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Abstract

Optical Tweezers are a powerful tool that, using a strongly focused laser beam,

allow us to generate optical forces for the manipulation of micro and nano-metric

objects. They have a wide variety of applications in the fields of chemistry, biol-

ogy, and physics [1]. In this thesis we address the issue of a few-body system of

a geometric configuration of optically trapped spheres in water and their hydro-

dynamic and magnetic correlations as they exhibit Brownian motion. Starting

from the Oseen solution to the Stokes equation, a method to find the correlation

displacement functions that characterize the hydrodynamic and magnetic inter-

actions among optically trapped magnetic micro-beads immerse in a fluid in the

low Reynolds number is elaborated. We report the correlation functions and how

they are found for three different geometric configurations with multiple trapped

spheres, following a procedure that can be replicated for different geometric lay-

outs and a greater amount of trapped particles. Some results of measurements

already carried out with the current Optical Tweezers setup are presented, in ad-

dition to further proposed experiments to compute the correlation displacements

functions that were found. Understanding and characterizing magnetic micro-

systems is a topic of great interest, given the multiple applications they have, for

instance, in medicine.
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Chapter 1

Introduction

Optical tweezers are a tool in experimental physics that, using a highly focused laser beam, gener-

ates a three-dimensional stable confinement of dielectric particles. It allows a less invasive manipulation

and study of micro systems. Given their unique mechanism, they have proved useful in many research

areas, such as biology and biochemistry.

Arthur Ashkin was awarded with the Nobel Prize of Physics 2018 for the invention of optical tweezers,

given their multiple applications in the fields of physics and biology. For example the working mechanism

of kinesin, a motor protein that transports vesicles along eukaryotic cells, has been characterized using

optical tweezers [5]. In 1986 Ashkin and his colleagues reported the first observation of a single-beam

gradient force trap: they managed to trap dielectric micro-sized particles in a three-dimensional optical

trap [6]. Ever since, optical tweezers have become an important tool in the study of micro and nano

physical and biological systems [7].

Our goal in this work is to use this powerful tool as a manner to experimentally measure the magnetic

interactions between optically trapped particles, by means of monitoring their position as they are in

a micro-fluid system being exposed to an external magnetic field. The hydrodynamics and magnetic

interactions will be described with the correlation displacement functions of a given configuration of

optically trapped beads. The analytic method to find these functions is presented in the results.

Hydrodynamic and magnetic interactions play a fundamental role in a variety of physical systems

[8], in addition to biological systems, since magnetic micro and nano-beads have numerous applications

in biomedicine [9]. The analysis of how Brownian motion and particle hydrodynamics are affected by

magnetic interactions has not been widely addressed as a few-body problem, unlike the collective behaviour

of a large amount of micro particles in a magnetic field [10]. This analysis might also be relevant in
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CHAPTER 1. INTRODUCTION

the context of spin frustration, since this phenomena occurs in different materials and depends on the

geometrical configuration of the molecules. Triangular or quadrilateral lattices are often found and many

interesting properties are determined by geometric frustration [11].

1.1 History and applications of Optical Tweezers

As already mentioned, Arthur Ashkin was awarded with the Nobel Prize in Physics 2018 ”for the

invention of the optical tweezers and their application to biological systems”. Ashkin was able to use

the radiation pressure of light to move physical objects, “an old dream of science fiction,” said the Royal

Swedish Academy of Sciences, because in fact, radiation pressure was not really a subject of interest until

the invention of the laser in 1960 [12]. The prize was shared with Donna Strickland (third woman to win

the Nobel Prize of Physics in history) and Gérard Mouro, who together developed a method to generate

ultra-short optical pulses.

Arthur Ashkin built the first optical tweezers system in 1970 [13] starting a revolution in the study of

dynamical systems, not only in physics, but also in other disciplines. In physics, optical tweezers have been

used for fabrication in nanotechnology [14] [15], in microrheology [16]; non-equilibrium thermodynamics

[17] [18] [19]; colloidal hydrodynamics [8]; atomic physics [20] [21] [22] [23] [24] [25]; to mention a few. As

for biology: motor proteins (kinesin [26] [27] [28], dynein [29] [30], myosin [31] [32] [33]); the mechanisms

of RNA polymerase [34] [35] [36]; the kinetics of DNA polymerase [37]; double and single-stranded DNA

[38] [39] [40] [41] [42]; the thermodynamic properties of DNA [43]; the structure of RNA molecule and

the thermodynamics of RNA folding [44]; the dynamics of bacteria [45]. Even other complex procedures,

such as modifying the chromosomes of living cells (intracellular surgery) [46] or performing in vitro

fertilization [47]. Many of these optical tweezers include the manipulation of micro and nano-magnetic

particles, which are used for a variety of purposes, such as the diagnosis and treatment of diseases, along

with biochemical procedures [48].

1.2 Magnetic particles and their applications

Magnetic micro and nano-particles play an important role in many natural and artificial processes.

For this reason, it is relevant to characterize their properties and interactions with each other in the

presence of external fields. For example, in nature, many animals use the earth’s magnetic field for

orientation and decision making. Magnetic navigation is indicated in birds, marine turtles, spiny lobsters

2



CHAPTER 1. INTRODUCTION

and cockroaches [49].

Since the early 1990s, micro-fluids is one of the most promising areas of research [9]. In addition, mag-

netic beads are already a consolidated tool in the attachment of biomolecules for biochemical procedures:

detection, analysis, separation, and so on, which are crucial in the treatment of different diseases. There-

fore it becomes crucial to develop a comprehensive characterization of the properties magnetic particles

in micro-fluid environments and their interactions in the presence of external fields.

1.2.1 Magnetic nanoparticles

In biomedicine, magnetic nanoparticles (MNP) are widely used not only in the treatment but also in

the diagnosis of diseases [9]. They are usually smaller than 100 nm and they are incredibly useful due to

their magnetic properties in this size [50]. MNP’s are employed in the detection [51], treatment [52] and

monitoring of cancer and infectious diseases through nanoparticle functionalisation [53], enhanced medical

imaging (MRI) [54], magnetic hyperthermia [55], and targeted drug delivery [56] [57]. For instance,

Hyperthermia is the effect of thermo-ablation produced by an external alternating magnetic field: this

leads to cellular death in cancerous cell and bacteria [58]. This allows the elimination of a tumor using

heat, without having to elevate the whole body temperature.

In addition magnetic nanoparticles are used in biochemical techniques, such as bioseparation, cell

sorting, enzyme immobilization, immunoassays, purification and sensing [9].

In order to characterize the dynamics of a few particle system, along with their magnetic interactions

and hydrodynamic considerations, we need to take into account their geometric distribution.

1.2.2 Spin frustration

In general terms, a geometrically frustrated system is one in which the geometry of the lattice prevents

the simultaneous minimization of all interactions. This effect is relevant in magnetism, where the orienta-

tion of the spins determine different types of magnetism, and the geometrical configuration of the material

can lead to a frustrated system. Geometrical frustration generally results in a degeneracy of ground states

rather than a configuration with a single stable ground-state [59]. This gives rise to interesting magnetic

phenomena and properties of materials [11].

3



CHAPTER 1. INTRODUCTION

1.3 Thesis objectives

The main goal of this thesis is to characterize the magnetic and hydrodynamic interactions between

optically trapped magnetic micro-beads in an array with a few-body approach. Specifically, our objectives

are to:

1. Obtain the correlation displacement functions for different configurations of two, three and four,

optically trapped magnetic beads

2. Analyze the correlation displacement function for two ferromagnetic and paramagnetic micro-beads

with the actual parameters in the experimental setup considering various cases.

3. Measure the auto displacement function for a single optically trapped magnetic particle in order to

determine the stiffness of the experimental setup

4. Propose the experimental measurement of correlation displacement functions of multiple optically

trapped magnetic beads.

1.4 Thesis structure

This thesis is divided into five chapters. In Chapter 2 the background for this work is provided, starting

with the physical principles of Optical Trapping, explained for different optical approaches. Then, we

describe the dielectric particles and their optical trapping, in addition to their hydrodynamics, going into

further detail on Brownian motion. In Chapter 3 the full optical tweezers setup we use in our laboratory

is presented, including how we have developed it and the improvements that are still to be done. In

Chapter 4 we present and discuss the main results of this thesis together with the proposed experiments

that can be carried out. Beginning by the computation of the correlation displacement function of two

optically trapped particles exposed to an external magnetic field, both perpendicular and parallel to the

configuration. We also present the expected results for a measurement performed with optical tweezers.

Next we consider a triangular configuration of optically trapped magnetic beads exposed to an external

magnetic field, and finally the case of four optically trapped magnetic particles forming a square. We

describe the potential experiments that can be executed in order to measure the correlation displacement

function for optically trapped beads. Finally, in Chapter 5 we summarize the objectives and results of

this work, the most relevant conclusions, and further work.
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Chapter 2

Background

In order to characterize the magnetic and hydrodynamic interactions among optically trapped mag-

netic micro-beads exposed to an external magnetic field, we will measure the spatial correlation among

them. The following pertinent topics that enclose this problem are presented as a background: the phys-

ical mechanism behind optical trapping, the hydrodynamics of micro-spheres trapped in a fluid and their

Brownian motion, and finally some relevant results of electromagnetism.

2.1 Physical principles of Optical trapping

Using a highly focused laser beam, a stable three-dimensional confinement of a dielectric particle with

a certain size can be generated. The basic principle that makes this possible is radiation pressure: the

right optical configuration produces a net force resulting from a scattering force and a dominant gradient

force on the dielectric bead that pulls it towards the focus of the laser beam, allowing for its manipulation.

Depending on the ratio between the size of the dielectric particle and the wavelength of the trapping laser,

we differentiate three regimes to model that define optical trapping: ray optics (large particles), Rayleigh

regime (small particles) and Generalized Lorentz-Mie theory (GLMT) for particles of all sizes.

5



CHAPTER 2. BACKGROUND

Plot 2.1 illustrates the validity of each of these three

approaches showing how accurately each of them can pre-

dict the theoretical axial stiffness of optical traps. Both

Ray optics and the point dipole approximation (Rayleigh

regime) diverge when the size of the particle a and the

wavelength λ are similar, which is also interesting since it

is around the point where the stiffness is at its highest. On

the other hand, the generalized Lorentz-Mie theory (here-

after GLMT) is accurate for any ratio between a and λ,

but it requires very complex calculations.

Figure 2.1: Stiffness of optical traps cal-
culated with three approaches: ray optics,
Rayleigh regime and Lorentz-Mie scatter-
ing, adapted from [2].

In the three following sections, we will offer a brief description of each of these three approaches in

the context of optical trapping.

2.1.1 Ray optics

In the geometrical optics regime the particles are much bigger than the trapping laser’s wavelength:

a � λ, with a the particle’s radius. As known, the momentum ~p of a single photon, of wavelength λ is

given by

|~p| = h

λ
, (2.1)

where h is Planck constant.

Let us consider a Gaussian laser beam, in particular, a pair of rays a and b hitting a dielectric

sphere, as shown in figure 2.2. Most rays will refract through the particle due to the change of medium

(depending on the refractive index) and zero surface reflection is assumed. The refraction of optic rays a

and b produces forces ~Fa and ~Fb in the same direction of the change of momentum. The sum of these two

forces, ~F , is the net restoring force directed towards the focus f . In this case, the trapping is stable [60].

The stability depends on the relative refractive indices of the particle and the medium as we discuss next.

6



CHAPTER 2. BACKGROUND

Figure 2.2: Diagram that represents the refraction of two rays (a, b) of an incident laser beam as they interact
with the dielectric sphere. Figure adapted from [3].

2.1.2 Rayleigh regime

Optical tweezers where originally designed for small particles for which a � λ [3]. In this case the

optical trapping is explained by the electromagnetic interaction between the laser beam and the dielectric

particle. The electromagnetic field produced by the laser beam induces a polarization on the dielectric

bead, which can be approximated as a point dipole. The induced dipole ~p, due to an electric field ~E(~r, t)

is given by

~p = α~E, (2.2)

where α is the polarizability, which is a property of the particle’s material.

The bead that is close to the laser beam is affected by a scattering force in the direction of propagation

the laser beam, and a gradient force that decreases radially along with the intensity of the laser [61]

~F = ~Fscat + ~Fgrad, (2.3)

where [62]:

~Fscat(~r) =
128π5a6

3cλ4

(m2 − 1

m2 + 2

)2
n5mI(~r)ẑ (2.4)

~Fgrad(~r) =
2πnma

3

c

(m2 − 1

m2 + 2

)
~∇I(~r), (2.5)

where m =
np
nm

, with np the refractive index of the particle and nm the refractive index of the medium.

7



CHAPTER 2. BACKGROUND

I(~r) is intensity profile of the Gaussian beam [63]

I(~r) = I0e
2r2

ω2 , (2.6)

where I0 is the intensity at the centre of the beam

(maximum), r is the radius of the beam and w the

beam waist.

When optically trapping dielectric polystyrene (could

be silica as well) particles in water

nwater = 1.33, npol = 1.6 =⇒ m > 1. (2.7)

For the bead to be attracted towards the focus of the

laser beam the gradient force must predominate and

m > 1, as shown in figure 2.3.

Figure 2.3: Representation of the laser beam
showing a dielectric bead being attracted to
the focus of the laser due to a predominant
gradient force [1].

2.1.3 Generalized Lorenz-Mie theory

As mentioned before, the GLMT is accurate for whatever size of the particle and wavelength of the

trapping laser. In particular, this works when a ∼ λ, which can not be modelled using either ray optics

or the Rayleigh regime. Mie-theory is broadly used in different areas of physics to explain the scattering

of homogeneous isotropic spheres, and it also involves rather complex calculations [64] that are beyond

the scope of this work, but there are numerous mathematical tools and programs available to solve such

problems. What is remarkable about Mie-theory is that its development includes the modeling of the

scattering of magnetic and coated spheres, which is indeed the case of the magnetic micro-particles used for

optical trapping: polystyrene micro-spheres that acquire their ferromagnetic or paramagnetic properties

from a carboxyl or magnetite coating, respectively.

A description of how the trapping force is generated depending on the size of the trapped particles and

the wavelength of the trapping laser has been provided. In an optical tweezers experiment, the relative

displacements of trapped spheres caused by external forces can be measured. In order to estimate these

forces we need to characterize our optical trap.
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2.1.4 Trapped particles

For small displacements (in this case, of a few µm) the trapping force generates a harmonic potential

well and the system behaves according to Hooke’s law [65], as illustrated in figure 2.4

~F = −κ ·∆~x, (2.8)

where ~F is the force, ~x is the displacement of the bead

from the centre and κ is the stiffness of the trap, a

constant quantity that ought to be found for each

configuration and it will vary broadly depending on

the setup, the size of the sphere, the intensity of the

trapping laser, and other parameters. The stiffness

of the trap characterizes the optical trap and will

determine the order of magnitude of the forces that

can be measured. A trap’s stiffness is of the order of

κ ∼ 10−5 N/m.

Figure 2.4: Representation of a trapped par-
ticle being displaced from its equilibrium po-
sition by a spring of constant κ.

The resolution of the optical tweezers depends on the size of the laser’s beam waist, given by

ω0 =
λ

πNA
∼ 10−6 m, (2.9)

where NA is the numerical aperture of the microscopic objective used to focus the laser. Since dielectric

beads would be optically trapped in water, it is indispensable to know not only the optics behind the

problem, but also the hydrodynamics involved.

2.2 Hydrodynamics of trapped spheres

Hydrodynamics will be an essential part of our analysis. In order to measure the displacements and

forces on optically trapped micro-particles in water. The Navier-Stokes equations describe the dynamics

of viscous fluids for a variety of cases. The relative importance of inertial and viscous forces in a fluid is
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characterized by the Reynolds number

Re =
ρU0L

η
, (2.10)

where η is the dynamic viscosity of the fluid, ρ its density, U0 its velocity, and L is a characteristic linear

dimension. As it will be further explained in the next chapter, the sample that will be analyzed consists

of dielectric magnetic particles immerse in distilled water, in a proportion such that particles would not

form clumps. We are dealing with a micro-fluid where viscous forces dominate over inertial forces (so

inertial and turbulent terms are neglected). That is to say, a fluid with a low Reynolds number Re � 1.

In the small Reynolds number regime, the system can be approximated by the linear Stokes equations for

a steady, incompressible flow [66]

∇ · ~u = 0,

η∇2~u−∇p = 0,

(2.11)

where ~u(~x, t) is the flow velocity, p is the pressure, and f is the force. For a three-dimensional system, the

solution to the Stokes equations for a point force at the origin, and assuming instantaneous propagation

of forces through the fluid [8], is the Oseen solution for n particles

~̇ri =

n∑
j=1

Gij
~Φj , (2.12)

where ~Φj are the total forces acting on particles j, ~̇ri the velocity vector of particle i, and Gij is the Oseen

tensor whose elements are

Gii =
I

6πηa
, (2.13)

where I is the 3×3 identity matrix, a is the particle’s radius and η is the dynamic viscosity of the medium,

with units [η] = kg
m·s . Hence the Oseen tensor has units of [G] = s

kg And its non-diagonal elements are

Gij =
1

8πηrij

(
I +

~rij
⊗
~rij

~r2ij

)
for i 6= j. (2.14)

Trapped micro-beads in our system will be affected by the optical trapping force; magnetic forces due

to magnetic fields; a drag force due to the viscosity of the fluid; and random forces. Random fluctuations

produced by random forces are described by Brownian motion.
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2.2.1 Brownian motion

Optical Tweezers setups usually include a micro fluid system in which the particles are optically

trapped. As it will be explained in further chapters, it is easier and more effective to optically trap in

water that in, for example, air. Therefore we are interested in describing the dynamics of such particles

when they are immerse in a fluid. In this section some of the background necessary will be unfold starting

by two assumptions: the medium is water and the particles are spheres. The simplest theory used to

describe the dynamics of a variety of systems out of equilibrium is Brownian motion. We are interested in

a few micrometers diameter particles immerse in a fluid with particles that are much smaller (molecules

of H2O), as represented in figure 2.5.

Figure 2.5: Diagram showing a considerably larger particle with mass M and radius r, surrounded by other
smaller particles of the fluid. The arrows indicate their velocity vector. Their collisions are random.

The manner a particle diffuses when immersed in a fluid is described from a macroscopic point of

view by Fick’s laws of diffusion [67], where the relation between a macroscopic parameter D and other

microscopic particles is provided by the Stokes-Einstein relation for the diffusion coefficient or diffusivity

D [68]

D =
RT

NA6πηa
=
kBT

γ
=
kBT

6πηa
, (2.15)

where R is the gas constant, NA = 6.06× 1023/mol is Avogadros number, η is the viscosity of the fluid,

a is the radius of a particle in units of m, kB = 1.380649 × 10−23 JK−1 is the Boltzmann constant, and

T is the temperature, and γ = 6πηa is the drag or friction coefficient of a spherical particle with radius a

moving in a fluid of dynamic viscosity η.

From Newton’s second law, introducing a fluctuating force that accounts for continuous stochastic

processes [69], the equation of motion for an optically trapped particle of mass m in a viscous medium is
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given by the Langevin equation [70]

m~̈x(t) = −γ~̇x(t)− κ~x(t) + ~frnd(t), (2.16)

where ~̈x(t), ~̇x(t) and ~x(t) are the acceleration, velocity and position of the trapped particle, respectively.

γ~̇x(t) is the viscous drag: it represents the dynamical friction felt by the particle, κ is the trap’s stiffness

described in the previous section and ~frnd is a rapidly fluctuating random force due to the impacts of the

molecules of the liquid on the particle. There might as well be other forces acting on the particle but we

have considered the equation for an optically trapped particle in fluid. Summarizing

m~̈x(t) = ~Fdrag + ~Ftrap + ~frnd(t). (2.17)

The term m~̈x(t) in (2.17) is neglected in the long time limit, where inertial terms are negligible [71].

The next term on the right corresponds to the hydrodynamic forces that arouse from the interaction of

the particles with the surrounding medium, while the second term is the optical force produced by the

optical trap.

For small displacements (order of a few µm), the trapping force behaves according to Hooke’s law, as if

there was a spring of constant κ producing an oscillation of the particle from it’s equilibrium position

~Ftrap = κ~x. (2.18)

The last term on the right of equation 2.16, the random force ~f(t) (the suffix ”rnd” has been dropped) of

the Brownian motion has a Gaussian distribution (white noise), for which three assumptions are made:

i) ~f(t) is independent of the position

〈f(t)x(t)〉 = 0, (2.19)

ii) Its mean is zero

〈fi(t)〉 = 0, (2.20)

since the individual forces produced by the collisions between molecules cancel each other.
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iii) f(t) varies extremely fast compared to the variation of x(t), so the collisions are practically

instantaneous

〈fi(t)fj(t′)〉 = 2γkBTδ(t− t′). (2.21)

The term 2γkBT is known as the spectral density, since there is no dependence on the frequency, it is

white noise (instead of colored noise) [72].

The goal of this work is to analyze not only the hydrodynamics of trapped particles but also their

magnetic interactions. For this reason, we will revisit some results from electromagnetism in the following

section.

2.3 Magnetism

In order to fully characterize trapped magnetic particles it is essential to understand how the magneti-

zation of particles occurs depending on the material they are made of, and how they interact due to their

acquired magnetization. For this reason, this sections is subdivided in two topics: types of magnetization

and interaction between magnetic particles.

2.3.1 Properties: types of magnetism, magnetization of spheres

Depending on the particular properties of materials, from solid state physics, there are different

mechanisms of response to a magnetic field. In this section, 3 types of magnetism will be discussed.

Paramagnetism

In the presence of an external magnetic field, ~H, a paramagnetic particle will acquire a certain

magnetization ~M , measured in A/m, that will align with ~B consequently generating an attractive magnetic

force. The magnetization is defined as the magnetic moment per unit volume and it will depend on the

magnetic susceptibility of the material according to Curie’s law

~M = χν ~H =
C

T
~H, (2.22)

where χν is the volume magnetic susceptibility (dimensionless quantity), paramagnetic substances have

a positive susceptibility, T is the temperature, C is the Curie-Weiss constant (intrinsic to the material)
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and it is given by [73]

C =
NS(S + 1)g2µ2Bµ0

3kB
, (2.23)

where N is the number of atoms per volume unit, S the spin, g is Lande’s factor, µB is Bohr’s magneton.

There is as well a relation with the magnetic permeability

µ = µ0(1 + χν), (2.24)

where µ0 = 4π × 10−7 Hm−1 is the permeability of space.

Ferromagnetism and antiferromagnetism

Ferromagnetic materials tend to acquire a high magnetization in the presence of a magnetic field,

and they partially retain the magnetization indefinitely, even when the external field is removed. The

magnetic permeability of such materials varies through a wide range

102 . µ . 106, (2.25)

but their magnetization does not follow Curie’s Law. Instead, ferromagnets magnetization behave ac-

cording to the hysteresis curve [74]. If we start at the point were the magnet is demagnetized (meaning

~H = ~M = 0), as we apply an external magnetic field the magnetization will increase monotonically fol-

lowing an initial curve, AB on figure 2.6. Then it reaches a magnetic saturation C, and after this point,

the magnetization will start dropping along with the curve DE (referred to as demagnetizing curve), and

reaching a negative saturation point F. Hence the plot of magnetization as a function of the external

magnetic field is a loop as exemplified on figure 2.6.

Diamagnetism

Diamagnetism is an intrinsic property of materials since it is a quantum mechanical effect. Usually

ferromagnetism or paramagnetism are considerably stronger, so that the diamagnetism is actually negli-

gibe, as their magnetic susceptibility is very low χν 6 1. While paramagnetic and ferromagnetic materials

are attracted by an external magnetic field, diamagnetic materials are repelled from it: the magnetic field
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Figure 2.6: Hysteresis loop for the magnetization of a ferromagnetic material. The magnetization follows the
closed loop CDEFGC

induced on the particle has an opposite direction creating a repulsive force.

2.3.2 Interaction between magnetized spheres

In this section we will explain in more detail the magnetic interactions between magnetic particles.

First of all, we consider magnetic beads that acquire a certain magnetization due to an external magnetic

field. For this purpose, we take into account the fact that the energy, forces and torques between to

spheres that are uniformly magnetized, are identical to those between two point magnetic dipoles, as

it was demonstrated by Edwards et al [75] using symmetry arguments. Therefore the magnetic dipole

interaction model is accurate for trapped magnetic micro-beads. The total dipole moment of a sphere i

with position ~ri, radius ai and magnetization ~Mi is

~mi =
4

3
πa3 ~Mi. (2.26)

In addition, the magnetic field inside of a sphere is

~Bi = 2µ0 ~Mi/3. (2.27)

While the magnetic field generated in the region outside the sphere, say, at a given position ~r is

~B =
µ0
4π

(3~m · ~r
r5

~r − ~m

r3

)
, (2.28)
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where

~B = µ0 ~H, (2.29)

and ~H is the magnetic field intensity.

On the other hand, the magnetic dipolar force between particles i and j is [75]

~Fij =
3µ0

4πr5ij

[
(~mi · ~rij)~mj + (~mj · ~rij)~mi + (~mi · ~mj)~rij − 5

(~mi · ~rij)(~mj · ~rij)
r2ij

~rij

]
, (2.30)

where mi and mj are their respective magnetizations, and rij is the distance between the spheres.
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Methodology

In general, Optical Tweezers configurations are quite standard: an infrared laser with a Gaussian

intensity distribution is focused using a microscope objective with a high numerical aperture on an aqueous

sample that contains dielectric micro or nano-metric beads, and the displacements of the trapped particles

are measured. The main differences that distinguish the possible setups are: the mechanism in place to

produce multiple traps (if they are), how the displacements are measured, and how the traps are calibrated.

All of these aspects will be adressed in this chapter.

3.1 Experimental setup

Diagram 3.1 illustrates the current optical configuration of the setup, including the mechanism for

the generation of multiple traps as well as the measurement of the particles position in real time. On the

left side of 3.1 it is the 1064 nm laser beam, which is first reflected on three mirrors, whose purpose is to

widen the laser beam and level it to the right height. Then the laser is collimated by a telescope onto an

Acousto-Optic Deflector (hereafter AOD), which steers the laser into different spots in order to generate

multiple simultaneous optical traps. The deflected rays are focused with a second telescope on the back

of an oil immersion microscope objective of high numerical aperture NA = 1.3, which focuses the laser

beam on the sample, creating the optical traps.

A linearly polarized Gaussian beam TEM00 infrared laser with wavelength λlaser = 1064 nm is used,

and it owns a maximal power of 495 mW. Due to looses as the laser goes through the AOD and other

optical elements, the effective power on the sample is of the order of 45 mW. As for most optical tweezers
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Figure 3.1: Diagram of the optical configuration of the system. On the left: the laser and the AOD, in the path
of the beam, which creates the traps in the sample using the microscope objective; on the left, is have another
microscope objective and the QPD.

setups, an infrared laser is used because it does not damage biological specimens, which are usually

manipulated with this tool. The sample is previously prepared and it consists of polystyrene micro-beads

of roughly 3 µm diameter suspended in distilled water, which is inserted into a movable micro-fluid cell

using a syringe attached to a thin plastic tube.

The cell is fastened to a sample holder in a XYZ translation stage, it is placed between the two

microscope objectives, perpendicular to the propagation axis of the laser, and it is designed in a manner

that prevents leaking as pressure is applied to introduce the liquid. The cell (figure 3.2) is made up by

two coverslips filled with parafilm micro-channels, with a width of 2 mm approximately.

Figure 3.2: Representation of a single optical trap generated by the first microscopic objective on the sample by
focusing the laser beam.

On the other end of the cell there is a receptacle for the fluid. A cooper coil is to be inserted in
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a fix position around the sample in order to generate a magnetic field along the axis perpendicular to

the sample (Z). On the right side of 3.1 there is the position detection system: a Quadrant Photodiode

(hereafter QPD) is used to acquire the signal of the scattered light. There is also a cold illumination

system, which goes in the opposite direction of propagation of the laser (with the second dichroic mirror)

and allows us to observe the sample in real-time with a CCD camera. This allows us to trap the particles

by manually adjusting the translation stage.

3.1.1 Generation of multiple independent optical traps

Optical Tweezers configurations usually have one or two optical traps, each generated by an individual

laser. In our configuration, multiple simultaneous and independent optical traps are generated by an

Acousto-Optic Deflector (AOD). The AOD steers the laser beam in different angles creating spatially

separated traps that share the laser. With a frequency up to 100 kHz, the laser is turned on and off spots,

sufficiently fast so that the particles are simultaneously trapped since the particles do not have enough

time to fade away. The device contains two TeO2 crystals (one for each axis), through which travels an

ultrasound wave that generates an optical diffraction grating. As Bragg diffraction occurs on the crystal

vibrating at a certain ultrasound frequency, the laser is deflected by an angle

∆θ =
λf

ν
, (3.1)

where λ is the laser wavelength, ν and f are the velocity and frequency of the acoustic wave, respectively.

The AOD is controlled by an integrated MATLAB software where the multiple traps’ trajectories can be

generated by setting the required parameters: number of traps, frequency and amplitude of oscillation,

number of points, position (X and Y), type of trajectory, time per trap (usually of the order of 1 ms).

3.1.2 Particle’s position monitoring

There are mainly two methods to measure the displacements of trapped particles using a CCD camera

to measure the displacements compared to the pixels on an image; or using a photodiode to detect the

light scattered by the sample and convert this signal into a displacement measurement.

In this setup the commonly used Back Focal Plane (BFP) interferometry [76] was implemented to

monitor the trapped particle’s position in real time.
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As shown on figure 3.3, the light scattered

by the trapped beads on the sample from the

trapping focus is collected at the back focal

plane by a second microscope objective acting

as a condenser, then a dichroic mirror diverts

the light from the imaging path and the Quad-

rant Photodiode is placed on a plane conjugate

to the back focal plane. The intensity pattern

represents the angular-intensity distribution of

the laser that passed through the sample, we

use a telescope to steer the beam and a lens to

focus it on the QPD.

Figure 3.3: Configuration of a displacement detection
system using a photo-detector. The light emerging from
the trapping focus is detected in the BFP.

In our setup, as shown on figure 3.1, the intensity pattern is focused on the Quadrant Photodiode

using a third telescope and a lens. The QPD detects the fluctuations of the optical intensity and converts

it into a voltage signal, that in turn can be converted to position displacements in meters. There are

different techniques utilized to measure the displacements of the particle’s position, but QPD’s are more

often chosen given their high temporal resolution: 150 kHz of sampling rate and also a high spatial

resolution, up to nano-metric scale [5].

The QPD is divided in four individual sections of

the same size Q1, Q2, Q3 and Q4, shown in 3.4. The

displacement of the trapped particle along the axes

X and Y is obtained as

X =
(Q2 +Q3)− (Q1 +Q4)

Q1 +Q2 +Q3 +Q4

Y =
(Q1 +Q2)− (Q3 +Q4)

Q1 +Q2 +Q3 +Q4
.

(3.2)

Figure 3.4: Diagram of the QPD showing the
four divisions and the light being focused on
it.

The QPD by itself is not able to distinguish between the signals of two or more different beads trapped

at the same time. In fact, the signals simply ”merge” in the oscilloscope as an indistinguishable block,

20



CHAPTER 3. METHODOLOGY

as figure 3.5 shows. In some setups, the beam is optically split from the back focal plane to separate the

signal of two trapped beads, but in this configuration a synchronization between the QPD and the AOD

was implemented: the signal acquired of two particles simultaneously trapped is individualized instantly

by the software. Each time the AOD switches the laser from one spot to another (from trap one to trap

two), a particular signal in the control system goes from one to zero and vice-versa, it was used to discern

particle one from particle two, as shown in figure 3.6: the ”switching” signal from the AOD in on the top

and the signal of each one of the particles is in blue and pink.

Figure 3.5: Capture of the oscilloscope connected
to the photodiode for the X (blue) and Y (pink)
axis, of two particles trapped at the same time. It
is clear that the signal does not allow to distinguish
anything.

Figure 3.6: Signal of the photodiode of two
trapped particles along the X axis, showing the syn-
chronization with the signal of the AOD (violet).

However, this method can be applied when there are only two particles trapped at the same time.

Since the switching signal from the AOD consists of zeros and ones, if we attempted to separate the

voltages of three or more trapped particles simultaneously, we would obtain two separate signals. We

would not be able to distinguish the relative displacements of each of the three of four beads.

3.2 Calibration of the detection system

In order to be able to precisely measure the position and force using optical tweezers, the detection

system must be calibrated. As mentioned in section 3.1.2, the QPD acquires a voltage signal. Thus it is

necessary to convert the voltage into a displacement measurement for each axis. In other words, to find
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a calibration factor [β] = m/V [65] such that

x(t) = βxvolt(t). (3.3)

We used real time images obtained with the CCD camera and contrasted the displacements on the

pictures measured in pixels with the displacements measured as voltage by the QDP. Considering the

known particle’s radius as reference, we found a relation between the pixels on the images with the

displacements in meters, and we determined that β = 2.5 µm/V.

Additionally, it is key to characterize the optical traps by finding the stiffness κ that allows us to

measure forces by monitoring the trapped particles’ relative displacements. This quantity will be different

for each one of the axes and it will depend on the optical configuration as well as on the intensity of the

laser. In fact, the stiffness scales linearly with the laser’s intensity [77] and it decreases when more traps

are simultaneously created, because the laser beam is shared: κ = κ(1)/N where κ(1) is the stiffness of a

single optical trap in the setup and N is the number of traps.

There are different methods that can be applied for this purpose. For instance: escape force method,

drag force method, equipartition method, power spectrum method, and step response method [78]. A

brief explanation of an improved version of the power spectrum method and the correlation method is

presented, since those are the two that have been used in this particular setup.

3.2.1 Variation of the power spectral density method

Combining the Power spectral density (PSD) method: analysing the power spectrum of thermal Brow-

nian motion experimented by a single optically trapped particle; and the drag force method: introducing

a known flow passing through the object; one can find a much more accurate measurement of the traps’

stiffness. This is because the drag coefficient D of the trapped bead, defined in chapter 2

D =
kBT

γ
=
kBT

6πηa
, (3.4)

is not required as an input, hence we do not need to know the dynamic viscosity nor the radius a of

the trapped beads. In order to obtain these parameters it is necessary to rely on certain assumptions

when using the Stokes law, this way a source of error in the calibration is eliminated. This has been
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experimentally demonstrated in the calibration of optical tweezers by Tolić-Nørrelykke et al. (2006) [65].

Starting from the Langevin equation of motion for a particle trapped in an optical well surrounded

by liquid, the Fourier transform is applied to find the power spectral density (PSD) of the bead position

for measurement time approaching infinity

P (f) =
D

π2(f2 + f2c )
+

A2

2(1 + f2c /f
2
drive)

δ(f − fdrive), (3.5)

where the first term corresponds to the thermal noise of a trapped particle in a fluid, fc = κ/2πγ is the

cut-off frequency and f is the frequency. The second term is added when the trapped particle is also

oscillating along one of the axes (dragging force) where D is the diffusion coefficient, fdrive and A are the

frequency and the amplitude of oscillation, respectively. The spike denoted by the Dirac delta appears at

fc. The procedure consists of trapping a bead in an optical trap as a constant known dragging force is

applied, making the particle oscillate along the corresponding axis of the stiffness one wants to determine.

The PSD is obtained directly in the optical tweezers software, and the Lorentzian function is fit in order

to obtain the experimental value of fc and D so that the stiffness can be calculated using

κ =
2πfckBT

D
. (3.6)

3.2.2 Auto-correlation function method

This method also analyzes the thermal Brownian motion for an optically trapped particle, in particu-

lar, the spatial correlation function. This function accounts for how the motion of two trapped particles is

coupled through their hydrodynamic and magnetic interaction, and will be derived in chapter 4. The cor-

relation displacement function of two optically trapped and magnetized spheres of radius a at a distance

L is

g(τ) =
(κ− 2λ)

2(κ− λ)
e
−κ(1+ε)

γ
τ − κ

2(κ− λ)
e
− (κ−2λ)(1−ε)

γ
τ
, (3.7)

where τ is the time delay, κ is the stiffness of the trap, λ =
dF ~H
dr is the gradient of the magnetic force due

to the magnetization of the beads, ε = 3a
2L is a dimensionless parameter that describes the ratio between

the mobility of the beads and the strength of the hydrodynamic coupling between them [8], and γ = 6πηa

is the friction coefficient of a sphere of radius a in a fluid with viscosity η. Note that, in the absence of
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magnetic interaction, the parameter λ vanishes and the correlation becomes

g(τ) =
1

2

(
e
−κ(1+ε)

γ
τ − e−

κ(1−ε)
γ

τ
)
, (3.8)

In order to find the stiffness of the optical traps, the method proposed by Meiners et al. (1999) [8] can

be applied. Their proposed experiment is to generate to simultaneous optical trap along one of the axes.

Trapping one bead in an optical trap and leaving the second trap vacant, the autocorrelation function of

a bead is measured, and the function 3.8 is fit to obtain κ, the only unknown parameter.
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Results and discussion

On the first part of this section the formulation to find the correlation displacement functions for

optically trapped magnetic beads is described for configurations of two, three and four trapped micro-

spheres. On the second part some experimental results and proposed further measurements are presented.

4.1 Correlation between magnetic particles

Magnetic and hydrodynamic interactions between optially trapped magnetic particles will be charac-

terize by means of displacement correlation functions.

4.1.1 Correlation displacement function of two particles

Let us think of two micro spheres trapped each one of them in an individual optical trap. For

simplicity, they are colinear over the X axis, and there is an external magnetic force applied on the

system, as shown on figure 4.1. Each traps’ center is indicated as a dashed line along the vertical axis of

each optical trap, and they are separated by a distance L. Due to the presence of an external magnetic

field, each of the magnetic particles acquires a magnetization aligned to the magnetic field ~H. Therefore

there is a magnetic force of equal magnitude acting from one particle to the other. There are two distinct

cases, shown on figure 4.1: parallel configuration ~H = Hx̂ and a perpendicular configuration ~H = Hẑ.

Likewise owing to the fact that the particles are immerse in water, they are also affected by Brownian

motion.

There are fluctuations in the particle’s positions from their equilibrium positions due to the magnetic
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Figure 4.1: Diagram showing two pairs of optically trapped spherical magnetic particles. There is an external
magnetic field H applied, a) parallel to the X axis and b) perpendicular to X (along Z). Representation based on
figure 1. from [4]

interactions and Brownian motion. The instantaneous distance between the particles is

~r = ~r2 − ~r1, (4.1)

where ~ri are the positions of the particles’ centers. Which, along the X axis (see figure 4.1).

r = L+ x2 − x1. (4.2)

The shift from the trap’s centers is:

xi = 〈xi〉+ ∆xi =⇒ ẋi = ∆ẋi, (4.3)

where 〈xi〉 are the mean displacements averaged over time and ∆xi are the positions’ fluctuations due to
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Brownian motion. In equilibrium, the magnetic force is equal to the restoring optical trap force:

F ~H(R) = −κ〈x1〉 = κ〈x2〉, (4.4)

where κ is the trap’s stiffness referred to on the previous chapter and R = L+ 〈x2〉 − 〈x1〉 is the distance

between the equilibrium positions of the particles. This also implies that distance variations produce

fluctuations of the magnetic force. Moreover, the fluctuations of the position of the particles are about two

orders of magnitude smaller than the distance between their respective equilibrium positions: ∆xi � R.

The magnetic force can be expanded around the equilibrium position R

F ij~H
(r) ≈ F ij~H (R) +

dF ij~H
dr

(R)[∆xi −∆xj ], (4.5)

where the second term accounts for the gradient of the magnetic force, that from now we write as

dF ~H
dr

(R) ≡ λ. (4.6)

We now consider the Oseen equation 2.12 that relates the particles velocity and the forces

~̇r = G~Φ, (4.7)

where G the Oseen tensor given by 2.14

G ≈


1

6πηa

1

4πηL
1

4πηL

1

6πηa

 . (4.8)

where the terms that depend on xi have not been considered, since L � xi; a is the radius of both

particles, and η is the dynamic viscosity. The vector of the forces applied on the particles is

~Φ = ~f(t) + ~Ftrap(r) + ~F ~H(r), (4.9)

where the trapping force is

~Ftrap(r) = κx~x = κx〈~x〉+ κx∆~x. (4.10)
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The force becomes

Φi = fi(t) + F
(i)
trap(r) + F

(ij)
~H

(r)

= fi(t) + κxxi − F (ij)
~H
R− λ(∆xi −∆xj)

= fi(t) + κx∆xi + κx〈xi〉 − κx〈xi〉 − λ(∆xi −∆xj)

= fi(t) + κx∆xi − λ(∆xi −∆xj),

(4.11)

for i, j = 1, 2. The total force on the particles ~Φ = (Φ1(r), (Φ2(r)) can be written as the sum of the

random forces ~f = (f1(t), f2(t)) and the fluctuations vector ∆~x = (∆x1,∆x2); multiplied by a 2x2 matrix

that contains the stiffness κ and the gradient of the magnetic force λ

~Φ = ~f + L ~∆x =⇒ L =

κx − λ λ

λ κx − λ

 . (4.12)

The value of the gradient λ will depend on the configuration that is being analyzed, thus the orientation

of the external magnetic field. Inserting the force vector ~Φ in 4.7

~̇x = G
(
~f + L ~∆x

)
. (4.13)

Now there is no dependence on the mean displacements 〈xi〉.

In order to decouple the equations of motion, the normal modes of this configuration are introduced.

They can be easily found by means of a small oscillations analysis, as if there where two masses connected

by a spring, or by applying group theory. This is rather a trivial case with two possible normal modes: a

collective motion (symmetric) and a relative motion (anti-symmetric) with opposite signs. As figure 4.2

illustrates, they are represented by the normalized vectors

ζs =
1√
2

1

1

 ζa =
1√
2

 1

−1

 . (4.14)

These are arranged in the modal matrix A, which allows us to apply a linear transformation to the

coordinates ~x to a new set of coordinates ~ζ that render the system much simpler

~x = A~ζ, (4.15)
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Figure 4.2: Representation of the two modes for this two-particle configuration. On the left side is the collective
motion and on the left, the relative motion of the beads.

where

A =
1√
2

1 1

1 −1

 . (4.16)

Applying this linear transformation 4.15 on the equation of motion 4.7, which is in terms of the

displacements ∆~x, one gets

~x = G
(
~f + L∆~x

)
=⇒ d

dt
~x = G

(
~f + L∆~x

)
=⇒ A−1

d

dt
~ζ = G

(
~f + LA−1∆~ζ

)
=⇒ AA−1

d

dt
~ζ = AG

(
~f + LA−1∆~ζ

)
=⇒ ~̇

ζ = A
(
G~f + GALA−1 ~∆ζ

)
.

(4.17)

This linearly transformed equation of motion describes the dynamics of the normal modes

~̇
ζ = ~fζ +AGLA−1∆~ζ, (4.18)

where the transformed random force is ~fζ = AG~f(t). And these are two Langevin equations of the form

d~x

dt
= −η~x+ ~f(t), (4.19)

where f(t) is a random force and η is a constant term. Formally integrating, the solution to this equation

is

x(t) = x(0)e−ηt +

∫ t

0
f(t′)e−η(t−t

′) dt′. (4.20)

And, in this case, x(0) = 0.
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Hence the explicit solutions for the normal modes are the equations

ζ1(t) =
ε+ 1√

2γ

∫ t

−∞
[f1(t

′) + f2(t
′)]e−κ(1+ε)t

′/γ dt′

ζ2(t) =
ε− 1√

2γ

∫ t

−∞
[f1(t

′) + f2(t
′)]e−(κ−2λ)(1−ε)t

′/γ dt′.

(4.21)

where we have inserted the corresponding terms of the matrices in equation 4.18

AG =
1

12
√

2πηaL

 3a+ 2L 3a+ 2L

−3a+ 2L 3a− 2L

 =
1√
2γ

 ε+ 1 ε+ 1

−ε+ 1 ε− 1


AGLA−1 =

1

12πηaL

κ(3a+ 2L) 0

0 −(3a− 2L)(κ− 2λ)

 =
1

γ

(ε+ 1)κ 0

0 −(ε− 1)(κ− 2λ)

 .

(4.22)

Note that the last matrix is diagonal, therefore the equations of motion of the normal modes are decoupled.

On the other hand, the general form of the normalized cross-correlation displacement function is, as a

function of time delay τ = t2 − t1

g(τ) =
〈∆x1(t1)∆x2(t2)〉√
〈∆x21〉〈∆x22〉

. (4.23)

Replacing the terms ∆xi with their coordinate transformation and inserting the solution to the Langevin

equations as it follows

〈∆x1(t1)∆x2(t2)〉 =
1

2

{
〈ζ1(t1)ζ1(t2)〉 − 〈ζ2(t1)ζ2(t2)〉

}
. (4.24)

Since

〈ζ1(t1)ζ2(t2)〉 = 〈ζ2(t1)ζ1(t2)〉 = 0. (4.25)

While the other terms are found by calculating the average of the product 〈ζi(t1)ζi(t2)〉, with i = 1, 2

〈ζ1(t1)ζ1(t2)〉 =
(ε+ 1√

2γ

)2 ∫ t1

0

∫ t2

0
f(t′)e−κ(1+ε)(t1−t

′
1)/γe−κ(1+ε(t2−t

′
2)/γ dt′1 dt

′
2. (4.26)

And one obtains

〈ζ1(t1)ζ1(t2)〉 =
kBT

κ
e−κ(1+ε)(t2−t1)/γ

〈ζ2(t1)ζ2(t2)〉 =
kBT

(κ− 2λ)
e−(κ−2λ)(1+ε)(t2−t1)/γ ,

(4.27)
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where ε = G12/G11 = 3a/2L, γ = 1/G11 = 6πηa. And we have used the the correlations between the

transformed forces, that maintain the relation of Gaussian distribution for random forces, are [79]

〈f (i)ζ (t)〉 = 0

〈f (i)ζ (t1)f
(j)
ζ (t2)〉 = 2(AG)−1ij kBTδ(t2 − t1),

(4.28)

for i, j = 1, 2 and where

(AG)−1 = 6
√

2πηaL

 1

3a+ 2L

−1

3a− 2L
1

3a+ 2L

1

3a− 2L

 =
γ√
2

 1

ε+ 1

−1

ε− 1
1

ε+ 1

1

ε− 1
.

 (4.29)

Replacing in 4.23 the displacement cross-correlation function for an optically trapped particle exposed

to an external magnetic field and immerse in a fluid is obtained

g(τ) =
(κ− 2λ)

2(κ− λ)
e
−κ(1+ε)

γ
τ − κ

2(κ− λ)
e
− (κ−2λ)(1−ε)

γ
τ
. (4.30)

It can be easily seen that the correlation functions for the Y axis are exactly the same. The only

difference is the value of κ for each of the axes.

Using the expressions found for the correlation functions, different distances between the magnetic

particles over time can be evaluated, as well as the limits for high or low external magnetic field and what

occurs when the particles are very close to each other. This analysis was repeated for both ferromagnetic

and paramagnetic particles, in each type of configuration (parallel and perpendicular).

First of all, it is straightforward and expected that the correlation will vanish after long times

lim
t→∞

g(τ) = 0., (4.31)

this occurs because at long times τ =⇒∞ the positions of the spheres are uncorrelated as the hydrody-

namic flows that couple their motion drops to zero [79]. On other hand, for time delay τ = 0

g(τ = 0) =
2λ

2(κ− λ)
. (4.32)
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Equations 4.31 and 4.32 are valid for any of the cases considered. This expression in equation 4.32

depends only on the stiffness of the optical trap and on the gradient of the magnetic field. This could then

be a condition for the equilibrium of the system. If the derivative of the magnetic force in the equilibrium

position λ exceeds k, it means that the optical force is not enough to keep the particle trapped, so it drifts

away.

Furthermore, at different limits for the distance between particles, magnitude of the external magnetic

field, and time, with parallel and perpendicular configurations for each type of bead (ferromagnetic and

paramagnetic), the correlation function behaves as shown on table 4.1.

Bead Ferromagnetic Paramagnetic

Parallel Perpendicular Parallel Perpendicular

λ‖ →∞ λ⊥ → −∞ λ‖ →∞ λ⊥ → −∞
L→ 0 ε→∞ ε→∞ ε→∞ ε→∞

limL→0 g(τ) = 0 limL→0 g(τ) = 0 limL→0 g(τ) = 0 limL→0 g(τ) =∞
λ‖ → 0 λ⊥ → 0 λ‖ → 0 λ⊥ → 0

L→∞ ε→ 0 ε→ 0 ε→ 0 ε→ 0
limL→∞ g(τ) = 0 limL→∞ g(τ) = 0 limL→∞ g(τ) = 0 limL→∞ g(τ) = 0

λ‖ → 0 λ⊥ → 0
~H → ~0 current model current model limH→0 g(τ = 0) = 0 limH→0 g(τ = 0) = 0

does not apply does not apply limH→0 g = −e−
κτ
γ sinh κετ

γ limH→0 g = −e−
κτ
γ sinh κετ

γ

λ‖ is not λ⊥ is not λ‖ →∞ λ⊥ → −∞
~H →∞ affected affected unstable unstable

t→ 0 g(τ = 0) = λ
(κ−λ) =⇒ g(τ = 0, κ = 0) = −1 no optical trap

=⇒ g(τ = 0, λ = 0) = 0 no magnetic field gradient

t→∞ limt→∞ g(τ) = 0

Table 4.1: Table showing the limits for the distance, time and magnetic field in different configurations/types of
trapped bead.

The explicit terms for the magnetic force evaluated in the equilibrium position in each configuration

are

F‖(R) = −3µ0m
2

2πL4
, F⊥(R) =

3µ0m
2

4πL4
. (4.33)

And their gradients

λ‖ =
dF‖

dr
(R) =

6µ0m
2

πL5
λ⊥ =

dF⊥
dr

(R) = −3µ0m
2

πL5
. (4.34)
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In order to visualize the behavior of the correlation function, the correlation as a function of time

(shown on figures 4.3 and 4.5) was plotted and also in three dimensions as a function of time and distance

between the beads (shown on figures 4.4 and 4.6). These plots were built using the actual parameters that

would be considered in our experiments, which are detailed below for each type of magnetic microparticle.

Parameter Value
Radius ferromagnetic particle af = 2µm
Radius paramagnetic particle ap = 3µm
Distance between particles centers L = 6 · 10−6 m
Dynamic viscosity of water at room temperature (25◦C) η = 0.89 · 10−3 kg/(ms)
Magnitude external magnetic field H = 4.9 · 103 A/m
Magnetic moment ferromagnetic beads m = 2 · 10−13 Am2

Magnetic susceptibility paramagnetic beads χ = 6
Optical traps stiffness (x and y axes) κx,y = 5 · 10−5 N/m

Table 4.2: Table showing the data used to simulate the various correlation displacement function plot displayed
below.

Ferromagnetic beads

The influence of the external magnetic field on the system is given exclusively by its direction, since

the ferromagnetic particles acquire a magnetization that does not depend on its intensity.

Parallel configuration

As plots 4.4 and 4.3 show, the two particles’ position are anti-correlated (g < 0). There is a pronounced

time-delayed dip at t1 − t2 = τ ≈ 10 ms. This corresponds to the hydrodynamic interaction between

microparticles [79] and has been reported in experiments on the literature [4] [8] [10]. In this case, the

magnetic moments induced in the particles produce an attractive force between them.

The closer the beads are (4µm), the more anti-correlated the displacements are: this occurs because

as particle 1 is displaced to the right due to thermal motion, the attractive force increases on the sec-

ond particle thus it is displaced in the opposite direction (to the left) leading to a decrease of g(τ).
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Figure 4.3: Three-dimensional plot showing the
correlation displacement as a function of time and
distance of two ferromagnetic beads, with an exter-
nal magnetic field along the horizontal axis (parallel
configuration).

Figure 4.4: Plot showing the correlation displace-
ment as a function of time of two ferromagnetic
beads, for parallel configuration, with a magnetic
moment m = 2 · 10−13 Am2.

Perpendicular configuration

Let us consider an external field perpendicular to the line that joins the two optical traps, that is

~H = Hẑ. Unlike the previous plot, on plot 4.6 the particle’s positions are correlated (g > 0) and there

is no pronounced decrease minimum like before. In this case, there is a repulsive magnetic force between

the magnetized spheres. Note that for greater distances, of 6, 7 and 8 µm, the distances are indeed

anti-correlated. In contrast to the parallel case, as particle 1 is displaced to the right the repulsive force

on particle two increases, so it is impulsed to the right. Therefore, their positions are more correlated.
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Figure 4.5: Plot that shows the correlation dis-
placement as a function of time and distance of two
ferromagnetic beads, with an external magnetic field
parallel to the configuration

Figure 4.6: Two-dimensional plot showing the cor-
relation displacement as a function of time of two
ferromagnetic beads, with an external magnetic field
along the horizontal axis (parallel configuration),
with a magnetic moment of m = 2 · 10−13 Am2.

Paramagnetic beads

Paramagnetic particles acquire a magnetization that depends directly on the intensity of the external

magnetic field, according to equation 2.22. Therefore, their magnetization is larger than in the case of

ferromagnetic beads discussed in section 4.1.1, but of the same order of magnitude. The plots are similar

to the ones obtained for the ferromagnetic beads, and they are presented in appendix A.1 .
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4.1.2 Correlation displacement functions of three particles

The case of three optically trapped magnetic particles will be studied. In this section, this geometric

configuration is particularly interesting for spin frustration in molecules [80] and solids. As figure 4.7

represents, there are three equidistant optical traps in the Z plane. Each one of them represents the

vertex of an equilateral triangle of side 2L.

Figure 4.7: Configuration of the trapped particles. The traps are placed on the XY plane with origin at the centre
of the triangle and the optical traps are generated by the laser beam that propagates along the Z axis. The optical
traps are located on the corners of an equilateral triangle.

Three possible configurations are considered: an external magnetic field ~H applied along Z

(perpendicular to the triangle); a field ~H along one of the sides of the triangle (X axis); and a field ~H

perpendicular to a side of the triangle (along Y).

Figure 4.8: Figure of the equilateral triangle on the XY
plane. The beads are labeled as 1, 2, 3 as well as their
respective optical traps (blue).

In this case, there will be three optical traps, each

of them placed on a vertex of an equilateral triangle

with side 2L as shown on figure 4.8 (left). From

4.8, the instantaneous distance between the particle’s

centres to be

~r21 = (−L− x1 + x2,−
√

3L− y1 + y2)

~r31 = (−x1 + x3 + L,−
√

3L− y1 + y3)

~r23 = (x2 − x3 − 2L, y2 − y3).

(4.35)
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As in the one-dimensional analysis, the particle’s shifts from each of their respective trap’s centers

are

xi = 〈xi〉+ ∆xi yi = 〈yi〉+ ∆yi, (4.36)

for the three particles i = 1, 2, 3, were 〈xi〉 and 〈yi〉 are the mean displacements averaged over time, and

∆xi and ∆yi are the particle’s position fluctuations due to Brownian motion. Therefore the distances

between particles in their equilibrium positions are

~R21 = (−L+ 〈x2〉 − 〈x1〉,−
√

3L+ 〈y2〉 − 〈y1〉)

~R31 = (L+ 〈x3〉 − 〈x1〉,−
√

3L+ 〈y3〉 − 〈y1〉)

~R23 = (−2L+ 〈x2〉 − 〈x3〉, 〈y2〉 − 〈y3〉).

(4.37)

On the other hand, the total magnetic field on particle i is given by

~H(i) = ~Hext + ~Hj + ~Hk, (4.38)

where ~Hj and ~Hk are the magnetic fields to the magnetization of particles j and k.

The system dynamics are described by equation 2.12. The diagonal terms of the Oseen tensor of this

configuration are

G11 = G22 = G33 =

 1
6πηa 0

0 1
6πηa

 , (4.39)

where a is the radius of the beads (they all have the same size and composition) and η is the dynamic

viscosity. Whereas the non-diagonal terms of G are a sum of a constant term and a term that depends

on the position of the particles, xi and yi. Hence

Gij = Gji = Gconst
ij + Gx,y

ij . (4.40)
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In particular

G21 ≈
1

64πηL

 5
√

3
√

3 7

+
1

64πηL2

 2(x1 − x2) (y1 − y2) +
√

3(x1 − x2)

(y1 − y2) +
√

3(x1 − x2) 2
√

3(y1 − y2)


G31 ≈

1

64πηL

 5 −
√

3

−
√

3 7

+
1

64πηL2

 2(x1 − x3)
√

3(x1 − x3)− y1 + y3
√

3(x1 − x3)− y1 + y3 2
√

3(y1 − y3)


G23 ≈

1

16πηL

2 0

0 1

+
1

64πηL2

 4(x2 − x3) −2(y2 − y3)

−2(y2 − y3) 0

 .

(4.41)

However, since the distance between the optical traps, 2L is usually two orders of magnitude greater than

the fluctuations in particle position [4], ∆x, ∆y, consequently Gconst
ij � Gfluct

ij , and we can write the

non-diagonal terms of the Oseen tensor as

G21 ≈
1

64πηL

 5
√

3
√

3 7

 , G31 ≈
1

64πηL

 5 −
√

3

−
√

3 7

 , G23 ≈
1

64πηL

8 0

0 4

 . (4.42)

The explicit non-diagonal terms of G are listed in appendix ??, equation A.1.

The net force on each particle is given by the following sum

~Φx,y
i = ~F itrap;x,y + ~F ji~H

+ F ki~H + f ix(t), (4.43)

where ~F itrap = kx,y〈~ri〉 is the trapping force due to the optical trap, f irnd,r(t) are the fluctuating random

forces acting on particle i along each of the axes r = x, y, and ~F i~H
is the magnetic force due to the external

magnetic field. In equilibrium, with the net force equals zero when evaluating at ~R

∑
~F (j) = ~F

(ij)
~H

∣∣
R

+ ~F
(kj)
~H

∣∣
R

+ ~F
(j)
trap = 0. (4.44)

Then, it is immediate that

F
(ij)
~H,x
|R + F

(kj)
~H,x

∣∣
R

= −kx〈xj〉 F
(ij)
~H,y

∣∣
R

+ F
(kj)
~H,y

∣∣
R

= −ky〈yj〉. (4.45)

As before, the magnetic force is expanded around the equilibrium position R, and we obtain the following
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equations for each pair of particles along each of the two axes

~F
(ij)
~H

(~r) = ~F
(ij)
~H

(~R) +
d~F (ij)

dr
(~R)(r −R)ij , (4.46)

where the magnetic force evaluated at the equilibrium position is defined as

dF
(ij)
~H;x

dr

∣∣∣∣
R

≡ λ(x)ij

dF
(ij)
~H;y

dr

∣∣∣∣
R

≡ λ(y)ij . (4.47)

Then, inserting this into equation 4.46 we obtain

F
(ij)
~H;x

(r) =
[
− kx〈xj〉 − F (kj)

~H;x

∣∣
R

+ λ
(x)
ij (∆xi −∆xj)

]
F

(ij)
~H;y

(r) =
[
− ky〈yj〉 − F (kj)

~H;y

∣∣
R

+ λ
(y)
ij (∆yi −∆yj)

]
.

(4.48)

Inserting the expansions for the magnetic force and replacing the condition for equilibrium we get

Φ(j)
x = f jx(t) + kx〈xj〉 − kx〈xj〉 − F (kj)

mag,x

∣∣
R

+ λ
(x)
ij (∆xi −∆xj)− F (ij)

mag,x

∣∣
R

+ λ
(x)
kj (∆xk −∆xj)

= f (j)x (t) + λ
(x)
ij (∆xi −∆xj) + λ

(x)
kj (∆xk −∆xj).

Then, the vector of the total forces on the particles can be written as the sum of two terms

~Φ = ~f + L∆~r, (4.49)

where ~f are the random forces and L is a matrix that contains the terms of the gradient of the magnetic

force, λx,yij

L =



−λx21 − λx31 0 λx21 0 λx31 0

0 −λy21 − λ
y
31 0 λy21 0 λy31

λx21 0 −λx21 − λx23 0 λx23 0

0 λy21 0 −λy21 − λ
y
23 0 λy23

λx31 0 λx23 0 −λx31 − λx23 0

0 λy31 0 λy23 0 −λy31 − λ
y
23


. (4.50)
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The form of the matrix L depends on the orientation of the external magnetic field applied. Three

possible cases are distinguished

1. Perpendicular to the configuration plane ~H = Hẑ. This is the simplest scenario since there is no

preference towards any of the axes, consequently all six λx,yij terms are equal

λx,yij = λ =
−3µ0m

2

π(2L)5
. (4.51)

The approximate value of λ when w consider a triangle of side 2L = 10 µm and beads with

magnetization m = 2 · 10−14 Am2 is

λ ≈ −1.5 · 10−10 N/m. (4.52)

And the matrix L is

L =



−2 0 1 0 1 0

0 −2 0 1 0 1

1 0 −2 0 1 0

0 1 0 −2 0 1

1 0 1 0 −2 0

0 1 0 1 0 −2


. (4.53)

2. Parallel to the configuration plane ~H = Hx̂. The field is parallel to one of the sides of the triangle.

In this case

λx21 = λx31 =
21µ0m

2

8π(2L)5
λy21 = λy31 =

−3
√

3µ0m
2

8π(2L)5
λx23 =

36µ0m
2

π(2L)5
λy23 = 0. (4.54)
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Then

L =
1

8



0 0 7 0 −7 0

0 2
√

3 0 −
√

3 0 −
√

3

7 0 −19 0 12 0

0 −
√

3 0
√

3 0 0

−7 0 12 0 −19 0

0 −
√

3 0 0 0
√

3


, (4.55)

3. Parallel to the configuration plane along ŷ, ~H = Hŷ. Here find the exact same matrix L that in the

previous case

L =
1

8



0 0 7 0 −7 0

0 2
√

3 0 −
√

3 0 −
√

3

7 0 −19 0 12 0

0 −
√

3 0
√

3 0 0

−7 0 12 0 −19 0

0 −
√

3 0 0 0
√

3


. (4.56)

The first case of an external magnetic field perpendicular to the configuration plane will be further

analysed, as the other two cases are left as further work.

Inserting equation 4.49 for the forces on the particles in A.2, general equation for the motion of the

triangular system is found

~̇r = G~φ =
{ 1

6πηa
I +

1

64πηL
B
}{

~f + λL∆~r
}
, (4.57)

where ~f is the vector of random forces, L the matrix of the gradient of the magnetic force, ∆~r the

displacements of the particles, and B is the matrix that contains the off diagonal elements of the Oseen
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tensor (equation 4.41)

B =



0 0 5
√

3 5 −
√

3

0 0
√

3 7 −
√

3 7

5
√

3 0 0 8 0
√

3 7 0 0 0 4

5 −
√

3 8 0 0 0

−
√

3 7 0 4 0 0


. (4.58)

We note that for the three particle configuration there is a greater number of equations than in the

previous case 4.1.1. However, the procedure is exactly the same. To simplify the description, we will

introduce the motion of the normal modes.

Normal modes

There are three particles situated on a equilateral triangle restricted to move only on the XY plane, in

consequence there are 3× 2 = 6 degrees of freedom. In order to find the normal coordinates that describe

the motion of this system (shown in figure 4.9), the six normal modes that characterize the oscillations

of the particles must be found.

Figure 4.9: Diagram of the general coordinates for each of the particles. uiandvirepresentlocalcoordiantes.

From group theory applied to quantum mechanics, point groups are used to describe the symmetries

of molecules [81]. The motion of the equilateral triangle around the Z axis (the degrees of freedom are

restricted to the XY plane) is described by the cyclic group C3, with character table
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C3 E C3 C2
3 ε = e2πi/3

A 1 1 1 z,Rz x2 + y2, z2 z3, x(x2 − 3y2), y(3x2 − y2)

E
1
1

ε
ε∗

ε∗

ε
(x, y), (Rx, Ry) (x2 − y2, xy), (yz, xz) (xz2, yz2), [xyz, z(x2 − y2)]

Γx,y,z 3 0 0

The row at the top of the table shows the possible operations: E is the identity (rotating the triangle

in 360◦), C3 is a rotation in 120◦ (counter clock-wise), and C2
3 represents two rotations of 120◦ in a row

(counter clock-wise rotation of 240◦). The column on the left indicates the Mulliken symbols:

A: symmetric with respect to rotation around the principal rotation axis

E: degenerate rotation in two dimensions.

Each of the remaining rows are the irreducible representations for the symmetry elements. There are

different characters that describe the effects of the symetry operations on different objects. The row at

the bottom indicates the traslational modes Γxyz or ΓT , whereas all degrees of freedom are:

Γ3N = ΓT + ΓR + Γvib, (4.59)

and with ΓR,Γvib rotational and vibrational degrees, respectively. In particular, the vibrational degrees

are

Γvib = A+ 2E, (4.60)

where A indicates the breathing mode (symmetric stretch) and 2E refers to each of the non-symmetric

vibrational modes that have the same energy.

The character table can be rewritten in order to be ”usable” for physical purposes, with real numbers

only.

C3 E C3 C2
3

A 1 1 1

E 2 -1 -1

The projection operation allows us to find the modes. It is given by

Pr =
lr
h

∑
e

χr(e)
∗Re, (4.61)

where h is the order of the group (h = 3), χ(e) are the characters, and Re are the operations. From the
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character table, and applying the projection operation 4.61, all six normal modes of this configuration

are found

Tx = x1 + x2 + x3 −→ ( 1, 0, 1, 0, 1, 0 )

Ty = y1 + y2 + y3 −→ ( 0, 1, 0, 1, 0, 1 )

Rz = v1 + v2 + v3 −→ (−1, 0, 1, −1, 1, 1 )

A1 = PEu1 = u1 + u2 + u3 −→ ( 0, 1, −1, −1, 1, −1 )

E1 = PEu1 = 2u1 − u2 − u3 −→ ( 1, 0, −1, −1, −1, 1 )

E2 = PEe1 = u1 − u2 −→ ( 0, −1, −1, −1, 1, −1 ),

(4.62)

where Tx and Ty are the translational modes, Rz is the rotational mode, and A1, E1 and E2 are the

vibrational modes, with the last two having the same energy. The six vectors in 4.62 have the form

ζ = (x1, y1, x2, y2, x3, y3) and they represent the 6 degrees of freedom of this geometrical configuration in

local coordinates as an unitary displacement along X and Y, and they are portrayed in figure 4.10.

Figure 4.10: Figure showing the 6 normal modes of a planar triatomic molecule.

The first row (top of figure 4.10) shows the two traslational modes: along X (a.) and along Y (b.),

while the last one is the rotational mode (c.). The second row (bottom of figure 4.10) shows the vibrational

modes: d. is the breathing mode (the triangle stretches symmetrically in and out), while e. and f. are

the bending modes. The normal modes of three particles on an equilateral triangle confined to the XY
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plane

ζX =



1/
√
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0
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√

3
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√

3
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√
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0
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√

3

0
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√

3
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ζrot =



−1/
√

3

0

1/2
√

3

−1/2

1/2
√

3
√

3/2


. (4.63)

And the vibrational normal modes are

ζbreath =



0

1/
√

3

−1/2
√

3

−1/2

1/2

−1/2
√

3


ζA =



1/
√

3

0

−1/2
√

3
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−1/2
√

3

1/2


ζB =



0

−1/
√

3

−1/2

−1/2
√

3

1/2

−1/2
√

3
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. (4.64)

The normal modes define the modal matrix for the linear transformation

x = Au =⇒ u = A−1x, (4.65)

where A is the modal matrix, obtained after normalizing the normal modes of vibration

A =



− 1√
3

0 1
2
√
3

−1
2

1
2
√
3

1
2

0 1√
3

−1
2 − 1

2
√
3

1
2 − 1

2
√
3

1√
3

0 1√
3

0 1√
3

0

1√
3

0 − 1
2
√
3
−1

2 − 1
2
√
3

1
2

0 1√
3

0 1√
3

0 1√
3

0 − 1√
3
−1

2
1

2
√
3

1
2

1
2
√
3


. (4.66)
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The general coordinates are



urot

ubreath

ux

uvx

uy

uvy


=

1

2
√

3



−2x1 + x2 + x3 −
√

3y2 +
√

3y3

−
√

3x2 +
√

3x3 + 2y1 − y2 − y3

2(x1 + x2 + x3)

2x1 − x2 − x3 −
√

3y2 +
√

3y3

2(y1 + y2 + y3)

−
√

3x2 +
√

3x3 − 2y1 + y2 + y3


. (4.67)

This means that, given an experimental measurement of xi and yi we can estimate the normal displace-

ments and the correlation functions.

Previously we had equation 4.57 that shows the general form for the equations of motion for all three

particles along axes X and Y

~̇r = G~φ =
{ 1

6πηa
I +

1

64πηL
B
}{

~f + λL∆~r
}
. (4.68)

Applying the linear transformation with matrix A

~u = A∆~r ~fu = A~f. (4.69)

Inserting this in equation 4.57, a new equation is obtained

~̇u = Ñ~f + λM̃~u = ~fu + λM̃~u, (4.70)

where the new matrices are

Ñ = AG =
1

6πηa
AI +

1

64πηL
AB,

M̃ = AGA−1 =
I

6πηa
ALA−1 +

1

64πηL
ABLA−1.

(4.71)

Formally integrating the equations of motion, we find

~u(t) =

∫ t

0

~fu(t′)eλM̃(t−t′) dt′, (4.72)
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for i = 1, 2, 4, 6. Where M̃ is the matrix

M̃ = AMLA−1 =
3

8γ



ε− 8 0 0 0 0 0

0 5ε− 8 0 0 0 0

0 0 0 ε 0 0

0 0 0 3ε− 8 0 0

0 0 0 0 0 ε

0 0 0 0 0 3ε− 8


, (4.73)

where ε = 3a/2L and γ = 6πηa. And Ñ is

Ñ = AG =
1

16
√
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,

(4.74)

In contrast, we found that the equations of motion ~̇u3 and ~̇u5 are not Langevin equations, since

u̇3 = f (3)u + λεu4. (4.75)

Replacing with the formal integration of u̇4 and integrating

u3(t) =

∫ t

0
f (3)u (t′) dt′ + λε

∫ t

0

∫ t′

0
f (4)u (t′1)e

3λ( 3ε
8
−1)(t′1−t′2)/γ dt′1 dt

′
2, (4.76)
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It is the same for u̇4, except that f
(4)
u −→ f

(5)
u . The difference for those equations is that they have to be

integrated again (integration of an exponential).

The correlations between the transformed forces are

〈fui(t1)fuj(t2)〉 = Ñ−1ij kBTδ(t1 − t2), (4.77)

where the diffusion matrix Ñij determines how the random forces are correlated. Then any particular

cross-correlation of the displacements xi and yi can be found by linearly combining the correlations

between the normal modes of oscillation of the system, using the matrices Ñ and M̃.

4.1.3 Correlation displacement function of four particles

Finally, we search the correlation functions for the magnetic and hydrodynamic interactions of four

trapped beads on a square of side 2L (see figure 4.11). We follow the same procedure from 4.1.1 and 4.1.2.

Figure 4.11: Diagram of the geometrical configuration that will be analyzed: four spheres forming a square.

The general form of the equations of motion

~̇r = G~Φ where ~Φ = ~f + L∆~r. (4.78)
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And the Oseen tensor for this configuration is

G =
I8x8
6πηa

+
1

32πηL



0 0 4 0 3/
√

2 1/
√

2 2 0

0 0 0 2 1/
√

2 3/
√

2 0 4

4 0 2 0 2 0 3/
√

2 −1/
√

2

0 2 0 0 0 4 −1/
√

2 3/
√

2

3/
√

2 1/
√

2 2 0 0 0 4 0

1/
√

2 3/
√

2 0 4 0 0 0 2

2 0 3/
√

2 −1/
√

2 4 0 0 0

0 4 −1/
√

2 3/
√

2 0 2 0 0



. (4.79)

In this case L is a 8x8 matrix that contains the terms of the gradient of the magnetic force, λx,yij

L =



−λx21 − λx31 − λx41 0 λx21 0 λx31 0 λx41 0

0 −λy21 − λ
y
31 − λ

y
41 0 λy21 0 λy31 0 λy41

λx21 0 −λx21 − λx32 − λx42 0 λx32 0 λx42 0

0 λy21 0 −λy21 − λ
y
32 − λ

y
42 0 λy32 0 λy42

λx31 0 λx32 0 −λx31 − λx32 − λx43 0 λx43 0

0 λy31 0 λy32 0 −λy31 − λ
y
32 − λ

y
43 0 λy43

λx41 0 λx42 0 λx43 0 −λx41 − λx42 − λx43 0

0 λy41 0 λy42 0 λy43 0 −λy41 − λ
y
42 − λ

y
43


.

In particular, when the external magnetic field is ~H = Hẑ (perpendicular to the plane of the square),

all λs are the same, so

L⊥ = λ



−3 0 1 0 1 0 1 0

0 −3 0 1 0 1 0 1

1 0 −3 0 1 0 1 0

0 1 0 −3 0 1 0 1

1 0 1 0 −3 0 1 0

0 1 0 1 0 −3 0 1

1 0 1 0 1 0 −3 0

0 1 0 1 0 1 0 −3
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. (4.80)

We can characterize the symmetries of this four particle array with the point group D4h. From the

character table, we obtain the modes of oscillation for four particles forming a square, shown in figure4.12:
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two are translational, one rotational and five vibrational (the breathing mode and four bending modes,

shown in the second row of the figure). They account for the 2× 4 = 8 degrees of freedom of the system.

Figure 4.12: Normal modes of a square with four particles, one on each vertex.

The modal matrix is

A =
1

2
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(4.81)

We have the equation of motion

~̇r = G~φ =
{ 1

6πηa
I +

1

64πηL
B
}{

~f + λL∆~r
}
. (4.82)

Applying the linear transformation with the matrix A, we obtain the normal modes of the coordinates

and the forces, as

~u = A∆~r ~fu = A~f. (4.83)
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The transformed equation of motion is

~̇u = Ñ ~f + λM̃~u, (4.84)

where

Ñ =
1

6πηa
AI +

1

64πηL
AB,

M̃ =
I

6πηa
ALA−1 +

1

64πηL
ABLA−1.

(4.85)

And exactly like on the previous section, the correlations between the transformed random forces are

< fui(t1)fuj(t2) >= Ñ−1ij kBTδ(t1 − t2), (4.86)

where Ñij is the diffusion matrix. Therefore any cross-correlation of the displacements xi and yi can be

found using the matrices Ñ and M̃ and linear combinations of the normal modes of the system. This

procedure can be applied to other geometrical distributions.
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4.2 Calibration of optical traps

4.2.1 Variation of the Power Spectral Density method

By calculating the average of the Fourier trans-

form of the voltage signal obtained by the QPD for

a fix trapped particle, we obtain the power spectral

density (PSD) profile of the signal. This feature has

already been implemented on the optical tweezers

software. We are able to automatically obtain the

plotted PSD of a trapped particle, as shown on fig-

ure 4.13. The curve is fitted by the first term of

equation 3.5

P (f) =
D

π2(f2 + f2c )
, (4.87)

The dotted line on the plot indicates the cut-off fre-

quency fc, and the fit is shown for two different values

of the diffusion coefficient D in pink and green.

Figure 4.13: Power spectral density for a
single trapped particle (no oscillation), fitted
with the first term of the Lorentzian in 3.5.

4.2.2 Auto-correlation displacement function

As discussed in chapter 3, one of the methods that can be used to calibrate the optical traps is by

means of fitting auto-correlation displacement function of as single trapped particle in order to find the

stiffness of the optical trap for each of the axes. On figure 4.14 is the fitted auto-correlation displacement

function for a single trapped particle. To find the plot on the left side, two colinear optical traps are

generated on the X axis, and then the fit gives the trap’s stiffness along X; and the same for Y. By fitting

the data with the known parameters, the stiffness of the optical traps for each of the axes is found

κx ∼ 10−6 N/m κy ∼ 10−6 N/m. (4.88)
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Figure 4.14: Plot and fit of the auto-correlation displacement function along the X and Y axis (left and right
respectively) of a single optically trapped bead.

This means, recalling equation 2.8, that this setup is able to measure forces of the order of a few pN for

micro-metric displacements of the trapped particles.

It is important to highlight that the calibration should be done each time one is going to perform

an experiment, since there are different factors that can affect the value of the stiffness. For this reason

it is better to implement an automatic calibration system in the optical tweezers software. For this

reason, we have presented only the order of magnitude of the stiffness. Moreover, in the short term, we

will implement an automatic function in the optical tweezers function, that allows the calculation of the

optical traps stiffness with the power spectral density method and the auto-correlation method, in order

to compare the obtained values.

4.3 Towards the measurement of the cross-correlation functions of

three trapped particles

Using the results elaborated in sections 4.1.1, 4.1.2, and 4.1.3, the correlation displacement function of

optically trapped magnetic beads exposed to an external magnetic field for different configurations could

be measured. In addition, fundamental interactions among magnetic particles such as those involved

in spin frustration systems could be studied. In order to study how Brownian motion is affected by

magnetic interactions among trapped particles. To experimentally measure the correlation displacement
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functions, we would need to measure the relative displacements xi and yi for i = 1, ..,N, which determine

the ”transformed” displacements ζi, ui.

Firstly, the optical traps must be calibrated by obtaining the sitffness κ of each axis. As mentioned in

3, this function will be implemented as an automatic feature that combines two calibration methods, so

that the stiffness will be calculated every time a new measurement is performed, providing a more accurate

calibration. Secondly, the sample has to be prepared with the desired concentration and type of magnetic

particles. Note that ferromagetic particles will acquire a magnetization depending on the intensity of the

external magnetic field, and they would be aligned along it. Depending on the configuration that would

be analyzed, multiple simultaneous optical traps are generated and located in a geometric array with the

optical tweezers integrated software that controls the AOD and monitors the QPD.

Two key issues arise when considering the experimental limitations of the setup described in 3: how

to generate an external magnetic field, and how we will measure the displacement of trapped beads when

there are three or more optical traps.

4.3.1 Generation of external magnetic fields

An external magnetic field along the Z axis can be produced. By adding a cooper coil around the

sample as shown in the methodology 3. The magnetic field produced by a coil with a current I is [82]

B =
µ0NI

L
, (4.89)

where N and L are the number of turns and length of the solenoid respectively, and µ0 = 4π · 10−7 H/m

is the magnetic permeability in vacuum.

In future experiments, an assemble of digitally controlled electromagnets [10] can be inserted to

generate a constant magnetic field along other axes in order to study the parallel configurations where

~H = Hx̂ or ~H = Hŷ. Using electromagnets one could also generate a rotating magnetic field and measure

the correlation functions.

4.3.2 Detection system

We have developed a detection system that can separate the individual signals of two simultaneously

trapped particles based on the synchronization between the AOD and the QPD. So far, the only limitation
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for these experiments is that our detection system is not yet able to read the disjoint signals when there

are more than two beads trapped at the same time, as explained in section 3.1.2. Ergo the next step to

be followed is to come up with a solution to this problem.
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Conclusions and outlook

The analysis of how Brownian motion and particle hydrodynamics are affected by magnetic interac-

tions has not been widely addressed as a few-body problem, unlike collective behaviour of a large amount

of micro particles in a magnetic field [10]. In this work the main objective was to develop a framework that

allows the characterization of magnetic interactions among few optically trapped magnetic micro-beads

exposed to an external magnetic field by means of finding correlation displacement functions for different

geometric configurations and number of spheres. This topic is relevant in the context of the multiple

applications magnetic beads have in medicine and other disciplines. Most of them framed in few-body

micro-systems in aqueous environments, which are suitable to be studied using a powerful non-invasive

tool such as Optical Tweezers. Apart from that, spin frustration is an interesting phenomena that de-

pends on the geometrical distribution of molecules and it has been studied to understand, for example,

conductive properties of some materials [80].

We have applied a method that, starting with the Oseen solution of the hydrodynamic Stokes equa-

tions, allowed us to find the spatial correlation functions for three proposed configurations of optically

trapped magnetic micro-beads exposed to an external magnetic field: two co-linear particles, three par-

ticles arranged on a equilateral triangle, and four particles set on a square. The magnetic spheres are

micro-sized of two types: paramagnetic and ferromagnetic. This method can be applied following the

same procedure to other geometric configurations and number of trapped particles.

In section 4.1.1, theoretical curves of how the correlation and anti-correlation of two optically trapped

beads would be like were shown, which agree with what has been already confirmed experimentally. An
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interesting feature is that even though the Oseen solution to the Navier-Stokes equations is sustained on

the assumption that the forces are instantaneously propagated through the fluid, there is a time-delayed

correlation (or anti-correlation) between the displacements of the particles, that indicates that there is in

fact a short-time memory in the fluid, as one particle could ”remember” where the other particle was a

short time before [8]. This seems counterinvuitive but the time-delayed correlation could be introduced

by the external potential added to the optical traps.

As discussed in section 4.3, the correlation functions can be measured experimentally using the optical

tweezers setup by monitoring the trapped particle’s displacements and processing them in the Optical

tweezers software. This can already be done for two trapped particles. Until this moment the greatest

problem in the proposed experiment would be to split the signal acquired by the photodiode where there

are three or more beads simultaneously trapped. This issue is left as future work to be implemented in

this research.

A further generalization of this method could by achieved by considering trapped beads of different

sizes or different magnetizations (one ferromagnetic bead and a paramagnetic one, for instance) being

simultaneously trapped. Then we could establish a comparison based on experimental measurements of

correlation displacement function with an without the presence of an external magnetic field.
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Correlation displacement functions

A.1 Two particles configuration

In section 4.1.1 some estimations of the behaviour of the magnetic interaction between two ferromag-

netic trapped beads were presented using correlation displacement functions. The plots for the theoretical

curves of the correlation displacement function of two colinear optically trapped paramagnetic particles

analyzed in 4.1.1 are shown on figures A.1 and A.2

Parallel configuration

Figure A.1: Three-dimensional plot showing the
correlation displacement as a function of time and
distance of two paramagnetic beads, with an exter-
nal magnetic field along the horizontal axis (parallel
configuration).

Figure A.2: Two-dimensional plot showing the
correlation displacement as a function of time of two
paramagnetic beads (parallel configuration), with a
magnetization of m = 4.17 · 10−14 Am2.
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Perpendicular configuration

Figure A.3: Three-dimensional plot showing the
correlation displacement as a function of time and
distance of two paramagnetic beads, with an exter-
nal parallel magnetic field.

Figure A.4: Plot showing the correlation displace-
ment as a function of time of two paramagnetic
beads (parallel configuration), with a magnetization
of m = 4.17 · 10−14 Am2.

A.2 Three particles configuration

On section 4.1.2 we presented a procedure that allowed us to find the correlation displacement func-

tions for three optically trapped beads forming a triangle. The explicit non-diagonal terms of the Oseen
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tensor of the triangular configuration are

G21 ≈
1

8πη2L

 (−L−x1+x2)2
4L2 + 1 (−L−x1+x2)(−

√
3L−y1+y2)

4L2

(−L−x1+x2)(−
√
3L−y1+y2)

4L2
(−
√
3L−y1+y2)2

4L2 + 1


≈ 1

16πηL

 5
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2L

√
3
4 + (y1−y2)+

√
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4L
√
3
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4L
7
4 +

√
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1

8πη2L
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√
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4L2
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√
3L−y1+y3)
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(A.1)

this can be approximated to simpler terms by using that xi, yi � L, and by further Taylor expansions,

only the constant terms in the tensor are kept

G =
1

16πη
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
. (A.2)

The explicit form of the equations of motion of the system of three particles on an equilateral triangle
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are 
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