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ABSTRACT

Conjunctive regular path queries (CRPQs) are one of the core classes of queries over

graph databases. They are join intensive, inheriting their structure from the relational

setting, but they also allow arbitrary length paths to connect points that are to be joined.

However, despite their popularity, little is known about what are the best algorithms for

processing CRPQs. We focus on worst-case optimal algorithms, which are algorithms

that run in time bounded by the worst-case output size of queries, and have been recently

deployed for simpler graph queries with very promising results. We show that the famous

bound on the number of query results by Atserias, Grohe and Marx can be extended to

CRPQs, but to obtain tight bounds one needs to work with slightly stronger cardinality

profiles, as these depend much more heavily on the structure of queries. We also discuss

what algorithms follow from our analysis. If one pays the cost for fully materializing

graph queries, then the techniques developed for conjunctive queries can be reused. If,

on the other hand, one imposes constraint on the working memory of algorithms, then

worst-case optimal algorithms must be adapted with care: the order of variables in which

queries are processed can have striking implications on the running time of queries.

Keywords: graph databases, regular path queries, worst-case optimal algorithms.
viii



RESUMEN

Las conjuctive regular path queries (CRPQs) son una de las principales clases de con-

sultas que se realizan sobre bases de datos de grafos. Su estructura se deriva de la estruc-

tura de consultas relacionales de joins, pero además permiten caminos de largo arbitrario

para conectar puntos que deben ser considerados en dichos joins. Sin embargo y pese a su

popularidad, hasta este momento se conoce poco acerca de cuáles son los mejores algo-

ritmos para procesar CRPQs. En este trabajo nos enfocamos en algoritmos óptimos en el

peor caso, esto es, algoritmos cuyo tiempo de ejecución esta acotado por la cota superior

del tamaño de las consultas que procesan. Aplicaciones recientes de este tipo de algorit-

mos se han llevado a cabo para consultas simples en grafos con resultados promisorios.

En esta tesis, mostramos que la famosa cota sobre el número de resultados de una consulta

propuesta por Atserias, Grohe y Marx puede ser extendida para CRPQs, pero que para

obtener cotas ajustadas, se debe trabajar con un perfil de cardinalidad ligeramente mayor.

Además de establecer dicha cota, discutimos acerca de los algoritmos que provienen de

esta: si se procesa y materializa previamente todas las consultas del grafo (lo que demanda

memoria cuadrática en términos de los vértices del grafo), entonces las técnicas desarrol-

ladas para consultas conjuntivas pueden ser aplicadas. Por otro lado, si se impone una

restricción en la memoria de trabajo de los algoritmos, entonces estos deben ser adaptados

con cuidado: el orden de variables con el cual se procesa las consultas puede tener un gran

impacto sobre su tiempo de ejecución.

Palabras Claves: bases de datos de grafos, consultas de caminos, algoritmos óptimos en

el peor caso.
ix



1. INTRODUCTION

Graph patterns constitute the basic building block of most query languages for graph

databases, and algorithms that can process the answers of graph patterns are important

in the world. Consequently, there has been a lot of progress in terms of pattern query

answering, either by porting and optimizing relational techniques into a graph context

(Team, 2021; Neumann & Weikum, 2008, 2010), or by implementing worst-case optimal

algorithms over graphs, which run in time given by the AGM bound of queries (Nguyen

et al., 2015; Hogan, Riveros, Rojas, & Soto, 2019; Arroyuelo, Hogan, Navarro, Reutter, et

al., 2021), or even with a mix of both approaches (Freitag, Bandle, Schmidt, Kemper, &

Neumann, 2020).

However, the majority of this work focuses on the simplest case where patterns are

simply small graphs of interest, or conjunctive queries (CQs) that one requires to match

in the complete database. But one of the key aspects that differentiate graph and relational

databases is the need for answering path queries, which are usually integrated into graph

patterns to form so called conjunctive regular path queries (CRPQs). CRPQs form an

important use case for graph patterns (Angles et al., 2017), but so far we know little about

algorithms that can process these queries.

Consider for instance the CRPQ Q1(x, y, z) = a
+(x, y) ^ Rb(y, z) ^ Rc(x, z). We

assume in this paper the standard relational representation of graphs using one binary

relation per edge label. Namely, each edge label a results in a relation Ra containing all

pairs (v, v0) connected by an a-labelled edge in the graph. The query Q1 then features

a triple join, but one of the relations we are joining is given by expression a
+, which

corresponds to the transitive closure of the relation Ra. How should one compute this

query? One approach is to first materialize the answers of all path queries, after which we

have a standard graph pattern or conjunctive query over these materialized relations, whose

answers we already know how to compute (Veldhuizen, 2014; Ngo, Ré, & Rudra, 2013).

In our case, this means computing the transitive closure R
+
a of Ra, as a virtual relation,

1



x

yz

a
+

Rb

Rc

Figure 1.1. Representation of query Q1(x, y, z) = a
+(x, y) ^ Rb(y, z) ^

Rc(x, z). Both Rb and Rc represent standard relations and a
+ is a regular

expression.

and then go on to process the (relational) triple join R
+
a (x, y)^Rb(y, z)^Rc(z, x), treating

now a
+ as if it was a standard relation. Is this efficient? Let us assume for simplicity that

the cardinality of all of Ra, Rb and Rc is N . If we use a worst-case algorithm for the task

of processing the triple-join, we can get the answers in O(N2), which also encompass the

time taken to build the virtual relation R
+
a for dealing with a

+. As we shall see, the O(N2)

bound also corresponds to the maximum number of tuples that may be in the answer of

this query, so our algorithm can be dubbed worst-case optimal. In this case, the approach

seems plausible, at least in terms of worst-case asymptotic complexity.

On the other hand, our strategy of materializing transitive closures (or more generally,

any path query) can be quite costly, as R+
a may have up to N

2 tuples itself, which need to

be stored in memory. Thus, it is natural to ask if there is any way of computing the answers

for this query in an optimal way, and in such a way that we do not pay the cost of fully

materializing all path queries. And perhaps more importantly, what happens with other

CRPQs? Do we have a worst-case optimal algorithm for every CRPQ? Does it necessarily

involve materializing all path queries beforehand?

In this thesis we provide answers to these questions. We study bounds on the maximum

number of tuples a CRPQ may produce, given certain cardinality information about the

graph. We then use these bounds to investigate optimal algorithms for CRPQs, either in

full generality, or with additional memory constraints.

To be more precise, this thesis provides the following contributions.

2



(i). Regarding output bounds for CRPQs, we first observe that the bound obtained by

materializing RPQs and applying the standard AGM bound on the resulting query

is not tight. Consider the following pattern for the query Q2:

x y za
+

b
+

Figure 1.2. Representation of Q2(x, y, z) = a
+(x, y) ^ b

+(y, z): a join
between two regular expressions a+ and b

+.

If |Ra| = |Rb| = N then each of R+
a and R

+
b may have up to N

2 tuples. Thus, applying

the usual AGM bound over the CQ resulting from materializing both R
+
a and R

+
b gives an

upper bound of O(N4). This is of course not tight: since |Ra| = |Rb| = N , the number

of possible elements in any relation is also bounded by N , so the total number of different

tuples that we could produce is O(N3). One can show that this bound is actually tight.

(ii). We can obtain much more precise bounds for Q2 if we also take into account the

cardinality of the first and second components of both Ra and Rb. To be more precise,

let us assume that G contains M nodes, that is, the cardinality of the projection of Ra

and Rb over the first or second components is bounded by M . Then the number of tuples

in the output of Q2 is in O(M3). And we can generalize this for every CRPQ: We pro-

vide bounds on the number of tuples in the answer of any CRPQ, over any graph

satisfying the same cardinalities of relations and each of their components. It should

be noted that the cardinality of each component in a graph relation is a standard profile

in graph systems using relations as their underlying storage mechanism (see e.g. (Team,

2021)). Remarkably, our bounds are still meaningful when we just assume that the pro-

jection of Ra over any of its first or second component is bounded by |Ra|. Furthermore,

these bounds are tight (up to a factor depending on the query), and we can even get rid of

this factor for patterns that do not repeat labels in edges or in path queries.
3



Our upper bound is based on an extension of the traditional linear program used to

show the AGM bound. Consider for example query Q3(x, y, z) = a
+(x, y) ^ b

+(y, z) ^

Rc(x, z) in Figure 1.3.

x

yz

a
+

b
+

Rc

Figure 1.3. Representation of query Q3(x, y, z) = a
+(x, y) ^ b

+(y, z) ^
Rc(x, z) consisting of two regular expressions: a

+ and b
+ and a standard

relation Rc.

Let Rs
a be the projection on the first component of Ra, Re

a the projection on the sec-

ond component (and analogously for Rb). Then we show that the answers of Q3 over a

given graph with relations Ra, Rb, Rc are bounded by 2⇢
⇤ , where ⇢

⇤ is the solution of the

following program.

minimize u
Rc log |Rc|+ u

a+

x log |Rs
a|+ u

a+

y log |Re
a|+

u
b+

x |R
s
b|+ u

b+

y |R
e
b|

where u
Rc + u

a+

x � 1

u
Rc + u

b+

z � 1

u
a+

y + u
b+

y � 1

u
Rc , u

a+

x , u
a+

y , u
b+

y , u
b+

z � 0

(1.1)

This is a generalization of the AGM linear program (Atserias, Grohe, & Marx, 2013), in

which now we can also assign weights to the starting and ending points of RPQs, which

receive their own variables (ua+
x and u

a+
y for a+, ub+

y and u
b+
z for b+). Assume that the

cardinality of Rs
a, Re

a, Rs
b and R

e
b is M , and the cardinality of Rc is N , with N  M

2.

Then, an optimal solution for this query is uRc = 1, ua+
y = u

b+
y = 1

2 , and u
a+
x = u

b+
z = 0.

Intuitively, this means assigning full weight to the Rc(x, z) atom of the query, and evenly

4



dividing the weights for vertex y. This makes sense, because the answers of Q are always

bounded by MN : for each tuple (a, b) in Rc there are at most M nodes connected to a

and b by means of the expressions a+ and b
+.

(iii). Now that we know how to bound the answers of CRPQ, the next question is to

look for worst-case optimal algorithms for them: an algorithm for a query Q is worst-case

optimal if, on input a graph G, the answers of Q over G are processed in time bounded

by the maximum number of tuples in the answer of Q over any graph with the same

cardinalities of G. Unfortunately we show that, under usual complexity assumptions,

there are CRPQs for which no worst-case optimal exists.

(iv). Two strategies stand off when thinking about computing the answers of CRPQs. The

first we already mentioned: materialize every path query as a virtual relation, and then

apply a worst case optimal algorithm such as e.g. Leapfrog Trie-join (Veldhuizen, 2014).

For some queries, such as the triangle query in Figure 1.3, this strategy appears to be as

optimal as one can be, at least in terms of computation time in the worst case. However,

the memory requirements are quite high, as materialized path queries can be of quadratic

size in terms of the number of nodes in the graph.

On the other hand, one can immediately perform Leapfrog Trie-join on the graph as

if it was a relational database, and whenever one needs pairs of the form (a, x) connected

by a path query r, one computes it on demand, say by doing a Breadth First Search (BFS)

over the relation. Assuming we do not cache intermediate results, this strategy has no

significant memory requirements, but it may incur in chained searches on the graph, and

end up being slower than materialization. At a first glance, it would appear that we have a

strict time/memory tradeoff when computing this type of queries. But is this the best we

can do?

As it turns out, by carefully planning how RPQs are instantiated within worst case

optimal algorithms, we provide an algorithm that can compute the answers of many
5



CRPQs under the same running time as an algorithm based on full materialization

of path queries, but requiring only linear memory, in terms of the nodes of the graph.

The rest of this thesis is organized ad follows: In Chapter 2 we introduce some back-

ground in both graph databases and results on bounds and worst-case optimal algorithms

for traditional relational queries. Chapters 3 and 4 contain the major results of this work.

In particular, Chapter 3 contain the theorems related with the bounds on the size of the an-

swers of a CRPQ and Chapter 4 presents both a proof that worst-case optimal algorithms

for any CRPQ don’t exists along with an efficient algorithm to solve CRPQs. Finally,

Chapter 5 provides concluding remarks and future lines of work.

6



2. BACKGROUND

2.1. Graphs and queries

A graph database is usually defined in the theoretical literature as a directed edge-

labelled graph (Baeza, 2013; Wood, 2012). More formally, if ⌃ is a finite alphabet of

edge labels, a graph database over ⌃ is a pair (V,E), where V is a finite set of nodes, and

E ✓ V ⇥⌃⇥ V . An alternative way of viewing a graph database is through its relational

representation. Namely, if ⌃ is a finite labelling alphabet, a graph database G = (V,E)

over ⌃ can be given as a relational database over the schema {Ra(S,E)}a2⌃ of binary

relations. Intuitively, Ra(v, v0) holds if and only if (v, a, v0) 2 E; that is, if there is an

a-labelled edge between v and v
0. In order to reuse known results for relational joins, we

will often switch between graphs and their relational representations.

For a binary relation Ra(S,E), with a 2 ⌃, we denote with R
s
a the projection of Ra

onto its first attribute; namely, Rs
a(v) holds if and only if there exists v0 such that Ra(v, v0).

Similarly we define R
e
a, the projection onto the second attribute. In order to reason about

bounds on graph databases, we always assume the following cardinalities are also available

for each a 2 ⌃:

• |V | the total number of nodes;

• |Ra|, the number of a-labelled edges;

• |R
s
a|, the number of starting vertices of a-labelled edges;

• |R
e
a|, the number of end vertices of a-labelled edges.

These statistics are rather natural to consider, and are part of many graph database systems

that use relations as their underlying storage mechanism (Team, 2021).

7



Table 2.1. Semantics of RPQs, for a 2 ⌃, and r, r1 and r2 arbitrary RPQs.
The symbol � denotes the composition of binary relations.

["]G = {(u, u) | u is a node id in G}

[a]G = {(u, v) | (u, a, v) 2 G}

[r1 · r2]G = [r1]G � [r2]G
[r1 + r2]G = [r1]G [ [r2]G

[r+]G = [r]G [ [r · r]G [ [r · r · r]G [ · · ·

[r⇤]G = ["]G [ [r+]G

2.2. Queries over graph databases

Path queries are usually given as regular expressions, under the name of Regular Path

Queries, or RPQs. An RPQ r selects, in a graph G, all pairs (u, v) of nodes that are

connected via edge labels forming a word in the language of r. We denote this set of pairs

as [r]G, see Table 2.1 for the definition. We always assume RPQs are given both by regular

expressions or automata, and freely switch between these representations.

In order to exploit what is known about size bounds for relational CQs, we separate

the expressions in our CRPQ into two sets: (i) the expressions consisting of a single letter

(which are thus equivalent to an ordinary CQ); and (ii) regular expressions whose lan-

guages contain more than a single letter. Formally, a conjunctive regular path query over

a graph database is given by an expression

Q(x) : �
`̂

i=1

Rai(yi, zi) ^
k̂

i=`+1

ri(yi, zi) (2.1)

where ai 2 ⌃, ri is a regular expression whose language is not equal to a single one letter

word over ⌃, and x = {x1, . . . , xn} ✓ {y1, z1, . . . , yk, zk} is a set of output variables.

The semantics of a CRPQ Q, over a graph G is given via homomorphisms (Angles

et al., 2017). Namely, a mapping µ : {x1, . . . , xn} ! V is an output of Q over G

when µ can be extended to the variables of Q in such a way that for each i 2 {1, . . . `}

Rai(µ(yi), µ(zi)) holds, and for each i 2 {`+ 1, . . . k}, (µ(yi), µ(zi)) 2 [ri]G. We denote

8



the set of all outputs with Eval(Q,G). A CRPQ Q is compatible with a graph G if the

graph features all relations mentioned in Q.

2.3. AGM bound and worst-case optimal algorithms

Here we summarize the main components of the AGM bound (Atserias et al., 2013)

and worst case optimal algorithms (Veldhuizen, 2014; Ngo et al., 2013) that follow from

it.

The AGM bound. Atserias, Grohe and Marx (Atserias et al., 2013) link the size bound of

a relational join query to the optimal solution to a given linear program. In graph terms1,

let Q(x1, . . . , xn) =
V

Rai(yi, zi) be a join query, in which ai 6= aj , and let G be a graph

database where the size of each Rai is Ni. Atserias et. al. (Atserias et al., 2013) show that

an optimal bound is achieved by considering the following linear program:

minimize
X

i

xi logNi

where
X

i : w appears in atom Ri

xi � 1 for each variable w in Q

xi � 0 for i = 1, . . . ,m

(2.2)

For any solution x = (x1, . . . , xm) of this linear program, we have:

|Eval(Q,D)| 
mY

i=1

N
xi
i = 2

P
i xilogNi .

We denote by ⇢
⇤(Q,D) the optimal value of

P
i xi logNi. The AGM bound (Atserias

et al., 2013) can then be stated as follows.

Theorem 2.1 (AGM bound). Let Q be a full join query using relations R1, . . . , Rm.

If D is a database instance with |Ri| = Ni, and ⇢
⇤(Q,D) the optimal solution of the

1The AGM bound for conjuctive queries works with relations of any arity. As we’re working with graph
databases, the relations we work with are binary.

9



associated linear program (2.2). Then it holds that

|Eval(Q,D)|  2⇢⇤(Q,D)
.

Furthermore, if R1, . . . , Rm are all distinct, then there are arbitrary large instances D for

which we have |Eval(Q,D)| = 2⇢⇤(Q,D)
.

Alternatively, we can represent the query Q as a hypergraph H = (V , E). Here V =

{A1, . . . , An} is the set of attributes appearing in Q, and E contains all the hyperedges F

such that F is precisely the attribute set of some relation Ri appearing in Q. For instance,

if Q = R(A,B,C) ./ S(B,D), then V = {A,B,C,D}, and E = {{A,B,C}, {B,D}}.

Recall that a hyperedge is simply a set of nodes (of arbitrary size) of the hypergraph.

Notice that with this representation we can write our query Q as ./F2E RF , where RF is

simply the relation Ri(F ).

Worst-case optimal algorithms. Besides giving a tight bound to relational join queries,

the AGM bound also gives rise to several algorithms that can guarantee that they run in

the number of steps that is proportional to the worst possible output size, as guaranteed

by Theorem 2.1. Algorithm 1 presents the Generic-Join from (Ngo et al., 2013). From a

theoretical perspective this is the easiest worst-case optimal algorithm to analyse, as it is

basically a recursive algorithm that picks a partition of the query variables and recursively

compute the join, by evaluating the portion of the query that amounts to projecting on one

set of variables, and then joining this result with the projection to remaining variables.

Both the AGM bound for conjuctive queries and the worst-case optimal algorithms

inspired by it are the main basis of our work as we will take advantage of these results by

extending them to CRPQs on graph databases.

10



Algorithm 1 Generic-Join(./F2E RF )
1: Q ;

2: if |V| = 1 then
3: return

T
F2E RF

4: Pick a partition V = I [ J such that 1  |I| < |V|

5: L Generic-Join(./F2EI ⇡I(RF ))
6: for tI 2 L do
7: Q[tI ] Generic-Join(./F2EJ ⇡J(RF ./ tI))
8: Q Q [Q[tI ]⇥ {tI}

9: return Q

11



3. SIZE BOUNDS ON CRPQS

Path queries provide an interesting challenge when studying size bounds. Every path

query is a relation in itself, but in the worst case, a query like a
+(x, y) may end up con-

necting all elements in R
s
a with all elements in R

e
a, thus invoking a quadratic jump in

terms of the size of the potential vertices matching to x and to y. For this reason, in order

to provide tight output bounds, we need to extend the cardinality profile of graphs, and

consider the number of starting points and ending points of any relation representing a

label mentioned in some regular expression. Together with this new cardinality profile,

the quadratic extension by RPQs gives rise to a modified linear program, extending that of

(Atserias et al., 2013), that we use to provide our size bounds.

3.1. Motivation: underlying flat CQs

To see the intuition for our linear program, let us recall query Q3(x, y, z) in Figure 1.3,

and consider a graph G.

In order to bound the size of Eval(Q3, G), we reason in terms of the size of [a+]G. In

the worst possible case, we have that [a+]G = R
s
a ⇥ R

e
a, that is, any node from R

e
a can be

reached from any node from R
s
a. It is then easy to see that the answers in the evaluation

Eval(Q3, G) will always be contained in what we call the flat conjunctive query

flat(Q3)(x, y, z) = R
s
a(x) ^R

e
a(y) ^R

s
b(y) ^R

e
b(z) ^Rc(x, z),

in which every path query is replaced by the cross product of two unary relations, the

possible starting nodes and the possible ending nodes. In fact, assuming each of Rs
a, Re

a,

R
s
b and R

e
b are unary relations in G, we have that |Eval(Q,G)|  |Eval(flat(Q3), G)|, and

this hold for any graph G compatible with Q. Now flat(Q3) is a full join query, and we

know how to bound its output (Atserias et al., 2013), which immediately results in an

upper bound for Q3.
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Interestingly, the focus on flat conjunctive queries has another intuitive reading. Con-

sider again query Q2 from Figure 1.2, its flat version is simply a cross product of unary

relations

Q2(x, y, z) = R
s
a(x) ^R

e
a(y) ^R

s
b(y) ^R

e
b(z).

For a graph G in which all of Rs
a, Re

a, Rs
b and R

e
b have exactly N nodes, we verify that

|Eval(Q,G)|  N
3.

This cubic bound is, in a sense, the most crude upper bound one could get for a con-

junctive query: it is simply the cross product of every vertex matching for x, y and z. It

just happens that when the labels joining x and y, and y and z are path queries, this crude

bound ends up being realistic.

But is it tight? We can show it is, and our size bounds end up enjoying several good

properties proved before for full join queries (Atserias et al., 2013) or conjunctive queries

(Gottlob, Lee, Valiant, & Valiant, 2012). Moving from this simple example to arbitrary

CRPQs, however, is not that easy, and we proceed in several steps. In section 3.2 we start

with a fragment of CRPQs for which the proof is simpler, and the bounds much more

elegant. This fragment corresponds to CRPQs without projection, without self-joins or

any repetition of labels between atoms, and whose RPQs are defined by "-free expressions

that admit at least one word of length 2. We call this fragment Simple CRPQs, and the

reason for starting with this fragment is that we can recover the general upper and lower

bounds exactly as they where stated by Atserias et al. in their seminal paper(Atserias et

al., 2013). We then extend our results to arbitrary CRPQs defined by "-free expressions,

with the only caveat that our lower bound is now up to a constant that depends on the

query. We finish with CRPQs that may use expressions including ", such as a⇤, which is

one of the most common path query occurring in practice (Bonifati, Martens, & Timm,

2020). The expression ", which returns the “diagonal” {(v, v) : v 2 V } in a graph, poses

hard problems at the time of bounding outputs. As we see, we can deal with it separately

13



by using the idea of color codings introduced by Gottlob et al. (Gottlob et al., 2012), but

the general case requires a bit more work.

3.2. Simple CRPQs

Let r be a regular expression. For a given graph G, we use r
s to denote the number

of elements in G that can participate as starting elements for a path labelled by r in G: it

corresponds to the union of each R
s of each relation R that labels a transition out of the

initial state of the automaton for r. Likewise, re is the union of each R
e of each relation

that labels a transition into a final state of the automaton for r. These cardinalities will be a

crucial addition to the linear program of (Atserias et al., 2013), that will allow us to reason

about the output size of a CRPQ. To avoid extra notation, we also assume that graphs G

have access to every unary relation of the form r
s or re. Notice one can always add these

unary relations in linear time.

To state our first result, we provide a formal definition of the aforementioned sim-

ple fragment. A simple CRPQ is a full CRPQ of the form Q(x) =
V`

i=1 Rai(yi, zi) ^
Vk

i=`+1 ri(yi, zi) with the following properties:

• Each relation Rai appears only once in Q (no self joins);

• All regular expressions ri are "-free;

• The language of each ri contains a word of length at least 2;

• If r and r
0 are two different regular expressions in Q, then no endpoint label of

r (i.a. a label of a transition going out of the initial state of the automaton for r,

or going into the final state of the automaton for r) is an endpoint label for r0.

We are ready to give a tight bound for simple CRPQs. The idea is to extend the linear

program of AGM with one vertex variable for each endpoint of every atom r(x, y) in the

query, which are then constrained in the same fashion as edge variables. Alternatively,

one can directly construct the program for the corresponding flat query: it happens to be

exactly the same program. More precisely, we have the following

14



Theorem 3.1 (Bound for simple CRPQs). Assume that the query

Q(x) =
`̂

i=1

Rai(yi, zi) ^
k̂

i=`+1

ri(yi, zi)

is a simple CRPQ. Then for any graph G we have that

|Eval(Q,G))|  2⇢
⇤(Q,G)

where ⇢
⇤(Q,G) is the optimal solution of the following linear program:

minimize

X̀

i=1

u
Rai log |Rai | +

kX

i=`+1

u
ri
yi log |r

s
i |+ u

ri
zi log |r

e
i |

where

X

i:x=yi
i:x=zi

u
Rai +

X

i:x=yi

u
ri
yi +

X

i:x=zi

u
ri
zi � 1 for x 2 x

u
Rai � 0 for i 2 [1, `]

u
ri
yi , u

ri
zi � 0 for i 2 [`+ 1, k]

(3.1)

Furthermore there are arbitrarily large instances for which

|Eval(Q,G))| � 2⇢
⇤(Q,G)

.

The upper bound. We can obtain a simple upper bound proof by using flat CQs. Let

Q(x) be a simple CRPQ. Its underlying flat query flat(Q) is the conjunctive query defined

as:

flat(Q) =
`̂

i=1

Rai(yi, zi) ^
k̂

i=`+1

r
s
i (yi) ^ r

e
i (zi) (3.2)

Recall we assume for simplicity that each r
s and r

e is an unary predicate already

present in G. The following is now easy to check:

Lemma 3.1. Eval(Q,G) ✓ Eval(flat(Q), G), with Q a simple CRPQ.
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PROOF. Let Q(x) =
V`

i=1 Rai(yi, zi) ^
Vk

i=`+1 ri(yi, zi) be a simple CRPQ, so that

flat(Q) is the conjunctive query defined in 3.2.

Consider a tuple t in Eval(Q,G), we need to show that it belongs to flat(Q). If t

belongs to Eval(Q,G), then there is a matching µ such that for each 1  i  ` we have

that (µ(yi), µ(zi)) belong to Rai , and for each ` + 1  i  k, (µ(yi), µ(zi)) belong to

[ri]G. For µ to be a matching for flat(Q), all we need to show is that µ(yi) belongs to

r
s
i and µ(zi) belongs to r

e
i . Since ri does not accept ", we can easily show that this is a

necessary condition for the fact that (µ(yi), µ(zi)) 2 [ri]G holds. ⇤

Since the linear programs of both flat(Q) (as in (Atserias et al., 2013)) and Q (as in the

statement of Theorem 3.1) coincide, and 2⇢
⇤(flat(Q),G) is an upper bound for Eval(flat(Q), G),

this immediately proves the upper bound of Theorem 3.1.

Alternatively, we can prove the upper bound directly as done in (Ngo et al., 2013). For

this, we will first introduce a slightly modified version of the query decomposition lemma

of (Ngo, Porat, Ré, & Rudra, 2012). Here, the query Q from our theorem is represented

as a hypergraph H = (V , E), where V is the set of variables of Q, and for each hyperedge

(x, y) 2 E , Rai(x, y) appears in Q, or ri(x, y) does, with Rai a relation, and ri a regular

expression. Naturally, we can partition E = ER[Er with ER the hyperedges corresponding

to relations in Q and Er the hyperedges corresponding to regular expressions. For F 2 ER,

with EF we denote the relation Rai with the variables F , and for F 2 Er the regular

expression with the variables F . Additionally, if J ✓ V , by (ER)J we denote the set of all

F 2 ER having a non empty intersection with J , and analogously for (Er)J . Given this

representation, a crpq-cover is simply a vector u 2 R|E|, such that u � 0, and for each

v 2 V , it holds that
P

F :v2F uF � 1.

Lemma 3.2 (Query decomposition lemma for full CRPQs). Let

Q(x) =
`̂

i=1

Rai(yi, zi) ^
k̂

i=`+1

ri(yi, zi)
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be a full CRPQ, represented by a hypergraph H = (V , E) with E = ER [ Er as above. Let

u be a crpq-cover for H. Take an arbitrary partition V = I ] J such that 1  |I|  |V|

and

L =
`̂

i=1

⇡I(Rai)
k̂

i=`+1

⇡I(ri).

Then

X

tI2L

Y

F2(ER)J

|EF |
uF

Y

F2(Er)J

|E
s
F |

u
EF
yF |E

e
F |

u
EF
zF



Y

F2(ER)

|EF |
ui

Y

F2(Er)

|E
s
F |

xs
F |E

e
F |

uEf

F

PROOF OF THEOREM 3.1, UPPER BOUND. The proof goes by induction over the size

of V .

Base case. For the base case, we take |V| = 2 so the same two attributes will apear in

all the RPQs. Let y and z be such attributes so without loss of generality, our query will

look like,

Q(x) =
`̂

i=1

Rai(y, z) ^
k̂

i=`+1

ri(y, z),

and we begin the proof stating that

|Q|  min{min
i2[1,`]

|Rai |, min
i2[`+1,k]

|r
s
i | · min

i2[`+1,k]
|r

e
i |}

Now we take a solution to the linear program 3.1 u and let ↵ =
P`

i=1 u
Rai . As the sum

for each vertex must be equal or grater than 1, we have that
Pk

i=`+1 u
expi
yi � 1 � ↵ and

Pk
i=`+1 u

expi
zi � 1� ↵, then

 min |Rai |
↵
·min |Rai |

1�↵

 min |Rai |
↵
·min |rsi |

1�↵
·min |rei |

1�↵

 min |Rai |

P`
i=1 u

Rai
·min |rsi |

Pk
i=`+1 u

ri
yi ·min |rei |

Pk
i=`+1 u

ri
zi
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=
Ỳ

i=1

min |Rai |
uRai

kY

i=`+1

min |rsi |
u
ri
yi ·min |rei |

u
ri
zi



Ỳ

i=1

|Rai |
uRai

kY

i=`+1

|r
s
i |

u
ri
yi · |r

e
i |

u
ri
zi

Inductive step. For the inductive step we will use Lemma 3.2. First we assume that

|V| � 3 and choose a partition V = I ] J with 1  |I| < |V|. Then we define

L =
`̂

i=1

⇡I(Rai)
k̂

i=`+1

⇡I(ri)

and for each tuple tI 2 L we have

Q[tI ] :=
`̂

i=1

⇡J(Rai n tI)
k̂

i=`+1

⇡J(ri n tI)

then the original query Q can be written as Q = [tI2L(tI ⇥Q[tI ]).

Let u be a crpq-cover for Q[tI ] then the induction hypothesis gives us that

|Q[tI ]| 
Ỳ

i=1

|⇡J(Rai n tI)|
uRai

·

kY

i=`+1

|⇡J(r
s
i n tI)|

u
ri
yi · |⇡J(r

e
i n tI)|

u
ri
zi

=
Ỳ

i=1

|Rai n tI |
xi ·

kY

i=`+1

|r
s
i n tI |

xs
i · |r

e
i n tI |

xe
i

then by applying the query decomposition lemma we get the desired upper bound

|Eval(Q,G))| =
X

ti2L

|Q[tI ]| 
Ỳ

i=1

|Rai |
uRai

kY

i=`+1

|r
s
i |

u
ri
yi · |r

e
i |

u
rei
zi

⇤

The lower bound. As usual, the lower bound is shown by constructing an instance out of

the dual program for Q. Let us first illustrate the tightness of the bound via the means of

an example.
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Consider again query Q3(x, y, z) = a
+(x, y), b+(y, z), Rc(x, z) and lets construct the

linear program for this query as stated in Theorem 3.1.

minimize u
Rc log |Rc|+ u

b+

y log |(b+)s|+ u
b+

z log |(b+)e|

+u
a+

x |(a+)s|+ u
a+

y |(a+)e|

where u
Rc + u

a+

x � 1

u
Rc + u

b+

z � 1

u
a+

y + u
a+

y � 1

u
Rc , u

b+

y , u
b+

z , u
a+

x , u
a+

y � 0

(3.3)

The linear program 3.2 has the following corresponding dual program,

maximize: vx + vy + vz

subject to: vx + vz  log |Rc|

vx  log |(a+)s| vy  log |(a+)e|

vy  log |(b+)s| vz  log |(b+)e|

vx, vy, vz � 0

Consider an optimal solution for the primal u and (for duality) a solution to the dual

(vx, vy, vz) such that ⇢⇤(Q,D) = vx + vy + vz. Now we want to build an instance G such

that Eval(Q,G) = 2⇢
⇤(Q,G) with cardinalities as above. The instance is defined as follows,

• We have a special vertex ? and 3 sets of vertices: |Vx| = 2vx , |Vy| = 2vy ,

|Vz| = 2vz such that Vx \ Vy \ Vz = ?

• Add edges (x, c, y) for every pair of nodes (x, y) 2 Vx ⇥ Vz

• Add edges (x, a, ?) for every x 2 Vx and edges (?, a, y) for y 2 Vy

• Finally, add edges (y, b, ?) for y 2 Vy and (?, b, z) for z 2 Vz.

By the dual restrictions, we can check that the cardinalities are equal or smaller than

we wanted (if they’re smaller we can add random edges as this can only increase the
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number of tuples of Eval(Q,G)). Also we can check that |Eval(Q,G))| = 2vx+vy+vz

since we have all tuples (x, y, z) with x 2 Vx, y 2 Vy and z 2 Vz. We conclude that

|Eval(Q,G))| = 2⇢
⇤(Q,G). Now we’re ready to formalize the construction above for an

arbitrary CRPQ.

PROOF OF THEOREM 3.1, LOWER BOUND. As before, we use the dual program of

equation (3.1)

maximize:
X

x2x

vx

subject to: vyi + vzi  log |Raj |, i = 1, . . . , `

vyi  log |rsj |, i = `+ 1, . . . , k

vzi  log |rej |, i = `+ 1, . . . , k

vx � 0, x 2 x

Consider an instance with cardinalities |Rai | = Ni for i 2 [1, `], |rsj | = N
s
j and |r

e
j | = N

e
j

for j 2 [` + 1, k]. By duality we have that for any solution u to the primal and v for the

dual, it is the case that

X̀

i=1

u
Rai logRai +

kX

i=`+1

u
ri
yi log |r

s
i |+ u

ri
zi log |r

e
i | �

X

x2x

vj,

with equality when the solutions are optimal. Let us assume that all Ni, N s
i and N

e
i are

of the form 2Li for some Li 2 N so the optimal solution of both the primal and dual

are rational. Let v be the dual solution and write each vx as px/q. Then p is an optimal

solution to the linear program with cardinalities N q
i . Now we present a graph database G

with |Ri(D)| = N
q
i , |rsi | = (N s

i )
q and |r

e
i | = (N e

i )
q such that |Eval(Q,G)| � 2⇢

⇤(Q,D).

• The vertices of G is the union of sets Vx = {1, . . . , 2vx} for each x 2 x. Also

consider a vertex ? that is part of every Vx.

• For every atom Rai(yi, zi) in Q, add to G one edge (u, ai, v) for every pair (u, v)

in Vyi ⇥ Vzi .
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• For every atom ri(yi, zi) in Q, choose an arbitrary path ⇡i = ai1 . . . aiN of length

at least 2 in the language of ri and

– Add to G the edges (u, ai1 , ?) for each u 2 Vyi .

– Add to G edges (?, aij?) for every j 2 [2, N � 1].

– Add to G the edges (?, aiN , v) for each v 2 Vzi .

From the construction we verify that:

|Rai | = 2vyi+vzi  2q logNi = N
q
i 8i 2 [1, `]

|r
s
i | = 2vyi  2q logN

s
i = (N s

i )
q

8i 2 [`+ 1, k]

|r
e
i | = 2vyi  2q logN

e
i = (N e

i )
q

8i 2 [`+ 1, k]

Further, we also verify that Eval(Q,G) contains all tuples t 2 Vx1 ⇥ · · · ⇥ Vxn . Now

we add random edges and vertices such that |Ri| = N
q
i , |rsi | = (N s

i )
q and ,|rei | = (N e

i )
q.

We now have a graph G with the desired cardinality profile for which:

|Eval(Q,G)| �
lY

i=1

|Rai |
uRai

mY

i=l+1

|r
s
i |

u
ri
yi |r

e
i |

u
ri
zi = 2

P
x2x vx

⇤

As in Atserias et al., we can also show that the arbitrarily large instances satisfying the

lower bound can be constructed with a certain degree of regularity, in which all cardinali-

ties are equal.

Corollary 3.1. Given a simple CRPQ Q, we can build an arbitrarily large instance G

such that |Eval(Q,G))| � 2⇢
⇤(Q,G)

with |Rai | = |r
s
j | = |r

e
j | for every relation i and j such

that u
Rai > 0, u

expj
yj > 0 and u

expj
zj > 0.
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PROOF. Consider the primal program, but now omiting relations and expression’s end-

points cardinalities

minimize
X̀

i=1

u
Rai +

kX

i=`+1

u
rsi
yi + u

rsi
zi

where
X̀

i=1

u
Rai +

kX

i=`+1

u
rsi
yi +

kX

i=`+1

u
rei
zi � 1 for x 2 x

u
Rai � 0 for i 2 [1, `]

u
rsi
yi , u

rei
zi � 0 for i 2 [`+ 1, k]

(3.4)

and it’s corresponding dual

maximize:
X

x2x

vx

subject to: vyi + vzi  1, i = 1, . . . , `

vyi  1, i = `+ 1, . . . , k

vzi  1, i = `+ 1, . . . , k

vx � 0, x 2 x

We take an optimal solution in the primal and dual: u and v and as all the components of

the program are one, the solutions must be rational. Let vx = px/q for every x 2 x and

consider an arbitrarily large N0 2 N. Make N = N
q
0 . We will stablish for every attribute

x 2 x dom(x) = Vx with |Vx| = N
px/q and build the instance as in the lowerbound proof

of 3.1. With this we get that

• |Rai | = N
vyi+vzi  N (with yi and zi the attributes of Rai and vyi + vzi  1 by

the restrictions of the dual program)

• |r
s
i | = N

vyi  N

• |r
e
i | = N

vzi  N
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Furthermore, we have that, because of the construction, Eval(Q,G) has all the tuples in

Vx1 ⇥ . . . Vxn with (x1, . . . , xn) = x, so

|Eval(Q,G)| =
Y

x2x

N
px/q =

Ỳ

i=1

|N |
u

kY

i=`+1

|N |
u
ri
yi+u

ri
zi

�

Ỳ

i=1

|Rai |
uRai

kY

i=`+1

|r
s
|
u
ri
yi · |r

e
|
u
ri
zi

To see that the cardinalities are all the same for every relation Rai with u
Rai > 0 and

endpoint of expression r
s
i with u

ri
yi > 0 and r

e
i with u

ri
zi > 0 we use the conditions of

complemetary slackness that gives us
P

x=yi_x=yi
vx = 1 for Rai(yi, zi) with u

Rai > 0,

vyi = 1 for ri(yi, zi) with u
ri
yi > 0 and vzi = 1 for ri(yi, zi) with u

ri
zi > 0, so finally for

those relations and endpoints we have that |Rai | = |r
s
j | = |r

e
j | = N . ⇤

Unfortunately, not every combination of cardinalities of relations and vertices can be

shown to produce tight bounds. However, as in (Atserias et al., 2013), we can show

the following: Let Q be a simple CRPQ and G a graph. Then there exists a graph G
0

with the same cardinalities as G in all vertices and relations mentioned in Q, such that

Eval(Q,G
0)| � 2⇢

⇤(Q,G)�n, where n is the number of attributes of Q. As for full join

queries, this is essentially the best we can get.

3.3. Bound for arbitrary "-free CRPQs

Gottlob et al. study how to go from full join queries to conjunctive queries (Gottlob

et al., 2012), and the same techniques can be used for obtaining size bounds for "-free

CRPQs, even if they feature projections, repetition of variables, or expressions allowing

only words of size 1. Bounds remain tight, except this time they are tight up to a factor

that does depend on the query (but not the data).

The idea is to proceed in two steps. Consider a CRPQ with projection of the form

P (x0) = ⇡x0Q(x). (3.5)
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We will first show how to transform the (full) Q into a simple CRPQ Q
0, for which the size

bounds are the same up to a constant depending on Q. Afterwards, we construct, from the

program of Q0, a program for P that will provide our final bounds.

From full to simple CRPQs. The translation from a full CRPQ Q to a simple CRPQ Q
0

is quite direct. First, replace every appearance of a relation Ra or label a in any atom of Q

with a fresh relation or label not used elsewhere in the query. Next, replace any atom of

the form ri(yi, zi) where r = (a1|a2| . . . |ak) (i.e. an expression accepting only words of

size 1), with an atom Rr(yi, zi), where Rr is a fresh relation. The following result is then

shown using Gottlob et al’s techniques (Gottlob et al., 2012).

Proposition 3.1 (full CRPQs). Consider a full CRPQ of form (2.1) in which every ri

is "-free. For this query we have that |Eval(Q,G)|  2⇢
⇤(Q,G)

. Furthermore, one can

construct arbitrarily large instances G
0

such that |Eval(Q,G)|2p(|Q|)
� 2⇢

⇤(Q,G)
where

p(|Q|) is a polynomial that depends exclusively on Q.

PROOF. For the upper bound, given a CRPQ Q and a graph G, we transform Q into

the simple query Q
0 as explained in Section 3.3, and generate from G a graph G

0 in which

every fresh relation used in Q
0 contains exactly the same pairs the relation from which

it originated in the transformation. We see that Q(G) = Q
0(G0) and Q

0 is a query that

satisfies the conditions of Theorem 3.1 so Eval(Q0
, G

0)  2⇢
⇤(Q0,G0). Also we have that

⇢
⇤(Q,G) = ⇢

⇤(Q0
, G

0) so Eval(Q,G) = 2⇢
⇤(Q,G).

For the lower bound, as Q
0 suffices conditions of Theorem 3.1 (and Corollary 3.1),

there are arbitrary graph database instances G
0 such that Eval(Q0

, G
0) = 2⇢

⇤(Q0,G0), and,

moreover we can build such instances in a way that every relations Rai and endpoints of

regular expression r
s
i , rei with weights in the optimal solution u

Rai > 0, uri
yi > 0, uri

yi > 0

respectively have the same cardinality. We will now build a graph database instance G

compatible with Q that is exactly like G
0 but with the repeated relation defined as the

union of the fresh relations of G0. Clearly we have that Eval(Q,G) � Eval(Q0
, G

0) =

2⇢
⇤(Q0,G0). On the other hand, as the relations and endpoint with weight greater than 0 all
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have the same size and the optimal cover for Q0 is also a valid cover for Q we know that

2⇢
⇤(Q0,G0)

�
2⇢

⇤(Q,G)

2rep(Q) with rep(Q) the amount of repeated relations or labels in Q. Finally,

|Eval(Q,G)| · 2rep(Q)
� 2⇢

⇤(Q,G). ⇤

Bounds for projections of simple CRPQs. We consider now queries of the form P (x0) =

⇡x0Q(x), with x0 ✓ x noting that our previous result allows us to focus only on the case

when Q is a simple CRPQ. As in (Gottlob et al., 2012), we consider a relaxation of the

linear program for Q, in which we only keep those restrictions that refer to vertices of Q

that are included in P . If we let 2⇢⇤(P,G) be the optimal solution of this program, we have

Proposition 3.2 (Queries with projections (Gottlob et al., 2012)). Given an CRPQ P

of the form (3.5) then for every graph database instance G we have that |Eval(P,G)| 

2⇢
⇤(P,G)

. Moreover, there are arbitrarily large instances G such that |Eval(P,G)| =

2⇢
⇤(P,G)

PROOF. The upper bound is a direct consequence of Theorem 3.1. Let Q0 be a query

just like Q, but removing all the attributes that are not projected. Then, as Q0 satisfies the

conditions of Theorem 3.1, we have that |Eval(P,G)|  |Eval(Q0
, G

0)|  2⇢(Q
0,G0). The

linear program for both P and Q
0 have the same restrictions, only differing in the objective

function so it must be that ⇢(Q0
, G

0)  ⇢(P,G).

In the case of the lower bound we aim to build an instance G for P based on the

instance G
0 from Theorem 3.1 for Q0. To do this, we will take the instance G

0 and in the

spots of every attribute x that is projected out in P we will extend relations and expressions

so ⇡x(Rai) = {?} and ⇡x(ri) = {?} with ? the node from the proof of Theorem 3.1. In

this case, |Eval(P,G)| = |Eval(Q0
, G

0)| = 2⇢
⇤(Q0,G0) = 2⇢

⇤(P,G) ⇤

3.4. Dealing with "

As we have mentioned, the evaluation of the expression " over a graph G contains the

diagonal D = {(v, v) | v 2 G}. Thus, the evaluation of expressions containing ", such
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as a
⇤, are somehow the union of two different sets of results. One one hand there is the

"-free part, that we know how to deal with by adding vertex variables to the linear program

(and that may explode to be quadratic in size of the start and end points of expressions),

and on the other there is ", which behaves more like a relation, albeit with additional key

constraints to guarantee that pairs in " only come out of the diagonal.

Incorporating ". The strategy once again involves using flat queries, reducing bounds on

CRPQs to bounds on classes of queries we know how to handle. Here, we take a CRPQ Q

that may use ", and we produce instead a conjunctive query with functional dependencies.

More precisely, assume that Q is a simple CRPQ in which some of the RPQs ri may

instead be ". We define flat
"(Q) = (flat(Q), FD), where flat(Q) is again a conjunctive

query, but one that now is coupled with a set FD of functional dependencies. The transfor-

mation goes just as for simple CRPQs, except that whenever Q contains an atom "(yi, zi),

we replace it with atom D(yi, zi) and add to FD dependencies yi ! zi and zi ! yi.

We can make any graph G compatible with flat
"(Q) = (flat(Q), FD) by including the

relation D = {(v, v) | v 2 G}. Notice then that every graph does satisfy the functional

dependencies in flat(Q). Moreover, it is easy to see that Lemma 3.1 continues to hold:

we always have that |Eval(Q,G)|  |Eval(flat(Q), G)|. What we gain with this trans-

formation is that conjunctive queries with such simple functional dependencies are well

understood (see (Gottlob et al., 2012; Abo Khamis, Ngo, & Suciu, 2016)), and for ev-

ery query Q with keys (such as ours), we can find tight bounds. To state our result, we

use GLLV(Q, FD, G) to denote the output bounds devised for conjunctive queries with

functional dependencies. We then have:

Proposition 3.3. Let Q be a simple CRPQ in which some path queries may instead be

the RPQ ", and G a graph. Then |Eval(Q,G)|  GLLV(flat
"(Q), G). Moreover, there are

arbitrarily big instances where this bound is tight.

PROOF. For the upper bound, all we need to show is an extension of Lemma 3.1.

Clearly, every graph G will always satisfy the functional dependencies in flat
"(Q). So
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the only thing left to show is that the fact that (µ(yi), µ(zi)) belong to ["]G implies that

(µ(yi), µ(zi)) belong to D, but this is by definition.

For the lower bound, we refer to (Gottlob et al., 2012), Proposition 4.5, where the

authors show that for each pair (Q, FD), for Q a CQ without self-joins and FD a set of

functional dependencies x ! Y in which the left part is a single variable, and for each

N0 2 N, there is a relational instance I in which all relations have at most N � N0 tuples,

and such that Eval(Q, I) � GLVV(Q, FD, I). Now notice that, from such an instance, we

can do the following.

• Replace all values appearing in the relation T in said construction with values

1, . . . , N . Since we are equating some variables, this can only increase the num-

ber of answers we get and does not alter GLVV(Q, FD, I).

• If, after GLVV’s construction, relations D do not have all pairs (i, i), i  N , we

add the remaining pairs. Again, this can only increase the number of answers

we get, and does not alter GLVV(Q, FD, I).

At the end we have an instance I realising the bound, where all elements are in {1, . . . , N}.

Going from this instance (compatible with flat
"(Q)) to a graph G compatible with Q that

realizes the bounds is simple: all we need to do is to follow the construction in the lower

bound of Theorem 3.1. More precisely, for each pair rs(y) and r
e(z) in flat

"(Q), we take a

path w1, . . . , wn, n � 2 in the language of r, and add to G edges (i, w1, 1) for each i 2 r
s,

(1, wj, 1) for 1 < j < n and (1, wn, p) for p 2 r
e. we have that rs ⇥ r

e
✓ [r], from which

we again have that |Eval(Q,G))| � |Eval(flat
"(Q), G))| � GLVV(Q, FD, I), and where

all cardinalities of relations and/or endpoints in G have arity at most N . This finishes the

proof of the lower bound. ⇤

Arbitrary RPQs. Arbitrary RPQs such as a
⇤ are not so easy to deal with, as they

represent, somehow, the union of the diagonal database and an "-free CRPQs. Conse-

quently, we will look into splitting CRPQs into parts with " and parts without it. For a

CRPQ Q, let r`1 , . . . , r`p be the RPQs accepting ". We define the family of queries Q[S],
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for S ✓ {`1, . . . , `p}, as follows. For each r`, ` 2 {`1, . . . , `p}, find a decomposition

r` = " + r̂`, where r̂` is "-free. Then atom r`(y`, z`) is replaced by r̂`(y`, z`), if ` 2 S, or

by a fresh relation symbol K` if ` /2 S.

Now augment G to make it compatible with any Q[S] by letting K` = {(a, a) |

a /2 r
s
`} for every ` 2 {`1, . . . , `p}. It is not too difficult to prove that |Eval(Q,G)| 

P
S✓{`1,...,`p} |Eval(Q[S], G)|, which yields our upper bound:

Proposition 3.4. Let Q be a CRPQ. For any graph G,

|Eval(Q,G)| 
X

S✓{`1,...,`p}

GLLV(flat
"(Q[S]), G).

Moreover, there are arbitrarily large graphs for which this bound is tight.

PROOF. For the lower bound, we proceed in a similar fashion to what we did for

Proposition 3.3. Consider query Q[S] where S = {`1, . . . , `p}, which is "-free, and invoke

the lower bound of corollary 3.1, in which all relations and vertices with positive weight in

the program have equal cardinality, say N . From this graph G, we create a second graph

G
0 in which:

• We replace all values corresponding to every vertex of the query with {1, . . . , N}

• For every remaining RPQ in Q where either rs or re do not receive weights in

the program, do r
s = r

e = {1, . . . , N} (one can always do this by increasing

the elements in one of the relations labelling the suitable edges in the automaton

of r). Pick a word w1, . . . , wn in the language of r and also add to G
0 edges

(i, w1, 1) for each i 2 r
s, (1, wj, 1) for 1 < j < n and (1, wn, p) for p 2 r

e.

Since going from G to G
0 we are equating and adding elements, it is clear that

|Eval(Q[S], G)|  |Eval(Q[S], G0)|,

as any match for Q over G can be transformed to a match for Q over G
0 be equating

relevant elements as we did for G0. Moreover, the linear program does not change for G0,
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as we continue to impose that all cardinalities are at most N . Finally, note that in G
0 we

have that [r]G0 = {1, . . . , N}⇥{1, . . . , N}, which means that ["]G0 ✓ [r]G0 and all relations

K` in G
0 are empty. It follows that |Eval(Q[S 0], G0)| = 0 for any S

0
6= {`1, . . . , `p}, and

therefore |Eval(Q,G
0)| = |Eval(Q[S], G0)| > 2⇢

⇤(Q,G0), which was to be shown.

For the upper bound. Let t be a tuple in Eval(Q,G). We show that there is at least one

set S such that t is in Eval(Q[S], G). To construct such set S, consider atom rlj(ylj , zlj),

where rlj can be decomposed in " + r̂lj , with the latter an "-free expression. Consider

the values t and t
0 in positions corresponding to variables ylj and zlj , respectively. Now,

if (t, t0) belong to [r̂lj ]G, then add `j to S, otherwise continue to the next atom. With

S defined, we show how to extend the match µ witnessing t 2 Eval(Q,G) is also a

match for Eval(Q[S], G). This is immediate for any atom not of the form r`(y`, z`) for

` 2 {`1, . . . , `p}. For those atoms, note that Q[S] has r̂lj(ylj , zlj) whenever (t, t0) belong

to [r̂lj ]G, so in this case µ also agrees with r̂lj(ylj , zlj); and Q[S] has "(ylj , zlj) whenever

(t, t0) do not belong to [r̂lj ]G. But if (t, t0) do not belong to [r̂lj ]G, since (t, t0) is in [rlj ]G,

it must be the case that t = t
0 and (t, t0) 2 ["]G, which was to be shown. ⇤

One important caveat of this results, is that the instances showing that the bound is

tight work by constructing graphs G in which, for every expression r` = "+ r̂`, we verify

that ["]G ✓ [r̂`]G.
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4. ALGORITHMS TO EVALUATE CRPQS

In this chapter we try to see if any algorithm running in the worst-case optimal bound

from Theorem 3.1 (and subsequent generalizations) exists. We call such an algorithm

worst-case optimal, or WCO algorithm for short. The first result we obtain is that WCO

algorithms might not even exist for CRPQs. In the light of this, we establish a baseline

which amounts to first computing all the answers to the regular expressions mentioned

in our query, materializing them, and running a classical WCO algorithm (e.g. GENER-

ICJOIN (Ngo et al., 2013)) on these materialized relations. We show that a modification of

the GENERICJOIN algorithm of (Ngo et al., 2013) can approach the optimal performance

of our baseline for many CRPQs.

4.1. WCO algorithms for CRPQs may not exist

Casel and Schmid show lower bounds for the problem of evaluating a single RPQ

(Casel & Schmid, 2021). Specifically, for a graph G = (V,E), and a (regular path)

query Q(x, y) = r(x, y), they prove that any algorithm capable of evaluating Q over

G in time O(|V |
!
f(|Q|)) can also be used to solve the Boolean Matrix Multiplication

(BMM) problem: given two square matrices A and B of size n, compute the product

matrix A ⇥ B, in time O(n!). In particular, this means that a quadratic algorithm for

computing path queries does not exist unless the BMM hypothesis is false, and if we

accept the weaker combinatorial BMM hypothesis (Williams & Williams, 2018), then no

subcubic algorithm exists for computing Q. Since the answers to Q are clearly bounded

by |V |
2, then we cannot hope for a worst-case optimal algorithm in this case.

A natural question is what happens with CRPQs that mix both path queries and re-

lations in their edges. Perhaps the relations help soften the underlying complexity of

the problem? Unfortunately, this is not the case. To see this, consider again query

Q(x, y, z) = Ra(x, y) ^ Sb(y, z) ^ r(x, z), where r is any regular expression. Given a

graph G in which |Ra| = |Sb| = n, our results tells us that the answer of Q over G contains
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at most O(n2) tuples, and thus a worst-case algorithm must evaluate Q in time O(n2). But

this algorithm can then be used to compute the answers for r over a graph G = (VG, EG),

where VG contains at least n nodes v1, . . . , vn. For this, we construct a graph database

G
0 = (VG [ {1}, EG0), where Ra = {(vi, 1) | 1  i  n}, Sb = {(1, vi) | 1  i  n} and

where the rest of the relations are as in G. Then a tuple (vi, 1, vj) is in Eval(Q,G
0) if and

only if (vi, vj) is the answer to r over G.

Proposition 4.1. Any algorithm that, on input any arbitrary CRPQ Q and graph G,

outputs Eval(Q,G) in time O(2⇢
⇤(Q,G)), refutes the combinatorial BMM hypothesis.

Having ruled out the possibility of worst-case optimal algorithms, let us review what

can we do with existing techniques.

As our baseline, we establish a rather naive algorithm, called FULLMATERIALIZA-

TION, which evaluates a CRPQ Q over a graph database G as follows:

(i) Compute the answer of each RPQ r appearing in Q over G.

(ii) Materialize all of these binary relations and add them to G.

(iii) Invoke a (relational) WCO algorithm (e.g. GENERICJOIN (Ngo et al., 2013)) to

compute the query answer.

In the final step, each RPQ is now simply treated as a relation that we have previously

computed. This algorithm runs in time bounded by the time to compute the RPQs from

Q, and the AGM bound of the query. However, the algorithm may require memory that

is quadratic in terms of the nodes in the graph, to be able to store the results of regular

expressions.

While reasonable, this algorithm has practical issues: the quadratic memory footprint

may be too big to store in memory, and we may be performing useless computations be-

cause most pairs in the answers of RPQs may not even match to the remainder of patterns.

Memory usage may be alleviated by clever usage of compact data structures, as in e.g.

(Arroyuelo, Hogan, Navarro, & Rojas-Ledesma, 2021), but we take a different approach.
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In what follows, we impose that algorithms may only use memory in O(V ), for graphs

(V,E). Since Proposition 4.1 rules out strict WCO algorithms, our goal is to devise al-

gorithms that are capable of achieving the running time of FULLMATERIALIZATION, but

using just linear memory (in data complexity). To analyse the running time of the algo-

rithm, we first introduce some notation. For a CRPQ Q and a graph database G, with

AGM(Q,G) we denote the bound for maximal size of Eval(Q,G
0), over all graphs G

0

that have the same cardinality profiles as G (this includes both the cardinalities of all the

relations, as well as the projections on starting and ending points of these). The time com-

plexity of FULLMATERIALIZATION for a query Q, over a graph G = (V,E), is bounded

by O(|V |
3 + AGM(Q,G)), where the cubic factor accounts to materializing all the RPQs

in Q.

4.2. GenericJoin for CRPQs

In order to avoid materializing relations which are potentially quadratic in the size of

the graph, we can utilize a simple idea: compute RPQs on-demand, the first time such

an answer is needed. For this, we will adapt Algorithm 1, so that it processes regular

expressions as needed. As we will see, this approach gives us good running time even

when the memory is constrained, and can actually run under the FULLMATERIALIZATION

time bounds for a broad class of queries. For CRPQs, however, the order of variables we

work with has striking implications on the efficiency of the algorithm.

If Q(x) =
V`

i=1 Rai(yi, zi)^
Vk

i=`+1 ri(yi, zi) is a full CRPQ, and G a graph database,

then Algorithm 2 defines GENERICJOINCRPQ(Q,G), a generalization of the GENER-

ICJOIN WCO algorithm from the relational setting to graphs and (full) CRPQs. Similarly

as in (Ngo et al., 2013), we assume an order on the variables of Q, and start to recursively

strip one variable at a time. For a selected variable, we compute all the nodes that can

be bound to this variable (line 5). Then we iterate over these nodes one by one, compute

RPQs as needed (lines 8–10 and 12–14), add these results to our database (lines 11 and
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Algorithm 2 GenericJoinCRPQ(Q,G)

1: A ;

2: if |x| = 1 then
3: return Eval(Q,G)

4: Pick a variable x 2 x

5:
L 

\

R(x,z)2Q

R
s

\

R(y,x)2Q

R
e

\

r(x,z)2Q

r
s

\

r(y,x)2Q

r
e

6: for v 2 L do
7: Q̂ Q[x/v], Ĝ G

8: for each atom r(x, z) 2 Q do
9: r[v] {v

0
| (v, v0) 2 [r]G}.

10: Replace r(x, z) in Q̂ for r[v](z)
11: Ĝ G [ r[v]

12: for each atom r(y, x) 2 Q do
13: r[v] {v

0
| (v0, v) 2 [r]G}

14: Replace r(y, x) in Q̂ for r[v](y)
15: Ĝ G [ r[v]

16: A[v] GenericJoinCRPQ(Q̂, Ĝ)
17: A A [ {v}⇥ A[v]

18: return Q

15), and proceed recursively (line 16). The base case is when we have only one variable,

in which case, we simply complete the missing values (line 3).

Analysis. So how does this algorithm compare to FULLMATERIALIZATION? Well, this

is heavily dependent on the CRPQ we are processing. As an example, consider again

the triangle query with two RPQs, Q3(x, y, z) = a
+(x, y) ^ b

+(y, z) ^ Rc(x, z) as in

Figure 1.3, and consider a graph G in which |Rc| = M and all starting and ending points

of RPQs (that is, R and S) have cardinality N . Here FULLMATERIALIZATION runs in

time O(N3 +MN), but with quadratic memory (the first part of the sum is for computing

answers of RPQs, the second part is the max number of outputs of the query). On the other

hand, GENERICJOINCRPQ achieves the same bound, but using only linear memory. To

see this, let us assume the first chosen variable is y. As per line 5, we first iterate over all

possible vertices v in L = S
s
\ R

e. For each such value, we compute sets a+[v] = {v
0
|

(v0, v) 2 [a+]G} and b
+[v] = {v

0
| (v, v0) 2 [b+]G}, storing these in memory and adding
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them to G (here Ĝ is the augmented graph storing these relations). We then process the

query Q̂(x, v, z) = a
+[v](x) ^ b

+[v](z) ^ Rc(x, z) over the augmented graph Ĝ. This

is an acyclic CQ, and GENERICJOINCRPQ(Q̂, Ĝ) now defaults to GENERICJOIN(Q̂, Ĝ),

which solves this in time O(M). Thus, the total running time is in O(|L| · (N2 +M)) =

O(N · (N2 + M)). Again, the first part of the sum is for computing the answers of the

path queries, the second part for evaluating Q̂. Importantly, this uses linear memory, as

we refresh a
+[v] and b

+[v] after each new value in L.

So far good news, we managed to avoid quadratic memory at virtually no cost. Un-

fortunately, we cannot avoid it for all queries. Let us consider the triangle query but

now with three RPQs: Q(x, y, z) = a
+(x, y) ^ b

+(y, z) ^ c
+(x, z). The cardinalities

of all starting and endpoints will be N and let us assume that the first chosen vari-

able is y so the computation goes as in the example above, except that Q̂(x, v, z) =

a
+[v](x) ^ b

+[v](z) ^ c
+(x, z) will still have one more RPQ to compute and therefore

the running time will be in O(N · (N2 +N
3)). It is easy to see that all possible orders for

this query will result in the same algorithm: for this query we cannot avoid having to nest

at least the computation of two RPQs.

In the best case, thus, GENERICJOINCRPQ does run in the sought after FULLMATE-

RIALIZATION time bounds. But for certain queries and orderings, the algorithm resorts

to computing each RPQ on demand, which implies a much slower O(AGM(Q,G) · |V |
2)

bound.

Queries for which GenericJoinCRPQ is efficient. As we have seen, the problem in our

algorithm is that nesting the evaluation of RPQs is often too costly, and sends us above the

FULLMATERIALIZATION bound. As it turns out, we can characterize the types of queries

for which the nesting can be avoided, and introduce a version of GENERICJOINCRPQ

that takes advantage of this structure.

For this, we will require the query Q is such that its RPQ components form a bipartite

graph. More formally, assume that we have a full CRPQ Q(x) =
V`

i=1 Rai(yi, zi) ^
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Algorithm 3 GenericJoinCRPQ-Bipartite(Q,G, x1)

1: A ;

2: if |x| = 1 then
3: return Eval(Q,G)

4: L GenericJoin(Qx1 , G)
5: for tx1 2 L do
6: for i 2 [`+ q, k] do
7: if yi 2 x1 then . processing ri(yi, zi)
8: ri[v] {v

0
| (v, v0) 2 [ri]G}

9: Replace ri(yi, zi) in Q̂ for ri[v](zi)
10: else . bipartite implies zi 2 x1

11: ri[v] {v
0
| (v0, v) 2 [ri]G}

12: Replace ri(yi, zi) in Q̂ for ri[v](yi)
13: Ĝ G [ ri[v]

14: Q[tx1 ] GenericJoin(Q̂, Ĝ)
15: Q Q [ {tx1}⇥Q[tx1 ]

16: return Q

Vk
i=`+1 ri(yi, zi). We will say that Q is RPQ-bipartite, if the graph Gr(Q) = (Vr, Er),

with Vr =
Sk

i=`+1{yi, zi}, and Er = {(yi, zi) | i = ` + 1, . . . , k}, is bipartite. We call the

graph Gr(Q) the RPQ-graph of Q. Assume that Q is RPQ-bipartite, let x contain all the

variables of Q, and x1 ✓ x be a bipartiton of the RPQ-graph of Q. Then evaluating Q over

a graph database G can be done via Algorithm 3, which generalizes GENERICJOINCRPQ

so that it takes the advantage of the bipartite structure of Q. Here for a CRPQ Q, and a

set of variables x1, with Qx1 we denote the CRPQ Q restricted to conjuncts using only the

variables in x1.

Algorithm GENERICJOINCRPQ-BIPARTITE generalizes Algorithm 2 by taking the

first partition of vertices to be a partition that forms a bipartition in the RPQ-graph of the

query. This allows us to instantiate the starting vertices from which all the RPQs in Q

will be computed. Intuitively, the existence of a bipartition in the RPQ-graph of the query

allows us to divide the query into two subqueries with no RPQs and by this avoid having

to compute nested RPQs.
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In order to show that the algorithm is correct and to analyse its running time, we

decompose the algorithm in three parts:

(i) First, we compute the tuples tx1 in the answer of Qx1 using the relational Algo-

rithm 1 (line 4)1.

(ii) For every tuple tx1 we compute all the associated regular expressions (lines 5–

13).

(iii) We compute the rest of the join with the relational GenericJoin (line 14).

In the worst case, we need to perform AGM(Qx1 , Gx1) computations of every regular

expression ri. Therefore, the total cost will be in O(AGM(Qx1 , Gx1) ⇥ |V |
2) (the |V |

2

being the cost of computing the RPQs). On the other hand the result size of Q over G is

bounded by O(AGM(Q,G)), so the final join might reach this bound. Of course, in order

to minimize the computation time, we will always select x1 to be the smaller bipartition.

Thus, we obtain the following.

Theorem 4.1. Let Q be a CRPQ such that its RPQ-graph is bipartite, and let VQ =

V
0
Q[V

00
Q be an RPQ-bipartition. Then the running time of GENERICJOINCRPQ-BIPARTITE

over Q is

O(AGM(Q,G) + min{AGM(Q0
, G

0),AGM(Q00
, G

00)} · |V |
2)

with Q
0

and Q
00

the CRPQs restricted to conjuncts using only the variables in V
0

and V
00

respectively.

PROOF. Following the decomposition of the algorithm we did above, we see that the

first to be done is to compute L on line 4. Because of the bipartition condition, this is

done via the generic join for CQs and therefore the cost is AGM(Q1, G1) with Q1 query

Q limited to the attributes in x1. Then for every tuple in L, we compute each of the RPQs

of Q. The cost of every computation is in O(|V |
2). In total, the cost of computing the

RPQs is in O(AGM(Q1) · |V |
2). After computing and updating the graph, the cost of the

1Notice that, given that x1 partitions the RPQ-graph of Q, the query Qx1 contains only relations and no
RPQs.
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computing the join of the remaining part of the query is in O(AGMQ2) with Q2 the query

restricted to the attributes in x � x1. However, we can bound both the join in line 4 and

the ones in line 16 by the overall cost of computing the whole join via generic algorithm.

Adding up we get a running time in

O(AGM(Q) + min{AGM(Q0),AGM(Q00)} · |V |
2)

where the part of the left is the cost of computing the query as if it had no RPQs and the

left part is the cost of actually computing the RPQs. ⇤

In order to reach the running time of FULLMATERIALIZATION we need the query to be

even further restricted. In particular, if the bipartition is such that one side contains a single

variable, then the algorithm is equivalent to fixing a vertex in this variable, computing all

the RPQs in Q from this vertex (by the property of bipartition, no other vertex exists), and

then joining the rest using GenericJoin. This gives us the following.

Corollary 4.1. When the RPQ-graph of a CRPQ Q is bipartite and it admits a parti-

tion VQ = V
0
Q [ V

00
Q with min{|V 0

|, |V
00
|} = 1, the running time of GENERICJOINCRPQ-

BIPARTITE is equal to FULLMATERIALIZATION.

Hence, for these types of CRPQs we can achieve running time of FULLMATERIAL-

IZATION using only linear memory. It is not difficult to show that GENERICJOINCRPQ-

BIPARTITE does not run under the FULLMATERIALIZATION bound when queries are not

of this specific shape. In general, we conjecture that this bound (under memory con-

straints) is not attainable when graphs are not RPQ-bipartite; solving this problem opens

up an interesting line of work into space-time tradeoffs for computing the answers of a

CRPQ.
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5. CONCLUSIONS AND FUTURE WORK

This thesis provides techniques for understanding size bounds of CRPQs, and makes

use of these techniques to inform better algorithms for evaluating CRPQs. We proved

that while the AGM bounds developed for relational queries can be adapted to CRPQs on

graph databases, the worst-case optimal algorithms for those queries lose their worst-case

optimality condition when extended to CRPQs.

Our work also opens up several lines of work regarding CRPQs, size bounds and algo-

rithms. A first important problem is to verify that GENERICJOINCRPQ-BIPARTITE works

well in practice, and enjoys as big success as standard worst-case optimal algorithms in

graph databases.

On the other hand, moving beyond RPQ-bipartite queries would require either new

algorithms, or proving that the bounds offered by GENERICJOINCRPQ cannot be im-

proved.

Further, there are several questions regarding tight bounds for complex classes of

queries. In particular, our bounds for CRPQs with " or RPQs accepting " are only shown

for very structured graphs where all relations share the same vertices, and it would be good

to show that the bound remains to hold under arbitrary cardinalities.
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