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SUMMARY

This research proposes an equilibrium assignment model for congested public transport corridors in urban
areas. In this model, journey times incorporate the effect of bus queuing on travel times and boarding and
alighting passengers on dwell times at stops. The model also considers limited bus capacity leading to
longer waiting times and more uncomfortable journeys. The proposed model is applied to an example
network, and the results are compared with those obtained in a recent study. This is followed by the analysis
and discussion of a real case application in Santiago de Chile. Finally, different boarding and alighting times
and different vehicle types are evaluated. In all cases, demand on express services tends to be
underestimated by using constant dwell time assignment models, leading to potential planning errors for
these lines. The results demonstrate the importance of considering demand dependent dwell times in the
assignment process, especially at high demand levels when the capacity constraint should also be
considered. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The challenge of offering a service which can compete with the private car has always been present dur-
ing the design, planning and operational stages of running urban public transport systems. High stan-
dards of service should be offered during all the stages of a journey: access and egress time, waiting
time and the in-vehicle journey time represented by the commercial speed of the service. This latter point
has been the motivation behind investment in public transport corridors with additional priority systems,
and, more recently, the design of express services which increase commercial speeds by reducing the
number of stops along the corridor. The advantages of these express services have already been widely
researched and demonstrated over the last 20 years, and a key element during their design is the demand
these new services will attract, which makes up the main input for the frequency and fleet optimization
methodologies. Also, the demand they attract strongly depends on the frequencies these services offer.
When demand is high yet not high enough to activate the vehicle capacity constraint, these models

assume practically constant journey times. This fact turns out to be particularly questionable on public
transport corridors where the lines have common itineraries and are differentiated mainly by the stops
they serve. For a bus line, the time saved because of not stopping in several stops becomes its compet-
itive advantage over others.
Also, as public transport corridors move thousands of travelers per hour and direction, and because

different frequencies may induce different sets of attractive lines for their trips, dwell times affected by
boarding and alighting times can no longer be considered constant either [1]. Traffic assignment
should consider all these effects as also the impact in waiting times and reduced comfort if bus capacity
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is limited. For these reasons, we propose an assignment model, which considers both passenger
boarding and alighting times as well as the impact of limited capacity on waiting times and comfort.
Furthermore, congestion at bus stops, because of bus queuing leading to bus delays, is modeled by
adding a penalty function for each vehicle at each stop.
The following section summarizes the literature review on transit assignment models, concentrating

on those modeling dwell times. This is followed by a presentation of the hypothesis and formulation of
the proposed model. In section 4, we describe the solution algorithm, which is initially applied to a test
network in section 5, where the results are compared with those obtained applying the method
proposed by [2] over the same network. An application with the data from the Pajaritos Corridor in
Santiago de Chile is provided in section 6 along with a sensitivity analysis. Finally, the main
conclusions drawn from this work are presented in section 7.

2. LITERATURE REVIEW

For decades now public transport assignment models have been one of the most analyzed and studied
topics within the field of transport. These models consider that users plan their journeys in such a way
as to minimize their perceived waiting and in-vehicle journey times. Many models assume that waiting
times may be influenced by the journey times of the most popular lines [3–5], by the demand itself and
by vehicle capacity limits [6–9] whereas in-vehicle journey times are assumed to be independent of
demand. Many models incorporate the effect of vehicle capacity limits with a journey time penalty
along public transport links depending on demand [4, 6, 10–12].
All the above mentioned works have used two basic methodologies: frequency-based models or

schedule-based models. Within this distinction, each model typology has evolved as new research
has introduced ever more complexity and realism into the modeling itself or in how the public
transport network is presented, triggering debates about which type of model should be preferred.
For example, [13, 14] proposed headways of between 10 and 15min to distinguish between high
and low frequency services and, therefore, the type of model required. A visual description of the
evolution of transit assignment models can be found in [15].
[14] performed an interesting comparison between the two approaches and highlighted that

low computing costs were one advantage of frequency-based models. They also found that they re-
quired less detail for input and network coding and were applicable to different passenger regimes
other than FIFO at bus stops. Note the debate and the open question in[16] about the potential future
application of schedule-based models to large networks with a reasonable computing time.
As far as the authors are aware [17, 18] are the first and only works which use a combined frequency-

based and scheduled-based approach to transit assignment. The proposed model uses aggregate line fre-
quencies to parameterize bus headways and a micro-simulator to enforce capacity constraints on indi-
vidual vehicles, comparing the results with those obtained by [6] using the same network example.
[19] proposed an alternative approach which tried to replicate the schedule-based approach using a

frequency-based model. They introduced a factor called “fail-to-board” as a way of simulating the fact
that some passengers are unable to board the first bus arriving and have to wait for the next, representing
on board and bus stop congestion. This allowed the authors to use the advantages of frequency-based
modeling while they adapted the model to simulate effects that at the time could only be considered
using schedule based methodologies, but without the disadvantages already mentioned above. Al-
though the assignment process is dynamic, route choice is “partially dynamic” because it is performed
based on the initial situation of each period and does not respond to the situation in successive periods.
Later improvements to this model were proposed by [20] including another parameter called

“fail-to-seat” to represent the availability of seating, differentiating between seated and standing
passengers when calculating perceived journey times. See also the work developed by [21].
The dynamic approach has been used in other work which has generally applied schedule-based

modeling as it has been shown to be better at adapting to real changes in user behavior with respect
to route choice because of current information systems [22–25].
In spite of a great richness in approaches and models (clearly there are many more than can be

mentioned in this brief analysis), little work has been found to include dwell time as a variable in
the assignment model.
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[11] proposed a model in which the route cycle time was dependent on the dwell time at each stop
and where dwell times depended on the demand. This approach also considered effective frequencies
being affected by the demand itself while the in-vehicle travel time, as perceived by users, remained
constant and fixed.
The first work found to consider the boarding and alighting times at intermediate bus stops as part of

the in-vehicle journey time perceived by the user was [2]. They assumed that in-vehicle journey time
was a function of the demand at the successive bus stops. They proposed an algorithm based on
incremental assignment, achieving a new user equilibrium at each demand increment without taking
capacity constraints into consideration.
More recently, [26] proposed an assignment model in which dwell times are modeled as the

maximum of the boarding and alighting time (as if they happened simultaneously through different
doors). They applied the transit equilibrium model proposed by [9] and used a revised optimal strategy
algorithm and a modified MSA, called Method of Successive Weighted Averages (MSWA) [24] to
solve the problem. However, the authors did not consider the effects of limited capacity in their
assignment model.
This paper contributes to this issue and proposes a frequency-based transit assignment model

based on [6] but considering variable dwell times as well as the impact of limited capacity on
waiting times, passenger comfort and delays at bus stops because of bus queuing as part of
in-vehicle travel time. A sensitivity analysis has been carried out to study the influence of dwell
times and demand on user decision making, and, therefore, on the final assignment. Furthermore,
we propose an alternative solution to the [2] incremental assignment by using the Method of
Successive Averages (MSA) algorithm. The results of these models and algorithms are compared
on the same example network.

3. PROPOSED MODEL

3.1. Hypotheses and notations

The proposed model follows a frequency-based approach, developed by [6]. As in [2], we consider a
unidirectional public transport corridor with n bus stops, ordered in the same sequence, where stops p
are served by the buses travelling along the corridor (p= 1,…,n). This corridor is used by a set L of bus
lines which each offer a given frequency and visit a subset of the corridor stops. A line could also be
defined by its set of consecutive arcs in which each arc starts in one of its stops and ends in the follow-
ing one. We also assume a fixed and known journey demand, defined by a “stop to stop” O–D matrix
with the elements denoted as Tw.
The model assumes that the users reach their destinations without transfers. Each user chooses a sub-

set of the lines connecting his/her origin and destination that minimizes the total travel time (in-vehicle
travel time+waiting time). This subset of bus lines is grouped together in what is called a route section,
defined as a fictitious link with the origin bus stop as the origin node and the destination bus stop as the
destination node of the link and the subset of lines (attractive lines) which service it. Thus, a route section
is understood as a set of lines. As [2] shows, when dwell times depend on boarding and alighting, the
problem not only cannot be separated by O/D pair, but also the equilibrium assignment we are seeking
may require users making the same trip to select a different set of attractive lines.
Thus, our model must consider several route sections representing different subsets of lines serving a

given pair of nodes, in accordance with [6]. The set of route sections serving O/D pair wwill be denoted
as Sw while the origin and the destination of w will be denoted as o(w) and d(w), respectively. One ele-
ment of this set Swwill be the full set of lines serving the pair w denoted as Lw. We will also assume that
once vehicles approach their capacity their associated waiting times and comfort become affected.

3.2. Cost function with capacity constraint

The expected travel time on route section s for the pair w (ETTw
s ) is considered to be [3]:

ETTw
s ¼ WTw

s þ TTw
s sÎSw; wÎW (1)
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where:WTw
s is the waiting time of route section s for the pair w. s ∈ Sw, w ∈ WTTw

s is the (in vehicle)
travel time of route section s for the pair w. s ∈ Sw, w ∈ WW is the set of origin destination pairs w.
Waiting time in the route section can be expressed in the following way, in which we assume

Poisson bus arrivals processes [3]:

WTw
s ¼ 1=

X
l∈s

f l→WTw
s ¼ 1=f ssÎSw; wÎW (2)

where:fl= frequency of line l.fs= aggregated frequency of all lines in route section s.
We extend the model proposed by [2] to consider limited vehicle capacity and its effect on waiting

times. As demand increases, the effective capacity available for a passenger waiting for a line drops
because there will be less room inside the bus to accommodate additional passengers. The closer this
number gets to the physical capacity, the more likely that a passenger will not be able to board the bus.
Thus, our model must recognize not only that demand affects dwell times but also that limited capacity
has a direct impact on passenger waiting times and perceived in-vehicle travel times.
Because the set of attractive lines for a certain trip depends on the level of demand, we must

recognize that as congestion grows, all lines connecting a pair of nodes are “potentially” attractive.
Under no congestion, an initial group can be defined as the attractive set containing the “quickest”
lines corresponding to the set of common routes defined by [3]. However, as passenger demand
grows, these routes become increasingly congested, causing slower routes to become more attractive
as travel times on the set of “fastest” routes increase because of longer dwell times and waiting times.
This model assumes a similar approach to [6] in which the perceived frequency of a line at a stop p

drops with its degree of saturation defined as the ratio between the load of the line arriving at stop p
minus those passengers alighting at p plus the passengers boarding at p and the capacity of the line.
This relationship between perceived frequency and the degree of saturation is certainly non-linear be-
cause for low and intermediate demand levels, the perceived frequency should not change by much.
Thus, the perceived frequency of a line l at stop p, f �l;p will always be less than or equal to the real

frequency. To establish a relationship between this perceived frequency and the average waiting time
experienced by users we formulated the following model [6]:

f �l;p ¼ 1=wtl;p
� �

; lÎL; pϵ 1 ::::nf g (3)

where:wtl,p is the representative waiting time of line l at bus stop p that will be modeled as:

wtl;p ¼ 1=f lð Þ� 1þ xl;p
� �φ� �

; pÎ 1 ::::nf g ; lÎL (4)

where ф is a parameter to be estimated that should be larger than 1, while xl,p corresponds to the degree
of saturation of line l at bus stop p and is given by:

xl;p ¼

X
w∈W ;o wð Þ¼p;

X
s∈Swl∈s

yws
f �l;pX

j∈s
f �j;p

0
BB@

1
CCAþ Vl;p

Cl�f lð Þ ; pÎ 1…nf g; l; jÎL (5)

where:Cl is the vehicle capacity of line l.yws is the flow of route section s for pair wVl,p is the passing flow
on line l: passengers with origin (o) upstream from p and destination (d) downstream of p given by:

Vl;p ¼
Xp�1

o¼1

Xn
d¼pþ1

X
s∈S o;dð Þ

y o;dð Þ
s

f �l;oX
j∈s

f �j;o

0
BB@

1
CCA; pÎ 1…nf g; l; jÎL: (6)
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So, the waiting time of a route section s of a pair w will be modeled as:

WTw
s ¼ 1=

X
l∈s

f �l;o wð Þ→1=f �s ; sÎSw; wÎW (7)

where fs
* is the effective frequency of route section s obtained by:

f�s ¼
X
lÎs

f�l ; sÎSw; lÎL : (8)

Once a passenger boards a vehicle at a bus stop, the travel time to reach its destination corresponds
to the running travel time plus all the dwell times experienced by the vehicle.
The travel time on route section s for the pair w (TTw

s ) is considered to be [3]:

TTw
s ¼

X
l∈s

twl Vð Þ�f �l =
X
l∈s

f �l →TTw
s ¼

X
l∈s

twl Vð Þ�f �l =f �s sÎSw; wÎW (9)

where twl is the travel time on line l from stop to stop (origin-destination pair w). This travel time in-
cludes the time spent by passengers boarding and alighting and additional delays because of bus queu-
ing at intermediate bus stops; twl will be affected by passengers from all o–d pairs whose origin or
destination is visited by line l on its journey to join pair w. Therefore, twl depends on the network pas-
senger flow, represented by the vector V ¼ vwl

� �
; ∀l;w.

As shown by [2], the user equilibrium assignment of this problem should be structured at the route sec-
tion level, forwhich theflowvectorY ¼ yws

� �
in route section s forO–Dpairw is defined.As [6] show the

route section flows (yws ) determine the flows on each line l, for an O–D pair w in the following way:

vwl ¼
X
s∈Sw

yws
f �l;o wð Þ
f �s

� �
;wÎW; lÎLw: (10)

Now we can define the flow of line l on link a, which can be expressed as:

vl;a ¼
X
w∈W

vwl �δwl;aaÎAl; lÎL (11)

where:vl,a is the flow of line l on link a.δwl;a =binary variable taking a value of 1 if arc a∈Al,w and 0
otherwise
Delays at traffic lights and junctions are assumed to be included in the link travel time. So the in-

vehicle travel time twl from equation (9) can be defined as:

twl ¼ rtwl þ
X
p

dtl;p�δwl;p (12)

where:rtwl = running time of line l for the pair w given by:

rtwl ¼
X
a∈Al;w

tl;a þ
X
p

ϑp�δwl;p lÎL; wÎW (13)

where:tl,a= running time of line l on arc a assuming no delays to reach the stop at the head of arc aAl,

w= set of arcs of line l needed to travel to join pair wϑp is an additional delay time because of bus
queuing, which can be modeled by a volume-delay function depending on the degree of saturation
of the bus stops [27]:
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ϑp ¼ χ�exp ς

X
l∈L

f l�δl;p
BSCp

0
B@

1
CA (14)

where ς and χ are parameters to be estimated and BSCp is the bus stop capacity of stop p according to
the Transit Capacity and Quality of Service Manual TCQSM [28].
δl,p=binary variable taking a value of 1 if stop p is served by line l and 0 otherwise.dtl,p= the dwell

time; the time a bus on line l spends at stop p for passenger boarding/alighting, which can be
expressed, following TCQSM [28]:

dtl;p ¼ toc þ Bl;p�tb þ Al;p�ta
� �

=f lpÎ 1 ::::nf g; lÎL (15)

where:toc=door opening and closing time (h).tb= average boarding time per passenger (h).ta= average
alighting time per passenger (h).Bl,p= trips boarding line l at stop p, which can be obtained as:

Bl;p ¼
X

w∈W ;o wð Þ¼p

X
s∈Sw;l∈s

yws
f �l;p
f �s

� �
pÎ 1 ::::nf g; lÎL (16)

Al,p= trips alighting line l at stop p, which can be obtained as:

Al;p ¼
X

w∈W ;d wð Þ¼p

X
s∈Sw;l∈s

yws
f �l;p
f �s

� �
pÎ 1 ::::nf g; lÎL: (17)

Expression (15) assumes that boarding and alighting happen sequentially at every stop. Under dif-
ferent boarding and alighting conditions (i.e. simultaneous processes) expression (15) should be ad-
justed accordingly [26]. However, behavior in transit corridors equipped with off-board fare
payment stations is very often similar to metro systems, where alighting users precede boarding.
Furthermore, a term of discomfort [4] can be introduced to reflect the crowding effect. This term can

be included to redefine the running time of line l for the pair w (rtwi ) of equation (13) as:

rtwl ¼
X
a∈Al;w

tl;a þ
X
p

ϑp�δa;p
 !

� 1þ α� vl;a
Cl�f l

� �β
 ! !

;wÎW ; lÎL (18)

where α and β are parameters to be estimated and δa,p is a binary variable taking a value of 1 if the head
of arc a is p and 0 otherwise. Notice that bus queueing time at bus stops has been included as part of
the running time. By doing this, it is considered that users still suffer the crowding conditions at these
additional times between stops.
Based on the described time structure, each user making a trip in pair w chooses the route section

that minimizes his/her total travel time (in-vehicle travel time+waiting time), given by:

ETTw
s ¼ 1

f �s
þ

X
l∈s

rtwl �f �l
� �
f �s

þ

X
l∈s

X
p

dtl;p�δwl;p
 !

�f �l
f �s

0
BBBB@

1
CCCCA ; wÎW ; sÎSw: (19)

3.3. Equilibrium formulation

In accordance withWardropˈs first principle, the problem can be formulated with a variational inequality
of the following type:

ETT Y
�� �� Y � � Y
� �

≤0; ∀Y∈Ω (20)
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where Y is any feasible flow vector in each route section for each pair w yws
� �

, Y* represents the equi-

librium flow solution, Ω is the group of feasible flow vectors and ETT is the route section cost vector.

4. SOLUTION ALGORITHM

4.1. Description of the algorithm

It can be seen that the problem being considered has a non-separable cost function: the cost function
for each arc is not separable as a function of its own flow but rather depends on the arcs with which
it shares one or more services. So, the Jacobian matrix is non diagonal and asymmetric; hence, no
equivalent optimization formulation of the Beckman type exists for the variational problem.
One of the simplest and most robust schemes for solving equilibrium problems is the well-known

MSA which has been extensively used in transport applications, and its particular usefulness has been
widely demonstrated for solving stochastic equilibrium assignment problems. Its application to
congested public transport assignment can be found in a wide number of research ([9, 11, 14, 19] cited
in this paper) and can be applied in problems with non-separable cost functions [29].
Given the linear nature of public transport corridors, the transit assignment problem with capacity

constraints can be considered as a sequential assignment with respect to the first stop on the route.
So, travelers between successive nodes will experience increased waiting times depending on the de-
gree of saturation along the line caused by the trips starting at the previous nodes.
A sequential transit assignment is solved first at each iteration of the MSA algorithm; then, the MSA

algorithm updates the route section flows by taking the average value of route section flows from the
previous iterations.
The above description means that the proposed algorithm can be described in the following steps:

Step 1 Initialization of the algorithm: establish it=0, compute the initial (free flow) travel time on
each line for each pair w: (twl )

it.
Step 2 Sequential assignment to public transport:

2.1 Set p= 1
2.2 Transit Assignment: The times (twl )

it are used to calculate the attractive lines in all route sections
starting from node p determining mins ETTw

s , according to (19). All journeys starting from
node p, are assigned to the identified route section.

2.3 Update (wtwl ): the flows obtained from the route sections and line sections (yws ; v
w
l ) are used to

update the waiting times (wtl,p) perceived by the travelers starting their trip in p+1, according to
(4). Based on these perceived frequencies, we compute f �s for all route sections starting in p+ 1,
according to (8).

2.4 p← p+1
2.5 Go to 2.2.until p=n

Step 3 Updating: with the obtained flows per route section Yn= (yws )
it, and travelers per line Vit= (vwl )

it

update the expected travel time times: (ETTw
s )

it as a function of Vit.
Step 4 : Search for the direction of movement: with the new expected travel times from Step 3, carry

out another sequential assignment, obtaining an auxiliary flow vector for each route section
and pair w: (zws )

it

Step 5 Movement: Obtain the new journey flow pattern per line according to:

yws
� �itþ1 ¼ yws

� �it þ 1=itð Þ zws
� �it � yws

� �it� 	
(21)

Step 6 Convergence Criteria (Δ): If convergence is found, stop; if not, perform it← it+ 1 and return to
Step 3.

5. NETWORK TEST APPLICATION

The proposed model has been checked using the example network proposed by[2]. The network con-
sists of a corridor of four nodes and three lines with the characteristics shown in Figure 1.
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The algorithm is first used to identify the assignment for the uncapacitated case with and without
taking into account dwell times (only boarding and alighting times are computed), arriving at the
same results reported by [2] and displayed in Table I. This table shows that in this equilibrium
the 3–4 pair is the only O/D pair served by two route sections. For low levels of demand, only route
section S4 (L1, L2) will be attractive, but once demand grows then section S7 (L1, L2, L3) also
becomes attractive.
However, if passenger load is analyzed by line segment, the load on L1 reaches 826.37 between

nodes 2 and 3, exceeding its capacity. Thus, the assignment is carried out again taking into account
the capacity constraint and discomfort penalty (bus queuing effect in bus delays is avoided here be-
cause of low frequencies).
The equilibrium assignment when vehicle capacities are considered (with parameter values ф=40,

α= 0.5 and β= 10) is displayed in Table II, in which OD pairs 1–3, 1–4 and 3–4 are now served by two
route sections with identical journey times. This reassignment of flows prevents L1 from becoming sat-
urated in arc 2–3.
This can be seen more clearly in Table III which shows the passenger load and the degree of occu-

pancy of each line segment on the network. We have also added in the table the case in which dwell
times are assumed independent of the flows. In the new assignment, the segment 2–3 of line 1 is no

Figure 1. Network test configuration.

Table I. Application of the algorithm on the uncapacitated network: equilibrium journey times and route section
flows.

Equilibrium ETTs

Section Lines

W

1–2 1–3 1–4 2–3 2–4 3–4

S1 L1 24.66 44.88 69.11 27.72 51.95 31.73
S2 L2 41.00 61.69 30.69
S3 L3 28.31 51.38 78.38 35.08 62.08 39.00
S4 L1,L2 38.93 61.65 27.00
S5 L1,L3 21.45 42.77 68.07 25.93 51.23 29.91
S6 L2,L3 40.27 63.83 29.01
S7 L1,L2,L3 39.05 62.89 27.00
Equilibrium route section flows
S1 L1 0.00 0.00 0.00 0.00 0.00 0.00
S2 L2 0.00 0.00 0.00
S3 L3 0.00 0.00 0.00 0.00 0.00 0.00
S4 L1,L2 600.00 200.00 212.31
S5 L1,L3 300.00 0.00 0.00 200.00 400.00 0.00
S6 L2,L3 0.00 0.00 0.00
S7 L1,L2,L3 0.00 0.00 87.69
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longer saturated, whereas it was clearly overloaded with both unrestricted assignments which did not
consider vehicle capacity.
The three processes described above lead to quite different passenger assignments to line segments.

Table IV shows trip assignments per line obtained by the three assignment models. When capacity
constraint is considered line L3 significantly increases its demand in spite of its journey times at first
appearing uncompetitive.

Table II. Application of the algorithm on the capacitated network: equilibrium journey times and route section
flows.

Section Lines

Equilibrium ETTs

1–2 1–3 1–4 2–3 2–4 3–4

S1 L1
23.857 47.800 71.395

32.048 55.643 31.095

S2 L2
42.292 63.895

31.603

S3 L3
29.080 53.153 80.180

36.073 63.100 39.027

S4 L1,L2
41.153 63.895

27.027

S5 L1,L3
21.251 45.243 70.158

28.833 53.811 29.531

S6 L2,L3
41.774 65.843

29.523

S7 L1,L2,L3
41.153 65.023

27.027

Equilibrium route section flows
S1 L1

0.00 0.00 0.00 0.00
0.00 0.00

S2 L2
0.00 185.86

0.00

S3 L3
0.00 0.00 0.00 0.00

0.00 0.00

S4 L1,L2
306.94 14.14

207.38

S5 L1,L3
300.00 0.00 0.00 200.00

400.00 0.00

S6 L2,L3
0.00 0.00

0.00

S7 L1,L2,L3
293.06 0.00

92.62

Bold text: route sections with minimum ETT under equilibrium conditions.

Table III. Application of the algorithm: comparison of travellers and degree of occupation per line segment for
each assignment.

line
Node
A

Node
B

No dwell
time dependent

Dwell time dependent
without capacity

constraint

Dwell time dependent
with capacity
constraint

Cap Pax
Degree
of sat (x) Pax

Degree
of sat (x) Pax

Degree
of sat (x)

1 1 2 720 641.76 0.89 641.75 0.89 491.48 0.68
2 3 720 980.22 1.36 826.37 1.15 676.10 0.94
3 4 720 685.71 0.95 518.68 0.72 411.73 0.57

2 1 3 540 342.86 0.63 342.86 0.63 416.01 0.77
3 4 540 214.29 0.40 204.39 0.38 416.01 0.77

3 1 2 450 115.38 0.26 115.38 0.26 310.05 0.57
2 3 450 76.92 0.17 230.77 0.51 192.51 0.43
3 4 450 0.00 0.00 176.92 0.39 307.89 0.68
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6. APPLICATION TO A REAL NETWORK: PAJARITOS CORRIDOR (SANTIAGO DE CHILE)

Once the proposed model has been checked, a larger network is needed in order to check the travel
time variability because of dwell times, for this reason the model has been used with data from the seg-
regated bus lane corridor that operates along Pajaritos Avenue in Santiago, Chile. This corridor is
3.3 km long and there are 10 bus stops in each direction. Operational parameters (lines, frequencies
and bus sizes) have been taken from[30] and are shown in Figure 2. This corridor is served by 294
buses per hour divided into four lines. The demand is shown in Table V and has been obtained from
[30] and [31].
All possible cases have been analyzed in this application: (i) transit assignment with constant dwell

times and no capacity constraint; (ii) transit assignment with demand dependent dwell times and no
capacity constraint; (iii) transit assignment with constant dwell times and capacity constraint and
(iv) transit assignment with demand dependent dwell times and capacity constraint. We will assume
a constant dwell time equal to 20 s for (i) and (iii). This value has been obtained as an aggregate of
those reported by [1, 32, 33].
Table VI shows the values taken for all parameters in each case. Convergence criteria have been the

gap between two successive iterations, defined as:

Table IV. Application of the algorithm to the example network: comparison of travellers per line.

Trips per line (pax/h)

L1 L2 L3

No dwell time dependent 1336.26 471.43 192.31
Dwell time dependent without capacity constraint 1169.23 461.54 369.23
Dwell time dependent with capacity constraint 1023.99 532.51 443.51

Figure 2. Pajaritos corridor scheme.

Table V. Pajaritos corridor OD matrix (pax/h).

Tw 1 2 3 4 5 6 7 8 9 10 Boarding

1 4453 2898 2422 1494 1261 733 430 373 2481 16546
2 312 271 173 159 79 46 40 267 1346
3 310 197 121 91 54 48 319 1140
4 0 0 140 93 84 617 934
5 219 107 65 57 384 832
6 134 75 67 453 729
7 86 73 508 667
8 87 559 646
9 626 626
10 0
Alighting 0 4453 3210 3003 1864 1760 1284 849 828 6213 23465
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X
s∈S

abs Vitþ1
s � Vit

s

� �
< 0:01: (22)

The results obtained from all the transit assignments show how there is enough capacity to satisfy
these higher demand rates in spite of the high demand at the beginning of the corridor.
However, in spite of not reaching the capacity constraint, it is important to note that the demand

varies significantly when the dwell time variable is considered. In fact, the aggregated results are quite
similar whether the capacity constraint has been considered or not.
Table VII shows how the express lines become more relevant in these cases because their travel

times are more attractive because of the fact that such lines do not serve every bus stop; the demand
on L2 increases by more than 300 passengers and more than 500 on L4, representing an increase of
4.5% over the initial demand. This data becomes clearer for the all-stop lines, which lose the same
number of passengers, but in this case representing more than 20% of the demand.
If the results are already significant for the number of passengers per line, the analysis per section

along the corridor reveals even more variations. As can be seen in Figure 3, the first sections, with
the highest demand, show the greatest variations in passenger numbers, with variations of 40% in de-
mand for all-stop lines and 6.9% on express lines.
These values should not be underestimated as they represent variations of up to 400 passengers/h in

each direction along a single section and could lead to potential planning errors for these lines if they
were not taken into account.
Therefore, as can be seen in Figure 3, the assignment, and thus, the demand of each line are highly

conditioned by dwell times. This fact is clearly reflected by express lines (L2 and L4) where travel
times become even more competitive.
An analysis of the route sections chosen by the users for their journeys shows OD pairs where the

users continue to choose more than one route section. In the case of the 1–3 pair, the users are shared
between sections S2, served by L2, and S11 served by L1, L2 and L3; and the 8–10 pair, where jour-
neys are made on sections S4, corresponding to L4 and S13, served by lines L1, L3 and L4.
Furthermore, a sensitivity analysis has been carried out considering different levels of demand and dif-

ferent boarding and alighting times. Thus, the OD matrix shown in Table V has been modified by apply-
ing two coefficients equal to 0.5 and 1.5 in order to decrease and to increase the demand, respectively.
The results show that congestion (discomfort; waiting times) does not influence travel times when

the demand is much lower than the operational capacity of the corridor. The loads of each line remain

Table VI. Model parameters.

Case i Case ii Case iii Case iv

α n/a n/a 0,5 0,5
β n/a n/a 10 10
ϕ n/a n/a 40 40
Dwell time 20 s Variable 20 s Variable
tb n/a 1.75 n/a 1.75
ta n/a 1 n/a 1
toc n/a 3 n/a 3
Bus size n/a n/a 90 90
ς 0.9152 0.9152 0.9152 0.9152
χ 7.7609 7.7609 7.7609 7.7609
BSC 210 210 210 210

Table VII. Pajaritos corridor application: passengers per line.

Line Case (i) Case (ii) Case (iii) Case (iv)

L1 3633 2887 3633 2905
L2 7830 8183 7830 8163
L3 559 444 559 447
L4 11 444 11 951 11 444 11 951
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constant in all the analyzed cases but are highly dependent on dwell times. This effect can be seen in
Figure 4, where the passenger loads per line change slightly when dwell time is considered, especially
in the initial sections where demand is highest.
However, when demand levels reach operating capacity, travel times are still significantly affected by

dwell times, even more than by the capacity constraint as shown in Figure 5. Variations of up to 900
passengers/h are found in each direction on L1 when the capacity constraint is not considered, but 43%,
and 400 passengers/h/direction when the capacity constraint is considered. In other words, with high levels
of demand, dwell times have a greater influence on the assignment results than the capacity constraint.

Figure 4. Degree of saturation of each line (demand decreased by 0.5).

Figure 3. Degree of saturation of each line (base demand).
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As an example, Figure 6 shows the variations in the passengers who board at the first stop along the cor-
ridor where there is the greatest demand according to the Origin Destination matrix. The results were nor-
malized by representing the percentile variations compared with the base scenario considered in case (i), in
other words, without congestion andwith constant dwell times. This graph highlights the important drop in
passengers boarding lines L1 and L3, and corroborates that the variations are more significant in cases (ii)
and (iv), when variable dwell times are considered, than when the capacity constraint is activated.
Because in this case dwell times seem to have a strong impact in the results, the passenger boarding

and alighting times at bus stops have also been varied. Lower values have been used, corresponding to

Figure 5. Degree of saturation of each line (demand increased by 1.5).

Figure 6. Demand relative variation for each case at bus stop #1.
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0.5 s/pass and 0.3 s/pass for boarding and alighting, respectively for the observed demand on the cor-
ridor (Table V) and assuming a 50% growth factor. The influence of more extreme values was also an-
alyzed by notably increasing these times up to 2 s/pass and 1.2 s/pass, respectively. Intermediate times
of 1 s/pass and 0.75 s/pass were also tested according to [28, 34, 35]. These values may fit the condi-
tions of different vehicle types (normal and articulated buses with three and four doors) and fare pay-
ment systems. The comparison between the different levels of occupancy per line along the corridor is
presented in Figures 7 and 8. It can be seen that, for all the analyzed cases, the difference in occupancy
level grow as dwell times depend more heavily on the boarding and alighting process. Differences of
around 40% were found for the base demand case and of 27% for the amplified demand, with

Figure 7. Degree of saturation of each line with boarding/alighting times variation (base demand).

Figure 8. Degree of saturation of each line with boarding/alighting times variation (demand increased by 1.5).
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variations of 550 and 400 passengers, respectively, on certain line sections when compared to the con-
stant dwell times case.
The influence of boarding/alighting times on passenger assignment has been found to be quite sim-

ilar for intermediate values: 1–2 s/pass and 0.5–1.2 s/pass for boarding and alighting times, respec-
tively. These times are comparable with observed service times for three door standard buses.
Lower passenger service times (0.5 and 0.3 s/pass) replicating four door articulated buses lead to
slightly different results. However, differences of around 20% were found in passengers per line for
the actual demand case and of 17% for the factored demand.
The results obtained in this analysis highlight the importance of considering the impact of variable

dwell times during the assignment process because the route section flows (therefore line flows) may vary
greatly with respect to conventional transit assignment models. These differences become more apparent
at the individual line level, as can be seen in Figure 9. This figure shows the relative passenger variations
for each line with respect to the assignment with capacity constraint and constant dwell times. The “all-
stop” lines (L1 and L3) show flow drops of over 20% in most of the cases analysed for the base demand
case, and of more than 12% when the demand is amplified. The express lines (L2 and L4) show incre-
ments of around 5% in the base demand case and over 3.5% when demand is amplified. As in previous
cases, the assignment in the scenario with the fastest boarding/alighting times is the closest to the assign-
ment with constant dwell times. However, even in this scenario the lowest increase is found on Line 4 for
the factored demand, representing about 200 passengers/h in a scenario where the capacity constraint is
reached. This may lead to problems associated with bad planning for the lines along the corridor.
Finally, the assignment model, both with and without capacity constraints have shown that some

origin–destination pairs are served by more than one route section. As [2] found, identical users faced
with the same trip must be allowed to take different decisions for an equilibrium assignment to exist.

7. CONCLUSIONS

This article has proposed a new assignment model for public transport corridors. In this model limited
vehicle capacity has been considered influencing waiting time at bus stops, and “discomfort” during a
journey when occupancy at buses approach capacity. Dwell times because of passenger boarding and
alighting times at bus stops have also been included as part of the in-vehicle journey times, as well as
an additional delay inside the bus because of bus queuing at stops.

Figure 9. Demand relative variation of each line with boarding/alighting times variation and different levels of
demand.
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The MSA algorithm with a sequential assignment has been used to solve it. The application of the
algorithm to the uncapacitated text network reported by [2] has provided identical results.
The application shows significant variations in passenger assignment per line segment compared to

traditional assignment models, implying the importance of taking into account the dwell time, even
during high levels of demand where dwell times have a more significant influence than the capacity
constraint on the assignment results. Variations of up to 40% passengers/h in each direction have been
found along a single section in most cases.
Different boarding and alighting times have been analyzed in order to mimic different vehicle types:

normal and articulated buses with three and four doors. Lower passenger service times (0.5 and 0.3 s/
pass) replicating four door articulated buses lead to different results from those obtained with interme-
diate times and with constant dwell times. However, differences of around 20% were found for the
base demand case and of 17% for the amplified demand.
In all cases, constant dwell time assignment models tend to underestimate the demand of express

services (and therefore, demand on all-stop services is overestimated). This could lead to planning er-
rors undersupplying these services if variable dwell times were not considered.
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