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Abstract
This review summarizes recent advances in the development
of pyrolyzed M–N–C catalysts for the oxygen reduction re-
action, focusing on activity, stability, and the reactivity de-
scriptors proposed for the rational design of pyrolyzed M–N–C
catalysts. We discuss the last advances in achieving high
catalytic activity and stability and the new insights into the
characterization of FeN4 active sites by Mössbauer spectros-
copy in combination with Density Functional Theory (DFT)
calculations of the Fe–N–C catalysts. In addition, we present
the different reactivity descriptors proposed in the literature for
the rational design of Fe–N–C pyrolyzed materials: (i) struc-
tural descriptors determined by X-Ray Photoelectron Spec-
troscopy (XPS) and Mössbauer spectroscopy and (ii) the redox
potential of the active center MNx.
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Introduction
Electrochemical reactions such as hydrogen evolution
and hydrogen oxidation reaction, oxygen reduction re-
action (ORR), and the oxygen evolution reaction are the
basis of industrial processes such as water electrolysis,
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fuel cells, and rechargeable metaleair batteries. The
need for noble metals, such as Pt-based electrocatalysts
for the ORR and hydrogen evolution reaction/hydrogen
oxidation reaction and RuO2/IrO2 for the oxygen evo-
lution reaction, is one of the major obstacles for their

commercialization owing to the high price and scarcity
of the noble metals [1e3]. The design and synthesis of
low-cost, efficient, and durable electrocatalysts for
energy conversion is one of the main challenges of the
present research study. The ORR is well studied
because it is crucial for the widespread use of fuel cells.
Two main alternatives have been presented for reducing
the presence of noble metals in fuel cells: (i) enhancing
noble metal mass activity via alloying or coreeshell
nanostructures and (ii) replacement of noble metal by
nonprecious metal catalysts based on earth-abundant

elements [4]. This review is focused on the second
alternative, specifically on pyrolyzed FeeNeC catalysts,
active sites of which in most cases seem to involve an
FeN4 structure, similar to intact molecular catalysts
such as metal porphyrins and phthalocyanines. MN4

molecular catalysts have been widely studied owing to
the excellent electrocatalytic activity for many reactions
[5e12]. Since the pioneering work of Jasinski [13] that
reported the catalytic activity of cobalt phthalocyanine
for the ORR in alkaline media, a considerable effort has
been made to use these molecular catalysts for the ORR.

Despite the excellent catalytic activity in basic media,
there is a critical lack of stability in acidic media owing
to the degradation of the active centers and metal loss to
the electrolyte. Several strategies have been proposed to
increase the activity and durability in MN4 molecular
catalysts in both acidic and alkaline media [14,15].
However, the low stability in acidic media prevents the
practical applications of these catalysts [16].

Heat treatment of different metals, salts, and carbon
and nitrogen precursors is one of the most successful

synthetic routes to increase the activity and stability for
the ORR. The performance of the MeNeC materials
depends on the temperature of heat treatment and the
nature of precursors. The hieratically structured metale
organic framework (MOF) has shown good catalytic
activity [17,18]. Besides, the MOF can also act as a Ce
N precursor and as an autotemplate for pyrolyzed Me
NeC catalysts. MOF-derived MeNeC catalysts seem
www.sciencedirect.com

mailto:javier.recioc@uam.es
http://www.sciencedirect.com/science/journal/18796257/23/C
https://doi.org/10.1016/j.coelec.2020.100656
https://doi.org/10.1016/j.coelec.2020.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coelec.2020.08.006&domain=pdf
www.sciencedirect.com/science/journal/24519103
www.sciencedirect.com/science/journal/24519103


Fe-N-C- pyrolyzed catalysts Muñoz-Becerra et al. 155
to be the most active for the ORR [19e22]. The control
over the porosity and the distribution of the precursors
(metal, nitrogen, and carbon in the MOF structure)
generates MeNeC catalysts with tunable catalytic ac-
tivity [23]. Durable MeNeC materials are obtained
when aromatic polymers are used as CeN precursors
adsorbed in carbon support and in the presence of metal
salts (Fe or Co) [24]. The high durability in acidic media

(more than 700 h at 0.4 V in a fuel cell) is associated with
the high level of graphitization of the carbon matrix
developed during pyrolysis. The use of hard templates
has also been explored [25,26]. These catalysts present
high activity, a high electroactive area, and respectable
durability for ORR at all pH values [27]. The use of a
template induces an increase in the area and hence in-
creases the active sites exposed to the electrolyte,
increasing mass transport.

Several reviews have been published on MeNeC py-

rolyzed catalysts for ORR [28e33]. This review pre-
sents a summary of the last advances in catalytic activity,
stability, active site characterization, and development
of reactivity descriptors described in the literature,
which are the basis for the design of pyrolyzed FeeNeC
catalysts.
Catalytic activity and stability of M–N–C
Despite efforts using new synthetic routes, the onset
potentials of the ORR in acidic media remain in the
range of 0.80e0.95 V vs. Reversible Hydrogen Electrode
(RHE) and close to 1 V vs RHE in basic media [34]. The
goal is to selectively insert high-density homogeneously
distributed single MN4 atomic sites over a highly
graphitized matrix. Local electron density of MN4 active
sites can be modulated by doping with N heteroatoms
[33,35,36]. The catalytic activity of FeN4 active sites

depends on the ratio of the amount of pyridinic to pyr-
rolic nitrogen functionalities because the former (i) is
related to a higher exposure of edge defects on the
carbon layer, (ii) is related to the formation of FeNx

moieties, and (iii) acts as secondary active sites pro-
moting the reduction of H2O2 to H2O [37].

The inclusion of S atoms has been also studied to
modulate the catalytic activity of the FeN4 active sites.
Mun et al. [38] explored the modulation of the FeN4

activity by the inclusion of S in the graphitic layer as

oxidized electron-withdrawing S functionalities (C-
SOx) or electron-donating thiopheneelike S, increasing
the activity with electron-withdrawing groups. Choi
et al. [39] demonstrated by the evaluation of the O2e
FeN4 binding energy that the inclusion of hydroxyl and
epoxy groups in the carbon lattices could decrease the
activity in FeN4 sites. This inclusion strongly modifies
the Eb because it alters the local iron electronic
www.sciencedirect.com
structure influenced by the variation of the p-electron
delocalization over the C matrix.

Although the FeeNeC exhibits good performance in
ORR, the main challenge for practical applications is to
increase their long-term activity and stability in acidic
media under operando conditions. Among all the degra-
dation hypotheses proposed in the literature [40], there

is a consensus about degradation mechanisms that cause
activity loss: (i) the FeN4 demetallation and (ii) the
carbon oxidation reaction [32]. Demetallation of the
active centers depends on the applied potential and is
mainly induced by the carbon oxidation caused by H2O2

or reactive oxygen species by-products from the ORR or
by leaching under acidic conditions [30,32,33,39,41e
43].

Kumar et al. [44] suggested that the activity loss of Me
NeC catalysts (Fe or Co) containing metal-based

nanoparticles under simulated operando conditions
(0.6e1.0 V vs. RHE) is associated with an imperfect
graphene coverage of the metallic particles that leads to
the leaching of the metallic content. However, during
the start-up/shutdown test (1.0e1.5 V vs. RHE), an
important activity loss was detected even for catalysts
having only MN4 atomically dispersed sites. This was
attributed to the carbon oxidation reaction that occurred
over the graphitic surface (CO and CO2 releasing),
reflecting on a conductivity reduction (Figure 1a).

Kumar et al. [43] found that significant FeNx moieties
were lost when load-cycling accelerated stress tests
(AST) were conducted under O2 compared with those
conducted under Ar atmosphere, evidenced by the for-
mation of iron oxide particles at 80 �C (Figure 1a). The
authors attribute that corrosion observed is induced by
the reactive oxygen species by-products from ORR.
Recently, Santori et al. [45] demonstrated that a Fee
NeC catalyst containing only FeNx sites pyrolyzed
under NH3 atmosphere presents similar activity to that
of the Ar-pyrolyzed ones, but they differ in their stability
because the NH3-treated ones suffer from major

leaching in acidic media and, hence, higher demetalla-
tion than the Ar-treated ones. The presence of highly
basic N atoms inserted during the NH3 pyrolysis that
suffer protonation in acidic media leads to a weakening
or breaking of the FeeN bond, leading to the loss of Fe
ions.
Active site characterization
During the last decade, a great deal of effort has been
put into the characterization of the active sites in the
FeeNeC pyrolyzed catalysts [46e48]. The main
handicap is the high number of active sites generated
during the pyrolysis processes [37]. The FeeNeC cat-
Current Opinion in Electrochemistry 2020, 23:154–16
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Figure 1

Degradation models, and structural assignation of Mössbauer parameters. (a) Representation of the demetallation produced under load-cycling
Accelerated Stress Test (AST) in saturated Ar and O2 acidic electrolyte, and of the COR mechanism at high potential values (E vs. Reversible Hydrogen
Electrode, RHE (V)). Reproduced from the study by Kumar et al [43] with permission. Copyright 2019, John Wiley & Sons, Ltd. In this work, the influence
of O2 on the demetallation and the formation of oxide iron particles was reported. (b) Experimental isomer shift (IS) and quadrupolar splitting (QS) values
(mm s−1) for D1, D2, and D3 Mössbauer signals (orange, green, and blue symbols, respectively) [20,49,52–64] and theoretical QS values (at the PBE/
DZVP2 level) for Fe(III) and Fe(II) FeN4Cx (x = 10 and 12) models with different spin states (included as bars) [66]. The experimental assignation for D1*
as Fe(III)N4-HS moieties is included as red stars [43,64,65]. COR, carbon oxidation reaction.
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alysts contain a variety of different active site structures
with different turnover numbers. The active sites can be
divided into three groups: (i) N-doped carbon func-
tionalities, (ii) FeNx active species hosting in micro-
pores or imbedded in the graphitic matrix, and (iii) iron-
based oxide/carbide/nitride particles encapsulated in N-

doped carbon shells. Among all the active sites, the
FeN4 moieties are able to reduce O2 to H2O and are
considered the most active structures for the ORR in
acidic and basic media [37,48].

57Fe Mössbauer spectroscopy differentiates the local
iron environment, oxidation state, and spin configura-
tion of iron in the active sites. Mössbauer signals show at
least two or three doublets accompanied by singlets or
sextets. The signals have been interpreted considering
the previous literature of iron-based inorganic species

such as carbides, oxides and nitrides, as well as data of
FeN4 macrocycles [49e51]. The singlets and sextets
have been attributed to iron-based inorganic species
formed during the pyrolysis (a-Fe and g-Fe as singlets
and FexOy,Fe3C, FexN as sextets). The doublets are
assigned to D1, D2, and D3, which correspond to similar
iron coordination environment of nonpyrolyzed FeN4

active sites.Figure 1b summarizes experimental isomer
shift (IS) and quadrupolar splitting (QS) values (mm
s�1) for quadrupolar doublets D1, D2, and D3 extracted
from the literature that characterize different FeeNeC
catalysts [52e64]. However, these traditional assign-
ments have been recently questioned. A study of
Wagner et al. [65] showed the dependence of the
doublet signals, with the temperature and applied field
for FeTMPPCl-pyrolyzed catalysts. In addition, some
Current Opinion in Electrochemistry 2020, 23:154–161
authors have proposed different assignations based on a
link between Mössbauer spectroscopy and other spec-
troscopic techniques with theoretical DFT calculations
[43,65,66]. Mineva et al. [66] proposed a different
description for D1 and D2 signals. The study involved
pyrolyzed catalysts with only FeN4 actives sites, with D1

and D2 signals reported previously (with IS values be-
tween 0.30 and 0.45 mm s�1) [20], and attributes the
D1 signal to high-spin Fe(III)N4C12 (S = 5/2)
porphyrinic sites (D1* in Figure 1b) and the D2 signal to
the presence of low-spin Fe(II)N4C10 pyridinic units
(S = 0). The calculated QS values for Fe(III)N4C10/12

(1a, 1d, 1e, and 1f, S = 5/2) and Fe(II)N4C10/12 models
(1a, 1d, 1e, and 1f, S = 0 and 1) are included in
Figure 1b. In this figure, the filled red and green zones
represent the coincidence of the theoretical data for
Fe(III)N4C12-HS, with experimental IS and QS values

previously assigned as D1 sites, whereas those obtained
for Fe(II)N4C10-LS and Fe(II)N4C10-MS match with
the IS and QS values previously assigned as D2 sites.
Mineva et al. [66] that D1* units are inserted as su-
perficial sites in the graphitic matrices, fact that sug-
gests the Fe(III) oxidation state and its superior
availability for the catalysis in comparison with D2 bulk
sites, protected from exposure to the atmosphere. Be-
sides, a recent study supported by in situ Mössbauer
spectroscopy confirmed the aforementioned D1* assig-
nation, as the superior durability of D2 bulk sites over

the D1* moieties under ORR in acidic media, which
suffer demetallation forming iron(III) oxide particles
[67]. Reported experimental assignations for D1* as
Fe(III)N4-HS moieties for FeeNeC catalysts are also
included in Figure 1b [43,64,65].
www.sciencedirect.com
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Reactivity descriptors
The search for activity descriptors in FeeNeC pyro-

lyzed materials is of fundamental importance for the
rational design of active catalysts for the ORR. The
representation of the adsorption energy versus the
experimental catalytic activity shows volcano correla-
tions [68e70], which follow the Sabatier principle [71].
For molecular type MN4 catalysts, there are several
reactivity descriptors [72], such as the number of d-
electrons in the metal [73,74], the donoreacceptor
intermolecular hardness [75,76], the binding energy of
intermediates [72,77], and the M(nþ)/(n) redox po-
tential [5,6,72,78,79]. In MeNeC catalysts, the reac-

tivity descriptors were focused on structural parameters
determined by XPS and Mössbauer spectroscopy of the
catalysts. Artyushkova et al. [37] presented a complete
study of 45 catalysts synthesized from different pre-
cursors for the ORR in acidic media. They found
different relationships between the amount and type of
active sites determined by XPS versus the total reduc-
tion to H2O or partial reduction to H2O2. The four-
Figure 2

Different reactivity descriptors for M-N-C pyrolyzed catalysts. (a) Linear depe
troscopy data with the ORR activity for the FeTMPPCl-pyrolyzed catalyst. Re
2019, John Wiley & Sons, Ltd. (b) Linear correlation between the quantified D
and the D1:D2 ratio (D2 assigned as Fe(II)N4C10-LS or Fe(II)N4C10-MS sites)
by Zitolo et al [20]. Figure reproduced with permission from Li et al [67]. Copy
formal potential (E vs. Reversible Hydrogen Electrode, RHE (V)) and ORR ac
derivatives, reproduced from the study by Venegas et al [81]. Copyright 2020,
4PhFeP. Reproduced with permission from Zúñiga et al [84]. Copyright 2019,

www.sciencedirect.com
electron reduction to water seems to be related to the
presence of FeNx active centers in the catalysts. In
addition, there is a linear trend of the activity with the
ratio of pyridinic and FeeN to the pyrrolic functional-
ities [37]. Ramaswamy et al. [35] explained this
dependence because the nitrogen atoms induce a
perturbation in the delocalized p-electron of the carbon
matrix that affects the electron density on the metal

center and then modifies the adsorption of O2 on the
FeeNx active site. In addition, a connection between
D1 doublet signals (Fe(II)N4, S = 0), quantified by
Mössbauer spectroscopy with the catalytic activity, has
been reported (Figure 2a) [50,51,54]. The activity for
D1 was explained by Kramm et al. [54] based on its
orbital availability compared with that of middle- or
high-spin states of FeN4 sites, which is expected to favor
the interaction with O2 enhancing the ORR activity. In
Figure 2b, the reassigned D1* signal likewise shows a
linear dependency with the activity that diminishes as

the D1* sites dissolve in O2-acid media, while less ac-
tivity influence by the D2 is observed [67]. The
ndence of the D1 sites assigned to FeIIN4-sites from Mössbauer spec-
produced from the study by Kramm et al [51] with permission. Copyright
1* sites by Mössbauer spectroscopy (assigned as Fe(III)N4C12-HS sites)
with the ORR activity of a previous Fe–N–C catalyst reported in the study
right 2020, Creative Commons license. (c) Linear correlation between the
tivity of a series of nonpyrolyzed and pyrolyzed iron and cobalt porphyrine
Elsevier. (d) Tafel slopes for nonpyrolyzed (FeP) and pyrolyzed (Fep-HT)
Elsevier, Creative Commons license. ORR, oxygen reduction reaction.

Current Opinion in Electrochemistry 2020, 23:154–161
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relations of the structural parameters previously
mentioned, supported by XPS and Mössbauer spec-
troscopy, present a good correlation with the activity in
acidic media. However, owing to the protonation of the
different types of nitrogen present in the catalysts at low
pH, the electron-withdrawing effect on the FeeNx

active site changes with pH [27].

The redox potential is usually described in
MN4 molecular complexes as the reactivity descriptor
for a myriad of reactions [5e12,79]. Zagal et al. [80]
showed a linear correlation of the redox potential of
several MeNeC catalysts with the activity in acidic
media using data from the literature. Venegas et al. [81]
established a correlation between the redox potential of
iron and cobalt porphyrins before and after the pyrolysis
process, with the activity reported for the ORR both in
acidic and alkaline media (Figure 2c).
The pH changes the mechanism of the ORR from an
inner-sphere mechanism in acidic media to outer-sphere

one in basic media because in basic media, the Fe(III)
species are strongly coordinated to OH- species avoiding
the presence of active Fe(II) [37,82,83]. However,
Zúñiga et al. [84] proposed an inner-sphere mechanism
in basic media based on the connection between the
redox potential and the onset of the polarization curves.
In addition, the Tafel plot analysis showed two Tafel
slopes, 0.060 and 0.120 V at low and high overpotentials,
respectively, which change around the redox potential
Fe(III)OH/(II) of the FeN4 active site (Figure 2d). Two
Tafel slopes imply a change of the inner-sphere mech-

anism from a region of potential-dependent surface
concentration of Fe(II) (low overpotentials) to a region
where this concentration is constant (high over-
potentials) in both acidic [85,86] and basic media [87].
Conclusions
In this article, we have presented a short review of the
recent literature of FeeNeC pyrolyzed catalysts. The
work has been focused on the advances in the activity
and stability and in the characterization by Mössbauer
spectroscopy and the new reactivity descriptors pro-
posed in the last years. We summarize the new charac-
terization of FeN4 active sites present in FeeNeC
catalysts, by Mössbauer spectroscopy, and compared
with the traditional assignations. We also summarize the
degradation mechanism under operando conditions, and

the advances to increase the catalytic activity of the Fee
NeC catalyst. We discuss the new advancements in the
use of reactivity descriptors for the rational design of
these catalysts. We have divided the activity descriptors
into two groups: (i) structural descriptors, which are
mainly focused on the amount of MN4 active sites in
MeNeC catalysts characterized by XPS and Mössbauer
spectroscopy, and (ii) the redox potential of MeNeC.
The redox potential of MeNeC can be a good activity
Current Opinion in Electrochemistry 2020, 23:154–161
predictor because it can be related to the binding energy
of O2 to the metal center of the active sites in MeNeC
catalysts.
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