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ABSTRACT

Reinforced concrete (RC) building models consider several modeling assumptions that
influence the accuracy of the predicted seismic response. Moreover, their nonlinear re-
sponse is strongly dependent on the concrete model adopted. This study evaluates the
epistemic uncertainty inherent to modeling of RC both at the linear building response

level and at the non-linear material response level.

The first part of this thesis quantifies the epistemic uncertainty inherent in modeling
assumptions by evaluating the seismic response of six instrumented RC free-plan build-
ings. Four linear modeling assumptions were studied: (1) the type of finite element used;
(2) the in-plane and out-of-plane stiffness of the diaphragms; (3) the type of soil-structure-
interaction model considered; and (4) the decision where to apply fixity to the base. The
response’s uncertainty was first evaluated comparing predicted and measured periods us-
ing ambient vibrations. Additionally, global seismic response parameters such as story
shears, torques, and drifts were compared between a reference model and a set of variant
models. In general, uncertainties identified in the core forces were larger than in the story

forces, and also larger at the basements than in the upper levels.

The second part of this thesis evaluates the uncertainty associated with the inelastic
constitutive concrete models for three-dimensional (3D) and plane-stress formulations.
Five concrete models were considered: (i) the Hyperbolic Drucker-Prager (DPH) plastic
model; (ii) the Lubliner-Lee-Fenves (LLF) plastic-damage model; (iii) the Wu-Li-Faria
(WLF) model; (iv) the Faria-Oliver-Cervera (FOC) model; and (v) the total strain rotating
(ROT) smeared-crack model. New analytical expressions for the numerical integration of
the updated stress, and the consistent tangent operator were derived for all models. Results
were validated with simple numerical experimental tests subjected to several stress states.
Unilateral effects, strain-rate effects, mesh size, and strain-localization phenomenon were

evaluated using these models. Furthermore, validated finite element recommendations

XX



were proposed to improve the convergence of the models studied, most notably the use of
a smoothed consistent tangent operator and the incorporation of a viscous-regularization
technique. Finally, it is concluded that the most important source of epistemic uncertainty
of the material models is observed in the dissipated energy and the linearized stiffness of

the last unloading-loading cycle in most simulated tests.

Keywords: epistemic uncertainty, free-plan buildings, reinforced concrete, seis-
mic response, finite elements, diaphragm stiffness, soil-structure inter-
action, basements, instrumentation, plastic-damage models, smeared-
crack models, stress updated integration, return-mapping algorithms,
projected return-mapping, consistent tangent operator, strain-softening,

strain-localization, viscous-regularization

XX1



RESUMEN

Los modelos de edificios de hormigén armado (HA) consideran distintos supuestos
de modelizacién que influyen en la precision para la prediccion de la respuesta sismica.
Ademads, su respuesta no lineal depende fuertemente del modelo de hormigén adoptado.
Este estudio evalia la incertidumbre epistémica inherente a los supuestos de modelizacién
de HA tanto a nivel de respuesta lineal del edificio como a nivel de respuesta no lineal del

material.

La primera parte de esta tesis cuantifica la incertidumbre epistémica inherente en los
supuestos de modelizaciéon mediante la evaluacion de la respuesta sismica de seis edifi-
cios instrumentados de HA del tipo planta libre. Se estudiaron cuatro supuestos de mod-
elizacion lineal: (i) el tipo de elemento finito utilizado; (ii) la rigidez en el plano y fuera
del plano de los diafragmas; (iii) el tipo de modelo de interaccion suelo-estructura consid-
erado; y (iv) la decision sobre donde aplicar el empotramiento a la base. La incertidumbre
de la respuesta se evalué primero comparando los periodos simulados con los medidos us-
ando vibraciones ambientales. Ademads, se compararon pardmetros globales de respuesta
sismica, como las fuerzas por piso, torques y desplazamientos entrepiso, entre un modelo
de referencia y un conjunto de modelos variantes. En general, las incertidumbres asoci-
adas en las fuerzas de corte del nicleo de muros fueron mayores que las fuerzas por piso

y también mayores en los subterraneos que en los niveles superiores.

La segunda parte de esta tesis evalud la incertidumbre asociada con los modelos consti-
tutivos ineldsticos de hormigén para la formulaciones tri-dimensional (3D) y de tensiones
planas. Se consideraron cinco modelos de hormigén: (i) el modelo plastico hiperbdlico
de Drucker-Prager (DPH); (ii) el modelo de plasticidad y dafio de Lubliner-Lee-Fenves
(LLF); (iii) el modelo de Wu-Li-Faria (WLF); (iv) el modelo de Faria-Oliver-Cervera

(FOC); y (v) el modelo de grieta difusa total strain rotating (ROT). Se derivaron nuevas
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expresiones analiticas para la integracion numérica de la tension actualizada y el oper-
ador tangente consistente para todos los modelos. Los resultados se validaron con prue-
bas experimentales numéricas simples sometidas a diferentes estados de tensiones. Los
efectos unilateral, la velocidad de deformacidn, el tamafio de la malla, y el fenémeno
strain-localization se evaluaron usando estos modelos. Ademads, se propusieron recomen-
daciones de elementos finitos validadas para mejorar la convergencia de los modelos es-
tudiados, en particular el uso de un operador tangente consistente suavizado y la incor-
poracion de una técnica de regularizacién viscosa. Finalmente, se concluy6 que la fuente
mads importante de incertidumbre epistémica de los modelos de materiales se observa en la
energia disipada y la rigidez linealizada del dltimo ciclo de descarga-carga en la mayoria

de las pruebas simuladas.

Palabras claves: incertidumbre epistémica; edificios de plan libre, hormigén armado, re-
spuesta sismica, elementos finitos, rigidez del diafragma, interaccion
suelo-estructura, subterraneos, instrumentacion, modelos de plasticidad
y dafio; modelos smeared-crack, integracion de la tension actualizada,
algoritmos de retorno; algoritmos de retorno proyectados; operador
tangente consistente, strain-softening, strain-localization, regularizacién

viscosa.
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INTRODUCTION

0.1. Overview of this thesis

This research begins with the study of the epistemic uncertainty inherent in linear models
of the so-called free-plan reinforced concrete (RC) buildings. These buildings are com-
monly used in Chile for office space, and characterized by three main structural compo-
nents: a central shear wall core, a perimeter frame, and a post-tensioned slab that connects
the two seismic and vertical-load carrying elements. The motivation of this part of the
thesis is two-fold. First, to study the epistemic uncertainty present in computing the lin-
ear dynamic response of these structures under different modeling assumptions, following
the same procedures as engineers currently use in design practice. And second, to try to
unravel the most significant components controlling the seismic response of these struc-
tures, which at the time of this work had yet not been exposed to strong ground shaking.
However, due to the good seismic performance of free-plan buildings in the 2010, Maule
Chile earthquake, the main focus of this research shifted toward evaluating the epistemic
uncertainty of residential shear wall buildings. More than 40 of these latter buildings
presented an unexpected and rather brittle failure of some of the shear walls primarily in
the first basement and lower stories. Consequently, in the attempt to model typical dam-
aged shear wall structures using non-linear finite element (FE) models, aimed to better
understand their seismic response, we encountered in different software serious numerical
convergence problems of these models. These difficulties forced us to study and possi-
bly improve the convergence characteristics of some of these models. Thus, the second
part of this thesis is completely dedicated in Chapters 2 and 3 to study in detail the three-
dimensional (3D) and plane-stress available FE models used for concrete, and propose
consistent formulations for all of them. Reinforcing steel models were also used and im-
proved. This task ended up being very complex and interesting from a research perspec-

tive, so the study of epistemic uncertainty and convergence of complete buildings, moved



one step down into the epistemic uncertainty of the finite elements used in constructing
the FE non-linear models required for these structures. This is the sequence and rationale
of the material presented in this thesis work, and is reflected in the two different examples
of epistemic uncertainty considered in Chapters 1 and 2. An obvious next step of this
work is to construct the complete 3D models of typically damaged shear wall structures
in 2010, and evaluate the epistemic uncertainty at the aggregated structural model level.
This evaluation enables the designer to predict and validate the seismic response using as
benchmark the damaged structures, but also to propose for the thousands of similar resi-
dential structures, the implementation of a consistent retrofit strategy similar to that used

for the damaged buildings strengthened after the 2010, Chile earthquake.

0.2. Description of problem

The predicted seismic response of RC structures is strongly dependent on the modeling
assumptions used in their computational simulations. The uncertainty generated by these
assumptions is within the realm of epistemic uncertainty and is due to the lack of knowl-

edge associated with each assumption and parameter considered in the model.

Until the 1990’s, RC shear-wall buildings were the predominant type of structure used
in residential and commercial buildings in countries such as Chile, New Zealand and the
US. However, in the past decade, RC free-plan buildings have become more popular for
office buildings use. Basically, they consider a lateral force resisting system composed by
a shear wall core and a RC moment-resisting perimeter frame, both coupled in bending
and shear usually by a post-tensioned floor slab. Before the 2010 Maule, earthquake in
Chile, no building of this class had been tested in a real earthquake “experiment”, and
there existed significant uncertainty and questions about their potential seismic behavior.
Fortunately, a good performance of these structures was observed after the earthquake
(Naeim et al., 2011; Lemnitzer, Massone, Skolnik, de la Llera, & Wallace, 2014) probably
due to an adequate structural design, a detailed structural review process, and the excellent

local soil conditions.



Several models exist to evaluate the seismic response of RC buildings, from simplified
models using a single beam (e.g. Encina & de la Llera, 2013; Sepulveda, de la Llera, &
Jacobsen, 2012) to complex FE models to asses super-tall buildings (Besjak, McElhatten,
& Biswas, 2010; Lu, Lu, Zhang, & Ye, 2011). Recent technical documents provide guide-
lines to create structural models for tall buildings, e.g., PEER/ATC-72 (ATC-72, 2010)
and LATBSDC (LATBSDC, 2014), which focus on Performance-Based Seismic Design
(PBSD) procedures. However, these guidelines provide limited prediction capability for
building simulations and are a source of inherent epistemic uncertainty. Moreover, free-
plan buildings are particularly sensitive to model uncertainty given their low structural
redundancy. These modeling assumptions include aspects such as the in-plane and out-
of-plane diaphragm stiffness considered for each floor slab, the soil-structure interaction
effects (SSI) considered, and the fixity level of the structure to the ground. These effects
and others can have a large influence in the seismic response. Moreover, some of these

modeling assumptions are still today a matter of discussion in design offices.

With the advent of supercomputers, complex inelastic constitutive concrete models are
more common today in FE structural software and in engineering design offices. However,
these inelastic models may lead to considerably different results due to the use of different
input parameters and assumptions, which generates uncertainty in the responses and de-
sign. Thus, it is necessary to improve the qualitative and quantitative epistemic uncertainty

inherent in these concrete models.

Concrete as a quasi-brittle material exhibits a strongly nonlinear behavior due to crack-
ing in tension and crushing in compression. Cracking generates an asymmetric damage
behavior between the tension and compression regimes, and an irreversible strength and
stiffness degradation (Krajcinovic, 1996). Tension is characterized by strain-softening
behavior after peak strength due to crack propagation, whereas concrete in compression
exhibits nonlinear hardening, non-negligible plastic strains, and volumetric expansion due
to dilatancy. Moreover, pressure-sensitive behavior is observed when subject to lateral

confinement, followed by material compaction under high confinement loads. Also, in



cyclic loading cases, the cracks can close under load reversals from tension to compres-
sion with partial stiffness recovery, phenomenon known as unilateral effect (Mazars et al.,
1990; Ramtani, 1990). In addition, it is observed that concrete strength depends on strain

rate due to growth delay of internal micro-cracks with strain-rate (Suaris & Shah, 1985).

In the last three decades, several 3D and plane-stress constitutive models have been
proposed to simulate the mechanical characteristics of concrete under multi-axial loading
conditions. Five main groups of models can be identified: (i) plastic models, based on
flow theory of plasticity to describe the irreversible plastic strains and hardening behav-
ior, (Drucker & Prager, 1952; Willam & Warnke, 1975; DiMaggio & Sandler, 1971); (ii)
damage models, based on continuum damage mechanics (CDM) (Kachanov, 1958) and
defined within the thermodynamics of irreversible processes to predict the stiffness degra-
dation and strain-softening behavior caused by micro-crack propagation (Mazars, 1984;
J. Simo & Ju, 1987; Faria, Oliver, & Cervera, 1998; Wu, Li, & Faria, 2006; Voyiadjis,
Taqgieddin, & Kattan, 2008); (iii) plastic-damage models, which combine plasticity and
CDM theories (Lubliner, Oliver, Oller, & Onate, 1989; J. Lee & Fenves, 1998; Armero &
Oller, 2000; Wu et al., 2006; Taqgieddin, Voyiadjis, & Almasri, 2012); (iv) fracture mod-
els, based on the nonlinear fracture mechanics theory to simulate the anisotropic behavior
through crack planes of degradation (Rashid, 1968; BaZant, 1982; Rots, 1988; Cervera &
Chiumenti, 2006); and (v) mixed models, which are a combination of the latter models

(éervenka & Papanikolaou, 2008; Behbahani, Barros, & Ventura-Gouveia, 2015).

Most of these concrete models require a numerical implementation in a FE software
at the integration point element level using shell and solid type elements. These models
are commonly used to simulate complex geometries and multi-axial loading conditions.
Moreover, the elaboration of a robust, reliable, and efficient numerical algorithm is key
to correctly simulate the behavior of more complex RC structures like the ones that failed
in 2010. For strain-driven models, two steps are required for the numerical implementa-
tion: (i) the algorithm to evaluate the updated stress tensor; and (ii) the construction of a

consistent stiffness matrix according to the equations used in the updated stress. Several



numerical algorithms exist in the literature for the numerical implementation of concrete
models (e.g. J. C. Simo & Hughes, 1998; de Souza Neto, Peric, & Owen, 2008). It is also
well-known that local concrete models are susceptible of numerical convergence prob-
lems and spurious mesh responses due to the strain-localization phenomenon (Pijaudier-
Cabot & Bazant, 1987). Enhancement and robustness of these models can be improved
by different methods, such as higher-order gradients models (Peerlings, de Borst, Brekel-
mans, & de Vree, 1996), non-local integral models (Pijaudier-Cabot & Bazant, 1987), and
viscous-regularization models (Needleman, 1988). The latter approach includes a numer-
ical viscosity in the constitutive equations, which significantly improves the convergence

properties, and is broadly used for its relative implementation simplicity.

Plane-stress concrete models are commonly used with shell elements to model RC
walls, slabs and membranes, where one element dimension is much smaller than the oth-
ers, and the out-of-plane stress of the element is negligible. Moreover, multi-layered shell
elements are adequate to simulate an accurate distribution of in-plane and out-of-plane
concrete stresses with a considerable reduction in CPU time relative to solid elements (e.g.
Chacon, de la Llera, Hube, Marques, & Lemnitzer, 2017). The plane-stress formulation
and its numerical implementation for a material is very different from the 3D-case, due to
the additional constraint imposed to satisfy the condition of zero normal stress. Indeed, to
account for plastic effects, the radial return-mapping algorithm used in the 3D-case case is
not valid for the plane-stress condition, and hence, the consistent plastic operator cannot
be obtained explicitly. Consequently, the use of specific formulations and algorithms are

required for plane-stress models.

0.3. Main questions

According to the provided background and literature review, several questions drive

this research:



e Which are the most critical assumptions in modeling and computing the seis-
mic response of RC free-plan buildings?; how significant are these sources of
epistemic uncertainty?

e It is possible to unify inputs and notation of different stress-strain constitutive
models for concrete used in FE software?

e Can numerical convergence of these models be improved without a significant
loss of accuracy in the estimation of the response?

e What is the epistemic uncertainty generated by these different stress-strain con-
stitutive models in simple benchmark examples?

e Are the 3D and plane-stress formulations compatible?

0.4. Hypothesis

The main hypotheses of this research are that:

e The epistemic uncertainty inherent in RC free-plan buildings may lead to sig-
nificant discrepancies in the structural responses computed, which, in turn, may
lead to unsafe building designs.

e Modeling assumptions lead to significant epistemic uncertainty in the seismic
response and design of RC free-plan buildings.

e [t is possible to recast five well-known local continuum stress-strain constitu-
tive concrete models using consistent notations and algorithms to successfully
implement them in existing FE software.

e The numerical convergence properties of these concrete models may be im-
proved by using a smooth tangent stiffness operator and by adding numerical
damping without sacrificing significant numerical accuracy.

e The epistemic uncertainty in the numerical response of an example of a simple
concrete prism is useful to identify the sensitivity of the adopted nonlinear stress-

strain constitutive models.



e The response and convergence properties of the selected inelastic stress-strain
concrete models can be made essentially independent of the FE formulation

adopted.

0.5. Objective and organization of the thesis

The main objective of this thesis is to evaluate the epistemic uncertainty associated
with structural and modeling assumptions in RC structures at different model scales, rang-
ing from the complete structure to the finite element level. This is done in two parts: (i)
uncertainty of linear building models of free-plan buildings (Part I); (ii) uncertainty of
inelastic stress-strain constitutive concrete models using a 3D formulation (Part II); and
(iii) uncertainty of inelastic stress-strain constitutive concrete models, but employing a

plane-stress condition (Part II). This research is organized in the following chapters.

Chapter 1 deals with the epistemic uncertainty in the seismic response of RC free-plan
buildings using linear models. Thereby, the following modeling aspects are evaluated:
(1) the type of finite elements used; (2) the in-plane (axial) and out-of-plane (bending)
stiffness of the diaphragm; (3) the simplified SSI model; and (4) the building connection
at the basement level. The rationale behind the selection of these four modelling aspects is
predominantly based on true assumptions made in engineering practice, which are known
to generate controversies during the review process of building projects. Six existing free-
plan buildings, located in Santiago, Chile were considered. For each building, a detailed
FE model was built using the software packages ETABS and ANSYS. Additionally, a
Response Spectrum Analysis (RSA) was carried out to estimate the following response
parameters: vibration periods, shear stresses, overturning moment to shear stress ratio,
dynamic eccentricity, lateral displacements, and lateral and torsional inter-story drifts. The
model uncertainty is estimated from a relative comparison using the mean and standard
deviations of results using predicted ratios between variant models and reference models.
This part also includes a comparison between measured and estimated building periods

for the first four vibration modes.



Because in the non-linear case the building response is strongly controlled by the fi-
nite element selection, Chapter 2 is dedicated to compare at the finite-element scale the
response of five different stress-strain constitutive concrete models and provide all the
details necessary for an effective numerical implementation of the 3D formulation. The
five concrete models studied are: (i) the hyperbolic Drucker-Prager (DPH) plastic model;
(i) the Lubliner-Lee-Fenves (LLF) plastic-damage model; (iii) the Wu-Li-Faria (WLF)
model; (iv) the Farfa-Oliver-Cervera (FOC) model; and (v) the total strain rotating (ROT)
smeared-crack model. A complete description of these models is presented using a con-
sistent tensorial notation, which by itself is a relevant result. Also, numerical convergence
issues and their solution strategies are also presented for these models. Moreover, detailed
algorithms for the numerical implementation of the updated stress tensor, and new explicit
expressions for the algorithmic consistent tangent stiffness tensors of the models are de-
veloped and described. Also, a consistency check between models of input parameters,
such as uniaxial laws and fracture energy, is presented. Furthermore, numerical examples
using basic benchmark tests subject to monotonic and cyclic loading conditions under uni-
axial, biaxial, and triaxial stress states are presented to demonstrate the capabilities of the
proposed implementations. The unilateral effect, the strain-rate effect, the mesh size influ-
ence, and the strain-localization phenomena are discussed between the different models.
Additionally, the numerical model for the compression failure mode of a test specimen is
illustrated as an example of application. Finally, the epistemic uncertainty in the uniaxial,
biaxial, and triaxial stress loads, in the unilateral effect, and in the strain-rate cases are
evaluated with a set of response parameters with respect to the experimental benchmark

tests.

Furthermore, Chapter 3 develops the numerical implementation of the five concrete
models mentioned above for the plane-stress formulation, considering a consistent nota-
tion and a vectorized format. Similar to the 3D-case, numerical algorithms for the updated
stress vector, and new expressions for the algorithmic consistent tangent stiffness matrix

of the models are derived. Moreover, the same experimental benchmark tests considered



for the 3D-case are presented to demonstrate the capabilities of the proposed algorithms

and implementations.

Finally, Chapter 4 presents a summary of the most important conclusions obtained
relative to the epistemic uncertainty in each of the two parts of this work, focused on the

building and the element scale.
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1. EPISTEMIC UNCERTAINTY IN THE SEISMIC LINEAR RESPONSE OF RC
FREE-PLAN BUILDINGS

During past decades reinforced concrete (RC) free-plan buildings have become a com-
mon structural layout in seismically prone countries such as Chile. Typical lateral force
resisting systems in these buildings consist of a combination of core shear walls, a RC
moment-resisting perimeter frame, and a post tensioned floor slab that couples the core
and perimeter frame, which essentially works as an in-plane or out-of-plane diaphragm
(Encina & de la Llera, 2013). Typical story heights (/V) range from 18 to 25 stories above
ground, and 4 to 8 stories below ground. Fundamental periods for free-plan buildings usu-
ally exceed the rule of thumb for frame structures /N/10. Prior to the Maule, Chile earth-
quake, in 2010 (M,, = 8.8), little or no information about the seismic performance of these
structures was available in the literature. Despite the large magnitude of this earthquake
and the severe shaking records in Santiago, these buildings showed good performance, and
essentially remained in the linear range without major structural or non-structural damage
(Naeim et al., 2011; Lemnitzer et al., 2014). This performance can be attributed to good

structural design, a detailed structural review process, and favorable local soil conditions.

A variety of building models have been proposed to evaluate building response param-
eters of structures under dynamic loading. One example is a simplified model that rep-
resents the building as a single beam with shear deformations, warping, and a diaphragm
with bending stiffness, the latter being essential to adequately represent the seismic behav-
ior of these structures (Encina & de la Llera, 2013; Sepulveda et al., 2012). On the other
extreme, complex Finite Elements Models (FEM) have been used to assess medium-rise
buildings (Zekioglu, Willford, Jin, & Melek, 2007; Shin, Kang, & Grossman, 2010) and
super-tall buildings (Besjak et al., 2010; Lu et al., 2011). Current standards and techni-
cal documents provide guidelines on how to create structural models for tall buildings,
e.g., PEER/ATC-72 (ATC-72, 2010) and LATBSDC (LATBSDC, 2014) with a focus on
Performance-Based Seismic Design (PBSD), which principally establishes different cate-

gories of behavior for different earthquake intensity levels.
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Current literature however, is scarce on the quality of the prediction capabilities of
these models, their inherent epistemic uncertainty and their effect on building design and
loading responses. Free-plan buildings are particularly sensitive to this epistemic uncer-
tainty given their simplicity and low redundancy. In order to quantify epistemic uncer-
tainty at least three methodologies are identified: (i) stochastic FEM where variables dis-
tribute according to a Probability Density Function (PDF) (Hardyniec & Charney, 2012);
(i1) sensitivity analyses, where some assumed variables lie on a range of possible discrete
values (Sousa et al., 2012); and (ii1) empirical data and reduction of uncertainty though
model calibrations using real data (Brownjohn, Pan, & Deng, 2000; H. Liu, Goel, Bai,
Scott, & Kono, 2006). The primary objective of the first part of this thesis is the assess-
ment of epistemic uncertainty inherent to modelling assumptions rather than parametric
variations. Modelling assumptions intrinsically yield larger response variations and typi-
cally generate most of the discussion in the review process of building projects since there
is little information and guidelines in practice on how to consider them in building design.
Uncertainty resulting from small variations within a parameter (e.g. Young’s modulus,
damping, element dimensions, live loads, mass, and soil stiffness) have been studied by
other researchers (LATBSDC, 2014; ASCE/SEI-7-10, 2013; ATC-83, 2012) and should

be routinely evaluated during parametric sensitivity studies within the design process.

Recent studies (Encina & de la Llera, 2013) as well as empirical evidence after the
2010 Maule earthquake have validated the significance of floor diaphragms in the be-
havior of free-plan buildings. In common practice diaphragms are modeled with infinite
in-plane rigidity and a reduced out-of-plane (bending) flexibility. This assumption allows
an important reduction in the number of Degrees Of Freedom (DOF) of the model as well
as in computational time. Several studies (Ju & Lin, 1999; Saffarini & Qudaimat, 1992)
have examined the implications of this modeling assumption and demonstrated that this
assumption mainly affects low-rise buildings with short periods and small out-of-plane
diaphragm stiffness relative to the stiffness of the lateral-load resisting system. By consid-
ering the in-plane deformation of the floor slab, the periods and displacements increase,

and the seismic stresses decrease (Fouad, Ali, & Mustapha, 2012). Conversely, when the
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rigid diaphragm assumption is applied at levels with abrupt changes in lateral stiffness,
such as the transition zone between the first level and the basements, a significant shear
stress is generated in the core walls; also known as back-stay effect (Rad & Adebar, 2009).
For high-rise buildings, out-of-plane diaphragm stiffness becomes significant (Fouad et al.,

2012; D.-G. Lee, Kim, & Chun, 2002).

Another important parameter when assessing the dynamic response of free-plan build-
ings is the constraint of the surrounding soil and the interaction thereof with the basement
floors of the structure. Generally, Soil-Structure Interaction (SSI) increases internal damp-
ing, lengthens the vibration periods, increases the lateral displacements of the structure,
and changes the stresses at the base depending on the frequency content of the seismic
motion as well as the dynamic characteristics of the soil and structure (Tabatabaiefar &
Massumi, 2010; Moehle, 2015; Mylonakis & Gazetas, 2000). Several approximations
have been made for SSI models in high-rise buildings (Naeim, Tileylioglu, Alimoradi, &
Stewart, 2010; Li, Lu, Lu, & Ye, 2014); most of which use simplified models, i.e. the soil
is represented by a discrete arrangement of springs and dampers to provide computational

efficiency with reasonable accuracy.

Current seismic codes do not provide explicit recommendations on how to model base-
ments, the number of levels to include in the structural model or how to connect the model
to the ground. This leads to discretional interpretations on “how and where” to apply the
minimum shear requirements for building design. Incorporating basements in the model
usually generates an increase in building periods and displacements, as well as a reduction

in seismic stresses for elements above ground level (D.-G. Lee & Kim, 2001).

This chapter presents in Section 1.1 the structural configuration, geometrical descrip-
tion, and vibration periods and modes of six real RC free-plan buildings, located in San-
tiago, Chile. Moreover, the metric considered to quantify the epistemic uncertainty for
these buildings is illustrated in Section 1.2. Further, Section 1.3 summarizes the seismic
response of these class of buildings through a response spectrum analysis elaborated by

FE models in ETABS and ANSYS. Also, this section estimates the epistemic uncertainty
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considering different finite element types. Moreover, Sections 1.4 to 1.6 quantifies the
epistemic uncertainty of the diaphragm stiffness, the type of soil-structure constraints, and

the building fixity level, respectively.

It should be noted that the recommendation of a “most accurate” model is beyond
the scope of this thesis, as the selection of modeling techniques influences the building
response and the selection of a “most suitable approach” depends on the specific needs
and allowances of the respective project. Hence, quantitative comparisons will enable the

reader in making proper case-based decisions.

1.1. Selected Buildings

Figs. 1.1.1 and 1.1.2 depict photographs, elevations and floor plans of all six buildings se-
lected for this study and referred to hereafter as Buildings A through F. All buildings have
RC cores of shear walls, a RC perimeter frame, post tensioned RC slabs and are founded
on firm soil (ASCE site class C (ASCE/SEI-7-10, 2013)). Basic geometric data are sum-
marized in Tables 1.1.1 and 1.1.2. All buildings were designed according to the Chilean
code NCh433 (NCh433, 1996) and ACI-318 (ACI-318, 2005). The materials specified are
concrete H35 (f,=30MPa) and reinforcement steel of type A630-420H ( fy =420 MPa).
Four of the investigated buildings (i.e. A, C, E and F) were occupied and operating at
the time of the earthquake, the other two buildings were close to construction completion.
None of the structures suffered any relevant structural or content damage (Naeim et al.,

2011; Lemnitzer et al., 2014).

The selected buildings have between 19 and 24 stories and between 4 and 8 basements.
The total building height (H;) varies from 73 m to 105 m. The plan aspect ratio (B,/B,)
varies between 1.0 and 3.3. With the exception of Building D, all basements have aspect
ratio (By,/ By,) smaller than for that of the superstructure. The slenderness ratio (H;/B)
varies between 2.4 and 5.0. The typical floor area (A) varies between 299 m? and 2826 m?;

the basement floor area (A,) varies between 1023 m? and 7361 m?; and the floor area ratio
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(A/A,) ranges from 0.26 to 0.38. The thickness of RC floor slabs range from 16 cm to
28 cm. Considering the core area (A.) as the space used by elevators and staircases, the
space efficiency (na = 1 — A./A) in all buildings is over 84%. The thicknesses of the
RC core walls (e.) range between 20 cm in the top stories to 130 cm in the first stories.
The measured wall density with respect to the floor area in each direction in a typical story
(pe, p¥) varies between 0.68% and 2.82%, but is usually less than 1.5%, i.e., about half the
amount of the 1985 Chilean shear wall buildings, which is 2.8% on average (Jiinemann,
de la Llera, Hube, Cifuentes, & Kausel, 2015). In addition, the vertical density in the
typical story (p,), defined as the total area of vertical structural elements divided by floor

area, varies between 3.1% and 6.2%.

Table 1.1.1. Geometric parameters of analyzed buildings: N and N,= number of stories above ground and

below ground level, respectively; H= building height above ground level; H;= total building height; h

and hy= story height above ground and below ground level, respectively; B, B,= typical building plan
dimensions; By, Bys= typical basement plan dimensions; B =min (B, By).

Building Number Height Story Floor plan Aspect Slender
of stories (m) height (m) dimension (m) ratio ratio
N+ Nb H Ht h h,b Bx X By sz X Byb Bx/By Bxb/Byb Ht/B
A 24+5 842 985 33 26 38.1x232 573x672 1.6 1.2 4.2
B 24+6 84.0 1022 35 2.6 334x303 538 x56.1 1.1 1.0 33
C 23+7 81.7 1052 35 2.6 329x482 59.6 x 659 1.5 1.1 32
D 22+8 749 996 33 2.6 41.6x41.7 119.2 x63.3 1.0 1.9 24
E 21+6 719 899 33 26 80.0x245 1194 x46.0 33 2.6 3.7
F 19+4 604 732 32 28 302x145 483 x294 2.1 1.6 5.0

Table 1.1.2. Geometric parameters of analyzed buildings (continuation of Table 1.1.1).

Building Floor area Floor Space Core wall ~ Shear wall ~ Vertical = Core wall
(m?) ratio efficiency, ng thickness, e, density (%) density, p, width (m)
A A A AJA (%) cm)  pf ph (%) 12 x 1Y
A 874 137 3378 0.26 84 25-100 0.68 1.09 3.06 15.8 x 8.9
B 929 148 2963 0.31 84 25-130 1.56 2.82 6.18 119 x 124
C 1131 174 3932 0.29 85 20-110 0.71 0.80 3.24 15.3 x 15.0
D 2826 394 7361 0.38 86 25-120 099 1.19 3.87 14.1 x 20.0
E 1553 174 5053 0.31 89 25-85 093 0.98 4.01 19.2 x 9.8
F 299 34 1023 0.29 89 20-65 203 1.52 5.15 7.2 x6.3
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Figure 1.1.2. Schematic layout of the typical floor plans of the buildings; plans and general dimensions of the

main structural elements (dimensions in meters and thicknesses of walls, slabs and beams in centimeters).

Note: the X - and Y -axis directions where randomly selected and the X -direction does not coincide with the
longest dimensions of the buildings.
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Figure 1.1.3. Diagram of the instrumentation used: (a) configuration of the sensors; (b) estimation of the
torsional component.

In order to evaluate the uncertainty in estimating vibration periods and modes of the
structural models, instruments were deployed to record ambient vibrations in all six build-
ings. Two tri-axial accelerometers were installed at the roof of each building: a princi-
pal accelerometer (1) placed at the approximate geometric center of the floor plan and
a secondary (2) accelerometer placed at the farthest corner. The configuration shown in
Fig. 1.1.3a captures the three accelerations (i1 [t], 71 [t], Z1[t]) at the geometric center of the
plan layout as well as the torsional acceleration of the floor diaphragm (é[t]). The torsional

acceleration is obtained using small displacement approximation (Fig. 1.1.3b) from:

ﬁ{a (@2[t] = @2 [t]) — b (@o[t] — Ea[E])} (1.1.1)

where a and b are the sensor distances as defined in Fig. 1.1.3b, and were estimated accord-

0t] =

ing to building plans. It is completely true that any measurement has its own uncertainty.
However, like with any laboratory experiment, the period measurements are assumed to
be the true value, and such experimental uncertainty is considered to be of much smaller

magnitude than the one associated with the studied modelling assumptions.

Recorded signals were processed as follows: (i) base line correction in the time do-
main; (ii) double integration of accelerations to displacements; (iii) conversion to fre-
quency domain; and (iv) application of a Butterworth filter type 2. Following this pro-
cedure, the Power Spectral Density (PSD) is estimated in each direction, i.e.: G,lw] =

| X [w][?t,, where | X [w]| is the modulus of discrete Fourier transform of the signal z[t] at
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Table 1.1.3. Instrumentally measured periods (7") and directions of the first 4 modes, periods ratio T5 /77,
T3/T, and ratio of first torsional period to first lateral period Ty /Tjqs1, ratio of building height above
ground level to first lateral period (H /T}441), ratio of total building height to first lateral period (H/Tjqt1),
and estimation of the fundamental period according to nominal frame building rule (IN/10), for the 6 build-

ings.

Period (s) Period ratio Ratio (m/s) Period frame
Bu11d1ng Tl T2 T3 T4 TQ/Tl T3/T1 T@l/T‘latl H/natl Ht/ﬂatl bldg N/l() (9)
Al 2.831Y 2310X 2182 © 0737 © 0.82 0.77 0.77 29.7 34.8 2.4
A? 2778Y 2381 X 2174Y 0.758 X 0.86 0.78 — 30.3 35.5 2.4
B 2263 X 1.652Y 1383 © 0.619X 073 0.61 0.61 37.1 45.2 2.4
C 2507 X 1.708Y 0.755X 0.557 © 0.68 0.30 0.22 32.6 42.0 2.3
D-Right 2416 X 1.683Y 1.230 © 0.737Z 0.70 0.1 0.51 31.0 41.2 2.2
D-Left 2430X 1641Y 1234 X 0.732 X 0.68 0.51 - 30.8 41.0 2.2
E 2356Y 1959 6 1307X 0700 0.83 0.56 0.83 30.5 38.2 2.1
F 1.638Y 1305 X 0875 © 0457 © 080 0.53 0.53 36.9 44.7 1.9

1 Ambient vibration measurements (November 2010 - November 2012); 2 Aftershock measurements
(March 2010).

a frequency w, and ¢, is the total duration of the record. In order to identify the predomi-

nant direction, and to enable comparisons between measurements in different directions, a
. N N .

normalized PSD was used: (G), [w] = G[w]/ >} Gg[w;], where 37 G, [w;] consider

the sum of N discrete terms of G, [w].

Table 1.1.3 shows the back-calculated vibration periods (7') and the predominant di-
rection of the first four modes for all buildings. The first building periods range between
1.638 s and 2.831s. Furthermore, except for Buildings C and F which have very asym-
metric floor plans, the first three periods of all buildings are larger than 1 s. This structural
flexibility is apparent when comparing the building periods with the reference periods
of frame buildings with similar height (N/10) as shown in Table 1.1.3 (last column). A
general similarity between the first building periods of each structure can be seen when
comparing the period ratios T, /T} and T3/ as depicted in Table 1.1.3. Except for Build-
ing C, ratios vary between 0.51 and 0.86. Additionally, among the first four building
modes, at least one of the modes shows strong lateral-torsional coupling, with ratios of
(To1/T}411) varying between 0.22 and 0.77. This observation confirms that these build-

ings are torsionally stiff. Building D for example, was equipped with instrumentation in
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each tower and yielded very similar periods. However, despite the building symmetry, the

direction of modes matches only for the first two modes.

The ratio of building height above ground level to first lateral period (H/T}q1) typ-
ically ranges between 30 and 35 for frame buildings and between 60 and 70 for wall
buildings and is used as a proxy of the building stiffness. In Buildings A-F, the ratio
H /T varies between 29.7 m/s and 37.1 m/s (Table 1.1.3)), which according to a previ-
ously proposed classification (Guendelman, Guendelman, & Lindenberg, 1997); classifies
these structures as flexible (H /7,1 < 40m/s). However, if the total building height
is considered (H,), the ratio H,;/T},; increases to 34.8 m/s and 45.2 m/s, which makes
Buildings A and E as flexible structures, while the rest as structures with normal stiffness

(40 < H¢/Tja1 < 70m/s).

In addition to ambient vibration measurements carried out by the authors in Building
A, previously recorded aftershock measurements (Lemnitzer et al., 2014) were used to
verify the first four periods of the building. Data were obtained via tri-axial accelerometers
placed in the roof corners of the building. Measurements collected over four continuous
days captured two aftershocks, one of them being a M,,=5.1 earthquake on 18/03/2010.
Aftershock data are labeled A2 in Table 1.1.3 and are compared with the ambient vibration
measurements. The ratio between the first four periods obtained for the two records varies
between Thyn/Tamp =0.98 and 1.03, and match the predominant direction of the first two

modes. The similitude of these periods validates the use of ambient vibrations.

1.2. Estimation of the epistemic uncertainty

In order to estimate and compare the epistemic uncertainties of the structural models con-
sidered in this analysis (i.e. referred to as variant models), a reference model was defined
by selecting common seismic design assumptions (ATC-72, 2010; LATBSDC, 2014) and
following Chilean design practice, i.e.: (1) slabs have finite in-plane and out-of-plane

stiffness; (2) SSI effects are not included, i.e., model are fixed at the base; (3) basements
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are included in the model; (4) RC is assumed to behave elastic, isotropic, and remains
uncracked; (5) uncracked section stiffnesses (gross cross section properties) are assumed
for the structural elements, where the contribution of the reinforcement is not accounted
for; (6) the mass of the building includes 25% of live loads; and (7) a dynamic con-
crete Young’s modulus £y, =1.2E, was assumed (Lydon & Balendran, 1986), where
E. is the static Young’s modulus according to ACI-318: E. =47OO\/TC’ with fcl in MPa.
With these assumptions, vibration periods similar to measured periods are obtained, as

described later.

The seismic response of the buildings is estimated using modal RSA using the elastic
design spectrum of the Chilean seismic base-isolation code, NCh2745 (NCh2745, 2003),
corresponding to a firm soil with a PGA of 0.41g, a maximum pseudo-acceleration of
1.2g, and a 5% damping ratio. This spectrum was used for two reasons: (i) fits very
well the ground motion data generated during the Maule, Chile earthquake; and (ii) the
peer structural design review process of all these buildings was done using this design
spectrum. The seismic response is computed with at least 80% of the cumulative effective
modal mass (C),) in each lateral direction (X and Y). The spectrum in both directions
is taken into account independently, and the modal responses are combined by Complete
Quadratic Combination (CQC) method. The building responses were obtained by adding
the responses from gravitational and seismic actions. Seismic masses were used in the
models to obtain their dynamic properties (periods and mode shapes), which are then used

in RSA.

The response parameters considered in this study are (Fig. 1.2.4): (1) periods of the
first four modes (7'); (2) story shear (V;) and shear carried by the core walls (V.), both
expressed as a percentage of the total seismic weight (W;) (Fig. 1.2.4a); (3) the ratio of
overturning moment to story shear, A, = M;/V;l;, and the corresponding ratio for the
core walls, A\, = M,./V.l., where M, is the building overturning moment using a horizon-
tal axis passing through the vertical projection of the centroid of the accumulated story

masses above the considered level (C'M;), M, is similar to M;, but passes through the
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Figure 1.2.4. Definition of response parameters to measure epistemic uncertainty: (a) story shears and over-
turning moment; (b) eccentricity; and (c) floor displacements and inter-story drifts.

vertical projection of the centroid of the accumulated masses of core walls above the con-
sidered level (C'M.) (Fig. 1.2.4a)—the X - and Y -coordinates of these projections changes
in different stories if the geometry (i.e. wall mass) changes—, [, is the typical building
width (B, B,: above ground level and B,;, B,;: below ground level, respectively, Ta-
ble 1.1.1) in the direction of analysis, and [. is the typical wall width in the direction of
analysis (/Z,lY Table 1.1.2); (4) normalized eccentricity, € = (13/V})/l;, where T; is the
torque with respect to a vertical axis passing through the centroid C'M,;, and is equivalent
to the distance between the centroid C' M, and the centroid of accumulated stiffness (C'S;)
in each story (Fig. 1.2.4b), divided by the plan width /;; (5) displacement of the geometric
center of the diaphragm (u.) in each floor; (6) lateral inter-story drift, §, = A, /h, where
A, is the maximum relative displacement of each floor in the direction of analysis and A
is the inter-story height (Fig. 1.2.4¢); and (7) torsional inter-story drift, 6 = Ag/h, where
Ay is the relative rotation between consecutive floors (Fig. 1.2.4¢), and is determined as

the average rotation between the center of the diaphragm and each of the four (or more)

corners of the floor (Eq. (1.1.1)).

The uncertainty of the response parameters for each modeling assumption is evaluated
by analyzing the ratio of respective variant models (R,) and reference model (Ry) results.
These ratios are grouped by building as well as analysis directions (X and Y'). Shear force

(V; and V) uncertainties are evaluated at four levels: at mid-height of the tower (H/2), at
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the base of the first story (1), at the base of the first basement (B1), and at the base of the
foundation level (BF). For all other responses, the uncertainty is evaluated only at levels
where extreme values occur. The uncertainty of the ratios R, /Ry is characterized by its
minimum and maximum values, and the standard deviation (o). Hereby graphical results
are provided for the buildings that show the largest uncertainties to demonstrate the scatter

of data due to the input assumptions.

1.3. Effect of the finite element type and characterization of the seismic response

This section quantifies the epistemic uncertainty with respect to different finite element
types and summarizes the seismic response of the free-plan buildings. All six buildings
were modeled in ETABS (ET) (ETABS, 2013), with results being considered reference
results due to the popularity and usability of this software in engineering firms. Two
variant models were developed in ANSYS (ANSYS, 2018): four buildings (A, C, D and
F) in ANSYS Parametric Design Language mode (AP), and four buildings (A, B, E and F)
in ANSYS Workbench mode (AW). The finite elements used to model beams, columns,

slabs and walls for each FEM model are shown in Fig. 1.3.5. In addition to the modeling

CONTA174
TARGE170
l SOLID185

assumptions described previously, each model considers the following:

Beam-column
joint
CfB/EZM 0 O/B?EAM44 with
o wit P rigid ofset
rigid offset MPC184

Wall-wall joint

SHELL SHELL181
AP

ET AW Tetrahedral

Figure 1.3.5. Finite element type and connection among structural elements: (a) ET; (b) AP; and (c) AW
models, respectively.
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(i) ) For ET models (Fig. 1.3.5a), the beams and columns were modeled using 2-node
Timoshenko frame type elements with six DOFs per node, and rigid offset elements in
beam-column joints. The walls and slabs were modeled using 4-node shell type elements
with six DOFs per node and the Mindlin-Reissner formulation. All structural element
connections considered mass overlap as well as a compatible mesh. Masses in the ele-
ments were assigned to the horizontal DOFs of the nodes. For all beams embedded in
slabs, the moment of inertia of rectangular beams was multiplied by a [3-coefficient to ac-
count for the real position of the neutral axis and includes the correct effective width of the
slab. Therefore, the (3-coefficient leads to the correct moment of inertia of the T-shaped
or L-shaped cross sections. The effective slab width was estimated following ACI-318
(ACI-318, 2005) recommendations, and the S-coefficient was calculated as: 5= I omp/ Lo,
where 1., 1s the moment of inertia of the composite cross section, and /, is the moment

of inertia of the rectangular section.

(ii) For AP models (Fig. 1.3.5b), beams and columns were modeled similarly to the
ET models (BEAM44). The walls and slabs were represented via 4-node shell type ele-
ments with six DOFs per node using the Bathe-Dvorkin formulation (Bathe & Dvorkin,
1986) (SHELL181). All structural element connections consider mass overlap as well as
a compatible mesh. Masses for the elements in this case were assigned to the six DOFs of
the nodes, and similarly to the ET models, the moment of inertia of beams embedded in

the slab was corrected by the S-coefficient.

(iii) For AW models (Fig. 1.3.5¢), all structural elements were modeled using 8-node
brick elements (SOLID185) with three DOFs per node and a Simplified Enhanced Strain
formulation (J. Simo, Armero, & Taylor, 1993). The mesh was generated independently
for each structural element and contact elements (CONTA174 and TARGE170) were used
to connect the nodes of two elements, since meshes of adjacent elements were incom-
patible, as shown in Fig. 1.3.5c. Consequently, mass overlap was not generated in the
connection of two elements. Masses in the elements were assigned to the three DOFs of

the nodes.
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Table 1.3.4 compares the number of nodes and elements in each FEM model based on a
maximum mesh size of 1.5 m. Compared with the ET models, the AP models present 20%
more nodes and 80% more elements, and the AW models between 9 and 14 times more
nodes and between 10 to 17 times more elements. The total seismic weight (/) of the ET
models varies between 130.2 MN (Building F) and 1431.1 MN (Building D). In general,
the weight of the super-structure ranges between 50% and 61% of the total weight of the
structure. The maximum difference of the seismic weight between the ET-AP models is
less than 2.2%, and for the ET-AW models less than 4.3%. The AW models are always

lighter than the ET models, since the AW models do not consider mass overlap.

Table 1.3.4. Comparison between FEM models.

Total seismic weight!', W, Computation time?

Building Nodes Elements (MN) Dif. (%) (hrs)

ET ET:AP:AW ET ET:AP:AW ET ET-AP ET-AW ET ET:AP:AW
A 43,652 1:1.1:11 46416 1:1.1:10 3642 1le-3 2.6 32 45:1:22
B 59,494 1:-—:10 63,119 1:—:12 5325 -— 4.3 3.1 12:—:1
C 77,730 1:1.0:— 82,568 1:16:— 6405 -8e-4 - 6.0 15:1: —
D 90,132 1:1.1:— 103,895 1:1.8:— 1431.1 2.2 — 216 39:1:—
E 90912 1:—:9 95456 1:—:11 680.8 — 33 32.3 9:—:1
F 17,690 1:12:14 19,330 1:12:17 130.2 8e-4 2.8 0.4 6:1:11
L. Includes 25% of live load; '—’: model not built; 2: Using a computer Intel Xeon®) 3.33 GHz processor

with 47.9 Gb RAM

For the ET models, 100 modes were calculated using eigenvalues and eigenvectors,
and for the AP and AW models, 250 modes were obtained using the Block Lanczos al-
gorithm (Grimes, Lewis, & Simon, 1994). Because the AP and AW models consider the
vertical masses, a larger amount of modes relative to ET are required to obtain similar
effective modal masses C,,, in the horizontal directions. Computer limitations impede the
use of more modes in the AW models. The computational time to obtain the vibration
modes in the ET models is 6 to 45 times greater than for the AP models, and 1.2 to 9
times greater than for the AW models, with the exception of Building F, where the AW

model is twice slower than the ET model (Table 1.3.4). This difference in computation
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time is attributed to the different methods used to calculate the modal coordinates in each

software. The ANSYS algorithm is significantly faster than that of ETABS.

Table 1.3.5 summarizes the periods and predominant direction of the first four modes
in all three models. The fundamental periods of the buildings range from 1.61 s to 3.13s,
and the first three periods of all models are larger than 1s, except for Building F. The
directions of the translational modes also coincide among models. However, this is not

the case for the torsional modes, which differ between models.

Table 1.3.5. Periods (1) and corresponding predominant direction of FEM models. Units: second

Building ET AP AW

Ty Ty T Ty T 15 13 Ty T T T Ty
A 29258Y 24144 X 20752 © 0.7383Y 3.1262Y 24471 X 22110Y 0.7840Y 2.7119Y 22768 X 1.9035Y 0.6926Y
B 22652 X 1.8146Y 13959 © 0.6367 X - - - - 21597 X 17686 Y 1.3099Y 0.6104 X
C 27227 X 1.8742Y 1.0654 © 0.8213 X 27127 X 1.8604Y 1.0767 X 0.8264 X - - - -
D 28212 X 19564 © 1.7905Y 0.8271 X 2.7765 X 19410 X 1.7736 Y 0.8205 X - - - -
E 2.6084Y 19056 © 1.2981 X 0.6887Y - - - - 23723Y 1.7754 © 1.2600 X 0.6488 Y
F 1.6169Y 12173 X 0.8552 © 0.4364Y 1.6610Y 12836 X 009227 X 0.4604Y 1.6053Y 12332 X 0.8267 X 0.4368Y

Note: Values in parenthesis associated to the number of the mode; '—': model not built.

The uncertainty of the vibration periods is evaluated using Fig. 1.3.6. Fig. 1.3.6a com-
pares the first four periods identified in Table 1.3.5 for the three models of Building A.
The AP model predicts the longest periods, and the AW model the shortest. The largest
difference between the estimated periods is 15.3% for the first mode, and 16.2% for mode
three. Fig. 1.3.6b shows the ratio between the periods of the AP and AW models normal-
ized with respect to the ET models for the first four modes of all six buildings. For mode
one, a close-up with eight period ratios obtained with the available models is presented,
summarized by a box-plot on the left of Fig. 1.3.6b. The box-plots used hereafter have a
rectangle whose length is the difference between the first and third quartile, a mean Z rep-
resented by an intermediate horizontal line, a median represented by a rhombus, whiskers
equivalent in width to two standard deviations (20), and outliers which fall outside the
range (z + o). For the first normalized period there is an estimated uncertainty of the mod-
els that varies from 0.91 to 1.07 with 0 =5.2%. For modes one through four, Fig. 1.3.6b

also shows the envelope of normalized periods. It is observed that the periods of the AP
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models are up to 8% longer than the ET models, and the AW periods are up to 9.1% shorter
than the ET models.

35 3.3 Building A Buildings OA Oc @ D @®F T,,/T,,
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Figure 1.3.6. Period variation according to finite element type: (a) periods of Building A; (b) periods of the
AP and AW models normalized by the ET model values for the 6 buildings.

Comparisons between analytical periods and those obtained from ambient vibrations
for all six buildings are shown in Fig. 1.3.7. The AW models is the one that leads to small-
est error in the prediction of vibration periods, which for the first four modes yield errors
of 13% or less, and can be attributed to the advantage of using solid finite elements. Con-
trary, the ET and AP models generally overestimate the periods for the first four modes,
and errors vary from 7% shorter to 48% longer than the measured values. For the first
two modes, the theoretical models may differ up to 17% with respect to measured val-
ues. Considering all models, Building F represents the structure with the smallest error
in predicting the period of the first four modes. The largest difference occurs in the ET
and AP models of Buildings C and D, with errors up to 48% in the third and fourth mode.
The complexity associated with modeling the bridges connecting the towers in Building
D significantly affects the accuracy of the FEM model. In general, the models predict the
predominant direction of the first two modes in good agreement with the instrumentation,

with the sole exception of Building D in which only the first mode matches.

A comparison of the vertical distribution of selected response parameters for all three
models is shown in Figs. 1.3.8 and 1.3.9 for Building A. The story shear V; at level BF
in the Y -direction predicted by the three models varies between 17.9% and 19.3% of the

seismic weight (Fig. 1.3.8a). The mean difference between the three models considering
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Figure 1.3.7. Periods of the ET, AP and AW models normalized with respect to ambient vibration instrument

values for the 6 buildings.
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Figure 1.3.8. Vertical distribution of responses parameters for the ET, AP and AW models of Building A:

(a) story shear ratio V;/W; and core shear ratio V./W;; (b) overturning moment to story shear ratio (\;)

and the corresponding core ratio (\.); and (c) normalized eccentricity (€). Black and grey lines in plots (a)

and (b) represent total story and core wall responses, respectively. Black and grey lines in plot (c) represent
eccentricity in X - and Y -direction, respectively.

all stories is 14.3%. The core shear V. at level L1 in the Y -direction varies between 9.1%

and 9.9% of the seismic weight, which is equivalent to a ratio V,./V; between 0.85 and 0.88.

The same ratio V../V; at level BF is considerably smaller (about 0.27) due to the transfer
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Figure 1.3.9. Vertical distribution of responses parameters for the ET, AP and AW models of Building A: (a)
displacement of the geometric center of the diaphragm (u.); (b) lateral inter-story drift (J,,); and (c) torsional
inter-story drift (dg). Black and grey lines represent responses in X - and Y -direction, respectively.

of shear forces from the core to the perimeter walls. The ratio of overturning moment to
story shear \; at level L1 in the X-direction varies between 0.95 and 1.02 as shown in
Fig. 1.3.8b. For the core walls this ratio (\.), at level B1, varies between 3.13 and 3.35.
The normalized eccentricity e is shown in Fig. 1.3.8c and varies between 0.03 and 0.20
as well as 0.28 and 1.26 in the X -direction (e,) and Y -direction (e,), respectively. The
Y -direction shows the largest differences among the three models, with a mean difference

in all stories of 18.4%.

A comparison of displacements, drifts, and plan rotations between the three models is
shown in Fig. 1.3.9. Again, the Y -direction shows the largest differences among models.
The mean difference between the model predictions at all evaluated stories is 7.7%, 5.8%
and 30.0% for ., &, and dy, respectively, in the Y -direction, and 1.5%, 3.4% and 17.7%

for these same responses in the X -direction.
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Similar results were obtained for the other five buildings though details are omitted
for the sake of brevity. The values of response parameters for all ET models in the X-
and Y -directions are: (i) the base story shear of the six buildings range between 19%
and 30% of the seismic weight, and the peak shear ratio V./V; occurs between the first
and fourth story, and ranges between 35% and 99%; (ii) the peak overturning moment
to story shear ratio varies between 0.6 and 2.1 and the corresponding peak of core wall
ratio varies between 2.5 and 6.6; (iii) the peak normalized eccentricity varies between 0.1
and 0.5, which is indicative of large lateral-torsional coupling; (iv) the roof displacement
of the center of the diaphragm varies between 20 cm and 50 cm; (v) the peak inter-story
lateral drift varies between 5 %o and 11 %o, and is predicted at about 3/4 of the height
above ground level (3/4H); and (vi) the peak torsional inter-story drifts varies between

2/1000 °/m and 19/1000 °/m, and also occur at 3/4H.

The variability of the predicted seismic response for the six buildings, using the three
models is shown in Fig. 1.3.10. The responses of variant models (AP and AW) are nor-
malized with respect to the reference models (ET), and uncertainty is shown for the two
directions of analysis (X and Y'). The standard deviation (¢) and the range between max-
imum and minimum of these ratios are shown in the accompanying table. The standard
deviation of all the normalized parameters is less than 11%. Larger uncertainty is obtained
for core shear V, than for the story shear V;, especially for basements (B1 and BF), where
the normalized shear V, varies between 0.81 and 1.28. Also, largest uncertainty is identi-

fied for \., € and 9y, with standard deviations of 8.8%, 8.6%, and 10.7%, respectively.

1.4. Effect of diaphragm stiffness

In order to evaluate the uncertainty generated by modeling the diaphragm stiffness of the
free-plan buildings, the ET models were used to study four different diaphragm assump-
tions in all buildings as shown in Fig. 1.4.11: (i) a semi-rigid diaphragm (DS), which
considers the in-plane and out-of-plane bending stiffness of the shell elements of the slab

at each floor (reference model); (ii) a semi-rigid diaphragm, which is identical to DS but
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Figure 1.3.10. Response parameters of the AP and AW models normalized by the ET model results in the 6
buildings: box-plot diagram (top); and maximum, minimum and standard deviation o (%) (bottom) (Values
in parenthesis associated with the core walls.)

without bending stiffness (DSo); (iii) a rigid in-plane diaphragm (DR), which considers
an infinite in-plane stiffness but includes the out-of-plane bending stiffness of the shell
elements at each floor; and (iv) a rigid in-plane diaphragm, but without bending stiffness

(DRoO).

8

Relative in-plane
stiffness

Relative bending stiffness

Figure 1.4.11. Models considered in the study of diaphragm stiffness.

The advantage of the imposed in-plane constraint in the DR and DRo models is that it
reduces the number of DOFs by 1.4 and 1.7 times compared to the DS and DSo models,
and consequently the computational time of the periods and vibration modes is reduced
by 1.5 and 7.4 times, respectively. Fig. 1.4.12a compares the first four periods obtained

for the four diaphragm assumptions for Building A. For the first four periods, the DSo
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model consistently predicts longest periods and the DR model predicts the shortest. The
difference among models in the estimation of the first period is 18.5%, with a maximum of
23.6% for the first four periods. Fig. 1.4.12b shows the periods of the DSo, DR and DRo
models normalized with respect to the DS values. For mode one, a box-plot is shown for
the data. In this case, the ratio of the periods varies between 0.95 and 1.27 with 0 =10.4%.
Using the DS models as a reference, the first four periods of the DR models are up to 10%
shorter. On the contrary the first four periods of the DSo models are between 4% to 27%
longer. Also, the first period of the DRo models are up to 19% longer. It is interesting to
note that the difference of the four diaphragm models can result in 37% difference for the
first four modes, especially if the bending stiffness of the diaphragm is ignored. Moreover,
the smallest errors occur for Tpr /Tps, which somewhat supports the historical assumption

of using the DR model in practice.
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Figure 1.4.12. Period variation according to stiffness diaphragm models: (a) periods of Building A; (b)
periods of the DSo, DR, DRo models normalized by the DS model results for the six buildings.

Fig. 1.4.13a shows the vertical distribution of story shear V; and core shear V, in X-
direction of Building B using the four diaphragm modeling assumptions described above.
The estimation of shear V; among models showed a mean difference for all stories of
26.2%. Similarly, V. has a mean difference of 34.1% for all stories above ground level,
and up to 47.9% if basements are included. With respect to the effects of in-plane stiffness,
shears V; and V, in the DR and DRo models are consistently bigger for all floors, compared
to those yielded by the DS and DSo models. This increase is evident at the basements,

and may reach up to 11.1% between the DRo and DSo models at level BF. In addition,
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Figure 1.4.13. Story and normalized shears for the four different diaphragm stiffness: (a) Vertical distribution

of story shear ratio V; /W, and core shear ratio V,./W; for Building B in the X -direction; (b) box-plot of

the X - and Y -directions shears V; and V. for the DSo, DR and DRo models, normalized by the DS model

results in the six buildings and at levels H/2, L1, B1, and BF, respectively. Black and grey lines in plot (a)
represent total story and core wall shear, respectively.

core shear V, observed to be 3.6 and 3.7 times larger in the DR and DRo models at level
B1 than those of the DS and DSo models, respectively. This leads to V. being up to 22%
greater than V;. Recall that this abrupt increase in force for the core walls can be attributed
to the back-stay effect, as identified in the literature (Moehle, 2015). With respect to the
bending stiffness, shears V; and V. of the DSo and DRo models are smaller than the DS and
DR models, respectively (at all floors) with an observed maximum of 23.3% and 18.4%,
respectively. The exception occurs at the basements, where the DS-DSo models and the

DR-DRo look very similar.

The effect caused by each diaphragm assumption in the estimation of shears V; and V.
is evaluated by normalizing the results by the DS results. Fig. 1.4.13b shows these ratios
in a box-plot format for all six buildings at four different levels (H/2, L1, B1, and BF) by
taking into account the results in both directions (X and Y'). At building mid-height level
((H/2), the normalized shears V; and V. of the DSo and DRo models average 0.86 and
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0.89, respectively, with a minimum of 0.75. In addition, for the DR model, the normalized
shears V; and V. are 1.06 on average, with a maximum of 1.15. Consequently, for the
higher levels, the effect of the bending stiffness in the shear forces is more relevant than
the in-plane stiffness. For the other levels (L1, B1, and BF), the mean of the normalized
shears V; and V, of the DSo models varies between 0.92 and 1.05. The normalized shears
V, of the DR and DRo models increase mainly at level BF with a mean of 1.06 and a
maximum of 1.15. It is apparent that a high degree of variability exists in the normalized
shear V, at levels L1, B1, and BF for the DR and DRo models due to the back-stay effect.
Therefore, level L1 shows a mean of 1.13 and 0 =14.6%; level B1 a mean of 3.07, with
a maximum of 4.29, and 0 =73.2%; and level BF a range between 0.57 and 1.71 with
0=31.4%.

Fig. 1.4.14 shows all normalized response parameters for the six buildings in X- and
Y -directions in box-plot format. The standard deviation (o) and the range between maxi-
mum and minimum of these ratios are shown in the accompanying table. Due to the change
in bending stiffness of the diaphragm, the normalized shears V; and V. above ground level
(H/2 and L1) vary between 0.75 and 1.44 with 0 =13.3%. Contrary, minor uncertainty
is observed in normalized shear V; due to change in in-plane stiffness of the diaphragm,
which varies at the basements B1 and BF between 0.88 and 1.17 with 0 =6.4%. However,
the back-stay effect causes the normalized shear V, at the basements (B1 and BF) to vary
much more significantly, namely between 0.57 and 4.29 with 0 =112.2%. The same effect
applies to the normalized ratio )., which varies between 0.71 and 2.24 with 0 =30.6%. In
terms of standard deviation the uncertainty of the normalized forces of the core walls (V.
and ).), indicated in parenthesis in Fig. 1.4.14, is greater than for the normalized total
forces (V; and \;). The uncertainty of normalized displacement u. and normalized drift 9,

is smaller, with o =9.3%, unlike the normalized drift y which has 0 =32.1%.
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Figure 1.4.14. Response parameters of the DSo, DR and DRo models normalized by the DS model results in
the six buildings: box-plot diagram (top); and maximum, minimum and standard deviation o (%) (bottom).
(Values in parenthesis associated with the core walls.)

1.5. Effect of the soil constraints

To study the uncertainty associated with the type of soil-structure constraints, the AP
models of four buildings were used (A, C, D and F), and combined with five soil modeling
assumptions as shown in Fig. 1.5.15: (i) fixed support (SF) of the structure to the base
(reference model); (ii) vertical support (SV)—structure is supported elastically at the base
in the vertical direction only; (iii) horizontal support (SH)—analogous to SF but including
the lateral flexibility of the soil in contact with the basement perimeter walls; (iv) lateral
and vertical support (SS)—combination of SV and SH; and (v) complete fixity (SB)—with
all embedded elements fixed to the ground. In all models lateral displacements at the base

level are assumed to be fixed.

To generate the SV, SH and SS soil models, a common soil profile was developed as
each of the buildings is located on soil profiles with relatively similar properties. The
stratigraphy summarized in Table 1.5.6 shows a rather soft layer of surface soil in the up-
per 1.5m, followed by a very dense sandy gravel with increasing relative density (D,.)
in depth. The sites can be categorized as site class C per ASCE-7 (ASCE/SEI-7-10,
2013). The shear wave velocity (V;) for all soil strata is greater than 500 m/s. The

modulus of vertical subgrade reaction (K,) was taken as 174.1 N/cm?® and assumed to
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Figure 1.5.15. Soil-structure interaction assumptions in the studied models.

be constant. The modulus of horizontal subgrade reaction (/) for this non-cohesive
soil is proportional to depth () and follows existing recommendations (MOP, 2014), i.e.:
Kn(z)=22f(1+3.3ds/D)(z/D), where D = H, — d; H, is the height of basements; d
is the depth of the soil between ground surface and the start of the soil stratum; and f is a
coefficient for each soil stratum with values 0, 24.5 and 34.3 N /cm?, respectively. More-
over, as a response spectrum is carried out, each soil moduli is amplified by a dynamic

factor F§;s=1.9.

Table 1.5.6. Typical soil stratigraphy characteristic in the building studied.

Depth (m) Soil class Relative density, D, (%)
0.0-1.5  Poor soil —

1.5-5.5 Dense sandy gravel <65

+5.5 Dense sandy gravel >80

An important parameter controlling the soil-structure inertial effects in tall buildings
is the structure-to-soil stiffness ratio (H;/V;T7) (ATC-83, 2012). Inertial effect should be
considered if this ratio is greater than 0.1 (Tabatabaiefar & Massumi, 2010). As the soil
in these buildings is stiff (V; > 500 m/s) and the ratio H;/T} varies between 34.8 m/s and
60.4 m/s, the parameter H,/V,T; varies between 0.07 and 0.09, which is less than 0.1.
Therefore, H,/V;T) can be considered insignificant and the analysis is dominated by the

soil stiffness only. Please consider that the soil damping was neglected.
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(a) Wall
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(c) Slab

Figure 1.5.16. SSI modeling assumptions: (a) basements walls in contact with the soil; (b) foundation beams;
(c) foundation slabs; and (d) isolated column footing.

In the SV, SH and SS models, the soil is modeled with uncoupled Winkler springs
(COMBIN4) and Terzaghi’s criterion to estimate spring stiffnesses (Terzaghi, 1955). For
perimeter walls, slabs, and foundation beams, axial springs are considered as shown in
Fig. 1.5.16a-c. For isolated column footings, rotational springs are added (Fig. 1.5.16d).
For vertical springs in walls, beams, columns, and slabs, the stiffness of the structural
elements is larger than that of the soil, thus the spring stiffness in the j-th node is based
on the overall dimensions of the foundation element, i.e.: k}’ =F,isK,¢porA;, where
¢p=(B+0.3)?/4B? and ¢ = (2+ B/L)/3 are adjustment factors for non-cohesive soils;
A, is the tributary area of the j-th node; and L and B are the length and width of the
foundation element, respectively. For lateral springs associated with perimeter walls, the
spring stiffness in the j-thnode is: k7 (z) = Fy;s K1, (2) 9, A;, where ¢; = (a;4-0.3)* /4a? and
a; = \/A_J the equivalent width of the tributary area. Finally, for isolated column footings,
the vertical and two rotational spring stiffness is calculated with a FEM model for each

footing (Fig. 1.5.16d).

Fig. 1.5.17a compares the first four building periods obtained with the five different
soil models for Building A. The SV models were found to always predict the longest
periods, and the SB models the shortest. The first period estimates yielded by all SSI
models showed the largest variance of 12.9%. Fig. 1.5.17b shows the first four periods of
the SV, SH, SS and SB models normalized with respect to the SF values in Buildings A, C,
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D and F. For mode one, the normalized ratio varies between 0.97 and 1.18 with 0 =6.0%.
Using the SF models as a reference, the first periods of the SV and SS models are up to
18% and 14% longer, respectively; on the contrary, the first four periods of the SH and SB

models are between 3% and 10% shorter, respectively.
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Figure 1.5.17. Period variation according to the soil-structure model used: (a) periods of Building A; (b)
periods of the SV, SH, SS, SB models normalized by the SF model values for Buildings A, C, D and F.

Fig. 1.5.18a shows the vertical distribution of story shear V; in the X-direction of
Building F for the five soil models. In all models, the story shears above ground level are
very similar with a maximum difference of 3.4%. However, the SH, SS, and SB models
reduce the shear V; at level BF, with a minimum of 3.1% of the seismic weight, i.e. 7.7
times less than the value of the SF model. On the other hand, the SV model generates a

slight (6%) increase in the base story shear V; relative to the SF model.

The variations in estimating shears V; and V. resulting from the different soil models
are analyzed by normalizing the results by the SF results. Fig. 1.5.18b shows a box-plot of
the shear ratios for Buildings A, C, D and F at four levels (H/2, L1, B1 and BF), and both
directions (X and Y’). While the normalized shears V; and V, above ground level (H/2
and L1) are practically constant (0.8-1.1) in all models, the distribution of these shears at
basements (B1 and BF) depends on the soil model. Normalized shears V; for the SH, SS
and SB models decrease at lower levels. At level B1, it drops to a mean of 0.53-0.90 and
at level BF to a mean of 0.23-0.53. This effect is not observed in the SV model, which
shows up to 10% increase at level BF. Normalized shear V. increases at the basements for

the SV and SS models, reaching at level B1 a mean of 1.17-1.22 and at level BF a mean of
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Figure 1.5.18. Story and normalized shears for the five different soil-structure models: (a) vertical distribu-

tion of story shear ratio V;/W; for Building F in the X -direction; (b) box-plot of the X- and Y -direction

shears V; and V, for the SV, SH, SS and SB models, normalized by the SF model results in the Buildings A,
C, D and F, and at four levels H/2, L1, B1 and BF, respectively.

2.02-2.64 (with a maximum of 3.6-4.8), respectively. Additionally, the normalized shear
V. of the SH and SB models reach more variability at level BF ranges between 0.3 and

1.7.

Fig. 1.5.19 shows all normalized response parameters in both directions (X and Y') in
box-plot format. The standard deviation (0) and the range between maximum and mini-
mum of these ratios are shown in the accompanying table. Normalized shears V; and V.
above ground level (H/2 and L1) vary between 0.80 and 1.10 with 0 =6.1%; these nor-
malized shears show greater variability in the lower basements; where shears vary between
0.24 and 1.64 with 0 =27.3% at level B1, and between 0.03 and 4.79 with 0 =106.8% at
level BF. Analogously, normalized overturning moment to shear ratios \; and \. vary
between 0.37 and 4.73 with 0 =94.2%, and the normalized eccentricity € varies between

0.49 and 3.16 with 0 =42.8%. The standard deviation of the normalized shear V., is greater
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than that for V; at all levels. The origin of the high variability of the shear and overturn-
ing moments at basements stems from the use of different soil elements and stiffnesses
considered in each model, which in turn modifies the forces and reactions of the struc-
ture. Independently of this observation, the normalized parameters .., 0, and dy have low

variability with maximum o =16.7%.
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Figure 1.5.19. Responses parameters of the SV, SH, SS and SB models normalized by the SF model results
in Buildings A, C, D and F: box-plot diagram (top); and maximum, minimum and standard deviation o (%)
(bottom). (Values in parenthesis associated with the core walls.)

1.6. Uncertainty associated to assumed building fixity level

To investigate the uncertainty associated with “where” the building is assumed to be fixed,
the AP (Buildings A, C, D and F) and AW (Buildings A, B, E and F) models were used
with different number of basements levels ranging from a model without basements to
modeling all underground levels. A model with n-basements will be called Un and will
be fixed to the ground at the bottom of n-th level at depth z,. To isolate this effect, SSI

effects have been omitted in the analysis. In this section UQ is the reference model.

Fig. 1.6.20a compares the first four building periods obtained by modifying the amount
of basements and the fixity level of Building A. As expected, the U5 model predicts the
longest periods, and the U0 model the shortest. The difference in the estimation of the

first period is 10.9% and the maximum difference for the first four periods is 15.5%.
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Figure 1.6.20. Variation in periods depending on the amount of basements considered in the models: (a)
Building A periods for the AP models; (b) elongation of the first period (77 /TY) depending on the normal-
ized depth of the basements (z,,/H},) for the six buildings.

Fig. 1.6.20b shows the elongation of the first period (77/T}) for the AP and AW building
models as a function of the normalized depth of the basement (z,,/ H,); this ratio varies

between 10% and 18% with 0 =2.6%.
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Figure 1.6.21. Building response for different number of basements in the models: (a) story shear ratio
Vi /W, of Building A in X-direction (AP models); (b) normalized depth of basements (z,,/ Hp) versus nor-
malized story shear at level L1 (] =V;?/V,3) in all six buildings and the X - and Y -directions, respectively.

Analogously, Fig. 1.6.21a shows the story shear V; in Building A in the X -direction as
a function of the number of basements. V; varies between 14.0% (U4) and 15.9% (UQ) of
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the seismic weight, i.e. a maximum reduction of 11.7% with respect to UO. Fig. 1.6.21b-
¢ show the story shear V; at level L1 of model Un (V,}) normalized with respect to UO
(V9) expressed as a ratio v =V, /V,9, for all six buildings in the X- and Y -direction,
respectively. A value 77 less than one implies that the story shear at level L1 is reduced
when the building model is fixed at n-th level. In other words, if the minimum code design
shear is imposed at the n-th level, the base shear at level L1 could be less than the minimum
base design shear. The shear V; at level L1 may in principle increase or decrease as the
number of basements is added depending on the model and the direction of analysis. For
example, the ratio r{ in Buildings C and E in the X-direction reach a minimum of 0.84
and 0.96, respectively. Furthermore, 77 in Buildings B and F in the Y -direction reach
1.2 and 1.1, respectively. In all cases, these peak values of the ratio ] occur for z,/H,

between 0.37 and 1.

1.4 =3 Total B Un Response-n

mm Core

Normalized response
g
y
H
| |§:<_+N
=

06 B 1 1 1 B

Max 106 (1.08) 120(1.23) 0.99(1.03) 140 136  1.17 195
Min  0.88 (0.79) 0.84(0.67) 0.82(0.76) 0.67  1.00 093  0.86
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Figure 1.6.22. Response parameters of the Un models normalized with respect to the U0 models for the six
buildings: box-plot diagram (top); and maximum, minimum and standard deviation o (%) (bottom). (Values
in parenthesis associated with the core walls.)

Fig. 1.6.22 shows all normalized response parameters for the six buildings in both di-
rections (X and Y') in box-plot format. As before, normalization is performed by dividing
all Un responses by the reference UO response. The standard deviation (o) and the range
between maximum and minimum of these ratios are shown in the accompanying table. The

variability of the normalized shears V; and V, ranges at level L1 between 0.67 and 1.23
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with 0 =10.5%. Both responses, V; and V,, show similar variability. In terms of standard
deviation and range, the uncertainty of the normalized core wall shear and overturning
moment at levels H/2 and L1, shown in parenthesis, is greater than that the normalized
total quantities. On the other hand, large variability exists for the normalized parameters
e and 0y, ranging between 0.67 and 1.95 with 0 =14.1% and 14.5%, respectively. Analo-
gously, the normalized displacement u, varies between 1.00 and 1.36 with 0 =10.8%, and
the normalized drift ,, has 0 =6%. The standard deviation of all normalized responses is

less than 15%.

1.7. Summary and main results

This chapter evaluates the epistemic uncertainty of four major modelling assumptions,
which typically generate debate during the structural design review process of building
projects. These assumptions are: (1) the type of finite elements used; (2) the type of floor
diaphragm considered; (3) the soil-structure interaction model used at the basements and
foundation levels; and (4) the correct level of fixity for the model. In this quantification of
epistemic uncertainty, aftershock and ambient vibration measurements together with the
predicted elastic response of six reinforced concrete buildings located in Santiago, Chile
were considered. The uncertainty of response parameters for each modeling assumption
was evaluated by analyzing the ratio of predicted results from the variant models relative

to the reference models. The main results obtained from this part are:

e The AW models with solid elements provided the best estimates of the first four
building periods, with errors smaller than 13% relative to measured periods. For
the three models considered (ET, AP and AW), a maximum error of 17% and
48% was found for the first two and four vibration period predictions, respec-
tively. Although large, these errors are common when compared to experimental

validation cases.
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e The standard deviation of the different parameter response ratios obtained for
the three models (ET, AP and AW) was less than 11%. Consequently, consider-
ing the higher computational cost involved in the AW model, and the relatively
low values of epistemic uncertainty, the ET and AP models with shell and unidi-
mensional beam elements are recommended for estimating dynamic responses
in these free-plan buildings.

e The assumed diaphragm stiffness was found to be a relevant source of epistemic
uncertainty. Variations in the diaphragm stiffness for the first four buildings pe-
riods may reach values up to 10% and down to 27%, respectively. These varia-
tions are measured relative to the reference model, which considers in-plane and
out-of-plane diaphragm stiffness (DS model). The variation of the in-plane stift-
ness of the diaphragm generated a large variation of the predicted shear forces
in the core walls. Normalized shear for the core, varied between 0.57 and 4.29
times for the first basement, and the standard deviation of this ratio was 112%.
This large variation is attributed to the back-stay effect. Since current computer
software allows modeling of the diaphragm stiffness, it is recommended to con-
sider the in-plane stiffness of the diaphragm in the basements to reduce this
back-stay effect in FEM models. For shear forces in higher stories, the effect
of the bending stiffness of the diaphragm becomes larger than the effect of the
in-plane stiffness. The normalized story shear and core shear at mid-height of
the buildings (H/2) varied between 0.75 and 1.44, and was mainly influenced
by the out-of-plane stiffness.

e Shear forces at the basement levels were found to be strongly dependent on the
type of soil-structure interaction model used. Normalized story shear at the base-
ment varied between 0.03 and 4.79 times, with a standard deviation of 106.8%.
Above the ground level, the normalized story shears and core shears were found
to be similar among models. Due to this large uncertainty, it is recommended to
do sensitivity analysis of the building model including and neglecting the con-

tribution of lateral soil stiffness to obtain an envelope of the expected responses.



44

Please recall also that in many cases the lateral soil stiffness physically disap-
pears during the lifespan of the building due to a neighbour construction, and
the sensitivity analysis is in such case mandatory.

The influence of the level at which the structural model is considered fixed to
the ground leads to changes in the first vibration period of the buildings from
+10% to +18% relative to the reference model without basements. No clear
trend was observed for the story shear value at the first story as more basements
were added into the structural model and the fixity levels moves down. Nor-
malized base shear varied between 0.84 and 1.2 times relative to the reference
model, and depending at which level the code minimum design base shear is
imposed into the model, different fixity assumptions may lead to conservative
or non-conservative designs. In all buildings cases, peak responses occurred as
the fixity level was imposed at intermediate underground levels. Furthermore,
the standard deviation of all normalized responses was less than 14.5%. Due
to the epistemic uncertainty associated with the building fixity level, it recom-
mended to elaborate at least two models with different fixed levels and generate
an envelope of story shears and element forces. The code minimum design shear
should consider the envelope of these two models to avoid under design of the
superstructure.

Finally, from the studied responses it is concluded that larger uncertainty was
identified for core wall forces (shear and overturning moment) than for story
forces. Additionally, larger uncertainty was identified for story and core shear
at the basements (B1 and BF) than for shears in the upper levels (H/2 and
L1). Since free-plan buildings are characterized by having limited structural
elements, the epistemic uncertainty of these quantities are relevant and should
be accounted for in building design. One possible option to include these un-
certainties is to consider the ranges and the standard deviations of the responses
ratios presented herein, or otherwise, by considering the envelope of different

buildings models.
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The epistemic uncertainties evaluated in this article are limited to the linear elastic re-
sponse of free-plan buildings and do not necessarily carry over to other structure types or

inelastic behavior of these systems.
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2. EPISTEMIC UNCERTANTY OF 3D CONTINUUM STRESS-STRAIN CON-
CRETE MODELS AND CONSISTENT NUMERICAL IMPLEMENTATION

The use of more sophisticated inelastic stress-strain constitutive models in finite ele-
ment (FE) analysis of structures and systems is becoming more common today in engi-
neering practice. However, such models lead in many cases to different results, which is
a concern for a designing structures. Indeed, quantifying this epistemic uncertainty in-
herent in these models is one of the objectives of the second part of this thesis, since it
may lead to practical recommendations that increase trust in the obtained results. How-
ever, this is not a simple task since all available models use different parameters, notations
and assumptions. This work also aims to provide a consistent notation and computational

implementation for these models.

The quasi-brittle material behavior of concrete exhibits a pronounced nonlinear be-
havior associated with cracking in tension and crushing in compression. Tensile behav-
ior is characterized by an elastic response until the tensile strength. For larger strains,
strength softening occur due to crack propagation. This crack opening process is also fol-
lowed by shear stress transfer degradation due to deterioration of the aggregate interlock.
Thus, cracking induces damage anisotropy characterized by a non-symmetrical behavior
between tensile and compressive regimes with an irreversible strength and stiffness degra-
dation due to the propagation of micro-crack nucleation (Krajcinovic, 1996). Moreover, it
is observed that the energy dissipated to form a unit area of crack surface (G ;) is relatively
constant, and can be considered as a material parameter (Hillerborg, Modéer, & Petersson,

1976; van Vliet & van Mier, 1995; Nakamura & Higai, 2001).

In contrast, concrete in compression exhibits the formation of considerable irreversible
inelastic strains, which increase with the confinement and inelastic volumetric expansion
(dilatancy). Under uniaxial compressive stress, nonlinear hardening is present at the pre-
peak stage followed by a strength-softening stage. The complexity of this concrete behav-
ior increases for multiaxial stress conditions. On the one hand, the compressive strength

increases with lateral confinement, showing that concrete is a pressure-sensitive material.
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Furthermore, a material densification (or compaction) due to collapse of micro-porosities
is observed under high-confining stresses. And on the other hand, under cyclic load-
ing conditions, the micro-cracks close under load reversals from tensile to compression;
thus showing a partial stiffness recovery (unilateral effect). It is also well known the de-
pendence of concrete strength with strain rates, due to the fact that growth of internal

microcracking is delayed at high strain rates.

In the past, several two-dimensional (2D) and three-dimensional (3D) constitutive
models have been proposed to described the mechanical behavior of concrete under multi-
axial stress paths. Together, the definition of a robust model and its correct computational
implementation, are key aspects to correctly simulate the behavior of complex reinforced
concrete (RC) structures. These models respond to the taxonomy of plastic, damage,

plastic-damage, fracture, and mixed models.

Plastic concrete models are based on the plastic flow theory, which describes the be-
havior of irreversible plastic strains and hardening under multi-axial stress conditions. For
concrete, these models use a non-associated flow rule to describe the dilatancy, kinematic
or isotropic hardening, and load path-dependence. They also, include a single- or multi-
surface yield criterion to describe the limit compressive regime (Mohr-Coulomb, (Drucker
& Prager, 1952; Willam & Warnke, 1975; DiMaggio & Sandler, 1971; Bigoni & Piccol-
roaz, 2004)), which include pressure-sensitive behavior, and for other hand the tensile
regimes, such as the commonly used Rankine (tension cut-off) criterion. Comprehen-
sive overviews and comparison of plastic concrete models area available in (Chen, 1982).
However, these models do not consider the damage process phenomenon associated with

the stiffness degradation, the unilateral effect and the strain-softening.

Damage concrete models are based on continuum damage mechanics (CDM) theory
(Kachanov, 1958; Mazars & Pijaudier-Cabot, 1989; Krajcinovic, 1996), which is based
on the thermodynamics of irreversible processes, where the Helmoltz free energy (HFE)
is defined to establish the constitutive relation using internal variables. Damage models

can predict the degradation of the elastic stiffness tensor and the strain-softening behavior
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caused by the irreversible propagation of micro-cracks. Critical to these models are the
appropriate selection of the damage criteria, and the damage variables, which serve as a
macroscopic approximation to describe the micro-cracking process (Voyiadjis & Kattan,
2005). Several damage criteria have been proposed depending on the relationship between
nominal (damaged) and effective (undamaged) configurations. For instance, these crite-
ria are: (1) equivalent strain-based (Mazars, 1984; Mazars & Pijaudier-Cabot, 1989); (ii)
stress-based (Ortiz, 1985; J. Simo & Ju, 1987); (ii1) energy-based (Carol, Rizzi, & Willam,
2001); and (iv) Damage Energy Release Rate-based (DERR)-based (Faria et al., 1998; Wu
et al., 2006). According to the damage variable adopted, CDM models can be classified
as: (i) scalar, where one or more scalars are used to characterize the isotropic damage

process

As the name suggests, plastic-damage models combine the plasticity and CDM the-
ories. Usually, the combination is based on isotropic hardening plasticity with either
isotropic (scalar), or anisotropic (tensor) damage. Isotropic damage is widely used due to
its simplicity to combine different types of plastic models, and can be classified according
to the type of relation between the plastic and damage component. A first group asummes
a plasticity formulation on the effective (undamaged) space (Lubliner et al., 1989; Yazdani
& Schreyer, 1990; Faria et al., 1998; J. Lee & Fenves, 1998; Comi & Perego, 2001; Wu et
al., 2006; Contrafatto & Cuomo, 2006; Cicekli, Voyiadjis, & Abu Al-Rub, 2007; Voyiadjis
et al., 2008; Tagieddin et al., 2012). A second group adopts a strong-coupling approach
in which plasticity is formulated in the nominal (damaged) stress space (Luccioni, Oller,
& Danesi, 1996; Voyiadjis et al., 2008; Armero & Oller, 2000). In general, coupled rela-
tions are more complex than decoupled, and their implementation is not straightforward.
Moreover, plastic-damage models formulated in the effective space are numerically more

stable and attractive (Abu Al-Rub & Voyiadjis, 2009).

Fracture concrete models are based on the nonlinear fracture mechanics theory, where

cracking can be simulated either by a discrete or a smeared crack approach. In discrete
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crack models, the discontinuity of the strain field becomes explicit in simulating the initia-
tion and propagation of dominant cracks. In contrast, in the smeared-crack models, cracks
are smoothed in certain portions of the structure (inducing a length scale in the equations)
to capture the deterioration process through a constitutive law (Bazant, 1982; Cervera &
Chiumenti, 2006). Within the smeared-crack models, they are classified according to the
formation of a crack planes of degradation, or axes of orthotropy, such as fixed crack mod-
els (Rashid, 1968; Gupta & Akbar, 1984; de Borst, 1986), rotating crack models (Cope,
Rao, Clark, & Norris, 1980; Rots, 1988; TNO DIANA, 2018), multi-directional mod-
els (e.g. multi-fixed orthogonal and non-orthogonal crack models, (Maekawa, Pimanma:s,
& Okamura, 2003; Ventura-Gouveia, 2011), microplane model (Bazant, 1984; Caner &

Bazant, 2013), among other theories.

Finally, mixed models combine more than one of the previous models. As an example,
plastic-damage smeared crack, or fracture-plastic models, where plasticity and fracture
mechanics are respectively used to describe compression and cracking-tension regimes

(de Borst, 1986; Cervenka & Papanikolaou, 2008; Behbahani et al., 2015).

Tipically, concrete models are implemented on finite elements (FE) softwares, which
requires the evaluation of the constitutive equations at every integration point of each ele-
ment. Shell and solid elements are used for a best representation of strain and stress field
distributions through complex geometries. Accuracy in these elements is strongly de-
pendent on the algorithmic implementation and the integration techniques adopted (Krieg
& Krieg, 1977; J. C. Simo & Taylor, 1985). For strain-driven models, two main algo-
rithmic steps are needed: (i) the integration of an updated stress tensor given a strain
increment; and (ii) the elaboration of a stiffness matrix according to the equations in-
volved in the updated stress. The use of implicit integration schemes with return-mapping
algorithms (RMA) is usual for plastic and plastic-damage models, whereas explicit in-
tegration schemes are used for damage and smeared crack models. A broad variety of
algorithms for numerical implementation of concrete models are available in the literature

(e.g. J. C. Simo & Hughes, 1998; de Souza Neto et al., 2008).
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Most of these algorithms are implemented using local models, where the stress at each
integration point dependens only on the respective strain. However, it is well known that
convergence problems are common in local models of materials with softening behav-
ior and stiffness degradation due to strain-localization (Bazant, 1976). More specifically,
when the uniaxial laws exhibits a negative slope, or more generally, when the stiffness
matrix is no longer positive-definite, damage and strain localize in a zone of vanishing
volume and the FE solutions exhibit spurious mesh sensitivity to size and alignment, giv-
ing unreliable results (Pijaudier-Cabot & Bazant, 1987). Thus, local models require the
incorporation of an intrinsic length scale in the continuum equations to properly account
for the strain-localization phenomenon. A useful and simple technique to correct this
in current FE softwares is the fracture energy FE-regularization, originally proposed by
(BaZzant, 1982). This technique assumes that the energy dissipation takes place in a band
of a certain width, which is irrespective of the element size. Thus, the uniaxial laws at the
integration points are modified such that the energy dissipated by a completely degraded
FE equals a constant value, which depends on the fracture energy of the material and the
element size. In each element, the width of the fracture zone is referred as the charac-
teristic length [.. Mesh-objetive responses at post-peak regimes when strain-localization
occurs are obtained with this method (de Borst, 1986; Bazant, 1982). However, this tech-
nique is inadequate to overcome the ill-posed solutions present at the post-peak regime

(Bazant & Jirdsek, 2002).

Well-posed numerical solutions can be obtained by enhancing the local models us-
ing several techniques, so-called localization limiters: (i) higher-order continua, where
additional kinematic variables are added to displacement field, (e.g. Cosserat theory and
micropolar model, Tejchman & Wu, 1993; Eringen, 1999); (ii) higher-order gradients,
which incorporates the gradient of strain field, (e.g. gradient-enhanced models, Peerlings
et al., 1996; Abu Al-Rub & Voyiadjis, 2009); (iii) a non-local media with the stresses as
a function of the mean strain measured in a certain representative volume of the material
centered at that point, (e.g. non-local integral models, Pijaudier-Cabot & Bazant, 1987;

Comi, 2001); and (iv) incorporation of rate-dependent terms (e.g. viscous-regularization
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method, Needleman, 1988; Wang, Sluys, & de Borst, 1998; J. Liu, Lin, Fu, & Zhong,
2011). An extensive review of nonlocal models in the liteature is presented in (BaZant
& Jirdsek, 2002; Jirdsek, 1998). Further, special technique analyses are suggested to
overcome the nonlinear issues with bifurcation points present in materials with softening
regimes, such as explicit dynamic analysis (LS-DYNA, 2018) and arc-length techniques
(Riks, 1979; M. Crisfield, 1981).

Among posibilities, viscous-regularization aproach is the most adequate and easier to
implement for plastic and damage concrete models such as models studied in this thesis.
Visco-elastic and/or visco-plastic models (e.g. (Duvaut & Lions, 1972; Perzyna, 1966))
were developed to describe strain-dependent material behavior and help in regularizing
rate-independent plastic or damage models. The basic idea of this approach is to add a
numerical viscosity into the numerical integration of the equations, which converts the
stiffness operator into a positive-definite matrix even in a strain-softening regime. This
technique improves greatly the convergence at the expense of an over-stress condition that

depends on a strain-rate increment.

The objective of this chapter is to compare the response of five different 3D continuum
constitutive concrete models and provide all the details necessary for a correct numerical
implementation. Because we aim to evaluate the epistemic uncertainty implicit in these
models, several tests are run to compute differences between models. Hence, a second
objective of this work is to try to bound this uncertainty and cast it in a form useful to the

design engineering profession.

This chapter presents in Section 2.1 a complete description of the five continuum con-
crete models using a consistent notation. Section 2.2 is devoted to explain numerical
convergence issues and their solution strategies for these models. Detailed algorithms for
numerical implementation of the updated stress tensor are provided in Section 2.3. More-
over, new analytical explicit expressions for the algorithmic consistent tangent stiffness
tensors of the models are described in Section 2.4. Also, a consistency check of input

model parameters, such as uniaxial laws and fracture energy definition is presented in
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Section 2.5. Further, numerical examples using basic benchmarks tests subject to mono-
tonic and cyclic loading conditions under uniaxial, biaxial and triaxial stress states are
presented in Section 2.6 to demonstrate the capabilities of the proposed implementations.
Moreover, the unilateral effect, the strain-rate effect, the mesh size influence and strain-
localization phenomena are discussed among models. Also, the compression failure mode
of a test specimen is illustrated as an example of application. Additionally, Section 2.7
evaluate the epistemic uncertainty associated to nonlinear response of inelastic constitu-
tive concrete models with a set of response parameters with respect to the experimental
benchmark tests mentioned above. Finally, appendix B provides some useful conversion
rules of tensors and their operations to a vectorized form for the computational implemen-

tation of models.

2.1. Description of concrete models

This section summarized the equations of the five continuum concrete models consid-
ered in this article. Also, include some modifications adequate to improve the convergence

of models.

2.1.1. Drucker-Prager Hyperbolic (DPH) model

This plastic model, so-called the "Extended Drucker-Prager” model was defined by
(Drucker & Prager, 1952) and modified by (ANSYS, 2018; ABAQUS, 2018). Is a simpli-
fication of Mohr-Coulomb model and have been used to simulate soil or cohesive mate-
rials, like concrete. First, the strain tensor € is decomposed additively into its elastic, €°,
and plastic part, €? as follow

e =€+ P (2.1.1)

Then, for the case of linear elasticity, they can be related to the Cauchy stress tensor o
by
o=D,.: (e —¢€"), (2.1.2)



53

where D, is the fourth-order linear-elastic tensor (see appendix 1 for their definition). The

yield criterion is defined as

F(o,a) =np+ /3]s — &c(a), (2.1.3)

where the hydroestatic stress p is included to simulate the pressure-dependent behavior and
the asymmetric tensile/compressive strength of concrete; 77 and & are material parameters
chosen according to the required approximation to the Mohr-Coulomb criterion or fitted
to uniaxial/biaxial tensile and compressive strength of concrete; and ¢(«) is the cohesion
hardening law, which is taken as function of the equivalent plastic strain «. The later
variable is defined as v := fot ||€P||d¢. Its assumed an exponential relation for the cohesion
hardening law c¢(«) as

() = c, + (c; — c,)el 7/ (2.1.4)

where ¢, = Rc, and o, = ¢,/ E,, with R > 1 an experimental fitted parameter. Discus-
sion of parameters 7) and & are detailed in Section 2.5. Fig. 2.1.1 shown the shape of DPH
yield surface represented in different views. In addition, the figure include the initial yield

surface for the LLF and WLF model.

For other hand, a hyperbolic shape is adopted for the flow potential, and is defined as

G(o) =np+ \/3J2 + €, (2.1.5)

where 7) is a constant that depends of the dilatancy angle and € is a eccentricity parameter
that controls the shape of surface near of tensile regime, generally used less than 0.001
(ABAQUS, 2018). Observe that this flow potential is a smoothed surface (C?-class) that
avoid the singularity at the cone’s apex present in the classical Drucker-Prager model,
giving an unique flow direction in this region. Also, note that this flow potential converts

to the classical Drucker-Prager model when ¢ = (. Then, the non-associated flow rule for
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Figure 2.1.1. Yield criterion of DPH, LLF and WLF models: (a) 3D view in principal stress; (b) deviatoric

m-plane; (c) tensile/compressive meridians in Rendulic plane; and (d) biaxial-stress plane. The following

parameters are used. Common for all f;=6 MPa, f.=20 MPa, f, = 1.16f,. For the LLF and WLF models
ot =f,6" = fo,w* =0and K.=0.7.

the plastic strain tensor is given by

e == AN, (2.1.6)

where 7y is the plastic operator and N denotes the flow tensor expressed as

oG 3 7
N =—=— -1 2.1.
oo 2rs+ 377 2.1.7)

with r = /¢%> + € and ¢ = /3J>. Hence, using Eq. (A.1.5) and due that tr(s) = 0, it

follows that the volumetric strain rate can be estimated as

g, =+l = K lp+4m, (2.1.8)
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where ¢ and P are the elastic and plastic volumetric strain, respectively. It can observed
that 77 controls the inelastic volumetric strain rate (dilatancy). For the other hand, the

evolution law for the equivalent plastic strain is stated as

G = AL, (2.1.9)

Finally, the loading-unloading Karush-Kuhn-Tucker (KKT) and the consistency con-

dition, respectively, are expressed as

§>0,  F(o,7) <0, 4F(o,7) =0, (2.1.10)

F(o,v) = F(o,v) = 0. (2.1.11)

2.1.2. Lubliner-Lee-Fenves (LLF) model

This plastic-damage model, so-called "Barcelona” model, was first developed by (Lubliner
et al., 1989) and later improved by (J. Lee & Fenves, 1998). First, using Lemaitre’s strain
equivalent hypothesis (Lemaitre, 1989), the nominal stress tensor o associated with the
damage state is related to the effective stress o corresponding to the undamaged state as
follows

o= (1-w)a, (2.1.12)

where w is the isotropic damage variable, with w € [0, 1].

Plastic component

To calculate this component, its assumed the so-called effective stress space plasticity,
which is related to the effective stress tensor o and is dependent (coupled) of damage
component (Wu et al., 2006). First, two hardening scalar variables k¥ are stated to control

the positive/negative part of plastic-damage component, respectively. (Lubliner et al.,
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1989) define normalized variables for uniaxial case as follows

+
1 6%
kE ;:_i/ o*(a®)da®, (2.1.13)
g Jo

which correspond to accumulated area under positive/negative uniaxial stress-equivalent
plastic strain law (6= — o), respectively, with x* € [0,1] and g* = [;* 0= (o) da™ are
the total area under their respective stress law. Note that positive values are used for o=*.

Moreover, the positive/negative equivalent plastic strain o= are defined as

ot = /|éft|dt, (2.1.14)

;\p_;\p /'\p__;\p . AD . .. . _
where & = &0 and £ = —¢£ ., with &, . are the maximum and minimum eigen

values ratio of principal plastic strain tensor €”, respectively. Then, the Eq. (2.1.13) can

be written in an incremented format as

1
= —oF(aF)a®, (2.1.15)

g:t

Moreover, in case for multi-axial condition, the evolution law of variables x* in a

vectorized format k = [xT, k7|7 is defined as

k=W (0,K) &1, (2.1.16)
. o)ot (k) /gt 0 0
W () o | O s |
0 0 (¢(o)=1)o (s )/g
where & is the principal effective stress tensor; ér = diag (ézf R ,éﬁ”v) is the ratio of

principal plastic strain tensor, which is filled in an algebraic order (e.g. éﬁ” > > 55’\,); 1

is a vector filled of ones of length NV; and ¢(&) is a weight factor € [0, 1], defined as

O, 6i =0
/)= 2L @t

i=1

N 2~
Zi:1“7i|

. (2.1.17)
, otherwhise
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+ +

An adequate conversion of uniaxial stress laws from the relation 0% — a* to 0% —
x*, using Eq. (2.1.13) is necessary to generate. Detail of this conversion is discussed in
Section 2.5.1. For the other hand, similar to stated in the DPH model, the hyperbolic
Drucker-Prager criterion defined by Eq. (2.1.5) is used for the flow potential. Moreover,
due that any isotropic material satisfy the relation G(&) = G(&) and that p, J, and r

are invariants in the effective stress space ((’) = ( )), the flow potential in the principal

effective space can be rewritten as

G(o)=np+VJo+e. (2.1.18)

&’ = 4N, (2.1.19)

<0G 3. 0.

N=""="5+"11 2.1.20
oo 2FS+ 37 ( )

where NN is the principal effective flow tensor. Thus, Eq. (2.1.16) can be rewritten as

K) (2.1.21)

Qr

fs = H (

where H (o,6) = W (0,K) - N - 1. For the other hand, the yield criterion is first

established by (Lubliner et al., 1989) in the effective space as

F (o) =np+V3Js+ B(Oma)™ — (1 — @), (2.1.22)

where o = (f, — f.) / (2f, — f.), 8 = (1 — a)f./f, — (L + a) and c is the cohesion
parameter (constant). Typical experimental values of the ratio f,/f. for concrete ranges
from 1.10 to 1.16, yielding values of a between 0.08 and 0.12. Later, (J. Lee & Fenves,

2001) modify this function, adjusting the parameters to distinguish the different evolution
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of strength under tension and compression as follows

B(r) = (1—a)Z-

s "t e =T, (2.1.23)

where 6+

are the positive/negative uniaxial effective stress law, respectively. Additionally,
(J. Lee & Fenves, 2001) include in the yield criterion a parameter ¢ to account the triaxial

compression behavior. Thus, the yield criterion can be redefined finally as

— A

F (&7ﬁ) =np+ \/3_<]_2‘|‘ ﬁ(ﬁxémax)—i_ - 5<5ma:c>_ - (1 - O‘)C(KJ_% (2.1.24)

where § = 3(1 — K.)/(2K. — 1) denotes the ratio of corresponding values of v/.J; under
tensile meridian and compressive meridian stress states for any given value of hydrostatic
pressure /; and its assumed constant (Lubliner et al., 1989). Experimental values of K.

ranges in the interval [2/3, 1], which gives a value of 6 € [0, 3].

Damage component
(J. Lee & Fenves, 1998) define the damage variable w as follows

w=1-[1-s(@)w ()] [1-w (x7)], (2.1.25)

where s(o) = s, + (1 — s,)¢(a) is a variable to represent the stiffness recovery from

compression to tensile load state and w™® (k¥) are uniaxial positive/negative damage laws,

respectively, which are in function of hardening variables x*

. These damage laws are
fitted experimentally and are generally known in terms of equivalent plastic strain o™, e.g.

the common exponential relation is used as

wH(a®) =1 — exp(—C*a®), (2.1.26)

with C* an experimental parameter that control the unloading branch of response. Due

+

this, its required an adequate conversion from w* — a® to w* — k¥ laws as explained in
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Section 2.5.1. Moreover, (ABAQUS, 2018) redefine the damage variable w as follow

w=1-[1-s(e)w" (k)] [1 - sT(e)w (r)], (2.1.27)

with s (&) are the stiffness recovery functions defined as

st(e) =1z ¢(a), s (o) =1—2 (1-9¢(a)), (2.1.28)

with z£ € [0, 1] are a stiffness recovery factor from tensile to compression load state and
vice versa. Empirical evidence shown that compressive stiffness is recovered upon crack
closure as the load changes from tension to compression (z;° ~ 1). However, tensile
stiffness is not recovered as the load changes from compression to tension once crushing
micro-cracks have developed (z = 0). Thus, the uniaxial positive/negative stress o+ laws

can be related to respective effective stress o+ laws as follows

o (k%) = [1 — w* (k%)) 05 (k7). (2.1.29)

Viscous component

Additionally, the model can include strain-rate dependency with a visco-plastic model,
which improve the convergence in strain-softening regimes. To this, the nominal stress

tensor o is now converted to their respective viscous component o, and is defined as

o’ =(1-w"a", (2.1.30)

where w" is the viscous damage variable and 6" is the effective viscous stress tensor.(J. Lee
& Fenves, 2001) calculate this component using the (Duvaut & Lions, 1972) visco-plastic

model, which is stated in the effective stress space as
g?=—C,.: (6" —0), (2.1.31)

6’ =D, (e —e"), (2.1.32)
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with €"? is the visco-plastic strain tensor and /i, is the numerical viscosity parameter and
is equivalent to the relaxation time. Thus, combining both expressions gives the follow
relation

1

gl = —— (e —eP). (2.1.33)
[ho

Moreover, the evolution law of viscous-damage variable w" is defined as

w'=—— (W' —w). (2.1.34)

2.1.3. Wu-Li-Faria (WLF) model

This plastic-damage model, was first developed by (Faria et al., 1998) and later mod-
ified by (Wu et al., 2006). Two variants are developed for this model: one aproach that
include the plastic and damage components (WLF) and other one with pure damage be-
havior (WLF,). First, assume that the effective stress tensor o are splitted into positive
o and negative &~ parts, to account separately the cracking (tension) and shear (com-
pression) damage mechanisms for degradation of concrete (Ladeveze, 1983; Ortiz, 1985),

using the follow decomposition

N
ot =Y (6)*El=P*: 0, (2.1.35)
i=1
N
P*i=) H*G:) (Bl @ EY), (2.1.36)
i=1

where P* are the fourth-order projection tensors, with symbol 4’ denoting *+* or ’-
’ as appropriate, 7; denote the i—th eigenvalue of tensor & and EZ is the i—th eigen-
projector tensor associated to o (see Eq. (A.1.9)). This decomposition satisfy the relations

6 =67+ 6 and PT + P~ = Z. Next, in order to establish the intended constitutive
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law, (Wu et al., 2006) define the total elasto-plastic HFE v potential as follows

(e w, k) = Y(e’,w) + P (k,w), (2.1.37)
(e w) = (1 —whyet(e) + (1 —w)Ys (9, (2.1.38)
Pk, w) = (1—w" )i (k) + (1 —w )y (8), (2.1.39)

where w* = w*(r*) are positive/negative scalar damage variables € [0, 1], respectively,
which are in function of the damage thresholds 7+ that controls the size of damage sur-
faces; w = [w',w™]7 denotes the damage vector; 1°* are the undamaged elastic HFE
potential and are equals to the strain energy per unity of volume, i.e. 1) = %6: € and
)P+ are the undamaged plastic HFE potential. Moreover, the Eq. (2.1.37) can be reordered
as

PEe®whw k) =(1—-wHy (e k) + (1 —w )Y, (%K), (2.1.40)

where 1= is the positive/negative total undamaged elasto-plastic HFE potential and are

written as

YE = et 4Pt (2.1.41)

For the other hand, the nominal Cauchy stress tensor can be defined as

o= Oy*
T e’

(2.1.42)

Then, using the relation % = o and Eqgs. (2.1.41), (2.1.35) and (2.1.38), this stress

tensor is expressed as

o=[(1-wHP"+(1-w )P |:0= (Z(l - wN)’PN> e (2.1.43)

N

9

where N denote index summation for ’+’ and ’-’ part as appropriate hereafter.
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Plastic component

Similar to the LLF model, its assumed the effective stress space plasticity, where the
plastic component is calculated in terms of the effective stress tensor o and in this case, is
independent (decoupled) of damage component (Wu et al., 2006). Due to this condition,

they can include the plastic component as an option, conversely to the LLF model.

(Wu et al., 2006) assume the Lee-Fenves yield criterion as stated in Eq. (2.1.24), with
the parameter 6 = 0, and the classical Drucker-Prager flow potential criterion (¢ = 0).
However, its recommend the use of a flow potential as defined in Eq. (2.1.5). For the other

hand, similar to the LLF model, two hardening parameters KE

are proposed to control the
positive/negative plastic component which are assumed as the positive/negative equivalent
plastic strain a* defined as o = [ |éi| dt. Then, for multi-axial condition, these harden-
ing parameters are stated as k¥ = ¢(d)at and K~ = —(1 — ¢(7))a~, with ¢(5) defined
in Eq. (2.1.17). Then, the rate of hardening vector k = [k, k7|7 is defined similar to the
Eq. (2.1.21), but with the matrix W (&) given by

W(o) = ?(o) 0 0 : (2.1.44)

0 0 ¢ (5‘) —1
In addition, the positive/negative effective uniaxial stress 5= (k=) laws are required.
(Wu et al., 2006) assume a linear relation as follows
G5 (kF) = fF 4+ JEK*, (2.1.45)
where fF is the positive/negative initial stress, which are chosen for convenience in the

range f;7 € [0, f;] and f; € [0, f.], respectively, and J= = EfE,/(E, — EF), with EF

are the hardening slope.
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Damage component

For the damage component, its required a specific definition for the undamaged elasto-
plastic HFE potential woi. For one hand, (J. Simo & Ju, 1987) assume that wf can be as

the positive/negative elastic strain energy per unit of volume and expressed as

1
Wy (e°) = 3 (6%:C.:0). (2.1.46)
However, this HFE potential is more adequate in tensile regimes where contribution of
plastic part is much smaller than the compression ones. Hence, for compressive regimes,

(Wu et al., 2006) define the following HFE potential that include the biaxial and triaxial

compression effects as follow

- R 2
U5 () = by (m+ V3T = 8(6mar) ") (2.147)

where b, is a material parameter (defined in (Wu et al., 2006)) and n = 3a. Next, the
tensile and shear thermodynamic forces or Damage Energy Release Rate-based (DERR),
Y*, can be defined as

onp*

Y+ = i VE (2.1.48)

Then, the positive/negative damage criteria are defined as
FE(YEr5) = g7 (YF) — g5 (r®) <0, (2.1.49)
where gjlt(-) can be any monotonically increasing scalar function. Using the Egs. (2.1.46)

and (2.1.47), these functions can be postulated as convenience as g4(-)* = 1/2E,(+) and
ga(-)” =/ (+)/b,, respectively. Thus, the positive/negative DEERs can be rewritten as

Yt = 2B = \/E,(6%: C.: &), (2.1.50)
Y=y /ﬁo_ =np+ V3J2 — 0(Grmaz) - (2.1.51)
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Moreover, the evolution damage laws can be defined analogously to the classical plas-
ticity, where the flow rule, the loading-unloading and the consistency conditions of damage

component are defined, respectively, as

o +
W = 4% agdi’ (2.1.52)
yr=7t>0,  FR(Y*r%) <0, AFFF(YE ) =0, (2.1.53)
FE(YE r%) = FE(YE,r5) = 0. (2.1.54)

Its follow using Eqgs. (2.1.53) and (2.1.54), that the damage thresholds r* are non-

decreasing functions that satisfy the relations

rE = max (r;c, I?ajx(yi)) : (2.1.55)
0,t
=Y (2.1.56)
where 7+ are the initial damage thresholds. Assuming an uniaxial behavior and using

Egs. (2.1.50) and (2.1.51), these values can be calculated as r¥ = oF and 7, = (1 —
+

o

a + d)o,, respectively, where o are stress onset the nonlinear behavior. Although, its

adequate adjust the negative initial threshold as r, = (1 — )0, .

Finally, the positive/negative damage w*(r*) laws are generally derived of exper-
imental cracking process. (Mazars, 1984) define an exponential relation for the posi-

tive/negative component, respectively, given by

1 =
w+(r+) =1- - (1 — A+ + A+€B+(1iz+)> ) (2157)
z
1 o
w(r)=1-— (1 — AT+ Az >) , (2.1.58)
z
where 7+ = r*/rf and A* and B* are experimental parameters fitted with the frac-

ture energy FE-regularization method explained in Section 2.5. This damage laws can be
converted to an equivalent stress-strain o= (¢*) relation and vice versa, being these last

commonly more known and used than the respective damage laws.
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Viscous component

Additionally, the model can include rate-dependent viscous regularization. Originally,
(Faria et al., 1998) propose the use of Perzyna viscous model to the damage component of
model, which involve an iterative process to solve the updated solution. In order to get a
simplified solution, its proposed the use of (Duvaut & Lions, 1972) viscous model in the
plastic and damage components of model. Thus, the nominal viscous stress tensor o is

defined as

o= (1-whe™, (2.1.59)
N
N
ot =Pl PL=Y Hy () (BieEL)., (160
=1

where &V is the effective viscous stress tensor given by Eq. (2.1.32) and P are their
positive/negative projected tensors, respectively. Moreover, for the damage component,
the evolution law of damage thresholds variables 7+ are defined as

ri:—%@i—yﬂ. (2.1.61)

2.1.4. Faria-Oliver-Cervera (FOC) model

This plastic-damage model was proposed by (Faria et al., 1998). Take identical as-
sumptions than the WLF model for the damage and viscous components, and use a sim-

plified representation for the plastic component, explained as follows.

Plastic component

Although, the formulation of the WLF model provides a strict framework to represent
the evolution of plastic strain tensor, numerical implementation gives time consuming

solving process. (Faria et al., 1998) proposed a simplified evolution law for the plastic
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strain tensor as follow

P = &, (2.1.62)
<€e . €>+

4= Byl (2.1.63)
(0:0)

o:
where x = BTH"(wt) + B"H"(w™) > 0 is a material parameter to control the rate
intensity of plastic deformation, with B* parameters associated to positive/negative com-
ponent of stress, respectively; Heaviside function H(-)" is used for active progressive
damage rate of respective stress component; and McAulay (-)* function enable one to set

a non-negative value for the product (°: £) required to ensure positive dissipation.

2.1.5. Total strain rotating crack (ROT) model

This smeared-crack model was developed by (Cope et al., 1980; Gupta & Akbar, 1984)
and enhanced by (Rots, 1988; TNO DIANA, 2018). We proposed a simple and robust

formulation than past.

Damage component

First, assume the so-called the “total strain” formulation present in the hypo-elastic
materials, i.e. that stress tensor o depends only of total strain tensor €. Next, its assumed
that a set of orthogonal crack planes rotates according to direction of principal strain tensor

€. Then, using a spectral decomposition of strain tensor € (Eq. (A.1.8)), satisfy the relation
N
e=V. eVl =) &E (2.1.64)
i=1
where V _ is the orthogonal normalized eigenvectors matrix, &; is the i-th eigenvalue and
E" the i-th eigen-projector tensor (Eq. (A.1.9)).

According only to this condition, the model lack of memory for the damage evolution,

where the loading and unloading follows the same path (hypo-elastic). Thus, in order to
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add an irreversible damage process, a i-th positive/negative damage strain variables ajt
are defined for respective principal strain direction &;. Then, the evolution law for these

damage variables satisfy the relation

o = zFé,, (2.1.65)

()

where z- = 1 — rf and rf = Hi (af — &;) are the damage threshold variables. Now,

calling the damages strain vector as follow a = [at,a~]7, with a* = [af, -+, a}]7,
Eq. (2.1.65) can be rewritten in a vectorized format as
a=Z(Ea) &1, (2.1.66)
. z* £ + +
Z (¢, a)= , Z* =diag (", ,2y) -
7-

It should be noted the similarity of this expression with Eq. (2.1.16). For the other
hand, the i-th principal stress 7; evaluated in their respective principal strain direction is
given by

6; =mih +m;h;, (2.1.67)
where m¥ = H 1i/2 (¢;) and hf = o* (i) g, with o* () are the uniaxial positive/negative
stress laws, respectively, and gl?t are variables to control the loading/unloading stress. As-
suming a secant unloading to origin (no plastic strains), the variables g;= can be defined

as

gE=1- "= (2.1.68)

with gz?IE € [0, 1], where gijE = 1 in case of loading and gl-jE < 1 for unloading. Finally,
the model assume the principle of co-axiality (Bazant, 1983), i.e. the principal stress

directions coincide with the principal strain directions, for which satisfy the relation

N
o= GE; (2.1.69)
=1
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Viscous component

Additionally, its suggested include a viscous model to improve the convergence of

model. For this, the Duvaut-Lions viscous model can be incorporated as follows

1
(j/.):t — ——(a?i — Of.t)7 (2170)

where o~ are the i-th viscous damage strain variable. Then, the i-th principal viscous-

stress 0 is expressed as

60 = mFhY b, @.171)
hE = o ar)grt, gt = (2.1.72)

%

Thus, the viscous-stress tensor o is given by

N
o' =Y 6VE". (2.1.73)

i=1
It should be noted that, this model can be extended to simulate the biaxial effects, such
as biaxial strength in compression-compression (CC) regime or compression softening
in tension-compression one. In both cases, it can be extended by means of modify the
+ _

uniaxial stress-strain law as function of complete principal stress/strain tensor, i.e. 0= =

o* (&, ). Complex derivatives involve this process and is beyond the scope of this work.

2.1.6. Resume of concrete models

Table 2.6.7 shown the main capabilities for described concrete models. Classification
of models (plastic, damage, plastic-damage), strain-softening behavior, stress state effects
(biaxial or triaxial), unilateral effect and strain-rate effect are mentioned. Also, the table

lists the inelastic inputs parameters.
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Table 2.1.1. Properties of concrete models and their input parameters.

Strain Biaxial Triaxial Unilateral Strain-rate Inelastic inputs
Model Class softening effect  effect effect effect Scalar Uniaxial laws
DPH plastic v 7.7, &, € c(a)
LLF  plastic-damage v v v v v fon fl:, Keo il € i, 25 0% (5%), wt (k%)
WLF  plastic-damage v/ v v v v fos fl;, Ke, 1, € iy oE(KF), wH (r)
WLF, damage v v v v v for Fro Koo o wE(rF)
FOC  plastic-damage v/ v v v v fos [y Ko, B wE(r¥)
ROT  damage v v v Ho oF(e%), Opnaal(€)

2.2. Convergence issues and solution strategies

Inner the possibilities of local models, three strategies are suggested and probed by

authors to achieve a good convergence.

2.2.1. Stress updated algorithm

Determination of an adequate stress updated algorithm is necessary to give robust
convergence for numerical models (Krieg & Krieg, 1977; J. C. Simo & Taylor, 1985).

The following suggestions are proposed.

e Avoid singularities in the range of solution for all variables to be solved.

e Choice of an adequate initial value and no-null derivatives in the variables to
be solved is a key issue in the Newton’s method to give a correct convergence.
Also, its better solve an unique scalar variable rather than a system of equa-
tions, specially when their magnitudes are very different. An example of this, its
recommended to solve the scalar variable g, ; rather than the deviatoric stress
tensor s, for the plastic component of the DPH, LLF and WLF models.

e Its highly recommended to avoid zero slope stages in the uniaxial stress laws
(e.g. perfectly elasto-plastic) to give an unique plastic/damage consistency op-
erator y or 4, respectively. Zero slope is typically present in the residual stress
under post-peak stage. To fix this, include a small value for the slope, say

107° x E,.
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2.2.2. Tangent stiffness operator

Special attention are given to the tangent stiffness operator, due to sensitivity of this
operator in the convergence of models at a finite element level. We propose the following

recommendations for this operator.

e Its recommended that all variables involved in this operator be of C'-class (con-
tinuous derivative), taking special attention in strain-softening regimes. One
way to remedy this in the plastic component of models, is avoid singularities
in the yield function and especially in the flow potential function by means of
smoothed C2-class functions. Example of this occur in the DPH model, where
the flow potential function has been modified by a smooth hyperbolic shape
surface (Eq. (2.1.5)) to give unique derivatives at the apex’s zone of cone (ten-
sile regime). Another example happens in the LLF and WLF models, where the
Heaviside function H¥ is present in the yield criterion (Eqgs. (2.1.22) and (2.1.24)).
To improve the convergence of model, its recommended replace this stepped
function by a C!-class approximated function H *(.) expressed by Eq. (A.1.22).
In addition, the use of C!-class functions its recommended also for the uniaxial
laws (0 — €, 0 — Kk or w — r). To this purpose, we recommend to replace a por-
tion of the uniaxial law by a smoothed function in all breaks points, as shown in
Fig. 2.2.2a. Inner the possibilities, the Hermite polynomial interpolation, cubic
spline curves or any three-order polynomial can be used as a smoothed function.

For the sake of simplicity, it can use a three-order polynomial p(zx) given by
p(z) = ag + a1z + ayx® + asx®, (2.2.74)
where the constants a to as are given by

(lozfl—xl[El—i—lL’l(Cl—i‘Q)], aq :E1+$1(201+302),

c
as = —(c1 + 3¢a), as = —,
T
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with c; and ¢, are expressed as

where Ax = x5 — x1 is the length of portion of the uniaxial law replaced by the
smoothed function, with z; and x5 are the abscissa before and after of respective
break point, A f = f, — f; and (f1,F) and (fs,F>) are the values of uniaxial law
and their derivative evaluated in x; and zo, respectively. An adequate portion
Az is key to gives a correct smooth function. Thus, for positive uniaxial laws,
a value of Az = 5 x 107z, is recommended, where z, is the abscissa onset
the non-linear behavior and for negative ones a value of Az = 5 x 1072z, is
adequate, where x,, is the abscissa associated at the peak response.

For non-symmetric stiffness matrices, its required the use of a unsymmetric
Newton-Rapson solver method to get an adequate response. Its observed that
the LLF and WLF models are specially sensitive to this condition. Moreover,
when is forced a symmetrization of the consistent stiffness matrix (D, =
%(’DnH +DF 1)) in this models, a ”saw-tooth” shape response are generated,
specially in the softening regimes and in biaxial and triaxial load states.

Its well known that strain-softening behavior can generate a loss of positive-
definite value of stiffness tensor and consequently a non-convergence of FE
model. One way to remedy this, is to include a numerical viscous-plastic model
in damage or plastic-damage models. The Duvaut & Lions, 1972 model is more
appropriate for the regularization of the rate-independent damage and plastic-
damage models, because the Perzyna model fails to converge to the rate-independent
backbone model in some cases (J. Lee & Fenves, 1998). The LLF, WLF, FOC
and ROT models can include a viscous-regularization in their formulation using

Duvaut-Lions model.
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Figure 2.2.2. Smoothed function for uniaxial laws: (a) generic uniaxial law f(x); (b) derivarive of f(z) and

(c) smoothed polynomial used.

2.2.3. Additional recommendations

e We recommend the use of a linear algebra software (MATLAB, PYTHON) to

check the adequate implementation and response of models.

e Its necessary to check the calculation of derivatives involved in the stiffness

operator, e.g. compare the exact derivatives with their first-order approximation

such as % ~ (flrjs1] — flzj]) /Az, with Az = x4 — ;.

e Finally, for a correct computational implementation of numerical algorithms, its

required that all tensors and their operations must be converted into adequate

vector or matrix representation (vectorization and matricization). Thus, the

second-order tensors are vectorized using Voigt§ notation, whereas four-order

tensors are converted into matrix standard format. Details of these conversions

are explained in appendix B.



73

2.3. Stress updating algorithms

Numerical integration of constitutive equations requires of an algorithm to update the
stress tensor and internal state variables at each integration point given a known strain
increment. More specifically, given a (pseudo-) time increment At = ¢, — t,, it is
assumed that at time ¢,, the strain tensor &,,, the stress tensor o, and the internal state
variables «,, are known. Then, the algorithm determine the updated stress tensor o, 1 at

time ¢, for a given strain increment Ae = Ate.

Thereby, for one hand, the plastic component of models is commonly evaluated with a
backward Euler (implicit) scheme. Return-mapping algorithms are the most used, where a
trial elastic-predictor step and a plastic-corrector step are required (J. C. Simo & Hughes,
1998). Generally, this method lead implicit non-linear equations which are solved by
means of an iterative Newton’s method. For the other hand, the damage component of
models is generally evaluated with an explicit scheme, with the exception of coupled

plastic-damage models, which require the simultaneous solution of both components.

2.3.1. Trial elastic-predictor step

The elastic-trial step assume that the strain increment produces purely elastic deforma-
tion, where plastic deformation and evolution internal variables g are frozen (efo:l = eb

and g’ ; = q,,). Thus, the trial elastic strain and trial stress tensor are given by

el = €nq1 — €L, (2.3.75)
o =D.: (enp1 —€) =0, +D.: A&y, (2.3.76)

where Ae, 1 = €,11 — €,. Next, the trial state can be converted into the update solution

if satisfy the condition

tr

ELy = F(oy,,q,,) <0. (2.3.77)
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This means that trial state lies within the elastic domain on the yield surface. In this
case, the stress and internal variables are updated as (-),+1 = (-)i,;. Otherwise, the trial
step is not admissible, causing plastic response, being required any plastic-corrector step

or a return-mapping algorithm to determine the update state.

2.3.2. Plastic-corrector step

The plastic-corrector step adjust the trial elastic-predictor step to give a correct updated
stress. First, the updated plastic strain tensor €, , , is derived from linearization of flow rule
as stated in Eq. (2.1.6)

e =€+ AyNyiy. (2.3.78)

Then, inserting this relation into Eq. (2.3.76), the updated stress tensor o, 1s written
as

Oni1 = 0% —AYD,: N, 1. (2.3.79)

Thus, the only variable necessary to be solved is the discrete consistent operator A+,

which is calculated according to their respective equations for each numerical model.

2.3.3. DPH model

The numerical stress integration of this model is based by the classical elastic-predictor
(Section 2.3.1) and plastic-corrector step, the later explained as follow. First, substituting
Eq. (2.1.7) into Eq. (2.3.79) and using Eq. (A.1.7), the updated stress tensor o, 1s given
by

3
Ont1 = O':L{H - A’}/ (7’ K Sn+1 T_]KI> , (2.3.80)
n+1
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where 7,41 = \/¢2,, + € and ¢,41 = /3., With Jo ., = L||o,4][%. Then, the
deviatoric and hydrostatic parts of this expression can be decomposed as

3uA
Snt1 = 3::4_1 - :—_'_173714-1, (2.3.81)
Prt1 = Doy — KA. (2.3.82)

Its easy to see that the updated deviatoric stress s, is proportional, or geometrically
parallel, to their respective trial stress s)’,,. This condition obeys to the radial return-

mapping scheme (J. C. Simo & Hughes, 1998), i.e. equivalently expressed as

tr
n STL
ot el (2.3.83)
[sns1ll  lsnll
tr
Snt1 _ Sntl (2.3.84)

tr
Gn+1 Api1

Substituting Eq. (2.3.84) into Eq. (2.3.81), the updated deviatoric stress tensor reads

as

Sni1 = fdevSpi1s (2.3.85)

where fze, = 1 —3pAywyt1/q, 1, With w1 = @ny1/7n41. Then, replacing Eq. (2.3.84)

into Eq. (2.3.85), the variable ¢, can be written as

Gni1 = iy — SpWn 1 A7 (2.3.86)

On the other hand, the updated equivalent plastic strain is obtained from the discrete
version of Eq. (2.1.9) as
Qpt1 = Qo + EAY. (2.3.87)

Moreover, the updated cohesion law can be called as ¢,11 = ¢(,41). Then, sub-

stituting Eqgs. (2.3.86) and (2.3.82) into updated version of Eq. (2.1.3), the consistency
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condition can be written as

Fn—l—l = NPn+1 + dn+1 — §Cn+1 =0

=Py — TEKAY) + ¢y — 3pwna Ay — Ecnpa. (2.3.88)

Thus, the discrete consistency operator A+ can be computed in a partially closed form

as
Ay = qytzr+1 + Upfzrﬂ —&Cny1 Jini

— = , (2.3.89)
3pwngr +nnK Jonia

where f1, ., = fi(Av) and fy,,, = fa(gn+1). Even so, note that its required an iterative
process to calculate A, e.g. Newton’s method. For this, its convenient assume that the
discrete consistency operator A~ is in function of variable g, 11, i.e. Ay = Ay(¢nyi1)-
Then, it required solve first the variable ¢, ; and then obtain the consistency operator A~.
Box 1 shown the algorithm suggested to solve the variable A~ for this model. The residual

function and their total derivative are given by

R (qni1, AY(@n11)) = —Gnyr + q1t1r+1 — 3w, 1Ay, (2.3.90)
d A
R __9R | OR 0Ay (2.3.91)
dgn+1 Oqny1  OAY Igpia
where the derivatives involved in this expression are
OR OR
= —1—3papA — = —3UWp41, 2392
A 3papA
T oren) (2.3.93)
aQn—i-l (f2n+1 + ‘]045 )
with ag = €*/r}, | and J, = g%:: the hardening modulus. Also, the recommended

values for the number of iterations and tolerances are: N;;., = 20, Tol; = 1072°, Toly, =

10~% and Tol; = 1072,
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Box 1 :Algorithm to solve A~ for the DPH model

A =q", A =clan), AP =0 > Set initial value
for j < Njter do ‘
T 1s Whts Qi ygs Coqs DAY > Use Eqs. (2.3.87) and (2.3.89)
RI—R (qfl o ij) > Residual function (Eq. (2.3.90))
- dRJ ; .
dRI = — (qiLH, Aryi> > Total derivative (Eq. (2.3.91))
o dgnir N
dg/ = —R) |dR)
qﬁ;ﬁ =q). +d¢ > Update solution
q;ill = max (%111, T0l1> > Adjust solution
if (1R/| < Tol, and |dg/| < Tolsq),,, ) or (dg’ < Toly) then
exit

2.3.4. LLF model

The numerical stress integration of this model is composed by three steps: (i) an
elastic-predictor step (Section 2.3.1); (i1) a plastic-corrector step with an implicit scheme
to evaluate the updated effective stress tensor 7,,.1; and (iii) a damage-corrector step with
an explicit scheme to evaluate the updated damage variables w,, 1 and the nominal stress

tensor o,,,1. The development of plastic and damage steps are explained as follow.

Plastic component

First, due that the DPH and LLF share identical flow potential criterion, Egs. (2.3.80)
to (2.3.86) are also valid for this model, but expressed in the effective space (-). For the
other hand, due that yield criterion is defined in terms of invariants and principal stresses,
its convenient and efficient the use of Spectral Return Mapping Algorithm (SRMA) (J. Lee
& Fenves, 1998). SRMA assume four conditions: (1) the effective stress tensor can be
decomposed as 6,41 = V&,.1V 7, where 7,1 and V is the eigenvalue diagonal matrix
and the eigenvector matrix of updated stress tensor &, 1, respectively; (2) any eigenvector
of trial effective stress tensor is also an eigenvector of updated effective stress tensor, i.e.
i, = Vol V", (3) any isotropic material satisfy the relation G(o) = G(&), which

imply that N,,,; = KﬁanKT; and (4) substituting these expressions into the effective
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expression of Eq. (2.3.80), the updated principal effective stress tensor is given by

Gni1 =6 — AyD,: Ny (2.3.94)

Moreover, using this expression, is easy to obtain the relation Aé? . | = Aw]ifnﬂ. It
should be noted that variables p, 7, 7 and @ are invariants in effective space, i.e. ((*) = (*)).
Also note that, due that yield criterion and hardening variables x* are expressed in terms
of maximum and minimum effective principal stresses, its necessary reordering the eigen-
values and their respective eigenvectors in a descending order (61 > --- > on). Jacobi’s
method is recommended to calculate the eigenvalues and eigenvectors of any symmetric

real tensor (Golub & van der Vorst, 2000).

Analogously to the DPH model, Eq. (2.3.83) is also valid, but now expressed in the
principal effective space as

§puy = Dntlgu (2.3.95)

Using this expression, the updated principal effective flow tensor N , given by Eq. (2.1.20),

can be written as
~ 3 A N
Npp = §wn+1t::+1 + gI, (2.3.96)

where ¢!, = s, /g, ;. Moreover, their positive/negative part are denoted as

2+

_ 2= r
Ny = §wn+1t

:l:n+1

+ g (2.3.97)

with finﬂ =1I: ifjlﬂrl. Next, introducing Eq. (2.3.96) into Eq. (2.3.94) and using Eq. (A.1.7),

the principal effective stress tensor can be written as

é’nJrl = 5’:;_1 — A’}/Bon_'_l, (2398)
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where éon = 3uu’)n+1i§f+1 + nK1I. Also, the maximum updated principal effective

stress 5,,, = I": 0,41, is expressed as

Ot =04 — Avboy, ., (2.3.99)

where 0% = It: &% and §0+n+1 = 3uu7n+17?tjn+1 + 7K .In addition,Egs. (2.3.86)

and (2.3.82) can be rewritten in the effective space as

Pri1 = Doy — 1K A7, (2.3.100)
Gnt1 = @iy — 3pln 1 Ay. (2.3.101)

For the other hand, linearization of updated hardening variable x,, , |, given by Eq. (2.1.21),
can be expressed as

Bpi1 =Ky + AVH,  (Gpi1, By ) - (2.3.102)

Although, its convenient take their positive and negative part as

Ky = Ky + Avhin, (2.3.103)

£ _ 2+ + R SENN =2 N - +
where h,, | = n, 9,1, withn,  , = I*=: N, and the variables ¢, , defined as

pr =0 03 (2.3.104)

1nt172p410

and with Qfm . and 6?351+ , defined as

07 = (ans1), 0r . =—[1—¢(an1)], (2.3.105)

n+1 n+1

05 =0 (k' 1)/g", Oy, =0 (K1)/9 - (2.3.106)

n+1
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In addition, the updated parameters (k) and c¢(k~), given by Eq. (2.1.12), can be

expressed as

Qi

B = (1 — a)% — (14 a), Cnp1 =0 (Kiyq)- (2.3.107)

RnJrl

Qi

Finally, substituting Egs. (2.3.99), (2.3.100) and (2.3.101) into Eq. (2.1.24), the con-

sistency condition is written as

Frg1 = MPns1 + Guar + B (0) T = 0(0400) " — (L= @)cpyr =0
=1 (Pisr — K AY) + @y — 3pn Ay

i1 (57 = Avbos,, ) — (1= )ens =0, (23.108)

where py = () + 01, with By = B,  H(54,,,), 0 = 6H (54,,,) and H*(-) a C"-class
approximation of Heaviside function (see Eq. (A.1.22)). Thus, the discrete consistency

operator Ay can be computed, similarly to the DPH model, in a partially closed form as

J— np%r'i'l + q:Lr+1 + p/\lé-fgnnfl - (1 - a)cn+1 _ fln+l

AW S - ’
N + 3pn i1 + prboy,, ., Fouin

(2.3.109)

where fi ., = fi(K,i1, AY(K,4q)), with @ = 1,2. Its observed that a nested iterative
process is required to obtain variables Ay and ;- +1- Box 2 shown the algorithm used
to calculate both variables. Three steps are involved: (i) set an initial value of variables
k, ¢ and ¢ equal to the previous step; (ii) solve the consistency operator A~ using the
algorithm described in Box 1, which is identical to the DPH model, but using the effective

stress space in their expressions and the derivative 86?11 is expressed as
n

b —b — A~b A
aA’Y _ ( Bn41 In41 Y 11n+1) Y (23110)

aQnJrl (]F2n+1 - b7n+1 + A’yblon—ﬂ) ’

where bg, ., to by, , are scalar parameters. A detailed calculation of this derivative is

n+1

explained in 1; and (iii) solve the hardening variables k using the Newton’s method. For
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this, Eq. (2.3.102) is used as the residual function and rewritten as

Q

LA | (ﬁn+17 A, é'n+1) =k, +AVH, (ﬁnH; é’n+1) — K, (2.3.111)

Thus, the total derivative of this residual function with respect to k,,_ ; is given by
dQnJrl _ 8Qn+1 i aQn+1 AN
dﬁnJrl 8ﬁn+1 (‘9A7 aﬁnJrl

8Qn+1 aﬂn-i-l 85’71-{-1 8A7 + aﬂn—&-l
8EnJrl

85’n+1 aA'}/ aﬁn+1 affln_;'_l

H
+ AVM (2.3.112)

oH, 0o, 0A
n+1

06,41 OAy Ok,

where I, = diag(1, 1) and the derivatives involved are expressed as

3H +1 (z 2 2 ES aAf)/ 1

il _ (y 0, >+a (Zn ® ) S l
a6n+1 = i A i aﬁn-‘rl ( 2n41 T [/171—0—1)_071Jrl
85-n+1 - 2 Jtr aﬂ”+1 3

TA’Y = —Bon+1 + 9 azwnﬂA’Ytatzﬂa m = Qn+1- (2.3.113)

A detailed calculation of these derivatives are explained in 2. Also, to get an adequate
convergence of model, is recommended use tolerances of Tol, = 1 — 1071 to adjust the

solution values and T'ol; = 107 to check the residual function.

Damage component

An explicit evaluation of updated damage variable w,,.1 (Eq. (2.1.27)) are generated
according to updated hardening variables /ﬁfﬂ calculated in the plastic component of

model.

Viscous component

First, assume that the rate of a generic variable x can be expressed as & = Ax/At, with

At is the load step increment. Then, using this relation in the linearization of Egs. (2.1.33)
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Box 2 :Algorithm to solve K, for the LLF model

Bt = En @ =G 0%, =08 > Set initial value
for j < Niter do
ai(mf jl) ﬁn = oy HE@E ) > Use Egs. (2.1.29), (2.3.99) and (2.3.107)
qn+1, AN, o- > Solve with Box 1 and Eq. (2.3.98)
Q' = Qn1 (f,m, Ay, & +1) > Residual, Eq. (2.3.111)
dQ’ = et (53; LAY 6 +1) > Total derivative, Eq. (2.3.112)
n+1
did = (déa) -1 Q
3:-11 = K’n—i—l + dK > Update solution
ﬁijfl = min (ﬁn_l,_la TOl4l) > Adjust solution
if (]|Q’|| < Tols) then
exit

and (2.1.34), the updated visco-plastic strain tensor € and the viscous-damage variable

w" can be expressed as

el =G +(1—Genyy (2.3.114)

Woi1 = Gw, + (1= G)wni, (2.3.115)

where ¢, = (1+ At/u,) . Then, substituting the Eq. (2.3.114) into Eq. (2.1.32) and with
some algebraic manipulation, the updated effective viscous-stress tensor can be expressed

in a convenient way as

0,1 =C (o, +D.: Aey,) + (1 — ()0t (2.3.116)

Finally, the updated viscous-stress tensor can be expressed as

or = (1—-wiy)on,,. (2.3.117)

It should be noted that if pu,/At — 0 (¢, = 0) the solution relaxed to the rate-

independent (or inviscid) response.
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2.3.5. WLF model

Plastic component

The numerical stress integration of this model is identical to the LLF model, except
for three considerations: (1) the parameter § present in the yield criterion of Eq. (2.1.24)
is null; (2) the matrix H, ; of Eq. (2.3.102) depends only of stress tensor o, for which
the variables 7 = 1 and the derivative %—I,;I, given by Eq. (2.3.113), is null; and (3) its

observed that a tolerance to check the residual function of Tol; = 107'° can be used

without convergence troubles.

Damage component

Giving the updated effective stress tensor 6,11 calculated in the plastic component,
the positive/negative part of effective stress tensor & 1 are evaluated using Eq. (2.1.35).
Next, evaluating the DERRs, Y+, according to their definition established by Eq. (2.1.50)
or Eq. (2.1.51), and assuming an active damage process (Eq. (2.1.55)), the updated damage
threshold are stated. Finally, and explicit evaluation of damage variables wﬂ;l('r’fﬂ) is

generated.

Viscous component

The updated viscous stress vector o, is calculated using Eq. (2.1.59), where the
effective viscous stress vector o, is evaluated using Eq. (2.3.116). Also, the visco-
plastic strain vector €,”, ; is evaluated with Eq. (2.3.114). Moreover, the updated damage
variables depends of updated damage thresholds variables rqf 1> Which are obtained using

a linearization of Eq. (2.1.61) as follows

rE L = GrE+ (1-G)Y A (2.3.118)
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2.3.6. FOC model
Plastic component

First, the discretization of Egs. (2.1.62) and (2.1.63) gives

Epi1 = En + AYO 1, (2.3.119)
EO n —

Ay = ,Lﬂce: (Gns1: Agpin)™, (2.3.120)
[l

where \,,11 = BYH(Aw;, )+ B~ H*(Aw, ;) and Ag, 11 = €41 — €y, With Aw, | =
wf;rl — wF. Next, using the relation of Eq. (2.3.79), with N,,,; = &,1, the updated

n

effective stress tensor is given by

_ —tr Eoxn _ _
G =G, — W‘XTWFQ(U"H: Aeni) G nit (2.3.121)

It should be noted that &, is proportional, or geometrically parallel, to &' ;, ana-
logically to deviatoric stress tensor as in the classical plasticity models, e.g. Eq. (2.3.83).

Thus, satisfy the following relation

= ~tr

On+1 Ont1

— = — . (2.3.122)
[Gnsall ol

Replacing this expression into Eq. (2.3.121), the updated effective stress tensor can be

rewritten as

EO n
my, =1- nOX )T (2.3.124)
n+1

where ng, ., = (6,1: o 1) and ny,,, = (61,1 Ag,iq). It should be noted that, as the

n+1
Heaviside function is present in the variable Y, 1, it required an iterative process to solve
G ,+1- Box 3 shown an efficient and robust algorithm to solve the updated effective stress

tensor o, 1.
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Box 3 :Algorithm to solve 6,41 for the FOC model

v, =[0,1,0,17,  w,=10,0,1,1]T > Set combinatory vectors

for j < 4do '
h=uvlil,  hg =l . > Trial Heaviside values
X1 = BYhi + B hy, my > Use Eq. (2.3.124)
o/ =myilel > Trial effective stress
glE =Pt 5 > Positive/negative effective stress (Eq. (2.1.36))
in > DEER's, according to Eq. (2.1.50) or Eq. (2.1.51)
Ffj = Y}i — r,f > Positive/negative damage criteria (Eq. (2.1.49))
if (n] = H* (F; 7)) and (h} = H* (F; 7)) then

exit
Opt1 = 07 > Update effective stress

Finally, replacing Eq. (2.3.122) into Eq. (2.3.119), the updated plastic strain tensor is
derived as

eh =€l +(1—my,,)Ce: T, (2.3.125)

Also, note that as Eq. (2.3.122) is valid either in 3D as in plane stress condition, this

algorithm can be used in both cases.

2.3.7. ROT model
Damage component

Assuming an explicit integration scheme for the linearization of Eq. (2.1.65), the up-

dated positive/negative i-th damage strain variable ozii 1s expressed as

+ _ + + A
o L =0 g AG (2.3.126)

t = * S T A Py
where z;  =1-—r; ~and A&, =¢;, ., —¢&;,, withr, = H (a; — &i,,,)- Note

+

that the term o,

inner the Heaviside function is used to get an explicit scheme. So,
the evaluation of updated stress tensor o is explicit (Eq. (2.1.69)) using the relations of

Egs. (2.1.67) and (2.1.68), where m3* = Hli/Q(éinH) and the variables h"  and giﬂ

In+1 In+1
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are written, respectively, as

hE, = ot (af, gt £ = T (2.3.127)

Int1 int1 gin+17 gin+1

in +1
Viscous component

Taking the linearization of Eq. (2.1.70), the updated positive/negative i-th viscous-
vE

damage strain «;; — can be expressed as

av:l: — Cva;}ni + (1 _ Cv)Oéi (23128)

’in+1 in+1'
Finally, the evaluation of updated viscous-stress tensor o’ (Eq. (2.1.73)) is explicit

using the relations of Egs. (2.1.71) and (2.1.72).

2.4. Consistent tangent tensors

Additionally to the algorithm necessary to calculate the updated stress tensor, a ma-
terial stiffness tensor is required for the solution. Continuum tangent stiffness tensor is
derived for material models according to derivation of continuum constitutive equations
as stated in Section 3. However, for numerical integration of model, is necessary to cal-
culate the algorithmic consistent tangent tensor f{:ﬂ%, which are developed by computing
the derivatives of equations involved in the stress updated algorithm. Complex derivatives
involve this operator, but are necessary to achieve a second-order convergence at the struc-
tural level, rather than continuum tangent stiffness (J. C. Simo & Hughes, 1998). Only in
explicit schemes, continuum and consistent stiffness tensors are identical. For the devel-
oped models, all these derivatives can be obtained analytically. Therefore, the consistent

tangent operator can be written in an explicit expression. For sake the of simplicity of the

presentation, is omitted the subscript ,, 1 in all updated variables.
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2.4.1. Trial-predictor step

Using Egs. (2.3.75) and (2.3.76), the differential of the trial elastic strain €™ and the

stress tensor o are, respectively, given by

de®" = de, (2.4.129)

do™ =D,: de. (2.4.130)

It follow that in the derivation of consistent tangent stiffness tensor all trial variables
()™ have a no-null differential, contrary as in the calculation of stress updated algorithm,

where their derivatives are neglected.

2.4.2. DPH model

First, using Egs. (2.3.83) and (A.1.4) and the relation ¢ = /3J,, with J; = %Hs 2 the
unitary tensor of updated deviatoric stress can be rewritten as
tr 6
M= - @96“. (2.4.131)

™[ q

Then, inserting this expression into Eq. (A.1.14) and using Eq. (2.4.129), the differen-

tial of trial equivalent stress ¢ is given by

6 2
dg" = 26" de' = \/6uM : de. (2.4.132)
q r

Next, the differential of relations r = \/¢? + €2 and w = ¢/r are given by dr = wdgq
and dw = agdg, with ay = €2 / r3. Then, inserting this expressions into the differential of
Eq. (2.3.86) and with some algebraic manipulation, the differential of updated variable ¢

can be written as

dg = ay (dqtr — 3uwdA’y) , (2.4.133)
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where a; = (1 + 3ua0A7)_1. Moreover, using these relations, the differential of the

variable fz., = 1 — 3uA~yw/q is given by

3
dfaev = —q—ﬁf (asdAy + asAvdg™), (2.4.134)

where a3 = w(1—3uayAv) and ay = as—w/q", with ay = aga;. Then, using this relation
and Eq. (2.4.131), the differential of updated deviatoric stress tensor (Eq. (2.3.85)) can be

expressed as

ds = 241 f4e0d0°" — V6uM (azdAy + asAydg™) . (2.4.135)

For the other hand, using the relation of Eq. (A.1.15), the differential of updated hy-
drostatic stress p (Eq. (2.3.82)) is given by

dp = K (I: de®" — 7dAY) . (2.4.136)

In addition, using Eq. (2.3.87) and the chain rule, the differential of updated cohesion
law can be written as

de = Lda = J,edA, (2.4.137)
oo

where J, = g—; is the cohesion hardening modulus. Then, using Egs. (2.4.133), (2.4.136)
and (2.4.137), the differential of the yield criterion at consistency condition, given by

Eq. (2.3.88), can be expressed as

dFf =ndp+dg—£&dec=0

=nK (I: de®™ — ﬁdAv) + a; (dqtr — 3uwdA7) — JLE2dA. (2.4.138)

Thus, using Eq. (2.4.132), an explicit expression for the differential of consistency

operator Ay can be obtained as

dAY = ag (al\/éuM v nKI) et = G dect, (2.4.139)
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where ag = (a5 + Knij + J.£2) ", with a5 = 3pa;w. Hence, using Egs. (2.4.135),
(2.4.136), (2.4.139) and (A.1.12), the differential of updated stress tensor is expressed

as

do = [Q,ufdevl'd — \/6/,6@3<M ® G) — 6u*asAy(M @ M)

YKII) - iK(I® G)]  dectr, (2.4.140)

Finally, after some straightforward manipulation, an explicit expression for elasto-

plastic consistent tangent operator is written as

Dep = ClId + CQ(M X M) -+ Cg(M X I) —+ C4(I X M) -+ C5(I &® I), (24141)

where the constants c; to cg are given by

1 = 2t dev, ¢y = —6p*(arazas + aiNy), ¢z = —V6uKnazas,

e = —V6uKnaas, s =K (1—niKag).

2.4.3. LLF model

Plastic component

The plastic component of the consistent tangent stiffness tensor is calculated from
differential of the effective stress tensor. First, due that the LLF and DPH model share
identical flow potential, Egs. (2.4.131) to (2.4.136) are valid for this model, but expressed
in the principal effective space (-). Next, the differential of the principal effective flow

tensor, given by Eq. (2.3.96), can be expressed as

£ 3 2 N 2
AN = 3 (@t“dcj“ + uds'™ + a5t“dm) : (2.4.142)

where a4 = @y — u and a5 = —3uayw, with Gy = aga, a; = 1 + 3uagldy, ag = €2/

and 4 = w/q". Then, the positive/negative part of flow tensor can be expressed as n* =
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I*: N. Thus, their differential are given by

. 3 A - A o
dn® = 3 (aﬁ;dq“ +al*: ds™ + dJidAy) : (2.4.143)

where ftjf = I*: Next, the differential of tensor éo, given by Eq. (2.3.98), is expressed
as déo = de(wi) = Q,udlif . Then, using this relation and Eq. (2.3.98), the differential

of the updated principal effective stress tensor & is given by

dé = dé" — BydAy — AydB,

=do"™ + AgdAy + A7dg" + agds™, (2.4.144)

where Ag = —éo - 3ua5Aﬁ“, A; = —3ud4Aﬁ” and ag = —3uul~y. Moreover, the
differential of the maximum principal effective stress o, = It:6is given by
doy = I dé" + ags dAY + a7 dg™ + agI™: d5", (2.4.145)

where ag, = It: Agand ary = I*: A.. For the other hand, the differential of variable

#(a) (Bq. (2.1.17)) is written as d¢ = &: dé, with ® defined as

2 0¢ ) 0o (0]
P =—=d = sz | 2.4.146
06 8 (851 Dén ( )
being their i-th component % expressed as
0¢ . . . 1
—= = |Hy (0:) — ¢(0) (2Hy (0:) — 1) ==
00; [ 0 ( 0 )] > im1loil

It should be noted, that this expression considered the stepped Heaviside function, due
that variable ¢ € [0, 1]. It can observed that this condition not cause convergence troubles
in the model. Then, the differential of variables #; and 05 (Egs. (2.3.105) and (2.3.106),
respectively) are given by df;i = d¢ and df;y = ;—*‘Id/ﬁi, with J* = gg—i are the pos-

itive/negative hardening modulus, respectively. Hence, the differential of variables ¢*,
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defined in Eq. (2.3.104), are given by

=1
de™ =0, ®: do + —07 J 7 dk™. (2.4.147)
g

Moreover, using this relation, the differential of variables h*, defined in Eq. (2.3.103),
are expressed as

dht = 0% ®: do + bEde + ptdat, (2.4.148)

where b1, = g%@fJ,fﬁi. Thus, using Eq. (2.4.143), Eq. (2.4.144) and Eq. (2.4.148), the
differential of positive/negative hardening variables x*, given by Eq. (2.3.103), can be

written as

dr* = Ay + Ay (égdq“ +CE s + CF: dot + Bliodni) . (24.149)

with &, &5, C‘;E and éf are expressed as
At + At 3_ iy At At 3_ oy
G =h"+Ay(Cy: A+ 5% tL ], G =Cy: A7+ 504 tL,

. . 3 . . -
Ci =asCi + éﬁgoiIi, Ct=60in*®.

Hence, solving this linear equation for the differential of variable x* gives

dr* = it dAy + Ay (c3dg" + C: do™ + C5 = ds™), (2.4.150)
where ci, ¢, C§ and C{ are multiple of their respective variables ¢i, ¢5, C’3i and
C,+ by a factor of b, = (1 — Ayb%)~". In addition, the differential of uniaxial posi-

+

tive/negative effective stress law o~ are expressed as

do® = JXdk®, (2.4.151)

where J* = g%; denotes the positive/negative effective hardening modulus, respectively.

Taking the derivative of Eq. (2.1.29) with respect to the hardening variables x*, gives a
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expression for this modulus
JE +Qfet

Jt = 2.4.152
JK 1 _ wj: ) ( )

with J* = ‘gg—i and QF = g‘;—i. Moreover, the differential of variable ¢ (Eq. (2.3.107))
is given by dc = do = J_dx~. Hence, using Eq. (2.4.151), the differential of updated
variable 5 (Eq. (2.3.107)) can be written as

dB = caAy + Ay (e5dg™ + Cg: do™ + Cr: 87, (2.4.153)

where ¢y, ¢5, Cg and C; are expressed as

Cq4 = m+cl_ — m_c{r, s = m+02_ - m_c;,

Cs =m'™C; —m Cy, Cr=m*Cy —m Cy,

withm* = (1— a)Jj%. Next, using Egs. (2.4.133) and (2.4.136) in the effective space

an Egs. (2.4.150), (2.4.151), (2.4.153) and (A.1.24), the differential of yield criterion at
consistency condition, given by Eq. (2.3.108), is written as
dF = ndp + dg+ dp{e,)" + Bd{a1)t — §d(61)” — (1 —a)de =0

= T]KI d€€tr — godA")/ + gld(jtr + Ggf dé’tr + Ggl dgtr, (24154)

where gg, g1, G2 and G5 are expressed as

go = MK + 3pa@ — (04) ea + (1 — @) J ey — paacy,
g1 =+ Ay [(01) e — (L—a) e | + psary,

Gy =AMy [(64)"Cs— (1 —a)J C;y ]+ psI ™,

G3 = A’}/ [<3’+>+C7 - (]. - Oé) C3_] + C_Lgﬁgj+,

K

where p3 = o1 + p1, with p; = BHY(64) — 0H(64) and p, = BULE _ §2°

0oy 65’+ :

Then, using Egs. (2.4.132), (A.1.19) and (A.1.20), the differential of discrete consistency
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operator Ay can be solved of Eq. (2.4.154) as

1 N R
dAy = " (nKI: de®™ + 1dg"™ + Gy: do™ + Gj: détr)
0

1 _ _
S (nKI + gV6uM + Gy + 2uG5> L dett = G dett,  (2.4.155)

o

where G, = Gy: F5: D, and G5 = G3: F;: I; are second-order tensors. Thus,
using Egs. (2.4.135) and (2.4.136) in effective space and Eq. (2.4.155), the differential of
updated effective stress tensor can be expressed as

do = |2pufaendq + \/é,uag (M ® C_;) + 6plas Ay (M ® M)

+E(I@D)- K (I©G)] : de. (2.4.156)
Finally, introducing the left side of Eq. (2.4.155) into this relation, the effective elasto-
plastic consistent tangent tensor is written as

Dyp=cili+c;(MOM)+cs(MI)+cy (I @M)
+ e (TQI)+cs (M®Gy) +cr (I @Gy)

+ s (M ®G5) + ¢ (I®G5), (2.4.157)

where ¢ to ¢y are constants given by

1 = 24 fdev, ¢y = —6p*(as + asAy), e = —V6pasgo,
¢y = —V6unKgi, cs = K(1 —1ngo), cg = —V/6pas,
cr = Nk, cs = —2V/64°as, Cg = —2unk.

Damage component

First, calling the variables ¢ = —zT and ¢, = z, the differential of stiffness recovery
functions s*, defined in Eq. (2.1.28), are expressed as ds* = t*dfy = t*d¢. Also,

the differential of uniaxial damage laws w® are given by dw®™ = QFdx*, where QF =
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dwE

S, Then, expressing both relations in a vectorized format as s = [s*,s7|" and w =

[wt,w™]T, their differentials are written as

ds = M;: d&, dQ = M, dk, (2.4.158)

where M 1 1s a three-order tensor and M , a matrix, both expressed as

R tr 2 R
M= |"|®®  M,=dag(Q,9).
-

C

For other hand, introducing Egs. (2.4.132), (A.1.19) and (A.1.20), but expressed in the

+

effective space, the differential of hardening variables «* in a vectorized format dk =

[dk™,drx~]T can be written as

dk = ¢;dAy + Avy (g2dcjtr +Cy: do™ + C;: d§“)

= c,dAy + AvK: de° "™, (2.4.159)

where K = /61 (¢, ® M) + Cy: Fo: D.+2uC5: Fy: L, is a three-order tensor; ¢

and ¢, are vectors and C'5 and C} are three-order tensors, both expressed as

a=|"]. e=|°|. o<a=lctcr. C=[cf.Cl

Next, the differential of damage variable w, given by Eq. (2.1.27), can be expressed as

dw = Hl . d§ + 22 . dQ, (2.4.160)

where u, and wu, are vectors given by

S $98~
u; = L Uy, = N
SoWw S1S8
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In addition, substituting Eqgs. (2.4.158), (2.4.159) and (A.1.19) (this later expressed in
the effective space) and the relation do = ‘f)ep: de¢™, with ’f)ep given by Eq. (2.4.157),

into Eq. (2.4.160), the differential of damage variable w can be rewritten as

dwzvlzdé'—l—gz-dﬁ

= [Vi: Fo: Dep + 1y - (¢, @ G+ AK) | 1 e, (2.4.161)

where Vi = w, - M, is a second-order tensor and v, = M, - u, a vector. For the other

hand, the differential of updated stress tensor, given by Eq. (2.1.12), is expressed as

do=—-6dw+ (1 —w)de. (2.4.162)

Finally, introducing them Eq. (2.4.161) and the relation do- = D.,,: de®"" (Eq. (2.4.157))

into this relation, the elasto-plastic-damage consistent tangent stiffness tensor is written as

Depa = [(1 = )T — (6 @ VA): Fsl: Doy — (6 @0, - (¢, @ G+ AyK) . (2.4.163)

Viscous component

Using Eq. (2.3.116) and the relation do = D.,,: de®" into this relation (Eq. (2.4.157)),

the differential of updated effective viscous-stress tensor o can be expressed as

46" = (¢ De + (1 = (,)D,) : de°™. (2.4.164)

Moreover, using Eq. (2.3.115), the differential of the visco-damage variable w" is given
by
dw’ = (1 — (,)dw. (2.4.165)

Moreover, the differential of updated viscous stress tensor ¥ (Eq. (2.3.117)) can be
written as

do? = (1 — w")da’ — 6 dw". (2.4.166)
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Finally, substituting Eqs. (2.4.164), (2.4.165) and (2.4.161) into this relation, the visco-

plastic-damage consistent tangent stiffness tensor is expressed as

Dupa = Guo(1 = w")De+ (1= G) {[(1 —w") T — (6" ® V1): Fs]: Dy

— (6" ®vy) (¢, ® G+ AYK)}. (2.4.167)

2.4.4. WLF model

Plastic component

This component is identical to the LLF model, with the exception that 6 = 1 and
§ = 0 (Egs. (2.3.106) and (2.3.108), respectively). Thus, d6F = 0, b}, = 0 and p; = 3,
withi =1,,3.
Damage component

Using Eq. (A.1.18), the differential of positive/negative part of the effective stress

tensor (Eq. (2.1.35)) are given by

N N
do* = Hi(6:)Eids; + ) (6:)*dEL
=1 =1

N N
- (Z Hy(6:) (B @ EY) +2 > g5 (Bl ® E;é,f)) :do =8 da,
i=1 i=1,7>1

(2.4.168)

where gf][- is defined as
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So, during an active damage process, the Eq. (2.1.56) is satisfied. Then, using the

chain rule, the differential of updated positive/negative damage law w™

b 0wt + 1yt
T

are CXpI‘CSSCd as

where Qf} = g‘;{—j Then, the differential of positive/negative DEER ,Y*, are calculated
according to their definition. Thus, using Egs. (2.1.50) to (2.4.168) and using the stepped

Heaviside function HS—L(-), their respective differentials are given by

E

Y= = Ve (6:C.: 8 +a*:C.):do =L": do, (2.4.170)

Qv — (al blsy 6H0‘(&1)Ej) .o — L™+ da, (2.4.171)
q

where E is the eigen-projector associated to the maximum principal effective stress 7.

Next, using Eq. (2.1.43), the differential of updated stress tensor is given by

do =) [(1-w")de™ - a"dw"] . (2.4.172)
N

Finally, introducing Egs. (2.4.169), (2.4.168) and (2.4.170) (or Eq. (2.4.171)) into this
expression and using the relation o = ’1_)epz €' (Eq. (2.4.157)), which considers the ob-
servations mentioned in the plastic component of this model, the plastic-damage consistent

tangent stiffness tensor is written as

Dyu=|T-) (W'+RY

R

. D,,, (2.4.173)

where W* = w*S* and R* = QF (6% ® L*) are fourth-order tensors.

Viscous component
First, using Eq. (2.3.118), the differential of threshold variable r* is given by

dr® = (1 —¢,)dY™. (2.4.174)
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Then, using this relation, Eq. (2.4.170) or Eq. (2.4.171) and the chain rule, the differ-

ential of positive/negative damage variables w™ are given by

L 0wt + +. 1=
dw™ = &“_idr =Q-(1—-¢)L™: do. (2.4.175)

Moreover, the differential of positive/negative viscous stress tensor, given by Eq. (2.1.60),
is expressed as

de’* = 8F: da*, (2.4.176)

where S ;—L are the derivative of positive/negative projector tensor of ¥. Then, using this

relation, the differential of viscous-stress tensor o is expressed as

do¥ = [(1-wh)S): do¥ — o™dw"] . (2.4.177)
R

Finally, substituting Eqgs. (2.4.164) and (2.4.175) and the relation do = T)ep: de
(Eq. (2.4.157)) into Eq. (2.4.177) and with some straightforward manipulation, the visco-

plastic-damage consistent tangent stiffness tensor can be expressed as

Dupa = o (I -> Wf}) :De+(1-G) (I -y Wi+ RS})) : Dep, (24.178)
I R

where W = wtSF and RY = QF (6V* ® L*). It should be noted that the tensors L*

are calculated using inviscid variables.

2.4.5. FOC model
Plastic component
First, the differential of variables ny and n, given by Eq. (2.3.124), are expressed as

dng =2 (6'“: d&tr) , dny = Ae: de™ + "™ de. (2.4.179)
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Also, assuming that the variable x is constant during the plastic process and using

Eq. (2.3.123), the differential of updated effective stress tensor & is given by

E,x
no

de = de™ — [noa ™ d(n1) ™ + no(n1)Tda™ — (ny)*a"dny].(2.4.180)
Then, using Eqgs. (2.3.124), (A.1.1) and (A.1.24), taking the stepped Heaviside func-
tion Hy (-) and with some straightforward manipulation, the effective component of the

consistent tangent stiffness tensor is given by

D, = [011 + ¢y (5-“ ® As) + (6“ Q 6'“") c (3T + CQCB>] : D, (2.4.181)
where ¢; = m", c; = —(1 — m')/ny and ¢3 = 2(1 — mtr)/no-

2.4.6. ROT model

Damage component

First, the differential of ¢-th updated damage variable aj-t, stated in Eq. (2.3.126), can

be expressed as

dai” = dzF A8 + z5dg; = zFdé;. (2.4.182)

Next, the tangent and secant slope of positive/negative uniaxial stress-strain law can

be defined as K = %ﬁ and S&* = of /", respectively. Then, using this relation, the

differential of updated variables h;" and g;°, given by Eq. (2.3.127), are written as

1
dhi = g" K 25dé; + oFdgf dgi = —(1 — giz")dé,. (2.4.184)
&

Thus, using all these relations, the differential of i-th updated principal stress 7;, stated

in Eq. (2.1.67), can be written as

do; = (Z my [K;p} + S (1 — p?)]) dé; = Jydé;, (2.4.185)
R
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where pi° = gz, Moreover, using Eq. (A.1.17) and the relation dé; = %‘2 : de, this

differential can expressed as

do; O€
do, = —: —:de=J;: F.: d
7 0 Oe e=Ji €
00; 00; .
Jl:d o) N :d J277J1 .
128 (851 85N) 1ag< ! )

Then, using this relation and Eq. (A.1.18), the differential of updated stress tensor o,
defined in Eq. (2.1.69), can be expressed as

N
do = Z
i=1

N

(Bi®J;) : Fo+26;)

— (E? @ EY)
= (&= ¢))

s de. (2.4.186)

Finally, with some algebraic manipulation, the damage consistent tangent stiffness

tensor is written as

N N
Da= (Z(E ® Ji)) Fo+2 Y g5 (BY@EY), (2.4.187)
i=1 i=1,j>i
where g7; is defined as
Gim8) oy,
Y 06,

=Ji, & =¢j.

0¢;

Note that the first term of right hand side is associated to local principal stiffness
and the second term arises from rotation of principal strains. It can be demonstrated that,
neglecting the damage variables, this expression is identical to obtained by (M. A. Crisfield

& Wills, 1989). Also, note the similitude of the second term of this expression with

Eq. (2.4.168).
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Viscous component

First, using Eq. (2.4.182), the differential of ¢-th updated viscous damage strain, given

by Eq. (2.3.128), can be expressed as

da’® = (1 — ¢,)zEdé;. (2.4.188)

Moreover, using this relation, the differential of updated variables hfi and g; *(Eq. (2.1.72))

are given by

dhvt = grEKUEEAS; + oFdglt (2.4.189)

dgi* = —x [1— (1= ¢)g/ 2] dé;, (2.4.190)

where K'* = g%; Thus, using this relation and with some straightforward manipula-
tion, the differential of ¢-th updated principal viscous stress, stated in Eq. (2.4.189), can

be written as

= (CU S omiSN 4 (1= ()Y md [KPpN + SR (1 _pgN)]> d;
R R

= Judé, (2.4.191)

where p'* = ¢'*zF and S'* := o*/a'*. Finally, using this relation and Eq. (A.1.18),

the viscous-damage consistent tangent stiffness tensor is given by

N
D,y = (Z(E @ J?) ) F.+2 Z g (EY ® EY), (2.4.192)
i=1 i=1,7>1
where Ji = diag (Jj;, -+, Jiyy), with their j-th diagonal component given by J;; = gg;,

and g;7 is expressed as

ve € —&j
P ke
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In addition, Table 2.4.2 shown the conditions for which the consistent tangent stiffness

tensor is non-symmetrical in each one of models developed.

Table 2.4.2. Conditions for a non-symmetrical consistent tangent stiffness tensor.

Model Non-symmetric condition
DPH n#0
LLF always
WLF v>0
FOC v>0
ROT never!

! Is non-symmetrical if the model is extended to include
the biaxial effects.

2.5. Consistency check of input material parameters

This section are devoted to generate an conversion of input parameters among the
concrete models described. Two key aspects are studied: conversion of uniaxial laws and

conversion of fracture energy for the FE-regularization.

2.5.1. Conversion of uniaxial laws

Basically, the tensile/compression uniaxial stress-strain laws o= — ¥ are the most

known and adequate to fit with experimental concrete tests. However, for each concrete
model used in this work a specific uniaxial law it required as input, as explained in Sec-
tion 2.1 and summarized in Table 2.6.7. Thus, there is necessary generate a conversion
from the uniaxial stress-strain laws to the required uniaxial law of each model. In addition,

a conversion from w — o to w — & is explained.
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Relation between o= — c* and o0& — o+

The uniaxial stress-strain o= — ¢* laws can be converted to stress-equivalent plastic

strain 0= — o relation using the following expression
+( ot
et = 4+ 7 ]if ) (2.5.193)

A simple conversion can be obtained in the case of piecewise-linear stress laws. In
other case, an implicit expression exists for ai(ai), in which given a value of o, its
necessary find their corresponding value of £* that satisfy the relation of Eq. (2.5.193).
Newton’s method is suggested to solve this problem, where the residual function and their

total derivative are expressed as

(% +
o _ o+ 0(e7) + dR J:

R(€ ) =& — EO — o, dg_:t =1- E, (25194)

with JE = ‘;‘;—I. An initial value of a® + oF and a correction step of e* = |¢*| are

necessary to achieve a good convergence of solution, where o= is the stress onset non-
linear behavior. Also, a tolerance of T0l; = 107'° is recommend to check the residual

function. In addition, using Eq. (2.5.193), the derivative % can be obtained as

dot B,
_ B 25195
dot = (B, — J5) (2.5.195)

Relation between 0+ — ¢* and o — k*

For the LLF model, this relation can be obtained according to the definition of hard-
ening variables xk*, where given a value of k¥, the corresponding value of ¥ is calcu-
lated. Thus, an implicit expression exist for 0+ (x*) and can be solved by the Newton's
method. If the LLF model is used, Eq. (2.1.13) gives the relation between x* and a® and

Eq. (2.5.193) between o and £, respectively. Hence, the residual function and their total
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derivative are expressed as

1 «
R(e%) = —i/ o (a*)da* — k*
9= Jo
e ot ety L (05 ()? = (02)7] b —n* (25.197)
g:t soi 2E0 °
1
= g—iF(ﬁi) - Iii,
dR 1 dF  o* JE
R (1 _ F) , (2.5.198)

where ¢ = 0% /FE,. An initial value of ¢ is suggested. For the other hand, Eq. (2.1.15)

da¥

or = fr?i. Hence, using this relation, Eq. (2.5.195) and the chain rule,

can be rewritten as

. . + . .
the derivative j%f is given by

do*  do* da* E,JXg*
At dot det (B, — JE)ot (2.5.199)

+ £

Relation between 0+ — c* and w* — r

In the WLF and FOC models, this relation can be established according to the defini-
tion of DEERs Y used. Considering an active damage process (Y* = r¥), neglecting
the plastic strains and under an uniaxial behavior, a linear relation for the positive/negative
effective stress tensor can be derived as 6+ = E,¢, where o+ is the effective uniaxial law
and ¢ the uniaxial total strain. Then, using Egs. (2.1.50) and (2.1.51), the DEERs Y can

be expressed, respectively, as

Y* =|6%| = E,aF =17, (2.5.200)
Y =as" +|0 |=Eax (1—a+d)=r", (2.5.201)
where ¥ = |¢|. Moreover, both expressions can be rewritten in a compact format as

r* = E,o™n*, where n* = landn~ = 1 — a + § if Egs. (2.1.50) and (2.1.51) are

used, respectively. Hence, using the relation Eq. (2.1.29), the damage laws w* and their



105

. . + .
derivative flf—i are expressed, respectively, as

+ +
w:l:(T:I:) -1 — Z_io.:l: (%) 7 dL = |:0-:|: (nlz(?) _r J£:| ;7 . (2.5.202)

n o dr:t

Relation between o= — =* and ¢ — «

To elaborate this conversion, first is necessary relate the parameters ¢ and 7 with the
uniaxial/biaxial compression/tensile strength of concrete. Table 2.5.3 list two options
to fit this parameters, where fy:IE and fyjli are the stress onset non-linear behavior of ten-

sion/compression uniaxial/biaxial stress-strain law, respectively.

For one hand, if an elasto-plastic stress-strain law relationship exist, for the Case A,
the parameters f;t are equals to the uniaxial tensile/compressive fpi strength of concrete
(=f, or f., respectively), whereas for the Case B, the parameters fyib are equals to their
respective biaxial fpib strength (= ffft or f,;, respectively). Then, the conversion is trivial,
i.e. ¢ = ¢,. Conversely, in a nonlinear stress-strain relation, only the pre-peak branch
of stress-strain law can be converted to respective cohesion law due that this last relation

must be something non-decreasing function (3—; > 0).

Table 2.5.3. Analytical expressions of parameters 7, £ and ¢, of Drucker-Prager model fitted with different

approximations.
Case Inputs n 13 Cy
A £ty 3 sin(¢) 2cos(¢) i fy tan(0)/(f; = 1)
3
B e £ - sin(@)(*) 2 cos(¢) i ftan()/ (£, — £)

Cases= A: fitted with the stress onset non-linear behavior of uniaxial tension/compression stress-strain
relation of concrete f; and f,°, respectively and B: fitted with the stress onset non-linear behavior

of biaxial tension/compression stress-strain relation of concrete f;% and fy_b, respectively. *): ¢ =

sin ™ ((f, — £/ (FF+ 1), ¢ =sin™! ((f;b — [/ (s + fy‘b)).
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Relation between w® — o and w* — k*

This relation can be solved using the same methodology as used for the relation o& —

e*/o* — k*. First, the variable ¥ is calculated given a value of k¥ using the above

methodology. Hence, the variable o can be evaluated as ot = ¢+ — %ﬁi) and then
obtain the respective value of the damage variable w* (o). Finally, using the relation

+ + . . . .
3% = ZT and the chain rule, the derivative Z—:’f is given by

dw®  dw*do®  Qfg*
dk*  da* dkt ot

, (2.5.203)

where QOF = ZZ—; Finally, Table 2.5.4 resume the steps necessaries to do all these conver-

sions, with the exception of cohesion hardening law.

2.5.2. Conversion of fracture energy

Fracture energy FE-regulariation is an common technique that induce a length scale
in the constitutive equations and that is able to remove the spurious mesh-dependency
observed in the numerical simulations when strain-localization ocurrs. This method is
based in the experimental evidence, where the energy dissipated to form a unit area of
crack surface Gy are considered as a material property (Hillerborg et al., 1976; van Vliet
& van Mier, 1995; Nakamura & Higai, 2001). This dissipated energy can be distinguished

into tensile fracture energy G}L (cracking) and compression fracture energy G (crushing).

(Bazant, 1982; Hillerborg et al., 1976) shown that the tensile/compression fracture en-
ergy G ij are related with the FE-regularized energy per unit of volume gjf = G? /1., where
l. is the characteristic length of FE element. The characteristic length /. vary according the
size and type of finite element used. Thus, for linear shell elements [, = /24, complex
shell elements [, = v/A and solid brick elements l. = NATS being A the area and V' the

volume of the finite element, respectively.
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Figure 2.5.3. Schematic definition of FE-regularized concrete fracture energy gjjf = G]jf /l. in uniaxial stress
laws: (@) ot —et; Mot —aT; ()0 —e " and(d) o™ — ™.

Three definitions of fracture energy are discussed: (i) tensile regimes; (ii) compression
ones; and (ii1) thermodynamically dissipation. Fig. 2.5.3 shown the graphical represen-
tation of these definitions in uniaxial stress laws, whose are explained in the following

sections.

Tensile fracture energy

For a tensile regime, exist a broad consensus, available with several studies realized
in the past (Hillerborg et al., 1976; Bazant, 1982), that shown that the energy dissipated
per unit of volume in the post-peak stress-displacement relation G}“ is the adequate to be

included in the FE-regularization of concrete models, i.e.

gy = / Cot(ehdet = AL (2.5.204)



109

and which correspond to the depicted area in Fig. 2.5.3a. Moreover, its possible convert
this definition using a stress-equivalent plastic strain ot — o™ law as follows. First, using
Eq. (2.5.193), the total energy dissipated under the 0™ — o™ relation is given by A} =
J- ot (at)dat = A + AF, where AT = 31-(0f)?, with o} the stress onset non-linear

behavior. Then, an equivalent energy to g;{A can be defined as

o0 1 oo
g;{B = /0 ot (a)da™ — Q—Eo(asr)2 = /Q;r ot (aM)da™, (2.5.205)
which correspond to depicted area of Fig. 2.5.3b, with o an unknown positive value.

Note that this expression is different from the stated by (Lubliner et al., 1989).

Compression fracture energy

In contrast, the definition of compression fracture energy is scarce (Vonk, 1992; van
Vliet & van Mier, 1995; Jansen & Shah, 1997; Nakamura & Higai, 2001), being matter
of discussion. For one hand, (Nakamura & Higai, 2001) define the compression fracture

energy dissipated per unit of area as

[e.o]

gin =0, (e, —&1) + / o (e7)de, (2.5.206)

€p
where €| = % However, its convenient redefined slightly this expression as follows

N ) T
9ra ::%Eo—l—/s_ o (eT)de” = AT + A, (2.5.207)
which correspond to coloured area of Fig. 2.5.3c. Similar to tensile regime, its possible
convert this definition using a 0~ — o~ law. Thus, the energy dissipated in the post-peak

o~ — o~ law is defined as

9ip = / o (a7 )da™ = A, (2.5.208)

P
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and is associated to depicted area of Fig. 2.5.3d. Then, using Eq. (2.5.193), this expression
can be related to Eq. (2.5.207) as follows A, = A} + A, ie. g;4 = g;p. It should be
noted that this definition is agree with the stated by (Lubliner et al., 1989).

Thermodynamical dissipation energy

In damage models, the fracture energy can be defined as the total dissipation energy as

follow
ﬁb:i/ At (2.5.209)

to

where 7y denotes the ratio of total dissipated energy and is evaluated according to HFE po-
tential established. According to the second principle of thermodynamics, any irreversible

process satisfies the Clausius-Duhem inequality, whose reduced form is expressed as

= —th+0o:&>0, (2.5.210)

Next, assume that the WLF or FOC model are used. Then, using Egs. (2.1.41),
(2.1.42), (2.1.38) and (2.1.39), the differentiation of Eq. (2.1.37) with respect to time yields

2 1 R . 1 I

Y=0:€ (886'6 + or ﬁ+8w+w +8w_w (2.5.211)
‘p awp . + -+ — e —

=0.¢€ —a—n'ﬂ—f—wow +wow. (2.5.212)

Now, if only the damage behavior is assumed (non-plastic strains), the positive/negative
part of the ratio of dissipation energy can be reduced to 4~ = ¢)Fw*. Also, assuming an
positive/negative uniaxial behavior with an undamaged or effective stress 5=, the undam-
aged energy is given by ¢F = % Moreover, using the chain rule, the rate of damage

variable can be expressed as w™ = %%. Thus, using these relations and Eq. (2.5.203),
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the dissipation energy can be rewritten as

1 [~ dw* 1 o do*
+ . ~+\2 + _ £ +007\ o+
9o = 2E /rgt (67) s dr T /roi (a r dri) dr

Y do* "
= 5 /m(j): (U — xdx_i> dz™. (25213)

+

Finally, assuming that the uniaxial o= — ¥ and their respective o= — o laws depicts
closed regions. Then, applying the Green's theorem into this relation, it can demonstrated

that
Jio = / o*(e¥)de* = / o (aF)da™, (2.5.214)
0 0

which represents the total area under o* — ¢* and o0& — T laws, respectively, and are
depicted in dashed area as shown in each plot of Fig. 2.5.3. It should be noted that this
result are agree with mentioned in (Oliver et al., 1990; J. Lee & Fenves, 1998). This imply

that in the LLF model the variable ¢ satisfy the relation g* = g}jfc.

In addition, to include the plastic component of the dissipated energy in the plastic-
damage models, its necesary consider the plastic terms of Eq. (2.5.212). Complex equa-
tions are involved in this process due to sofistication of concrete models developed and are
beyond the scope of this article. A complete development of this terms can be encountered

in (Cervera, Tesei, & Ventura, 2018).

2.5.3. Example of application

An example is elaborated to shown the conversion among uniaxial laws and the differ-
ent definitions of fracture energies stated. Exponential relation of (Mazars, 1984; Oliver

et al., 1990) is used both for tensile as the compressive regime. Table 2.5.5 shown the an-

alytical expressions for stress-strain o — ¢ laws, their derivatives g—‘; and the accumulated

area under o — ¢ law F'(¢). Additionally, table contains the damage laws w(r) and their

w

derivatives 5
‘

converted according to Eq. (2.5.203).
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Calibration of inputs parameters A* and B* are generated according to different defi-
nition of tensile/compression fracture energy stated. Table 2.5.6 shown analytical expres-
sions for this parameters. In addition, to avoid the snap-back in the uniaxial stress-strain

laws, a maximum value for [, is determined. Fig. 2.5.4 shown the uniaxial % — ¢* laws

and the equivalent o* — a®, 0 — x* and w* — ¥ laws applying their respective conver-
sions.
Hardening, x [-]
00 02 04 06 08 1.0
1.0 |
< - 0.8 |
e i
=) 3 06t
o
o g 04|
s g
=
2 A 02 F
0.0 |
1 1 1 1 1 1 1 1
00 01 02 03 04 05 00 01 02 03 04 05 0 2 4 6 8 10 12 14
Strain, & [%o] Equivalent plastic strain, « [%o] Threshold, » [MPa]
Hardening, x [-]
00 02 04 06 08 1.0
T T T T T T
30 1.0
T 5f — 08}
z 2 3 06}
e 15+ g
Z 10} g 04
-
2 sl A 02t
0F = 00 |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10 0 50 100 150 200 250 300
Strain, & [%o] Equivalent plastic strain, « [%o] Threshold, » [MPa]

Figure 2.5.4. Example of conversion of uniaxial laws among ¢ — €, 0 — o, 0 — k and w — r relations for the

exponential model of (Mazars et al., 1990; Oliver et al., 1990): (a-c) tensile regime and (d-f) compressive

regime. The following parameters are used: F,=30 GPa, ft/=5 MPa, f;:30 MPa, [.=500 mm, C'T=6000
and C~=100.

2.6. Validation examples

In this section, a set of numerical examples are used to validate the capabilities of the

constitutive concrete models described in Section 2.1. Taking the numerical algorithms
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Table 2.5.6. Calibration of inputs parameters and upper limit of characteristic length [ according to fracture
energy definition.

Fracture energy

Model Parameter gjij = ng 9t
ExpoP AT 1 1
+ 71 P 1)
B J; Jy— 3
le,maa - 2.J;
ExpoN A~ 1 1
- . - . —1
Bt <§+ Jc+}l>/Jc <§+ JC—}1>(C—§)
le.maz 3 Je e
T = - -
Jy = G?f”, J. = G?f”, Jy = ‘l]—z, J. = ‘l]—:‘,  Parameters f, and B~ are calculated in an

iterative process (see Appendix F). ® Values calculated according to condition 42 € [0, E,] — B~ € [0, 1].
An tolerance of 7 = 0.9 is chosen for convenience.

presented in Sections 2.3 and 2.4, the five concrete models were implemented in the soft-
ware (ANSYS, 2018) throught user-material FORTRAN77 routines (USERMAT.f). These

material routines works at Gauss integration point level of each finite element.

Five class of experimental benchmark test are simulated with a single-element ac-
cording to loading conditions: (i) uniaxial cyclic tension and compression; (ii) biax-
ial monotonic; (iii) triaxial monotonic; (iv) uniaxial cyclic tension-compression and (v)
strain-rate effect and numerical viscosity. Also, the strain-localization and fracture-energy
FE-regularization are discussed with a fictitious example. In addition, the compression
failure mode of a test specimen varying their slenderness is illustrated as an example of

application.

All examples were modeled using 8-node isoparametric solid element (SOLID185)
with three Degree Of Freedom (DOF) at each node using 2x2x2 Gauss integration scheme
and B-formulation (selective reduced integration method) (Hughes, 1980). All models,
except the DPH model, assume an exponential relation for the positive/negative uniax-

ial stress laws given by Egs. (2.1.57) and (2.1.58), respectively. An adequate conversion



115

among uniaxial laws required for each concrete model is generated, as explained in Ta-
ble 2.5.4. Table 2.6.7 list the material parameters adopted for each benchmark test. Addi-

tional parameters are listed in the figure of each example.

Table 2.6.7. List of parameters used in the concrete models.

’

B H E, v fi f Gt et K.

Author Test mm mm GPa - MPa MPa N/mm N/mm -

Gopalaratnam & Shah, 1985  uniaxial tension 82.6 82.6 310 0.18 3.48 27.6 0.04 11.38 1.0
Karsan & Jirsa, 1969 uniaxial compression 82.6 82.6 31.7 02 348 276 0.04 11.38 1.0
Kupfer et al., 1969 biaxial 200 50 31.0 0.15 3.5 3206 2.0 80.0 1.0
Imran & Pantazopoulou, 1996 triaxial 54 115 19.0 022 50 474 1.0 50.0 0.7
Mazars et al., 1990 unilateral effect 80 80 164 02 14 181 0.011 7.0 1.0
Suaris & Shah, 1985 strain-rate effect 100 100 340 022 537 468 0.5 20.0 1.0
- strain-localization 100 600 320 0.0 50 390 4.0 40.0 1.0

van Vliet & van Mier, 1995 slenderness of specimen 100 50-200 27.8 0.2 6.0 36.34 2.0 5.7 O]

T values used in the WLF, as reference. 1) gee Fig. 2.6.16. For all cases: f; = 1.16f;, ¢=0.001, zj:O,
z7=1, f;f = f, and i, = 0, unless otherwise indicated.

4 — o Test Backbone FE model ——  Cyclic FE model

E LLF (©) P with plastic strain (WLF)

= r i — only damage (WLF )

<ot :

s

2t 2 :

= .

o X )

< 0} /} S

1 1 1 1 1 1 1 1
o 01 02 03 04 05 O 01 02 03 04 05 O 01 02 03 04 05
Axial strain, €, [%o]
4 _
s d, 3 FOC (5 . ROT
01,€&1 § 3 _() /I' | (e) " W

= 97 ; f
20 f \ - LLF 003 55
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= v [ 4 > i WLF 0007 5.3

X 8 / /‘:,;1;,,, FOC 00168 53
< opé s W S FE b ROT 0.04 1138
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Axial strain, €, [%o]

Figure 2.6.5. Validation of concrete models under uniaxial cyclic tension test of (Gopalaratnam & Shah,

1985): (a) DPH model; (b) LLF model; (c) WLFy and WLF models; (d) FOC model; and (e) ROT

model. The following additional parameters are used. For the DPH model: nyr =3.48 MPa, f; =12 MPa,

ag = 3¢,/Fo, R=1; LLF model: C*=6500, C—=7500; and WLF model: f5=20 MPa, E;F:O.16EO,
E; =0.48E,.
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Backbone FE model ——  Cyclic FE model
- - with plastic strain (WLF)

= only damage (WLF)

30 F

20 +

Axial stress, o, [MPa]

<
J 20 + G Gp
g Model N/mm N/mm
g LLF 0.03 5.50
g 10t WLF, 0.04 11.38
T: WLF 0.007  5.30
'::? g FOC 0.0168 5.30
Ot ': 1 1 1 1 1 1 1 1 ° 1 1 1 ROT 0.04 11.38
0 1 2 3 4 5 0 1 2 3 4 5

Axial strain, £, [%o]

Figure 2.6.6. Validation of concrete models under uniaxial cyclic compression test of (Karsan & Jirsa, 1969):
(a) DPH model; (b) LLF model; (c) WLF model; (d) FOC model; and (¢) ROT model. The following
additional parameters are used. For the DPH model: f; =3.48 MPa, fy_ =12 MPa, ag = 3¢, /Fo, R=1; LLF

model: CT=6500, C~=7500; and WLF model: f, =20 MPa, E;r =0.16F,, £, =0.48L,,.

2.6.1. Uniaxial cyclic tests

Numerical concrete models are compared with uniaxial cyclic tensile and compressive
loading-unloading and reloading experimental data reported by (Gopalaratnam & Shah,
1985) and by (Karsan & Jirsa, 1969), respectively. Figs. 2.6.5 and 2.6.6 shown the re-
sponse of the five concrete models under tensile and compressive loads, respectively. FE
models are elaborated with a single-element cube of 82.6 mm. Its assumed a characteristic

length of [.=82.6 mm and a pure uniaxial stress state for the boundary constraints.

In general, it can observed that in all models, except for the DPH model, fits well with
the post-peak backbone response of experimental tests, where the WLF, and ROT models
gives the best approximation. Although, both models fail in the unloading branch, due that
neglects the plastic strains (pure damage only). Also note that these models have identical

responses them, although are elaborated with formulations completely different.
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In contrast, the unloading branch of the LLF, WLF and FOC models fits close to exper-
imental response due that incorporate the plastic and damage components in their formu-
lations. In plastic-damage models, its required adjust the parameters to fit simultaneously
the backbone curve and the unloading branch. Thus, the first half of residual backbone is
mainly influenced by the parameters of the plastic component and the last half by the frac-
ture energy G’?. Moreover, the parameters C#, EltjE and B* for the LLF, WLF and FOC
models, respectively, controls the backbone and slope of unloading branch in a coupled
manner, i.e. when their values are reduced cause an increase in the slope of unloading

branch and consequently reduce the backbone response.

The follows additional observations are considered. For the tensile regime, in all mod-
els, except the LLF model, the peak stress do not fit exactly with the experimental value
due to the incorporation of smoothed polynomial function in the uniaxial laws (see Sec-
tion 2.2). For other hand, the value of fracture energy G? used in the plastic-damage
models to fit the experimental tests is less than in the damage models. This is due to that
the plastic component induce an additional dissipation of energy that is not taken account

in the FE-regularization (Section 2.5).

For the FOC model, it has observed the influence of strain increment size Ae in the
response, where an gradual over-stress response is caused with a relative large strain incre-
ments. In the same way, its observed a difference between cyclic and backbone responses,
gradually incremented over the last unloading/loading cycles, but that disappear with a
relative small Ae. Both conditions are due to explicit integration scheme used in the nu-
merical algorithm to calculate the plastic strain tensor. In addition, it can observed the

influence of parameter B~ in the tensile response.

2.6.2. Biaxial monotonic tests

All the concrete models, except the ROT model, are compared with biaxial monotonic
test of (Kupfer et al., 1969). This test is performed with a constant biaxial loading ratio

of a = 01/09, where o1 and o, are the stresses imposed. FE models are elaborated with a
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single-element of 200 x 50 mm of base and 200 mm of height. Its assumed a characteristic
length of /. = 200 mm and a pure biaxial stress state for the boundary constraints, as
observed in the experimental test. A stress-controlled test are performed up to reach the
peak stress, with the exception of the uniaxial case (@ = 0) simulated with displacement-

controlled. The inputs parameters are chosen by means to fit the cases a=0, 1 and 0.52

simultaneously.

Fig. 2.6.7 shown the axial stress o; vs axial €, and the lateral strains 5 and ¢3, respec-
tively, for the WLF model and using a loading ratio of a=0, 1 and 0.52. This model use
a DEER given by Eq. (2.1.51) to include the biaxial strength. It can observed a good fit
with the pre-peak stress response of experimental test and a relatively good adjust exist
in the lateral strains, especially when a=0.52. In general, the same observations are con-

cluded in all models. Fig. 2.6.8 shown the biaxial peak strength surface for the DPH,

o —-o Test — WLF

14

1.2

1.0

0.8

Normalized stress, o, / f;

0.6
0.4 b 71/ h
— —1/0
09,89
02+ ~1/-1 8
0.0 b = —1/-0.52 -
1 1 1 1 1 1 ]
2 -1 0 1 2 3 4

Strain, €, ,4,65 [%o]

Figure 2.6.7. Validation for the WLF model under biaxial test of (Kupfer et al., 1969). The following addi-
tional parameters are used: G]T:O.S N/mm, Gy =35 N/mm, f, =12 MPa, E =0.3E,and E}f = 0.65E,.

WLEF,, WLF, FOC and LLF models under different combination of biaxial loading ratios
a = 01 /0y. For the DPH model, the parameters 7 and £ are fitted with tension/compression

biaxial strength of concrete. Also, for the WLF, and WLF models, the DEER given by
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Figure 2.6.8. Biaxial peak strength surface for the DPH, WLF,, WLF, FOC and LLF models and the biaxial
test results of (Kupfer et al., 1969). For the DPH model the following parameters are used nyr =3.5 MPa and

f=1

Eq. (2.1.51) is used to include the biaxial strength. In addition, the response of the WLF,

model using the Eq. (2.1.50) is compared.

It can observed, that all models fits close with the experimental results, specially in
compression-compression (C-C) regime, where are influenced by the Drucker-Prager yield
criterion. The major differences among models occur in the tension-compression (T-C)
regimes. The exception ocurr with the DPH and WLF;1 model. For the the first, fit well
only in the equal biaxial loading ratio @ = 1 and the second one fit well in the T-C regime,
but with a reduced strength in the C-C regime. Both observations are obtained such as

expect in the literature (de Souza Neto et al., 2008; Mazars, 1984; J. Simo & Ju, 1987).



120

Additionally, it can observed, similar to uniaxial case, a less value of fracture energy
is required in the plastic-damage models than damage models to fit with experimental
results. Conversely to the uniaxial case, under certain conditions, an increment in the

value of compression fracture energy cause a reduction in the backbone response.

2.6.3. Triaxial monotonic tests

The LLF, WLF,;, WLF and FOC models are compared with monotonic lateral confin-
ing triaxial test of (Imran & Pantazopoulou, 1996). A cylindrical specimen of D=54 mm
of diameter and H=115 mm of height was tested. Moreover, for the sake of simplicity,
a single-element prism of base B x B of equal area than the cylinder is simulated (i.e.
B = \/nD/2). Its assumed a characteristic length of [, = v/B2h and a pure triaxial stress
state for the boundary constraints. Seven confining pressure levels are applied: O (uni-
axial), 2.15, 4.3, 8.6, 17.2, 30.1 and 43.0 MPa. The loading paths protocol used was the
follow. A first phase during which the confining pressure p, was gradually increased to
a specified level while the specimen was unrestrained in the axial direction (hydroestatic
pressure). Beyond that stage, an axial compressive stress o3 is gradually applied under
displacement-control, while the level of confining pressure was maintained constant. The
input material parameters are chosen in order to fit simultaneously the seven levels of con-
fining pressure. Some convergence trouble are observed in the simulations, for which a

numerical viscosity of 1, /At = 0.001 is incorporated in all models.

Fig. 2.6.9a-b shown the normalized total axial compressive stress o3/ f; (03 = 03+Pp,)
vs the axial €3 and the lateral ¢;,; strain for the WLF and LLF models, respectively. For
the WLF model, it can observed a gradual strength and ductility level as it increases the
confining pressure, such as observed experimentally. A relatively good correlation exist
in all cases for the pre-peak response and the peak strength. The best correlation occur in
the cases p,=8.6 MPa and p,=17.2 MPa (medium-level pressure). Conversely, the largest
difference between the estimated peak strength is 6.94% for the case p,=43.0 MPa. Also,

lateral strain values are similar to experimental ones. Similar observations are obtained for
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the LLF model (Fig. 2.6.9b), with the exception of a considerable over-strength in the pre-
peak stage for the cases p,=30.1 MPa and p,=43.0 MPa (high-level pressure). Although,
the peak strength is increased only in a 6.9%. Analogous results with the LLF model are

observed for the WLF, and FOC models.

Fig. 2.6.9c resume the normalized peak stress o3,/ f; vs the confining pressure p, ap-
plied for the four models. Note the similitude with the compression meridian of Fig. 2.1.1.
A well fit correlation is observed, specially at low to medium-confining levels. However,
its noted a over-strength of 3.1% and 6.9% in the cases p,=30.1 and 43 MPa, respectively
(high-confining), whereas a relatively lower values (up to 4.3%) exists for the cases p,=4.3,
8.6 and 17.2 MPa (low- to medium-confining). In both cases, this is due to incorporation
of triaxial confinement in the equations throughout the constant parameter o (Eqgs. (2.1.24)
and (2.1.51)). More sophisticated models are required to fit close with experimental results

in overall range of confining pressures (Zhang, Zhang, & Chen, 2010).

Fig. 2.6.9d-e shown the normalized total stress o3/ fc/ vs the volumetric strain ¢, (=
€1+ 2¢;4;) for the WLF and LLF models, respectively. For the WLF model, its observed a
low level of dilatancy upon the post-peak regime in all confining levels, such as observed
experimentally. Contrary, for the LLF model, a reduction in the volume in all range of
confining pressures are measured. This last condition is noticed also in the WLF, and

FOC models.

2.6.4. Uniaxial cyclic tension-compression test

To validate the unilateral effect, the LLF, WLF,, WLF, FOC and ROT models are
compared with the uniaxial cyclic test of (Mazars et al., 1990). This test was first subjected
to uniaxial tension followed by uniaxial compression in parallel directions. FE models are
elaborated with a single-element cube of 80 mm of width. Its assumed a characteristic

length of [.=80 mm and a pure uniaxial stress state for the boundary constraints.
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Figure 2.6.9. Validation of concrete models under triaxial test of (Imran & Pantazopoulou, 1996): (a-b)

normalized total stress o3/ fc/ vs axial €; and lateral €4, strain for the WLF and LLF model, respectively;

(c) normalized peak stress o3,/ f; vs confining pressure p, for LLF, WLF;, WLF and FOC models; and

(d-e) normalized total stress o3/ fé vs volumetric strain ¢, for the WLF and LLF models. The following

additional parameters are used. For the LLF model: C*t=1000, C~=200 and the WLF model: f; =35 MPa,
E; =0.5E, and E;" = 0.25E,.

Fig. 2.6.10 shown the axial stress o vs axial strain €; of this models. It also included
the response of the LLF model with three values of stiffness recovery factor z_ (0, 0.5
and 1). It can noticed that all models recovery the initial elastic stiffness once the load
goes into the compression state (step 2 and 4). The exception occur, obviously, in the
LLF model when z_=0.5 and 0, due that this parameter controls the value of recovery
compression stiffness. Moreover, its observed that all models, with the exception of the
WLEF, and ROT models, take the compression backbone branch close to experimental data
(step 4), due that include plastic strain in their formulations. In addition, its observed that

the LLF, WLF and FOC models recovery the damaged stiffness obtained in the last cycle
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of tension (step 3) when the load goes from compression to tension state (step 6). This
condition is also shared by the WLF, and ROT models (not shown in the plot) and is so-
called that the models have “damage memory”, which is agree with the thermodynamic of

irreversible process.

Uniaxial stress, o; [MPa]

-2 -1.5 -1 -0.5 0 03

Uniaxial strain, £, [%o]

Figure 2.6.10. Validation of the LLF, WLF,, WLF, FOC and ROT models under uniaxial cyclic tension-
compression test of (Mazars et al., 1990). The following additional parameters are used. For the LLF
model: CT=12000, C~=200; WLF model: f; =12 MPa, E;“ =0.3E, and E, = 0.4E,; and FOC model:

o

B*=0.54 and B~=0.75.

2.6.5. Strain-rate tests

Experimentally, the strain-rate effect is important under impulsive loading (impacts
or explosions), but already important under earthquake loading, with rates of straining ¢

ranges between 107%/s to 10~!/s. Then, due that the all models, except the DPH model, can
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simulate the rate-dependent behavior throught of incorporation of a visco-elastic/visco-
plastic model, they are compared with the strain-rate test of (Suaris & Shah, 1985). FE
models are elaborated with a single-element cube of 100 mm of width. Its assumed a char-
acteristic length of /,.=100 mm and a pure uniaxial stress state for the boundary constraints.
Two uniaxial tests are performed, one for tension and other for compression, both with a
range of straining rates ¢ between 107%/s to 1/s. The material parameters are fitted with
the tests loaded with a strain-rate of é=10"%/s (pseudo-static). For the sake of simplicity,
a numerical viscosity p, = 2 x 1072 s is used in all cases. Also, a constant number of
steps N,=150 and a maximum displacement of 9,,,,,=0.25 mm for tension and -0.55 mm
[0ma

for compression are used, for which the time increment used is given by At = N—;‘

Fig. 2.6.11a-b shown the normalized uniaxial tension/compression viscous stress o} /of
vs uniaxial strain €1, respectively, for the WLF,; model, where a?mw denotes the peak in-
viscid stress (f, and f., respectively). In both plots, for high straining rates, an increment
of up to 3.4 and 1.1 times respect to the inviscid case (¢=107°/s) is observed for tension
and compression, respectively. Moreover, its denoted an over-estimation of 59.4% in the
tensile peak stress respect to experimental test, whereas a lower-estimation of 12.4% exist

for the compression peak stress. Similar observations are derived using the other models.

Fig. 2.6.11c shown the peak stress ratio 0 /o9 or Dynamic Increase Factor (DIF)
vs the applied strain-rate € for all models, where O'?mw denotes the peak stress at invis-
cid response. As can observed, peaks strengths grow continuously as straining rates are
increased, becoming clearly distinguishable from the inviscid response upon a strain-rate
value of 1072/s. Also noted, that the tensile response is largest than the compressive one
in overall range of straining rates analyzed, growing up to 6 times respect to the inviscid
response. In addition, the FE results shown that the DIF is underestimated as compared to
the both experiments for the small strain-rates ¢ < 10~'/s and overestimated for the large
strain rates ¢ > 2.5 x 10~!/s. To get a best estimation with respect to the experimental
tests, its required modify the visco-plastic model used, e.g the modified Perzyna model

proposed by (Faria & Oliver, 1993; Faria et al., 1998).
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Figure 2.6.11. Validation of strain-rate effect in the concrete models under monotonic uniaxial tests of
(Suaris & Shah, 1985): (a-b) normalized uniaxial tensile/compressive stress o} /U?mw vs uniaxial strain

€1 for the WLFy model, respectively; and (c) peak stress ratio of ~/ a?maz or Dynamic Increase Factor
(DIF) vs the applied strain-rate ¢ for the LLF, WLF,;, WLF, FOC and ROT model under tensile and compre-
sive loads.

2.6.6. Effect of the numerical viscosity

In order to investigate the effects of numerical viscosity in the response, a numeri-
cal test are generated varying the numerical viscosity-time increment ratio j, /At for the
WLF model. This adimensional parameter is related to the variable ¢, = (1 + At/u,) ™!
(Eq. (2.3.114)) required for the stress updated algorithms of models. For the sake of sim-
plicity, the material parameters used are the same than in the strain-rate effect simulation.
Uniaxial tensile load is applied in a single-element varying the relation p,, /At in a range

between 10~ (inviscid) to 50.
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Fig. 2.6.12a shown the uniaxial viscous stress-strain o] — €; response with different
values of p, /At. Similar to Fig. 2.6.11c its observed an gradual over-stress response pro-

portional to the increased value of the numerical viscosity. Moreover, Fig. 2.6.12b shown

v
doy

851

the respective axial stiffness-strain — &1 response for one integration point of the FE
model. Similar to the stress response, a gradual increment of axial stiffness is presented
as increasing the value of u,/At, up to get a positive value although a strain-softening
regimes exists. This key advantage can convert into a positive-definite the consistent tan-
gent stiffness tensor and is demonstrated that expand the range of convergence of the

models in strain-softening regimes.
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Figure 2.6.12. Variation of uniaxial response using different values of the ratio numerical viscosity/time

increment p, /At for the WLF model: (a) uniaxial viscous stress-strain o} — ¢ relation and (b) axial
stiffness-strain % — ¢ relation for one integration point of the FE model.

2.6.7. Strain-localization and FE-regularization

Strain-localization phenomena is present in local models with strain-softening behav-

ior. Imperfection of material properties, irregularities in the geometry and non-symmetrical



127

boundary/load conditions can induce the formation of this phenomena. The fracture en-
ergy FE-regularization is an popular technique that introduce a length scale in the consti-
tutive equations and that is able to remove the spurious mesh-dependency observed when
strain-localization exists. It should be noted that, ignoring the FE-regularization, local
models with strain-softening behavior can correctly describe the damage only when re-
main uniformly distributed (perfect material). In order to study this phenomena in the

01,€1

100mm
~

100mm

600mm

(@)

Figure 2.6.13. Description of FE models used in two tests: (a) strain-localization and (b) compression of a
specimen test.

concrete models developed, two uniaxial tests are performed, one for tension and other
for compression, varying the number of finite elements (i.e. varying their characteristic
length [.). For the sake of simplicity, a prism of 100 x 100 mm of base and 600 mm
of height is divided into 2, 3 and 4 elements. Also, its assumed a pure uniaxial stress
state for the boundary constraints (Fig. 2.6.13a). Table 2.6.7 list the material parame-
ter used. The election of parameters F,, f; and G? are chosen in order to satisfy the
range of characteristic length /. admissible by the uniaxial compression stress law given
by Eq. (2.3.77). In order to induce the localization phenomena, one of elements (shaded
element) has been reduced slightly their uniaxial tension/compression strength ( f,/f.) than
others elements (0.99 times), for tensile/compressive load case, respectively. In addition,
due that some convergence trouble are observed in the simulations, a numerical viscosity

of 11,/ At = 0.05 is incorporated in all models.
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Fig. 2.6.14a-b shown the normalized uniaxial tensile stress o1 /071, ,, Vs post-peak dis-
placement 9;,, for the WLF, and WLF model, respectively, varying the mesh size of
model, whereas Fig. 2.6.14c-d shown the respective compressive response for the WLF,
and LLF, respectively. Additionally, the figure shown the failure mode of their respec-
tive specimens, through the field of damage variable w®. The post-peak displacement
is defined as d,,, = 0 — d,, where 0 is the total displacement of specimen and ¢, the

displacement at peak response.

Its observed in all models with imperfection a mesh-objectivity response and the dam-
age zone occur only in the modified element, such as expected in literature. However,
in the case without imperfection, two kinds of response are observed. For one hand, the
response for the WLF; model is mesh-dependent with an uniform strain field, either in
tension as in compression. This condition is due that the FE-regularization modify the
uniaxial stress-strain law despite exist an uniform strain field in the model. Then, its
concluded that this technique is only necessary when the damage zone localize. For other
hand, the LLF and WLF models (with the exception of one case [.=300 mm) gives a mesh-
objectivity response. This atypical condition can be attributed first to the non-symmetric
consistent tangent stiffness tensor and largely to numerical errors induced in the iterative

process to calculate the plastic component.

Similar observations can be concluded in the other cases as explained as follows. All
models gives a mesh-objectivity response and the damage zone is localized in one element
(modified element) when a perturbation exists in the material. In contrast, not all the
models have an uniform strain field in the case without imperfections. Its observed that
the WLF and FOC models localize with a tensile load, whereas the LLF model localize
both in the tension as in the compression case. In contrast, the WLF,; and ROT models not

localize using a perfect material.
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Figure 2.6.14. Comparison the normalized uniaxial stress o1/01,,,, Vs post-peak displacement 6, using

three FE mesh sizes: 150 mm, 200 mm and 300 mm: (a-b) tensile response for the WLF, and WLF models,

respectively; and (c-d) compressive response for the WLF, and LLF models, respectively. The following

additional parameter are used. For the LLF model: CT=6000, C~=500; and WLF model: f; =20 MPa,
E; =0.5E,and E; = 0.5E,,.

2.6.8. Variation of slenderness specimen in a compression test

Experimentally, the compressive strength of a concrete test specimen is influenced by
several factors. Avoiding effects associated to the concrete mixture characteristic (normal
or high strength concrete) or the strain-rate effects, three main factors affects in the re-
sponse: the specimen slenderness or height-to-width ratio H/B; the election of boundary
constrains imposed in the loading platens used in the experiments; and geometrical effects
(cylinder/prism and specimen size). Round-robin tests were perfomed in the past to guess

this problem (van Mier et al., 1997).

Its observed by several authors (van Vliet & van Mier, 1995; Vonk, 1992), in com-
pression test where a reduced friction exist between the test specimen and the loading
platens (e.g. steel brushes, thin layers of Teflon and grease or stearic acid), their compres-
sive strength is relatively independent of slenderness of specimen tested. Conversely, in

test where a high friction (e.g. dry steel platens) is present, the compressive strength is
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inversely proportional to the slenderness of specimen, i.e, the larger the height, the lower
the strength. For a slenderness values upper 2 the peak strength tends to the case with low
friction (pure uniaxial). This condition is due that the lateral shear stresses presents in the

loading platens induce triaxially confining pressure at the boundary of the specimen.

Numerical simulation of experimental test performed by (van Vliet & van Mier, 1995)
are generated to shown the response and failure mode. Four prisms specimens of 100 x
100 mm of base, with different slenderness H/B are simulated, three of them H=50, 100
and 200 mm of height are identical to the experimental test and one additional fictitious

specimen of 400 mm of height is considered.

Fig. 2.6.13b shown a schematic representation of the FE model generated. A mesh
of 16.6 mm is used. Fixed boundary restraints are imposed in both ends to simulated the
high friction provided by dry steel platens. The material input parameters of models are
calibrated with a specimen of 100 x 100 x 50 mm and with low friction (uniaxial case)

that was included as part of the experimental program.

Fig. 2.6.15 shown of compressive response of four FE models varying the height of
specimen and using the WLF model. It can observed a good correlation in the post-peak
response with the experimental results. The highest value in the compressive strength
occur for the specimen of 50 mm of height. Also, its observed a over-estimation of resis-
tance for the specimen of 50 mm, whereas an under-estimation exists for the specimens
of 100 and 200 mm. In both cases, similar to concluded in the triaxial test simulation, is
due to incorporation of triaxial confinement parameter 0 in the equations. Similar obser-
vations occurs with the other models. Fig. 2.6.15 shown the variation of compressive peak
strength with respect to the slenderness of a test specimen for the LLF, WLF,, WLF and
FOC models. It can observed a good correlation with experimental results and with a sim-
ilar response among them. In all cases, the compressive strength tends to the uniaxial peak
strength f; (low friction case) with a slenderness value over two, such as recommended in

ACI code. In addition, Fig. 2.6.17 shown the failure mode of experimental specimens and
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Figure 2.6.15. Simulation of compressive response of a test specimen varying their slenderness for the WLF
concrete model using the experimental test of (van Vliet & van Mier, 1995). The following additional
parameters are used: K.=0.74, f,~=30 MPa, Ef =0.8E, and E; =0.8E,.
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Figure 2.6.16. Comparison of compressive peak strength vs slenderness of a test specimen for the LLF,

WLFq, WLF and FOC models.

their respective numerical simulations for the LLF, WLF,, WLF and FOC models varying

their slenderness.
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WLF FOC

Figure 2.6.17. Comparison of failure mode of test specimen varying their slenderness for the LLF, WLF,
WLF and FOC models under the monotonic test of (van Vliet & van Mier, 1995).

2.7. Estimation of the epistemic uncertainty

To measure the epistemic uncertainties on inelastic constitutive concrete models studied,
five types of response parameters were considered: (1) peak stress o, and respective strain
g, of the monotonic stress-strain curve; (2) dissipated energy of the monotonic G, stress-
strain curve; (3) dissipated energy of the first G, last G..__, and total G, loading-unloading
cycle of stress-strain curve, respectively; (4) linearized least square stiffness of hardening
branch K}, and softening branch K, of monotonic stress-strain curve, respectively; and
(5) first, K., and last K,__ linearized least square stiffnesses in loading-unloading cycle,

respectively. Fig. 2.7.18 illustrates these parameters for clarification.



133

The uncertainty of inelastic concrete models is measured in only six experimental
tests cases: (i) the uniaxial cyclic tension test; (ii) the uniaxial cyclic compression test;
(ii1) a biaxial monotonic test; (iv) a triaxial monotonic test; (v) the uniaxial cyclic tension-
compression test; and (vi) a strain-rate case, for both tensile and compressive loading.
For all these cases, the uncertainty is measured as the ratio of simulated concrete models
Ryum relative to experimental test results Rey,. The uncertainty of the ratios Ryum/ Rexp 18

characterized by its minimum, maximum values, and the standard deviation o.

o 4 ,'K [==1 Monotonic energy, G,,
N _ ZZZa Cyclic energy, G,

Figure 2.7.18. Definition of response parameters to measure epistemic uncertainty in inelastic concrete mod-
els.

Fig. 2.7.19 summarize a box-plot of the uniaxial cyclic tension and compression simu-
lation with the five class of output parameters defined. The box-plots considered hereafter
contains a rectangle whose length is the difference between the first and third quartile, a
median 7 represented by an intermediate horizontal line, a mean represented by a rhom-
bus, whiskers equivalent in width to two standard deviations (20), and outliers which fall

outside the range (z £ o).

It can observed up to 47% less amount of energy dissipated by the first loading-
unloading cycle G, of numerical simulations than experimental test, with a considerable
uncertainty of up to 0 =20.6%, both in compression as in tensile regime. Similarly, up to
40% more flexible is the first loading-unloading stiffness K, mainly due to WLF, and

ROT models, which unloads to origin. Conversely, there are up to 2.68 and 2.41 times
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more energy dissipated by monotonic (7,,,, and cyclic stress-stain curve G, respectively
(excepting in compressive load) by numerical simulations than in the experimental test,
both in tensile as compressive case, mainly due to DPH plastic model. Furthermore, a
high variability exist for the energy dissipated by the last cycle G,__, with o =112.2% for
tensile case, and by loading-unloading stiffness of last cycle K._, both in tension as in

compression regime, with o =262.6% and 175.6%, respectively.

In contrast, for tensile regime, the variables o, ¢,, and K}, gives a good fit adjustment
in all concrete models, with a standard deviation less than 10%, whereas for compressive
regime, the variables o), G, and G. gives a 0 | 15%. Finally, its concluded that the most
important source of epistemic uncertainty in tensile regime is observed by the energy
dissipated G, and linearized stiffness K, in the last loading-unloading cycle, with a
standard deviation of 112.2% and 262.6%, respectively, whereas for tensile regime the
variable K, gives a considerable uncertainty, with o =175.6%. The main reason of this
high uncertainty is due to the differences in the taxonomy of stress-strain constitutive

concrete models considered (plastic, damage or plastic-damage).
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Figure 2.7.19. Response parameters of the numerical concrete models normalized by the experimental

benchmark test results in the uniaxial cyclic tension and respective compression test: box-plot diagram

(top); and maximum, minimum and standard deviation o (%) (bottom). (Values in parenthesis associated
with the uniaxial cyclic compression simulation.)

Fig. 2.7.20a-b shown the box-plot of response parameters for the biaxial and triaxial
monotonic simulations, respectively. For the biaxial case, the box-plot for each variable

correspond to combination of all stress ratios simulated a = o7/0y with a=0, 1, and
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0.52, whereas for triaxial case, each box-plot combine all confining pressure simulated,
Do from O to 43 MPa. For one hand, a good fit adjust exist for all response variables
measured, with a medium-level of uncertainty less than 30%. For other hand, a low-level
of uncertainty is observed for the peak stress o, with 0 =4%, whereas a high uncertainty
is observed in the variables ¢, G, and K}, with a standard deviation of 83.7%, 58.9%
and 55.2%, respectively. Later, this uncertainty is due to simplicity of term considered in

the constitutive concrete equations to simulate the triaxial effect.
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G (%) 12.8 28.4 29.5 27.0 4.0 83.7 58.9 55.2

Figure 2.7.20. Response parameters of the numerical concrete models normalized by the experimental
benchmark test results: (a) biaxial monotonic; and (b) triaxial monotonic. Box-plot diagram (top); and
maximum, minimum and standard deviation o (%) (bottom).

Fig. 2.7.21a-b shown the box-plot for the uniaxial cyclic tension-compression (uni-
lateral effect) and strain-rate case, respectively. For one hand, the standard deviation of
all parameters is less than 10%, with the exception of the variables (7, and K,_, where
0=25.9% and 38.3%, respectively. For other hand, a good fit correlation exist for strain-
rate simulations less than ¢ < 10~ !/s, in all concrete models, as both in tensile as in
compressive regimes, with values that ranges between 0.71 and 1.05 times the experimen-
tal tests results. Conversely, for a strain-rate over 1/s, higher values are observed of up to
2.74 and 1.52 times, for tensile and compressive load, respectively. Thus, combining all
strain-rate cases in an unique box-plot, gives a standard deviation of 44.0% and 14.2%,
for tensile and compressive load, respectively. Both observations demonstrates that there

are more uncertainty in tensile regime than in compressive one.
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Figure 2.7.21. Response parameters of the numerical concrete models normalized by the experimental

benchmark test results: (a) uniaxial cyclic tension-compression; and (b) strain-rate test. Box-plot diagram

(top); and maximum, minimum and standard deviation o (%) (bottom). (In both cases, values in parenthesis
associated with the compressive load case.)

2.8. Summary and main results

This chapter study the epistemic uncertainty in five continuum stress-strain local consti-
tutive concrete models for the three dimensional finite element formulation. The models
considered are the most commonly used in the literature for plastic, plastic-damage and
fracture mechanics of concrete. Convergence problems were encountered under certain
conditions, especially in strain-softening regimes. Herein, a complete description of these
models in a common notation was presented, providing all the necessary steps required
to ensure adequate convergence and a consistent numerical implementation. Analytical
expressions for the updated stress algorithms and new explicit expressions for the algo-
rithmic consistent tangent stiffness tensor were developed. Also, a consistency check of
input model parameters, such as uniaxial laws and fracture energy definition is discussed.
The conversion from tensors and tensor operations to the vectorized format are provided
for computational convenience. Numerical examples of benchmark tests under uniaxial,
biaxial, and triaxial stresses demonstrated the capabilities of the proposed implementa-
tions. Moreover, the unilateral and strain-rate effects, the mesh size influence, and the
strain-localization phenomenon are evaluated for each model. Further, the compression
failure mode of a test specimen is illustrated as an example of application. The main

results obtained from these part are:
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e The construction of a robust updated stress algorithm consistent with the exact
linearization of the evolution laws is necessary to get an adequate response of
the models. Implicit schemes with return-mapping algorithms are preferred for
the plastic component of models, whereas explicit schemes are sufficient for the
damage ones. A counterexample of this happens with the FOC model, since its
response is sensitive to the load step-size due to the explicit integration scheme
used to compute the plastic component. Also, the election of an adequate initial
value, non-zero derivatives, and a unique scalar variable to be solved rather than
a system of equations, are critical for the convergence of Newton’s method used.
The latter is critical to solve the plastic component of models. Examples of this
occur in the solution of the consistency operator of the DPH, LLF and WLF
models.

e The correct derivation of the consistent tangent stiffness tensor is also critical
in achieving convergence of the models. For the sake of numerical convergence
we recommend the use of continuous and smooth derivatives (C*-class) for this
operator. Analogously, we recommend the use of smooth C2-class functions
for the flow potential of the DPH model; the C!-class approximated Heaviside
function in the yield criterion of the LLF and WLF models; and the use of Cl-
class functions for the uniaxial laws (¢ — €, 0 — k or w — r) in all models. In
addition, the use of any asymmetric Newton-Raphson solver is mandatory if the
stiffness matrix is non-symmetric. It is apparent that the LLF and WLF models
are very sensitive to this condition under biaxial and triaxial loadings.

e Including a viscous model in the constitutive equations is a simple and robust
technique to overcome convergence problems caused by the strain-localization
phenomena in local models. This technique includes an artificial numerical vis-
cosity in the equations to convert the stiffness tensor into a positive-definite ma-
trix despite of the existence of strain-softening regimes. However, this comes at
the expense of a gradual strength over-estimation depending on the strain-rate

increment. This method has been used in the plastic and damage components of
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the LLF, WLF, FOC and ROT models using the Duvaut-Lions model. It is rec-
ommended to use a ratio of numerical viscosity to load step increment between
0.001 and 1.0 to get an adequate convergence without compromising accuracy
in the response.

All models, with the exception of the DPH model, can simulate the strain-
softening behavior correctly. Also, the LLF, WLF and FOC models can predict
the inelastic strains and stiffness degradation, whereas the WLF model without
plastic strains (WLF,) and the ROT model both unload to the origin, i.e. they
are pure damage models. It should be noted that the WLF,; and ROT models
give identical responses in all cases, although they work with formulations that
are completely different.

All models, except the ROT model, incorporate the biaxial effect adequately
since they include the Drucker-Prager yield criterion in their equations. In con-
trast, only the LLF, WLF and FOC models can simulate the triaxial effect cor-
rectly. Moreover, these models have been validated with a confining pressure up
to 43 MPa, giving a good correlation with experimental results. More complex
models may be required to simulate higher confinement pressure levels. In addi-
tion, the volumetric expansion (dilatancy) is only simulated by the WLF model,
whereas the other two models present a reduction in volume (compaction) for
all ranges of confining pressures.

With the exception of the DPH model, all models can simulate the unilateral
effect correctly, in which the unloading compression stiffness is recovered once
the load goes from tension to compression (crack-closure), and the unloading
tension stiffness is obtained in the reverse case (crack-opening). Both condi-
tions denote that the models have “damage memory”, which agrees with the
thermodynamics of irreversible processes.

Excepting the DPH model, all models can simulate the strain-rate effect by
means of the Duvaut-Lions visco-plastic model. It is observed that the tensile

response is more sensitive to the strain-rate increments than the compression one
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for all models. However, a poor fit is obtained relative to experimental test. In
that case, the use of other models such as the Perzyna model is required.

All models give a mesh-objective response with a localized damaged zone if a
perturbation exists in the material of a FE model. Conversely, not all of the mod-
els have an uniform strain field in cases without imperfections, where the WLF
and FOC models localize under tensile loads, whereas the LLF model localizes
both in tension and compression. In contrast, the WLF; and ROT models do not
localize if we have a perfect material.

It can observed that the unloading-loading linearized stiffness of the last cycle
K.__, both for the uniaxial cyclic tension as well as in compressive test, is the
most important sources of epistemic uncertainty, with a standard deviation of
the normalized results of 262.6% and 175.6%, respectively. Moreover, a con-
siderable level of uncertainty is observed in the energy dissipated by the last
unloading-loading uniaxial tensile cycle G, with 0=112.2%. This high uncer-
tainty is due to the different concrete models considered, i.e. plastic, damage
and plastic-damage types.

Furthermore, a standard deviation of 83.7%, 58.9% and 55.2% was estimated
for the strain at peak stress ¢,, energy dissipated by monotonic stress-strain
curve (3,,, and linearized stiffness of hardening branch of monotonic stress-
strain curve K, respectively, in triaxial monotonic tests, considering a confin-
ing pressure of up to 43 MPa. Also, a significant source of uncertainty occurs
in the peak stresses o, for the strain-rate case with strain-rates € over 1/s, both
in tension as in compression loads, where the simulations gives values of up
to 2.74 times respect to experimental tests. A standard deviation of 44.0% and
14.2% was also obtained in this case, for tensile and compressive load, respec-
tively, leading more uncertainty in tensile loads than in compressive ones. This
is due to the use of the visco-plastic Duvaut-Lions model, used herein as a first
approximation to simulate strain-rate effects given its simpler numerical imple-

mentation.
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e In contrast, low uncertainty is observed in the peak stress o, in the six test
cases, excepting the strain-rate test, with a standard deviation less than 12.8%.
Moreover, the dissipated energy by the monotonic curve G,,, for the uniaxial
cyclic compression and tensile branch of uniaxial tension-compressive test is

less than 7.3%.
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3. CONTINUUM STRESS-STRAIN CONCRETE MODELS AND CONSISTENT
NUMERICAL IMPLEMENTATION FOR PLANE-STRESS CONDITION

Plane-stress constitutive models are widely used with shell elements to model RC
walls, slabs and membranes. Because concrete is a brittle material that exhibits a strongly
nonlinear response associated with the propagation of cracking, its correct modeling in
practice is difficult and requires substantial expertise and robust numerical algorithms to
achieve convergence. These analyses are critical given the brittle performance observed in
reinforced concrete shear wall buildings during recent earthquakes (Jiinemann et al., 2015;
Jiinemann, de la Llera, Hube, Vasquez, & Chacon, 2016). The plane-stress condition
arises in structural elements in which one dimension is much smaller than the others and
the element is subjected to loads perpendicular to the thickness. The proper formulation
and numerical implementation of plane stress is very different from the full 3D-case, and

hence, this chapter describes in detail this formulation and implementation.

Shell finite elements are commonly used to simulate plane-stress conditions. Indeed,
multi-layered shell type elements are best suited to represent an accurate distribution of in-
plane and out-of-plane concrete stresses, with a considerable reduction of computational
cost relative to the use of solid finite elements (Chacon et al., 2017). Accuracy in these el-
ements is strongly dependent on the algorithmic implementation and the integration tech-
niques adopted (Krieg & Krieg, 1977; J. C. Simo & Taylor, 1985). For strain-driven
models, these algorithms seek to: (i) the integration of the updated stress vector given the
strain increment; and (ii) the computation of the stiffness matrix according to the updated
stresses. The use of implicit integration schemes with return-mapping algorithms (RMA)
is typical for plastic and plastic-damage models, whereas explicit integration schemes are
used for damage and smeared crack models. A large variety of algorithms for numerical
implementation of these models are available in the literature (J. C. Simo & Hughes, 1998;
de Souza Neto et al., 2008), but this article focuses on the plane-stress case, which also

had some numerical features different from the 3D-case.
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Specifically, if a strain-driven model is used, an additional constraint is imposed to sat-
isfy the condition of zero normal stress. Moreover, to account for plastic effects, the radial
return-mapping algorithm used in the 3D-case formulation is not valid for the plane-stress
condition, and hence, the consistent operator cannot be obtained explicitly. Consequently,
the use of specific algorithms for plane-stress is mandatory. Three approaches are com-
monly adopted to solve this problem: (i) to include the plane-stress constraint within the
3D algorithm equations considering a nonlinear iterative solver at the Gauss point level
(Aravas, 1987; Dodds, 1987; Klinkel & Govindjee, 2002); (ii) the use of standard 3D
algorithms at the Gauss point level with the plane-stress condition added as a structural
constraint at global level (de Borst, 1991); or (iii) the use of plane stress-projected equa-
tions, in which the plane-stress constraint is enforced within the equations at the Gauss
point level (Schreyer, Kulak, & Kramer, 1979; Jetteur, 1986; J. C. Simo & Taylor, 1986).
In general, the first two options are more adequate for complex plastic models at the ex-
pense of an additional computational cost. In contrast, the projected plane-stress method
is a direct, exact, and efficient computationally procedure that involves only the in-plane
stress and strain components. However, more complex equations are involved in the nu-
merical integration of the projected plane-stress approach, that can only be formulated for
relatively simple models. The latter method is more popular than the two former ones
(J. Lee & Fenves, 1998; Lourénco, de Borst, & Rots, 1998; J. C. Simo & Hughes, 1998;
de Souza Neto et al., 2008; Valoroso & Rosati, 2009).

The objective of this chapter is to provide, in a common vectorized notation, the nu-
merical implementation of the plane-stress formulation for the same five concrete models

considered in the past chapter.

This chapter presents in Section 3.1 a complete description of the set concrete models
considered. A detailed development of the algorithms for numerical implementation of the
updated stress vector for the plane-stress condition is provided in Section 3.2. Moreover,
new explicit analytical expressions for the algorithmic consistent tangent stiffness matrix

of such models are presented in Section 3.3. Furthermore, numerical examples using
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basic benchmarks tests subject to monotonic and cyclic loading conditions under uniaxial
and biaxial stresses are presented in Section 3.4 to demonstrate the capabilities of these
concrete models. In addition, the unilateral effect, strain-rate effects, mesh size influence

and strain-localization phenomena are discussed for each model.

3.1. Description of concrete models

This section summarized the equations of the five continuum concrete models consid-
ered in this article. Also, include some modifications adequate to improve the convergence
of models. For the sake of simplicity, all equations are described in a vectorized and ma-
trix format according to an adequate conversion of their respective tensors, considering
only the components associated to in-plane behavior ((+);1, (+)22, (+)12), unless otherwise

stated. Details of this conversion can be founded in Appendix B.

3.1.1. Drucker-Prager Hyperbolic (DPH) model

This plastic model, so-called the "Extended Drucker-Prager” model was defined by
(Drucker & Prager, 1952) and modified by (ANSYS, 2018; ABAQUS, 2018). Is a simpli-
fication of Mohr-Coulomb model and have been used to simulate soil or cohesive mate-
rials, like concrete. First, the strain vector € is decomposed additively into its elastic, €°,
and plastic part, P, as follow

e=¢e"+ €. (3.1.1)

Then, for the case of linear elasticity, they can be related to the Cauchy stress vector o
by
og=D,.(e—¢"), (3.1.2)

where D, is the linear-elastic stiffness matrix (see Eq. (A.2.6) for their definition). The

yield criterion is defined as

F(o,a) =np++/3Js — &c(a), (3.1.3)
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where the hydroestatic stress p is included to simulate the pressure-dependent behavior
and the asymmetric tensile/compressive strength of concrete; 7 and £ are material param-
eters chosen according to the required approximation to the Mohr-Coulomb criterion or
fitted to uniaxial/biaxial tensile and compressive strength of concrete; and ¢(«) is the co-
hesion hardening law, which is taken as function of the equivalent plastic strain . The
later variable is defined as o := fot ||€P||dt. Tt is assumed an exponential relation for the

cohesion hardening law ¢(«) as

c(a) = ey + (cy — c,)el =), (3.1.4)

where ¢, = Rc, and o, = ¢,/ E,, with R > 1 an experimental fitted parameter. Discus-

sion of parameters 7 and ¢ are detailed in Section 2.5.

For other hand, a hyperbolic shape is adopted for the flow potential, and is defined as

G=np+V@+¢e, (3.1.5)

where 77 is a constant that depends of the dilatancy angle, € is a eccentricity parameter
that controls the shape of surcafe near of tensile regimes, generally used less than 0.001
(ABAQUS, 2018) and ¢ = +/3.J,. For the plane stress condition, the invariant .J, can be
correctly expressed as J, = %gT& (see Eq. (A.2.6)). Observe that this flow potential
is a smoothed surface (C2-class) that avoid the singularity at the cone’s apex present in
the classical Drucker-Prager model, giving an unique flow direction in this region. More-
over, the projected region of the plane-stress condition for this flow potential gives always
a smoothed function (C2-class) whatever value of eccentricity adopted. Then, the non-

associated flow rule for the plastic strain vector is given by

gl =1m, (3.1.6)
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where 7 is the plastic operator and 1 denotes the flow vector expressed as

. 0G 3 ]
n = e 5&4‘ 517 (3.1.7)

with r = \/¢? + €2. Also, the evolution of equivalent plastic strain « is stated as

a = 9E. (3.1.8)

Finally, the loading-unloading Karush-Kuhn-Tucker (KKT) and consistency condi-

tions, respectively, are expressed as

4 >0, F(a,v) <0, YF(o,v) =0 (3.1.9)

F(a,v)=F(g,7) = (3.1.10)

In addition, the out-of-plane plastic strain %5, can be derived considering all compo-
nents of strain tensor (in-plane and out-of-plane). Then, using Eq. (A.2.8), the second-

order flow tensor IV3 is expressed as

oG 3 ]
Ny = —=— —I 3.1.11
3 90, 27’83+ 38 ( )

29 99

where subscripts 3" denotes the 3D second-order tensor (see appendix 2), s3 is the de-
viatoric stress tensor (Eq. (A.2.5)) and I3 = diag(1, 1, 1) the second-order unitary tensor.

Thus, the evolution law of out-of-plane plastic strain is written as
1 1

e =7 |5 (onton)+3g (3.1.12)

Moreover, using Eq. (A.2.9) and due that tr(s3) = 0, its follows that the volumetric

strain rate can be estimated as

g, =+ P = K 'p+4n, (3.1.13)
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where ¢ and €? are the elastic and plastic volumetric strain, respectively, and K the Bulk

moduli. It can observed that 7 controls the inelastic volumetric strain rate (dilatancy).

3.1.2. Lubliner-Lee-Fenves (LLF) model

This plastic-damage model, so-called "Barcelona” model, was first developed by (Lubliner
et al., 1989) and later improved by (J. Lee & Fenves, 1998). First, using Lemaitre’s strain
equivalent hypothesis (Lemaitre, 1989), the nominal stress vector o associated with the
damage state is related to the effective stress o corresponding to the undamaged state as
follows

o= (1-wa, (3.1.14)

where w is the isotropic damage variable, with w € [0, 1].

Plastic component

To calculate this component, its assumed the so-called effective stress space plasticity,
which are related to the effective stress vector and is dependent (coupled) of damage com-
ponent (Wu et al., 2006). First, two hardening scalar variables x* are stated to control the
positive/negative part of plastic-damage component, respectively. (Lubliner et al., 1989)

define normalized variables for uniaxial case as follows

+
1 [ 1
+. £+ g o+ e () ot

K .:—i/ o= (o) da™, = —o (a7)am, (3.1.15)

9= Jo g
which correspond to accumulated area under positive/negative uniaxial stress-equivalent
plastic strain law (0= — o), respectively, with x* € [0,1], g* = [[7 0™ (aF) da* are
the total area under their respective stress law. Note that positive values are used for o*.

Moreover, the positive/negative equivalent plastic strain o™ are defined as

ot :/|éi|dt, (3.1.16)
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lp_lp /'\p__lp . AD . .. .
where &, =& and e = —£ ., with &, . are the maximum and minimum eigen-

values ratio of principal plastic strain vector €, respectively. Moreover, in case for multi-

axial condition, the evolution law of variables x* in a vectorized format & = [x*, k7|7 is

defined as

g, k)P (3.1.17)

. .7
where e = [é’l’ , ég] is the ratio of principal plastic strain vector, which is filled in an

algebraic order (e.g. &’ >, £%); and ¢(&) is a weight factor € [0, 1], defined as

0, Gi=0
6(a) =4 N 15+ (3.1.18)

=1 , otherwhise

"N 2,
Zi:1‘0i|

+ +

An adequate conversion of uniaxial stress laws from the relation 0% — a* to 0% —
k¥, using Eq. (3.1.15) is necessary to generate. Detail of this conversion is discussed
in Section 2.5.1. For the other hand, similar to stated in the DPH model, the hyperbolic
Drucker-Prager criterion as defined by Eq. (3.1.5) is used for the flow potential. Moreover,
due that any isotropic material satisfy the relation G(&) = G(&) and that p, J, and 7
are invariants in the effective stress space ((*) = (*)), the flow potential in the principal

effective space can be rewritten as

G(a)=mp+Vh+e (3.1.19)

Then, the non-associated flow rule satisfy the relation in the principal space as

e’ = 4n, (3.1.20)
. G 3 .. .

n=——=—Po+ -1 3.1.21
n 05 Qf_UJr 3L ( )
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where n is the principal effective flow vector. Thus, Eq. (3.1.17) can be rewritten as

i =4H (5,5), (3.122)

where H (o, k) = W (o, k)n. Finally, the yield criterion is first established by (Lubliner

et al., 1989) and later modified by (J. Lee & Fenves, 2001) as follow

F(5,8) =np+ V3J + () (Gmae) T — (1 — a)e(s7), (3.1.23)

where o = (f, — f.)/(2f, — f.) and (k) and c(x~) are parameters to distinguish the
different evolution of strength under tension and compression given by

o (k™)

ot (kt)

B(k) = (1-a) — (1+ ), c(k7)=a"(k"), (3.1.24)

where G+

are the positive/negative uniaxial effective stress law, respectively. Typical ex-
perimental values of the ratio f{, / f; for concrete ranges from 1.10 to 1.16, yielding values
of o between 0.08 and 0.12. It should be noted that this yield function do not include the

triaxial effect as proposed by (J. Lee & Fenves, 2001) due to plane-stress condition.

In addition, similar to the DPH model, using Eqgs. (3.1.12) and (A.2.7) expressed in
the effective stress space, the evolution law for the plastic %, and elastic €5, out-of-plane

strain are given, respectively, by

. . 1, _ 7l
€ = | =37 (0u+on) + 2|, (3.1.25)
e v —~
S8 = T4 (011 + 022) - (3.1.26)
Moreover, using this relations and Eq. (A.2.9), the volumetric strain rate can be esti-

mated as

gy =+l =K 'p+4n (3.1.27)
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Damage component
(ABAQUS, 2018) define the damage variable w as

w=1-[1-s(g)w" (k)] [1 - sT(e)w (x)], (3.1.28)

where s* (@) are stiffness recovery functions and w* (k¥) positive/negative damage laws,

+

respectively. For one hand, the stiffness recovery functions s* can be defined as

st=1-z¢(6), s =1-2(1—¢(&)) (3.1.29)

+

= € [0,1] are a stiffness recovery factor from tensile to compression load state

where z
and viceversa. Empirical evidence shown that compressive stiffness is recovered upon
crack closure as the load changes from tension to compression (2 & 1). However, tensile
stiffness is not recovered as the load changes from compression to tension once crushing
micro-cracks have developed (2, ~ 0). For other hand, the positive/negative damage laws
w*(k*) laws are fitted experimentaly and generally known in terms of equivalent plastic

+

strain o, e.g. a common exponential relation is used as

wh(a®) =1 — exp(—C*a®), (3.1.30)

with C* an experimental parameter that control the unloading branch of response. Due

+ +

this, its required an adequate conversion from w® — o™ to w® — k¥ laws as explained in
Section 2.5. Thus, the uniaxial positive/negative stress o laws can be related to respective

effective stress = laws as follows

o (k*) = [1 —w(kh)] % (r%). (3.1.31)

Viscous component

Additionally, the model can include strain-rate dependency with a visco-plastic model,

which improve the convergence in strain-softening regimes. To this, the nominal stress
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vector g is now converted to their respective viscous component o, and is defined as
o’'=(1-w")a’, (3.1.32)
where w" is the viscous damage variable and g is the effective viscous stress vector.

(J. Lee & Fenves, 2001) calculate this component using the (Duvaut & Lions, 1972) visco-

plastic model, which is stated in the effective stress space as

1

eP=—C. (6" —@a), (3.1.33)
e

g’ =D, (e —¢e"), (3.1.34)

with €"? is the visco-plastic strain vector and ., is the numerical viscosity parameter and

is equivalent to the relaxation time. Thus, combining both relation gives

1
EP =——(g" —¢€P). (3.1.35)
i

Moreover, the evolution law of viscous-damage variable w" is defined as

W= —— (W' —w). (3.1.36)

3.1.3. Wu-Li-Faria (WLF) model

This plastic-damage model, was first developed by (Faria et al., 1998) and modified by
(Wu et al., 2006). Two variants are developed for this model: one aproach that include the
plastic and damage components (WFL) and other one with pure damage behavior (WFL,).
First, assume that the effective stress vector & are splitted into positive &+ and negative
o~ parts, to account separately the cracking (tension) and shear (compression) damage

mechanisms for degradation of concrete (Ladeveze, 1983; Ortiz, 1985), using the follow
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decomposition

gt o)tel = P*&, (3.1.37)

==

i

e” ® e“) R (3.1.38)

where P* are the projection matrices, with symbol ‘4’ denoting ’+” or ’-> as appropriate,
o; denote the i—th eigenvalue of mapped tensor @ and e; is the i—th eigen-projector
vector associated to o (see appendix A). This decomposition satisfy the relations & =
gt +a& and P" + P~ # I. Next, in order to establish the intended constitutive law,

(Wu et al., 2006) define the total elasto-plastic HFE potential as follows

V(e w, k) =1 (e, w) + VP (k,w), (3.1.39)
(e w) = (1 —wh)Ug(e”) + (1 —w )y (e9), (3.1.40)
PP (k,w) = (1 —w)YEt (k) + (1 —w )b~ (K), (3.1.41)

where w* = w*(r*) are positive/negative scalar damage variables € [0, 1], respectively,
which are in function of the damage thresholds r, that controls the size of damage sur-
faces; w = [w',w™]7 denotes the damage vector; 1)°* are the undamaged elastic HFE
potential and are equals to the strain energy per unity of volume. Thus ¢)¢* = % aTe’; and
)P+ are the undamaged plastic HFE potential. Moreover, the Eq. (3.1.39) can be reordered
as

Y whw k) =1 —w)Yf (e k) + (1 —w )Y, (e K) (3.1.42)

where 1= is the positive/negative total undamaged elasto-plastic HFE potential and are

written as

Yy =Pt +PEt (3.1.43)
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For the other hand, the nominal Cauchy stress vector can be defined as

O

g =
= a§€

(3.1.44)

Then, using the relation % = g and Eqgs. (3.1.44), (3.1.37) and (3.1.40), this stress

vector is expressed as

o=[1-whHP"+(1-w)P|a= (Z(l - w*‘)E‘) a (3.1.45)

R

where N denote index summation for +” and ’-’ part as appropriate hereafter.

Plastic component

Similar to the LLF model, the effective stress space plasticity, which are related to the
effective stress vector, but in this case is independent (decoupled) of damage component
(Wu et al., 2006). Although, the damage component depends of the variables stated in the
plastic component. Due to this condition, they can include the plastic component as an

option, conversely to the LLF model.

(Wu et al., 2006) assumed a Lee-Fenves yield criterion as stated in Eq. (3.1.23). Also,
its assumed a flow potential criterion as defined in Eq. (3.1.5). For the other hand, sim-

ilar to the LLF model, two hardening parameters x*

are proposed to control the posi-
tive/negative plastic component and are defined as the positive/negative equivalent plastic
strain o®, where a* = f \éi\ dt. Then, for multi-axial condition, these hardening pa-
rameters are stated as k™ = ¢(a)a™ and k= = — [1 — ¢(¢)] a~, with ¢() defined in
Eq. (3.1.18). Then, the rate of hardening vector & = [k, k|7 is defined similar to the

Eq. (3.1.17), but with the matrix E(é) given by

W (o) = diag [¢(0). d(a) — 1] . (3.1.46)
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In addition, the effective uniaxial stress 6i(mi) laws are required. (Wu et al., 2006)

assume a linear relation as follows

ot (k%) = £ + JER*, (3.1.47)

where fF is the positive/negative initial stress, which are chosen for convenience in the
range f € [0, f,] and f;- € [0, f.], respectively, and J* = EFE,/(E, — Ef) with B

are the hardening slope.

Damage component

For the damage component, its required a specific definition for the undamaged elasto-
plastic HFE potential. For one hand, (J. Simo & Ju, 1987) assume that wf can be as the

positive/negative elastic strain energy per unit of volume and expressed as

(e*'C.a). (3.1.48)

N | —

vy (e°) =

However, this HFE potential is more adequate in tensile regimes where contribution of
plastic part is much smaller than the compression ones. Hence, for compressive regimes,
Wu et al. define the following HFE potential that include the biaxial compression effect

as follow

—\ 2
Y, (€°) = b, (mﬁ + v3J2) : (3.1.49)

where b, is a material parameter (defined in (Wu et al., 2006)) and n = 3«. Next, the
tensile and shear thermodynamic forces or Damage Energy Release Rate-based (DERR),
Y*, can be defined as

o™

Y+t = —oE = vE (3.1.50)

Then, the positive/negative damage criteria are defined as

Fy =g (YF) —g:(r¥) <0, (3.1.51)
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where g4(-) can be any monotonically increasing scalar function. Using the Egs. (3.1.48)
and (3.1.49), these functions can be postulated as convenience as g4(-)* = /2E,(+) and
9a(*)~ = +/(+)/bo, respectively. Thus, the positive/negative DEERs can be rewritten as

Y* = \/2E,4* = \/E,(6*TC,&) (3.1.52)

Y- ,/db’o — np+ /3%, (3.1.53)

Moreover, the evolution damage law can be defined analogously to the classical plas-

ticity, where the flow rule, the loading-unloading and the consistency conditions of damage

component are defined, respectively, as

) +
Wt =4y (3.1.54)
A =7F >0, Ff <o, YEFF =0, (3.1.55)
Ff=Ff=0. (3.1.56)

Its follow using Egs. (3.1.55) and (3.1.56), that the damage thresholds r* are non-

decreasing functions that satisfy the relations

r* = max (roi, IFaf{(Yi)) , (3.1.57)
0.t
P =YE (3.1.58)
where rZ are the initial damage thresholds. Assuming an uniaxial behavior and us-

ing Eqgs. (3.1.52) and (3.1.53), these values can be calculated as rf = aoi and r, =

+

(1 — «)o,, respectively, where 0" are stress onset the nonlinear behavior. Finally, the
positive/negative damage w* (r*) laws are generally derived of experimental cracking pro-

cess. (Mazars, 1984) define an exponential relation for the positive/negative component,
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respectively, given by

1 ]
ot — 1 & (1 _ A+ +,BT(1-2%)
W) = 1- o (1 At + Ate ) (3.1.59)
— (= 1 - —— B (1-%7)
w(r):zl—:(l—A +A e ) (3.1.60)
z

where z* = r*/r® and A* and B* are experimental parameters fitted with the frac-
ture energy FE-regularization method explained in Section 2.5. This damage laws can
be converted to an equivalent stress-strain o (%) relation and viceversa, being these last

commonly more known and used than the respective damage laws.

Viscous component

Additionally, the model can include rate-dependent viscous regularization. Its pro-
posed the use of (Duvaut & Lions, 1972) viscous model in the plastic and damage com-

ponents of model. Thus, the nominal viscous stress vector o is defined as

o’ => (1-uwhe™, (3.1.61)
N
N
" =Pyg’, Pri=Y) Hy(o})(eh @€l ), (3.1.62)
=1

where " is the effective viscous stress vector given by Eq. (3.1.34) and Bff are their
positive/negative projected tensors, respectively. Moreover, for the damage component,

the evolution law of damage thresholds variables 7+ are defined as

ot _/% (rf — Y¥). (3.1.63)

3.1.4. Faria-Oliver-Cervera (FOC) model

This plastic-damage model was proposed by (Faria et al., 1998). Take identical as-
sumptions than the WLF model for the damage and viscous components, and use a sim-

plified representation for the plastic component, explained as follows.
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Plastic component

Although, the formulation of WLF model provides a strict framework to represent
the evolution of plastic strain, numerical implementation gives time consuming solving
process. (Faria et al., 1998) proposed a simplified evolution law for the plastic strain

vector as follow

P = g, (3.1.64)

—~
Im

. Te)t
V_E“T_Ea (3.1.65)

w

where Yy = BTH"(wt) + B"H"(w™) > 0 is a material parameter to control the rate
intensity of plastic deformation, with B* a parameter associated to positive/negative com-
ponent of stress, Heaviside function H(-)" is used for active progressive damage rate of
respective stress component, and McAulay (-)* function enable one to set a non-negative

value for the product (g° - £) required to ensure positive dissipation.

In addition, due that the flow rule is proportional to the stress vector, its follow that
e33P = 0. Also, the elastic part of out-of-plane strain is expressed by Eq. (3.1.26). Hence,

using Eq. (A.2.9), the volumetric strain rate can be estimated as

gy =S4 = (K ' +3%)p (3.1.66)

3.1.5. Total strain rotating crack (ROT) model

This smeared-crack model was developed by (Cope et al., 1980; Gupta & Akbar, 1984)
and enhanced by (Rots, 1988; TNO DIANA, 2018). We proposed a simple and robust

formulation than past.

Damage component

First, assume the so-called the “total strain” formulation present in the hypo-elastic

materials, i.e. that stress vector o depends only of total strain vector €. Next, its assumed
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that a set of orthogonal crack planes rotates according to direction of principal strain vector

€. Then, using a spectral decomposition of strain vector g, satisfy the relation

N
e=) éel=E¢ (3.1.67)

where &; is the i-th eigenvalue, e’ the i-th eigen-projector vector and E. the eigen-

projector matrix (Eq. (A.2.11)).

According only to this condition, the model lack of memory for the damage evolution,

where the loading and unloading follows the same path (hypo-elastic). Thus, in order to
+

add an irreversible damage process, a i-th positive/negative damage strain variables «;
are defined for respective principal strain direction ;. Then, the evolution law for these

damage variables satisfy the relation

6; = 27 (3.1.68)
where 2 = 1 —r" and rj = Hi (af" — ;) are the damage threshold variables. Now, call-
ing the damage strain vector as follow a = [a*, a~]7, with a® = [oF, oF]7, Eq. (3.1.68)

can be rewritten in a vectorized format as

a=2ZE a)E, (3.1.69)
Z+

ZEe,a)= | |, Z* = diag (27, 27)
P

It should be noted the similarity of this expression with Eq. (3.1.17). For the other

hand, the i-th principal stress ¢; in their respective principal strain €; is given by

&y = mh +m; h; (3.1.70)
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where m¥ = H 1i/2 (¢;) and hf = o* (i) g, with o* () are the uniaxial positive/negative
stress laws, respectively, and gijE are variables to control the loading/unloading stress. As-
suming a secant unloading to origin (no plastic strains), the variables ;= can be defined
as

+ 7 i él
=1l = — 3.1.71
9; I ozf ( )

with gz?IE € [0, 1], where gijE = 1 in case of loading and gz-jE < 1 for unloading. Finally, the
model assume the principle of co-axiality, that is, the principal stress directions coincide

with the principal strain directions i.e. satisfy the relation

N
oc=)Y el =E.¢6 (3.1.72)

Viscous component

Additionally, its suggested include a viscous model to improve the convergence of

model. For this, the Duvaut-Lions viscous model can be incorporated as follows

1
Lo

where o’ are the i-th viscous damage strain variable. Then, the i-th principal viscous-

stress o} is expressed as

&Y =mi ht +mi by, (3.1.74)

WU = o (aF)gtE, gt = ;fi (3.1.75)

7

Thus, the viscous-stress tensor o is given by

N
o' =) o'e; = E6" (3.1.76)

It should be noted that, this model can be extended to simulate the biaxial effects, such

as biaxial strength in compression-compression (CC) regime or compression softening
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in tension-compression one. In both cases, it can be extended by means of modify the
uniaxial stress-strain law as function of complete principal stress/strain vector, i.e. 0= =

o*(¢,0). Complex derivatives involve this process and is beyond the scope of this work.

3.2. Stress updating algorithms

Numerical integration of constitutive equations requires of an algorithm to update the
stress vector and internal state variables at each integration point given a known strain
increment. More specifically, given a (pseudo-) time increment At = t,,, — t,, it is
assumed that at time ¢,, the strain vector g,,, the stress vector o,, and the internal state
variables «,, are known. Then, the algorithm determine the updated stress vector o, ; at

time ¢, for a given strain increment Ag = Atg.

Thereby, for one hand, the plastic component of models is commonly evaluated with a
backward Euler (implicit) scheme. Return-mapping algorithms are the most used, where a
trial elastic-predictor step and a plastic-corrector step are required (J. C. Simo & Hughes,
1998). Generally, this method lead implicit non-linear equations which are solved by
means of an iterative Newton’s method. Specifically, for the plane stress condition, the
projected-return mapping algorithm is adopted as solution for plastic and plastic-damage
models. Thus, an enforcement of the consistency condition is used to reduce the solution
to a simple nonlinear equation. For the other hand, the damage component of models is
generally evaluated with an explicit scheme, with the exception of coupled plastic-damage

models, which require the simultaneous solution of both components.

3.2.1. Trial elastic-predictor step

The elastic-trial step assume that the strain increment produces purely elastic deforma-

tion, where plastic deformation and evolution internal variables g are frozen (gﬁfl = eb



160

and ¢ = q ). Thus, the trial elastic strain and trial stress vector are given by
Zn+1 n

€51 = €np1 — €N (3.2.77)
oy, =D/e,,—€)=0,+DA¢g,,, (3.2.78)

where Ag, | =€, ., — &,. Next, the trial state can be converted into the update solution
if satisfy the condition

Fi" = F(a",,,q",,) <0. (3.2.79)

This means that trial state lies within the elastic domain on the yield surface. In this
case, the stress and internal variables are updated as (-),11 = (-)i,;. Otherwise, the trial
step is not admissible, causing plastic response, being required any plastic-corrector step

or a return-mapping algorithm to determine the update state.

3.2.2. Plastic-corrector step

The plastic-corrector step adjust the trial elastic-predictor step to give a correct updated
stress. First, the updated plastic strain vector €], ., is derived from linearization of flow rule
as stated in Eq. (3.1.6)

et =€l +Avyn, . (3.2.80)

Then, inserting this relation into Eq. (3.1.1), the updated stress vector o, , ; is written
as

O = -~ AvyD.n, . (3.2.81)

Thus, the only variable necessary to be solved is the discrete consistent operator A+,

which is calculated according to their respective equations for each numerical model.
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3.2.3. DPH model

The numerical stress integration of this model is based by the classical elastic-predictor
(Section 3.2.1) and plastic-corrector step, the later explained as follow. First, the updated

expression of flow vector n, given by Eq. (3.1.7), is given by

3 1
N, = ﬂpo’n-q-l + §l’ (3.2.82)

where 7,11 = \/%21+1 + €2, with ¢, = ,/%znﬂ and 2,1 = QZ_HPCTH_H. Moreover,

multiplying both sides of Eq. (3.2.81) by the compliance stiffness matrix C, (Eq. (A.2.4))

and introducing them Eq. (3.2.82), gives the updated stress vector as follow

T ﬁ —
O =A, 0" — 3AME L (3.2.83)

where A, | = E,,,C,, with E

ns1 18 the modified (algorithmic) elastic tangent matrix

given by
E.p1 = (C.+tanAYP) (3.2.84)

3
2rp41”

and £, = Now, it can probed that the matrices P and C, share identical eigen-

vectors, for which they can be decomposed in a spectral format as

P=Q"PQ, C.=Q'C.Q, (3.2.85)

where P and C, are the eigenvalues matrices defined as

_ 1 _ l1-v 1 1
P = diag (5’ 1, 2) , C, = diag < EV, 20 —) , (3.2.86)
wop

and @ is the orthogonal (Q’l = QT) eigenvector matrix given by

11 0
-1 1 0. (3.2.87)

00 v2

Q=

Sl
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=
=n+1

Then, its follow that the matrices Z,,,; and A, ., can be decomposed in their spectral

. — o T= _ T A :
representationas E,,; = Q'E, ;Qand A, ., = Q" A, ,Q, respectively, where

and A, are expressed as
B = (C.+tunAMyP)
At )" 1 - 1 -
- A tn 5 a A tn )
3 ; 2M+ Vint1 2M+ Vlnt1
(3.2.88)

(1—1/

= d.
iag 7

An+1

= dlag (d1n+17 a2n+17 a2n+l)
diag [(1 + )\thA’y)_l ,(1+ 2utn+1A7)_l ,(1+ 2,utn+1Afy)_1} ,

) Now, using the stress vector transformation 7}, = Qg,,, and re-

placing the relation Eq. (3.2.88) into Eq. (3.2.83), gives a final expression for the updated
(3.2.89)

stress vector as follow
T 77 — '® T
0,1 =Q (An—i-lzfﬁ-l - §A72n+1gl> - QTEn—HI:H-l
(3.2.90)

_ tr
=B, 10,1

where B, | = QTBn+1Q, with Bnﬂ given by
gln a/]-'n —_ —
—:1‘ = ’ a'2n+1? a’2n+1> 9 (3.2.91)
Tlln+1

Bn—i—l = dlag (61n+1 ) 62n+17 62n+1> = dlag (

and g,,,, = Tf{H — V/2A7)A~. On the other hand, the updated equivalent plastic strain is
(3.2.92)

obtained from the discrete version of Eq. (3.1.7) as
Qpi1 = ay + EAY.

Moreover, the updated cohesion law can be called as ¢, 11 = ¢(cv,11). It should be
noted that the discrete consistency operator A~ can not be expressed in a explicit form
such as in 3D formulation Eq. (2.3.89). Then, it required solve this operator in an iterative

process e.g. Newton’s method. Box 1 shown the algorithm suggested to solve the variable
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A~ for this model. In this case, the residual function is the yield criterion, which enforced

the consistency condition at the solution, and is expressed, using Eq. (A.2.6), as
Fn+1 = NMPn+1 + Gnt+1 — an+1
= Iy7 S e 3.2.93
=31 T + 5V —&Cny1, (3.2.93)

and their derivative with respect to A~ is given by

OF 41 _ \/577 aBln-‘rl . 3 Ozp
0N~y 3 OAy Mt dg. OAY

—£2,. (3.2.94)

A detailed calculation of this expression is explained in 1. Additionally, the recom-
mended values for the number of iterations and tolerances are: Ny, = 20, Tol; = 1072,

Toly = 1075 and Tols = 102,

Box 4 :Algorithm to solve A~y for the DPH model

A =0, g0y =qr, 99, =95, > Set initial value
for j < Nijter do ' '
zf&l, 1 prl-, o1y > Use Egs. (3.2.82) and (3.2.92)
R =F, (AW) > Residual function (Eq. (3.2.93))
AR/ = ﬁ“ (A7) > Total derivative (Eq. (3.2.94))
: v
dAy = —RiJdRI
AT = AT + dAA7 > Update solution
AT = max(AyItE, Toly) _ ' > Adjust solution
if (|R?|< Tols and |dA~7|< Tol3 A7) or (dAy? < Toly) then
exit

In addition, taking the linearization of Eq. (3.1.12), gives the updated out-of-plane

plastic strain %, as

(3.2.95)

w3

p __ =P
€33,01 — €33, T A7 | — (Unm + Uz2n+1) +

27"n—I—l
Also, using Eq. (3.1.13), the updated volumetric strain is given by

Eunir = Eup + K pns1 + A7 (3.2.96)
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3.2.4. LLF model

The numerical stress integration of this model is composed by three steps: (i) an
elastic-predictor step (Section 3.2.1); (ii) a plastic-corrector step with an implicit scheme
to evaluate the updated effective stress tensor @, ;; and (iii) a damage-corrector step with
an explicit scheme to evaluate the updated damage variables w,,,; and the nominal stress

tensor o, ;. The development of plastic and damage steps are explained as follow.

Plastic component

First, due that the DPH and LLF share identical flow potential criterion, Egs. (3.2.82)
to (3.2.94) are also valid for this model, but expressed in the effective space (). For the
other hand, due that yield criterion is defined in terms of invariants and principal stresses,
its convenient and efficiency the use of Spectral Return Mapping Algorithm (SRMA)
(J. Lee & Fenves, 1998). SRMA assume four conditions: (1) the effective stress vec-
tor can be decomposed as ,,., = E,a,,.,, where g, , and E is the eigenvalue vector
and the eigen-projector matrix of updated stress vector &, ,, respectively (see 2); (2)
any eigenvector of trial effective stress vector is also an eigenvector of updated effec-
tive stress vector, i.e. g, = E, o ; (3) any isotropic material satisfy the relation
G(o) = G(&), which imply that @a,, 1= E,n, ;and (4) substituting these expressions

into Eq. (3.2.81), the updated principal effective stress vector is given by

w1 =0, —AyD.n, ., (3.2.97)

QI>

Moreover, using this expression, is easy to obtain the relation A&l = Avyn, ;.
It should be noted that variables p, g, 7, Z and ¢ are invariants in effective space, i.e.
(() = (%)). Also note that, due that yield criterion and hardening variables x* are ex-
pressed in terms of maximum and minimum effective principal stresses, its necessary
reordering the eigenvalues and their respective eigenvectors in a descending order (o; >

2 ).
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Then, the updated expression of the effective principal flow vector, given by Eq. (3.1.21),

is written as

~ 3 . TR
Ty = P&, + o1, (3.2.98)
Tn+1 3
where 7,1 = CLQLH + €2, Guy1 = ,/%Znﬂ and 2,41 = éfﬂpénﬂ. Next, multi-

plying both sides of Eq. (3.2.97) by matrix Qe (see Eq. (A.2.16)) and introducing them

Eq. (3.2.98), gives the updated principal effective stress vector as

G = A 100 — gmﬁnﬂi, (3.2.99)
where An-}—l = EnHQe with EnH is given by
~ ~ _ A\ —1
En—‘rl = (Qe _'_ tn+1A7£> 3 (3.2.100)

3
2Fn+l :

andt, 1 = Similar to the matrices P and C',, the matrices E and Qe share identical

eigenvectors and can be decomposed in their spectral format as

P-Q"PQ, C.-Q'C.Q (3.2.101)

2 1 Z ]_ - ].
P = diag <—, 1> . C.=diag <—” —) , (3.2.102)
1

and Q is the orthogonal eigenvector matrix given by

Q: L b (3.2.103)
Q=75 | 2.

Its follows that the matrices En 4 and An 41 can be decomposed in their spectral format

S _O"2 OmdA. —OTA C - = ;
asE, 1 =QE,Qand A, ., =Q A, ,Q, respectively, where E, ; and A, , are
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expressed as
-1
- (C +tn+1p>
l—v M\ (1 _ -
Y A tn )
( 5 T3 ) ) 2M+ Vin+1

|1

n+1

= diag

én—l—l = dlag (aln+1’ a2n+1)

= diag [(1 + M1 Ay) 7, (3.2.104)

(14 2t A7) 7'

. . ~ . ~ 2 tr .
Now, using the stress vector transformation 7,7, = Qg ; and replacing these rela-

tions into Eq. (3.2.99), gives a final expression for updated stress vector as

énJrl = QT (Anﬂﬂfﬂ A73n+191> QTBn+1%1t1r+1 (3.2.105)
=B, (3.2.106)
where B Q BHHQ, with BnH given by
B, ., = diag (b - bgnH) diag (% &%H) 7 (3.2.107)
1n-!—l

V2A71A7y. Moreover, the maximum updated principal effective stress

A _ it
and gy,,, = T
is expressed as o, , = 1. o, . For the other hand, linearization of updated hardening

variable K, ; (Eq. (3.1.22)) can be expressed as
(3.2.108)

K’n+1 = ﬁn + A/yﬂnJrl (Qn+17ﬁn+1)‘

Although, its convenient take their positive and negative part as
(3.2.109)

K’:—i—l = ﬁ + Afyhn—i-lv
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+ _ A+  + A ATA : +
where h,, | = n, ¢, ., withn, , =13n, , and the variable o, , are defined as

O =00, 05 (3.2.110)

and with 6’i+ . and GSEH | defined as

0f . = ¢(Gn), 0., =—[1—d(0n1)], (3.2.111)

05 . =0t (ki1)/g", 05 . =0 (k)9 (3.2.112)

In addition, the updated parameters $ and ¢ (Eq. (3.1.24)) can be expressed, respec-

tively, as

Qi

(K;+1>
+(""3;';4-1)

Bupr = (1 — ) —(140a),  Cop1 =0 (k). (3.2.113)

Ql

Finally, the yield criterion at consistency condition (Eq. (3.1.23)) is written as

Frit = 0Pps1 + Gus1 + Brg1(01)" — (1 — @) = 0. (3.2.114)

Its observed that a nested iterative process is required to obtain variables Ay and x. 11
Box 5 shown the algorithm used to calculate both variables. Three steps are involved:
(i) set an initial value of variables k, ¢ and &, equal to the previous step; (ii) solve the
consistency operator Ay using the algorithm described in Box 4 which is identical to the

DPH model, but using the effective stress space in their expressions and the derivative
3F 9 n+1

oA is given by
aF +1 \/577 81_71 11 At 3 02 +1 8A_|_
= L ot br + Aybs) i1
9Ay 3 0ny Men tIp oA, T 0 ( T+ Agb ) + g DA

— (1 — ) (b5 + Avby ) . (3.2.115)

A detailed calculation of this derivative is explained in 2; and (iii) solve the hardening

variables k using the Newton’s method. For this, Eq. (3.2.106) is used as the residual
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function and rewritten as

A

Qn+1(ﬁn+17 Af% n+1) =k, + A’YI_InJrl( n+1> Un+1) —Epqa- (32116)

Thus, the total derivative of this residual function with respect to k,,_ ; is given by
dgn+1 _ agnﬂ T aQn+1 OAy
dﬁn+1 8ﬁn+1 8A7 aﬁn+1

8Qn+1 aﬂn—i-l aén—i—l OA~y i aﬂnﬂ
aﬂnJrl 8én 1 8A7 aK’ +1 aﬁn+1

OH ., 0 OH
:—b+(ﬂMrH3 “1a“ﬁ ém7+Aw:ﬂﬂ (3.2.117)

agn+1 Ay 0Ky 11 OKyyr

where I, = diag(1, 1) and the derivatives involved are expressed as

e ORCLINEICHIEY ) B b
80' +1 A aB +1 At aH +1 fay
aA,y Q ’)/ Tht1s aﬁn-i-l —=n+1 ( )

A detailed calculation of these derivatives are explained in 3. Also, is recommended
tolerances of T'ol, = 1 — 1071 to adjust the solution values and T'ols = 1075 to check the

residual function, giving an adequate convergence of model.

In addition, taking the linearization of Eq. (3.1.25) and using Eq. (3.1.26), the updated

plastic e}, and elastic 5, out-of-plane strain are given, respectively, as

Ehas = Ehs + A | == @mﬂ+®%n+g, (3.2.119)
Tn+1
1%
8:633n+1 = _F (5-117L+1 + 622n+1) . (3.2.120)

Also, using Eq. (A.2.9), the updated volumetric strain is given by

Evnir = Evy + K ' Pas1 + A7) (3.2.121)
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Box § :Algorithm to solve k,, | for the LLF model

0 _ -0 __ Atr ~0 _ Ztr
ﬁn‘i’l - ﬁn’ q”+1 - q'n+1’ O‘+n+1 - O‘+n+1
fOl’j < Niter do
St (T n
n+1( n+1) n+1’ H (‘7+n+1)

Gnt1- AV, Gy,

Q = Quit (K, MY 611

> Set initial value

> Use Egs. (3.1.31) and (3.2.113)
> Solve with Box 4 and Eq. (3.2.106)
> Residual, Eq. (3.2.116)

o dQ , L
dQ’ = ot (ﬁfwla A’Y‘ja&iﬂ)
n+1 )
dnJ (dQJ) 1QJ

J
Ky = Kyt dE

> Total derivative, Eq. (3.2.117)

> Update solution
K,Zlil = min (nnH, Tol4l>

if (||@Q’|| < Tols) then
exit

> Adjust solution

Damage component

An explicit evaluation of updated damage variable w,,.; (Eq. (3.1.28)) are generated
according to updated hardening variables /ﬁfﬂ calculated in the plastic component of

model.

Viscous component

Assuming that the rate of a generic variable x can be expressed as © = Ax/At, with
At is the load step increment. Then, using this relation in the linearization of Egs. (3.1.35)
and (3.1.36), the updated visco-plastic strain vector gZﬂl and the viscous-damage variable

v .
w1 can be expressed, respectively, as

el =Cel +(1—C()eb . (3.2.122)

wy 1 = Gw,, + (1 = G)wni1, (3.2.123)

where ¢, = (1 + At/u,)~!. Then, substituting the Eq. (3.2.122) into updated version of

Eq. (3.1.34) and with some algebraic manipulation, the updated effective viscous-stress
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vector can be expressed in a convenient way as

Q:)H»l - CU(Q:’)L + QeAgn) + (1 - C’U)QnJrl' (32124)

Finally, the updated viscous-stress vector can be expressed as

o, =01-w  )a, ., (3.2.125)

It should be noted that if p,/At — 0 (¢, = 0) the solution relaxed to the rate-

independent (or inviscid) response.

3.2.5. WLF model
Plastic component

Numerical stress integration of this model is identical to the LLF model, except for
two considerations: (1) the matrix W of Eq. (3.1.46) depends only of , the matrix H,,
of Eq. (3.2.108) depends only of stress vector 7, for which the variables #5 = 1 and the
derivative g—l,;l, given by Eq. (3.2.118), is null; and (2) its observed that a tolerance to check

the residual function of Tols = 10~ can be used without convergence troubles.

Damage component

Giving the updated effective stress vector @, calculated in the plastic component,
the positive/negative part of effective stress vector - 1 are evaluated using Eq. (3.1.37).
Next, evaluating the DERR Y+ according to the definition established (Eq. (3.1.52) or
Eq. (3.1.53)), and assuming an active damage process (Eq. (3.1.57)), the updated damage
threshold are stated. Finally, and explicit evaluation of damage variables w;,,(ri, ;) is

generated.
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Viscous component

The updated viscous stress vector o, ,, is calculated using Eq. (3.1.61), where the
effective viscous stress tensor &, is evaluated using Eq. (3.2.124). Also, the visco-
plastic strain vector €,",; is evaluated with Eq. (3.2.122). Moreover, the updated damage
variables depends of updated damage thresholds variables 7 1, wWhich are obtained using

a linearization of Eq. (3.1.63) as follows

o = Gor (1= GV (3.2.126)

3.2.6. FOC model
Plastic component

First, the discretization of Egs. (3.1.64) and (3.1.65) gives

€ni1 = €L+ AYG, 4, (3.2.127)
EO n —

Ay = X C (T, Aey ) (32.128)
||gn+1||

where Ag,, | = €,,1— &, and Xn41 = BYHT(Aw )+ B~ H* (Aw,,, ), with Aw: | =

wffH — w¥. Next, using the relation of Eq. (3.2.81) with n, ., = &,_,,, the updated

effective stress vector is given by

_ —tr EoXn+1 — _
T = Ty — W<Q£+1A§n+1>+2n+1 (3.2.129)
“n+1

It should be noted that &, ,, is proportional, or geometrically parallel, to &, ;. Thus,

satisfy the following relation

— =tr
%n—‘rl — %er-‘rl ) (32130)
Hgn—ﬁ-IH Hgn-‘rlu
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Replacing this expression into Eq. (3.2.129), the updated effective stress tensor is given

as
Gy =M G0, (3.2.131)
EO n
mgﬂ =1- —EOH (ny)*, (3.2.132)

where ng = (@i, - o,;) and ny = (&, - Ag, ). It should be noted that, as the
Heaviside function is present in the variable 1, it required an iterative process to solve
0,1 Box 3 shown an efficient and robust algorithm to solve the updated effective stress

tensor g, , ;.

Box 6 :Algorithm to solve &,,, | for the FOC model

v, = [0,1,0,1]7, vy, = [0,0,1,1]7 > Set combinatory vectors

for j < 4do ‘
hf1 =v[j, My =wlj] > Trial Heaviside values
& = th]l + B™h?, ml > Use Eq. (3.2.132)
o) =m0, > Trial effective stress
gl = P*gi > Positive/negative effective stress
Y > DEER’s, according to Eq. (3.1.52) or Eq. (3.1.53)
FC‘Z + - Y}i — rf > Positive/negative damage criteria (Eq. (3.1.51))
if (h] = H*(F] ")) and (h = H*(F] ") then

exit
T, =0’ > Update effective stress

Finally, replacing Eq. (3.2.130) into Eq. (3.2.127), the updated plastic strain vector is
derived as

eh=eb+(1—my,,)Ce: ). (3.2.133)
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3.2.7. ROT model
Damage component

Assuming an implicit integration scheme for the linearization of Eq. (3.1.68), the up-

dated positive/negative :-th damage strain variable ozii is expressed as

O[:l: - Oé’?; + Zin+1 (ai éin+1>Aéin+17 (32.134‘)

7;n+1 in?

. A itk et O
where z;,,, =1 -, and Aé; =&, ., — &, withr; = Hy(a; —¢;,,,). Note

+

that the term o

inner the Heaviside function is used to get an explicit scheme. So,

the evaluation of updated stress vector o is explicit (Eq. (3.1.72)) using the relations of

Egs. (3.1.70) and (3.1.71), where m;’ | = H;,(&;,,,) and the variables h"  and g;.
are written, respectively, as
i
L=t Vel g, = (3.2.135)

Int1
Viscous component

Taking the linearization of Eq. (3.1.73), the updated positive/negative i-th viscous-
vE

damage strain «;; — can be expressed as

alF = Gal T+ (1—¢)af

Int1 Tnt1°

(3.2.136)

Finally, the evaluation of updated viscous-stress vector o (Eq. (3.1.76)) is explicit

using the relations of Egs. (3.1.74) and (3.1.75).

3.3. Consistent tangent tensors

Additionally to the algorithm necessary to calculate the updated stress vector, a ma-
terial stiffness matrix is required for the solution. Continuum tangent stiffness matrix is

derived for material models according to derivation of continuum constitutive equations
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as stated in Section 3.1. However, for numerical integration of model, is necessary to

do

calculate the algorithmic consistent tangent matrix ="+, which are found by computing
=n+1

the derivatives of equations involved in the stress updated algorithm. Complex derivatives
involve this operator, but are necessary to achieve a second-order convergence at the struc-
tural level, rather than continuum tangent stiffness (J. C. Simo & Hughes, 1998). For the
developed models, all these derivatives can be obtained analytically. Therefore, the con-
sistent tangent operator can be written in an explicit expression. For sake the of simplicity

of the presentation, we omitted the subscript ,,; in all updated variables.

3.3.1. Trial-predictor step

Using Egs. (3.2.77) and (3.2.78), the differential of the trial elastic strain €°* and the

stress vector o are, respectively, given by

de’™ = de, (3.3.137)

de" =D, : de (3.3.138)

It follow that in the derivation of consistent tangent stiffness matrix all trial variables
()™ have a no-null differential, contrary as in the calculation of stress updated algorithm,

where their derivatives are neglected.

3.3.2. DPH model

First, the differential of variables a,, a; and gy, given by Egs. (3.2.91) and (3.2.88),

are expressed, respectively, as

da; = —\aj(uAydz + tdAy), day = —2uas(uAydz + tdAy),

dgy = drl" — V25Ad A, (3.3.139)
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9

—53 Then, taking this relations, the differential of matrix B, given by

with v =

Eq. (3.2.91), is written as follows
dB = dlag (dl_)l, dl_)g, dl_JQ)

. 1 o _ o - -
= diag {t— [Tltl(aldgl + g1day) — glaldTltl] , day, dag}

(715)2
= B,d7}] + BydAy + Bydz, (3.3.140)

where B, B, and B, are given by

_ (\/§>\a177A7 )

El = dlag (Tlti)Q ) Oa 0

_ a1\
B, = diag (_a% (c_ntgl + \/577) , —2udst, —2/1&%75) )
11

_ Aa2ug, A
B, = diag (—W, —2uasuly, —2ud§uA7> )

m
Then, differential of matrix B (Eq. (3.2.90)) is expressed as

dB = Q"dBQ

— EldTimi + EQdA'}/ + §3dz, (3.3.141)

where B, = QTBZ-Q, with ¢ = 1,,3. Moreover, using the relation Eq. (3.2.90), the
variable z = 2.J, (Eq. (A.2.6)) can be expressed as z = o"T BPBo". Then, using
the relations lEQ = \/LilT, drj} = l{ng“r and Eq. (3.3.141), the differential of this

variable is given by

dz = 2gtrTﬂ (Edgtr—l—d&tr)

=2 KngwB + & f) do™ + &dAy + &dz |, (3.3.142)

V2
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where v, = Po and §; = v}, B,a'", with i = 1,, 3. Then, the differential of variable z

can be solved of this expression as

dz = 50 [(vdevB + %IT) dgtr + §2dA,7:| ’ (33143)

with & = (1/2 — &)L, Then, using Egs. (3.3.143) and (3.3.141), the differential of

updated stress vector o, given by Eq. (3.2.90), can be expressed as

do = dBo" + Bdo"

= A.dg" + agdAy, (3.3.144)

where A and a are given by

% (B, + &6.By) (0" © 1) + [60B; (0¥ ® vy,) + 1] B,

ag = (BQ + 505253) Qtr

A5:

In addition, using Eq. (3.2.92) and the chain rule, the differential of updated cohesion
law can be written as
0
de = 8—Cda — J,EdAy, (3.3.145)
where J, = g—; is the cohesive hardening modulus. Then, using Egs. (3.3.143), (3.3.144)
and (A.2.21), the differential of consistency condition for the yield criterion, given by
Eq. (3.2.93), can be expressed as
_nir 3 2 _
dF = gl dg+4—dz—£ JodAvy =0
=g, da" + godA, (3.3.146)

where gg and g, are expressed as

3% ( &1 ) M. 3062 27
1TA+ B+ =17, =-1Ta, + - 3.3.147
go 3— =5 4q dev \/§ gO 6 5 ( )
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Then, the differential of consistency operator A~ is solved as

1
9o~ -

For other hand, using the relations Egs. (3.3.143) and (3.3.144), the differential of flow

vector m is given by

3 3
=" P(r?do ==
dn 53L (r do 4gdz)

= Aydo" + a,dAy, (3.3.149)

where A, and a, are written as

3
AO = gP_A5 + &)u |:(Qde'u ® Qdev) E + % (Qde'u ® l):| )

3

For other hand, using Eq. (3.2.81), the differential of updated stress vector can be
written in a conveinet format as
do = D, [C.dg" — Aydn — ndAy]. (3.3.150)

Hence, inserting Egs. (3.3.148) and (3.3.149) into this relation, gives a final expression

for the differential of updated stress vector as

do =D, [C,—Ay(Ay+a, ®g) - (n©g)|de". (3.3.151)

Finally, using Eq. (3.3.137), an explicit expression for the elasto-plastic consistent

tangent stiffness matrix can be written as

D,=D,[C,—Ay(A,+a ®g)— (n®g)]D,. (3.3.152)
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In addition, the 1 include an alternative derivation of this operator considering the

differential of updated stress vector directly, rather than use Eq. (3.2.90) as in this case.

3.3.3. LLF model

Plastic component

The plastic component of the consistent tangent stiffness matrix is calculated from the
differential of the effective stress tensor. To this, firstly, the differential of variables ay, as

and ¢;, given by Egs. (3.2.104) and (3.2.106), are expressed as

da, = —Aa}(uAydz + tdAy), day = —2paz(aAydz + tdAy),
djy = A7 — V23Ad Ay, (3.3.153)
where © = —%. Now, taking these relations, the differential of matrix B, given by

Eq. (3.2.107), 1s expressed as

dB = diag (d@l, déz)

. 1 o A A~ o o T A 2 o T fay
= diag { (Fir)2 [(aldgl + 1day) 7" = giandry } ,d@2}
1

— B,d#" + BydAy + Baydz, (3.3.154)

where B, to B, are expressed as

- . V2a17AAY
B, = diag (—@r — 0],

)
. A\ /. - .
B, = diag (—ajtr (altfh + \/517) : —2ua3t) ,

T
2 22)\éA A 29 4o
B, = diag (_al%#’ _Qua§9A7> .
1
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Then, the differential of matrix B (Eq. (3.2.107)) is given by

~

— B,d7"" + B,dAy + B,dz, (3.3.155)

where BZ = QTBzQ with ¢ = 1,,3. Moreover, using the relation Eq. (3.2.106), the
variable z = 2.J, (Eq. (A.2.18)) can be expressed as z = ¢* BPB&". Thus, using the

relations d7{* = 17 Qdé“ and 17 Q = \/%iT, the differential of variable Z is expressed as

dz = 26"TBP (Bdétr _{_d&tr)

—9 [(@dTevB + %f) da™ + &dAy + &3dz| (3.3.156)

where & = v% B,&", with i = 1,,3. Then, the differential of variable Z can be solved as

, (3.3.157)

dz =& [(%B + %f) do' + £,d Ay

with é(] =(1/2 - 53)_1. Then, using Egs. (3.3.157) and (3.3.155), the differential of the

updated principal effective stress vector & is given by

= A.da" + agdAy, (3.3.158)

where A, and a, are given by

A5:E<E1+5051§3> <Q®l>+[&)§3 (Qtr®@dev)P+l] B,

ag = <Bz + éoézﬁg) a”.
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Moreover, the differential of maximum principal effective stress &, = 17dg can be

expressed as

doy = a3, da + ag.dAy, (3.3.159)

where af, = 1TA; and 46, = 1Ta, Next, using Egs. (3.3.157) and (3.3.158), the

differential of the principal effective flow vector, given by Eq. (3.2.98), can be expressed

as
dn = - P (Pde - 2&dz
273 4
= Aydé" + a,dA, (3.3.160)

where Ao and @, are given by

X 3 .. .
Ay = - PA; +1u&

o (ﬁdev ® ﬁdev) B + % (idev 2 i)

Moreover, the differential of positive/negative part of effective principal flow vector
n* = 177 are given by

dn® = aF Tda™ + a7 dAy, (3.3.161)

where éﬁf = ligo and df = 11@1. In addition, using Eq. (3.3.157), the differential of

effective flow vector n (Eq. (3.2.82) in effective space) is expressed as
3 3
dn = =P (’dg — ~&dz |,
273 4

= A,dg" + a,dAy + A,dg, (3.3.162)
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where A,, @, and A, are given by

For the other hand, the differential of updated variable ¢ (Eq. (3.1.18)) is written as
dé = ®7dé, with ® defined as

P = 06 _ diag ( 0 a¢) : (3.3.163)

o do1’ 00y

being their i-th component % expressed as

T iy 1
%, = [HS(5:) — ¢(2H, (5:) — 1)] SR (3.3.164)

It should be noted, that this expression considered the stepped Heaviside function, due
that variable ¢ € [0, 1]. It can observed that this condition not cause convergence troubles
in the model. Then, the differential of variables Gli and 9; (Egs. (3.2.111) and (3.2.112),
respectively) are given by df = d¢ and dfy = ;?*‘id/ii, with J* = g—g; are the pos-
itive/negative hardening modulus, respectively. Hence, the differential of variables ™,

defined in Eq. (3.2.110), are given by

s 1
de™ =0, @"de + —07 J;dk™. (3.3.165)
g

Moreover, using this relation, the differential of variables h*, defined in Eq. (3.2.109),

are expressed as
dh* = oFa*®Tda + biyds* + pFdi™, (3.3.166)

where b, = 107 J=h®. Next, using this relation and Egs. (3.3.161) and (3.3.158), the

gt
differential of updated positive/negative hardening variables x*, given by Eq. (3.2.109),



182

can be written as

dr* = ¢EdAy + Ay (cgE Tda™ + bitodli ) (3.3.167)

with ¢§ and ¢ expressed as

& _hi_i_A,y(ei iq)TGG_HO a1> AiT_@i i(I)TA _Hpi iT_

Hence, solving this linear equation for the differential of variable x* gives
dx* = ¢fdAy + Ayes Tda™, (3.3.168)
where ¢i and ¢i are multiple of their respective variables ¢ and ¢ by a factor of zSQiO =
!
(1 - A’yblio) . In addition, the differential of uniaxial positive/negative effective stress

law 5+ (= ¢*) are expressed as

do* = JEdk*, (3.3.169)

where J* = g,‘i—i denotes the respective effective hardening modulus. Then, using this

relation and Eq. (3.3.168), the differential of variable 3 (Eq. (3.2.113)) is given by

dB = c,Ay + Ayclda'™, (3.3.170)

where ¢4 and ¢, are expressed as

ca=mte] —m cf, cs=mte, —m ¢y,
with m* = (1 — a)JF € f)z It should be noted that, for this model only the uniaxial

o* and w* laws are known. Then, using the relation Eq. (3.1.31), the positive/negative
effective hardening modulus J= can be derived as

JE_ JE 4+ Qfc*

3.3.171
e (3.3.171)
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with J¥ = 225 and QF = 29 Next, using Egs. (3.3.159), (3.3.169), (3.3.170),

(3.3.158), (A.1.24) and (A.2.24), the differential of yield criterion at consistency con-

dition, given by Eq. (3.2.114), 1s written as

dF = gfdé + 43012 +(04) 7B+ pd{es) " — (1 - a)do™ =0

= GodAy + glda", (3.3.172)

where gy and QOT are expressed as

R 3 R A -
1" obs + (1) Tea + Bsagy — (1 — o) Jy o,

2 Nar 3&o 51
=-1"A. + = 'vevB—I—— + Bsal
Q = A5 q ( d \/5 > 53 5+
+ Ay [(5+>+CGT —(1-a)J, c; T} ,

with 83 = o014 f1, By = BH*(51) and 3, = B dH " . Then, the differential of the discrete

consistency operator A~y can be solved directly of Eq. (3.3.172) as

1
dAy = ——glda" = glda". (3.3.173)
go—

Now, the differential of updated effective stress vector can be derived in the same

manner that Eq. (3.3.150), but expressed in the effective space as

da = da"™ — D, (Aydn — ndAvy) . (3.3.174)

Then, using the relation do® = F.da" (see Eq. (A.2.22)) and substituting Egs. (3.3.173)

and (3.3.162) into this expression, the differential of updated effective stress vector can be

rewritten as
F, - (n®g,) F,|do" - AyD, A,do.
(3.3.175)
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Finally, solving the updated effective stress vector of this expression and introducing
the relation Eq. (3.3.138), the effective elasto-plastic consistent tangent matrix is written
as

D,=2|C.—Ay(a®©g,+A4)F, - (reg,)F,|D., (33176

€p

where 2 = (C, + tAyP) ™. It should be noted that, this matrix is well-posed indepen-

dent of input material parameters used.

Damage component

First, calling the variables t7 = —z1 and ¢ = z_, the differential of stiffness recovery
functions s*, defined in Eq. (3.1.29), are expressed as ds* = t*dff = tFd¢. Also,
+

the differential of uniaxial damage laws w™ are given by dw® = QFdx*, where QF =

+ . . . . —
g—if. Then, expressing both relations in a vectorized format as s = [sT,s7]7 and w =

[wt,w™]T, respectively, their differentials are written as

ds = Mydé,  dQ = M,dxk, (3.3.177)

where M, and M, are expressed as

. tr - . Qr 0
M, = ®®, M,=
. 0 QF
For other hand, using Eq. (3.3.168), the differential of hardening vector & = [x*, k7]7
are expressed as
dk = ¢, dAy + AyClda'", (3.3.178)

where ¢, and C|) are expressed as
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Next, the differential of damage variable w (Eq. (3.1.28)) is given by

dw = u{ds +uldQ, (3.3.179)
where u; and u, are written as
S1w S28
u; = ) U, = )
Sow™ 518"

with s; = 1—s~w* and sy = 1—s"w™. In addition, substituting Eq. (3.3.177) and the rela-
tions do = F,d&, de"" = F, = da"" (Eq. (A.2.22)) and d& = D, de" (Eq. (3.3.176))

into Eq. (3.3.179), the differential of damage variable w can be rewritten as
dw =wv{de + vidr
— [olF.D,, + v} (¢, @ g,+2C) F,D,| de, (3.3.180)

where v7 = u” M, and vI = ulM,. For the other hand, the differential of updated

stress vector (Eq. (3.1.14)) is given by
do = —-odw+ (1 —w)de. (3.3.181)

Finally, introducing Eq. (3.3.180) and the relation da = erdgtr (Eq. (3.3.176)) into

this relation, the elasto-plastic-damage consistent tangent matrix is expressed as

D, =[(1-wI-(¢®v)F,]D,, ~(¢®v,) (e, ®g,+AMC}) F,D,.
(3.3.182)
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Viscous component

Using Eq. (3.2.124) and the relation dg = erdgtr (Eq. (3.3.176)), the differential of

updated effective viscous-stress vector can be expressed as

dgv = (Cer + (1 - Cv)er) d§ (33183)

Moreover, using Egs. (3.2.122) and (3.2.123), the differential of visco-plastic strain

vector P and visco-damage variable w" are given, respectively, by

de” = (1 — ¢,)de”, (3.3.184)

dw’ = (1 —¢,)dw. (3.3.185)

Finally, substituting these relations and Eqgs. (3.3.183) and (3.3.180) into the differ-
ential of Eq. (3.2.125), the visco-plastic-damage consistent tangent matrix is expressed

as

Dups = Go(1 =w")D, + (1= ¢) {[1 —w")L - (¢" ® v,)F,] D

—ep

~(¢"® ) (e ©g,+ MCI) F,D,}.

In addition, 2 include an alternative derivation of this operator considering the differ-

ential of updated stress vector directly, rather than use Eq. (3.2.106) as in this case.

3.3.4. WLF model

Plastic component

This component is identical to the LLF model, with the exception that 93[ = 1 and

b, = 0.
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Damage component

Using Egs. (A.2.22) and (A.2.23), the differential of positive/negative part of effective
stress tensor (Eq. (3.1.37)) are given by

N N

do* = Z Hy (6:)elda; + Z<3i>id§?
i=1

=1

N N
= (Z Hy (@) (e @el)+2 Y gilel® gﬁ-ﬁ')) Rdg = S*da, (3.3.186)
=1

i=1,j>i

where S* are so-called the derivative of positive/negative projector effective stress vector,

respectively, which satisfy the relations ST + S~ = I and 6* = S*&, and gfj is defined

as . .
<52>i — <5j>i & 4G
2~ 4 . o4 ) ) Vi
Hg(é’l), Oi'l - 3']

So, during an active damage process, satisfy the relation Eq. (3.1.58). Then, using the

chain rule, the differential of updated positive/negative damage law w™ are expressed as
o +
dwt = 22 4r* = QFdyE, (3.3.187)
or+

where QF = g“;—if and the differential of DEER, Y%, are stated according their definition.

Thus, using Egs. (3.1.52) and (3.1.53), their respective differentials are given by

E
+ o (T + —+T =~ _ 17T~
dy* = o (g C.S*+a Qe) do = L™ dgo, (3.3.188)
o (SR P 5319
q

where v,,, = Po. Next, using Eq. (3.1.45), the differential of updated stress vector is
given by
do => [(1-wh)de" — o dw"] . (3.3.190)

N
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Finally, introducing Egs. (3.3.187), (3.3.186) and (3.3.188) or Eq. (3.3.189) and dg =
erdg (Eq. (3.3.176)) into this expression, the plastic-damage consistent tangent matrix
is written as

D, - D (3.3.191)

_ep )

I-) (W'+RY

where W+ = w*S8* and R* = QF(6* ® L*). It should be noted that, the terms of this

expression associated to plastic and damage component are decoupled.

Viscous component

First, using Eq. (3.2.126), the differential of positive/negative threshold variable 7= are
given by
dr® = (1 — ¢,)dY ™. (3.3.192)

Then, using this relation, Eq. (3.3.188) or Eq. (3.3.189) and the chain rule, the differ-

ential of positive/negative damage variables w® are given by

L 0wt + +T 1=
dw™ = (%"_idr =Q-(1-¢)L™"de. (3.3.193)
Moreover, using Eq. (3.1.62), the differential of positive/negative viscous stress vector
is expressed as dg"* = ST d&v, where ST are the derivative of positive/negative projector

vector g’ (similar to Eq. (3.3.186)). Then, the differential of viscous-stress vector o*,

given by Eq. (3.1.61), is expressed as

do’ =) [(1-wM)Shde" — a™dw"] . (3.3.194)
R

Finally, substituting Egs. (3.3.183) and (3.3.193) and the relation do = erdg (Eq. (3.3.176))

into Eq. (3.3.194), the visco-plastic-damage consistent tangent matrix can be expressed as

D, =, (1— Zmﬁ‘) D, +(1-¢) [1— > (W) +RY)

N

D (3.3.195)

—ep’
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where W = w*SF and RY = QF (" * ® L¥). It should be noted that vectors L™ are
evaluated using inviscid variables (&).
3.3.5. FOC model
Plastic component
First, the differential of variables ny and n; of Eq. (3.2.132) are expressed as
dny = 26" Tda", dn, = Aefde™ + 6™ de. (3.3.196)

Also, its assumed that the variable £ is constant during the plastic process. Thus, using

Eq. (3.2.129), the differential of updated effective stress tensor is given by

E,x
No

do = de" —

[n0g"d(n1) ™ + no(ni)tda™ — (n1)*@"dne].(3.3.197)

Using Eq. (3.2.132) and Eq. (A.1.24), using a stepped Heaviside function, and with

some straightforward manipulation, the effective component of consistent tangent stiffness

is given by
er = [cll + ¢y (Qtr ® Ag) -+ (Qtr ® Qtr) (eI + CzQe)] D, (3.3.198)
where ¢; = m', ¢y = —(1 - mtr)/m and c3 = 2(1 - mtr)/no-

3.3.6. ROT model

Damage component

First, the differential of updated i-th positive/negative damage variable Ozf, stated in

Eq. (3.2.134), can be expressed as

daf = dzFAE; + widé; = 2Fdé; (3.3.199)
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Next, the tangent and secant slope of positive/negative uniaxial stress-strain law can
be defined as K, £ a" and S; t= ai Jat o;-, respectively. Then, using Eq. (3.2.135), the

differential of Varlables hjE and g7 are written, respectively, as

1

dht = gFKEdaf 4 otdg, dgif = — (1 — giF2)dé,. (3.3.200)

o;
Thus, using all these relations, the differential of i-th updated principal stress 7;, stated

in Eq. (3.1.70), is written as

dé; = (Z m [KIp} + S (1 — pﬁ)]> dg; = jdé;, (3.3.201)
N

=, For the other hand, using Eq. (A.2.22), the differential of i-th principal

where pi* = gz

stress can be expressed as

 96,0¢ o6, 96,17
8 85 =i

Then, using this relation, the differential of updated stress vector o, given by Eq. (3.1.72),

1S written as

do — ZN: [ j)F.de + 6,de; } . (3.3.203)

Then, using Eq. (A.2.23), its follows that damage consistent tangent matrix is written

as

N N
D, = (Z(gmii)) F.+2 ) g;(e’®e’), (3.3.204)

i=1 1=1,7>1

where g7; is defined as

6i—&) .
<A’L—J)a 62’7&8]'

o = (& — &5)

] ~

! 05, A N
- E; = E5.
881'7 ! J

Note that the first term of right hand side is associated to local principal stiffness and

the second term arises from rotation of principal strains. It can be demonstrated that this
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expression, neglecting the damage variables, is identical to obtained by (M. A. Crisfield
& Wills, 1989). Also, note the similitude of the second term of this expression with
Eq. (3.3.186).

Viscous component

First, using Egs. (3.2.136) and (3.3.199), the differential of updated ¢-th positive/negative

viscous damage variable can be expressed as

dat® = (1 — ¢,)wFdé,. (3.3.205)

Moreover, the differential of variables hfi and gfi (Egs. (3.1.74) and (3.1.75)) are
given, respectively, by
dhy* = giE K *dal™ + oF () F)dgl ", (3.3.206)

1
dg/* = — [1— (1= ¢)g/* 2] dé;, (3.3.207)
o

)

where K i”i = %‘?’J}' Thus, using these relations and with some straightforward manipu-

lation, the differential of updated :-th principal viscous stress, stated in Eq. (3.1.74), can

be written as
do} = {cv DS+ (1= Go) il [Kp + 871 = )] } dé;
R R
= J;;dé;, (3.3.208)
where p/* = g?* 2 and S/* = o* /a®. Finally, substituting this relation and Eq. (A.2.23)

into the differential of the viscous stress vector, given by Eq. (3.1.76), the viscous-damage

consistent tangent tensor can be expressed as

N N
D, = (Z(gi ®1’;’)> F.+2 > gi(eV®el), (3.3.209)

=1 i=1,j>1
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o 201
v 8Uf BUZJ v ol
where 3 = [ R 852} and g;; 1s defined as
(67 —a7) . .
~ o & 7é €j
o _ ) (Ei—¢j)
9ij = o6v
i ~ A
- € =§&j.
861- ’ ! J

3.4. Validation examples

In this section, a set of numerical examples are used to validate the capabilities of the
constitutive concrete models described in Section 3.1. Taking the numerical algorithms
presented in Sections 3.2 and 3.3, the five concrete models were implemented in the soft-
ware (ANSYS, 2018) throught user-material FORTRAN77 routines (USERMAT.f). These

material routines works at Gauss integration point level of each finite element.

Four class of experimental benchmark test are simulated with a single-element ac-
cording to loading conditions: (i) uniaxial cyclic tension and compression; (ii) biaxial
monotonic; (ii1) uniaxial cyclic tension-compression; and (iv) strain-rate effect and nu-
merical viscosity. Also, the strain-localization and fracture-energy FE-regularization are

discussed with a fictitious example.

All examples were modeled using 4-node isoparametric shell element (SHELL181)
with six Degree Of Freedom (DOF) at each node using 2x2 Gauss integration scheme. All
models, except the DPH model, assume an exponential relation for the positive/negative
uniaxial stress laws given by Egs. (3.1.59) and (3.1.60), respectively. An adequate conver-
sion among uniaxial laws required for each concrete model is generated, as explained in
Table 2.5.4. Table 3.4.1 list the material parameters adopted for each benchmark test. It

should be noted that identical parameters are used as in the 3D-case.
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B H E, v f Gt Gt K.
Author Test mm mm GPa - MPa MPa N/mm N/mm -
Gopalaratnam & Shah, 1985 uniaxial tension 82.6 82.6 31.0 0.18 348 276 0.04 11.38 1.0
Karsan & Jirsa, 1969 uniaxial compression 82.6 82.6 31.7 0.2 348 27.6 0.04 11.38 1.0
Kupfer et al., 1969 biaxial 200 50 31.0 0.15 35 3206 2.0 80.0 1.0
Mazars et al., 1990 unilateral effect 80 80 164 02 14 18.1 0.011 7.0 1.0
Suaris & Shah, 1985 strain-rate effect 100 100 34.0 0.22 537 468 0.5 20.0 1.0
- strain-localization 100 600 32.0 0.0 50 390 4.0 40.0 1.0

T values used in the WLF, as reference. For all cases:
1y = 0, unless otherwise indicated.

3.4.1. Uniaxial cyclic tests

fy = 1.16f., e=0.001, 2=0, z; =1, 57 = f, and

Numerical concrete models are compared with uniaxial cyclic tension and compres-

sion loading-unloading and reloading experimental data reported by (Gopalaratnam &

Shah, 1985) and by (Karsan & Jirsa, 1969), respectively. Figs. 3.4.1 and 3.4.2 shown the

response of the five concrete models under tensile and compressive loads, respectively. FE
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Figure 3.4.1. Validation of concrete models under uniaxial cyclic tension test of (Gopalaratnam & Shah,
1985): (a) DPH model; (b) LLF model; (¢) WLFy and WLF models; (d) FOC model; and (e¢) ROT
model. The following additional parameters are used. For the DPH model: nyr =3.48 MPa, f, =12 MPa,

ap = 3¢y /FEo, R=1; LLF model: C*=6500, C—=7500; and WLF model: f5 =20 MPa, Et+=0.16Eo,

E;=0.48E,.
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Model N/mm N/mm
LLF 0.03 5.50
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WLF  0.007 5.30
FOC 0.0168 5.30
1 1 ROT 0.04 11.38
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Figure 3.4.2. Validation of concrete models under uniaxial cyclic compression test of (Karsan & Jirsa, 1969):

(a) DPH model; (b) LLF model; (c) WLF model; (d) FOC model; and (¢) ROT model. The following

additional parameters are used. For the DPH model: fy+ =3.48 MPa, fy_ =12 MPa, ag = 3¢,,/Fo, R=1; LLF
model: C*t=6500, C~=7500; and WLF model: f; =20 MPa, E;, =0.16E,, E, =0.48E,,.

models are elaborated with a single-element cube of 82.6 mm. Its assumed a characteristic

length of [.=82.6 mm and a pure uniaxial stress state for the boundary constraints.

In general, it can observed that in all models, except for the DPH model, fits well with
the post-peak backbone response of experimental tests, where the WLF, and ROT models
gives the best approximation. Although, both models fail in the unloading branch, due that
neglects the plastic strains (pure damage only). Also note that these models have identical

responses them, although are elaborated with formulations completely different.

In contrast, the unloading branch of the LLF, WLF and FOC models fits close to exper-
imental response due that incorporate the plastic and damage components in their formu-
lations. In plastic-damage models, its required adjust the parameters to fit simultaneously
the backbone curve and the unloading branch. Thus, the first half of residual backbone is
mainly influenced by the parameters of the plastic component and the last half by the frac-
ture energy ij. Moreover, the parameters C*, Ei and B* for the LLF, WLF and FOC

models, respectively, controls the backbone and slope of unloading branch in a coupled
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manner, i.e. when their values are reduced cause an increase in the slope of unloading

branch and consecuently reduce the backbone response.

The follows additional observations are considered. For the tensile regime, in all
models, except the LLF model, the peak stress do not fit exactly with the experimen-
tal value due to the incorporation of smoothed polynomial function in the uniaxial laws
(Eq. (2.2.74)). For other hand, the value of fracture energy ij used in the plastic-damage
models to fit the experimental tests is less than in the damage models. This is due to that
the plastic component induce an additional dissipation of energy that is not taken account

in the FE-regularization (Section 2.5).

For the FOC model, it has observed the influence of strain increment size A¢ in the
response, where an gradual over-stress response is caused with a relative large strain incre-
ments. In the same way, its observed a difference between cyclic and backbone responses,
gradually incremented over the last unloading/loading cycles, but that disappear with a
relative small Ae. Both conditions are due to explicit integration scheme used in the nu-
merical algorithm to calculate the plastic strain tensor. In addition, it can observed the

influence of parameter B~ in the tensile response.

3.4.2. Biaxial monotonic tests

All the concrete models, except the ROT model, are compared with biaxial monotonic
test of (Kupfer et al., 1969). This test is performed with a constant biaxial loading ratio
of a = 01/09, where o, and o, are the stresses imposed. FE models are elaborated with a
single-element of 200 x 50 mm of base and 200 mm of height. Its assumed a characteristic
length of /. = 200 mm and a pure biaxial stress state for the boundary constraints, as
observed in the experimental test. A stress-controlled test are performed up to reach the
peak stress, with the exception of the uniaxial case (@ = 0) simulated with displacement-
controlled. The inputs parameters are chosen by means to fit the cases a=0, 1 and 0.52

simultaneously.
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Fig. 3.4.3 shown the axial stress o; vs axial €; and the lateral strains €, and €3, re-
spectively, of the WLF model using a loading ratio of a=0, 1 and 0.52. This model use
a DEER given by Eq. (3.1.55) to include the biaxial strength. It can observed a good fit
with the pre-peak stress response of experimental test and a relatively good adjust exist
in the lateral strains, especially when a=0.52. In general, the same observations are con-

cluded in all models. Fig. 3.4.4 shown the biaxial peak strength surface for the DPH,

o -o Test - WLF

14 ¢

0.6

a1/0y )\
— -1/0 |
02 F ~1/-1 4
00 F — —1/-0.52

2 -1 0 1 2 3 4

Strain, €4,4,64 [%o0]

04
09, &9

Normalized stress, o, / f;

Figure 3.4.3. Validation for the WLF model under biaxial test of (Kupfer et al., 1969). The following addi-
tional parameters are used: G}':O.S N/mm, G;:SS N/mm, 6, =12 MPa, Et+ = 0.3E, and E,j' = 0.65E,.

WLF,, WLF, FOC and LLF models under different combination of biaxial loading ratios
a = 01 /0. For the DPH model, the parameters 1) and ¢ are fitted with tension/compression
biaxial strength of concrete. Also, for the WLF,; and WLF models, the DEER given by
Eq. (3.1.55) is used to include the biaxial strength. In addition, the response of the WLF,

model using the Eq. (3.1.54) is compared.

It can observed, that all models fits close with the experimental results, specially in
compression-compression (C-C) regime, where are influenced by the Drucker-Prager yield
criterion. The major differences among models occur in the tension-compression (T-C)

regimes. The exception ocurr with the DPH and WLF;1 model. For the the first, fit well
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Figure 3.4.4. Biaxial peak strength surface for the DPH, WLF,, WLF, FOC and LLF models and the biaxial
test results of (Kupfer et al., 1969). For the DPH model the following parameters are used nyr =3.5 MPa and

£y =1

only in the equal biaxial loading ratio @ = 1 and the second one fit well in the T-C regime,
but with a reduced strength in the C-C regime. Both observations are obtained such as

expect in the literature (de Souza Neto et al., 2008; Mazars, 1984; J. Simo & Ju, 1987).

Additionally, it can observed, similar to uniaxial case, a less value of fracture energy
is required in the plastic-damage models than damage models to fit with experimental
results. Conversely to the uniaxial case, under certain conditions, an increment in the

value of compression fracture energy cause a reduction in the backbone response.
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3.4.3. Uniaxial cyclic tension-compression test

To validate the unilateral effect, the LLF, WLF,, WLF, FOC and ROT models are
compared with the uniaxial cyclic test of (Mazars et al., 1990). This test was first subjected
to uniaxial tension followed by uniaxial compression in parallel directions. FE models are
elaborated with a single-element cube of 80 mm of width. Its assumed a characteristic

length of /[.=80 mm and a pure uniaxial stress state for the boundary constraints.

Fig. 3.4.5 shown the axial stress o vs axial strain €; of this models. It also included the
response of the LLF model with three values of stiffness recovery factor z_ (0, 0.5 and 1).
It can noticed that all models recovery the initial elastic stiffness once the load goes into
the compression state (step 2 and 4). The exception occur, obviously, in the LLF model
when z;=0.5 and 0, due that this parameter controls the value of recovery compression
stiffness. Moreover, its observed that all models, with the exception of the WLF, and
ROT models, take the compression backbone branch close to experimental data (step 4),
due that include plastic strain in their formulations. In addition, its observed that the LLF,
WLF and FOC models recovery the damaged stiffness obtained in the last cycle of tension
(step 3) when the load goes from compression to tension state (step 6). This condition is
also shared by the WLF;, and ROT models (not shown in the plot) and is so-called that the
models have “damage memory”, which is agree with the thermodynamic of irreversible

process.

3.4.4. Strain-rate tests

Experimentally, the strain-rate effect is important under impulsive loading (impacts
or explosions), but already important under earthquake loading, with rates of straining &
ranges between 107%/s to 10~ !/s. Then, due that the all models, except the DPH model, can
simulate the rate-dependent behavior throught of incorporation of a visco-elastic/visco-
plastic model, they are compared with the strain-rate test of (Suaris & Shah, 1985). FE
models are elaborated with a single-element cube of 100 mm of width. Its assumed a char-

acteristic length of /,.=100 mm and a pure uniaxial stress state for the boundary constraints.
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Figure 3.4.5. Validation of the LLF, WLFy;, WLF, FOC and ROT models under uniaxial cyclic tension-

compression test of (Mazars et al., 1990). The following additional parameters are used. For the LLF

model: C*=12000, C~=200; WLF model: f, =12 MPa, Et+ =0.3E, and E;, = 0.4E,; and FOC model:
B*=0.54 and B~=0.75.

Two uniaxial tests are performed, one for tension and other for compression, both with a
range of straining rates ¢ between 10~%/s to 1/s. The material parameters are fitted with
the tests loaded with a strain-rate of €=10"%/s (pseudo-static). For the sake of simplicity,
a numerical viscosity p, = 2 x 1072 s is used in all cases. Also, a constant number of

steps N,=150 and a maximum displacement of 9,,,,,=0.25 mm for tension and -0.55 mm

|5maz|

for compression are used, for which the time increment used is given by At = NeE

Fig. 3.4.6a-b shown the normalized uniaxial tension/compression viscous stress o} /o)
vs uniaxial strain €1, respectively, for the WLF, model, where a?m denotes the peak in-
viscid stress ( ft/ and fc/, respectively). In both plots, for high straining rates, an increment
of up to 3.4 and 1.1 times respect to the inviscid case (¢=107°/s) is observed for tension

and compression, respectively. Moreover, its denoted a over-estimation of 59.4% in the
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tensile peak stress respect to experimental test, whereas a lower-estimation of 12.4% exist

for the compression peak stress. Similar observations are derived using the other models.

Fig. 3.4.6c shown the peak stress ratio 0 /o9 or Dynamic Increase Factor (DIF)
vs the applied strain-rate ¢ for all models, where ¢!  denotes the peak stress at invis-
cid response. As can observed, peaks strengths grow continuously as straining rates are
increased, becoming clearly distinguishable from the inviscid response upon a strain-rate
value of 1072/s. Also noted, that the tensile response is largest than the compressive one
in overall range of straining rates analyzed, growing up to 6 times respect to the inviscid
response. In addition, the FE results shown that the DIF is underestimated as compared to
the both experiments for the small strain-rates ¢ < 10~'/s and overestimated for the large
strain rates € > 2.5 x 107!/s. To get a best estimation with respect to the experimental
tests, its required modify the visco-plastic model used, e.g the modified Perzyna model

proposed by (Faria & Oliver, 1993; Faria et al., 1998).

3.4.5. Effect of the numerical viscosity

In order to investigate the effects of numerical viscosity in the response, a numeri-
cal test are generated varying the numerical viscosity-time increment ratio u,, /At for the
WLF model. This adimensional parameter is related to the variable ¢, = (1 + At/p,)™!
(Eq. (3.2.122)) required for the stress updated algorithms of models. For the sake of sim-
plicity, the material parameters used are the same than in the strain-rate effect simulation.
Uniaxial tensile load is applied in a single-element varying the relation p,, /At in a range

between 10~ (inviscid) to 50.

Fig. 3.4.7a shown the uniaxial viscous stress-strain o} — ¢; response with different
values of ,,/At. Similar to Fig. 3.4.6¢ its observed an gradual over-stress response pro-

portional to the increased value of the numerical viscosity. Moreover, Fig. 3.4.7b shown

g

the respective axial stiffness-strain %f — &1 response for one integration point of the FE

model. Similar to the stress response, a gradual increment of axial stiffness is presented

as increasing the value of p,/At, up to get a positive value although a strain-softening
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Figure 3.4.6. Validation of strain-rate effect in the concrete models under monotonic uniaxial tests of (Suaris

& Shah, 1985): (a-b) normalized uniaxial tensile/compressive stress o / a?mw vs uniaxial strain 1 for the

WLF, model, respectively; and (c) peak stress ratio of / a?mm or Dynamic Increase Factor (DIF) vs the
applied strain-rate ¢ for the LLF, WLF,, WLF, FOC and ROT model under tensile and compresive loads.

regimes exists. This key advantage can convert into a positive-definite the consistent tan-
gent stiffness tensor and is demonstrated that expand the range of convergence of the

models in strain-softening regimes.

3.4.6. Strain-localization and FE-regularization

Strain-localization phenomena is present in local models with strain-softening behav-
ior. Imperfection of material properties, irregularities in the geometry and non-symmetrical
boundary/load conditions can induce the formation of this phenomena. The fracture en-
ergy FE-regularization is an popular technique that introduce a length scale in the consti-

tutive equations and that is able to remove the spurious mesh-dependency observed when
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strain-localization exists. It should be noted that, ignoring the FE-regularization, local
models with strain-softening behavior can correctly describe the damage only when re-

main uniformly distributed (perfect material). In order to study this phenomena in the

01, €1

100mm

100mm

600mm

0.99f,

Figure 3.4.8. Description of FE model used in strain-localization test.

concrete models developed, two uniaxial tests are performed, one for tension and other for

compression, varying the number of finite elements (i.e. varying their characteristic length
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l.). For the sake of simplicity, a prism of 100 x 100 mm of base and 600 mm of height is di-
vided into 2, 3 and 4 elements. Also, its assumed a pure uniaxial stress state for the bound-
ary constraints (Fig. 3.4.8a). Table 3.4.1 list the material parameter used. The election of
parameters F,, fc/ and GJjE are chosen in order to satisfy the range of characteristic length .
admissible by the uniaxial compression stress law given by Eq. (3.2.79). In order to induce
the localization phenomena, one of elements (shaded element) has been reduced slightly
their uniaxial tension/compression strength ( ft' / fC/) than others elements (0.99 times), for
tensile/compressive load case, respectively. In addition, due that some convergence trou-
ble are observed in the simulations, a numerical viscosity of j, /At = 0.05 is incorporated

in all models.

Fig. 3.4.9a-b shown the normalized uniaxial tensile stress o, /0y, . Vs post-peak dis-

placement 0,,, for the WLF, and WLF model, respectively, varying the mesh size of
model, whereas Fig. 3.4.9c-d shown the respective compressive response for the WLF,
and LLF, respectively. Additionally, the figure shown the failure mode of their respec-
tive specimens, through the field of damage variable w®. The post-peak displacement

is defined as d;,, = 0 — d,, where 0 is the total displacement of specimen and ¢, the

displacement at peak response.

Its observed in all models with imperfection a mesh-objectivity response and the dam-
age zone occur only in the modified element, such as expected in literature. However,
in the case without imperfection, two kinds of response are observed. For one hand, the
response for the WLF; model is mesh-dependent with an uniform strain field, either in
tension as in compression. This condition is due that the FE-regularization modify the
uniaxial stress-strain law despite exist an uniform strain field in the model. Then, its
concluded that this technique is only necessary when the damage zone localize. For other
hand, the LLF and WLF models (with the exception of one case [.=300 mm) gives a mesh-
objectivity response. This atypical condition can be attributed first to the non-symmetric
consistent tangent stiffness tensor and largely to numerical errors induced in the iterative

process to calculate the plastic component.
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Similar observations can be concluded in the other cases as explained as follows. All
models gives a mesh-objectivity response and the damage zone is localized in one element
(modified element) when a perturbation exists in the material. In contrast, not all the
models have an uniform strain field in the case without imperfections. Its observed that
the WLF and FOC models localize with a tensile load, whereas the LLF model localize
both in the tension as in the compression case. In contrast, the WLF, and ROT models not

localize using a perfect material.
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Figure 3.4.9. Comparison the normalized uniaxial stress o /071,,,, Vs post-peak displacement d;, using

three FE mesh sizes: 150 mm, 200 mm and 300 mm: (a-b) tensile response for the WLF; and WLF models,

respectively; and (c-d) compressive response for the WLF, and LLF models, respectively. The following

additional parameter are used. For the LLF model: CT=6000, C~=500; and WLF model: f; =20 MPa,
E; =0.5E,and E; = 0.5E,,.

In conclusion, identical results as in the 3D-case are obtained in all test simulated, with
the exception for the mesh regularization test, where some differences in the responses of
the LLF and WLF models are observed. It should be noted that completely different
formulations are used for the plastic component of the DPH, LLF and WLF model respect
to the 3D-case, for which it can concluded that the numerical implementation of these

concrete models are correctly applied in the plane-stress case.
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3.5. Summary and main results

This chapter study the epistemic uncertainty of five plane-stress continuum stress-strain
local constitutive concrete models. As for the 3D-case, convergence problems are en-
countered in certain cases, especially in strain-softening regimes. Herein, a complete de-
scription of these models in a common vectorized and notation was presented, providing
all the necessary steps required to ensure adequate convergence and a consistent numer-
ical implementation. Analytical expressions for the updated stress algorithms and new
explicit expressions for the algorithmic consistent tangent stiffness matrices were devel-
oped. Moreover, similar to 3D-case, numerical benchmark test examples are evaluated for

each model. The main results obtained from these part are:

e The construction of a strong updated stress algorithm were necessary to get an
adequate response of the models developed. Implicit schemes with the pro-
jected return-mapping algorithm were considered for the plastic component of
models, whereas explicit schemes were used for the damage ones. Furthermore,
the consistency plastic operator of the DPH, LLF and WLF models was solved
with the iterative Newton’s method, where a choice of adequate initial value
and solution of an unique scalar variable rather than a system of equations were
mandatory to ensure the convergence of this component. Moreover, continu-
ous and smooth functions (C'-class) for the elaboration of the consistent tangent
stiffness matrix were used to achieve the convergence of these models. Smooth
yield criterion, flow potential and uniaxial laws are taken in the operator of these
models. In addition, the incorporation of the Duvant-Lions viscous model in
the constitutive equations of the LLF, WLF, FOC and ROT models was proved
as a simple and robust technique to overcome convergence problems caused by
strain-localizations in these models.

e All models, with the exception of the DPH model, simulates the strain-softening
behavior, where the LLF, WLF and FOC models predicts the inelastic strains and

stiffness degradation, whereas the WLF model without plastic strains (WLF)
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and the ROT model both unload to the origin (pure damage models). Also, all
models, except the ROT model, incorporate the biaxial effect adequately since
they include the Drucker-Prager yield criterion in their equations. Moreover,
with the exception of the DPH model, all models simulates the unilateral and
strain-rate effects correctly. It is observed that the tensile response is more sen-
sitive to strain-rate increments than the compression response for all models.
However, a poor fit is obtained relative to experimental test.

Moreover, all models give a mesh-objective response with a localized damaged
zone if a perturbation exists in the material of a FE model. Conversely, not all of
the models have an uniform strain field if there are no imperfections, where the
WLF and FOC models localize under tensile loads, whereas the LLF model lo-
calizes both in tension and compression. In contrast, the WLF; and ROT models

do not localize if we have a perfect material.
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4. CONCLUSIONS

This research evaluates the epistemic uncertainty associated with computational modeling
assumptions of reinforced concrete (RC) structures using different scales ranging from
complete structures to the type of finite elements used. Because of their complexity, lin-
ear models were used to estimate the dynamic response of six RC free-plan buildings
modelled in different softwares. For the inelastic models, finite element stress-strain con-
stitutive concrete models were considered. This structure corresponds to the different
chapters of this work: (i) uncertainty of linear building models; (ii) uncertainty of stress-
strain constitutive concrete models using a three-dimensional (3D) formulation; and (iii)
uncertainty in stress-strain concrete models using a plane-stress assumption. The main

conclusions obtained in this thesis are:

e Building models with solid elements (AW) provide the best approximations to
experimentally measured periods of RC free-plan buildings, with errors smaller
than 13% for the first four periods. Models with beam and shell elements (ET
and AP), as well as for the AW models, lead to a peak error of 17% for the
predicted first two periods. In spite of this, the standard deviation of the errors
to the different response parameter ratios obtained for the three models (ET, AP
and AW) was smaller than 11%.

e The stiffness of the diaphragm is an important source of epistemic uncertainty.
Indeed, the first four periods may reach values up to 10% and down to 27%, rel-
ative to models that consider either in-plane and out-of-plane stiffnesses. More-
over, the variation of the in-plane stiffness of the diaphragm generates large un-
certainty in the shear forces of the wall mainly in the first basements due to the
so-called back-stay effect. Normalized shear forces for the core vary between
0.57 and 4.29 times in the first basement, with a standard deviation of 112%.
In contrast, the bending stiffness of the diaphragm affects story shear forces in

higher stories more than variations of the in-plane stiffness of the diaphragm.
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The normalized story and core shears at mid-height of the buildings (H/2) var-
ied between 0.75 and 1.44.

The soil-structure interaction model considered generates larger uncertainties
in the story shears, leading to variations of the normalized story shear of the
last basement between 0.03 and 4.79 times. Also, the influence of the level of
building fixity leads to changes in the first building period from +10% to +18%
relative to a model without basements. In all cases, peak responses occurred
when the fixity was imposed at an intermediate basement level. This condition
supports the observation that selecting an arbitrary basement level to impose
the code minimum-design base shear is an incorrect practice and can generates
incorrect designs. In conditions of uncertainty of the correct level of fixity, the
designer should use the envelope of the designs generated by the different level
of fixity.

For all studied modelling assumptions, larger uncertainties were identified for
forces at the shear wall core (shear and overturning moment) than for the story
forces. Additionally, larger uncertainties were identified for story and core shears
at the basements (B1 and BF) than for the upper levels (H/2 and L1).

Due to the several sources of uncertainty, it is recommended to use the following
assumptions in modeling RC free-plan buildings: (i) adopt a FE model with shell
elements for walls and unidimensional frame elements for beams and columns
rather than solids elements; (ii) consider the in-plane stiffness of the diaphragms
at the basements to reduce the back-stay effect in FE models; (iii) develop two
models, one that includes and other that neglects the contribution of lateral soil
stiffness, and compute the envelope of story basement forces; (iv) generate at
least two models with different levels of fixity at the basement level, and evaluate
the envelope of story shears and element forces as well as the code minimum

design shear for each case.
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e Chapters 2 and 3 present a consistent notation description of five stress-strain
concrete models together with all ingredients necessary for a correct numeri-
cal implementation of the models. This implies analytical expressions for the
updated stress algorithms, explicit expressions for the consistent tangent stift-
ness tensor, consistency checks of input material parameters between models,
and an adequate conversion from tensors and tensor operations to a vector for-
mat. Furthermore, numerical examples of benchmark tests were developed un-
der uniaxial, biaxial, and triaxial stresses. The unilateral and strain-rate effects,
the mesh size influence, and the strain-localization phenomena were analyzed
for all models.

e A robust updated stress algorithm was developed to ensure an adequate conver-
gence for all concrete models. Tensor notation was considered for the 3D-case,
whereas vector notation for the in-plane components of tensors were used for
the plane-stress formulation. Implicit schemes with a return-mapping algorithm
were considered for the plastic component of models, while explicit integration
schemes were used for the damage ones. Furthermore, continuous and smooth
functions (C!-class) for the elaboration of the consistent tangent stiffness ten-
sor were used to improve model convergence. Smooth functions for the yield
criterion, flow potential, and uniaxial laws were also considered to calculate the
stiffness operator of all models. In addition, the use of the Duvaut-Lions viscous
model in the constitutive equations of the LLF, WLF, FOC and ROT models
was tested as a simple and robust technique to overcome convergence problems
caused by strain-localization phenomenon. It is highly recommended to use a
ratio of numerical viscosity/load step increment between 0.001 and 1.0 to obtain
adequate convergence without overshooting the stress response.

e Several benchmark tests were simulated to describe the main capabilities of the
set of concrete models. It was observed that all models, with the exception of

the DPH model, were capable of simulating the strain-softening behavior. The
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LLE, WLF and FOC models predict the inelastic strains and stiffness degra-
dation, whereas the WLF model without plastic strains (WLF;) and the ROT
model, both, unload to the origin of the stress-strain relationship (pure damage
models). Moreover, all models, with the exception of the ROT model, incorpo-
rate the biaxial effect adequately due to the incorporation of the Drucker-Prager
yield criterion in the equations. Further, for the 3D-case, only the LLF, WLF and
FOC models can simulate the triaxial effect correctly, whereas the WLF model
can correctly simulate also the volumetric expansion (dilatancy). In addition,
with the exception of the DPH model, all models adequately simulate the uni-
lateral and strain-rate effects; however, a poor fit is observed with respect to the
benchmark experimental tests. All models give a mesh-objective response with
alocalized damaged zone if a perturbation is introduced in the material of the FE
model. Conversely, some models lead to a uniform strain field for a nominally
perfect model, with the exception of the WLF and FOC models, which localize
under tensile loads, whereas the LLF model localizes both in tension as well as
compression.

The epistemic uncertainty observed in the response of a concrete prism is enough
to asses correctly the sensitivity of these concrete models. Thus, it is concluded
that the unloading-loading linearized stiffness of the last cycle, K., for the uni-
axial cyclic tension and compression test, and the energy dissipated by the last
loading-unloading cycle G, of the uniaxial tensile test, are the most impor-
tant sources of epistemic uncertainty given the stress-strain constitutive concrete
models considered. Moreover, a significant level of uncertainty was observed
in some response variables for the triaxial monotonic tests due to the simplified
term considered in the equations to simulate this effect. Also, a considerable
source of uncertainty exist in the peak stresses for the strain-rate case for high
strain-rates over 107!/ s, both in tension as well as in compression, with val-
ues up to 2.74 times the ones obtained through experimental tests, mainly due

to the use of the viscoplastic Duvaut-Lions model. In contrast, low uncertainty
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was observed in peak stresses o, for all test simulations, with the exception of
strain-rate case over 10~!/s. Standard deviation values reach up to 7.3%.

e Finally, identical results were obtained for the 3D and plane-stress formulations,
despite the fact that the equations developed for the plastic component of the
models are completely different. This serves as a validation of all of the algebra

and computational implementation of the different models.
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APPENDICES A.  SOME USEFUL IDENTITIES

1. THREE DIMENSIONAL FORMULATION

1.1. Basic identities

First, let A, B and C second-order tensors. Then, the following identity is satisfied

AB:C)=(A®B):C=(A®(C): B. (A.1.1)

For the other hand, any second-order tensor can be decomposed in their deviatoric and

hydrostatic part as follow

Adev = IdZ A=A— %tr(A)I, (A12)
1 1
Aot = gtr(A)T = 5(I: A1, (A.1.3)

where Z, is defined in Table I1.0.1 and tr(-) denotes the trace of tensor. It can be probed
that Z,: Z, = Z,. Moreover, applying this decomposition to the stress tensor o = s+pl,

it can be written as

s=1I,: 0=2G0O°, =1, €, (A.1.4)
1
p=§(I: o) = Kej, e =1T: ¢ (A.1.5)

where s is the deviator of stress (or deviatoric stress) tensor, p the hydrostatic stress, G the
shear modulus, K the Bulk modulus, 8¢ the deviatoric elastic strain and £ the volumetric
elastic strain. Moreover, the stress o and elastic strain tensor €° can be related according

to the relation o = D, : €°, where D, is the linear-elastic stiffness tensor given by

D, =T+ KIQI=2uT,+ N1, (A.1.6)
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where p and A are the Lame’s constants (1 = (). Hence, substituting Egs. (A.1.2)

and (A.1.3) into this relation, gives the follow expression

De A= ZMAdev -+ KAvol- (A17)

1.2. Spectral decomposition

The spectral decomposition of a second-order tensor A is defined as

N
A=) aE} (A.1.8)
=1

where a; is the i-th eigenvalue and E¥ the i-th eigen-projector tensor defined as

EZ =v' ®, (A.1.9)
with v’ the i-th column of eigenvector matrix V..

1.3. Differentials
First, the differential of the norm of tensor ||A|| = (A: A) is expressed as
d|A| = |A|"* (A: dA). (A.1.10)
Next, let ¢(A) a scalar variable that is in function of tensor A, and B any other tensor.
Then, the differential of product Bc(A) is given by

d(Bc(A)) = c(A)dB + (B ® 5—2) . dA. (A.1.11)

For the other hand, using Eq. (A.1.4) and the identity Z,;: Z;, = Z,, the following

relations can be derived for the deviatoric elastic strain tensor

d0¢ = T;: de®,  6°: dO° = 6°: de. (A.1.12)
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Also, using this relation, the differential of invariants J,, ¢ = +/3J> and p can be

written as
dJ, = s: ds = 44%(0: de), (A.1.13)
3 642
dg= 2s:ds =20 de), (A.1.14)
2q q
1
dp = g(I; do). (A.1.15)

For other hand, (de Souza Neto et al., 2008) demonstrate that the differential of ¢-th

eigenvalue of tensor A is given by

da; = E%: dA. (A.1.16)

Moreover, the differential of eigenvalue tensor is written as

dA = F,: dA, (A.1.17)

where F = 2Z2 is a fourth-order tensor. In addition, (Faria, Oliver, & Cervera, 2000)

demonstrate that the differential of i-th eigenprojector E¥ is expressed as

Z Ejg ® EY): dA, (A.1.18)
J#Z

where Efg = %(yl ® v’ + v/ ® v'). Hence, using Egs. (A.1.4) and (A.1.17), the dif-
ferential of the principal stress and deviatoric stress tensor can be written, respectively,
as

do =F,: D,: de°, (A.1.19)

ds =2uF,: Ly de°. (A.1.20)
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1.4. Heaviside function and their approximation

The positive/negative Heaviside function H*(x, ) are defined as

1, £+x>0
HE(z) = H(Ez,90) =y, 2=0 . (A.121)
0, +r<0

where v is a arbitrary value € [0, 1] (usually assume a value of 0, 1 or 1). Then, this

stepped function can be approximated with several C*-class functions H *(2), e.g.

H*(z) = % [1 4+ tanh(kz)] = (1 + exp(—2kz)) ", (A.1.22)

with k is an arbitrary parameter such as limy_,, H*(z) = H*(z,1). Then, its useful ex-
press the absolute and McAuley functions in terms of the approximated Heaviside function
as follows

2| = (2ﬂ+(a;) - 1) v, (o) = +H* @) (A.1.23)

Finally, taking this relation, the differential of absolute and McAuley function are

expressed as

dH+ . dH* -
djz| = [2( - I+H+> _ 1] de,  d{x)t = :I:( - x+Hi> dz, (A.1.24)
X i

T— T+
where ¢1— — 4™
dx dx
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2. PLANE-STRESS FORMULATION

2.1. Plane-stress relations

In plane-stress condition, the Cauchy stress and strain tensor are assumed as

o1 o2 0 enn €12 0
03= |02 022 Of, €3 = |e19 €90 O |- (A2.1)
0 0 0 0 0 £33

Now, mapping this tensors onto plane stress subspace, i.e. considering only the in-

plane stress and strain components for the respective tensors, gives

011 012 €11 €12
09 — s E9 — . (A22)

012 022 €12 €22

Then, converting this tensors to vectorized format using Voigt's notation, gives the

respective vectors
. T . T
o = Voigt(as) = [011,092,012]" , € = Voigt(ez) = [e11,€22,2612] . (A2.3)
Moreover, the stress o and elastic strain vector £° can be related with the relations

o =D e and e° = C_ o, where D, and C, are the linear-elastic stiffness/compliance

matrix, respectively and are expressed as

1 v 0 1 —v 0
E, 1
D, = v 1 0 , C.=—|-v 1 0 1. (A.2.4)
1— 2 E,
1—v Eo
0 0 0 0o —
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Moreover, the deviatoric stress tensor ss, defined as s3 = o3 — %I 3, 1S expressed as

s11 812 0 1 2011 — 09 3012 0
83 = |S12 S22 0 = g 30’12 —011 + 20’22 0 . (AZS)
0 0 s33 0 0 —(o11 + 092)

Now, the invariants /| = o3: Is and J, = %833 s3 are correctly defined in the plane

stress condition using the follow relations

1

[1 = lT£7 JQ = égTﬁa (A26)
where P is the projected matrix given by
2 -1 0
P = L 1 20
—_— - 3 -
0 06

Additionally, the elastic €55 and plastic out-of-plane strain £5; can be derived, re-
spectively, as follow. First, the out-of-plane elastic strain €4 is obtained from the three-

dimensional elastic stiffness tensor as

€53 = _Ei(,((fll + 022). (A.2.7)

In contrast, their respective plastic component €4, depends of equations considered for

each concrete model (see Section 3.1). Although, in all cases, considering a generic flow

potential G3 expressed in terms of 3D stress tensor o3 and other hardening variable q,.
Then, the flow rule is given by

gl = YN, (A.2.8)

where N3 = g%*é is the flow tensor. Then, the evolution laws of out-of-plain plastic strain

can be expressed as ¢4, = I3: €P, with I3 = diag(0, 0, 1). In addition, the evolution law
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for the volumetric strain is written as

1
gy =0 + P = tr(ef) + tr(ef) = TP+ Atr(IN3). (A.2.9)

2.2. Spectral decomposition

The spectral decomposition of a second-order tensor A is defined as

N
A=) uE] (A.2.10)
=1

where G; is the i—th eigenvalue and E’ the i—th eigen-projector tensor given by

Ej=v'®v', (A.2.11)

with v° the i—th column of eigenvector matrix V. Then, this decomposition can be con-

verted for a vectorized tensor a = Voigt(A) as follow

N
a) el =E,a, (A.2.12)
=1

where @ = Voigt(A) is the vectorized eigenvalue tensor A, e’ = Voigt(E%) is the i—th

vectorized eigen-projector tensor and £, is the eigen-projector matrix written as

E,=[e). e’ €. (A.2.13)

a Ta 1 &a )y Za

Moreover, using Egs. (A.2.4), (A.2.12) and (A.2.13), the follows identities are satisfied

I-E'RE,, P=E'PE,, (A.2.14)
D, - E'R’D.E,, C. =-E'C.E, (A.2.15)
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where I = diag(1,1) and D,, C, and P are given by

. E, 1 v . 1 1 —v . 1 2 -1
D, = 5 ; C.=— , P=- . (A.2.16)
L=v21, 1 Eo |y 1 31-1 2

Then, multiplying both sides of Eq. (A.2.12) by the matrix E” R and using the left
side of Eq. (A.2.14), the eigenvalue vector and their respective —th component, can be

expressed as

=F.a, a; = e;;Ra, (A.2.17)

ISE

with F', = EZE. In addition, using Egs. (A.2.14) and (A.2.12), the invariants /; and .J,

can be expressed in the principal space as

=176,  Jy=-6"TP6. (A.2.18)

2.3. Differentials

Next, let ¢(A) a scalar variable that is in function of vector A, and B any other vector.

Then, the differential of product B¢(A) is given by

d(cb) = cdb + (g ® gc) da. (A.2.19)

da
For the other hand, the differential of variable z = o Po = 2.J, is given by

dz = (do" Po + ¢" Pdo) = 2v,,,do, (A.2.20)

where v,,, = Po. Then, the differential of invariants ¢ = +/3J2 = 4/ %z and r =

\/¢* + €2 can be written as

3 3
dg = —dz = —QdTevdg, dr = —dz = —v?! do. (A.2.21)
4q 2q
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Now, using the relation Eq. (A.2.17), the differential of eigenvalue vector and their i-th

component are written, respectively, as

da =F,da,  da; =e;" Rda. (A.2.22)

In addition, (Faria et al., 2000) demonstrate that the differential of i-th eigenprojector

vector €% is expressed as

N
de}l =2 [Z m(gaf ®e?)| Rda, (A.2.23)
J#i
where e;; = 3Voigt (v’ ® v/ + v/ ® v'), with v’ the i-th column of eigenvector matrix

V. In addition, using Eq. (A.2.18), the differential of invariants expressed in the principal
space ¢ = 4/ %2 and 7 = \/¢? + €2 can be written as

3 3 3 3
d(j - 4_qu2 B Q_qA@gevdi’ dr = —dz = _A;z;evdi‘ (A224)
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APPENDICES B. n CONVERSION OF TENSORS AND THEIR OPERATIONS
TO VECTOR AND MATRIX FORMAT

This section detailed the conversion of some useful tensors and their operations to
vector/matrix representation (vectorization and matricitazion) for the 3D case (N = 3)
necessary to implement numerically the concrete models. This conversion is elaborated

keeping identical results between tensors and vectors/matrix representation.

First, to elaborate this conversion, any symmetric second-order tensor A = A;; can be

written as
A A Ag
A= Ags  Aogs| - (B.0.1)
sym Ass

Then, this tensor can be vectorized in a RY vector using Voigt’s notation as a =

Voigt(A), where Voigt(-) operation is given by

Voigt(A) = [A11, Aga, Azz, A1a, Ass, Ars]”. (B.0.2)

]R2NxN

Moreover, any third-order tensor A3 can be represented in a matrix as A; =

Matrz(A), where Matrs(+) operation is expressed as

Matrs(A) = [a', @’ - ,a"], (B.0.3)

where a” = Voigt(A") and A¥ = Al;. In contrast, any symmetric fourth-order tensor

A = A, ., that satisfy the condition A;.;; = A, = A, can be matricized in a R2V#2N
J y J J j
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matrix as A = Matr,(,A), where Matry(+) is given by

Allll A1122 A1133 A1123 A1113 A1112

Agonr Asazn Azazs Assas Aoz Asoro
A A A A A A

Matry(A) = 3311 Asszz Assss Asszs Asss Assiz| (B.04)
Agzin Aszzo Asszz Aosaz Asziz Awsio

A1311 A1322 A1333 A1323 A1313 A1312
_A1211 A1222 A1233 A1223 A1213 A1212_

This condition occur e.g. when a fourth-order tensor A is elaborated by two symmetri-
cal second-order tensors B and C, thus A = B ® C. Moreover, if the fourth-order tensor
satisty the relation A;;i; = Ag;j, their representative matrix A is symmetric. Example
of this is when a fourth-order tensor A can be defined as the product of two identical

second-order tensors B, thus A = B ® B.

Table I1.0.1 shown the conversion for some useful tensors and their operations used in
this article. Additionally, the following special cases are considered. The relation between

stress € and strain tensor € (Hooke's law), can be converted as follows

0d=D.:e —0=D.e, (B.0.5)

where o = Voigt(o), D, = Matry(D.) and e = RVoigt(e) is the strain vector with en-
gineering strains, thus € = [£11, €22, £33, 713, V23, 712]T, which is commonly used in com-
puter software. Moreover, using this strain vector, the inverse relation can be established
as

e=C..o—e=C_0, (B.0.6)

where C, = Matry(C,.)R?. Similarly, the inner product between any second-order ten-
sor A and the strain tensor is convert as A: € — a’e. Also, the double inner product
among any two second-order tensors A, B and the compliance tensor C. is converted as

A:C.: B—a’C.b.
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For the other hand, the inner product between two eigenvalue tensors A and B can
be converted as A: B — QTQ Also, the relation Z;: Z;, = Z, can be converted as
— I,RI, = I,. Finally, the relations of Egs. (A.1.19) and (A.1.20) can be converted as
follows

do = E'"RD. de  d5=2uE"RI de. (B.0.7)
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APPENDICES C. CALCULATION OF SOME DERIVATIVES OF CONCRETE

MODELS FOR 3D FORMULATION
1. DETAILED CALCULATION OF DERIVATIVE % FOR LLF AND WLF MOD-

ELS

98y ax.

This appendix present the steps necessaries to determinate the derivative 5

pressed in Eq. (2.3.110) required to calculate the consistency operator A~ for the LLF
and WLF models. Specifically, they are developed the derivatives for the LLF model,
due that is more general than the WLF model. For the sake of simplicity, is omitted the

subscript 'n 4+ 1’ in all variables hereafter. Also, all derivatives are taken with respect to

O0Ay

variable ¢ and the variable A+’ is denoted as the derivative o0

First, using the relations 7 = /¢ + €2 and w = ¢/7, it follows that their derivatives

are given by

oF O

- 1 —— —a C.1.1
with @y = €?/r®. Next, using the chain rule, the derivative of variable ¢, given by
Eq. (2.1.17), is expressed as ‘g‘? Y 6" , where ® is defined in Eq. (2.4.146). More-

over, using Eq. (2.3.98) and Eq. (C.1.1), the derivative of updated principal effective stress

tensor can be written as
oo

=" (A7 Bo+ 298y, (C.1.2)

where By = 3uu‘)itr—|—ﬁK Tand B, = 3/@02“. Similarly, using Eq. (2.3.96), the derivative

of updated principal effective flow tensor is expressed as

e (C.1.3)

Also, using the chain rule, the derivative of variables Qi and Qi (Egs. (2.3.105) and (2.3.106))

: 0E _ 9p 03 1 9o an
are given by P = o and 22 — 7F onF o7 . Then, the derivative of the variables ¢*
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(Eq. (2.3.104)) are expressed as

ago 0o Ok*
=05 = —ei JE— C.14
8q 2 0q oq’ ( )
where J;'E = g‘;—j Hence, using the obtained relations, the derivative of the variables

h* = n* T are given by

Oh* A4t & I T I a -
i 0, P: (Av By + AvBl) + b —— BT + b7, (C.1.5)
with by = AiHiJi and by = 3agp £ Consequently, using this relation, the deriva-

tives of hardemng variables x* are expressed as

Ok*

00

+
Aia/{/

= bEAY + b Ay + Avbio 5 (C.1.6)

where bi, = h* — Afyﬁiﬁi(@: By) and bE, = b¥ — Ayit0E(®: B,). Solving this

equation, the derivative 2= can be rewritten finally as

8’

oK™

= bE Ay + b Ay, (C.1.7)
9q

with b3 = b by and b = bi b, with by = (1 — Avbiy) L. Then, using these relations
and the chain rule, the derivatives for the positive/negative uniaxial effective stress o+ law

are expressed as
oo+ B 06+ O™
0g  Ok*T 0g

= b AY + b Ay, (C.1.8)

where b = j,fi)gt and b = j,fi)ff, with J* = g#:; their hardening modulus. Moreover,
the derivative of updated parameter (3, given by Eq. (2.3.107), is written as

op

= bs A + bg A, (C.1.9)
g
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where bs = =% (5tb; — 57 b3) and bg = (l—a( *b, — &b} ). Then, the derivative of

(_,
the variable p; = SH'(5,) + 6H (&) is expressed as
op

L — b A+ by Ay, (C.1.10)
oq

where by = bsH(64) — fpabos and bs = bgH™(5) — pabrs, with py = 58H+ + 02U

60'+ ’

boy = 3uwt'T + 7K and by, = 3paol”.

Finally, the derivative of numerator and denominator f;, f, of expression Eq. (2.3.109),

can be written as

Of,  Op1., 05~

_-— == 11— = by Ay + bgA C.1.11
aq aq 0 — ( Oé) 6(] TR =+ 0 e ( )
an = 3 a—w + a—lo_lb0+ + 16 0+ bg + bloA’}/ + bnAﬁ/, (C112)
8q 8q 0q oq

where b; to by are constants expressed as
by =b00" — (1 —a)by,  by=bgo™ — (1 — )by,

by = 3pag (1 + ,51?5:) ; bio = zA)750+> biy = bgbos-

Thus, the derivative of discrete consistency operator Ay can be expressed as

1
2

Solving this linear algebraic expression for the variable A4/, gives the expression of
Eq. (2.3.110). It should be noted that, setting the variables /7 = 1 and ZA)liO = 0, it can

obtain the expressions adequate for the derivatives of the WLF model.
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2. DETAILED CALCULATION OF DERIVATIVES TO SOLVE HARDENING VEC-

TOR < FOR LLF AND WLF MODELS
This appendix present the steps necessary to determinate the derivatives expressed in

Eq. (2.3.113) required to calculate the hardening vector & = [xT, x~]Z. For simplicity of

the presentation, there are omitted the subscript ’,, 1’ in all variables hereafter.

Derivative 52
o

9 _ 35

OH
In this subsection, the derivatives are taken with respect to principal effective stress

5= = 3% the Eq. (C.1.1) and the chain rule, the deriva-
o q

tensor o. First, using the relation

tive of positive/negative part of principal effective flow tensor, given by Eq. (2.3.97), can
(C.2.1)

be expressed as
do
— &, the derivative of the variable (*

007

oo
03 ®. Thus, the derivative of the variables h* = p*n*
(C.2.2)

with a3 = 9/4ay. Next, using the relation
dpr
o

(Eq. (2.3.104)), is written as
oh* . 2 oA
— = nT05® + azpTtit”.

are given by
Jo
Hence, rewritten this relation in a matrix format, the derivative of matrix H can be
(C.2.3)

expressed as
0H
oo
where 2 and Z are matrices given by
ater 0 0 5 et 0 0
T 0 0 @ iv
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80’
Derivative -2 aT and RreY

In this subsection, the derivatives are taken with respect to variable A~. First, using
the relation 7 = /¢% + €2 and Eq. (2.3.101), the derivative of variables 7 and ¢ are given
by

or oq ow
= wq — =3 A . C24
oA, 0T 9A~ “(8A 7+w) ( )
. . . —_ — . . Ow _ oa .
Moreover, the derivative of the relation w = ¢/7 is given by m = aoﬁ, with
ao = €2 /7. Thus, inserting Eq. (C.2.4) into this relation, the derivative 22 Ao A can be solved
as
ow
—— = —3UG2W C25
aA’}/ Haw, ( )

where ay = doa; with @, = (1 + 3uagA~y)~!. Finally, using this relation and Eq. (2.3.98),

the derivative of principal effective stress tensor & is given by

oo

Ay

Derivative O

In this subsection, the derivatives are taken with respect to hardening vector kK =

kT, H_]T. Also, the variable A+’ is denoted as the derivative %. First, the derivatives

of uniaxial effective stress 5+ (x*) laws are expressed as

folone J 0
o — Qi, 24’ — , Q_ = _ , (C27)
with J¥ = g—:; For other hand, using the chain rule, the derivative of the principal
effective stress tensor can be expressed as % = ®A’y w1th glven by Eq. (C.2.6).

Thus, the derivative of the maximum principal effectlve stress is written as

o, _ — hyAY, (C.2.8)
£
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where hy = —go+ + 9p2@w AT, with 130+ =1I: éo and tifﬁ = I:t". Next, using
Eq. (C.2.7), the derivative of variable 5 (Eq. (2.3.107)) is given by
B (1-a) i

o (or)p o W= gtvT — vt = "l (C.2.9)

Then, the derivative of variable 5, = SH"(5,) + 6H (5. is expressed as

apAl 7+ /2 (1 B Oé) ~ /
P H (‘H)Wﬂo + p2ho A7y, (C.2.10)
where py = 8 % +9 %. In addition, using Eq. (C.2.5), the derivative of variable IQJOJF

(Eq. (2.3.99)) is written as %2 = —9p’a,wt; A,

Finally, using this last relation and Egs. (C.2.5), (C.2.7) and (C.2.10), the derivatives
of the numerator f, and the denominator f, of expression Eq. (2.3.109) can be written,

respectively, as

af_l 3$F[+(5‘+) — I

oK (1-a) (Wﬁo —v | + 0y phoAY (C.2.11)
8f _ ~ Str . ~ ~ N (1 _ Oé)

a—; = [—9M2a2w(1 + plitJr) + bO+p2h0] M’ + bO+H+<U+)W20. (C212)

Thus, using Egs. (2.3.99) and (2.3.109), the derivative of discrete consistency operator

A~ can be expressed as

1 Ofi _ O fs 1 .
= fo <aﬁ Maﬁ) == b+ LAY), (C.2.13)

where [, and L; are given by

o)t . - .z
lO = (1 - Oé) (%20 - Q_) 5 Ll = pghoal + QHQGQQUA’}/(l + pltji) (C214)
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Finally, solving the linear algebraic expression of Eq. (C.2.13) for &’ gives

1
Ay = —— 1. C.2.15
E (f2— L) ( :

oH

Derivative %
K

In this subsection, the derivatives are taken with respect to hardening vector «. First,
i ivati ion ot = 0% is gi gt _ 00y _
using Eq. (2.3.104), the derivative of relation o= = 6705 is given by 75 = 07 5% =

g&&f JE. Then, the derivative of the relations h* = ¢*n* are given by

Oh*t . 0p%
OK=T OK*

~

1 -
g—iniefjj = b, (C.2.16)

Thus, the derivative of matrix H is given by

oOH . T
T = U = diag (B b10) - (C.2.17)
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APPENDICES D. DETAILED CALCULATION OF SOME DERIVATIVES OF
CONCRETE MODELS FOR PLANE STRESS FORMULA-

TION
1. DETAILED CALCULATION OF DERIVATIVE % FOR THE DPH MODEL

This appendix present the steps necessaries to determinate the derivative ;TF ex-
Y

pressed in Eq. (3.2.93) and required to calculate the consistency operator A~ for the DPH

model. For the sake of simplicity, is omitted the subscript ’,,, 1’ in all variables hereafter.

. . Oz Ja
Derivative By and pret

In this subsection, the derivatives are taken with respect to variable A~. First, the
derivative of variable ¢ = \/g Vzand r = \/q? + € are expressed as

dg 3 0z or 3 0z

- - —_- == ) D.1.1
0Ny 4qOAy’ OA~y  4r OA~ ( )
Next, using Eq. (3.2.89), the variable = = o? Po can be expressed as
y = tr TBZPTtr
1~ r 7 r T
= gb%(Tﬂ)Z + bg [(7’52)2 + 2(7'52)2}
1
= 29101 + 9203, (D.1.2)

3

where g; = 7% — V2M\jAy and g5 = (78%)% + 2 (71%)*. Now, the derivative of variables
ai, as (Eq. (3.2.88)), g1 and g5 are given by

oa 0 oa 0
az; = —\a? <UA78TZW + t), 82? = —2uaz (uA’yﬁ + t) )
o _ 092
= —V27\ = D.1.3
oA V20, a0 (D.1.3)
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where © = —8%. Thus, using these expressions, the derivative of the variable z is written
as
0z 2( 5, 0Ogq 5 Oty 0ay 5 0go
= 2
oAy 3 (algl Gy TIgR |+ 2l g g
2 0z
= -2 (zﬁt + gﬁ)\@%gl + IA uszw) (D.1.4)

where 1) = 2\ajgf + 2ua3gs. Then, solving for this expressoin the derivative of z gives

0z Pt + \/7577)\51%91
= . (D.1.5)
OA~ 3 +puly

Finally, using the relation Eq. (3.2.89), the derivative of stress vector is given by

oo ot
=Q ——T, D.1.
Ay - am—”“’ (0.1.6)
where 5= 83 1s given by
0B _ . (b O O
oAy~ 8\ 9Ay BAY 9AY
T )\Cll 0z (9562 86_12
e [oreom (g o)) s
Derivative gAF

First, using the relation Eq. (D.1.6), the derivative of hydrostatic pressure p is given by

op _ 1,700 \/_8b1 o
oAy 37 0Ay 3 0Ay i

(D.1.7)

For the other hand, using Eq. (3.2.92) and the chain rule, the derivative of cohesion

law is given by
dc Jc Oa

(9Afy da 8A’y

= J.&, (D.1.8)
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where Ja%. Finally, using these relations and Eq. (D.1.1), the derivative of yield criterion

F, given by Eq. (3.2.93), can be written as

oF B \/577 661 Ttr i 0z .
INy 3 OAy M 4g 0N~

£J,. (D.1.9)

2. DETAILED CALCULATION OF DERIVATIVE % FOR THE LLF AND WLF
MODELS

This appendix present the steps necessaries to determinate the derivative % ex-
pressed in Eq. (3.2.115) required to calculate the consistency operator Ay for the LLF
and WLF models. Specifically, they are developed the derivatives for the LLF model,
due that is more general than the WLF model. For the sake of simplicity, is omitted the

subscript ’,, 1’ in all variables hereafter.

.. oz oG
Derivative 957 and oA

In this subsection, the derivatives are taken with respect to variable A~. First, the
derivative of variable § = \/g VZand 7 = \/q? + €2 are expressed as

0q 3 0z or 3 0z
_ 3 or 3 9% D.2.1
0Ny  4q0Ay’ OAy 47 A~ ( )

Next, using Eq. (3.2.105), its convenient to express the variable z = &7 P& as follows

91a; + gods, (D.2.2)
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where ¢, = 7" — V2AAy and §, = (7%2“)2. Now, the derivative of variables a;, a-
(Eq. (3.2.104)), g1 and g, are expressed as

8&1 N 0z — 8&2 N _ 0z _
= —\aj | uA t = —2uas | UAy=——— +1
oAy~ M (“ Tony ) oAy He (“ Tony ) |
ol _ 0Ga
= —V2nA =0 D.2.3
oas = VA ony =0 (D.2.3)
where 4 = —==. Thus, using these relations, the derivative of the variable Z is expressed
as
82 2 29 A 891 A2A 8&1 A 652
== 2
Ay 3 ( Uhgay T9MgaL |+ 20t2g A0
0z
Ut + in)\&lgl + Ay (D.2.4)
OA~
where w = % a3g? + 2pa3Go. Then, solving this expression for the derivative of z gives
Z t+ 2i\a
0 _ Y+ gt (D.2.5)
I L dany
where % is given by
oB . [ ob oby
—— =diag | =——,
0Ay OA~" 0A~
, Aay a0z ]| Oas
=d —= 2 Ay——+1t — . D.2.6

Then, using Eq. (3.2.105), the derivative of principal effective stress vector & is given

by

= =Q" =" (D.2.7)
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Moreover, the derivative of maximum principal effective stress o, = 17 & is written

9y _ V2 s Oy g b (D.2.8)
0AYy 2 L OAy 0A~

as

OF

Derivative A7

First, using Egs. (3.2.105), (D.2.1) and (D.2.7), the derivative of principal effective
flow vector 1, given by Eq. (3.2.98), is expressed as

on 3 o0 L,0B 30z =)\ ..
Ay 27:3BQ (r E)T ) (D.2.9)

Then, their positive/negative part can be expressed as ot _ T 0n

oAy 1. g5, For other

hand, using the chain rule, the derivative of variable ¢ (Eq. (3.1.18)) is expressed as

881’7 <I>T 6‘1" , Where ‘i> is defined by Eq. (3.3.163). Also, using the chain rule, the
+

derivative of variables ch and QQi (Egs. (3.2.111) and (3.2.112)) are given by 00, _ 09

OAy OAy
and 22 aq = 1i gifgg , respectively. Then, the derivative of the variable ¢ (Eq. (3.2.110))
are expressed as
D™ = O 1 oK™
=0T =+ 0T — D.2.10
6A7 2_8 7+gi1 ”8A'y’ ( )

where J,;t = gfi—i. Hence, using these obtained relations, the derivative of the variable

h* = n*p* (Bq. (3.2.109)) is given by

OM i 06 5. 06
05 BT "= 1 b by, D.2.11
oAy TR Gay Thogay T 021D
with by = g%ﬁiﬁli JEand by = o* aaA" Consequently, using this relation, the derivatives

of hardening variables x* (Eq. (3.2.109)) are expressed as

ﬁ:
=h* + Ay <b + b ) (D.2.12)
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with b40 = by +ntoF QT 8" . Solving this equation for the derlvatlve glves
okt - -
827 = bE + Ayt (D.2.13)

N N N n A N N —1
where bE = b, h* and bt = bt bt with b, = (1 . Aybli()) . Then, using this relation

and the chain rule, the derivatives for the positive/negative uniaxial effective stress law 6+

are CXpI’CSSCd as
06+ 0% Ok*

- = bF + Ayt D.2.14
OAy ~ orrony 3 TR0 (D-2.14)

where bf = J¥bF and b = JEbF, with J¥ == 27 their effective hardening modulus.

Moreover, using this relation, the derivative of updated variable 3 (Eq. (3.2.113)) is written

as

0

2 Aﬁv e+ Aryb, (D.2.15)
where b5 = (a 72 ) (6tb; — 6 bi) and b = (1 ‘)1) (6*b; — b} ). Then, the derivative of

variable 3, = SH* (5, ) is given by

0p
OA~

= by 4+ Ay, (D.2.16)

where by = bsH* (1) + 628"1 and by = b6H+( 1), with By = %. For the other
hand, using the relation Eq. (D.2.7), the derivative of hydrostatic pressure p is given by

op _ lir g V2 2 9b, -
oAy 37 0Ny 3 aAfy

(D.2.17)

Finally, using the relations Egs. (D.2.1), (D.2.8), (D.2.14), (D.2.16) and (D.2.17), the

derivative of residual function F of expression Eq. (3.2.114), can be written as

OF _ oon b, ( +B1> fB L Oby 3 0z
17

DA~ T 5AS 2 20Ny 4G 0N~

+ G4 (by + Avybg) — (1 —a) (b5 + Avby) (D.2.18)
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It should be noted that, setting the variables 3 = 1 and Blio = 0, it can obtain the
expressions for derivatives of the WLF model

3. DETAILED CALCULATION OF DERIVATIVES TO SOLVE « FOR THE LLF
AND WLF MODELS

This appendix present the steps necessary to determinate the derivatives expressed
in Eq. (3.2.118) and used to calculate the hardening vector &

K, .. For simplicity of the
presentation, there are omitted the subscript °,, .1’ in all variables hereafter

Derivative 2Z

05

In this subsection, the derivatives are taken with respect to updated principal effective

stress vector . First, using Eq. (A.2.18), the derivative of variables § = \/J, and 7 =
\/q* + €% can be expressed as

o1 _ 3.
aé - 2q——de?)7

or 3 .

06 or dev

(D.3.1)

with v,,, = Po. Then, using these relations, the derivative of principal effective flow
vector n (Eq. (3.2.98)) is given by

on 3 [ ,~ 3.
85' = 2_77;3 (’F E QUdev ®vdev> .

(D.3.2)
Next, using the relation a;;}i = a¢ = @ (Eq (3.3.163)) and 2 2 = 0, the derivative
of variable ¢+ (Eq. (3.2.110)), is written as a- = Gii. Thus, the derivative of variable
h* = po*n* (Bq. (3.2.109)) is given by
oh I on*
— = nt0E® + ot —.
Jo 2 7 oo

(D.3.3)
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Hence, rewritten this relation, the derivative of matrix H can be expressed as

OH . = =~ 0On
= =YyP+Z® =, (D.3.4)
Jo = Jdo
where g and Z are given by
. |ntey A
y=1|_ |, Z=dag(¢¢).
n=o,

Derivative 66A7

In this subsection, the derivatives are taken with respect to hardening vector . Also,
. ) .. 0A ) . ..
the variable A~’ is denoted as the derivative a—'}. First, the derivatives of uniaxial effec-

tive stress o+ (k%) are expressed as

AL | v = (D.3.5)

with JF = g,‘z—i. Next, using the chain rule, the derivative of the principal effective stress

tensor can be expressed as

oles oo
9 _ 99 oA D.3.
or oA, OAY (D.3.6)

Hence, the derivative of the maximum principal effective stress is written as 880 t =

8"* Af)/ In the same way, using Egs. (D.2.1), (D.2.7) and (D.3.6), the derivative of

variables p and ¢ are written, respectively, as

op _ 1.,.00 , \/5 8()1 At '

-9 A~y = 25 Ay D.3.7
ok 3t or 2 T 3 A, (D-3.7)
00 _ 00 Ny 3 0% a (D.3.8)

ok oA =Y T gana=2
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For other hand, using Eq. (D.3.5), the derivative of variable 3 (Eq. (3.2.113)) is given

08 _ (1-a) Foy— Ayt —o7 Y
I e . - D.3.
ok (a+)2 7V v oo Gt (D.3.9)

Then, the derivative of variable 3, = SH*(5.) is given by

aBl 742 M A (93+
=H"(04) (7+)2 Q0+528A’y

Ay, (D.3.10)

where (3, = 3 %. Finally, using all these expressions and the relation 3(5, )" = 3,5 ),
the derivative of the yield criterion F at consistency condition (Eq. (3.2.114)) can be writ-
ten as

oF
— = LAY +1,=0, (D.3.11)
oK

where [, and L; are given by

L= (1-0) (%g—g)

N 331 n B V2. . 832 3 0%z
L — 2 tr i ol _y- tr - .
L= V27 DA~ (3 + 2) 5 72 s T 1A,

Thus, solving the derivative of discrete consistency operator A~' gives

Ay = ——1 (D.3.12)

oH

Derivative 5
K

In this subsection, the derivatives are taken with respect to hardening vector k. First,
using the chain rule, the derivative of variable p* (Eq. (3.2.110)) is given by ‘3:% =
Hfgfi—zi = Q%ij,;t. Then, the derivative of relation h* = p*n* (Eq. (3.2.109)) is given
by

on*t . 09T

1 2+t 7+ 7+
e el ) (D.3.13)
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Thus, the derivative of matrix H is given by

oH . (i ol
T = U = ding (bfo, bw) . (D.3.14)
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APPENDICES E. ALTERNATIVE DERIVATION OF CONSISTENT TAN-
GENT STIFFNESS TENSOR FOR PLANE STRESS FORMU-

LATION
1. ALTERNATIVE DERIVATION OF CONSISTENT TANGENT STIFFNESS MA-

TRIX FOR THE DPH MODEL

This appendix present an alternative calculation for the consistent tangent stiffness
matrix of the DPH model, which are based in the differential of updated stress vector.

9

For simplicity of the presentation, there are omitted the subscript ’,, 1’ in all variables

hereafter.

First, using the relation of Eq. (A.2.21), the differential of updated flow vector, given

by Eq. (3.2.82), is expressed as follows

dn = TQE - g (Qdev ® Qdev) do = Aodg (E.1.1)

23

Then, using the relation dp = 31" deo and Egs. (3.3.145) and (A.2.21), the differential

of yield criterion at consistency condition (Eq. (3.2.93)) is written as

dF = ngdg + ;qyifwdg — £ JadAy = 0. (E.12)

Thus, the differential of discrete consistency operator A+ can be solved of this equa-

tion as follows

m!do. (E.1.3)

§Ja

Finally, substituting Egs. (3.3.138) and (E.1.1) into Eq. (3.3.139), the differential of

updated stress vector is written as

de =D, {dge“ - [A’YAO + (n® m)} dg} : (E.1.4)

1
2 Ja
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Then, solving of this expression the differential of stress vector, the consistent tangent
stiffness matrix can be obtained as

1 —1
Dep: Qel—f—A’yéo—FgQ_Ja(ﬂ@m)

(E.1.5)
It should be noted, that this matrix can be ill-conditioned when .J, = 0 (perfectly
plained in section Section 3.3.

elasto-plastic problem), being suggested the use of the consistent tangent operator as ex-

2. ALTERNATIVE CALCULATION OF CONSISTENT TANGENT STIFFNESS
FOR THE LLF MODELS

This appendix present the steps necessary to determinate an alternative expression of

the consistent tangent stiffness matrix for the LLF models. For simplicity of the presenta-
Plastic component

tion, there are omitted the subscript ’,, 1’ in all variables hereafter.

differential of the effective stress vector. First, similar to Eq. (E.1.1), the differential of
effective flow vector can be written as

The plastic component of the consistent tangent stiffness matrix is calculated from
3 3
dn = — |7°P —
273

(E.2.1)
Moreover, using Eq. (A.2.24), the differential of principal effective flow vector n,
given by Eq. (3.2.98), can be expressed as

- 3 -3
dﬂ Y 7:2P - =
273 2

Then, their positive/negative part can be expressed as

(E.2.2)

dn® = aide,

(E.2.3)
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where Q§ = iﬁ AO. Next, using this relation and Eq. (3.3.166), the differential of harden-

ing variables x* (Eq. (3.2.109)) can be written as

dr® = hEAAY + Ay (goi Tdg + Bliod/fi) , (E2.4)

where & = 057 ® + ¢*ar. Hence, solving this linear equation for the differential of
variable k™ gives

dr* = Avyeg Tdo"™ + ¢d Ay, (E.2.5)

. . . o\l
where ¢t = bi, ¢t and ¢f = by, h*, with by, = <1 — Avbﬁ) . Then, using this relation,

the differential of variable 5 (Eq. (3.2.113)) is given by

dB = ciAy + Avyclyda™, (E.2.6)

where ¢4 and ¢, are expressed as

cio=mber —mTf, e =mTcg —mTcy,

with m* = (1 — a)j,f%. Next, using the relations d17dé, (5,)" = (154, with
51 = /3];7+(5+), and Eqgs. (3.3.169), (A.2.18), (A.2.24), (E.2.5) and (E.2.8), the differential

of yield criterion at consistency condition (Eq. (3.2.114)) is written as
D BN A A R
dF = gfdg + 5o +01dB + fidoy — (1 - a)da™ =0
q

= 1dAy + g/ do, (E2.7)

where ¢; and g | are expressed as

g1 = (1) e — (1 — ) Jy

~ 77“ 3 2~ 2~ F_— o
g, = gl‘i” 2_(‘72(1@@ + Avy (<U+>+QGO —(1—a)Jy Qo) + 31,
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where Bg = Bgémr + 51, with BQ =0 %. Then, the differential of A can be solved as

(E.2.8)
Thus, substituting this relation and do = F,da (Eq. (A.2.22)) into Eq. (3.3.174), the
differential of updated effective stress vector can be expressed as

dg = D, {C.do" ~ [AA,+ (n @ g,) F,| do}.

(E.2.9)
Finally, solving of this expression the updated effective stress vector and introducing
Eq. (3.3.138), the effective elasto-plastic consistent tangent matrix can be written as

_ _ -1
D, =[C.+M4,+(neg,)F,]
Damage component

(E.2.10)
First, using Eq. (E.2.5), the differential of hardening vector dk is written as
dk = AyClda"™ + ¢,dAy, (E.2.11)
where C, and ¢, are expressed as

Q(): [Qa_vg(;}v

ferential of damage variable w can be rewritten as

In addition, substituting Eqs. (3.3.177), (E.2.8) and (E.2.11), the relations do
F.dg, do = D.,: de°™, with ‘f)ep given by Eq. (E.2.10), into Eq. (3.3.179), the dif-

dw = [QlT +wy (MQOT +e® Qlﬂ F,D,de"

(E.2.12)
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where v = «T M, and v, = wI M. Finally, introducing d& = D, de"" (Eq. (E.2.10))

into Eq. (3.3.181), the elasto-plastic-damage consistent tangent tensor is expressed as

D,,=|1-wl-(egev,)F;—(g®uv,) (MQ?{ +¢® g1> Ea} D,,. (E2.13)

Viscous component

Substituting Egs. (3.3.183), (3.3.185) and (E.2.12) into the differential of Eq. (3.2.125),

the visco-plastic-damage consistent tangent matrix is expressed as
Do =61 =)D, + (1= 6) (1 =)L - (2" & v E,

(5" @ w,) (mgﬁ e ® gl> Ec—,} D, (E2.14)
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APPENDICES F. MISCELANEOUS

1. CALCULATION OF PARAMETER F; FOR THE UNIAXIAL COMPRESSION
STRESS-STRAIN LAW OF MAZARS

This section detail the Newton’s method used to calculate the parameters f,” and B~
of the exponential uniaxial compression stress-strain relation of (Mazars, 1984) given by
Table Table 2.5.5. First, the peak strength of uniaxial stress law is given by

fo -1
= F1.1
and their corresponding strain is expressed as ¢, = ¢,/B~, with ¢, = f,"/B~. Next,
introducing the FE-regularization in uniaxial stress law according to compression fracture
energy criterion stated in Section 2.5.2, the parameters B~ and the upper limit of charac-

teristic length [, are expressed in Table 2.5.6. Then, the parameter f_~ is the variable to be

solved, where the residual function and their total derivative are given by

f‘ o(B-D) dR OR OR 0B~
o , = , F1.2
(f) _ fp dfo_ afo_ + aB_ afo_ ( )
where daf—]i 337 and 98- d ;- are expressed as
OR L oe- o) 33 _ [ (B - 1)6(3—71)
6f— B~ (B~)? ’
ey
e , if gy, isused
dB~ 224/ Je+ 5

of; <j ; ,/jc )
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: 267 E, . G7E, , , .
with m, = —=5 and J. = “~. Also, a correction step is added as f,7/*' =
tle

max (f,7*,1072f,) and a tolerance of 1072 f, is adequate to check the residual func-

tion. In addition, a minimum value is imposed in the characteristic length of ™" =

max (lc, 0.14%—;0) to get an adequate convergence of algorithm.
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