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Abstract. Consider a homeomorphism f defined on a compact metric space

X and a continuous map φ : X → R. We provide an abstract criterion, called
control at any scale with a long sparse tail for a point x ∈ X and the map

φ, that guarantees that any weak∗ limit measure µ of the Birkhoff average of

Dirac measures 1
n

∑n−1
0 δ(f i(x)) is such that µ-almost every point y has a

dense orbit in X and the Birkhoff average of φ along the orbit of y is zero.

As an illustration of the strength of this criterion, we prove that the diffeo-

morphisms with nonhyperbolic ergodic measures form a C1-open and dense
subset of the set of robustly transitive partially hyperbolic diffeomorphisms

with one dimensional nonhyperbolic central direction. We also obtain appli-

cations for nonhyperbolic homoclinic classes.

1. Introduction

1.1. Motivation and general setting. This work is a part of a long-term project
to attack the following general problem which rephrases the opening question in
[GIKN] from a different perspective: To what extent does ergodic theory detect the
nonhyperbolicity of a dynamical system?

More precisely, we say that a diffeomorphism f is nonhyperbolic if its non-
wandering set is nonhyperbolic. We aim to know if such f possesses nonhyperbolic
ergodic measures (i.e. with some zero Lyapunov exponent) and if some of them
fully reflect the nonhyperbolic behaviour of f . For instance, we would like to know

• what is their support,
• what is their entropy, and
• how many Lyapunov exponents of the measures are zero.

In this generality, the answer to this question is negative. There are simple exam-
ples of (even analytic) nonhyperbolic dynamical systems whose invariant measures
are all hyperbolic and even with Lyapunov exponents uniformly far from zero, see
for instance the logistic map t 7→ 4t(1− t) or the surgery examples in [BBS] where
a saddle of a uniformly hyperbolic set is replaced by non-uniformly hyperbolic sets,
among others (more examples of different nature can be found in [CLR, LOR]).
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Nevertheless, these examples are very specific and fragile. Thus, one hopes that
the “great majority” of nonhyperbolic systems have nonhyperbolic ergodic mea-
sures which detect and truly reflect the nonhyperbolic behaviour of the dynamics.

Concerning this sort of questions, a first wave of results, initiated with [GIKN],
continued in [DG, BDG], and culminated in [CCGWY], show that the existence
of nonhyperbolic ergodic measures for nonhyperbolic dynamical systems is quite
general in the C1-setting: for C1-generic diffeomorphisms, every nonhyperbolic ho-
moclinic class supports a nonhyperbolic ergodic measure, furthermore under quite
natural hypotheses the support of the measure is the whole homoclinic class1.

Given a periodic point p of a diffeomorphism f denote by µO(p) the unique
f -invariant measure supported on the orbit of p. We say that such a measure
is periodic. The previous works follow the strategy of periodic approximations
in [GIKN] for constructing a nonhyperbolic ergodic measure as weak∗ limits of
periodic measures µO(pn) supported on orbits O(pn) of hyperbolic periodic points
pn with decreasing “amount of hyperbolicity”. The main difficulty is to obtain
the ergodicity of the limit measure. [GIKN] provides a criterion for ergodicity
summarised in rough terms as follows. Each periodic orbit O(pn) consists of two
parts: a “shadowing part” where O(pn) closely shadows the previous orbit O(pn−1)
and a “tail” where the orbit is far from the previous one. To get an ergodic limit
measure one needs some balance between the “shadowing” and the “tail” parts of
the orbits. The “tail part” is used to decrease the amount of hyperbolicity of a
given Lyapunov exponent (see [GIKN]) and also to spread the support of the limit
measure, (see [BDG]).

Nonhyperbolic measures seem very fragile as small perturbations may turn the
zero Lyapunov exponent into a nonzero one. However, in [KN] there are obtained
(using the method in [GIKN]) certain C1-open sets of diffeomorphisms having non-
hyperbolic ergodic measures. Bearing this result in mind, it is natural to ask if the
existence of nonhyperbolic measures is a C1-open and dense property in the space
of nonhyperbolic diffeomorphisms. In this direction, [BBD2, Theorem 4] formulates
an abstract criterion called control at any scale2 that leads to the following result
(see [BBD2, Theorems 1 and 3]): The C1-interior of the set of diffeomorphisms
having a nonhyperbolic ergodic measure contains an open and dense subset of the
set of C1-diffeomorphisms having a pair of hyperbolic periodic points of different
indices robustly in the same chain recurrence class.

The method in [BBD2] provides a partially hyperbolic invariant set with positive
topological entropy whose central Lyapunov exponent vanishes uniformly. This set
only supports nonhyperbolic measures and the existence of a measure with positive
entropy is a consequence of the variational principle for entropy [W]. A con of
this method is that the “completely” nonhyperbolic nature of the (obtained) set
where a Lyapunov exponent vanishes uniformly prevents the measures to have full
support in nonhyperbolic chain recurrence classes. This shows that, in some sense,
the criterion in [BBD2] may be “too demanding” and “rigid”.

1See [CCGWY, Main Theorem] and also [CCGWY, Theorem B and Proposition 1.1]. This last

result states that the support of the nonhyperbolic measure in a nonhyperbolic homoclinic class
of a saddle is the whole homoclinic class. This result requires neither that the stable/unstable
splitting of the saddle extends to a dominated splitting on the class (compare with [BDG]) nor
that the homoclinic class contains saddles of different type of hyperbolicity (compare with [DG]).

2This construction also involves the so-called flip-flop families, we will review these notions
below as they play an important role in our constructions.
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The aim of this paper is to introduce a new criterion that relaxes the “control at
any scale criterion” and allows to get nonhyperbolic measures with “full support”
(in the appropriate ambient space: homoclinic class, chain recurrence class, the
whole manifold, according to the case). To be a bit more precise, given a point x
and a diffeomorphism f consider the empirical measures µn(x), n ∈ N, associated
to x defined as the averages of the Dirac measures δ(f i(x)) in the orbit segment
{x, . . . , fn−1(x)},

(1.1) µn(x)
def
=

1

n

n−1∑
i=0

δ(f i(x)).

The criterion in this paper, called control at any scale with a long sparse tail with
respect to a continuous map ϕ of a point x, allows to construct ergodic measures
with full support (in the appropriate ambient space) and a prescribed average with
respect to ϕ, see Theorem 1. This construction involves two main aspects of differ-
ent nature: density of the orbits of µ-generic points and control of averages. The
existence of ergodic measures satisfying both properties is a consequence of the
construction.

A specially interesting case occurs when the map ϕ is the derivative of a dif-
feomorphism with respect to a continuous one-dimensional center direction (taking
positive and negative values). In such a case we get that every measure µ that
is a weak∗ limit of a sequence of empirical measures of x is such that µ-almost
every point has a zero Lyapunov exponent and a dense orbit (in the corresponding
ambient space), see Theorems 7 and 8.

To state more precisely the dynamical consequences of the criterion let us intro-
duce some notation (the precise definitions can be found below). In what follows
we consider a boundaryless Riemannian compact manifold M and the following two
C1-open subsets of diffeomorphisms:

• The set RT (M) of all robustly transitive diffeomorphisms3 with a partially
hyperbolic splitting with one-dimensional (nonhyperbolic) center,

• The set Z(M) defined as the C1-interior of the set of C1-diffeomorphisms
having a nonhyperbolic ergodic measure with full support in M .

As an application of our criterion we get that set Z(M) ∩ RT (M) is C1-open
and C1-dense in RT (M), see Theorem 9. We also get semi-local versions of this
result formulated in terms of nonhyperbolic homoclinic classes or/and chain recur-
rence classes, see Theorems 7 and 8. These results turn the C1-generic statements
in [BDG] into C1-open and C1-dense ones. We observe that a similar result in-
volving different methods was announced in [BZ]4. Applications of the criterion in
hyperbolic-like contexts, as for instance full shifts and horseshoes, are discussed in
Section 1.4.

In this paper we restrict ourselves to the control of the support and the aver-
ages of the measures, omitting questions related to the entropy of these measures.
Nevertheless it seems that our method is well suited to construct nonhyperbolic
ergodic measures with positive entropy and full support. This is the next step of

3A diffeomorphism is called transitive if it has a dense orbit. The diffeomorphism is C1-robustly

transitive if C1-nearby diffeomorphisms are also transitive.
4The construction in [BZ] combines the criteria of periodic approximations in [GIKN] and of

the control at any scale in [BBD2] and a shadowing lemma by Gan-Liao, [G].
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an ongoing project whose ingredients involve tools of a very different nature beyond
the scope of this paper.

In the dynamical applications we focus on partially hyperbolic diffeomorphisms
with a one-dimensional center bundle and therefore the measures may have at most
one zero Lyapunov exponent. Here we do not consider the case of higher dimen-
sional central bundles and the possible occurrence of multiple zero exponents. Up
to now, there are quite few results on multiple zero Lyapunov exponents. The si-
multaneous control of several exponents is much more difficult, essentially due to
the non-commutativity of GL(n,R) for n > 1. We refer to [BBD] for examples
of (C1 and C2) robust existence of ergodic measures with multiple zero exponents
in the context of iterated function systems. Recently, [WZ] announces the locally
C1-generic vanishing of several Lyapunov exponents in homoclinic classes of diffeo-
morphisms.

We now describe our methods and results in a more detailed way.

1.2. A criterion for controlling averages of continuous maps. Consider a
compact metric space (X, d), a homeomorphism f defined on X, and a continuous
map ϕ : X → R. Given a point x ∈ X consider the set of empirical measures
µn(x) associated to x defined as in (1.1). Consider the following notation for finite
Birkhoff averages of ϕ,

(1.2) ϕn(x)
def
=

1

n

n−1∑
i=0

ϕ(f i(x)),

and limit averages of ϕ

(1.3) ϕ∞(x)
def
= lim

n→+∞
ϕn(x) = lim

n→+∞

1

n

n−1∑
i=0

ϕ(f i(x)),

if such a limit exists.
Consider a measure µ that is a weak∗ limit of empirical measures of x and a

subsequence µnk(x) with µnk(x)→ µ in the weak∗ topology. The convergence of the
sequence of Birkhoff averages

∫
ϕdµnk(x) to some limit α implies that

∫
ϕdµ = α.

But since µ may be non-ergodic this does not provide any information about the
Birkhoff averages ϕn(y) of µ-generic points y. We aim for a criterion guaranteeing
that µ-generic points have the same limit average as x. Naively, in [BBD2] the way
to get this property is to require that “all large orbit intervals of the forward orbit
of x have average close to the limit average (say) α”. This was formalised in the
criterion control of Birkhoff averages at any scale of a point x with respect to a map
ϕ in [BBD2]. This criterion implies that there are sequences of times tn →∞ and
of “errors” εn → 0 such that every orbit interval with length t ≥ tn of the forward
orbit of x has ϕ-Birkhoff average in [α − εn, α + εn]. When ϕ-Birkhoff averages
are controlled at any scale then the ϕ-Birkhoff averages of any ω-limit point of x
converge uniformly to α (see [BBD2, Lemma 2.2]).

To get a limit measure whose support is the whole ambient space the requirement
“all long orbit intervals satisfy the limit average property” is extremely restrictive.
Roughly, in the criterion in this paper we only require that “most of large orbit
intervals of the forward orbit of x have average close to the limit average α”. Let
us explain a little more precisely this rough idea.
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If the limit measure has full support then the orbit of the point x must necessarily
visit “all regions” of the ambient space and these visits require an arbitrary large
time. Moreover, to get limit measures whose generic points have dense orbits in the
ambient space these “long visits” must occur with some frequency. During these
long visits the control of the averages can be lost.

To control simultaneously Birkhoff averages and support of the limit measure,
one needs some “balance” between the part of the orbit where there is a “good con-
trol of the averages” and the part of the orbit used for spreading the support of the
measure to get its density (roughly, these parts play the roles of the “shadowing”
and “tail parts” of the method in [GIKN]). The criterion in this paper formalizes
an abstract notion for this balance that we call control at any scale with a long
sparse tail with respect to ϕ and X (see Definitions 2.10 and 2.11). Our main tech-
nical result is that this criterion provides ergodic measures having simultaneously
a prescribed average and a prescribed support.

Theorem 1. Let (X, d) be a compact metric space, f : X → X a homeomorphism,
and ϕ : X → R a continuous map. Consider

• a point x0 ∈ X that is controlled at any scale with a long sparse tail with
respect ϕ and X and
• a measure µ that is a weak∗ limit of the sequence of empirical measures

(µn(x0))n of x0.

Then for µ-almost every point x the following holds:

a) the forward orbit of x for f is dense in X and

b) limn→∞
1
n

∑n−1
i=0 ϕ(f i(x)) =

∫
ϕdµ.

In particular, these two assertions hold for almost every ergodic measure of the
ergodic decomposition of µ.

We now exhibit some dynamical configurations where the criterion holds. Indeed,
we see that such configurations are quite “frequent”.

1.3. Flip-flop families with sojourns: control at any scale with a long
sparse tail. To present a mechanism providing orbits controlled at any scale we
borrow the following definition from [BBD2]:

Definition 1.1 (Flip-flop family). Let (X, d) be a compact metric space, f : X → X
a homeomorphism, and ϕ : X → R a continuous function.

A flip-flop family associated to ϕ and f is a family F = F+
⊔

F− of compact
subsets of X such that there are α > 0 and a sequence of numbers (ζn)n, ζn > 0
and ζn → 0 as n→∞, such that:

a) for every D ∈ F+ (resp. D ∈ F−) and every x ∈ D it holds ϕ(x) ≥ α (resp.
ϕ(x) ≤ −α);

b) for every D ∈ F, there are sets D+ ∈ F+ and D− ∈ F− contained in f(D);
c) for every n > 0 and every family of sets Di ∈ F, i ∈ {0, . . . , n} with Di+1 ⊂

f(Di) it holds

d(fn−i(x), fn−i(y)) ≤ ζi · d(fn(x)fn(y))

for every i ∈ {0, . . . , n} and every pair of points x, y ∈ f−n(Dn).

We call plaques5 the sets of the flip-flop family F .

5We pay special attention to the case when the sets of the flip-flop family are discs tangent to
a strong unstable cone field. This justifies this name.
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F+ F−
D

D+

D−

D̂−

Y

Figure 1. A flip-flop family with sojourns: the plaques D+, D−,

and D̂− (the plaque D̂+ is omitted for visual simplicity).

With the notation in Definition 1.1, [BBD2, Theorem 2.1] claims that for every
number t ∈ (−α, α) and every set D ∈ F there is a point xt ∈ D whose orbit is
controlled at any scale for the function ϕt = ϕ− t. Hence the Birkhoff average of ϕ
along the orbit of any point y ∈ ω(xt) is t. Furthermore, the ω-limit set of xt has
positive topological entropy.

Since we aim to obtain measures with full support we need to relax the control
of the averages. For that we introduce a “sojourn condition” for the returns of the
sets of the flip-flop family (item (a) in the definition below). These“sojourns” will
be used to get dense orbits and to spread the support of the measures and play a
role similar to the “tails” in [GIKN].

Definition 1.2 (Flip-flop family with sojourns). Let (X, d) be a compact metric
space, Y a compact subset of X, f : X → X a homeomorphism, and ϕ : X → R a
continuous function.

Consider a flip-flop family F = F+
⊔
F− associated to ϕ and f . We say that the

flip-flop family F has sojourns along Y (or that F sojourns along Y ) if for every
δ > 0 there is an integer N = Nδ such that every plaque D ∈ F contains subsets

D̂+, D̂− such that:

a) for every x ∈ D̂+ ∪ D̂− the orbit segment {x, . . . , fN (x)} is δ-dense in Y
(i.e., the δ-neighbourhood of the orbit segment contains Y );

b) fN (D̂+) ∈ F+ and fN (D̂−) ∈ F−;

c) for every i ∈ {0, . . . , N} and every pair of points x, y ∈ D̂+ or x, y ∈ D̂− it
holds

d(fN−i(x), fN−i(y)) ≤ ζi · d(fN (x)fN (y)),

where (ζi)i is a sequence as in Definition 1.1.

The conditions in Definition 1.2 are depicted in Figure 1.
Next theorem corresponds to [BBD2, Theorem 2.1] in our setting:

Theorem 2. Let (X, d) be a compact metric space, Y a compact subset of X,
f : X → X a homeomorphism, and ϕ : X → R a continuous function. Consider a
flip-flop family F associated to ϕ and f having sojourns along Y .

Then every plaque D ∈ F contains a point xD ∈ D that is controlled at any scale
with a long sparse tail with respect to ϕ and Y .

As a corollary of Theorems 1 and 2 we get (recall the notation for Birkhoff limits
in (1.3)):
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Corollary 3. Under the hypotheses of Theorem 2 and with the same notation, any
measure µ that is a weak∗ limit of the empirical measures (µn(xD))n satisfies the
following properties:

• the orbit of µ-almost every point is dense in Y and
• for µ-almost every point x it holds ϕ∞(x) = 0.

As a consequence, almost every measure ν in the ergodic decomposition of µ has
full support in Y and satisfies

∫
ϕdν = 0.

We now explore some consequences of the results above.

1.4. Birkhoff averages in homoclinic classes. An important property of our
methods is that they can be used in nonhyperbolic and non-Markovian settings.
We now present two applications of our criteria in the “hyperbolic” setting of a
mixing sub-shift of finite type that are, as far as we are aware, unknown. The key
point of Proposition 4 is that it only requires continuity of the potential ϕ. When
the potential is Hölder continuous this sort of result is well-known6.

Proposition 4. Let σ : Σ → Σ be a mixing sub-shift of finite type and ϕ : Σ → R
a continuous function. Let α and β be the infimum and maximum, respectively,
of
∫
ϕdµ over the set of σ-invariant probability measures µ (or equivalently of the

Birkhoff averages along periodic orbits). Then for every t ∈ (α, β) the following
holds:

a) (Application of the criterion in [BBD2]) There is a σ-invariant compact set
Kt with positive topological entropy such that the Birkhoff average of ϕ along
the orbit of any point in Kt is t.

b) (Application of the new criterion) There is an ergodic measure µt with full
support in Σ such that

∫
ϕdµt = t.

This proposition deals with systems satisfying specification properties. An im-
portant property of our two criteria is that they do not involve and do not depend
on specification-like properties. Indeed, they are introduced to control averages of
functions in partially hyperbolic settings where specification fails. We now present
an application of our criterion in settings without specification properties.

In what follows let M be a boundaryless compact Riemannian manifold and
Diff1(M) the space of C1-diffeomorphisms endowed with the standard uniform
topology. The homoclinic class of a hyperbolic periodic point q of a diffeomor-
phism f ∈ Diff1(M), denoted by H(q, f), is the closure of the set of transverse
intersection points of the stable and unstable manifolds of the orbit of q. Two
hyperbolic periodic points p and q of f are homoclinically related if the stable and
unstable manifolds of their orbits intersect cyclically and transversely. The homo-
clinic class of q can also be defined as the closure of the periodic points of f that
are homoclinically related to q. A homoclinic class is a transitive set (existence of
a dense orbit) whose periodic points form a dense subset of it. Homoclinic classes
are in many cases the “elementary pieces of the dynamics” of a diffeomorphism and
are used to structure its dynamics, playing a similar role of the basic sets of the

6For instance, techniques from multifractal analysis provide the following: Given a Hölder

continuous function ϕ, there is a parametrised family of Gibbs states µt, t ∈ (α, β), where α, β are

as above, such that
∫
ϕdµt = t. Each µt has full support and positive entropy. The conclusion in

this statement is stronger than the than the one in b) as it guarantees also positive entropy. For

a survey of this topic see for instance [PW].
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hyperbolic theory (indeed each basic set is a homoclinic class), for a discussion see
the survey in [B].

The u-index of a hyperbolic periodic point is the dimension of its unstable bun-
dle. We analogously define s-index . Two saddles which are homoclinically related
have necessarily the same u- and s-indices. However two saddles with different in-
dices (it is not necessary to specify the index type) may be in the same homoclinic
class. In such a case the class is necessarily nonhyperbolic. Indeed, the property of
a homoclinic class containing saddles of different indices is a typical feature in the
nonhyperbolic dynamics studied in this paper (see also [S, M1, BD1]).

The next result is a generalisation of the second part of Proposition 4 to a non-
necessarily hyperbolic context, observe that we do not require hyperbolicity of the
homoclinic class. Recall that if p is a periodic point of f we denote by µO(p) the
f -invariant probability supported on the orbit of p.

Theorem 5. Let f : M → M be a C1-diffeomorphism defined on a boundary-
less compact manifold and ϕ : M → R a continuous function. Consider a pair of
hyperbolic periodic points p and q of f that are homoclinically related and satisfy

ap
def
=

∫
ϕdµO(p) <

∫
ϕdµO(q)

def
= aq.

Then for every t ∈ (ap, aq) there is an ergodic measure µt whose support is the
whole homoclinic class H(p, f) = H(q, f) and satisfies

∫
ϕdµt = t.

Note that the hypotheses in the theorem are C1-open. Observe that the difficulty
in the theorem is to get simultaneously the three properties ergodicity, prescribed
average, and full support. It is easier (and also known) to build measures satisfying
simultaneously only two of these properties.

We also aim to apply the criterion in Theorem 1 to saddles p and q that have
different indices and are in the same homoclinic class (or, more generally, chain
recurrence class) and thus the saddles are not homoclinically related.

Before stating the next corollary let us recall the definition of a chain recurrence
class. Given ε > 0, a finite sequence of points (xi)

n
i=0 is an ε-pseudo-orbit of a

diffeomorphism f if d(f(xi), xi+1) < ε for every i = 0, . . . , n − 1 (here d denotes
the distance in M). A point x is chain recurrent for f if for every ε > 0 there is an
ε-pseudo-orbit (xi)

n
i=0 with x0 = x = xn. The chain recurrent set of f , denoted by

R(f), is the union of the chain recurrent points of f . The chain recurrence class
C(x, f) of a point x ∈ R(f) is the set of points y such that for every ε > 0 there
are ε-pseudo-orbits joining x to y and y to x. Two chain recurrence classes are
either disjoint or equal. Thus the set R(f) is the union of pairwise disjoint chain
recurrence classes. Let us observe that two points in the same homoclinic class are
also in the same chain recurrence class (the converse is false in general, although
C1-generically homoclinic classes and chain recurrence classes of periodic points
coincide, see [BC]). Thus if p is a hyperbolic periodic point then H(p, f) ⊆ C(p, f).

Corollary 6. Let M be a boundaryless compact manifold and U be a C1-open set
in Diff1(M) such that every f ∈ U has a pair of hyperbolic periodic orbits pf and
qf of different indices depending continuously on f whose chain recurrence classes
are equal. Let ϕ : M → R be a continuous function such that∫

ϕdµO(pf ) < 0 <

∫
ϕdµO(qf ), for every f ∈ U .
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Then there are two C1-open sets Vp and Vq whose union is C1-dense in U such
that every f ∈ Vp (resp. f ∈ Vq) has an ergodic measure µf whose support is the
homoclinic class H(pf , f) (resp. H(qf , f)) and satisfies

∫
ϕdµf = 0.

Note that the saddles in the corollary cannot be homoclinically related and hence
Theorem 5 cannot be applied. We bypass this difficulty by transferring the desired
averages to pairs of homoclinically related periodic points (then the proof follows
from Theorem 5), see Section 5.3 for the proof of the corollary.

Remark 1.3. By [BDPR, Theorem E], if in Corollary 6 we assume that the chain
recurrence class is partially hyperbolic with one-dimensional center (see definition
below) then there is a C1-open and dense subset V of U such that H(pg, g) =
H(qg, g) for all g ∈ V. Without this extra hypothesis the equality of the homoclinic
classes is only guaranteed for a residual subset of U , see [BC].

1.5. Nonhyperbolic ergodic measures with full support. In what follows we
focus on partially hyperbolic diffeomorphisms with one-dimensional center. Our
aim is to get results as above when ϕ is the “logarithm of the center derivative”.
This will allow us to obtain nonhyperbolic ergodic measures with large support
in quite general nonhyperbolic settings. Before going to the details we need some
definitions.

Given a diffeomorphism f we say that a compact f -invariant set Λ is partially hy-
perbolic with one-dimensional center if there is a Df -invariant dominated7 splitting
with three non-trivial bundles

(1.4) TΛM = Euu ⊕ Ec ⊕ Ess

such that Euu is uniformly expanding, Ec has dimension 1, and Ess is uniformly
contracting. We say that Euu and Ess are the strong unstable and strong stable
bundles, respectively, and that Ec is the central bundle. We denote by duu and dss

the dimensions of Euu and Ess, respectively.
Given an ergodic measure µ of a diffeomorphism f the Oseledets’ Theorem

gives numbers χ1(µ) ≥ χ2(µ) ≥ · · · ≥ χd(µ), the Lyapunov exponents, and a Df -
invariant splitting E1 ⊕E2 ⊕ · · · ⊕Ed, the Oseledets’ splitting, where d = dim(M),
with the following property: for µ-almost every point

lim
n→±∞

log ‖Dfnx (vi)‖
n

= χi(µ), for every i and v ∈ Ei r {0̄}.

If the measure is supported on a partially hyperbolic set with one-dimensional
center as above then

Euu = E1 ⊕ · · · ⊕ Eduu , Ec = Eduu+1, Ess = Eduu+2 ⊕ · · · ⊕ Ed,

and χduu(µ) > 0 > χduu+2(µ). Let χduu+1(µ)
def
= χc(µ), we say that χc(µ) is the

central exponent of µ. In this partially hyperbolic setting the logarithm of the center
derivative map

(1.5) Jc
f (x)

def
= log |Dfx|Ec(x)|

7A Df -invariant splitting TΛM = F ⊕E is dominated if there are constants C > 0 and λ < 1

such that ||Df−nFfn(x)|| ||DfnEx|| < Cλn for all x ∈ Λ and n ∈ N. In our case domination
means that the bundles Euc ⊕ Ess and Euu ⊕ Ecs are both dominated, where Euc = Euu ⊕ Ec

and Ecs = Ec ⊕ Ess.
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is well defined and continuous, therefore the central Lyapunov exponent of the
measure is given by the integral

χc(µ) =

∫
Jc
f dµ.

This equality allows to use the methods in the previous sections to construct and
control nonhyperbolic ergodic measures.

Let us explain some relevant points of our study. A (new) difficulty, compared
with Theorem 5, is that the logarithm of the center derivative Jc

f cannot take values

with different signs at homoclinically related periodic points (by definition, such
points have the same indices and thus the sign of Jc

f is the same). To recover this
signal property we consider chain recurrence classes containing saddles of different
indices.

Theorem 7. Let M be a boundaryless compact manifold and U a C1-open set of
Diff1(M) such that every f ∈ U has hyperbolic periodic orbits pf and qf such that:

• they have different indices and depend continuously on f ∈ U ,
• their chain recurrence classes C(pf , f) and C(qf , f) are equal and have a

partially hyperbolic splitting with one-dimensional center.

Then there is a C1-open and dense subset V ⊂ U such that every diffeomorphism
f ∈ V has a nonhyperbolic ergodic measure µf whose support is the homoclinic class
H(pf , f) = H(qf , f).

Let us first observe that Theorem 7 can be rephrased in terms of robust cycles
instead of periodic points in the same chain recurrence class. For that we need
to review the definition of a robust cycle. Recall that a hyperbolic set Λf of f ∈
Diff1(M) has a well defined hyperbolic continuation Λg for every g close to f . Two
transitive hyperbolic basic sets Λf and Γf of a diffeomorphism f have a C1-robust
(heterodimensional) cycle if these sets have different indices and if there is a C1-
neighbourhood Uf of f such that for every g ∈ U the invariant sets of Λg and Γg
intersect cyclically. As discussed in [BBD2], the dynamical scenarios of “dynamics
with C1-robust cycles” and “dynamics with chain recurrence classes containing C1-
robustly saddles of different indices” are essentially equivalent (they coincide in a
C1-open and dense subset of Diff1(M)).

We now describe explicitly the open and dense subset V of U in Theorem 7
using dynamical blenders and flip-flop configurations introduced in [BBD2], see
Remark 1.4. Naively, a dynamical blender is a hyperbolic and partially hyperbolic
set together with a strictly invariant family of discs (i.e., the image of any disc
of the family contains another disc of the family) almost tangent to its strong
unstable direction, see Definition 6.3. In very rough terms, a flip-flop configuration
of a diffeomorphism f and a continuous function ϕ is a C1-robust cycle associated
to a hyperbolic periodic point q and a dynamical blender Λ such that ϕ is bigger
than α > 0 in the blender Λ and smaller than −α < 0 on the orbit of q. Important
properties of flip-flop configurations are their C1-robustness, that they occur C1-
open and densely in the set U in Theorem 7, and that they yield flip-flop families.
The latter allows to apply our criterion for zero averages. The set V in Theorem 7
is described in the remark below.

Remark 1.4 (The set V in Theorem 7). The set V is the subset of U of diffeomor-
phisms with flip-flop configurations “containing” the saddle qg.
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To state our next result recall that a filtrating region of a diffeomorphism f is
the intersection of an attracting region and a repelling region of f . Let U be a
filtrating region of f endowed with a strictly forward invariant unstable cone field
of index i and a strictly backward invariant cone field of index dim(M) − i − 1,
see Section 6.1.2 for the precise definitions. Then the maximal f -invariant set in U
has a partially hyperbolic splitting Euu ⊕ Ec ⊕ Ess, with dim(Ec) = 1. As above
this allows us to define the logarithm of the center derivative Jc

f of f . We have the
following “variation” of Theorem 7.

Theorem 8. Let M be a boundaryless compact manifold. Consider f ∈ Diff1(M)
with a a filtrating region U endowed with a strictly Df -invariant unstable cone field
of index i and a strictly Df−1-invariant cone field of index dim(M)− i− 1.

Assume that f has a flip-flop configuration associated to a dynamical blender
and a hyperbolic periodic point q both contained in U .

Then there is a C1-neighbourhood Vf of f such that every g ∈ Vf has a non-
hyperbolic ergodic measure whose support is the whole homoclinic class H(qg, g) of
the continuation qg of q.

The hypothesis in this theorem imply that the blender and the saddle in the
flip-flop configuration are in the same chain recurrence class. With the terminology
of robust cycles, they have a C1-robust cycle.

Note that Theorem 8 is not a perturbation result: it holds for every diffeo-
morphism with such a flip-flop configuration. Moreover, and more important, the
hypotheses in Theorem 8 are open (the set U is also a filtrating set for every g
sufficiently close to f , hence the homoclinic class H(qg, g) is contained in U and
partially hyperbolic, and flip-flop configurations are robust). Thus Theorem 8 holds
for the homoclinic class of the continuation of q for diffeomorphisms g close to f .

Remark 1.5. Theorem 8 does not require the continuous variation of the homo-
clinic class H(qg, g) with respect to g. Note also that, in general, homoclinic classes
only depend lower semi-continuously on the diffeomorphism. As a consequence,
the partial hyperbolicity of a homoclinic class is not (in general) a robust prop-
erty. The relevant assumption is that the homoclinic classes are contained in a
partially hyperbolic filtrating neighbourhood which guaranteed the robust partial
hyperbolicity of the homoclinic class.

We can change the hypotheses in the theorem, omitting that U is a filtrating
neighbourhood and considering homoclinic classes depending continuously on the
diffeomorphism (this occurs in a residual subset of diffeomorphisms). Then, by
continuity, the class is robustly contained in the partially hyperbolic region and we
can apply the previous arguments.

1.6. Applications to robustly nonhyperbolic transitive diffeomorphisms.
A diffeomorphism f ∈ Diff1(M) is transitive if it has a dense orbit. The diffeo-
morphism f is C1-robustly transitive if any diffeomorphism g that is C1-close to f
is also transitive. In other words, a diffeomorphism is C1-robustly transitive if it
belongs to the C1-interior of the set of transitive diffeomorphisms.

We denote by RT (M) the (C1-open) subset of Diff1(M) consisting of diffeomor-
phisms f such that:

• f is robustly transitive,
• f has a pair of hyperbolic periodic points of different indices,
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• f has a partially hyperbolic splitting TM = Euu⊕Ec⊕Ess, where Euu is uni-
formly expanding, Ess is uniformly contracting, and Ec is one-dimensional.

Note that the last condition implies that the hyperbolic periodic points of f have
either u-index dim(Euu) or dim(Euu) + 1. Note also that our assumptions imply
that dim(M) ≥ 3 (in lower dimensions RT (M) = ∅ , see [PS]).

In dimension ≥ 3 and depending on the type of manifold M , the set RT (M)
contains interesting examples. Chronologically, the first examples of such partially
hyperbolic robustly transitive diffeomorphisms were obtained in [S] considering dif-
feomorphisms in T4 obtained as skew products of Anosov diffeomorphisms on T2

and derived from Anosov on T2 (Ti stands for the i-dimensional torus). Later,
[M1] provides examples in T3 considering derived from Anosov diffeomorphisms.
Finally, [BD1] gives examples that include perturbations of time-one maps of tran-
sitive Anosov flows and perturbations of skew products of Anosov diffeomorphisms
and isometries.

Theorem 9. There is a C1-open and dense subset Z(M) of RT (M) such that
every f ∈ Z(M) has an ergodic nonhyperbolic measure whose support is the whole
manifold M .

Let us mention some related results. First, by [BBD2], there is a C1-open and
dense subset of RT (M) formed by diffeomorphisms with an ergodic nonhyperbolic
measure with positive entropy, but the support of these measures is not the whole
ambient. By [BDG], there is a residual subset of RT (M) of diffeomorphism with
an ergodic nonhyperbolic measure with full support. Finally, a statement similar
to our theorem is stated in [BZ], see Footnote 4.

Recall that given a periodic point p of f the measure µO(p) is the unique f -
invariant measure supported on the orbit of p.

Corollary 10. Consider a continuous map ϕ : M → R. Suppose that f ∈ RT (M)
has two hyperbolic periodic orbits p and q such that

µO(p)(ϕ) > 0 > µO(q)(ϕ).

Then there are a C1-neighbourhood Vf of f and a C1-open and dense subset Of of
Vf such that every g ∈ Of has an ergodic measure µg with full support on M such
that ∫

ϕdµg = 0.

Remark 11. By [C, Proposition 1.4], for diffeomorphisms in Z(M) every hy-
perbolic ergodic measure µ is the weak∗ limit of periodic measures supported on
points whose orbits tend (in the Hausdorff topology) to the support of the measure
µ. Thus, Corollary 10 holds after replacing the hypothesis µO(p)(ϕ) > 0 > µO(q)(ϕ)

by the existence of two hyperbolic ergodic measures ν+ and ν− such that
∫
ϕdν+ >

0 >
∫
ϕdν−.

1.7. Organization of the paper. In Section 2 we introduce the concepts involved
in the criterion of control at any scale with a long sparse tail and prove Theorem 1.
In Section 3 we introduce the notion of a pattern and see how they are induced
by long tails of scales. We study the concatenations of plaques of flip-flop families
(associated to a map ϕ) and the control of the averages of ϕ corresponding to these
concatenations, see Theorem 3.9. In Section 4 we prove Theorem 2, Corollary 3,
and Proposition 4. In Section 5 we prove Theorem 5 involving flip-flop families
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and homoclinic relations. In Section 6 we review some key ingredients as dynam-
ical blenders and flip-flop configurations and prove Theorems 7 and 8. Finally, in
Section 7 we apply our methods to construct nonhyperbolic ergodic measures with
full support for some robustly transitive diffeomorphisms, proving Theorem 9 and
Corollary 10.

2. A criterion for zero averages: control at any scale up to a long
sparse tail

The construction that we present for controlling averages is probably too rigid
but it is enough to achieve our goals and certain constraints perhaps could be
relaxed. However, at this state of the art, we do not aim for full generality but
prefer to present the ingredients of the construction in a simple as possible way.
One may aim to extract a general conceptual principle behind the construction,
but this is beyond the focus of this paper. In Sections 2.1 and 2.2 we introduce
the concepts involved in the criterion for controlling averages and in Section 2.3 we
prove Theorem 1.

2.1. Scales and long sparse tails. In what follows we introduce the definitions
of scales and long sparse tails.

Definition 2.1 (Scale). A sequence T = (Tn)n∈N of strictly positive natural num-
bers is called a scale if there is a sequence κ̄ = (κn)n≥1 (the sequence of factors of
the scale) of natural numbers with κn ≥ 3 for every n such that

• Tn = κn Tn−1 for every n ≥ 1;
• κn+1/κn →∞.

We assume that the number T0, and hence every Tn, is a multiple of 3.

We now introduce some notation. In what follows, given a, b ∈ R we let

[a, b]N
def
= [a, b] ∩ N.

Given a subset M of N a component of M is an interval of integers [a, b]N ⊂M such
that a, b ∈M and a− 1, b+ 1 6∈M.

Definition 2.2 (Controling sequence). Let ε̄ = (εn)n∈N be a sequence of positive
numbers converging to 0. We say that ε̄ is a controlling sequence if∑

n

εn < +∞ and
∏
n

(1− εn) > 0.

Remark 2.3. For a sequence (εn)n∈N of numbers with εn ∈ (0, 1) one has∑
n

εn < +∞ ⇐⇒
∏
n

(1− εn) > 0.

Remark 2.4. Let T = (Tn)n∈N be a scale, κn+1 = Tn+1

Tn
, and εn = 2

κn
. Then the

sequence (εn)n∈N is a controlling one.

Definition 2.5 (Long sparse tail). Consider a scale T = (Tn)n∈N and a controlling
sequence ε̄ = (εn)n∈N. A set R∞ ⊂ N is a T -long ε̄-sparse tail if the following
properties hold:

a) Every component of R∞ is of the form [k Tn, (k + 1)Tn − 1]N, for some k
and n (we say that such a component has size Tn).
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κTn (κ+ 1)Tn-1
Rn−1 Rn−1

Tn
3

Figure 2. A long sparse tail

Let Rn be the union of the components of R∞ of size Tn and let

Rn,∞
def
=
⋃
i≥n

Ri,

the union of the components of R∞ of size larger than or equal to Tn.

b) 0 /∈ R∞, in particular [0, Tn − 1]N 6⊂ Rn.
c) Consider an interval I of natural numbers of the form

I = [kTn, (k + 1)Tn − 1]N, for some n ≥ 1 and k ≥ 0,

that is not contained in any component of R∞ then the following properties
hold:
• center position:[

kTn, kTn +
Tn
3

]
∩Rn−1 = ∅ =

[(
(k + 1)Tn − 1

)
− Tn

3
,
(
(k + 1)Tn − 1

)]
∩Rn−1.

• ε̄-sparseness:

0 <
#(Rn−1 ∩ I)

Tn
< εn.

The conditions in Definition 2.5 are depicted in Figure 2.

Definition 2.6 (Good and bad intervals). With the notation of Definition 2.5, an
interval I of the form I = [kTn, (k+ 1)Tn− 1]N is called n-bad if I ⊂ Rn,∞ ⊂ R∞.
The interval is called n-good if I ∩Rn,∞ = ∅.

Remark 2.7 (On the definition of a T -long ε̄-sparse tail).

a) It is assumed that 0 /∈ R∞. This implies that for every n ≥ 0 the initial
interval [0, Tn−1]N is not a component of R∞ of size Tn. Therefore [0, Tn−1]
is disjoint from Rn and thus from Rm for every m ≥ n. In other words, the
interval [0, Tn − 1] is n-good, that is,

[0, Tn − 1] ∩Rn,∞ = ∅.

b) Let I = [kTn, (k + 1)Tn − 1] be an interval as in Item (c) of Definition 2.5.
By Item (a) the interval I is either contained in a component of R∞ whose
size is larger than or equal to Tn or is disjoint from Rn,∞. Thus, Item (c)
considers the case where the interval is disjoint from Rn,∞.

Now any component of R∞ of size less than Tn is either disjoint from I
or contained in I: just note that such a component has length Tm, m < n,
and starts at a multiple of Tm and Tn is a multiple of Tm.

Item (c) describes the position and quantity of the components of size
Tn−1 in the interval I. For that, one splits the interval I into tree parts of
equal length Tn

3 . The following properties are required:
• Every component of size Tn−1 contained in I is contained in the middle

third interval;
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• The middle third interval contains at least one component of size Tn−1.
Thus the intersection I ∩Rn−1 is not empty, but the the set Rn−1 has
a small density in the interval I that is upper bounded by εn.

c) Item (c) does not consider the case n = 0. For n = 0 and an interval I of the
form [kT0, (k+ 1)T0 − 1] there are two possibilities: either I is a component
of R∞ (i.e., contained in R0) or I is disjoint from R∞.

d) Given any interval I of the form I = [kTn, (k + 1)Tn − 1]N there are two
possibilities:
• either I ⊂ R∞ and then I ⊂ Rn,∞ and I is n-bad;
• or I ∩Rn,∞ = ∅ and then I is n-good.

The definition of a long sparse tail involves many properties and conditions, thus
its existence it is not obvious. We solve this difficulty in the next lemma.

Lemma 2.8 (Existence of long sparse tails). Consider a scale T = (Tn)n∈N and
its sequence of factors κ̄ = (kn)n≥1. Write εn = 2

κn
and let ε̄ = (εn)n≥1. Then

there is a T -long ε̄-sparse tail R∞.

Proof. First note that, by Remark 2.4, the sequence ε̄ is a controlling one.
The construction of the set R∞ is done inductively. For each n ∈ N we define

the intersection of the set R∞ with the intervals [0, Tn − 1]. We denote such an
intersection by R∞(Tn).

For n = 0, we let R∞(T0) = ∅. Fix now n > 0 and suppose that the sets
R∞(Tn−1) has been constructed satisfying (in restriction to the interval [0, Tn−1−1])
the properties in Definition 2.5. We now proceed to define the set R∞(Tn).

For any i ≤ n−1 we denote by Ri,n−1 the union of the components of R∞(Tn−1)
of length Ti. We next define the family of subsets {Rj,n, j = 0, . . . , n} of [0, Tn− 1]
by decreasing induction on j as follows. We let

Rn,n = ∅ and Rn−1,n =

[
Tn
3
,
Tn
3

+ Tn−1 − 1

]
N
.

Let j < n and assume that the sets Ri,n are defined for every n ≥ i > j. The set
Rj,n is defined as follows:

• if [kTj+1, (k + 1)Tj+1 − 1]N ⊂
⋃
i>j Ri,n then

Rj,n ∩ [kTj+1, (k + 1)Tj+1 − 1] = ∅,
• Otherwise we let

(2.1) Rj,n ∩ [kTj+1, (k+ 1)Tj+1 − 1]N =

[(
k +

1

3

)
Tj+1,

(
k +

1

3

)
Tj+1 + Tj − 1

]
N
.

Note that by construction,

R∞(Tn) =

n⋃
i=0

Ri,n.

Claim 2.9. The set R∞(Tn) satisfies (in restriction to the interval [0, Tn − 1]) the
conditions of Definition 2.5.

Proof. Property (a) in the definition follows from the construction: the components
of Ri,n have size Ti and have no adjacent points with the components of

⋃n
j>iRj,n.

For Property (b) one checks inductively that O /∈ Ri,n for every i and n.
Property (c) is a consequence of (2.1). If the set Ri,n intersects a segment

[kTi+1, (k + 1)Ti+1 − 1] then it is contained in its middle third interval, implying
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the center position condition. For the sparseness note that by construction and the
definition of εi, for each i it holds

0 <
#(Ri−1 ∩ I)

Ti
=
Ti−1

Ti
=

1

κi
< εj .

This completes the proof of the claim. �

Our construction also provides immediately the following properties: For every
i < n it holds:

• if m ≥ n then Ri,m ∩ [0, Tn − 1] = Ri,n,
• if m ≥ n the R∞(Tm) ∩ [0, Tn − 1] = R∞(Tn), and
• Ri,n ⊂ Ri,n+1.

The tail is now defined by

(2.2) R∞
def
=

∞⋃
i=0

Ri, where Ri =
⋃
n>i

Ri,n.

By construction, the set R∞ is an ε-sparse tail of T . �

2.2. Control at any scale up a long sparse tail. In this section we give the
definition of controlled points.

Definition 2.10. Let X be a compact set, f : X → X a homeomorphism, and
ϕ : X → R a continuous map. Consider

• a scale T , a controlling sequence ε̄, and a T -long ε̄-sparse tail R∞;
• decreasing sequences of positive numbers δ̄ = (δn)n∈N and ᾱ = (αn)n∈N,

converging to 0.

The f -orbit of a point x ∈ X is δ̄-dense along the tail R∞ if for every component
I of R∞ of length Tn the segment of orbit {f i(x), i ∈ I} is δn-dense in X.

The Birkhoff averages of ϕ along the orbit of x are ᾱ-controlled for the scale T
with the tail R∞ if for every interval

I = [k Tn, (k + 1)Tn − 1]N

such that I 6⊂ Rn+1,∞ (i.e., I is either n-good or is a component of Rn) it holds

ϕI(x)
def
=

1

Tn

∑
i∈I

ϕ(f i(x)) ∈ [−αn, αn].

Definition 2.11. Let X be a compact set, f : X → X a homeomorphism, and
ϕ : X → R a continuous map.

A point x ∈ X is controlled at any scale with a long sparse tail with respect to
X and ϕ if there are a scale T , a controlling sequence ε̄, a T -long ε̄-sparse tail R∞,
and sequences of positive numbers δ̄ and ᾱ converging to 0, such that

• the f -orbit of x is δ̄-dense along the tail R∞ and
• the Birkhoff averages of ϕ along the orbit of x are ᾱ-controlled for the scale
T with the tail R∞.

In this definition we say that δ̄ is the density forcing sequence, ᾱ is the average
forcing sequence, and the point x is (δ̄, ᾱ, ε̄, T , R∞)-controlled.
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2.3. Proof of Theorem 1. In this section we prove Theorem 1, thus we use the
assumptions and the notations in its statement. Consider a point x0 ∈ X that is
controlled at any scale with a long sparse tail for X and ϕ. Let

• T = (Tn)n∈N be the scale;
• R∞ the T -long ε̄-sparse tail; and
• δ̄ = (δn)n≥1 the density forcing sequence and ᾱ = (αn)n≥1 the average

forcing sequence.

Let µ be a measure that is a weak∗ limit of the empirical measures (µn(x0))n∈N.

As x0 remains fixed let us write µn
def
= µn(x0). We need to prove that for µ-almost

every point x it holds:

a) the forward orbit of x is dense in X

b) the Birkhoff averages of x satisfy limn→∞
1
n

∑n−1
i=0 ϕ(f i(x)) = 0.

Proposition 2.12 below immediately implies item (a) (item (b) follows from Propo-
sition 2.17).

Proposition 2.12. Under the assumptions above, for every k the (forward) orbit
of µ-almost every point is 2 δk-dense in X.

Proof. Fix k. For any given t > 0 and δ > 0 consider the set

X(t, δ)
def
=
{
x ∈ X : {x, . . . , f t(x)} is δ-dense in X

}
and let

P∞,t
def
= lim inf

n→∞
Pn,t, where Pn,t

def
= µn(X(t, δk)).

Lemma 2.13. limt→∞ P∞,t = 1.

We postpone the proof of this lemma and deduce the proposition from it. Just
note that the interior of X(t, 2δk) contains the closure of X(t, δk) for every t. Thus
µ(X(t, 2δk)) ≥ P∞,t. Taking the limit when t→∞ we prove the proposition. �

Proof of Lemma 2.13. Fixed k take t > Tk+1.

Claim 2.14. The set of times i ∈ N such that f i(x0) 6∈ X(t, δk) is contained in the
set

∞⋃
j=0

(
Rmt+j ∪ (Rmt+j − Tk+1)

)
,

where

• mt
def
= inf{m ≥ k + 1: Tm + 2Tk+1 > t} and

• Rk+j − Tk+1
def
= {` = i− Tk+1, where i ∈ Rk+j}.

Proof. Take i such that f i(x0) /∈ X(t, δk). Then the set {f i(x0), . . . , f i+t(x0)} is
not δk-dense. Let I = [i, i+ t]N. Recalling Definition 2.10, we have that I can not
contain any component of R∞ of size Tk or greater than Tk. This implies that

• the interval I does not contain any `-bad interval for ` ≥ k,
• as a consequence of the sparseness property in item (c) of Definition 2.5, the

interval I does not contain any (`+ 1)-good interval for ` ≥ k (i.e., disjoint
from or R`+1,∞).
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Thus necessarily the interval I intersects some bad interval J = [r−m, r
+
m]N ⊂ Rm,

m > k, such that

I ⊂ [r−m − Tk+1, r
+
m + Tk+1].

Otherwise I must contain a (k + 1)-good interval. Observe that this implies that

Tm + 2Tk+1 > t,

otherwise the segment of orbit {f i+j(x0)}tj=0 would be δk-dense, a contradiction.
Hence m ≥ mt.

Recall that Tk+1 < t, hence i ∈ [r−m − Tk+1, r
+
m]. Thus

i ∈ J ∪ (J − Tk+1) ⊂ Rm ∪ (Rm − Tk+1)

for some m ≥ mt. This ends the proof of the claim. �

In view of Claim 2.14, to prove the lemma it is enough to see the following:

Claim 2.15.

lim
t→+∞

lim
n→+∞

1

n
#

[0, n] ∩
∞⋃
j=0

(
Rmt+j ∪ (Rmt+j − Tk+1)

) = 0.

Proof. Note that the components of the set Rmt+j ∪ (Rmt+j − Tk+1) are intervals
of length Tmt+j + Tk+1 < 2Tmt+j . Thus the claim is a direct consequence of next
fact (recall the definition of Rmt,∞ in Definition 2.5).

Fact 2.16.

lim
t→∞

lim sup
n→∞

1

n
#
(
Rmt,∞ ∩ [0, n]

)
→ 0.

Proof. We need to estimate the proportion

%(m,n)
def
=

#
(
Rm ∩ [0, n]

)
n

of the set Rm in [0, n]N. We claim that %(m,n) < 3 εm+1. There are three cases:

• Tm+1 ≤ n: Let k Tm+1 ≤ n < (k + 1)Tm+1, where k ∈ N and k ≥ 1. By the
sparseness condition we have

#
(
Rm ∩ [0, (k + 1)Tm+1]

)
< (k + 1) εm+1.

Therefore

#
(
Rm ∩ [0, n]

)
n

≤
#
(
Rm ∩ [0, n]

)
k Tm+1

≤ (k + 1)εm+1

k
< 2 εm+1.

• Tm ≤ n < Tm+1: Since [0, Tm+1 − 1] is an (m + 1)-good interval we have
that [0, Tm+1/3] and Rm are disjoint. If the proportion is 0 we are done.

Otherwise, by the center position condition, n > Tm+1

3 . Therefore

#
(
Rm ∩ [0, n]

)
n

< 3
#
(
Rm ∩ [0, Tm+1]

)
Tm+1

< 3 εm+1,

where the last inequality follows from the sparseness condition.
• n < Tm: In this case, by condition (b) in Definition 2.5, Rm ∩ [0, n] = ∅.
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Since %(m,n) < 3 εm+1 for every n we get

1

n
#
(
Rmt,∞ ∩ [0, n]

)
< 3

∞∑
m=mt

εm.

Since, by definition,
∑∞
m=0 εm < +∞ this implies

lim
t→∞

lim sup
n→∞

1

n
#(Rmt,∞ ∩ [0, n]) ≤ 3 lim

t→∞

∞∑
m=mt

εm = 0,

proving the fact. �

This ends the proof of Claim 2.15 �

The proof of Lemma 2.13 is now complete. �

Proposition 2.12 gives the density of orbits in Theorem 1. To end the proof of the
theorem it remains to prove the part relative to the averages. This is an immediate
consequence of next proposition. Recall the notation of finite Birkhoff averages
ϕn(x) and of limit averages ϕ∞(x) of a function ϕ in (1.2) and (1.3). Recall also
that µ is a weak∗ limit of the empirical measures µn = µn(x0).

Proposition 2.17. Fix k ∈ N. For µ-almost every point x the limite average
ϕ∞(x) is well defined and belongs to [−3αk, 3αk].

Proof. Let B be the set of points such that the limit average ϕ∞(x) is well defined.
By Birkhoff theorem it holds µ(B) = 1. Therefore it is enough to prove that for
every x ∈ B there is a sequence nj = nj(x) → ∞ such that ϕnj (x) ∈ [−3αk, 3αk]
for every j. For t ∈ N define the number

qt
def
= lim inf

n→+∞
qt,n, where qt,n

def
= µn

(
{x : ϕt(x) ∈ [−2αk, 2αk]}

)
.

Lemma 2.18. limt→∞ qt = 1.

Let us postpone the proof of this lemma and conclude the proof of the proposition
assuming it. By definition of µ

µ({x : ϕt(x) ∈ [−3αk, 3αk]}) ≥ qt.

By Lemma 2.18, qt → 1, thus there is a subsequence (qti) such that

∞∑
0

(1− qti) < +∞.

Fix the sequence (qti)i and define the sets

YN
def
=
⋂
j>N

{x : ϕtj (x) ∈ [−2αk, 2αk]}.

By definition

µ(YN ) ≥ 1−

 ∞∑
j=N

(1− qtj )


and hence

µ(Y ) = 1, where Y
def
=
⋃
N

YN .
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We have that µ(B ∩ Y ) = 1 and that every point x ∈ Y ∩ B has Birkhoff av-
erage ϕ∞(x) ∈ [−3αk, 3αk], this ends the proof of the proposition (assuming
Lemma 2.18).

Proof of Lemma 2.18. Recall that x0 ∈ X is controlled at any scale with a long
sparse tail for X and ϕ. Recall also the choices of T , R∞, ε̄, and ᾱ.

Fix k and take a number t > 2Tk. Pick a time interval I = [i, i+t−1]N. For each
j ≥ k consider the intervals H of the form [rTj , (r+1)Tj−1]N contained in I which
are either j-good or components of the set Rj . By definition of the average forcing
sequence ᾱ (Definition 2.10) in each of these intervals H the average satisfies

ϕH(x0) ∈ [−αj , αj ] ⊂ [−αk, αk].

We call these subintervals H of I αk-controlled.

Claim 2.19. For every i and t the union of the αk-controlled intervals contained in
I = [i, i+t−1]N is a (possibly empty) interval J = JI such that ϕJ(x0) ∈ [−αk, αk].

Proof. Let us first define auxiliary intervals A = AI and B = BI . The interval A
is defined as follows:

• If i ∈ Rm for some m ≥ k then A is the intersection of the component of Rm
containing i and I;
• otherwise we let A = [i, jTk − 1], where j is the infimum of the numbers r

with i ≤ r Tk (note that A is empty if i = jTk).

The interval B is symmetrically defined as follows:

• if i+ t ∈ Rm for some m ≥ k then B is the intersection of the component of
Rm containing i+ t and I;
• otherwise we let B = [`Tk, i+ t], where ` is the maximum of the numbers r
rTk ≤ i+ t+ 1 (note that B is empty if i+ t = jTk).

Fact 2.20. J = [i, i+ t] r (A ∪B).

Proof. Just note that by construction every component of Rm intersecting J is
contained in J . A similar inclusion holds for every m-good interval intersecting J .
These two inclusions imply the fact. �

It remains to see that J is the union of pairwise disjoint αk-controlled intervals.
By Fact 2.20 and construction, the components of

⋃
m≥k Rm intersecting J are

contained in J . These components are pairwise disjoint and their complement is
a union of Tk-intervals which are good. This implies that J is a disjoint union of
intervals H where the average satisfies ϕH(x0) ∈ [−αk, αk]. This implies that the
average ϕJ(x0) of ϕ in J belongs to [−αk, αk], ending the proof of the claim. �

Claim 2.21. Fix k. Given any m ∈ N there is tm such that for every t ≥ tm and
for every i ∈ N such that

1

t

t−1∑
j=0

ϕ(f i+j(x0)) /∈ [−2αk, 2αk],

then either i or i+ t belongs to
⋃
`≥mR`.

Proof. Pick and interval I = [i, i + t]N and associate to it the interval J = JI
in Claim 2.19 and the intervals A = AI and B = BI in its proof. As ϕJ(x0) ∈
[−αk, αk], in order to have |ϕI(x0)| > 2αk the set IrJ = A∪B must fill a relatively
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large proportion (depending on αk and sup |ϕ| but independent of t) of the interval
I. In other words, there is a constant C > 0 such that

(2.3)
#(A ∪B)

t
> C.

Fixed m, let

tm
def
=

2Tm
C

+ 1.

Take any t ≥ tm. The proof is by contradiction, if i, i+ t /∈
⋃
`≥mR` then |A|, |B| ≤

Tm and therefore
#(A ∪B)

t
≤ 2Tm

t
< C,

a contradicting (2.3). The proof of the claim is complete. �

We are now ready to conclude the proof of the lemma. Claim 2.21 implies that
for t > tm the number (1− qt) is less than twice the density of the set

⋃
`≥mR` in

[0, t]. Fact 2.16 implies that this density goes to 0 as t→∞, proving the lemma. �

The proof of Proposition 2.17 is now complete. �

3. Patterns, concatenations, flip-flop families, and control of
averages

In this section we introduce the notion of a pattern (Section 3.1) and explain
its relations with the scales and tails in the previous section. In Section 3.2 we see
that a T -long tail of a scale T induces patterns in its good intervals. Patterns will
be used to codify certain orbits (the orbit follows some distribution pattern). This
naive idea is formalised in the notion of a concatenation of sets following a pattern,
see Section 3.3. We are interested in concatenations of plaques of a flip-flop family
(associated to a map ϕ) and in the control of the averages of ϕ corresponding to
these concatenations, see Section 3.4. The main result in this section is Theorem 3.9
that gives the control of averages for concatenations, see Section 3.5. In the sequel
we will make more precise these vague notions.

3.1. Patterns. A scale T = (Tn)n≥0 induces, for each n, a partition of N consisting
of intervals of the form [` Tn, (` + 1)Tn − 1]N. A pattern is a partition of these
intervals respecting some compatibility rules given by the scale.

Definition 3.1 (Pattern). Let T = (Tn)n≥0 be a scale and I ⊂ N an interval of
the form I = [` Tn, (`+ 1)Tn − 1]N for some ` ∈ N.

A Tn-pattern P = P(I) of the interval I consists of a partition P = {Ii}ri=1 of
I into intervals Ii = [k T`(i), (k + 1)T`(i)−1]N, where `(i) ∈ {0, . . . , n}, and a map
ι : P → {r, w} such that

• either `(i) 6= 0 and then ι(Ii) = w,
• or `(i) = 0 and then ι(Ii) ∈ {r, w}.

We write P = (P, ι).
A subinterval of I = [kTi, (k+1)Ti−1] that is not strictly contained in an interval

of the partition P is called P-admissible (of length Ti).

In this definition, the script w refers to “walk” and r to “rest”.

Remark 3.2.
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a) If [kTi, (k + 1)Ti − 1] is a P-admissible subinterval of I, then the restriction
of the partition P and the restriction of the map ι induces a Ti-pattern in
[kTi, (k + 1)Ti − 1], which is called a subpattern of P.

b) A Tn-pattern consists either of a unique interval of w-type or is a “concate-
nation” of Tn−1-patterns.

Consider an interval I and a pattern P of it as in Definition 3.1. A point
j = k Ti ∈ N is i-initial for the pattern P if the interval [j, j+Ti−1]N is admissible.
A point j ∈ N is P-initial if it is i-initial for some i. We denote the set of initial
points of P by I(P). The set of P-marked points of the Tn-pattern P, denoted by
M(P), is the union of the point {(`+ 1)Tn} and the set of all initial points of P.

3.2. Tails and patterns. We now see that given a scale T and a T -long sparse
tail R∞, the tail induces patterns in its good intervals I (i.e., I ∩Rn,∞ = ∅, recall
Definition 2.6). In this subsection the sparseness of the tail is not relevant.

Lemma 3.3 (Pattern induced by a tail). Let T = (Tn)n∈N be a scale and R∞ a
T -long sparse tail. Let

I = [` Tn, (`+ 1)Tn − 1]N

be an n-good interval of R∞ and consider the partition P of I and the map ι : P →
{r, w} defined as follows:

• the intervals J of P with ι(J) = w are the components of R∞ contained in
[` Tn, (`+ 1)Tn − 1];

• the complement of R∞ in [` Tn, (`+1)Tn−1]N can be written as the union of
intervals J of the type [k T0, (k + 1)T0 − 1], these intervals are the elements
of the partition P with ι(J) = r.

Then P = (P, ι) defines a Tn-pattern in I.

Proof. To prove the lemma it is enough to recall that, by definition of a n-good
interval, there is no component of R∞ containing the interval [` Tn, (`+ 1)Tn− 1]N
and that every Tk is a multiple of T0. �

The pattern P in Lemma 3.3 is called the pattern induced by the tail R∞ in the
good interval [` Tn, (` + 1)Tn − 1] and is denoted by Pn,`, or by Pn,`(R∞) (for
emphasising the role of the tail).

The next remark associates a sequence of patterns to the tail R∞.

Remark 3.4. [Initial patterns for a long tail] With the notation of Lemma 3.3, by
definition of the tail R∞, the initial interval of length Tn, [0, Tn − 1]N, is a good
interval. We let Pn = Pn,0 and call it the initial Tn-pattern of R∞.

The set of initial points of Pn consists of the following points:(
{origins of the components of R∞} ∪ {kT0 6∈ R∞}

)
∩ [0, Tn − 1].

Remark 3.5. [Compatibility of induced patterns] For every i < n the restriction
of the initial pattern Pn to the interval [0, Ti − 1]N is the initial pattern Pi. In
other words, Pi is the initial Ti-subpattern of Pn.
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D0 D1 D2 D3

L0 L1 L2

(D0, D1) (D1, D2) (D2, D3)

(D0, D2)

(D0, D3)

Figure 3. Concatenations

3.3. Concatenations and controlled plaque-segments. Consider a compact
metric space (X, d), a homeomorphism f : X → X, and an open set U of X.
Consider a family D of compact sets contained in U . We call the elements in D
plaques8.

Given a pair of plaques D0, D1 ∈ D we say (D0, D1) is a plaque-segment of size
T relative to U and D if:

• f−i(D1) ⊂ U for every i ∈ {0, . . . , T} and
• f−T (D1) ⊂ D0.

We say that D0 is the origin of the segment and D1 is the end of the segment.
Let (D0, D1) and (D1, D2) be two plaque-segments of lengths L0 and L1, re-

spectively, relative to U and D. Then (D0, D2) is a plaque-segment of length
L0 + L1, called the concatenation of (D0, D1) and (D1, D2). We use the notation

(D0, D2)
def
= (D0, D1) ∗ (D1, D2). See Figure 3.

Definition 3.6. Let (X, d) be compact metric space, f : X → X a homeomorphism,
U an open set of X, ϕ : U 7→ R a continuous map, and D a family of plaques
contained in U .

Consider T ∈ N and a subset J ⊂ R. A plaque-segment (D0, D1) of length T > 0
relative to U and D is called (J, T )-controlled if

ϕT (x) =
1

T

T−1∑
i=0

ϕ(f i(x)) ∈ J, for every x ∈ f−T (D1) ⊂ D0.

When there is no ambiguity on the pair U and D the dependence on these sets
will be omitted.

Definition 3.7. Let (X, d) be compact metric space, f : X → X a homeomorphism,
U an open set of X, ϕ : U 7→ R a continuous map, and D a family of plaques
contained in U .

Consider a a scale T = (Tn)n∈N, a Tn-pattern P of [` Tn, (`+ 1)Tn−1]N, n > 0,
the set M(P) of its marked points, and a family of subsets J = (Ji)i∈N of R.

A family {Di}i∈M(P) of plaques of D is called (J ,P)-controlled (relatively to U
and D) if:

8In our applications, the elements of D are sets in a flip-flop family, recall Definition 1.1.
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• For every P-admissible interval [k Ti, (k+1)Ti−1] the pair (DkTi , D(k+1)Ti)
is a plaque-segment of length Ti that is (Ji, Ti)-controlled (relative to U and
D).

• For any i, j ∈ M(P), i < j, the pair (Di, Dj) is a plaque-segment of length
j − i (relative to U and D).

3.4. Distortion of Birkhoff averages and concatenations in flip-flop fami-
lies. The following result is a translation of [BBD2, Lemma 2.4] to the context of
flip-flop families with sojourns. Recall the notation for Birkhoff averages in (1.2).

Lemma 3.8 (Small distortion of Birkhoff averages over long concatenations). Let
f : X → X be a homeomorphism, ϕ : X → R a continuous function, and F a flip-
flop family associated to ϕ and f with sojourns in a compact set Y .

Then for every α > 0 there exists t = t(α) ∈ N with the following property:
Consider any T ≥ t and any family of plaques {Di}0≤i≤T of F such that for every
i = 0, . . . , T − 1. (Di, Di+1) is a plaque-segment of length Li. Then the plaque-
segment

(D0, DT ) = (D0, D1) ∗ (D1, D2) ∗ · · · ∗ (DT−1, DT )

satisfies

|ϕL(x)− ϕL(y)| < α, where L
def
=

T−1∑
i=0

Li,

for every pair of points x, y ∈ D0 such that

fL
′
i−1(x), fL

′
i−1(y) ∈ Di, where L′i−1

def
=

i−1∑
j=0

Lj

for every i = 0, . . . , T − 1.

The proof is the same as the one of [BBD2, Lemma 2.4] and the key ingredient is
the expansion properties in item (c) in Definitions 1.1 and 1.2. We omit this proof
and refer to [BBD2].

3.5. Flip-flop families and concatenations. The aim of this section is to prove
the following theorem.

Theorem 3.9. Let (X, d) be a compact metric space, Y a compact subset of X,
U an open subset of X, f : X → X a homeomorphism, ϕ : U → R a continuous
function, and F a flip-flop family with sojourns along Y associated to ϕ and f whose
plaques are contained in U .

Consider sequences (δn)n∈N, (αn)n∈N, and (βn)n∈N of positive numbers such that:

(δn)n → 0 and αn+1 <
αn
4
< βn <

αn
2
.

Then there is a scale T = (Tn)n∈N satisfying the following properties: For every
plaque D ∈ F, every Tn-pattern P = (P, ι), and every ω ∈ {+,−} there is a family
of plaques DP = {Da}a∈M(P) of F such that :

(I1) D0 = D;
(I2) the family {Da}a∈M(P) is (Jn,P)-controlled (relatively to U and P) where

Jn = {Ji}i∈{0,...,n} and

Ji
def
=
[
−αi,−

αi
2

]
∪
[αi

2
, αi

]
for i < n and Jn

def
= ω

[αn
2
, αn

]
;
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(I3) if [a, a+Ti− 1] is an interval of the partition P of w-type then for every point
x ∈ f−Ti(Da+Ti) the segment of orbit {x, . . . , fTi(x)} is δi-dense in Y .

We say that the family of plaquesDP = {Da}a∈M(P) in Theorem 3.9 is ((J )n,P)-
controlled and starts at D0.

Proof. The construction of the scales T in the theorem is done by induction on n
(assuming that Ti is defined for i ≤ n we will define Tn+1). The proof considers
two cases: either the pattern is trivial or it is a concatenations of Tn-patterns.
Proposition 3.11 deals with trivial patterns while Proposition 3.14 deals with con-
catenations.

Note that the Theorem 3.9 claims the existence of a scale T = (Tn)n∈N that holds
for every disk D ∈ F. In the proofs of Propositions 3.11 and 3.14 we get such a
number depending on the plaque D ∈ F and uniformly bounded. To uniformize this
number for every plaque in F we will use Lemma 3.10 below. Recall the definition
of the distortion time number t(α) in Lemma 3.8 associated to α > 0.

Lemma 3.10 (Uniformization). Take a scale (Tn)n∈N and a sequence (αn)n∈N as
in Theorem 3.9. Then for every plaque D0 ∈ F, every ω0 ∈ {−,+}, and every

t ≥ τn
def
= max

{
t
(αn+1

6

)
, 6
αn Tn
αn+1

}
the following property holds:

Let D1 ∈ F be a plaque such that (D0, D1) is a (ω0 [αn+1

2 , αn+1], t)-controlled.
plaque-segment.

Then there is ω ∈ {−,+} such that if (D1, D2) is a plaque-segment that is
(ω [αn2 , αn], Tn)-controlled then the concatenation (D0, D2) = (D0, D1)∗ (D1, D2) is
(ω0 [αn+1

2 , αn+1], t+ Tn)-controlled.

Proof. We prove the lemma for ω0 = +, the case ω0 = − is analogous. Note first
that the choice of t implies that the distortion of ϕt in f−t(D1) is bounded by αn+1

6 .
Moreover, as the orbit segment (D0, D1) is ([αn+1

2 , αn+1], t)-controlled, we have

ϕt(f
−t(D1)) ⊂

[αn+1

2
, αn+1

]
.

Now there are two cases:

a) if max
x∈f−t(D1)

ϕt(x) ≤ 5αn+1

6
, we choose ω = +,

b) otherwise min
x∈f−t(D1)

ϕt(x) ≥ 4αn+1

6
and we choose ω = −.

In the first case, as ω = + one can easily check that

(3.1) ϕt+Tn(x) > ϕt(x) for every x ∈ f−(t+Tn)(D2).

Moreover, as t > 6 αn Tn
αn+1

and (D1, D2) is ([αn2 , αn], Tn)-controlled we have

ϕt+Tn(x) <
5
6 αn+1t+ Tnαn

t+ Tn
<
tαn+1

t+ Tn
< αn+1 for every x ∈ f−(t+Tn)(D2).

Finally, recalling that (D0, D1) is ([αn+1

2 , αn+1], t)-controlled and (3.1)

αn+1

2
< ϕt(x) < ϕt+Tn(x) < αn+1

ending the proof in the first case.
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Case (b) is analogous and hence omitted. The proof of the lemma is now com-
plete. �

Proposition 3.11 (Trivial patterns). Under the assumptions of Theorem 3.9, as-
sume that for every i = 0, . . . , n there are defined natural numbers Ti such that the
conclusions in the theorem hold for Ti-patterns.

Then there is T̃n+1 such that for every T > T̃n+1, every plaque D ∈ F, and every
ω ∈ {+,−} there is a plaque D0 ∈ F such that

• f−T (D0) ⊂ D,
• for every x ∈ f−T (D0) the set {x, f(x), . . . , fT (x)} is δn+1-dense in Y , and
• (D0, D) is (ω [αn+1

2 , αn+1], T )-controlled.

Proof. We only present the proof for the case ω = +, the case ω = − is analogous
and thus omitted. Let N = Nδn+1 as in Definition 1.2. Then for every plaque

D ∈ F there is a D̃0 ∈ F such that

• f−i(D̃0) ⊂ U for all i = 0, . . . , N ,

• f−N (D̃0) ⊂ D, and

• for every x ∈ f−N (D̃0) the set {x, f(x), . . . , fN (x)} is δn+1-dense in Y .

In what follows we will focus on the control of Birkhoff averages. Note that the

average of ϕN in f−N (D̃0) is uniformly upper bounded by the maximum of |ϕ| in
X denoted by max |ϕ|.

Recall the definition of t(α) in Lemma 3.8 and fix k0 large enough such that

(3.2) k0 > t
(αn+1

6

) 1

Tn
.

Since βn <
αn
2 we have that if k0 is large enough then for every k ≥ k0 it holds

(3.3) βn <
−N max |ϕ|+ k Tn

αn
2

N + k Tn
<
N max |ϕ|+ k Tn αn

N + k Tn
< 3

αn
2
.

Claim 3.12. Consider k0 satisfying equations (3.2) and (3.3). Then for every

k ≥ k0 there is plaque D̃1 ∈ F such that

a) f−kTn(D̃1) ⊂ D̃0;

b) for every x ∈ f−k Tn−N (D̃1) it holds

1

N + k Tn

N+k Tn−1∑
j=0

ϕ(f j(x)) ∈
[
βn,

3αn
2

]
;

c) for every x, y ∈ f−kTn−N (D̃1).

1

N + k Tn

N+k Tn−1∑
j=0

|ϕ(f j(x))− ϕ(f j(y))| < αn+1

6
.

Proof. To prove the first item we consider the concatenation of k orbit-segments

(D̂i, D̂i+1), i = 0, . . . , k− 1, of size Tn associated to ωi = + given by the induction

hypothesis and such that D̂0 = D̃0. These pairs are obtained inductively: assumed

defined the pair (D̂i, D̂i+1) we apply induction hypothesis to the final plaque D̂i+1.

To conclude it is enough to take D̃1 = D̂k. See Figure 4.
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D D̃1D̃0

N k Tn

Figure 4. Proof of Claim 3.12

To prove item (b) note that each plaque-segment (D̂i, D̂i+1) is ([αn2 , αn], Tn)-
controlled. Hence the averages in these segments belong to [αn2 , αn]. Now the
control of averages follows from the choice of k0 in equation (3.3).

Item (c) follows from the distortion Lemma 3.8 and the choice of k0 in equa-
tion (3.2). This ends the proof of the claim. �

The proof of the proposition now follows arguing exactly as in the concatena-
tion result [BBD2, Lemma 2.12]. For completeness, we recall the main arguments
involved in this proof.

Note that in Claim 3.12 we can assume that the constant k0 is such that

(3.4) k0 > max

{
6αn
αn+1

, t
(αn+1

6

) 1

Tn

}
.

Lemma 3.13. For every k ≥ k0 there are i0 and a plaque D1 ∈ F such that (D,D1)

is (
[

1
2αn+1, αn+1

]
, T̃n+1)-controlled, where

T̃n+1 = N + (k + i0)Tn.

Proof. We just describe the main steps of the proof. Take D̂0
def
= D̃1, where D̃1 is the

plaque given by Claim 3.12. By the induction hypothesis, given any i ∈ {0, . . . , n}
there is a family of ([−αn,−αn2 ], Tn)-controlled orbit-segments (D̂j , D̂j+1) for j =
0, . . . , k + i− 1. This implies that

ϕTn
(
f−Tn(D̂j+1)

)
⊂
[
−αn,−

αn
2

]
.

Consider the orbit-segment (D, D̂k+i) of length N + (k+ i)Tn obtained concate-

nating (D, D̂0 = D̃1) and (D̂j , D̂j+1), j = 0, . . . , k + i− 1, that is,

(D, D̂k+i) = (D, D̂0) ∗ (D̂0, D̂1) ∗ · · · ∗ (D̂k+i−1, D̂k+i).

The choice of k0 in (3.4) (k0 αn+1 > 6αn) immediately implies that every x ∈
f−N−(k+i)Tn(D̂k+i) satisfies the following implication,

(3.5) ϕN+(k+i)Tn(x) ≥ 5

6
αn+1 =⇒ ϕN+(k+i+1)Tn(x) ≥ 4

6
αn+1.

Let

`0
def
=

3 (N + k Tn)αn
Tn (αn + αn+1)

.

By item (b) in Claim 3.12 we have that

βn ≤ ϕN+k Tn(x) ≤ 3αn
2

for every x ∈ f−N−k Tn(D̂0).
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A simple calculation gives that for every ` > `0 it holds

(3.6) ϕN+(k+`)Tn(x) <
1

2
αn+1 for every x ∈ f−N−(k+`)Tn(D̂k+`).

Equation (3.6) implies that there is a first i0 with ϕN+(k+i0)Tn(x̄) ≤ 5
6 αn+1 for

some x̄ ∈ f−N−(k+i0)Tn(D̂k+i0). From Equation (3.5) we get

(3.7) ϕN+(k+i0)Tn(x̄) ∈
[

4

6
αn+1,

5

6
αn+1

]
.

By the choice of k0 in (3.2), the distortion of ϕN+(k+i0)Tn in f−N−(k+i0)Tn(D̂k+i0)

is strictly less than 1
6αn+1. Equation (3.7) now implies that

ϕN+(k+i0)Tn(x) ∈
[

1

2
αn+1, αn+1

]
for every x ∈ f−N−(k+i0)Tn(D̂k+i0).

The lemma follows taking D1 = D̂k+i0 . �

Take i0 as in Lemma 3.13, k0 as in (3.4), k ≥ k0 sufficiently large, and define

T̃n+1
def
= N + (k + i0)Tn > τn,

where τn is as in Lemma 3.10. Consider the plaque D1 given by Lemma 3.13 such

that (D,D1) is (
[

1
2αn+1, αn+1

]
, T̃n)-controlled. Using the induction hypothesis,

consider a plaque D2 such that (D1, D2) is (
[

1
2αn, αn

]
, Tn)-controlled. As T̃n+1 >

τn, Lemma 3.10 implies that (D0, D2) is (
[

1
2αn+1, αn+1

]
, T̃n+1 + Tn)-controlled.

Repeating this last argument j times (any j) we get a plaque D2(j) such that

(D,D2(j)) is (
[

1
2αn+1, αn+1

]
, T̃n+1 + j Tn)-controlled. This completes the average

control in the proposition and ends its proof. �

Given a pattern P and its set of marked points M(P) we let eM(P) the right
extreme of M(P).

Proposition 3.14 (Concatenation of patterns). Under the assumptions of Theo-
rem 3.9, assume that for every i = 0, . . . , n there is defined Ti ∈ N satisfying the
conclusions in the theorem.

Then there is a constant k0 such that for every k ≥ k0, every family {Pi}ki=1

of Tn-patterns, every ω ∈ {−,+}, and every plaque D ∈ F there is a sequence of
symbols (ωi)i=1,...,k, ωi ∈ {−,+}, satisfying the following property:

Consider the family of sets Ji = {Ji,j}, i = 1, . . . , k and j = 1, . . . , n, defined by

• Ji,j
def
=
[
− αj , −1

2 αj
]
∪
[

1
2 αj , αj

]
if j < n and

• Ji,n
def
= ωi

[
1
2 αn, αn

]
.

Let DP1
= {D1,j}j∈M(P1) be a family of (J1,P1)-controlled plaques given by the

induction hypothesis associated to the plaque D1,0 = D.
Let DPi = {Di,j}j∈M(Pi) be the family of (Ji,Pi)-controlled plaques associated

to the final plaque Di−1,eM(Pi−1)
= Di,0 of the family DPi−1

= {Di−1,j}j∈M(Pi−1)

given by the induction hypothesis.
Then the plaque-segment (D,Dk,eM(Pk)

) is (ω [ 1
2 αn+1, αn+1], k Tn)-controlled.

Proof. The proof of follows arguing as in [BBD2, Lemma 2.12]. We now recall the
strategy for ω = + (the case ω = − is analogous and thus omitted). We start by
taking a sequence of signals ωi = + for every i. This sequence is sufficiently large
to guarantee distortion smaller than 1

6αn+1 in the pre-images of the plaques. We
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stop for some large i0. Note that the averages are in
[

1
2αn, αn

]
. Thereafter for

i > i0 we consider a sequence of ωi = − as in the proof of the previous lemma. In
this way the averages of ϕ start to decrease. We stop when this average at some
point of the plaque belongs to

[
4
6αn+1,

5
6αn+1

]
(the key point is that the averages

can not jump from above 5
6αn+1 to below 4

6αn+1, this is because for large i the

cone of size
[

4
6αn+1,

5
6αn+1

]
is very width, this is exactly the argument in [BBD2]).

The distortion control implies that the average of ϕ in the whole pre-image of the
plaque is contained in

[
1
2αn+1, αn+1

]
.

We conclude the proof using Lemma 3.10: we can continue concatenating plaque-
segments keeping the averages in

[
1
2αn+1, αn+1

]
. This completes the sketch of the

proof of the proposition. �

End of the proof of Theorem 3.9. The definition of the scale (Tn)n is done induc-
tively on n. Assuming that Ti is defined for i ≤ n, we define Tn+1 as follows. Take

T̃n+1 as in Lemma 3.13 and k0 as in Claim 3.12. Then define Tn+1 as a multiple of
Tn such that

Tn+1 ≥ max{T̃n+1, k0 Tn} and
Tn+1

Tn
≥ (n+ 1)

Tn
Tn−1

.

Take now a Tn+1-pattern P = (P, ι), ω ∈ {+,−}, and a plaque D ∈ F. There
are two cases to consider. If P is the trivial Tn+1-pattern we just need to apply
Proposition 3.11. Otherwise, the Tn+1-pattern P is a concatenation of a sequence
of at least k0 Tn-patterns. The theorem follows by applying Proposition 3.14 to
this family of Tn-patterns. �

Bearing in mind Remark 3.5, we are interested to get plaque-segments associated
to Tn-patterns respecting the plaque-segments associated to its initial subpatterns.
A slight variation of the proof of Proposition 3.14 implies the following addendum:

Addendum 3.15 (Extension of initial subpatterns). With the hypotheses of The-
orem 3.9, the scale T = (Tn)n∈N can be chosen satisfying the following additional
property:

Let P1 be a Tn-pattern and P2 be a Tn+1-pattern such that P1 is the initial
Tn-subpattern of P2.

Consider a flip-flop family F and D0 a plaque F. Let {Da}a∈M(P1) be a family
of plaques associated to the pattern P1 starting at D0 given by Theorem 3.9.

Then for every ω ∈ {+,−}, there is a family {D̃a}a∈M(P2) of plaques associated
to the pattern P2 satisfying the conclusion of Theorem 3.9, starting at D0 and such
that

D̃a = Da, for every a ∈M(P1).

This result allows us to choose the family of plaques associated to a pattern
extending the ones associated to its initial subpatterns.

4. Flip-flop families with sojourns: proof of Theorem 2

In this section we prove Theorem 2, Corollary 3, and Proposition 4.
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4.1. Proof of Theorem 2. Consider a homeomorphism f : X → X defined on
a compact metric space (X, d), a continuous function ϕ : X → R, and a flip-flop
family F = F+

⊔
F− with sojourns along a compact subset Y of X associated to

ϕ and f . We need to see that every plaque D ∈ F contains a point xD that is
controlled at any scale with a long sparse tail with respect to ϕ and Y .

Fix a sequences of strictly positive numbers (αn)n and (βn)n such that

0 < αn+1 <
αn
4
< βn <

αn
2
.

Associated to these sequences we consider the family of control intervals Jn =
{Ji}i∈{0,...,n} defined as in Theorem 3.9. We also take an arbitrary sequence of
positive numbers (δn)n converging to 0. Denote by T = (Tn)n∈N the scale associated
to these sequences given by Theorem 3.9.

By Lemma 2.8 there are a sequence ε̄ = (εn)n and a T -long ε̄-sparse tail R∞.
Let Pn be the sequence of initial patterns associated to the tail R∞ given by
Remark 3.4. Let M(R∞) be the set of marked points of the components of Pn,

M(R∞)
def
=

∞⋃
0

M(Pn).

Lemma 4.1. For every plaque D0 ∈ F there is a sequence (Da)a∈M(R∞) of plaques
of F such that for every n the subfamily (Da)a∈M(Pn) is (Jn,Pn)-controlled.

Proof. Apply first Theorem 3.9 to construct the family associated to the pattern
P0. Thereafter inductively apply Addendum 3.15 to construct the family of sets
associated to Pn+1 extending the family constructed for Pn. �

By the expansion property (c) in Definition 1.2 of a flip-flop family with sojourns
we have that

(4.1)
⋂

a∈M(R∞)

f−a(Da) = {xD} ⊂ D0.

By construction, the point xD is controlled at any scale with long sparse tail R∞
with respect to ϕ and Y , proving Theorem 2. �

4.2. Proof of Corollary 3. Let µ be any weak∗-accumulation point of the family
of empirical measures (µn(xD))n. By Theorem 1, for µ-almost every point x its
Birkhoff average ϕ∞(x) is zero its orbit is dense in X. This immediately implies
that almost every component ν of the ergodic decomposition of µ has full support
and

∫
ϕdν = 0. �

4.3. Proof Proposition 4. Given t ∈ (α, β) consider α < αt < t < βt < β.
Consider small cylinders C(αt) and C(βt) where the map ϕ is less than αt and
bigger than βt, respectively. Consider now unstable subsets of these cylinders (i.e.,
the intersection of the cylinders with unstable sets). For sufficiently large m we
have that these sets are a flip-flop family relative to fm. Now it is enough to apply
either the criterion in [BBD2] (to get item (a)) or to apply Corollary 3 (to get item
(b)).
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5. Proof of Theorem 5: Flip-flop families and homoclinic relations

The goal of this section is to prove Theorem 5. Consider f ∈ Diff1(M) and a
pair of hyperbolic periodic points p and q of f that are homoclinically related and
a continuous function ϕ : M → R such that

∫
ϕdµO(p) < t <

∫
ϕdµO(q) (recall

that µO(p) and µO(q) are the unique f -invariant probability measures supported on
the orbits p and q, respectively). For notational simplicity, let us assume that the
periodic points p and q are fixed points. In this case the assumption above just
means ϕ(p) < t < ϕ(q). After replacing ϕ by the map ϕt = ϕ − t, to prove the
theorem it is enough to get an ergodic measure µt whose support is H(p, f) such
that

∫
ϕt dµt = 0. Thus, in what follows, we can assume that t = 0 and hence

ϕ(p) < 0 < ϕ(q).

5.1. Flip-flop families obtained from homoclinic relations. To prove the
theorem we construct a flip-flop family associated to ϕ and fn for some n > 0. We
begin by recalling some constructions from [BBD2].

5.1.1. The space of discs Di(M). Recall that M is a closed and compact Riemann-
ian manifold, let dim(M) = d. For each i ∈ {1, . . . , d− 1} denote by Di(M) the set
of i-dimensional (closed) discs C1-embedded in M . In the space Di(M) the stan-
dard C1-topology is defined as follows, given a disc D ∈ Di(M) its neighbourhoods
are of the form {f(D) : f ∈ W}, where W is a neighbourhood of the identity map
in Diff1(M). In [BBD2] it is introduced the following metric d on the space Di(M),

(D1, D2) 7→ d(D1, D2)
def
= dHaus(TD1, TD2) + dHaus(T∂D1, T∂D2),

where D1, D2 ∈ Di(M), the tangent bundles TDi and T∂Di are considered as
compact subsets of the corresponding Grassmannian bundles, and dHaus denotes
the corresponding Hausdorff distances. The distance d behaves nicely for the com-
position of diffeomorphisms: if D and D′ are close the same holds for f(D) and
f(D′), see [BBD2, Proposition 3.1].

Given a family of discs D ⊂ Di(M) and η > 0, we denote by Vd
η (D) the open

η-neighbourhood of D with respect to the distance d,

Vd
η (D)

def
= {D ∈ Di(M) : d(D,D) < η}.

5.1.2. Proof of Theorem 5. Since ϕ(p) < 0 < ϕ(q), there are small local unstable
manifolds W u

loc(p, f) and W u
loc(q, f) of p and q such that ϕ is strictly negative in

W u
loc(p, f) and strictly positive in W u

loc(q, f). Similarly for the local stable manifolds
W s
loc(p, f) and W s

loc(q, f) of p and q.
Since p and q are homoclinically related there `0 ≥ 0 and small discs ∆s

p ⊂
W s(p) and ∆s

q ⊂ W s(q, f) such that the intersections ∆s
p ∩ f `0(W u

loc(q, f)) and

∆s
q ∩ f `0(W u

loc(p, f)) are both transverse and consist of just a point.

For % > 0 consider the %-neighbourhoods Vd
% (p)

def
= Vd

% (W u
loc(p, f)) and Vd

% (q)
def
=

Vd
% (W u

loc(q, f)) of the local unstable manifolds of p and q for the distance d. For %

small enough, every disc in Vd
% (p) intersects transversely ∆s

p. We also have that ϕ
is uniformly negative (say less than −α < 0) in every disc in this neighbourhood.
Finally, the derivative of Df is uniformly expanding in restriction to this family
of discs. There are similar assertions for the discs in Vd

% (q): every disc of this
neighbourhood meets transversely ∆s

q, ϕ is larger than α > 0 in the discs, and Df
is a uniform expansion.
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Remark 5.1. If % > 0 is small enough then there is `1 such that for every ` > `1
the image f `(D) of any disc D ∈ Vd

% (p) contains discs in Vd
% (p) and in Vd

% (q). The

same holds (with the same constant) for discs in Vd
% (q). This is a well known fact

and is the ground of the proof of the existence of unstable manifolds using a graph
transformation. In what follows we assume that % satisfies this property.

We consider the following family F = F+
⊔

F− of discs:

• F− is the family of discs in Vd
% (p) contained in W u(p, f) ∪W u(q, f);

• F+ is the family of discs in Vd
% (q) contained in W u(p, f) ∪W u(q, f).

Note that as q are homoclinically related these two families are both infinite.

Proposition 5.2. There is n such that the family F is a flip-flop family associated
to ϕ and fn and has sojourns (for f) along the homoclinic class H(p, f).

We postpone the proof of Proposition 5.2 and prove the theorem.

Proof of Theorem 5. Consider the flip-flop family F with sojourns along H(p, f)
given by Proposition 5.2. Exactly as in the proof of Theorem 2 in Section 4 we use
Theorem 3.9, Addendum 3.15, and Lemma 2.8 to construct a scale T , a tail R∞,
a sequence of increasing patterns Pn, and a family of discs Da, a ∈ M(R∞) such
that the restriction of this family to the marked sets M(Pn) is controlled by the
pattern Pn for every n (exactly as in Lemma 4.1). The expansion property in the
flip-flop family implies that (recall equation (4.1))⋂

a∈M(R∞)

f−a(Da) = x∞.

Claim 5.3. x∞ ∈ H(p, f).

Proof. Every disc Da belongs to F, hence it is contained in W u(p, f)∪W u(q, f) and
intersects transversely W s(p, f) ∪W s(q, f). Thus Da contains a point of H(p, f).
The f -invariance of H(p, f) implies that the same holds for f−a(Da) The compact-
ness of H(p, f) implies that x∞ ∈ H(p, f). �

By construction, the point x∞ is controlled at any scale with a long sparse tail
for ϕ and f (the ambient space here is H(p, f)). The theorem now follows from
Theorem 1. �

5.2. Proof of Proposition 5.2. We split the proof of the proposition into two
parts:

5.2.1. F = F+ ∪ F− is a flip-flop family. By construction, the map ϕ is less than
−α < 0 in the discs of Vd

% (p) and bigger than α > 0 in the discs of Vd
% (q). The

definition of F± implies (a) in Definition 1.1.
Recall the choice of `0 above and that, by construction, the image f `0(D) of any

disc D ∈ F intersects transversely the compact parts ∆s
p of W s(p, f) and ∆s

q of
W s(q, f). Thus the λ-lemma (inclination lemma) and the invariance of W u(p, f)∪
W u(q, f) imply the existence of n0 > 0 such that for every n > n0 and every disc
D ∈ F the set fn(D) contains a disc D+ ∈ F+ and a disc D− ∈ F−. This proves
item (b) in Definition 1.1.

It remains to get the expansion property in item (c) of Definition 1.1. We need
to get n such that for every D ∈ F the disc fn(D) contains a disc D′ such that
fn : f−n(D′)→ D′ is a uniform expansion. For that it is enough to take sufficiently
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large n (independent of D). To see why this is so recall first that fn0(D) contains
a disc Dn0 ∈ F+. Now Remark 5.1 provides a sequence of discs Dn0+i`0 in F±

such that Dn0+(i+1)`0 ⊂ f `0(Dn0+i) and f `0 : f−`0(Dn0+(i+1)`0) → Dn0+(i+1)`0 is
a uniform expansion. This implies that for i large enough (independent of D) we
get the announced expansion for fn0+i`0 : f−(n0+i`0)(Dn0+i`0)→ Dn0+i`0 , just note
that the i `0 additional iterates in the “expanding part” compensate any contraction
introduced by the first n0 iterates.

5.2.2. The family F sojourns along the homoclinic class H(p, f). Consider any δ >
0. We need prove that there is N > 0 such that every disc D ∈ F contains a pair

of discs D̂+, D̂− such that for every x ∈ D̂± the segment of orbit {x, . . . , fN (x)}
is δ-dense in H(p, f) (item (a)), fN (D̂+) ∈ F+ and fN (D̂−) ∈ F− (item (b)), and

fN : D̂± → fN (D̂±) is expanding (item (c)).
We need the following property of H(p, f) that is a direct consequence of the

density of transverse homoclinic intersection points ofW u(p, f)∩W s(p, f) inH(p, f)
and the existence of (hyperbolic) horseshoes associated to these points.

Remark 5.4. For every ε > 0 there is a hyperbolic periodic point rε ∈ H(p, f) that
is homoclinically related to p and q whose orbit is ε/2-dense in H(p, f) = H(q, f).

To prove item (a) consider the point r = r δ
2
∈ H(p, f) given by Remark 5.4.

As the points r, p, and q are pairwise homoclinically related, the stable manifold
of the orbit of r, W s(O(r), f) accumulates the ones of p and q. Hence there are
compact discs ∆s

r,p,∆
s
r,q ⊂ W s(O(r), f) such that any disc in Vd

% (p) ∪ Vd
% (q) meets

transversely ∆s
r,p ∪∆s

r,q.
Let π be the period of r. As in Remark 5.1, for each i = 0, . . . , π − 1, we

fix a small local unstable manifold W u
loc(f

i(r), f) and a small C1-neighbourhood

Vd
η (f i(r))

def
= Vd

η (W u
loc(f

i(r), f)) such that the image f(D) of any disc D ∈ Vd
η (f i(r))

contains a disc in Vd
η (f i+1(r)) (for π − 1 we take “π = 0”).

Take now D = D0 any disc in Vd
η (r), let D1 be a sub-disc of f(D0) in Vd

η (f(r)),

and inductively define Di+1 as a disc in Vd
η (f i+1(r)) contained in f(Di). Assuming

thta the local unstable manifolds and their neighbourhoods are small enough we
have that every point in a disc of Vd

η (f i(r)), i = 0, . . . , π − 1, is at distance less

that δ
2 from the orbit of r. Since the orbit of r is δ

2 -dense in H(p, f) for every
x ∈ f−π(Dπ) ⊂ D, we have that the segment of orbit {x, . . . , fπ(x)} is δ-dense in
H(p, f).

Consider now a disc D ∈ F. By construction, this disc intersects transversely
W s(O(r), f) in some point of ∆s

r,p∪∆s
r,q. By the λ-lemma there is j0 (independent

of D) such that f j0(D) contains a disc D0 in Vd
η (r). The argument above provides

a sequence of discs Di ∈ Vd
η (f i(r)), j ∈ {0, . . . , π−1}, with Di+1 ⊂ f(Di) and such

that for every x ∈ f−π(Dπ) ⊂ D0 ⊂ f j0(D) its orbit segment {x, . . . , fπ(x)} is δ-
dense in H(p, f). A new application of the λ-lemma provides a uniform j1 > 0 such

that f j1(Dπ) contains discs D̃± ∈ F± (recall that the initial D ∈ F and therefore
it is contained in W u(p, f) ∪W u(q, f)).

Now it is enough to take

N
def
= j0 + π + j1 and D̂±

def
= f−j0−π−j1(D̃±) ⊂ D.



34 CH. BONATTI, L. J. DÍAZ, AND J. BOCHI

By construction the orbit segment {y, . . . , fN (y)} of any point y ∈ D̂± is δ-dense in

H(p, f), proving item (a) in Definition 1.2. By construction, fN (D̂±) = D̃± ∈ F±

proving item (b) in Definition 1.2

Note that the discs D̂± ⊂ D satisfy the density in H(p, f) and return to F±

properties, however they can fail to satisfy the expansion property in (c) in Defi-
nition 1.2. To get additionally such an expansion one considers further iterates of
the disc in a “expanding” region nearby p or q. The expansion is obtained using
Remark 5.1 and arguing exactly as in Section 5.2.1. The proof of Proposition 5.2
is now complete. �

5.3. Proof of Corollary 6. By hypothesis, the saddles pf and qf have different
u-indices (say i and j, i < j) that depend continuously on f and whose chain
recurrence classes coincide for every diffeomorphism f in a C1-open set U . As in
the proof of Theorem 5, let us assume that t = 0 and hence the Birkhoff average of
ϕ is negative in O(pf ) and positive in O(qf ).

According to [ABCDW], up to restrict to a C1-open and dense subset of U , we
can assume that for every k ∈ [i, j] every diffeomorphism f ∈ U has a periodic
point rf of u-index k that is C1-robustly in C(pf , f). Therefore, after replacing pf
and qf by other periodic points, we can assume that the u-indices of pf and qf are
consecutive.

Following Propositions 3.7 and 3.10 in [ABCDW], an arbitrarily small C1-per-
turbation of f gives a diffeomorphism h with a periodic point rh having a (unique)
center eigenvalue equal to 1 that is robustly in C(ph, h). This means that this
(non-hyperbolic) periodic point rh admits a continuation rg ∈ C(pg, g) = C(qg, g)
for some g arbitrarily close to f .

Consider the average of ϕ along the orbit of rh and assume first that it is different
from zero, for example negative. Then, after an arbitrarily small perturbation,
we can transform rh in a hyperbolic point rg of g of the same index as qg and
homoclinically related to qg (for this last step we use the version of Hayashi’s
connecting lemma [H] for chain recurrence classes in [BC]9). The diffeomorphism g
belongs to U , the saddles rg and qg are homoclinically related, and the averages of
ϕ in these orbits have different signals. The corollary now follows from Theorem 5.

In the case when the average of ϕ throughout the orbit of rg is zero one needs
a slight modification of the previous argument. Let us sketch this construction,
arguing as above, we can assume that, after an arbitrarily small perturbation, the
point rg is hyperbolic of the same index as pg (with center derivative arbitrarily
close to one) and that rg and pg are homoclinically related. Using the homoclinic
relation between rg and pg we get a point r̄g with some center eigenvalue arbitrarily
close to one and with negative average for ϕ. Next, arguing as above and after a
small perturbation, we change the index of the point r̄g and generate transverse
cyclic intersections between r̄g and qg (i.e., we put the saddle r̄g in the homoclinic

9This result guarantees that given two saddles in the same chain recurrence there is an arbitrar-

ily small C1-perturbation of the diffeomorphism that gives an intersection between the invariant
manifolds of these saddles. If the saddles belong C1-robustly to the same class then one can repeat

the previous argument, interchanging the roles of the saddles, to get that the invariant manifolds

of these saddles meet cyclically. Finally, if the saddles have the same index one can turn these
intersections into transverse ones, thus the two saddles are homoclinically related and hence they

are C1-robustly in the same homoclinic class.
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class of qg). We are now in the previous case and prove the corollary using the
saddles r̄g and qg. �

6. Flip-flop families in partially hyperbolic dynamics

In this section we prove Theorems 7 and 8. For that we borrow and adapt some
constructions in [BBD2]. In Section 6.1 we recall the definition of a dynamical
blender and its main properties. Section 6.2 is dedicated to the study of flip-flop
configurations. In Section 6.3 we see how flip-flop configurations yield flip-flop
families with sojourns. In Section 6.4 we analyse the control of averages in flip-flop
configurations. Finally, in Section 6.5 we conclude the proofs of Theorems 7 and 8.

6.1. Dynamical blenders. The definition of a dynamical blender in [BBD2] in-
volves three main ingredients: the distance on the space of C1-discs (Section 5.1.1),
strictly invariant families of discs (Section 6.1.1), and invariant cone fields (Sec-
tion 6.1.2). We now describe succinctly these ingredients.

6.1.1. Strictly invariant families of discs. Recall the notation Di(M) for the set of
i-dimensional (closed) discs C1-embedded in M and the definitions of the distance
d and the open neighbourhood Vd

η (D) of a family of discs D with respect to d in
Section 5.1.1.

Definition 6.1 (Strictly f -invariant families of discs). Let f ∈ Diff1(M). A family
of discs D ⊂ Di(M) is strictly f -invariant if there is ε > 0 such that for every disc
D0 ∈ Vd

ε (D) there is a disc D1 ∈ D with D1 ⊂ f(D0).

The existence of a strictly invariant family of discs is a C1-robust property: If
the family D is strictly f -invariant then there are µ, η > 0 such that the family
Dµ = Vd

µ(D) is strictly g-invariant for every g ∈ Diff1(M) that is η-C1-close to f ,
see [BBD2, Lemma 3.8].

6.1.2. Invariant cone fields. Given a vector space of finite dimension E, we say
that a subset C of E is a cone of index i if there are a splitting E = E1 ⊕E2 with
dim(E1) = i and a norm ‖·‖ defined on E such that

C = {v = v1 + v2 : vi ∈ Ei, ‖v2‖ ≤ ‖v1‖}.

A cone C ′ is strictly contained in the cone C above if there is α > 1 such that

C ′ ⊂ Cα = {v1 + v2 : vi ∈ Ei, ‖v2‖ ≤ α−1‖v1‖} ⊂ C.

A cone field of index i defined on a subset V of a compact manifold M is a
continuous map x 7→ C(x) ⊂ TxM that associates to each point x ∈ V a cone C(x)
of index i . We denote this cone field by C = {C(x)}x∈V .

Given a diffeomorphism f ∈ Diff1(M) and a cone field C = {C(x)}x∈V we say
that C is strictly Df -invariant if Df(x)(C(x)) is strictly contained in C(f(x)) for
every x ∈ V ∩ f−1(V ).

The following result is a standard lemma about persistence of invariant cone
fields (see for instance [BBD2, Lemma 3.9]).

Lemma 6.2. Let f ∈ Diff1(M), V a compact subset of M , and C a strictly Df -
invariant cone field defined on V . Then there is a C1-neighbourhood U of f such
that C is strictly Dg-invariant for every g ∈ U .
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6.1.3. Dynamical blenders. We are now ready to define a dynamical blender and
recall its main properties.

Definition 6.3 (Dynamical blender, [BBD2]). Let f ∈ Diff1(M). A compact
f -invariant set Γ ⊂ M is a dynamical cu-blender of uu-index i if the following
properties hold:

a) there is an open neighbourhood V of Γ such that

Γ =
⋂
n∈Z

fn(V );

b) the set Γ is transitive;
c) the set Γ is (uniformly) hyperbolic with u-index strictly larger than i;
d) there is a strictly Df -invariant cone field Cuu of index i defined on V ; and
e) there are a strictly f -invariant family of discs D ⊂ Di(M) and ε > 0 such

that every disc in Vd
ε (D) is contained in V and tangent to Cuu.

We say that V is the domain of the blender, Cuu is its strong unstable cone field,
and D is its strictly invariant family of discs. To emphasise the role of these objects
we write (Γ, V, Cuu,D).

Remark 6.4. Let Γ be a hyperbolic set of u-index j that is also a cu-blender of
uu-index i. By definition, the set Γ has a partially hyperbolic splitting (recall (1.4))
of the form

TΓM = Euu ⊕ Ecu ⊕ Es,

where dim(Euu) = i, dim(Ecu) = j − i ≥ 1, and Eu = Euu ⊕Ecu. Here Es and Eu

are the stable and unstable bundles of Γ. We also define the bundle Ecs def
= Ecu⊕Ess.

Next lemma claims that blenders have well defined continuations.

Lemma 6.5 (Lemma 3.8 and Scholium 3.14 in [BBD2]). Let (Γ, V, Cuu,D) be a
dynamical blender of f ∈ Diff1(M). Then there are a C1-neighbourhood U of f and
ε > 0 such that for every diffeomorphism g ∈ U the 4-tuple (Γg, V, Cuu,Vd

ε (D)) is a
dynamical blender, where Γg is the hyperbolic continuation of Γ for g.

Moreover, every disc D ∈ Vd
ε (D) meets the local stable manifold of Γg defined by

W s
loc(Γg)

def
= {x ∈ V : f i(x) ∈ V for every i ≥ 0}.

6.2. Flip-flop configurations and partial hyperbolicity. We now recall the
definition of a flip-flop configuration and borrow some results from [BBD2].

Definition 6.6 (Flip-flop configuration). Consider f ∈ Diff1(M) having a dy-
namical cu-blender (Γ, V, Cuu,D) of uu-index i and a hyperbolic periodic point q of
u-index i. We say that (Γ, V, Cuu,D) and q form a flip-flop configuration if there
are:

• a disc ∆u contained in the unstable manifold W u(q, f) and
• a compact submanifold with boundary ∆s ⊂ V ∩W s(q, f)

such that:

a) The disc ∆u belongs to the interior of the family D.
b) f−n(∆u) ∩ V = ∅ for all n > 0.
c) There is N > 0 such that fn(∆s) ∩ V = ∅ for every n > N . Moreover, if

x ∈ ∆s and j > 0 are such that f j(x) /∈ V then f i(x) /∈ V for every i ≥ j.
d) TyW

s(q, f) ∩ Cuu(y) = {0} for every y ∈ ∆s.
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e) There are a compact set K in the relative interior of ∆s and ε > 0 such that
for every D ∈ D there exists x such that K ∩D = {x} and d(x, ∂D) > ε.

The sets ∆u and ∆s are called the unstable and stable connecting sets of the
flip-flop configuration, respectively.

[BBD2, Proposition 4.2] asserts that flip-flop configuration are C1-robust. Next
lemma claims that flip-flop configurations yield partially hyperbolic dynamics. Re-
call Remark 6.4 and the definition of the center unstable bundle Ecu of a blender.

Lemma 6.7 (Lemma 4.6 in [BBD2]). Consider f ∈ Diff1(M) having a hyperbolic
periodic point q and a dynamical blender (Γ, V, Cuu,D) in a flip-flop configuration
with connecting sets ∆u ⊂W u(q, f) and ∆s ⊂W s(q, f). Consider the closed set

∆
def
= O(q) ∪ V ∪

⋃
k≥0

fk(∆s) ∪
⋃
k≤0

fk(∆u).

Then there is a compact neighbourhood U of ∆, called a partially hyperbolic neigh-
bourhood of the flip-flop configuration, such that the maximal invariant set Γ(U)
of f in U

Γ(U)
def
=
⋂
i∈Z

f i(U)

has a partially hyperbolic splitting

TΓ(U)M = Ẽuu ⊕ Ẽcs,

where Ẽuu is uniformly expanding and Ẽuu and Ẽcu extend the bundles Euu and
Ecs, respectively, defined over Γ.

Moreover, there is a strictly Df -invariant cone field over U that extends the
cone field Cuu defined on V (we also denote this cone field by Cuu) whose vectors
are uniformly expanded by Df .

6.3. Flip-flop families with sojourns in homoclinic classes. [BBD2, Propo-
sition 4.9] claims that flip-flop configurations yield flip-flop families. These config-
urations are enough to construct measures with controlled averages. However they
do not provide control of the support of the obtained measure. In this paper, we
want to get measures with “full support”. Bearing this in mind we defined flip-flop
families with sojourns (Definition 1.2). These “sojourns” guarantee “density” of
orbits in the ambient space.

Theorem 6.8. Consider f ∈ Diff1(M) with a hyperbolic periodic point q and a
dynamical blender Γ in a flip-flop configuration. Let ϕ : M → R be a continuous
function that is positive on the blender Γ and negative on the orbit of q.

Then there are N ≥ 1 and a flip-flop family F with respect to ϕN and fN which
sojourns along the homoclinic class H(q, f) (for f).

Moreover, given any δ > 0 the flip-flop family F can be chosen such that:

• every D ∈ F is contained in a δ-neighbourhood of Γ ∪ {O(q)},
• every D ∈ F transversely intersects W s(q, fN ), and
• there is D ∈ F contained in W u

loc(q, f
N ).

To prove this theorem we need to recall the construction of flip-flop families in
[BBD2]. As the families in [BBD2] do not have sojourns we need to adapt this
construction to our context bearing in mind this fact.
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6.3.1. Flip-flop families associated to flip-flop configurations. We now borrow the
following result from [BBD2] and recall some steps of its proof.

Proposition 6.9 (Proposition 4.9 in [BBD2]). Let f ∈ Diff1(M) be a diffeomor-
phism with a hyperbolic periodic point q and a dynamical blender Γ in a flip-flop
configuration. Let U be a partially hyperbolic neighbourhood of this configuration
and ϕ : U → R a continuous function that is positive on the blender and negative
on the orbit of q.

Then there are N ≥ 1 and a flip-flop family F = F+
⊔

F− with respect to ϕN
and fN .

Moreover, given any δ > 0 the flip-flop family can be chosen such that the plaques
in F+ are contained in a δ-neighbourhood of Γ and the plaques in F− are contained
in a δ-neigbourhood of q.

Note that Theorem 6.8 is just the proposition above with additional sojourns.

Observe also that the map ϕN is only defined on
⋂N−1

0 f−i(U) and that the plaques
of F are contained in that set.

We now review the construction in [BBD2]. For simplicity let us suppose that q is
a fixed point. The definition of the family F in Proposition 6.9 involves a preliminary
family of discs Dq satisfying the following properties (see [BBD2, Lemma 4.11]):

(p1) The family of discs Dq form a small C1-neighbourhood (in the metric d) of
the local unstable manifold W u

loc(q, f). This neighbourhood can be taken
arbitrarily small.

(p2) The sets of the family F− are contained in discs in Dq.
(p3) Each disc in Dq contains a plaque of F−.
(p4) The image by fN of any plaque of F contains a disc of Dq.

We have the following direct consequences of the properties above:

(p5) As Dq can be taken contained in an arbitrarily small neighbourhood of
W u
loc(q, f), we can assume that W s

loc(q, f) meets transversely every disc in
Dq.

(p6) AsW u
loc(q, f) can be chosen arbitrarily small, we can assume that fN expands

uniformly the vectors tangent to the discs in Dq (see also Remark 5.1).
(p7) As a consequence of items (p2),(p3), and (p4), the image by fN of any disc

in Dq contains a disc in Dq.

We say that the flip-flop family F is prepared with and adapted family Dq if F
and Dq satisfy properties (p1)–(p7) above.

6.3.2. Proof of Theorem 6.8. Since a flip-flop family yields a prepared flip-flop fam-
ily, Theorem 6.8 is a consequence of the following proposition.

Proposition 6.10. Let f ∈ Diff1(M) be a diffeomorphism with a hyperbolic peri-
odic point q and a dynamical blender Γ in a flip-flop configuration, U be a partially
hyperbolic neighbourhood of this configuration, and ϕ : U → R a continuous function
that is positive on the blender and negative on the orbit of q.

Let N ≥ 1 and F be a prepared flip-flop family with an adapted family of discs
Dq with respect to ϕN and fN .

Then the flip-flop family F sojourns along the homoclinic class H(q, fN ).

Proof. We need the following lemma whose proof is similar to the one of Proposi-
tion 5.2 and follows using the partially hyperbolicity in the set U .
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Lemma 6.11. For every δ > 0 there is L ∈ N such that every disc D ∈ Dq contains

a sub-disc D̂ such that

• for every x ∈ D̂ the segment of orbit {x, . . . , fL(x)} is δ-dense in H(q, fN ),

• fL(D̂) contains a disc of Dq.

• for every i ∈ {0, . . . , L} and every pair of points x, y ∈ D̂ it holds

d(fL−i(x), fL−i(y)) ≤ ζ αi d(fL(x)fL(y)),

for some constants ζ > 0 and 0 < α < 1 (independent of the points and the
discs).

Proof. Consider a hyperbolic periodic point rδ ∈ H(q, fN ) homoclinically related to
q and whose orbit is δ-dense in H(q, fN ) (recall Remark 5.4). The λ-lemma implies
that a compact part of W s(rδ, f) intersects transversely every disc in Dq. Thus,
again by the λ-lemma, iterations of any disc D ∈ Dq accumulate to W u

loc(O(rδ), f).
Again the λ-lemma and (p7) in the definition of a prepared family imply that
further iterations of D contains a disc in Dq. Since the number of iterates involved
can be taken uniform, considering the corresponding pre-image one gets the disc

D̂ satisfying the first two items of the lemma. Finally, exactly as in the end of the
proof of Proposition 5.2 further iterations provides the uniform expansion property.
This ends the proof of the lemma. �

To end the proof of the proposition recall that, by condition (p4), the image of
any plaque D ∈ F contains a disc in Dq. This provides the “sojourns property” for
F (may be one needs to add some extra additional “final” iterates for recovering
the expansion). �

6.4. Control of averages in flip-flop configurations. As a first consequence
of Theorem 6.8 we get measures with controlled averages and full support in a
homoclinic class.

Theorem 6.12. Let f ∈ Diff1(M) be a diffeomorphism and ϕ : M → R be a
continuous map. Suppose that f has a dynamical blender Γ and hyperbolic periodic
point q that are in flip-flop configuration with respect to ϕ and f . Then there is an
ergodic measure ν whose support is the whole homoclinic class H(q, f) such that∫

ϕd ν = 0.

Proof. Under the hypotheses of the theorem, Theorem 6.8 provides a flip-flop family
F associated to fN and ϕN which sojourns in H(q, fN ). By Theorem 2 every plaque
D ∈ F contains a point xD that is controlled at any scale with a long sparse tail
with respect ϕN and H(q, fN ). Note that W u

loc(q, f) contains a plaque ∆ ∈ F. Let
x∆ ∈ ∆ be the controlled point given by Theorem 2.

Claim 6.13. x∆ ∈ H(q, fN ).

Proof. By construction, there is a sequence of discs Dk and numbers nk →∞ such
that Dk+1 ⊂ fnk(Dk) and D0 = ∆. Thus f−nk(Dk) ⊂ ∆ is a decreasing nested
sequence of compact sets that satisfies

x∆ =
⋂
k∈N

f−nk(Dk).
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The fact that this intersection is just a point follows from the expansion property in
the definition of a flip-flop family. SinceDk ⊂W u(q, fN ) and intersects transversely
W s(q, f) we have that Dk contains a point xk ∈ H(q, fN ). Hence yk = f−nk(xk) ∈
H(q, fN ) ∩ f−nK (Dk). Thus yk → x∆ and x∆ ∈ H(q, fN ). �

Take any measure µ that is an accumulation point of the measures

µn
def
=

1

n

n−1∑
0

δ(f iN (x∆)).

As the point x∆ is controlled at any scale with a long sparse tail with respect to ϕ
and H(q, fN ), Theorem 1 implies that µ-almost every point y has a dense orbit in
H(q, fN ) and the average of ϕN along the fN -orbit of y is zero.

To conclude the proof of the proposition consider the measure

η
def
=

1

N

N−1∑
0

f i∗(µ).

Now the f -orbit of η-almost every point y is dense in H(q, f) and satisfies ϕ∞(y) =
0. By construction, any ergodic component ν of η satisfies the conclusion in the
theorem. �

Remark 6.14. Let us compare Theorem 6.12 with Corollary 6. In both cases
there is a continuous map ϕ with a “positive” and a “negative region”. Corollary 6
is a perturbation result while Theorem 6.12 does not involve perturbations. The
corollary provides a (locally) open and dense subset of diffeomorphisms f having an
ergodic measure µf with

∫
ϕdµf = 0. In the theorem the mere existence of the flip-

flop configuration for f and ϕ gives an ergodic measure µf of f with
∫
ϕdµf = 0.

In the corollary the support of the ergodic measure is not completely determined
(either H(p, f) or H(q, f)) while in the theorem the support is H(q, f) (q is the
saddle in the flip-flop configuration).

6.5. Ergodic non-hyperbolic measures with full support. In this section we
conclude the proofs of Theorems 7 and 8.

6.5.1. Proof of Theorem 7. Consider a C1-open set U ⊂ Diff1(M) consisting of
diffeomorphisms f having hyperbolic periodic points pf and qf , depending con-
tinuously on f , of different indices whose chain recurrence classes C(pf , f) and
C(qf , f) coincide and have a partially hyperbolic splitting with one-dimensional
center. This implies that the u-indices of pf and qf are j + 1 and j for some j.

Consider f ∈ U . We prove that there are a neighbourhood Vf of f and an open
and dense subset Zf of Vf where the conclusion of the theorem holds (every g ∈ Zf
has a nonhyperbolic ergodic measure µg whose support is H(pg, g) = H(qg, g)). The
theorem follows considering the set V =

⋃
f∈U Zf that is, by construction, open

and dense in U . Thus, in what follows, we fix f ∈ U and study a local problem in
a neighbourhood of f .

The partial hyperbolicity of C(pf , f) gives neighbourhoods V of C(pf , f) and
Vf of f such that for every g ∈ Vg the maximal invariant set of g in V

(6.1) Υg
def
=
⋂
i∈Z

gi(V )
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has a partially hyperbolic splitting with one-dimensional center. Since chain re-
currence classes depend upper semi-continuously, after shrinking Vf , if necessary,
we can assume that C(pg, g) ⊂ V for every g ∈ Vf . Thus H(pg, g) = H(qg, g) ⊂
C(pg, g) ⊂ Υg and these sets are partially hyperbolic with one-dimensional center.
Hence [BDPR, Theorem E] (see Remark 1.3) gives an open and dense subsetWf of
Vf such that for every f ∈ Wf the homoclinic classes of pf and qf are equal (here
the hypothesis on the one-dimensional center is essential). To prove the theorem
it is enough to get an open an dense subset Zf of Wf (thus of Vf ) consisting of
diffeomorphisms g having a nonhyperbolic ergodic measure µg whose support is
H(pg, g) = H(qg, g).

By [BD2] there is an open and dense subset Cf ofWf such that every g ∈ Cf has
transitive hyperbolic sets Λpg and Λqg, with pg ∈ Λpg and qg ∈ Λqg, having a robust
cycle (i.e., there is a neighbourhood of g consisting of diffeomorphisms h such that
the invariant sets of Λph 3 ph and Λqh 3 qh meet cyclically). Now [BBD2, Proposition
5.2] (Robust cycles yield spawners) and [BBD2, Proposition 5.3] (Spawners yield
split flip-flop configurations) gives an open and dense subset Zf of Cf such that every
g ∈ Zf has a dynamical blender Γg ⊂ C(pg, g) that is in a flip-flop configuration
with qg. Moreover, the blender Γg and the saddle pg are homoclinically related
(their invariant manifolds intersect cyclically and transversely). As in the case of a
homoclinic relation between periodic points this implies that Γg ⊂ C(pg, g).

For g ∈ Zf consider a continuous function Jcg defined on the partially hyperbolic
set Υg as the logarithm of the center derivative of g, recall (1.5). Note that Γg ∪
O(qg) ⊂ Υg. Up considering an adapted metric, we can assume the map Jcg is
positive on the blender Γg and negative on the orbit of qg. We extend the map Jcg
to a continuous map defined on the whole manifold (with a slight abuse of notation,
we denote this new map also by Jcg). For diffeomorphisms g ∈ Zg Theorem 6.12
gives an ergodic measure µg whose support is H(qg, g) = H(pg, g) and such that∫

Jcg dµg = 0. As µg is supported on H(qg, g) ⊂ Υg, the function Jcg coincides with

the logarithm of the center derivative of g in the support of µg. Thus
∫

Jcg dµg = 0 is
the center Lyapunov exponent of µg. This concludes the proof of the theorem. �

6.5.2. Proof of Theorem 8. In the previous sections we dealt with averages of con-
tinuous functions. For the analysis of Lyapunov exponents let us recall that in
[BBD2] the partial hyperbolicity of the set guarantees the continuity of central
(one-dimensional) derivatives in a locally maximal invariant set (these maps are
continuously extended to a neighbourhood of the set). Here we we argue as in
previous sections keeping in mind the following three facts: (1) The existence of
a flip-flop configuration is a hypothesis. (2) The filtrating neighbourhood implies
that it contains the homoclinic classes. (3) The existence of invariant cone fields in
the filtrating neighbourhood gives the partial hyperbolicity with one-dimensional
center of the maximal invariant set in U and thus of the homoclinic classes.

7. Applications to robust transitive diffeomorphisms

In this section we prove Theorem 9 and Corollary 10. Recall that RT (M) is the
(open) subset of Diff1(M) of diffeomorphisms that are robustly transitive and have
a pair of hyperbolic periodic points of different indices and a partially hyperbolic
splitting with one-dimensional center. We prove the following proposition:
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Proposition 7.1. There is a C1-open and dense subset I(M) of RT (M) such
that for every f ∈ I(M) there are hyperbolic periodic points pf and qf of different
indices such that

H(pf , f) = H(qf , f) = M.

In view of this proposition, Theorem 9 is a direct consequence of Theorem 7 (in
RT (M) the unique chain recurrence class is the whole manifold M) and Corol-
lary 10 is a direct consequence of Corollary 6.

Proof of Proposition 7.1. The diffeomorphisms f ∈ RT (M) have a partially hy-
perbolic splitting with one-dimensional center TM = Euu⊕Ec⊕Ess, where Euu is
uniformly expanding, Ess is uniformly contracting, and dim(Ec) = 1. This implies
that there is j ∈ {1, . . . ,dim(M) − 2} such that every hyperbolic periodic point p
of f has s-index either j or j + 1, where j = dim(Ess).

We define RTj(M) as the open subset of RT (M) consisting of diffeomorphism
whose saddles have s-indices either j or j + 1. The next lemma is a consequence
of the ergodic closing lemma in [M2], for an explicit formulation of this result see
[DPU, Theorem in page 4].

Lemma 7.2. The set
⋃dim(M)−2
j=1 RTj(M) is open and dense in RT (M).

In view of this lemma the proposition is a consequence of the following result:

Lemma 7.3. Let j ∈ {1, . . . ,dim(M) − 2}. There is an open an dense subset
Ij(M) of RTj(M) such that every f ∈ Ij(M) has hyperbolic periodic points pf and
qf of different indices such that

H(pf , f) = H(qf , f) = M.

Proof. For the diffeomorphisms f ∈ RTj(M) there are defined the strong stable
foliation F ss

f of dimension j and the strong unstable foliation Fuu
f of dimension

dim(M) − j − 1. Recall that F ii
f , i = s, u, is the only Df -invariant foliation of

dimension dim(Eii) tangent to Eii.
The foliation F ii

f is minimal if every leaf F ii
f (x) of F ii

f is dense in M . The foliation

F ii
f is C1-robustly minimal if there is a C1-neighbourhood Vf of f such that for

every g ∈ Vf the foliation F ii
g is minimal. We denote byMi

j(M), i = s,u, the open

subset of RTj(M) of diffeomorphisms such that F ii
f is robustly minimal. Let

Mj(M)
def
= Ms

j(M) ∪Mu
j (M).

Lemma 7.4 ([BDU, RH2U]). The set Mj(M) is open and dense in RTj(M).

We need the following property.

Claim 7.5.

• Let f ∈Mu
j (M). Then H(q, f) = M for every saddle q of s-index j + 1.

• Let f ∈Ms
j(M). Then H(q, f) = M for every saddle q of s-index j.

Proof. We prove the first item, the second one is analogous and thus omitted. Fix
any hyperbolic periodic point q of s-index j + 1. Then the unstable manifold of q
is a leaf of Fuu

f , hence it is dense in M .

The minimality of Fuu
f and the fact that W s(q, f) contains a disc of dimension

j + 1 transverse to Fuu
f imply that there is K > 0 such that W s(q, f) intersects

transversely every strong unstable disc of radius larger than K.
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Take now any point x ∈M and any ε > 0. We see that the ball Bε(x) intersects
H(q, f). Since this holds for any x ∈M and ε > 0 and H(q, f) is closed this implies
H(q, f) = M .

The density of W u(q, f) implies that there is a disc ∆ ⊂ W u(q, f) of dimension
dim(Euu) contained in Bε(x). Since Df expands the vectors tangent to Euu there
is n > 0 such that fn(∆) has radius at least K. Thus fn(∆) meets transversely
W s(q, f). Thus ∆ contains a point of the homoclinic class of q. This implies the
claim. �

By [BDPR, Theorem E] (see also Remark 1.3) in this partially hyperbolic setting
with one-dimensional center, there is an open and dense subset Pj(M) of RTj(M)
such that for every pair of saddles pf and qf of f it holds H(pf , f) = H(qf , f).
Note that this claim is only relevant when the saddles have different indices.

In view of Claim 7.5 to prove Lemma 7.3 it is enough to take

Ij(M) = Pj(M) ∩Mj(M)

that is open and dense in RTj(M) (recall Lemma 7.4). �

The proof of Proposition 7.1 is now complete. �
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