for the positive/negative uniaxial effective stress σ̄± law

are expressed as
∂σ̄±

∂q̄
=
∂σ̄±

∂κ±
∂κ±

∂q̄
= b±3 ∆γ′ + b±4 ∆γ, (C.1.8)

where b±3 = J̄±κ b̂
±
3 and b±4 = J̄±κ b̂

±
4 , with J̄±κ := ∂σ̄±

∂κ±
their hardening modulus. Moreover,

the derivative of updated parameter β, given by Eq. (2.3.107), is written as

∂β

∂q
= b5∆γ′ + b6∆γ, (C.1.9)
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where b5 = (1−α)
(σ̄−)2

(σ̄+b−3 − σ̄−b+
3 ) and b6 = (1−α)

(σ̄−)2
(σ̄+b−4 − σ̄−b+

4 ). Then, the derivative of

the variable ρ̂1 = βH̃+(ˆ̄σ+) + δH̃−(ˆ̄σ+) is expressed as

∂ρ̂1

∂q̄
= b̂7∆γ′ + b̂8∆γ, (C.1.10)

where b̂7 = b5H̃
+(ˆ̄σ+) − ρ̂2

ˆ̄b0+ and b̂8 = b6H̃
+(ˆ̄σ+) − ρ̂2

ˆ̄b1+, with ρ̂2 = β ∂H̃
+

∂ ˆ̄σ+
+ δ ∂H̃

−

∂ ˆ̄σ+
,

ˆ̄b0+ = 3µw̄ˆ̄ttr+ + η̄K and ˆ̄b1+ = 3µā0
ˆ̄ttr+.

Finally, the derivative of numerator and denominator f̄1, f̄2 of expression Eq. (2.3.109),

can be written as

∂f̄1

∂q̄
=
∂ρ̂1

∂q̄
ˆ̄σtr

1 − (1− α)
∂σ̄−

∂q̄
= b7∆γ′ + b8∆γ, (C.1.11)

∂f̄2

∂q̄
= 3µ

∂w̄

∂q̄
+
∂ρ̂1

∂q̄
ˆ̄b0+ + ρ̂1

∂ˆ̄b0+

∂q̄
= b9 + b10∆γ′ + b11∆γ, (C.1.12)

where b7 to b11 are constants expressed as

b7 = b̂7 ˆ̄σtr
+ − (1− α)b−3 , b8 = b̂8 ˆ̄σtr

+ − (1− α)b−4 ,

b9 = 3µā0

(
1 + ρ̂1

ˆ̄ttr+

)
, b10 = b̂7

ˆ̄b0+, b11 = b̂8
ˆ̄b0+.

Thus, the derivative of discrete consistency operator ∆γ can be expressed as

∆γ′ =
1

f̄2

[b7∆γ′ + b8∆γ −∆γ(b9 + b10∆γ′ + b11∆γ)] . (C.1.13)

Solving this linear algebraic expression for the variable ∆γ′, gives the expression of

Eq. (2.3.110). It should be noted that, setting the variables θ±2 = 1 and b̂±10 = 0, it can

obtain the expressions adequate for the derivatives of the WLF model.
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2. DETAILED CALCULATION OF DERIVATIVES TO SOLVE HARDENING VEC-

TOR κ FOR LLF AND WLF MODELS

This appendix present the steps necessary to determinate the derivatives expressed in

Eq. (2.3.113) required to calculate the hardening vector κ = [κ+, κ−]T . For simplicity of

the presentation, there are omitted the subscript ’n+1’ in all variables hereafter.

Derivative ∂H

∂ ˆ̄σ

In this subsection, the derivatives are taken with respect to principal effective stress

tensor ˆ̄σ. First, using the relation ∂q̄
∂ ˆ̄σ

= 3
2

ˆ̄s
q̄
, the Eq. (C.1.1) and the chain rule, the deriva-

tive of positive/negative part of principal effective flow tensor, given by Eq. (2.3.97), can

be expressed as
∂ ˆ̄n±

∂ ˆ̄σ
=

3

2
ˆ̄ttr±
∂w̄

∂q̄

∂q̄

∂ ˆ̄σ
= ā3

ˆ̄ttr±
ˆ̄ttr, (C.2.1)

with ā3 = 9/4ā0. Next, using the relation ∂θ±1
∂ ˆ̄σ

= ˆ̄Φ, the derivative of the variable ϕ±

(Eq. (2.3.104)), is written as ∂ϕ±

∂ ˆ̄σ
= θ±2

ˆ̄Φ. Thus, the derivative of the variables h± = ϕ± ˆ̄n±

are given by
∂h±

∂ ˆ̄σ
= ˆ̄n±θ±2

ˆ̄Φ + ā3ϕ
±ˆ̄ttr±

ˆ̄ttr. (C.2.2)

Hence, rewritten this relation in a matrix format, the derivative of matrix H can be

expressed as
∂H

∂ ˆ̄σ
= ˆ̄Y ⊗ ˆ̄Φ + ā3

ˆ̄Z ⊗ ˆ̄ttr, (C.2.3)

where ˆ̄Y and ˆ̄Z are matrices given by

ˆ̄Y =

ˆ̄n+θ+
2 0 0

0 0 ˆ̄n−θ−2

 , ˆ̄Z =

ϕ+ˆ̄ttr+ 0 0

0 0 ϕ−ˆ̄ttr−

 .
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Derivative ∂w̄
∂∆γ

and ∂ ˆ̄σ
∂∆γ

In this subsection, the derivatives are taken with respect to variable ∆γ. First, using

the relation r̄ =
√
q̄2 + ε2 and Eq. (2.3.101), the derivative of variables r̄ and q̄ are given

by
∂r̄

∂∆γ
= w̄q̄,

∂q̄

∂∆γ
= −3µ

(
∂w̄

∂∆γ
∆γ + w̄

)
. (C.2.4)

Moreover, the derivative of the relation w̄ = q̄/r̄ is given by ∂w̄
∂∆γ

= ā0
∂q̄
∂∆γ

, with

ā0 = ε2/r̄3. Thus, inserting Eq. (C.2.4) into this relation, the derivative ∂w̄
∂∆γ

can be solved

as
∂w̄

∂∆γ
= −3µā2w̄, (C.2.5)

where ā2 = ā0ā1 with ā1 = (1 + 3µā0∆γ)−1. Finally, using this relation and Eq. (2.3.98),

the derivative of principal effective stress tensor ˆ̄σ is given by

∂ ˆ̄σ

∂∆γ
= − ˆ̄B0 + 9µ2ā2w̄∆γˆ̄ttr. (C.2.6)

Derivative ∂∆γ
∂κ

In this subsection, the derivatives are taken with respect to hardening vector κ =

[κ+, κ−]T . Also, the variable ∆γ ′ is denoted as the derivative ∂∆γ
∂κ

. First, the derivatives

of uniaxial effective stress σ̄±(κ±) laws are expressed as

∂σ̄±

∂κ
:= v±, v+ =

J̄+
κ

0

 , v− =

 0

J̄−κ

 , (C.2.7)

with J̄±κ := ∂σ̄±

∂κ±
. For other hand, using the chain rule, the derivative of the principal

effective stress tensor can be expressed as ∂ ˆ̄σ
∂κ

= ∂ ˆ̄σ
∂∆γ
⊗∆γ ′, with ∂ ˆ̄σ

∂∆γ
given by Eq. (C.2.6).

Thus, the derivative of the maximum principal effective stress is written as

∂ ˆ̄σ+

∂κ
= h0∆γ

′, (C.2.8)
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where h0 = −ˆ̄b0+ + 9µ2ā2w̄∆γˆ̄ttr+, with ˆ̄b0+ = Î : ˆ̄B0 and ˆ̄ttr+ = Î : ˆ̄ttr. Next, using

Eq. (C.2.7), the derivative of variable β (Eq. (2.3.107)) is given by

∂β

∂κ
=

(1− α)

(σ̄+)2
v0, v0 = σ̄+v− − σ̄−v+ =

−σ̄−J̄+
κ

σ̄+J̄−κ

 . (C.2.9)

Then, the derivative of variable ρ̂1 = βH̃+(ˆ̄σ+) + δH̃−(ˆ̄σ+) is expressed as

∂ρ̂1

∂κ
= H̃+(ˆ̄σ+)

(1− α)

(σ̄+)2
v0 + ρ̂2h0∆γ

′, (C.2.10)

where ρ̂2 = β ∂H̃
+

∂ ˆ̄σ+
+ δ ∂H̃

−

∂ ˆ̄σ+
. In addition, using Eq. (C.2.5), the derivative of variable ˆ̄b0+

(Eq. (2.3.99)) is written as ∂ˆ̄b0+
∂κ

= −9µ2ā2w̄ˆ̄ttr+∆γ ′.

Finally, using this last relation and Eqs. (C.2.5), (C.2.7) and (C.2.10), the derivatives

of the numerator f̄1 and the denominator f̄2 of expression Eq. (2.3.109) can be written,

respectively, as

∂f̄1

∂κ
= (1− α)

(
ˆ̄σtr

+H̃
+(ˆ̄σ+)

(σ̄+)2
v0 − v−

)
+ ˆ̄σtr

+ ρ̂2h0∆γ
′, (C.2.11)

∂f̄2

∂κ
=
[
−9µ2ā2w̄(1 + ρ̂1

ˆ̄ttr+) + b0+ρ̂2h0

]
∆γ ′ + ˆ̄b0+H̃

+(ˆ̄σ+)
(1− α)

(σ̄+)2
v0. (C.2.12)

Thus, using Eqs. (2.3.99) and (2.3.109), the derivative of discrete consistency operator

∆γ can be expressed as

∆γ ′ =
1

f̄2

(
∂f̄1

∂κ
−∆γ

∂f̄2

∂κ

)
=

1

f̄2

(
l0 + L1∆γ

′) , (C.2.13)

where l0 and L1 are given by

l0 = (1− α)

(
〈ˆ̄σ+〉+

(σ̄+)2
v0 − v−

)
, L1 = ρ̂2h0 ˆ̄σ1 + 9µ2ā2w̄∆γ(1 + ρ̂1

ˆ̄ttr+). (C.2.14)
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Finally, solving the linear algebraic expression of Eq. (C.2.13) for ∆γ ′ gives

∆γ ′ =
1

(f̄2 − L1)
l0. (C.2.15)

Derivative ∂H
∂κ

In this subsection, the derivatives are taken with respect to hardening vector κ. First,

using Eq. (2.3.104), the derivative of relation ϕ± = θ±1 θ
±
2 is given by ∂ϕ±

∂κ±
= θ±1

∂θ±2
∂κ±

=

1
g±
θ±1 J

±
κ . Then, the derivative of the relations h± = ϕ± ˆ̄n± are given by

∂h±

∂κ±
= ˆ̄n±

∂ϕ±

∂κ±
=

1

g±
ˆ̄n±θ±1 J

±
κ = b̂±10. (C.2.16)

Thus, the derivative of matrixH is given by

∂H

∂κ
= U = diag

(
b̂+

10, b̂
−
10

)
. (C.2.17)
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APPENDICES D. DETAILED CALCULATION OF SOME DERIVATIVES OF

CONCRETE MODELS FOR PLANE STRESS FORMULA-

TION
1. DETAILED CALCULATION OF DERIVATIVE ∂F

∂∆γ
FOR THE DPH MODEL

This appendix present the steps necessaries to determinate the derivative ∂F
∂∆γ

ex-

pressed in Eq. (3.2.93) and required to calculate the consistency operator ∆γ for the DPH

model. For the sake of simplicity, is omitted the subscript ’n+1’ in all variables hereafter.

Derivative ∂z
∂∆γ

and ∂σ
∂∆γ

In this subsection, the derivatives are taken with respect to variable ∆γ. First, the

derivative of variable q =
√

3
2

√
z and r =

√
q2 + ε2 are expressed as

∂q

∂∆γ
=

3

4q

∂z

∂∆γ
,

∂r

∂∆γ
=

3

4r

∂z

∂∆γ
. (D.1.1)

.

Next, using Eq. (3.2.89), the variable z = σTPσ can be expressed as

z = τ tr T B̄2P̄ τ tr

=
1

3
b̄2

1(τ tr
11)2 + b̄2

2

[
(τ tr

22)2 + 2(τ tr
22)2
]

=
1

3
g2

1 ā
2
1 + g2ā

2
2, (D.1.2)

where g1 = τ tr
11 −

√
2λη̄∆γ and g2 = (τ tr

22)
2

+ 2 (τ tr
12)

2. Now, the derivative of variables

ā1, ā2 (Eq. (3.2.88)), g1 and g2 are given by

∂ā1

∂∆γ
= −λā2

1

(
u∆γ

∂z

∂∆γ
+ t

)
,

∂ā2

∂∆γ
= −2µā2

2

(
u∆γ

∂z

∂∆γ
+ t

)
,

∂g1

∂∆γ
= −
√

2η̄λ,
∂g2

∂∆γ
= 0, (D.1.3)
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where u = − 9
8r3

. Thus, using these expressions, the derivative of the variable z is written

as

∂z

∂∆γ
=

2

3

(
ā2

1g1
∂g1

∂∆γ
+ g2

1 ā1
∂ā1

∂∆γ

)
+ 2g2ā2

∂ā2

∂∆γ
+ ā2

2

∂g2

∂∆γ

= −2

(
ψt+

√
2

3
η̄λā2

1g1 +
∂z

∂∆γ
uψ∆γ

)
, (D.1.4)

where ψ = 1
3
λā3

1g
2
1 + 2µā3

2g2. Then, solving for this expressoin the derivative of z gives

∂z

∂∆γ
= −

ψt+
√

2
3
η̄λā2

1g1

1
2

+ ψu∆γ
. (D.1.5)

Finally, using the relation Eq. (3.2.89), the derivative of stress vector is given by

∂σ

∂∆γ
= QT ∂B̄

∂∆γ
τ tr
n+1, (D.1.6)

where ∂B̄
∂∆γ

is given by

∂B̄

∂∆γ
= diag

(
∂b̄1

∂∆γ
,
∂b̄2

∂∆γ
,
∂b̄2

∂∆γ

)
= diag

{
−λā1

τ tr
11

[√
2η̄ + g1ā1

(
u∆γ

∂z

∂∆γ
+ t

)]
,
∂ā2

∂∆γ
,
∂ā2

∂∆γ

}
.

Derivative ∂F
∂∆γ

First, using the relation Eq. (D.1.6), the derivative of hydrostatic pressure p is given by

∂p

∂∆γ
=

1

3
1T

∂σ

∂∆γ
=

√
2

3

∂b̄1

∂∆γ
τ tr

11. (D.1.7)

For the other hand, using Eq. (3.2.92) and the chain rule, the derivative of cohesion

law is given by
∂c

∂∆γ
=
∂c

∂α

∂α

∂∆γ
= Jαξ, (D.1.8)
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where Jα ∂c∂α . Finally, using these relations and Eq. (D.1.1), the derivative of yield criterion

F , given by Eq. (3.2.93), can be written as

∂F

∂∆γ
=

√
2η

3

∂b̄1

∂∆γ
τ tr

11 +
3

4q

∂z

∂∆γ
− ξ2Jα. (D.1.9)

2. DETAILED CALCULATION OF DERIVATIVE ∂F̄
∂∆γ

FOR THE LLF AND WLF

MODELS

This appendix present the steps necessaries to determinate the derivative ∂F̄
∂∆γ

ex-

pressed in Eq. (3.2.115) required to calculate the consistency operator ∆γ for the LLF

and WLF models. Specifically, they are developed the derivatives for the LLF model,

due that is more general than the WLF model. For the sake of simplicity, is omitted the

subscript ’n+1’ in all variables hereafter.

Derivative ∂z̄
∂∆γ

and ∂ ˆ̄σ
∂∆γ

In this subsection, the derivatives are taken with respect to variable ∆γ. First, the

derivative of variable q̄ =
√

3
2

√
z̄ and r̄ =

√
q̄2 + ε2 are expressed as

∂q̄

∂∆γ
=

3

4q̄

∂z̄

∂∆γ
,

∂r̄

∂∆γ
=

3

4r̄

∂z̄

∂∆γ
. (D.2.1)

Next, using Eq. (3.2.105), its convenient to express the variable z̄ = ˆ̄σT P̂ ˆ̄σ as follows

z̄ = ˆ̄τ tr T ˆ̄B2 ˆ̄P ˆ̄τ tr

=
1

3
ˆ̄b2

1

(
ˆ̄τ tr
1

)2
+ ˆ̄b2

2

(
ˆ̄τ tr
2

)2

=
1

3
ĝ2

1
ˆ̄a2

1 + ĝ2ˆ̄a2
2, (D.2.2)
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where ĝ1 = ˆ̄τ tr
1 −

√
2λη̄∆γ and ĝ2 =

(
ˆ̄τ tr
2

)2. Now, the derivative of variables ˆ̄a1, ˆ̄a2

(Eq. (3.2.104)), ĝ1 and ĝ2 are expressed as

∂ˆ̄a1

∂∆γ
= −λˆ̄a2

1

(
ū∆γ

∂z̄

∂∆γ
+ t̄

)
,

∂ˆ̄a2

∂∆γ
= −2µˆ̄a2

2

(
ū∆γ

∂z̄

∂∆γ
+ t̄

)
,

∂ĝ1

∂∆γ
= −
√

2η̄λ,
∂ĝ2

∂∆γ
= 0, (D.2.3)

where ū = − 9
8r̄3

. Thus, using these relations, the derivative of the variable z̄ is expressed

as

∂z̄

∂∆γ
=

2

3

(
ˆ̄a2

1ĝ1
∂ĝ1

∂∆γ
+ ĝ2

1
ˆ̄a1
∂ˆ̄a1

∂∆γ

)
+ 2ĝ2ˆ̄a2

∂ˆ̄a2

∂∆γ

= −2

(
ψ̂t̄+

√
2

3
η̄λˆ̄a2

1ĝ1 +
∂z̄

∂∆γ
ūψ̂∆γ

)
, (D.2.4)

where ψ̂ = 1
3
λˆ̄a3

1ĝ
2
1 + 2µˆ̄a3

2ĝ2. Then, solving this expression for the derivative of z̄ gives

∂z̄

∂∆γ
= −

ψ̂t̄+
√

2
3
η̄λˆ̄a2

1ĝ1

1
2

+ ψ̂ū∆γ
, (D.2.5)

where ∂ ˆ̄B
∂∆γ

is given by

∂ ˆ̄B

∂∆γ
= diag

(
∂ˆ̄b1

∂∆γ
,
∂ˆ̄b2

∂∆γ

)

= diag

{
−λ

ˆ̄a1

ˆ̄τ1
tr

[√
2η̄ + ĝ1ˆ̄a1

(
ū∆γ

∂z̄

∂∆γ
+ t̄

)]
,
∂ˆ̄a2

∂∆γ

}
. (D.2.6)

Then, using Eq. (3.2.105), the derivative of principal effective stress vector ˆ̄σ is given

by
∂ ˆ̄σ

∂∆γ
= Q̂T ∂

ˆ̄B

∂∆γ
ˆ̄τ tr. (D.2.7)



251

Moreover, the derivative of maximum principal effective stress ˆ̄σ+ = 1̂T ˆ̄σ is written

as
∂ ˆ̄σ+

∂∆γ
=

√
2

2

(
ˆ̄τ tr
1

∂ˆ̄b1

∂∆γ
− ˆ̄τ tr

2

∂ˆ̄b2

∂∆γ

)
. (D.2.8)

Derivative ∂F
∂∆γ

First, using Eqs. (3.2.105), (D.2.1) and (D.2.7), the derivative of principal effective

flow vector ˆ̄n, given by Eq. (3.2.98), is expressed as

∂ ˆ̄n

∂∆γ
=

3

2r̄3
P̂ Q̂T

(
r̄2 ∂

ˆ̄B

∂∆γ
− 3

4

∂z̄

∂∆γ
ˆ̄B

)
ˆ̄τ tr. (D.2.9)

Then, their positive/negative part can be expressed as ∂ ˆ̄n±

∂∆γ
= 1̂T±

∂ ˆ̄n
∂∆γ

. For other

hand, using the chain rule, the derivative of variable φ (Eq. (3.1.18)) is expressed as
∂φ
∂∆γ

= ˆ̄ΦT ∂ ˆ̄σ
∂∆γ

, where ˆ̄Φ is defined by Eq. (3.3.163). Also, using the chain rule, the

derivative of variables θ±1 and θ±2 (Eqs. (3.2.111) and (3.2.112)) are given by ∂θ±1
∂∆γ

= ∂φ
∂∆γ

and ∂θ±2
∂q̄

= 1
g±

∂σ±

∂κ±
∂κ±

∂∆γ
, respectively. Then, the derivative of the variable ϕ (Eq. (3.2.110))

are expressed as
∂ϕ±

∂∆γ
= θ±2

ˆ̄ΦT ∂ ˆ̄σ

∂∆γ
+

1

g±
θ±1 J

±
κ

∂κ±

∂∆γ
, (D.2.10)

where J±κ := ∂σ±

∂κ±
. Hence, using these obtained relations, the derivative of the variable

h± = ˆ̄n±ϕ± (Eq. (3.2.109)) is given by

∂h±

∂∆γ
= ˆ̄n±θ±2

ˆ̄ΦT ∂ ˆ̄σ

∂∆γ
+ b̂±10

∂κ±

∂∆γ
+ b±2 , (D.2.11)

with b̂±10 = 1
g±

ˆ̄n±θ±1 J
±
κ and b±2 = ϕ± ∂ ˆ̄n

∂∆γ
. Consequently, using this relation, the derivatives

of hardening variables κ± (Eq. (3.2.109)) are expressed as

∂κ±

∂∆γ
= h± + ∆γ

(
b̂±40 + b̂±10

∂κ±

∂∆γ

)
, (D.2.12)
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with b̂±40 = b±2 + ˆ̄n±θ±2
ˆ̄ΦT ∂ ˆ̄σ

∂∆γ
. Solving this equation for the derivative ∂κ±

∂∆γ
gives

∂κ±

∂∆γ
= b̂±3 + ∆γb̂±4 , (D.2.13)

where b̂±3 = b̂±20h
± and b̂±4 = b̂±20b̂

±
40, with b̂±20 =

(
1−∆γb̂±10

)−1

. Then, using this relation

and the chain rule, the derivatives for the positive/negative uniaxial effective stress law σ̄±

are expressed as
∂σ̄±

∂∆γ
=
∂σ̄±

∂κ±
∂κ±

∂∆γ
= b±3 + ∆γb±4 , (D.2.14)

where b±3 = J̄±κ b̂
±
3 and b±4 = J̄±κ b̂

±
4 , with J̄±κ := ∂σ̄±

∂κ±
their effective hardening modulus.

Moreover, using this relation, the derivative of updated variable β (Eq. (3.2.113)) is written

as
∂β

∂∆γ
= b5 + ∆γb6, (D.2.15)

where b5 = (1−α)
(σ̄−)2

(σ̄+b−3 − σ̄−b+
3 ) and b6 = (1−α)

(σ̄−)2
(σ̄+b−4 − σ̄−b+

4 ). Then, the derivative of

variable β̂1 = βH̃+(ˆ̄σ+) is given by

∂β̂1

∂∆γ
= b̂7 + ∆γb̂8, (D.2.16)

where b̂7 = b5H̃
+(ˆ̄σ+) + β̂2

∂ ˆ̄σ1
∂∆γ

and b̂8 = b6H̃
+(ˆ̄σ+), with β̂2 = β dH̃

+

dˆ̄σ+
. For the other

hand, using the relation Eq. (D.2.7), the derivative of hydrostatic pressure p̄ is given by

∂p̄

∂∆γ
=

1

3
1̂T

∂ ˆ̄σ

∂∆γ
=

√
2

3

∂ˆ̄b1

∂∆γ
ˆ̄τ tr
1 . (D.2.17)

Finally, using the relations Eqs. (D.2.1), (D.2.8), (D.2.14), (D.2.16) and (D.2.17), the

derivative of residual function F̄ of expression Eq. (3.2.114), can be written as

∂F̄

∂∆γ
=
√

2ˆ̄τ tr
1

∂ˆ̄b1

∂∆γ

(
η

3
+
β̂1

2

)
−
√

2

2
β̂1 ˆ̄τ tr

2

∂ˆ̄b2

∂∆γ
+

3

4q̄

∂z̄

∂∆γ

+ ˆ̄σ+(b̂7 + ∆γb̂8)− (1− α)
(
b−3 + ∆γb−4

)
(D.2.18)
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It should be noted that, setting the variables θ±2 = 1 and b̂±10 = 0, it can obtain the

expressions for derivatives of the WLF model.

3. DETAILED CALCULATION OF DERIVATIVES TO SOLVE κ FOR THE LLF

AND WLF MODELS

This appendix present the steps necessary to determinate the derivatives expressed

in Eq. (3.2.118) and used to calculate the hardening vector κn+1. For simplicity of the

presentation, there are omitted the subscript ’n+1’ in all variables hereafter.

Derivative ∂H

∂ ˆ̄σ

In this subsection, the derivatives are taken with respect to updated principal effective

stress vector ˆ̄σ. First, using Eq. (A.2.18), the derivative of variables q̄ =
√
J̄2 and r̄ =√

q̄2 + ε2 can be expressed as

∂q̄

∂ ˆ̄σ
=

3

2q̄
ˆ̄vdev,

∂r̄

∂ ˆ̄σ
=

3

2r̄
ˆ̄vdev, (D.3.1)

with ˆ̄vdev = P̂ ˆ̄σ. Then, using these relations, the derivative of principal effective flow

vector ˆ̄n (Eq. (3.2.98)) is given by

∂ ˆ̄n

∂ ˆ̄σ
=

3

2r̄3

(
r̄2P̂ − 3

2
ˆ̄vdev ⊗ ˆ̄vdev

)
. (D.3.2)

Next, using the relation ∂θ±1
∂ ˆ̄σ

= ∂φ
∂ ˆ̄σ

= ˆ̄Φ (Eq. (3.3.163)) and ∂θ±2
∂ ˆ̄σ

= 0, the derivative

of variable ϕ± (Eq. (3.2.110)), is written as ∂ϕ±

∂ ˆ̄σ
= θ±2

ˆ̄Φ. Thus, the derivative of variable

h± = ϕ± ˆ̄n± (Eq. (3.2.109)) is given by

∂h±

∂ ˆ̄σ
= ˆ̄n±θ±2

ˆ̄Φ + ϕ±
∂ ˆ̄n±

∂ ˆ̄σ
. (D.3.3)
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Hence, rewritten this relation, the derivative of matrixH can be expressed as

∂H

∂ ˆ̄σ
= ˆ̄y ⊗ ˆ̄Φ + ˆ̄Z ⊗ ∂ ˆ̄n

∂ ˆ̄σ
, (D.3.4)

where ˆ̄y and ˆ̄Z are given by

ˆ̄y =

ˆ̄n+θ+
2

ˆ̄n−θ−2

 , ˆ̄Z = diag
(
ϕ+, ϕ−

)
.

Derivative ∂∆γ
∂κ

In this subsection, the derivatives are taken with respect to hardening vector κ. Also,

the variable ∆γ ′ is denoted as the derivative ∂∆γ

∂κ
. First, the derivatives of uniaxial effec-

tive stress σ̄±(κ±) are expressed as

∂σ̄±

∂κ
:= v±, v+ =

J̄+
κ

0

 , v− =

 0

J̄−κ

 , (D.3.5)

with J̄±κ := ∂σ̄±

∂κ±
. Next, using the chain rule, the derivative of the principal effective stress

tensor can be expressed as
∂ ˆ̄σ

∂κ
=

∂ ˆ̄σ

∂∆γ
⊗∆γ ′. (D.3.6)

Hence, the derivative of the maximum principal effective stress is written as ∂ ˆ̄σ+
∂κ

=

∂ ˆ̄σ+
∂∆γ

∆γ ′. In the same way, using Eqs. (D.2.1), (D.2.7) and (D.3.6), the derivative of

variables p̄ and q̄ are written, respectively, as

∂p̄

∂κ
=

1

3
1̂T
∂ ˆ̄σ

∂κ
⊗∆γ ′ =

√
2

3

∂ˆ̄b1

∂∆γ
ˆ̄τ tr∆γ ′, (D.3.7)

∂q̄

∂κ
=

∂q̄

∂∆γ
∆γ ′ =

3

4q̄

∂z̄

∂∆γ
∆γ ′ (D.3.8)
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For other hand, using Eq. (D.3.5), the derivative of variable β (Eq. (3.2.113)) is given

by

∂β

∂κ
=

(1− α)

(σ̄+)2
v0, v0 = σ̄+v− − σ̄−v+ =

−σ̄−J̄+
κ

σ̄+J̄−κ

 (D.3.9)

Then, the derivative of variable β̂1 = βH̃+(ˆ̄σ+) is given by

∂β̂1

∂κ
= H̃+(ˆ̄σ+)

(1− α)

(σ̄+)2
v0 + β̂2

∂ ˆ̄σ+

∂∆γ
∆γ ′, (D.3.10)

where β̂2 = β dH̃
+

dˆ̄σ+)
. Finally, using all these expressions and the relation β〈ˆ̄σ+〉+ = β̂1 ˆ̄σ+),

the derivative of the yield criterion F̄ at consistency condition (Eq. (3.2.114)) can be writ-

ten as
∂F

∂κ
= L1∆γ

′ + l0 = 0, (D.3.11)

where l0 and L1 are given by

l0 = (1− α)

(
〈ˆ̄σ1〉+

(σ̄+)2
v0 − v−

)
,

L1 =
√

2ˆ̄τ tr
1

∂ˆ̄b1

∂∆γ

(
η

3
+
β̂3

2

)
−
√

2

2
β̂3 ˆ̄τ tr

2

∂ˆ̄b2

∂∆γ
+

3

4q̄

∂z̄

∂∆γ
.

Thus, solving the derivative of discrete consistency operator ∆γ ′ gives

∆γ ′ = − 1

L1

l0. (D.3.12)

Derivative ∂H
∂κ

In this subsection, the derivatives are taken with respect to hardening vector κ. First,

using the chain rule, the derivative of variable ϕ± (Eq. (3.2.110)) is given by ∂ϕ±

∂κ±
=

θ±1
∂θ±2
∂κ±

= 1
g±
θ±1 J

±
κ . Then, the derivative of relation h± = ϕ± ˆ̄n± (Eq. (3.2.109)) is given

by
∂h±

∂κ±
= ˆ̄n±

∂ϕ±

∂κ±
=

1

g±
ˆ̄n±θ±1 J

±
κ = b̂±10. (D.3.13)
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Thus, the derivative of matrixH is given by

∂H

∂κ
= U = diag

(
b̂+

10, b̂
−
10

)
. (D.3.14)
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APPENDICES E. ALTERNATIVE DERIVATION OF CONSISTENT TAN-

GENT STIFFNESS TENSOR FOR PLANE STRESS FORMU-

LATION
1. ALTERNATIVE DERIVATION OF CONSISTENT TANGENT STIFFNESS MA-

TRIX FOR THE DPH MODEL

This appendix present an alternative calculation for the consistent tangent stiffness

matrix of the DPH model, which are based in the differential of updated stress vector.

For simplicity of the presentation, there are omitted the subscript ’n+1’ in all variables

hereafter.

First, using the relation of Eq. (A.2.21), the differential of updated flow vector, given

by Eq. (3.2.82), is expressed as follows

dn =
3

2r3

[
r2P − 3

2
(vdev ⊗ vdev)

]
dσ = A0dσ. (E.1.1)

Then, using the relation dp = 1
3
1Tdσ and Eqs. (3.3.145) and (A.2.21), the differential

of yield criterion at consistency condition (Eq. (3.2.93)) is written as

dF =
η

3
1Tdσ +

3

2q
vTdevdσ − ξ2Jαd∆γ = 0. (E.1.2)

Thus, the differential of discrete consistency operator ∆γ can be solved of this equa-

tion as follows

d∆γ =
1

ξ2Jα

(
3

2q
vTdev +

η

3
1T
)

dσ =
1

ξ2Jα
mTdσ. (E.1.3)

Finally, substituting Eqs. (3.3.138) and (E.1.1) into Eq. (3.3.139), the differential of

updated stress vector is written as

dσ = De

{
dεe tr −

[
∆γA0 +

1

ξ2Jα
(n⊗m)

]
dσ

}
. (E.1.4)
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Then, solving of this expression the differential of stress vector, the consistent tangent

stiffness matrix can be obtained as

Dep =

[
Cel + ∆γA0 +

1

ξ2Jα
(n⊗m)

]−1

. (E.1.5)

It should be noted, that this matrix can be ill-conditioned when Jα = 0 (perfectly

elasto-plastic problem), being suggested the use of the consistent tangent operator as ex-

plained in section Section 3.3.

2. ALTERNATIVE CALCULATION OF CONSISTENT TANGENT STIFFNESS

FOR THE LLF MODELS

This appendix present the steps necessary to determinate an alternative expression of

the consistent tangent stiffness matrix for the LLF models. For simplicity of the presenta-

tion, there are omitted the subscript ’n+1’ in all variables hereafter.

Plastic component

The plastic component of the consistent tangent stiffness matrix is calculated from

differential of the effective stress vector. First, similar to Eq. (E.1.1), the differential of

effective flow vector can be written as

dn̄ =
3

2r̄3

[
r̄2P − 3

2
(v̄dev ⊗ v̄dev)

]
dσ̄ = Ā0dσ̄. (E.2.1)

Moreover, using Eq. (A.2.24), the differential of principal effective flow vector ˆ̄n,

given by Eq. (3.2.98), can be expressed as

dˆ̄n =
3

2r̄3

[
r̄2P̂ − 3

2

(
ˆ̄vdev ⊗ ˆ̄vdev

)]
dˆ̄σ = ˆ̄A0dˆ̄σ. (E.2.2)

Then, their positive/negative part can be expressed as

dˆ̄n± = ˆ̄a±0 dˆ̄σ, (E.2.3)
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where ˆ̄a±0 = 1̂T±
ˆ̄A0. Next, using this relation and Eq. (3.3.166), the differential of harden-

ing variables κ± (Eq. (3.2.109)) can be written as

dκ± = h±d∆γ + ∆γ
(
ĉ± T0 dˆ̄σ + b̂±10dκ±

)
, (E.2.4)

where ĉ±0 = θ̂±2 ˆ̄n±Φ̂ + ϕ±â±0 . Hence, solving this linear equation for the differential of

variable κ± gives

dκ± = ∆γc± T0 dˆ̄σtr + c±1 d∆γ, (E.2.5)

where c±0 = b̂±20ĉ
±
0 and c±1 = b̂±20h

±, with b̂±20 =
(

1−∆γb̂±10

)−1

. Then, using this relation,

the differential of variable β (Eq. (3.2.113)) is given by

dβ = c40∆γ + ∆γcT60dˆ̄σtr, (E.2.6)

where c40 and c60 are expressed as

c40 = m+c−1 −m−c+
1 , c60 = m+c−0 −m−c+

0 ,

with m± = (1 − α)J̄∓κ
σ̄±

(σ̄+)2
. Next, using the relations d1̂Tdˆ̄σ, β〈ˆ̄σ+〉+ = β̂1 ˆ̄σ+, with

β̂1 = βH̃+(ˆ̄σ+), and Eqs. (3.3.169), (A.2.18), (A.2.24), (E.2.5) and (E.2.8), the differential

of yield criterion at consistency condition (Eq. (3.2.114)) is written as

dF =
η

3
1̂Tdˆ̄σ +

3

2q̄
ˆ̄vdevdˆ̄σ + ˆ̄σ+dβ̂1 + β̂1dˆ̄σ+ − (1− α)dσ̄− = 0

= ĝ1d∆γ + ˆ̄gT
1

dˆ̄σ, (E.2.7)

where ĝ1 and ĝ
1

are expressed as

ĝ1 = 〈ˆ̄σ1〉+c40 − (1− α)J̄−k c
−
1 ,

ˆ̄g
1

=
η

3
1̂ +

3

2q̄
ˆ̄vdev + ∆γ

(
〈ˆ̄σ+〉+c60 − (1− α)J̄−k c

−
0

)
+ β̂31̂+,
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where β̂3 = β̂2 ˆ̄σ+ + β̂1, with β̂2 = β dH̃
+

dˆ̄σ+
. Then, the differential of ∆γ can be solved as

d∆γ = − 1

ĝ1

ˆ̄gT
1

dˆ̄σ = ĝT
1

dˆ̄σ. (E.2.8)

Thus, substituting this relation and dˆ̄σ = Fσ̄dσ̄ (Eq. (A.2.22)) into Eq. (3.3.174), the

differential of updated effective stress vector can be expressed as

dσ̄ = De

{
Cedσ̄

tr −
[
∆γĀ0 +

(
n̄⊗ ĝ

1

)
F σ̄

]
dσ̄
}
. (E.2.9)

Finally, solving of this expression the updated effective stress vector and introducing

Eq. (3.3.138), the effective elasto-plastic consistent tangent matrix can be written as

D̄ep =
[
Ce + ∆γĀ0 +

(
n̄⊗ ĝ

1

)
F σ̄

]−1

. (E.2.10)

Damage component

First, using Eq. (E.2.5), the differential of hardening vector dκ is written as

dκ = ∆γCT
0 dˆ̄σtr + c1d∆γ, (E.2.11)

where C0 and c1 are expressed as

C0 =
[
c+

0 , c
−
0

]
, c1 =

c+
1

c−1

 .
In addition, substituting Eqs. (3.3.177), (E.2.8) and (E.2.11), the relations dˆ̄σ =

F σ̄dσ̄, dσ̄ = D̄ep : dεe tr, with D̄ep given by Eq. (E.2.10), into Eq. (3.3.179), the dif-

ferential of damage variable ω can be rewritten as

dω =
[
vT1 + vT2

(
∆γCT

0 + c1 ⊗ ḡ1

)]
F σ̄D̄epdε

e tr (E.2.12)
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where vT1 = uT1 M̂ 1 and v2 = uT2 M̂ 2. Finally, introducing dσ̄ = D̄epdε
e tr (Eq. (E.2.10))

into Eq. (3.3.181), the elasto-plastic-damage consistent tangent tensor is expressed as

Depd =
[
(1− ω)I − (σ̄ ⊗ v1)F σ̄ − (σ̄ ⊗ v2)

(
∆γCT

0 + c1 ⊗ ĝ1

)
F σ̄

]
D̄ep. (E.2.13)

Viscous component

Substituting Eqs. (3.3.183), (3.3.185) and (E.2.12) into the differential of Eq. (3.2.125),

the visco-plastic-damage consistent tangent matrix is expressed as

Dvpd = ζv(1− ωv)De + (1− ζv)
[
(1− ωv)I − (σ̄v ⊗ v1)F σ̄

− (σ̄v ⊗ v2)
(

∆γCT
0 + c1 ⊗ ĝ1

)
F σ̄

]
D̄ep. (E.2.14)
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APPENDICES F. MISCELANEOUS

1. CALCULATION OF PARAMETERF−O FOR THE UNIAXIAL COMPRESSION

STRESS-STRAIN LAW OF MAZARS

This section detail the Newton’s method used to calculate the parameters f−o and B−

of the exponential uniaxial compression stress-strain relation of (Mazars, 1984) given by

Table Table 2.5.5. First, the peak strength of uniaxial stress law is given by

fp =
f−o
B−

e(B−−1), (F.1.1)

and their corresponding strain is expressed as εp = εo/B
−, with εo = f−o /B

−. Next,

introducing the FE-regularization in uniaxial stress law according to compression fracture

energy criterion stated in Section 2.5.2, the parameters B− and the upper limit of charac-

teristic length lc are expressed in Table 2.5.6. Then, the parameter f−o is the variable to be

solved, where the residual function and their total derivative are given by

R(fo) =
f−o
B−

e(B−−1) − fp,
dR

df−o
=

∂R

∂f−o
+

∂R

∂B−
∂B−

∂f−o
, (F.1.2)

where ∂R
∂f−o

, ∂R
∂B−

and ∂B−

∂f−o
are expressed as

∂R

∂f−o
=

1

B−
e(B−−1),

∂R

∂B−
=
f−o (B− − 1)

(B−)2
e(B−−1),

∂B−

∂f−o
=



−
mc

(
Ĵc + 1

2
+
√
Ĵc + 1

4

)
2Ĵ2

c

√
Ĵc + 1

4

, if g−fA is used

−
mc

(
Ĵc +

√
Ĵc − 1

4

)
2
(
Ĵc − 1

2

)2√
Ĵc − 1

4

, if g−fC is used,
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with mc = − 2G−f Eo

lc(f
−
o )3

and Ĵc =
G−f Eo

f2t lc
. Also, a correction step is added as f−j+1

o =

max (f−j+1
o , 10−2fp) and a tolerance of 10−2fp is adequate to check the residual func-

tion. In addition, a minimum value is imposed in the characteristic length of lminc =

max

(
lc, 0.14

G−f Eo

f2p

)
to get an adequate convergence of algorithm.
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