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Why should the brain continue

further in the direction of the center?

Why should this order not proceed,

so to speak, out of chaos?

- Ludwig Wittgenstein



Abstract

Spontaneous fluctuations occur at different spatial and temporal scales in the brain.

Depending on its scale, these activities can show characteristic hallmarks. From a mesoscale

perspective, in spontaneous conditions, cortical neurons fire action potentials in a seem-

ingly stochastic manner, which extrapolated to an entire population shows a dynamical

state coined as the asynchronous irregular state. Interestingly, when a local population of

balanced excitation and inhibition is recurrently connected, the asynchronous population

generates a baseline of stochastic perturbation over the neuron’s membrane potential of

that local population. These perturbations have been proposed as optimal for information

computation and are associated with different states of attention at the behavioral level.

Specifically, Locus-Coeruleus Noradrenergic (LC-NE) neuromodulation -which regulates

brain states- has been highly implicated in the modulation of desynchronized activity.

In this dissertation, we will use a modeling-driven analysis of attentional modulation of

local electrophysiological desynchronization, hypothesizing that LC-NE neuromodulation

shapes desynchronized background state and the balance between excitation and inhibi-

tion. We will show how the complexity of the electrophysiological signals depends on the

excitation-inhibition balance of cortical activity, how it tracks behavioral performance, and

how it can be related to LC-NE activity and arousal-related neuromodulation. Finally,

we show how this complexity fluctuates at different spatial scales with low-dimensionality

in attention, and how it is tracked by pupil diameter fluctuations -a non-invasive proxy of

LC-NE activity and arousal- in a visuospatial working memory task in humans.

1



Co-author acknowledgments:

Chapter 1 is a reprint of the material as it appears in the following manuscript uploaded

to bioRxiv: Medel, V., Irani, M., Ossandon, T., & Boncompte, G. (2020). Complexity

and 1/f slope jointly reflect cortical states across different E/I balances.

Chapter 2 is a reprint of the material as it appears in the following manuscript published

in British Journal of Anaesthesia: Boncompte, G., Medel, V., Cort́ınez, I., & Ossandon,

T. (2021). Brain activity complexity has a non-linear relation with the level of

propofol sedation.

Chapter 3 is a original draft: Medel, V., Irani, M., Munn, B., Gonzalez, F., Boncompte,

G., Shine, J., Crossley, N. & Ossandon, T. (2021). Interpreting the neuromodulation

of 1/f aperiodic activity through the switch of adaptation currents.

Chapter 4 is a original draft: Medel, V., Valdés, J., Irani, M., Follet, B., Wainstein,

G., Boncompte, G., Castro, S., Lachaux, JP, Crossley, N. & Ossandon, T. (2021). Atten-

tional rapid state shift is related to transient 1/f aperiodic activity and phasic

Arousal in human iEEG and scalp EEG.

2



Publications

• Medel, V., Valdés, J., Castro, S., Ossandón, T., & Boncompte, G. (2019). Com-

mentary: Amplification and Suppression of Distinct Brainwide Activity Patterns by

Catecholamines. Frontiers in behavioral neuroscience, 13, 217.

• Ramirez-Mahaluf, J. P., Medel, V., Tepper, Á., Alliende, L. M., Sato, J. R., Os-
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Boncompte, Brice Follet, Nicolás Gravel, Felipe González and Vicente Figueroa, for being
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Introduction

One of the starting points of the neuroscience of cognition was the quest to find its

specific biological mechanisms. Since then, cognitive research has not only become more

diverse, but the research focus has also dramatically shifted. There is a growing trend to

abandon the study of cognition supported by the strategy of searching for its correlates of

single neural activity and an increasing perspective of going beyond the neural doctrine

of cognition. Instead, cognition is now more understood as emerging from interactions

between distributed networks of neurons.

Our field is at a paradigm shift towards a network comprehension of the brain (Yuste,

2015). There is strong evidence showing that both anatomical and biophysical proper-

ties show a distributed connectivity plan (Braitenberg & Schüz, 1998), suggesting that

individual neurons become dispensable for the overall circuit function. Importantly, this

structural and functional connectivity is characteristic of physical systems that generate

emergent properties (Churchland & Sejnowski, 1994), which arise from interactions among

the elements but are not present in the individuals.

We interact with the dynamic nature of the world with a high temporal resolution.

More than a century ago, in 1890, William James articulated a general idea that underlies

dynamical descriptions of human cognition: ”Thought is in constant change — no state

once gone can recur and be identical with what it was before.” In other words, we move

continuously from one relatively stable thought to another. The consideration of time or

dynamics is fundamental for all aspects of mental activity — perception, cognition, and

emotion. This is because one prominent feature of brain activity is the continuous change
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INTRODUCTION

of its spatiotemporal organization -the so-called brain states-, which can fluctuate even in

a stable environment.

Spontaneous fluctuations of brain states can occur at different spatial and tempo-

ral scales in the brain. Depending on its scale, these activities can show characteristic

hallmarks. For example, on the one hand, from a macro perspective, spontaneous brain

activity shows temporally synchronous and correlated fluctuations across areas that have

been modeled as functionally correlated networks (Bullmore & Sporns, 2009). On the

other hand, from a more mesoscale perspective, in spontaneous in-vivo conditions, corti-

cal neurons fire action potentials in a seemingly stochastic manner, which extrapolated

to an entire neural population shows a rich dynamical state (Brunel et al., 2000). The

scientific advances in both macro and meso approaches to cognition have made remark-

able discoveries uncovering key features of brain states’ spatial and temporal organization.

However, a lack of an integrated and multiscale brain theory of cognition is still lacking.

The difficulties in integrating scales are varied. First, there are technical limitations.

To simultaneously record large populations of neurons with high temporal and spatial

resolution and molecular markers for morphological characterization, we would need in-

vasive methods. Second, ethical limitations surrounding this type of brain imaging make

it impossible to perform this type of study on the human brain. An alternative for the

second limitation is the study of cognition in animal models. Although it could be argued

that higher cognitive functions cannot be addressed in animal models, decades of research

of the basic mechanisms of cognition have solved important clues on biological details

underlying single neuron and population activity.

The technological advances in neuroimaging have shortened the gap between cogni-

tion and its biological underpinnings. This is particularly true for potentials measured

at the human scalp, which provide a non-invasive and information-rich window and offer

the opportunity to bridge observations across multiple spatial scales in cognitive and sys-

tems neuroscience. However, the characterization of the components of scalp potentials

is challenging. Neural oscillations are an essential characteristic observed since the early
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INTRODUCTION

days of electrophysiological recordings (Berger, 1929). By its periodicity, oscillations can

orchestrate local and distributed neural activity and provide a principled framework for

the coordination of neural activity. However, oscillatory activity is only one aspect of

neural activity, whereas most of the variance in neural recordings can be characterized

as aperiodic, complex, and non-linear. From this perspective, our understanding of it

remains limited partly because a canonical focus on narrowband oscillations marginalizes

non-linear activity to the status of ’background’ activity or irrelevant ’noise’. However,

this background noise can provide a crucial measure to bridge the gap between biology

and cognition to understand the mechanisms underlying attentive states.

A good example for understanding the link between the underlying neural synchrony

with neural oscillations observed in the EEG is the stadium metaphor (Biasiucci et al.,

2019). Let us imagine that we are outside a stadium with a microphone recording all the

sounds occurring in a football match. We cannot know what is occurring at each moment

in the match, but we can only infer the match by the sound. For example, when a goal is

scored, there is a huge synchronized scream of the football spectators that can be heard

from outside the stadium. We can even infer the typical ”wave” the travels across the sta-

dium by hearing how the sound comes and goes. In this common metaphor, each subject

in the stadium would be dispensable compared to all the emerging activity of the match,

which would be assumed as an oscillatory activity reflecting underlying synchronous ac-

tivity of its elements. In this example, however, the uncoordinated activity would be

irrelevant. We argue that asynchronous roars or conversations will generate a background

noise that will make it harder or easier to detect prominent synchronous oscillations out-

side the stadium, depending on the type of context. Moreover, this background activity

will also directly impact the match itself, improving the information in the interaction be-

tween the football match players (it is not trivial that in pandemic football matches, the

game occurs with background noise even though there are no spectators). It is imaginable

from this mental experiment that an intense uncorrelated background noise also changes

in time. The noise level would likely be low in a very local and unpopular match between
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INTRODUCTION

two unknown teams. On the contrary, a big match that is being very boring, it is also

possible that background noise is informative of the state of the match.

The phenomenology of noise in electrophysiological signals was first noticed by Hans

Berger in 1929 when he characterized the first EEG recording in the awake state. He

discovered that brain signals in the awake brain had a noisy low amplitude and high-

frequency fluctuation. The background activity that governed awake EEG has been called

”desynchronized state” as opposed to the high-amplitude oscillations that appear in other

cortical states, such as deep sleep, epilepsy, inattentive arousal, and anesthesia, where

the neuronal activity tends to follow stereotyped ”synchronous” slow oscillatory patterns

(Neske, 2016). As the animals start actively processing information about their world, the

EEG starts getting systematically desynchronized.

A foundational work in computational neuroscience and one of the first models of

desynchronized state was Van Vreeswijk & Sompolinsky (1996). The authors showed that

it is possible to build a theoretical neural network that exhibits chaotic behavior where

excitatory and inhibitory neurons fire asynchronously and irregularly. The asynchronous

irregular (AI) (Brunel, 2000) is a state of recurrently connected excitatory and inhibitory

neural populations that exhibit strong non-linearity of their activity. A characteristic

hallmark of this model is that it depends on a dynamic balance between excitation and in-

hibition where both cancel each other and generate Gaussian fluctuations in the membrane

potential (Vm) with a mean close to the spiking threshold. These stochastic perturbations

to the membrane potential have been proposed as optimal for information computation

(Zerlaut & Destexhe, 2017). From this perspective, E-I balanced networks provide a dy-

namical system capable of a wide range of computational functions. Moreover, it has been

shown by theoretical and experimental work that the brain can fluctuate its local balance

from a ’tight’ to a ’loose’ state (Deneve & Machens, 2016). This suggests two important

notions: first, there are dynamical modulations to the local synaptic weights of excitation

and inhibition; second, the continuous transition between ’tight’ and ’loose’ states modu-

lates the baseline stochastic perturbations differently over local neuronal responsiveness.
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INTRODUCTION

When studying the mechanism that modulates background activity, it has to be con-

sidered what is modulated, i.e., what is the default mode of cortical computations? The

slow oscillatory activity appears as a standard start-point, considering its cross-modality

phenomenology, ranging from membrane potential to fMRI-BOLD activity. Steriade et

al. (1993) showed that slow bistable oscillatory patterns emerge due to recurrent in-

teraction of cortical neurons. This regime fades out when the animals wake up, where

the activity tends to a metastable and irregular state (Sanchez-Vives and Mattia, 2014).

Experimentally, slow oscillatory activity appears as a default state of the brain, most

probably representing the functional aspect of structural connections. Interestingly, with

lesions -like an ischemic stroke- slow oscillations persist for years (Butz et al., 2004). Slow

oscillations also appear as the default activity in cortical slices in the absence of chemi-

cal or electrical stimulation (Sanchez-Vives & McCormick, 2000). From this perspective,

it has been proposed that changes of macro-scale connectivity and mesoscale stochastic

perturbations in the membrane potential of a population of neurons are both associated

with the shaping of the default mode of the cortical activity (Sanchez-Vives, Massimini &

Mattia, 2017). One of the main modulators of default cortical activity is the subcortical

arousal-related neuromodulation, which can serve as a model to understand the dynam-

ics by which the cortex is kicked out from its synchronous state into an asynchronous,

stochastic and fluctuation-driven regime. From this perspective, the modulation of on-

going, balanced network activity may provide a powerful and fast mechanism to control

the excitability and responsiveness of interconnected regions of the cortex. Such cellular

mechanisms of network activity may be operating in awake animals to rapidly control the

gain of neuronal responsiveness in a behaviorally relevant manner.

Perception and cognition are not a consequence of the physical input of the senses

alone. The intrinsic dynamics of cortical computations affect the construction of sensory

as well as our consciouss perception (Harris & Thiele, 2011). Recently, the link between

instantanous fluctuations of both pupil-linked arousal (Pfeffer et al., 2021; Vinck et al.,

2015) and neural desynchronization (Marguet & Harris, 2011) have been higlighted as a
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INTRODUCTION

source of perceptual variability. In other words, arousal and cortical desynchronization

can be thought as two ways of characterizing cortical states, and thus the influence of

internal dynamics on perception.

The search for mechanisms that regulate the desynchronization of the network is still

an open question, and its relation with pupil-linked arousal is a promising road. Pupil-

linked arousal, which is related to locus coeruleus-norepinephrine system (LC-NE) has

been shown to influence perception and cognition (Hendler & Nir, 2018; McGinley et al.,

2015). The LC-NE has widespread ascending projections to the neocortex (Aston-Jones

Cohen, 2005) and controls the transitions of the sleep-wake cycle and changes in arousal,

attention, and stress (Lee and Dan, 2012). Interestingly, pharmacological stimulation

of the LC-NE system shifts the EEG towards a more desynchronized state with higher

background noise (Steriade et al., 1993; Vazey and Aston-Jones, 2014). Indeed, electrical

microstimulation in LC causes a desynchronization of cortical EEG, which suggests that

the desynchronization of cortical EEG is partially due to LC-NE activation. However, little

is known of what biological mechanisms relate the LC-NE system with the desynchronized

state and its fluctuations.

Neuromodulation is, by definition, a process that occurs at the microscopic synaptic

level. However, its behavioral effects generally manifest in its action at the mesoscopic

level of neural populations. From that perspective, some have hypothesized that in a

critically stable system such as the cortex, small changes can occur, which putatively shape

the mesoscale balance of excitation and inhibition and large-scale functional gradients of

activity (Cocchi et al., 2017; Wang, 2020). In this regime, individual neurons would play

a democratic role in larger ensembles (Shine et al., 2021).

Altough the relation between LC-NE activity and behavior has been mostly related

to the sleep-wake cycle related to arousal (Lee & Dan, 2012), strong evidence has shown

that there is an active role in top-down attention. Specifically, the adaptive gain theory

(Aston-Jones & Cohen, 2005) proposes that LC-NE activity can exhibit both phasic and

tonic modes of activity, which closely track good or poor task performance. Moreover,
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INTRODUCTION

computational modeling and experimental results has shown that slow tonic changes have

been shown to be related to the global sleep-wake cycle, while changes in the phasic activity

have been related to rapid changes in behavior and focused attention (Aston-Jones et al.,

1999; McGinley et al., 2015).

The above indicates that cortical states, balance between E/I, LC-NE neuromodula-

tion and cognitive processes such as attention, are tightly intertwined. It is this junction

and the question of what brain mechanisms support this junction what forms the central

theme of this thesis. In this thesis, we propose to make use of theoretical and computa-

tional background to use modeling-driven analytical tools to probe proxies of mesoscale

brain mechanisms, such as the balance between E/I, to then test how it changes with

attentive/cognitive states. We hypothesize that this relation is supported by LC-NE neu-

romodulatory mechanism which will change E/I balance shaping mesoscale signals. To

test this, we formulated a two step hypothesis procedure to incorporate computational

modelling with experimental analysis.

We first hypothesize that asynchronous network state fluctuates and is a crucial signal

to understand the complexity of attention. To test this, the Objective 1 of this thesis

focuses on deriving a biologically meaningful proxy of E/I balance -which biophysically

determines asynchronous state- in cortical mesoscale activity. Objective 2 is to probe this

computational-driven analysis and test it in a cognitive setting. In Chapter 1 we make

use of neural modeling and simulation to relate two apparently diverse field potential

signals (Lempel-Ziv Complexity and the 1/f slope of the power spectrum) as reflecting

the cortical state, and thus the balance between excitation and inhibition. In Chapter

2, we make use of an open dataset to show that changes in our proxy of balance between

excitation and inhibition can track the state of sedation and behavioral performance of

subjects with pharmacologically disrupted E/I balance.

We next hypothesize that the balance between excitation and inhibition is dynamically

fluctuating due to a varying modulation from LC-NE system. We propose that this would

be observed as a multiscale phenomenon that will track optimal behavior and attention.
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INTRODUCTION

At the same time, the attentional state will recruit neuromodulation to regulate back-

ground cortical computations dynamically. To test this, Objective 3 focuses on linking

our proxy of E/I balance with LC-NE system statically. Then, Objective 4 of this thesis

test how our proxy of E/I balance is linked with LC-NE and behavior in a dynamical

and temporally-resolved manner. In Chapter 3 we show that changes in our proxy of

balance between excitation and inhibition can also occur by manipulating spike-frequency

adaptation, a mechanism known to depend on K+ channels which regulate the burstiness

of neural activity. The dynamic elimination of spike-frequency adaptation by LC-NE sys-

tem and arousal-related neuromodulation diminishes K+ and increases the burstiness of

neural population activity, making the system to enter a highly non-linear state. With

computational and experimental data, we show that arousal-related LC-NE neuromodu-

lation shapes E/I balance by shifting adaptation. In Chapter 4 we show how our proxy

of excitation and inhibition changes in time, and is highly coupled to transient attentional

recruitment in a visuospatial working memory task. Furthermore, we characterize the

temporal dynamics of this fluctuation according to the attentional demand and show that

our proxy of balance between excitation and inhibition is maximal at the highest atten-

tional demand, suggesting that this mechanism is under fine top-down control. Moreover,

our proxy of excitation and inhibition balance strongly correlates with LC-NE system

as addressed by pupil diameter signal, and this relation can be observed as a multiscale

low-dimensional signal across the brain.
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Chapter 1

Complexity and 1/f slope jointly

reflect cortical states and E/I balance

Abstract

Characterization of cortical states is essential for understanding brain functioning

in the absence of external stimuli. The balance between excitation and inhibition

and the number of non-redundant activity patterns, indexed by the 1/f slope and

LZc respectively, distinguish cortical states. However, the relation between these

two measures has not been characterized. Here we analyzed the relation between

1/f slope and LZc with two modeling approaches and in empirical human EEG

and monkey ECoG data. We contrasted resting state with propofol anesthesia,

which is known to modulate the excitation-inhibition balance. We found convergent

results among all strategies employed, showing that there is an inverse and not trivial

monotonic relation between 1/f slope and complexity. This behavior was observed

even when the spectral properties of the signals were heavily manipulated, and was

consistent at both ECoG and EEG scales. Models also showed that LZc was strongly

dependent on 1/f slope but independent of the offset of the signal’s spectral power

law. Our results show that, although these measures have distinct mathematical

origins, they are closely related. We hypothesize that differentially entropic regimes

could underlie the link between the excitation-inhibition balance and the vastness of
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the repertoire of cortical systems.

Keywords— Cortical States, Lempel-Ziv Complexity, 1/f Slope, Excitation/Inhibition Bal-

ance, Anaesthesia, Propofol

1.1 Introduction

Spontaneously occurring patterns of brain activity in the cerebral cortex constitute the so-

called cortical states (Harris & Thiele, 2011; Reimer et al., 2014). These are present without a

direct link to external stimuli, and constitute the basis of essential cognitive processes like atten-

tion (McGinley(Harris & Thiele, 2011; Reimer et al., 2014)) and global states of consciousness

(GSC; e.g. sleep, wakefulness and anesthesia; (Bayne et al., 2016; He & Raichle, 2009). One of

the most prominent strategies to characterize cortical states has been through the analysis of the

spectral properties of their associated field potentials like electroencephalogram (EEG) and local

field potential (LFP). In the particular case of attention, it has been shown that both induced

(Klimesch et al., 1998) and spontaneous (Boncompte et al., 2016; Iemi et al., 2017) modulations

of properties of alpha-band oscillations greatly explain the attentional state of subjects. How-

ever, characterization of GSC in terms of the unique properties of their associated cortical states

has proven to be more elusive. Traditional spectral characteristics of brain field potentials are

unable to fully distinguish between GSC (Purdon & Sampson, 2015). This is well illustrated

for the case of anesthetics that equally produce a cease of phenomenological experiences in loss

of consciousness, but show diverse spectral neural signatures. For example, transitions from

wakefulness to anesthesia induced by propofol increase and frontalize alpha oscillations, while

dexmedetomidine anesthesia instead induces spindle-like activity without significant modulations

of alpha oscillations (Akeju et al., 2014; Huupponen et al., 2008). In recent years, new method-

ologies have emerged with promising results, which aim at characterizing background cortical

states in general, but also specifically for GSC.

Cortical neurons in awake animals show strong membrane potential fluctuations which cause

irregular discharge similar to a Poisson process, known as high conductance states (Destexhe et

al., 2003). These states generate the background activity from which high-order processes are

computed. It has been shown that irregular firing patterns can be achieved by a neuron with bal-
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anced excitatory and inhibitory synaptic activity ((van Vreeswijk & Sompolinsky, 1996); (Brunel,

2000). From this perspective, cortical states depend on global brain variables, such as relative

levels of excitation and inhibition (Haider et al., 2006). Moreover, from local circuit activity to

whole-brain modeling, the computational characterization of the balance between excitation and

inhibition (E/I balance) has shown to modulate information transmission and entropy (Deco et

al., 2014; Rubin et al., 2017); (Agrawal et al., 2018). On the other hand, perturbations in the E/I

balance has shown to be related with pathological brain activity (Žiburkus et al., 2013) and neu-

ropsychiatric disorders (Haider et al., 2006; Uhlhaas & Singer, 2010); (Rubenstein & Merzenich,

2003); (Sohal & Rubenstein, 2019). A particularly successful way to quantify E/I balance is the

slope of the power law decay of spectral power of brain field potentials. Specifically, models have

been shown that the background 1/f slope of the power spectral density (PSD) emerges from

the sum of stochastic excitatory and inhibitory currents (A. Destexhe et al., 2001; Sheehan et

al., 2018); (Gao et al., 2017). Moreover, empirical validation of these models has shown that the

E/I balance can be properly inferred from background activity by parameterizing the 1/f shape

of the PSD ((Gao et al., 2017); (Trakoshis et al., 2020).

Interest in the detailed informational structure of cortical states have produced a recent surge

of information-theory based approaches ((Arsiwalla & Verschure, 2018; Ferenets et al., 2006;

Sarasso et al., 2014; Zhang et al., 2001); (Ferenets et al., 2006; Sarasso et al., 2014; Zhang et al.,

2001). Data analysis strategies based on Lempel-Ziv complexity (LZc; (Lempel & Ziv, 1976)),

like the Perturbational Complexity Index (Massimini et al., 2005)(Casali et al., 2013) have been

successful for addressing subject’s GSC during dreamless sleep and during anesthesia-induced

unconsciousness, with independence of the anesthetic used (Casali et al., 2013). It has been

shown that LZc decreases concomitantly with the loss of phenomenological possibilities, which is

consistent with theoretical views of consciousness (Tononi & Edelman, 1998). Lempel-Ziv com-

plexity algorithm computes the number of non-redundant segments of a signal (Lempel & Ziv,

1976), which in turn, when applied to brain data, is related to the abundance of the repertoire

of brain activity patterns observed (Wenzel et al., 2019). During the transition from wakefulness

to sleep or anesthesia, the number of possible experiences and cognitive processes that one can

have is greatly reduced, and thus it is coherent that the complexity of brain activity follows the

same pattern. In fact, this reduction of the repertoire of brain activity has been seen in rats
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at the single neuron level using a myriad of convergent measures of cortical diversity, including

LZc (Wenzel et al., 2019) which suggests that LZc can be applied as a multiscale proxy of neural

repertoire.

Although 1/f slope and LZc have distant mathematical origins, one coming from spectral anal-

ysis and the other one from Information Theory, both have been shown to correlate with GSC

(Miskovic et al., 2019; Zhang et al., 2001). We hypothesize that this could be due to an underlying

intrinsic relation between E/I balance and the repertoire of activity patterns in cortical systems.

Here we employed three complementary approaches to study the possible relation between 1/f

slope and LZc and thus implicitly between E/I balance and the abundance of non-redundant

repertoire in brain field potentials. We analyzed this relation in a simple inverse Discrete Fourier

Transform (iDFT) model, in a cortical field potential model, but also in real human EEG and

monkey ECoG anesthesia data. Our results consistently show that there is a non-trivial relation

between 1/f slope and LZc in brain field potentials, and suggest that both could be related to

the underlying entropy rate of the system.

1.2 Materials and Methods

iDFT Models

To study the relation between the power-law slope of neuronal signals and their complexity

in time, we first employed an iDFT modeling strategy. We constructed signals with different

1/f slopes, among other spectral parameters, and analyzed their resulting LZc. Each signal was

simulated using 5 seconds of length sampled at 1KHz, which resulted in a Nyquist frequency

(Nf) of 500Hz. Each time series was initially constructed in the frequency domain as the product

of its amplitude and phase components. The amplitude of each frequency component was set

accordingly to a power-law distribution as illustrated in Equation 1:

A(f) = O ∗ f−s (1.1)

where f is the frequency of each term, A(f) is the amplitude of each frequency component, O

is the offset of the curve, the amplitude of the 1 Hz component, and s corresponds to the slope
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of the power-law. Each initial phase was randomly assigned from a uniform distribution (−π

to π). iDFT algorithm (as implemented in Numpy; (Virtanen et al., 2020) was applied to the

product of the amplitude (A(f)) and phase components to obtain the time series data according

to Equation 2:

signal(t) = iDFT (A(f) ∗ exp(i ∗ θ0)) (1.2)

where i is the imaginary unit, and θ0 corresponds to the initial phase of each frequency. Only

positive frequencies were employed. To better model the spectral properties of physiologically

plausible neural signals, in addition to constructing signals using the whole range of possible

frequencies (0 to Nf) we also applied two types of constraints to the power-law distribution: an

initial frequency (f0) and a final frequency (ff). Both of these are illustrated in Figure 1.1A.

Specifically, f0 corresponds to setting all amplitudes of frequencies lower than f0 to the value

of f0, thus flattening the curve to the left of f0. On the other hand, applying a ff corresponds

to setting the amplitude of every frequency higher than ff to zero. To maintain time series

stationarity, a requirement of the LZc algorithm (Lempel & Ziv, 1976; Zhang et al., 2001), all

iDFT models were made with a f0 = 1Hz unless otherwise stated. For every set of simulations,

we generated a 256 time series with different values of s.

Lempel-Ziv complexity algorithm

To compute the complexity of time series (both simulated and empirical), we used the Lempel-

Ziv Complexity algorithm as introduced by Lempel and Ziv (Lempel & Ziv, 1976). This algorithm

quantifies the number of distinct and non-redundant patterns of a signal and it can serve as a close

analogue of the entropy rate of a signal (Amigó et al., 2004). We implemented the LZ76 algorithm

using custom made Python scripts (available in Supplementary Materials). Briefly, every time

series was first binarized, assigning a value of 1 for each time point with an amplitude greater than

the median of the entire signal (5 s), and zero for those below it. Afterwards, the LZ76 algorithm

was applied to the resulting so-called symbolic signal. To quantify the number of non-redundant

patterns, a sequential evaluation of the signal is performed. At each point, the algorithm analyzes

whether the following segment of the signal can be recreated from the already analyzed signal. In
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this sense, if the following sequence is not contained in the previously analyzed signal, then the

complexity increases. If the next sequence is already contained in the already analyzed signal,

the algorithm advances without increasing the complexity. An illustrative description of the

algorithm for two sample sequences can be found in supplementary materials (Supplementary

Figure 1). The number of non-redundant patterns in a signal is then normalized to produce the

final LZc value, which ranges (asymptotically for long signals) from 0 to 1. The LZ76 algorithm

has been widely applied to analyze neural signals, from spike trains to EEG field potentials;,

however, it should not be mistaken with the similar Lempel-Ziv-Welch algorithm (Welch, 1984),

also recently employed in neurocognitive studies (Schartner et al., 2015). Although these two

share commonalities, to our knowledge the link between complexity and entropy rate has only

been established for the LZ76 algorithm.

1/f slope vs LZc modeling function

We found that the relation between 1/f slope and LZc in pure power-law iDFT data (Figure

1.1B) closely followed a particular mathematical behavior:

LZc(s) = a1 ∗ exp(−b ∗ ln2(sc + 1) (1.3)

where s is the slope of the power-law, LZc(s) is the LZc value obtained for a signal with

slope s and a1, b and c are free parameters such that a1 ranges from 0 to 1 and b and c ∈ IR+.

The parameters b and c modify the shape of the curve, while a is a scaling factor. Without this

scaling factor, the image of LZc(s) ranges from (0 to 1), while if a1 is introduced it ranges from

(0 to a1) without changing the internal structure of the curve. While Equation 3.1 appropriately

adjusted to pure power-law signals (Figure 1.1B) and iDFT-data generated with a non-trivial

final frequency (ff 6= Nq; Figure 1.1D), the LZc values for signals with non-trivial f0 ( > 1Hz) did

not ranged from 0 to 1 but from a value greater than zero to 1 (Figure 1.1C). Because of this,

we designed a similar equation that better reflected the required image of the LZc(s) function

for non-trivial f0 cases, introducing a second scaling parameter a2:

LZc(s) = a1 + (1− a2)exp(−b ∗ ln2(sc + 1) (1.4)
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For every fit we employed Equations 3.1 or 3.2 using an algorithm that minimized the squares

of the differences between data and models as implemented in the scipy.optimize.curve_fit

function (Virtanen et al., 2020). Best fit parameters and R2 values for goodness of fit for all

iDFT simulations can be found in Supplementary Table 1 (all R2 > 0.98).

LFP Simulations

To simulate cortical LFP time series we employed the strategy recently developed by Gao et.

al. (2017) where LFP time series are constructed based on modeled inhibitory and excitatory

conductances. Briefly, inter spike intervals were generated by Poisson processes (Destexhe et

al., 2001) with specified average firing rates for GABA-A (inhibitory) and AMPA (excitatory)

neurons. This produced binary time series describing firing at each time point. These spike

time series were then convoluted with empirically defined conductance kernels for excitatory and

inhibitory synapses independently (Alain Destexhe et al., 2003; Gao et al., 2017). Each kernel was

constructed as the sum of an exponential growth and an exponential decay function, which were

specific for excitatory and inhibitory synapses (CNRGlab; http://compneuro.uwaterloo.ca/

research/constants-constraints/). Current time series were then obtained by multiplying

each conductance by the difference between the resting potential and the typical reversal potential

of AMPA and GABA-A receptors. Finally, LFP time series were computed as the sum of

excitatory and inhibitory currents (Mazzoni et al., 2015). The particular parameters used in

LFP simulations can be found in supplementary material (Table S2) which are based on previous

electrophysiological results and modeling of LFP (Gao et al., 2017).

For each particular simulation we manipulated firing rate and E/I balance. Each firing rate

was defined as a parameter to generate interspike intervals following a Poisson process. E/I

balance, defined as the ratio between mean excitation and mean inhibition conductances, was

manipulated by a multiplicative parameter applied only to inhibitory conductances (Gao et al.,

2017), such that mean inhibition current was 2 to 10 times greater than the mean magnitude of

excitation conductances. Each simulated LFP time series consisted of 5s, and was downsampled

to 1KHz to match iDFT simulations. We employed this modeling strategy because it has been

shown to capture amplitude and spectral characteristics of synaptic conductances observed in
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vivo (Destexhe et al., 2001), and has been previously validated as a tool to infer the E/I balance

of cortical tissues (Gao et al., 2017).

Power Spectral Density and 1/f analysis

We employed the same approach to estimate the power-law slope of LFP simulations, human

EEG and monkey ECoG data. This consisted in calculating the Power Spectral Density (PSD)

by means of Fourier Transforms using Welch’s method as implemented in the MNE toolbox

(Gramfort et al., 2014; Jas et al., 2018). Afterwards, the power-law 1/f slope and offset were

obtained using the “Fitting Oscillations & One Over f” (FOOOF) toolbox (Donoghue et al.,

2020). Aperiodic offset (O) and slope (s) components are obtained by modelling the aperiodic

signal according to Equation 1.1. The FOOOF algorithm decomposes the log power spectra into

a summation of narrowband Gaussian periodic (oscillations) and the aperiodic (offset and slope)

components for the whole frequency range. The algorithm estimates periodic and aperiodic

components, removes the periodic ones and estimates again until only the aperiodic components

of the signal remain. This allows for estimation of offset and power-law slope with considerable

independence from oscillatory behavior, which is particularly important for empirical signal

analysis (Donoghue et al., 2020; Voytek & Knight, 2015). FOOOF toolbox also contains a

“knee” parameter, which was not considered as it corresponds to changes in the 1/f slope at

higher frequencies, not analyzed in this study. With this we obtained the 1/f slope and offset

estimates of each time series. For our analyses we performed the FOOOF fitting using a frequency

range from 1 to 70 Hz for simulated and ECoG data, and 1 to 40 Hz in EEG data.

ECoG Data

We used an open ECoG database collected from 2 macaque monkeys (Chibi and George)

during wakefulness, propofol anesthesia (5 and 5.2 mg/kg) and recovery ((Yanagawa et al.,

2013)). Propofol induced anesthesia was achieved through intravenous propofol injection. Loss

of consciousness was defined as the moment when monkeys no longer responded to touch stimuli.

The ECoG grid consisted of 128 channels using multichannel ECoG electrode arrays (Unique

Medical, Japan). The array was implanted in the subdural space with an interelectrode distance
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of 5 mm. Electrodes were implanted in the left hemisphere continuously covering frontal, parietal,

temporal and occipital lobes. No further preprocessing than the one used by (Yanagawa et al.,

2013)) was applied to this data. Since we were interested in assessing differences between brain

states during wakefulness and anesthesia and not in the transitions, we only considered periods

of closed-eyes wakefulness and anesthesia. We computed LZc and 1/f slope measures of the times

series as mentioned above for each electrode, epoch and subject and then averaged LZc and 1/f

slope across epochs. These results are shown in Figure 1.3.

EEG Data

We analyzed an open human propofol anesthesia EEG database (Chennu et al., 2016). We

only analyzed data collected during baseline and moderate sedation conditions. In each state,

subjects performed an auditory discrimination task. After the task, during closed eyes resting

state, EEG data was recorded with high-density 128 electrodes caps and the Net Amps 300 am-

plifier (Electrical Geodesic Inc., Eugene, Oregon, USA) for 7 minutes. Only channels covering

scalp area were retained, which resulted in 91 channels for further analysis. Moderate sedation

was induced by target-controlled infusion of propofol, with targeted plasmatic propofol levels of

1.2 mcg/ml. Because the level of propofol sedation is near the anaesthetic threshold of uncon-

sciousness, and not sufficient for deep anesthesia, we collected data from the two subjects who

lost the most performance. This was assessed by the number of correct responses in the auditory

discrimination task during moderate sedation, as compared to baseline condition. EEG signals

were filtered between 0.5 Hz and 45 Hz and segmented into 10-second epochs (ranging from 37

to 40 epochs per subject). Data was re-referenced to the average of all channels. We did not

apply any further preprocessing steps beside those described by Chennu et al. (Chennu et al.,

2016) for the analysis presented here. Further details of procedures regarding data collection

and preprocessing can be consulted in the original paper. Finally, for each epoch (time segment)

and electrode we calculated LZc and 1/f slope and then averaged across epochs.
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Statistical analysis

Experimental data was visualized using raincloud plot (Allen et al., 2019); van Langen,

2020). Statistical significance was assessed with a Type-1 error threshold of 0.05. All curve fits

were carried out using Scipy optimize function. R2 were calculated using custom made scripts.

Differences among groups in 1/f slope (Figure 1.3A, B) and LZc (Figure 1.3C, D) were assessed

by two-way ANOVAs for each measure. Conscious state (awake vs. anesthesia) and the subject’s

identity were used as ways. We included both humans and monkey datasets in these ANOVAs.

Afterwards, simple main effects for conscious states were performed for each dataset, comparing

awake vs. anesthesia for each human and monkey individually. To estimate the relation between

1/f slope and LZc in ECoG and EEG data, for each subject and electrode, we adjusted a linear

curve to 1/f slope and LZc data across epochs (time segments). The Pearson product-moment

correlation coefficient for each one of these fits were used as the dependent variable in a two-way

ANOVA analysis (Figure 1.3E, F). Simple main effects were applied in the same way as for the

analysis of each individual measure.

1.3 Results

iDFT Model

In order to analyze the relation between the spectral power-law slope and the LZc, we gen-

erated, by means of iDFT, sets of 256 time series with different slopes (e.g. blue trace in Figure

1.1A) ranging from 0 to 2, and calculated the complexity values for each one. We found that,

for pure power-law time series, the relation between slope and LZc follows a strict monotonically

descending behavior (Figure 1.1B), with lesser complexity values for time series with a steeper

slope. This general behavior is expected: slopes near zero reflect white noise (maximal LZc),

while on the other hand very high slopes reflect time series with significant power only in low

frequencies (periodic signals with minimal LZc). Interestingly, we found that LZc had a one-to-

one mapping with 1/f slope. This relation can be robustly adjusted (R2 > 0.99) to an x-inverted

asymmetrical sigmoid function (see Methods, Equation 3.1).
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Figure 1.1: iDFT models showcase the inverse relation between LZc and 1/f Slope. (A)
Illustration of the amplitude spectrum in terms of frequency for signals composed using the
iDFT model; f0 and ff represent the initial and final frequency of the power law behavior. (B)
Scatter plot of the LZc of 256 signals constructed with different 1/f slopes. Solid line corresponds
to the best fit of Equation 3.1. (C) and (D) illustrate the effect of including four different f0’s
and ff’s in the construction of signals respectively. Although the curves are scaled in comparison
to (B), an homologous inverse relation is observed.

Electrophysiological field potential signals (e.g. EEG and ECoG) have been shown to present

only partial power-law behavior (He, 2014). In other words, only part of their spectrum follows

a clear spectral power law distribution. In an attempt to broadly emulate this, we introduced

two types of constraints to the spectra of signals: an initial (f0) and a final (ff) 1/f frequency
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(see Methods). Both constrains are illustrated in Figure 1.1A (orange trace for f0; green trace

for ff). We found that the introduction of greater f0 values (Figure 1.1C) generated signals with

greater complexity across all slopes tested. This effect was enhanced for higher slopes compared

to lower slopes (Figure 1.1C). Interestingly, the introduction f0 higher than 1Hz reduced the

dynamical range of the observed LZc (no longer ranging from 0 to 1). On the other hand, when

we included a final frequency ff to the generated signals (a type of low-pass filter), we also found

LZc values were reduced, in comparison to the pure power law signals. This effect was more

markedly observed in signals with lower slope values. Similarly to f0, we found that ff reduced

the dynamical range of possible complexity values, but in a different way: LZc ranged from zero

to a value lower than 1. Regardless of these spectral constraints we found that the slope vs. LZc

behavior could be modeled with a simple set of related equations (Equations 3.1 and 3.2), with

a robust goodness of fit (all R2 > 0.98, see Supplementary Materials).

LFP model

Spectral 1/f power law slope has been suggested as a proxy for the background state (Destexhe

et al., 2001) and the balance between excitation and inhibition in cortical circuits (Destexhe et al.,

2001; Lombardi et al., 2017; Gao et al., 2017; Trakoshis et al., 2020). In this line, we hypothesised

that E/I balance could also be related to the repertoire of cortical activity as indexed by LZc.

To test this hypothesis in a more physiologically plausible model, we simulated LFP signals as

a linear combination of excitatory and inhibitory currents (see Methods; Destexhe et al., 2001).

We conducted simulations with different global firing rates and E/I ratios by parameterizing

inhibitory conductances (Fig 2A; see Methods). For each simulated time series, we calculated

LZc and the spectral parameters of 1/f slope and offset using the FOOOF toolbox (Donoghue

et al., 2020).
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Figure 1.2: LZc and 1/f slope as a function of E/I balance. (A) Power Spectral Density plots
of sample simulated brain signals with different E/I balances and total firing rates constructed
using a cortical field potential model. (B) Plot showing the relation between offset and E/I
balance, and its relation to firing rate. (C) Plots showing the positive relation between 1/f slope
and E/I balance, which is independent of firing rate. (D) Plot showing the inverse relation
between LZc and E/I balance. This relation was independent of firing rate. (E) Color scatter
plot showcasing the relation observed between 1/f slope and LZc across a range of E/I balances
(color bar) error bars represent the standard deviation across 100 simulations.
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Consistent with previous findings using this model (Gao et al., 2017), we found that manipu-

lating E/I balance consistently modulated the offset of the 1/f behavior. However, offset was also

strongly modulated by global cortical excitability (firing rate; Figure 1.2B). We found that the

1/f slope was also robustly modulated by E/I balance; however in contrast to offset, the slope

was completely independent of global excitability (Figure 1.2C). Interestingly, we found that

LZc strongly correlated with E/I balance, with more excitation leading to a smaller repertoire

of cortical activity patterns, and more balanced neural population activity presenting higher

complexity (Figure 1.2D). Similar to 1/f slope, we found that the effect of changing E/I balance

on LZc was independent of the global firing rates of the simulated neural time series.

Given that E/I balance robustly modulated both 1/f slope and LZc, with independence of the

firing rate, we next asked whether the relation observed between 1/f slope and LZc seen in

our iDFT model could be reproduced in this more plausible cortical model, and if E/I balance

tracked this relation. Figure 1.2E depicts the average LZc and 1/f slope for 100 simulations with

their corresponding E/I balance values. It illustrates that there is a non-trivial inverse relation

between these two measures, as for the iDFT model. As expected, we found that higher E/I

balance was associated with flatter slopes and with higher complexity values, while when E/I

balance was dominated by inhibition, complexity was reduced and PSD showed steeper slopes.

Interestingly, we also found that this behavior could be well adjusted to Equation 3.1. We believe

this result proposes a plausible biological mechanism of the observed relation between LZc and

the power-law exponent.

Experimental Data

Next, we asked whether the impact of modifying E/I balance on the relationship between

1/f slope and LZc seen in our model could be reproduced in electrophysiological data. We first

analyzed two high-density datasets, human EEG and macaque monkey ECoG recordings un-

der propofol anesthesia and eyes-closed resting-state (Chennu et al., 2016); Yanagawa et al.,

2013). Propofol is known to directly enhance GABAergic inhibitory activity, and thus reduce

E/I balance (Alkire et al., 2008). In accordance with our previous results, we observed markedly

increased 1/f slope (conscious state main effect’s F(1) = 1034, p < 0.001, η2 = 0.467; simple
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main effects (awake vs anesthesia) for all humans and monkeys showed significant differences,

p ¡ 0.001 ) and reduced LZc with respect to wakefulness in both monkeys and in one human

(conscious state main effect F(1) = 442, p < 0.001, η2 = 0.063; simple main effects (awake vs

anesthesia) for subjects except one human showed significant differences, p < 0.001, Supplemen-

tary Figure 2). This is illustrated for representative EEG and ECoG datasets in Figure 1.3 A-D).
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Figure 1.3: Propofol reduces LZc and steepens 1/f slope in human EEG and monkey ECoG
data. (A) Propofol increases 1/f Slope across electrodes in human EEG data of a representative
subject. In (A), (B), (C) and (D) each point depicts the average value (1/f slope or LZc)
across time epochs for an electrode. Boxes depict the average value across electrodes, the range
that includes 50 % of points and the 2 standard deviations range. Density distributions across
electrodes are plotted vertically on the right side of each plot. Blue and Red colors represent
Awake and Anesthesia (propofol) respectively for all panels. (B) Average 1/f slope values for
Awake and Anesthesia conditions for a representative monkey’s ECoG data. (C) LZc in the
same EEG dataset as (A) for Awake and Anesthesia conditions. (D) LZc in the same ECoG
data as in (B) for Awake and Anesthesia. (E) Depicts a 2D density plot of the LZc vs 1/f
slope of all epochs and electrodes for Awake and Anesthesia conditions. Black lines depict the
average value, across electrodes, of the slope of the regressions performed between 1/f slope and
LZc data (see methods). (F) Same as (E) but for ECoG data.
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In addition to the individual changes observed to LZc and 1/f slope due to anesthesia, we

analyzed the specific relation between these two measures and how it changed due to an increase

in inhibitory activity. To this end, we analyzed the correlation, across electrodes, between 1/f

slope and LZc. We found a significant and marked inverse relation in both datasets, in accordance

with the results of both our models. The correlation between these two measures was consistently

found for all datasets analyzed (all p < 0.05; see also Supplementary Materials). Interestingly,

this correlation was strongly modulated by the propofol-induced reduction in E/I balance. In

EEG data we observed an increase in the Pearson product-moment correlation coefficient between

1/f slope and LZc (all simple main effects p < 0.001). In contrast ECoG data showed a reduction

of this coefficient in response to propofol (all simple main effects p < 0.001). We believe this

apparent discrepancy (increase in EEG and decrease in ECoG), is due to different baseline levels

of LZc and 1/f slope across species (see Discussion).

1.4 Discussion

In this article we explored the possible relation between two apparently dissimilar time series

characteristics in the context of brain field potentials. Our results show a robust and inverse

relation between LZc and 1/f slope, constitutive of a one-to-one mapping in both synthetic and

experimental data. This relation closely followed an x-inverted asymmetric sigmoid function in

the whole range of both measures in synthetic data generated by iDFT models. This behavior

was, although scaled, present even when the spectral power law behavior only comprised a small

portion of all frequencies of the signal (Figure 1.1C, D). This is of particular importance as

real electrophysiological signals do not show a 1/f spectral power decay in the whole frequency

range (He et al., 2010). In a more neurobiologically plausible model, we observed a similar

inverse relation between LZc and 1/f slope, which adjusted to the same mathematical function.

Moreover, we show that this relation follows the balance between excitation and inhibition, with

greater complexity and flatter 1/f slopes associated with the predominance of excitatory over

inhibitory activity. At the same time, although the offset was modulated by E/I balance, the

complexity of the signal was completely independent of the offset. We probed this link between

E/I balance and LZc by directly contrasting 1/f slope and LZc changes due to a pharmacological
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intervention. Propofol, a GABA agonist, produced changes in both measures consistent with

what our models predicted: a reduced LZc and increased 1/f slope in both human EEG and

monkey ECoG data.

The slope of the spectral power law has been linked to E/I balance (Lombardi et al., 2017),

while LZc reflects the vastness of the repertoire of brain activity patterns ((Wenzel et al., 2019)).

Although these two measures may seem unrelated at first, we hypothesize that both reflect

a specific type of entropy of cortical systems. The entropy of a system can be characterized

by the probabilities of each of its possible states (Shannon entropy), but also in terms of the

probabilities of the transitions between these states in time, namely its entropy rate (or transition

entropy). Low values of 1/f slope represent a flatter power spectrum which is characteristic of

irregular desynchronized cortical states while steeper 1/f slopes showcase mainly low frequency

periodic behavior (Fazlali et al., 2016; Voytek & Knight, 2015). These two extremes can also

be characterized in terms of the transition entropy of their signals: flat 1/f slopes (similar to

white noise) have low autocorrelations and thus high entropy rates, while in mainly periodic

signals past history strongly constrains future values, thus they present low transition entropies.

Interestingly, Amigó et al. (Amigó et al., 2004) have shown for electrophysiological signals that

LZc closely reflects the entropy rate of the underlying system. This is particularly useful as

direct estimations of entropy rate require much longer data series than LZ76 (Amigó et al.,

2004). In our implementation of LZc, because we binarize each signal based on its median value,

the number of points in each state (ones and zeros) is equal, which results in a constant Shannon

or distribution entropy. In this line, we believe signal’s LZc could be reflecting not only the

vastness of the repertoire of cortical activity, but also specifically the transition entropy of the

system. Thus, the strong relation we observe between LZc and 1/f slope suggests both measures

are, at least partially, driven by the transition entropy of the underlying cortical system.

In addition to the 1/f slope, the offset of the PSD has been shown to reflect relevant physiological

information (Miller et al., 2014). Changes in the offset have been suggested to be linked to the

fMRI BOLD signal, making it a potential bridge between different spatial and temporal scales of

brain features (Wen & Liu, 2016). Moreover, computational modeling has shown that broadband

spectral shifts reflect changes in total firing rate of local neural populations (Miller et al., 2009;

Wen & Liu, 2016). Our results show that quantifying aperiodic activity while manipulating the
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E/I balance and firing rates reveals that only the offset is specifically modulated by firing rate

(Figure 1.2B) while the slope was only specifically modulated by shifts in E/I the balance (Figure

1.2C). In addition, LZc was not dependent on the firing rate, but was strongly regulated by E/I

balance. Although we observe a relation between 1/f offset and LZc, this effect is not specific

as the same offset can be the result of many E/I balances and firing rates combinations (Figure

1.2B, Supplementary Figure 1.2). Previous spike model simulations have shown that E/I balance

is strongly related to the entropy of the modeled system (Agrawal et al., 2018). In this line, we

believe the relation found here between 1/f and LZc suggest that the transition entropy and the

E/I balance of cortical systems could be more closely linked than previously thought.

Future work should include the role of oscillations, as recent evidence has suggested that low

frequency 1/f slope is dependent on alpha-band activity (Becker et al., 2018). Despite this

potential limitation of our simulations, which lacked oscillations, we observe the same general

behavior in EEG and ECoG data, which does present oscillatory activity. It should be noted

that he exponent of the power-law has been characterized in different frequency ranges across

the literature (He et al., 2010; Becker et al., 2018; Lombardi et al., 2017; Miskovic et al., 2019;

Zhang et al., 2001; Trakoshis et al., 2020; Schaworonkow & Voytek, 2021). In this line, the

frequency ranges that we employed here were based on generating extrapolable interpretations

for both local and global measures of field potentials. Moreover, we have shown that changing

the initial and cut-off frequency of the power-law decay does not qualitatively affect the relation

between 1/f slope and LZc (Fig. 1.1C, D). From this perspective, our results suggest that 1-70 Hz

and 1-40 Hz frequency ranges share the characteristic of representing the global state of cortical

activity. Further work could include the modeling of tight and loose coupling regimes between

excitation and inhibition, which has been suggested as a more plausible mechanism of cortical

E/I balance regulation (Dehghani et al., 2016; Denève & Machens, 2016; Trakoshis et al., 2020).

These limitations are probably the reason why we also observe a reduced range of both LZc and

1/f slope, in spite of modeling a broad E/I balance range. Despite this limitation, we observe

a consistent relation between 1/f slope and LZc across two models and two brain field potential

datasets. The E/I balance shapes the computational properties of cortical neurons (Denève &

Machens, 2016), and therefore behavior and cognition (Harris & Thiele, 2011). Alterations of

this balance have been related to schizophrenia (Uhlhaas & Singer, 2010), autism (Rubenstein
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& Merzenich, 2003), and epilepsy (Žiburkus et al., 2013), which suggests it might also play an

unexplored role in other neuropsychiatric disorders (Sohal & Rubenstein, 2019). Moreover, E/I

balance is not a static property of the cortex. It changes depending on the behavioral state

(Waschke et al., 2019), task demands (Pfeffer et al., 2018; Waschke et al., 2019), performance

(Sheehan et al., 2018) and depending on circadian rhythms (Bridi et al., 2020), which suggests

that this property is under fine dynamic control. It has been proposed that cortical states

and neural complexity could be regulated by subcortical cholinergic and noradrenergic activity

(D’Andola et al., 2018; Nghiem et al., 2020). Future research could address this topic with

a multiscale approach to the underlying cortical states of neuromodulation-related psychiatric

disorders (Medel et al., 2019). From this perspective, the readout of E/I balance through brain

signal complexity and the power-law of the PSD could be useful for addressing fundamental

questions about the modulation of the state dependence of cortical computations. This offers

new methods to understand the general mechanisms of cortical states functioning, as well as

broadening the diagnostic and therapeutic tools related to neuropsychiatric disorders.

1.5 Supplementary Material
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Supplementary Tables 

 

Table S1. Linear fit parameters for iDFT Simulations.  

 

Data Best Parameters for Eq1 Fit of data Mode R2  

Manipulatio

n 

Frequency 

[Hz] 

a std(a) b std(b) c std ( c )      

f0 1 0.0296 0.1016 4.3556 2.8521 1.6211 0.8095 2 0.997 ** 

f0 10 0.1302 0.1689 2.3486 1.4523 1.5108 0.8666 2 0.997  

f0 30 0.2768 0.3219 1.5176 1.3775 1.5039 1.2066 2 0.996  

f0 60 0.4405 0.5184 1.0644 1.63 1.5809 1.9344 2 0.992  

ff 30 0.2143 0.2933 2.4397 4.2085 0.8963 2.5015 1 0.981  

ff 60 0.3467 0.2549 2.7678 2.6634 1.0516 1.1667 1 0.989  

ff 120 0.5638 0.2447 3.3014 1.9787 1.1513 1.1149 1 0.994  

ff 240 0.8118 0.2283 3.6571 1.6351 1.2773 0.8489 1 0.995  

fc 3 1 0.5827 5.2726 2.532 0.7863 0.6468 1 0.982  

fc 21 0.8712 0.3537 3.1242 1.6342 0.8836 0.6539 1 0.995  

fc 147 0.7875 0.1757 2.4585 1.2555 1.9622 1.4544 1 0.9946  

fc None 1 0.2224 3.8149 1.7462 1.5253 0.9269 1 0.995 ** 

 

 

Mode Equation     

1 y = a * exp( -b * (ln(x**c  + 1))**2)  where x = slope and y = LZc 

2 y = a + (1 - a) * exp( -b * (ln(x**c  + 1))**2)     

** Only the mode of the equation (image of the function) changes between these two fits   

 

 



 

Table S2. Local field potential model parameters.  

 

Neuron Type Parameter Name Value 

E & I Resting Membrane Potential -65 mV 

E Population Size 8000 

E Population Firing Rate 2 Hz * [0.1, 0.5, 1, 2.5, 10] 

E Reversal Potential  0 mV 

E Conductance Time rise 0.1 ms 

E Conductance Time decay 2 ms 

I Population Size 2000 

I Population Firing Rate 5 Hz * [0.1, 0.5, 1, 2.5, 10] 

I Reversal Potential  -80 mV 

I Conductance Time rise 0.5 ms 

I Conductance Time decay 10 ms 

 

 

 

  



 

Supplementary Figures 

 

 

 
 

Figure S1. Illustration of LZc algorithm. LZc analyzes a signal step by step quantifying the number of 

production steps (green lines) required to recreate the original signal. When the signal being analyzed is 

contained in the previously analyzed segment, only a reproduction is required (black lines). CH(S) indicates 

the number of production steps already conducted. Left: A binary periodic signal can be recreated in just a 

few steps. The first symbol is always produced (CH(s) = 0), then, as '1' cannot be reproduced from the 

already analyzed sequence (which only contains '0' at this point), it has to be produced. Then, as '01', with 

a simple copying procedure, can recreate the rest of the signal, the recreation of S1 is completed within 3 

steps. Right:  For a non-periodic binary signal we also begin by producing the first symbol. Then, as '0' and 

'00' can be reproduced from the already analyzed '0' we only produce the fourth symbol ('1'). Afterwards, 

as '1' can be reproduced from '0001', a production process is not required, however, despite the fact that 

'0' and '1' are present in the already analyzed segment ('00011') the combination '10' is not, thus we need 

to produce the next '0'. This process continues until the whole signal is recreated. It is noteworthy that the 

reproduction process does not need to occur from the end of the already analyzed signal, but can take 

place in the middle (e.g. in step CH(S) = 5). The number of production processes, or equivalent the number 

of elements in the exhaustive production history of the signal, constitute the base of the LZc measure. LZc 

corresponds to this value, divided by n/log k(n) where n is the length of the signal and k is the number of 

possible symbols of the signal (2 for binary signals).  



 

 

 
 

Figure S2. (Top) Color scatter plot showcasing the relation observed between 1/f Offset and Lempel Ziv 

Complexity for different increasing E/I balances ranging from 1:2 to 1:11 at constant firing rate 

values.(Bottom) Color scatter plot showing the relation between 1/f offset and Lempel Ziv Complexity for 

increasing firing rates ranging from 0.1-10 at constant E/I ratios.  

 

 



 

 
 

Figure S3. Propofol reduces LZc and increases 1/f slope in human EEG and monkey ECoG data. (A) 

Propofol increases 1/f Slope across electrodes in monkey ECoG data (George). In (A), (B), (C) and (D) 

each point depicts the average value (1/f slope or LZc) across time epochs for an electrode. Density 

distributions across electrodes are plotted vertically on the right side of each plot. Blue and Red colors 

represent Awake and Anesthesia (propofol) respectively for all panels. (B) Average 1/f slope values for 

Awake and Anesthesia conditions for subject 3 from the human EEG data. (C) LZc in the same ECoG 

dataset as (A) for Awake and Anesthesia conditions. (D) LZc in the same EEG data as in (B) for Awake 

and Anesthesia. (E) Depicts a 2D density plot of the LZc vs 1/f slope of all epochs and electrodes for Awake 

and Anesthesia conditions. Black lines depict the average value, across electrodes, of the slope of the 

regressions performed between 1/f slope and LZc data (see methods). (F) Same as (E) but for human EEG 

data. 
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[53] Trakoshis, S., Mart́ınez-Cañada, P., Rocchi, F., Canella, C., You, W., Chakrabarti, B.,

Ruigrok, A. N., Bullmore, E. T., Suckling, J., Markicevic, M., Zerbi, V., MRC AIMS Con-

sortium, Baron-Cohen, S., Gozzi, A., Lai, M.-C., Panzeri, S., & Lombardo, M. V. (2020).

Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic

men versus women. eLife, 9. https://doi.org/10.7554/eLife.55684

50



BIBLIOGRAPHY

[54] Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in

schizophrenia. Nature Reviews. Neuroscience, 11(2), 100–113.

[55] van Langen, J (2020). Open-visualizations for repeated measures in R. https://github.

com/jorvlan/open-visualizations.

[56] van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced

excitatory and inhibitory activity. Science, 274(5293), 1724–1726.

[57] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,

J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy 1.0

Contributors. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nature Methods, 17(3), 261–272.

[58] Voytek, B., & Knight, R. T. (2015). Dynamic network communication as a unifying neural

basis for cognition, development, aging, and disease. Biological Psychiatry, 77(12), 1089–1097.

[59] Waschke, L., Tune, S., & Obleser, J. (2019). Local cortical desynchronization and pupil-

linked arousal differentially shape brain states for optimal sensory performance. eLife, 8.

https://doi.org/10.7554/eLife.51501

[60] Welch, T. A. (1984). A technique for high-performance data compression. Computer, 6,

8–19.

[61] Wen, H., & Liu, Z. (2016). Broadband Electrophysiological Dynamics Contribute to Global

Resting-State fMRI Signal. In The Journal of Neuroscience (Vol. 36, Issue 22, pp. 6030–6040).

https://doi.org/10.1523/jneurosci.0187-16.2016

[62] Wenzel, M., Han, S., Smith, E. H., Hoel, E., Greger, B., House, P. A., & Yuste, R. (2019).

Reduced Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced

Loss of Consciousness. Cell Systems, 8(5), 467–474.e4.

[63] Yanagawa, T., Chao, Z. C., Hasegawa, N., & Fujii, N. (2013). Large-scale information flow

in conscious and unconscious states: an ECoG study in monkeys. PloS One, 8(11), e80845.

51

https://github.com/jorvlan/open-visualizations
https://github.com/jorvlan/open-visualizations


BIBLIOGRAPHY

[64] Zhang, X. S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth

of anesthesia for patients. IEEE Transactions on Bio-Medical Engineering, 48(12), 1424–1433.
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Chapter 2

Brain activity complexity has a

non-linear relation with the level of

propofol sedation

Abstract

Background: Brain activity complexity has risen as a robust correlate of con-

sciousness, showing promise as a possible drug-independent measure to be used to in

anaesthesia. Previous studies have mostly compared awake versus deep anaesthesia

states, showing higher complexity for the former compared to the latter. However,

little attention has been paid to complexity in intermediate states of sedation.

Methods: Here we analysed the Lempel-Ziv Complexity of EEG signals from sub-

jects undergoing moderate propofol sedation, from an open-access database, and re-

lated it to behavioral performance as a continuous marker of the level of sedation and

to plasma propofol concentrations. We explored its relation to spectral properties, to

propofol susceptibility and its topographical distribution.

Results: We found that subjects who retained behavioural performance despite

propofol sedation showed increased brain activity complexity compared to baseline
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(M = 13.9%, 95% CI = 7.5–20.3). This was not the case for subjects that lost be-

havioural performance. The increase was most prominent in frontal electrodes, and

correlated with behavioural performance and propofol susceptibility. This effect was

positively correlated with high-frequency activity. However, abolishing specific fre-

quency ranges (e.g. alpha or gamma) did not reduce the propofol-induced increase in

complexity.

Conclusions: Our results show that brain activity complexity can increase in re-

sponse to propofol, particularly during low-dosage sedation. Propofol-mediated LZc

increase was independent of frequency-specific spectral power manipulations, and

most prominent in frontal areas. Taken together, these results advance our under-

standing of brain activity complexity and anaesthetics but also problematise theories

of consciousness that propose a direct relation between brain activity complexity and

states of consciousness.

Keywords— Complexity, Propofol, Lempel-Ziv Complexity, Sedation, Anaesthesia Moni-

toring, Brain Oscillations, States of Consiousness, EEG

2.1 Introduction

The search for precise and reliable methods to quantify level of sedation and depth of anaes-

thesia in clinical settings has drawn increasing attention over the past decades. Current clinically

employed anaesthesia monitors, like Bispectral Index (BIS; Aspect Medical Systems, USA) and

EntropyTM (Datex-Ohmeda, Finland), are grounded on the quantification of spectral properties

of the electroencephalographic (EEG) signal, that is, on the power of specific frequency ranges

like those of alpha, delta and gamma bands (Bruhn et al., 2000; Davidson et al., 2004). However,

spectral modulations of the EEG signal are known to be strongly dependent on the anaesthetic

used (Feshchenko et al., 2004; Warner et al., 2015; Purdon et al., 2015), the patient’s age (Zohar

et al.,2006; Akeju et al., 2015), among other factors (Kaiser et al., 2020). In contrast, current

theories of consciousness, like Integrated Information Theory (Tononi, 2008; Tononi et al., 2016)

and Global Neuronal Workspace Theory (Sergent & Dehaene, 2004; Dehaene et al., 2006), em-

54



CHAPTER 2. BRAIN ACTIVITY COMPLEXITY HAS A NON-LINEAR RELATION
WITH THE LEVEL OF PROPOFOL SEDATION

phasize information as a key aspect of the neural basis of consciousness. Be it the amount of

integrated information in cortical circuits, or the global availability of information, these theories

propose that the causal informational relations between neuronal elements, rather than specific

oscillations, are the key biological aspect of brain functioning that define states of consciousness

like wakefulness or anaesthesia.

Several EEG measures, grounded on Shannon’s Information Theory (Shannon, 1948), have been

proposed in the last two decades, which aim at quantifying the informational contents and re-

lations of cortical systems. In particular, Lempel-Ziv Complexity (LZc), which computes the

number of non-redundant patterns of EEG signals (Lempel & Ziv, 1976), has shown particularly

promising results in discriminating global states of consciousness. The pioneer work of Zhang and

cols. (2001) showed that, using a simple threshold for the value of LZc, they could discriminate

between awake (higher LZc) and deep anaesthesia (lower LZc), using four different anaesthet-

ics with 93% accuracy. More recent work has also found that reverberations of brain activity

evoked by transcranial magnetic stimulation are much more complex (LZc) during normal wake-

fulness than during sleep, or after loss of consciousness (LOC) due to a variety of anaesthetic

drugs (Massimini et al., 2005; Sarasso et al., 2015). This results, higher complexity for awake

and lower complexity for unconscious cortical states, have been replicated under several con-

texts, and open the possibility for new anaesthesia monitors based on brain activity complexity,

but also in general to better characterize the relation between brain activity complexity and

consciousness. However, little attention has been paid to intermediate states like sedation and

anaesthesia transitions. One recent study in mice reported that deeper anaesthesia states were

related to lower brain activity complexity, as compared to light anaesthesia, suggesting a linear

(or monotonic) relation between depth of anaesthesia and brain activity complexity (Dasilva et

al., 2020). However, these results have not been replicated in humans. Here we tested whether

propofol-induced intermediate states of consciousness, directly quantified by human subject’s

behavioural performance, showcase intermediate values of brain activity complexity, in between

those of wakefulness and deep anaesthesia. We also explored the topological distribution of brain

activity complexity during sedation and its possible relation to classical spectral EEG properties

like alpha power. The dataset analysed here contained the average performance (number of

correct answers) per condition per subject. Additionally, blood samples were obtained during
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Low TPC, High TPC and Recovery conditions to quantify plasma propofol concentration. Pre-

processing of this database included EEG data filtering (0.5 – 40Hz), segmenting into 10s epochs

(approximately 38 clean epochs per subject per condition) and artefact rejection of noisy epochs

by visual inspection. Data were re-referenced to the average of all channels.

2.2 Materials and Methods

Data

We analysed an open-access EEG database developed by Chennu and collaborators (2016) .

EEG data were acquired from 20 healthy volunteers during closed-eyes resting state for 7 minutes

in four consecutive sedation conditions: Baseline, in which no propofol was administered; Mild

sedation, in which intravenous target-controlled infusion of propofol was applied, set to a target

propofol concentration (TPC) equal to 0.6µg ml-1 ; moderate sedation, in which TPC was set

to 1.2µg ml-1 ; and a Recovery condition, where no further propofol was injected. This was

the nomenclature employed in the original work, however, we here decided to refer to Mild and

Moderate sedation conditions as Low TPC and High TPC respectively. This is to empathize

that these conditions were directly defined by target propofol levels and not its effect, namely

the level of sedation or responsiveness. After each condition, a 10 minutes period was allowed

to obtain a steady-state propofol plasma concentration. During each condition, subjects also

performed an auditory discrimination task in which they were asked to distinguish between a

buzz sound or white noise, and to respond accordingly by pressing a button. The

Lempel-Ziv Complexity Algorithm

To apply the LZc algorithm a crucial previous step is required. This algorithm is applicable

to signals that contain only few different symbols (typically binary signals), thus we binarized

the pre-processed EEG signal, assigning a ‘1’ to each time point with a voltage value above the

median of the analysis windows (10 seconds), and a ‘0’ to each time point below the median,

following previously employed strategies (Aboy et al., 2006). Then, to each time window, for

each condition, each electrode and each subject, we computed the LZc. Detailed descriptions
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of the 1976 LZc algorithm can be found in the original article (Lempel & Ziv, 1976) and in

Supplementary Material Figure 2.5, which also contains two illustrative step-by-step examples.

The script Implementation of this algorithm for Python can also be found in Supplementary

Material 2.6 LZc Algorithm Code. Briefly, LZc quantifies the number of non-redundant patterns

on a signal, using a step by step strategy. At each time point of the signal, a complexity counter

increases if the next symbol of the signal would introduce a pattern never observed before, or

one that could not be reproduced from previous segments. On the contrary, if the symbol does

not bring strict novelty to what the algorithm has already analysed, the complexity counter

does not increase, and the algorithm continues to the next time point. In this line, a constant

signal (e.g. ’1111111...’) will have only two novelties, the one referring to the first symbol (’1’)

and the second one recreating the rest of the signal. In a signal like ’010101...’ the complexity

counter will reach a value of 3, while more chaotic sequences will increasingly showcase higher

values. This complexity counter is then normalized considering both the length of the signal and

the number of symbols (2 for binary), finally yielding the LZc value. LZc ranges from 0 for a

constant signal (’11111...’) to 1 for a completely random signal (Lempel & Ziv, 1976).

Data Analysis

To estimate the complexity level of each subject during each condition, we averaged LZc

values across windows, electrodes and subjects for each condition (Figure 2.1A) unless otherwise

stated. Statistical analysis were done using Python libraries (NumPy and SciPy (Harris et al.,

2020)) and JASP (JASP Team 2019). Significant results were considered as such for tests with

p ¡ 0.05 unless otherwise stated. T-test were employed as Post hoc tests in ANOVAs. Python

MNE library (Gramfort et al., 2013) was used for topological plots and analyses.

To initially explore the possible effect that TCP conditions had on LZc we conducted a Fried-

man’s test (non-parametric analogous to 1-way ANOVA) on average LZc values per subject

across conditions. Separation of participants into Low and High performance groups was con-

ducted by applying a one dimension k-means clustering algorithm (Scipy Python library (Harris

et al., 2020)) to the behavioural performance of participants during High TPC condition. K-

means algorithm is an iterative process that attempts to find centroids (performance values, 2 in
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our case) that minimize the sum of squares of the distance between each centroid and the data

points closer to it (than to the other centroid). Once the algorithm converges, the data points

closer to each centroid constitute each cluster.

After the separation of participants into Low performance and High performance, we analysed

the apparent interaction between condition and performance (Figure 2.1E) via a mixed factor

ANOVA with TCP condition (Baseline, Low/High TCP, Recovery) as the within subject factor

and performance (High/Low performance) as the between subjects factor. Mann-Whitney test

(non-parametric analogous to t-test) was used to compare plasma propofol concentrations be-

tween High performance and Low performance groups during the High TPC condition.

After group analyses, we conducted single-subject level analyses of the data within the High TCP

condition. A multiple regression was employed to test whether subject’s LZc could be predicted

by their behavioural performance and/or by their plasma propofol concentrations. To support

the robustness of this multiple regression, we conducted an Intraclass Correlational analysis. This

strategy allows to compare the within subject variance from between-subjects variance. Within-

subjects variance in this design corresponds the difference in LZc between time epochs for each

subject, and thus corresponds to variations due to measurement errors and stochastic/random

variations in each subject’s cortical state. On the other side, between-subject’s variance should

reflect the differences in LZc given by natural differences that could be explained by our predic-

tors, performance and plasma propofol levels.

Spectral power of particular oscillatory bands was obtained by applying the Fast Fourier Trans-

form to the pre-processed signal (hanning tapper), squaring and median-filtering (1 Hz) (Cole et

al., 2019) the result for each frequency range (delta: 0.3 – 3 Hz; theta: 3 – 7 Hz; alpha: 7 – 13

Hz; low beta: 13 – 20Hz; high beta: 20 – 30 Hz; gamma 30 – 40 Hz). The notch filters employed

to analyse the possible dependency of LZc with specific frequency bands (Figure 2.2A, C) were

IIR, Butterworth of order 4, with a transition bandwidth of 0.2 Hz. Illustrative power spectral

density plots of the effects of each notch-filter can be found in Supplementary Material 3 Figure

2.6.

ROI classification of electrodes was defined based on cortical lobes into four bilateral areas:

frontal, temporal, parietal and occipital (Figure 2.4). An illustration depicting the specific elec-

trodes used for each ROI can be found in Supplementary Material 4 Figure 2.7.
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2.3 Results

LZc, behavioural responsiveness and plasma concentration across

sedation conditions

To evaluate the relation between brain activity complexity and level of sedation, we computed

the grand average LZc across subjects for each condition. We found that even the low propofol

concentrations used here had a significant effect on LZc across conditions (Friedman’s Q = 11.58,

p = 0.0089). To our surprise, we found a tendency towards higher LZc during sedation conditions

(Low and High TPC) compared to Baseline (Fig. 2.1A). This is opposed to the decrease in

measures similar to LZc due to propofol reported in the literature (Schartner et al,, 2015) . It is

important to note that neither behavioural performance, plasma propofol concentration nor LZc

were homogeneous within each TPC condition, especially during the High TPC condition (Fig.

2.1B, C, D). To account for this variability, we employed two complementary strategies, group

comparisons and analyses at the single-subject level.

Group Analysis

We separated subjects using a clustering algorithm (1-D k-means, see Methods), according

to performance during High TPC, into High performance (N = 13) and Low performance groups

(N = 7). Using a different statistical strategy, the same grouping of subjects was achieved in

the original analysis of this dataset (Chennu et al. 2016). Interestingly, statistical comparisons

revealed that subjects that increased their LZc due to propofol almost exclusively belonged to the

High performance group (Fig. 2.1E). This group showed a significant increase in LZc compared

to their baseline (mixed factor ANOVA, condition*performance F = 15.81, p < 0.001; Post hoc

test: High performance, High TPC vs. Baseline: t = - 4.9, p < 0.001). On the contrary, Low

performance subjects did not show a significant LZc modulation by propofol (Low performance,

High TPC vs. Baseline: t = 1.34, p = 0.59) but did show a tendency towards decreasing LZc

during High TPC (6 out of 7 showed a lower LZc value in High TPC than in Baseline). It is

noteworthy that this difference in LZc for High and Low performance groups was not present

during Baseline condition (t = 0.15, p > 0.88). Although every subject had the same target
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propofol concentration, the differences seen here may be nonetheless due to differential dosage.

To control for this possibility, we compared their plasma propofol concentrations during the High

TPC condition (see Fig. 2.1C). We observed no significant difference when comparing High vs.

Low performance groups during High TPC (Mann-Whitney W = 24, p = 0.096).

Single-subject level analyses

To better evaluate the relation between LZc, performance and plasma propofol concentration,

we conducted a correlational analysis at the single-subject level. We performed a multiple linear

regression on High TPC data using performance (Fig. 2.1F) and propofol concentrations (Fig.

2.1G) as predictors of LZc. We found that, in conjunction, these two predictors significantly

explained 51.4% of LZc’s variance (F = 11.1, p < 0.001, adjusted R 2 = 0.514). This effect was

mainly driven by performance, (performance β: t = 4.48, p < 0.001), which is illustrated by the

fact that the regression coefficient associated with propofol concentration was not significantly

different from zero (Fig. 2.1G; propofol concentration β: t = 1.48, p = 0.156). Moreover,

when this variable was removed from the model, only a reduction of 3.2% of explained variance

was observed (adjusted R 2 = 0.482, Fig. 2.1F, G). This result indicates that brain activity

complexity is a robust predictor of performance during intermediate sedation states, and thus of

the level of sedation, more so than plasma propofol concentration. To test whether the observed

differences between subjects, analysed in this multiple linear regression, were due to random

variations or truly reflected each subject’s brain activity complexity, we conducted an Intraclass

Correlation analysis. This allows to compare the between-subjects LZc variance with the within-

subject (across epochs) variance. We found that between subject’s variance accounted for 58.6%

of the total variance of the dataset, while epochs (stochastic variations in LZc in time) only

accounted for 14%. This indicates that regardless of the low number of subjects in this dataset,

inter subject differences in LZc are much more important than noise-related variations.

Five subjects presented very distinct behavioural performances during Low TPC (close to 100%)

and High TPC conditions (lower than 70%; see Figure 2.1B). This allowed us to explore LZc

dynamics between two conditions with different (not null) propofol dosages in a within-subject

manner. As an exploratory analysis we plotted the LZc values of those 5 subjects, relative
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to baseline, versus the plasmatic propofol concentration they presented during Low and High

TPC conditions (Figure 2.1H). Although no statistical analyses of this data would be feasible

due to the small sample (n = 5), this analysis showed that three out of five subjects from this

subset showed considerably greater LZc during Low TPC than during baseline, and that all five

showcased a reduced brain activity complexity when comparing Low versus High TPC.

Susceptibility

The results presented above suggest that increases in LZc could be used as a possible differen-

tiating characteristic between subjects that are highly susceptible to propofol (Low performance)

from those that require a higher dose to reach deeper sedation (High performance). Also, al-

though propofol concentration did not predict LZc by itself (Fig. 2.1G), we hypothesized that its

relationship with performance could be informative in this regard. To assess this possibility, we

constructed a susceptibility-to-propofol index that accounts for both the amount of behavioural

performance lost during sedation and plasma propofol concentration. Susceptibility was defined

as the amount of performance lost in High TPC (normalized to range between 0 and 1) divided

by the normalized propofol concentration during High TPC (relative to all subjects, also from

0 to 1). We found a robust linear correlation between propofol-induced LZc change and our

susceptibility-to-propofol index (Fig. 2.1H; R 2 = 0.52, p < 0.001). This suggests that subjects

that are more susceptible to propofol sedation are more prone to showcase a decrease in brain

activity complexity, while those less susceptible are likely to showcase increases in LZc during

propofol sedation.
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Figure 2.1: Relation between LZc, behaviour and plasma propofol concentration. A: Grand
average LZc for each condition. Each dot represents each subject’s average. B: Behavioural
performance in the sound discrimination task for each sedation condition. Light circles indicate
High performance subjects and dark triangles represent Low performance subjects, as separated
by performance during High TPC (k-means). C: Scatter plot depicting behavioural performance
versus propofol concentration levels for all subjects and conditions. HP and LP represent High
and Low performance respectively. D: Scatter plot depicting average LZc versus propofol con-
centration for each subject and condition. Colours and markers’ shapes represent the same as
in C. E: LZc during Baseline and High TPC separated by performance groups. Error bars rep-
resent standard deviation. Asterisks represent significance under 2-way mixed effect ANOVA.
F: Scatter plot showing the linear correlation between LZc and behavioural performance dur-
ing High TPC. G: Scatter plot showing the lack of correlation between LZc and propofol levels
during High TPC (p > 0.05). H: Scatter plot showing LZc values relative to baseline for Low
(orange markers) and High (red markers) TPC conditions of 5 subjects that showcased marked
differences of behavioural performance between these two sedation conditions (see main text).
Same-subject data is represented by markers connected by a grey line. I: Scatter plot showing
the significant correlation (Pearson) between the percentage change of LZc from Baseline to
High TPC condition versus susceptibility at the single-subject level. Note that a positive ∆LZc
indicates increase in brain activity complexity due to propofol sedation.
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Complexity and Spectral Power

The neural signatures of propofol anaesthesia have been classically studied with spectral

analysis, which have robustly shown that sedation and LOC are closely linked to an increase and

frontalization of alpha-band activity, among other spectral signatures (Feshchenko et al., 2004)

. With this in mind, we wanted to assess whether our results showcasing the relation between

performance and LZc were dependent on alpha power. To do this, we performed a notch filter

to the EEG signal, effectively eliminating the power in the alpha-band range (7 – 13 Hz), before

computing LZc on the EEG signal. We then calculated the difference in LZc due to propofol

for each subject (∆LZc: High TPC – Baseline). We conducted a mixed factors ANOVA with

∆LZc as the dependent variable, performance (low / high) as a between subject factor and filter

(No Filter / No Alpha) as a within subject factor. This analysis showed no effect for the filter

condition (F = 0.133, p = 0.72) and a strong effect of performance (F = 18.38, p < 0.001; Fig.

2.2A). Post hoc analyses confirmed that ∆LZc only differed between pairs of groups with different

performance (all p < 0.05), but not between groups that differed on the filter treatment (all p >

0.92). In addition to this filtering strategy, we wanted to test whether natural variations of alpha

power could predict the level of brain activity complexity. We found no significant correlation

between LZc and alpha power during the High TPC condition (linear regression, R 2 = 0.039, p

= 0.41, Fig. 2.2B). These results suggests that LZc is not dependent on the amplitude of alpha

activity.

To further assess the relation between LZc with spectral characteristics of the EEG signal,

we subdivided the whole frequency range into six frequency bands (ranging from 0.5 to 40Hz, see

methods), quantified their powers and correlated them with LZc for all subjects and conditions

(See Supplementary Material 5, Figure 2.8). We found, as suggested by previous simulation

results 20 , that in general LZc has a negative correlation with the power of low-frequency

activity (e.g. LZc vs delta: R = -0.42, p < 0.001) and a positive correlation with the power

of high frequency activity (e.g. LZc vs gamma: R = 0.63, p < 0.001). This could imply that

the observed increase in LZc due to propofol sedation in High performance subjects is directly

caused by changes of the spectral power of low and high frequency bands. To directly test this

hypothesis, we conducted a causal analysis in which we separately filtered each of the 6 frequency
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bands prior to calculating LZc and assessed the % change in LZc between Baseline and High TPC

conditions. Figure 2.2C illustrates these results, which show that the increase in LZc in High

performance subjects was not altered by filtering out any specific frequency band. Statistical

analysis of this was assessed by means of Bonferroni corrected (12 comparisons) paired t-tests

comparing the % change in LZc from filtered signals against zero (Delta p = 0.024; Theta p =

0.0078; Alpha p = 0.018; Low Beta p = 0.0098; High beta p = 0.0098; Gamma p = 0.0028) and

comparing the % change in LZc from filtered vs unfiltered signals (all p ¿ 0.05). The comparison

of LZc % change from unfiltered signals vs High beta-filtered yielded a marginally significant

difference (p = 0.067). These results illustrate that the propofol-induced increase in LZc in

High performance subjects (positive % change in LZc) was present regardless of filtering out

any frequency band. Thus, although in general LZc correlates with the spectral power of low

and high frequency bands, the sedation-induced LZc increase does not appear to depend on the

power within any specific frequency range.
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Figure 2.2: Relation between brain activity complexity and spectral power. A: Difference in
LZc (High TPC minus Baseline) for High and Low performance subjects. Empty circles indicate
no extra treatment to the signal before calculating LZc and filled circles indicate filtering out
alpha-band power before calculating LZc (see Methods). B: Scatter plot relating the spontaneous
power of alpha-band and the LZc during High TPC for each subject. No significant correlation
was found. C: Shows the percentage change of LZc due to propofol sedation (High TPC mi-
nus Baseline) in average (bar plots, error bars show standard deviation), and for each subject
(markers). This analysis was done for the full EEG signal and for frequency band-specific notch-
filtered signals. Light grey indicates Low performance subjects and Dark grey indicates High
performance subjects. High performance group consistently showed positive values, indicating
that the increase in LZc is mostly independence of single-frequency band power modulations

65



CHAPTER 2. BRAIN ACTIVITY COMPLEXITY HAS A NON-LINEAR RELATION
WITH THE LEVEL OF PROPOFOL SEDATION

LZc topological distribution across sedation stages

The interpretations of EEG oscillatory activity, and of most brain activity patterns, are

strongly dependent on scalp localization. However, evidence regarding the topographical dis-

tribution of brain activity complexity is still sparse. It has been observed, using variations of

the original 1976 LZc algorithm, that complexity peaks at frontal electrodes and does not dras-

tically changes topographical distribution in response to anaesthesia (e.g. Lempel-Ziv-Welch

(Schartner et al., 2015); Permutation Lempel-Ziv Complexity (Shumbayawonda et al., 2018)).

Here, we wanted to assess the distribution of LZc during Baseline and the possible differences in

topography given by propofol sedation. Figure 2.3A shows the LZc distribution in each sedation

condition. In contrast to what has been reported with other complexity algorithms, we found

a relatively low complexity in frontal electrodes during Baseline in comparison, for example, to

parietal areas, which showcase two bilateral complexity peaks. Visual inspection of grand av-

erage topographic complexity distributions showed no drastic changes due to propofol, beside a

general magnitude increase. To better assess this we compared, for each electrode, LZc within

TPC conditions (Fig. 2.3B, High performance vs. low performance) and between TPC condi-

tions (Fig. 2.3C, Baseline vs. High TPC). Figure 2.3B (right side) shows the topographical map

of t-values of the comparisons between High and Low performance subjects during High TPC.

A wide centro-parietal area showed significant differences in this comparison (white markers in-

dicate significance after false discovery rate (FDR TSBKY) (Yoav et al., 2006) correction with

α = 0.01). Similarly, High performance subjects had significantly greater LZc in centro-parietal

electrodes during High TPC in comparison to Baseline (Fig. 2.3C right side). The opposite

effect in low performance subjects did not reach statistical significance.
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Figure 2.3: Topographical distribution of LZc during propofol sedation and its modulations by
performance. A: Grand average topographical distribution of LZc during each sedation condition.
Two bilateral parietal maxima can be seen for all conditions, and a lower LZc in frontal electrodes
in the Baseline condition. B: Within sedation condition comparisons: For Baseline (left side) and
High TPC (right side) we compared (independent t-test), for each electrode, the LZc values of
High performance subjects versus Low performance subjects. Only High TPC showed significant
differences between performance groups. C: Comparisons made between TPC conditions: For
each performance group (Low performance, left side; High performance, right side), and for each
electrode we tested the LZc values of Baseline versus High TPC conditions (paired t-tests). Only
High performance subjects showed a significant difference between their Baseline and High TPC
conditions. For A colour indicates LZc values. For comparisons in B and C subplots colours
indicate t-values of statistical comparisons and white markers indicate significant differences after
TSBKY FDR correction.
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Finally, to further assess these topographical differences, we grouped electrodes into 4 regions

of interest (ROI, see Methods) and calculated the averaged LZc for each one. We conducted

a 3-way mixed factors ANOVA with ROI and TPC condition as within subject factors and

performance as a between subject factor. We found significant main effects of condition, ROI,

condition*ROI and condition*performance (F = 6.10, p = 0.024; F = 22.83 p < 0.001, F = 14.53,

p < 0.001; F = 5.37, p = 0.032; respectively). Post hoc analyses showed that the increase in

complexity of High performance subjects was primarily driven by frontal electrodes (Fig. 2.4A, t

= 5.79, p < 0.001) and in a lesser degree by parietal ones (t = 4.12, p = 0.035). No difference was

found for occipital electrodes in High performance subjects, nor for any ROI in Low performance

subjects (Fig. 2.4B). Thus, our results indicate that, even though frontal regions do not show a

particularly distinct complexity during Baseline, they are more responsive to propofol sedation

(in High performance subjects) than any other brain area.
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Figure 2.4: Region-specific reactivity of LZc to propofol sedation. A: LZc of High performance
subjects for each ROI (see Methods and Supplementary Material 3 Fig. 2.6) during Baseline and
during High TPC condition. The frontal ROI showed the greater differences between conditions.
The parietal ROI also showed a significant increase of LZc due to propofol sedation. B: Low
performance subjects did not show significant divergences of LZc values.

2.4 Discussion

In the present article we show that the complexity of brain activity, measured as the LZc

of resting state EEG signals, can increase during propofol sedation. This increase was only

observed in partially sedated subjects, i.e. those that maintained their performance, but not

on those that significantly decreased their behavioural performance in a simple discrimination

task. The raise in LZc during High TPC (1.2µg ml-1 ) was not directly correlated with plasma

propofol concentration (Fig. 2.1G), but with subject-specific propofol susceptibility (amount of
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performance lost per unit of anaesthetic; Fig. 2.1H). As expected, LZc was in general correlated

with the spectral power of specific frequency bands (negative correlation for low frequencies and

positive for high frequencies). Interestingly, we found that eliminating the spectral power within

any frequency band had no significant effect on the increase in LZc shown by High Performance

subjects. We also observed topographical differences of this effect, being more marked for frontal

and parietal areas, and absent in occipital cortices.

Previous research has repeatedly shown that LZc (or similar measures) decrease after LOC dur-

ing sleep (Massimini et al., 2005) and during propofol (Zhang et al., 2001; Schartner et al., 2015)

or xenon (Sarasso et al., 2015) anaesthesia. This has been stated as support for the Entropic

Brain Hypothesis (Carhart-Harris et al., 2014) , which proposes that the complexity (entropy)

of brain activity should directly reflect the complexity of states of consciousness (experience).

This is consistent with reports of increased brain activity complexity during psychedelics (Tim-

mermann et al., 2019) or ketamine (Sarasso et al., 2015) administrations. However, our results

show that brain activity complexity increases, compared to normal wakefulness, without (clear)

psychedelic or hallucinatory effects (Purdon et al., 2015), calling into question the proposed

direct link between brain activity complexity and the complexity of states of consciousness or

experience.

Interestingly, although we observed lower LZc values in frontal regions compared to other brain

areas, frontal electrodes showed the most robust propofol-induced complexity increase in High

performance subjects (Fig. 2.4A). In opposition, LZc in occipital (visual) cortices was not signif-

icantly modulated by propofol. This result fits in line with theories of consciousness like Global

Neuronal Workspace Theory, which propose that the neural correlates of consciousness should be

located in fronto-parietal associative cortices (Dehaene et al., 1998) . However, further evidence

is required to reach a conclusion in this topic. The lack of effect over visual cortices seen here

could also be related to the poor visual experiences of participants (eyes closed).

The general correlations between LZc and the spectral power of particular frequencies are to be

expected based on simulations and experimental reports (Aboy et al., 2006; Bola et al., 2019;

Schartner et al., 2017). However, here we show that the increase in EEG complexity for High

performance subjects is not the mere reflection of an increase (or decrease) of power within

any particular frequency range (Fig. 2.2C). Instead, we propose it is based on a modulation of
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the broad temporal dynamics of different brain processes. One possible avenue of exploration,

consistent with LZc showing both a negative correlation with low frequencies and a positive

correlation with high frequencies (Supplementary Material 5 Figure 2.8), could be that brain

activity complexity is related to 1/f modulations of broad ranges of the frequency spectrum in

EEG signals (Medel et al., 2020; Colombo et al., 2019).

Non-linear relations between brain activity measures and anaesthesia have been previously re-

ported. For example, Kuizenga and colleagues (2001) describe that delta and alpha-beta bands

show biphasic changes in amplitude during anaesthesia induced by 4 out of the 5 drugs tested

(including propofol), robustly increasing just before LOC, and only then decreasing. Propofol,

and other anaesthetics, are known to produce what has been called paradoxical excitation at low

doses, increasing neuronal activity in high frequencies (Ishizawa et al., 2016) . The term para-

doxical is used given the fact that propofol is known to enhance inhibitory GABA A currents in

cortical circuits. Mechanistic explanations for this have been proposed, suggesting that propofol

would, via interactions with slow K + currents (M-currents), switch the state of interneurons

from a synchronized to a more desynchronized state (McCarthy et al., 2008) . This is consistent

with the increase in complexity or neural diversity observed in our results. In this line, we believe

our results open several possible clinical applications of LZc, as an aid towards titrating sedative

and anaesthetic doses, but also as a possible tool to quantify paradoxical excitation.

Limitations of the current study include the small sample size, and the lack of continuous mea-

surement of EEG during transitions between full wakefulness and LOC. However, we believe the

results presented here, in the context of others reported in the literature, robustly show that

brain activity complexity does not always show a direct or simple relation towards subjects’

behavioural performance (i.e. level of sedation; always diminishing in response to anaesthetics);

namely because LZc can initially increase with respect to baseline during propofol infusion. Our

results also suggest that LZc reflects broad modulations of brain activity, not simply related

to frequency-specific spectral power modulations. We believe further research in this topic is

required to better understand the relation between different markers of brain activity, states of

consciousness and their behaviours during anaesthesia.
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2.5 Supplementary Material

Figure 2.5: Illustration of LZc algorithm. LZc analyses as signal, step by step, by quantifying
the number of production steps (green lines) required to recreate the original signal. When
the signal being analysed is contained in (reproducible from) the previously analysed segment,
no noverlty is found so only a reproduction required. Otherwise, a full production process is
conducted. Left: A binary periodic signal can be recreated in just a few steps. The first symbol
is always produced (CH is increased from zero to one). In the second step, the algorithm read
’1’ and as ’1’ cannot be reproduced (obtained) from ’0’ (the previously analysed sequence to
that moment), it has to be produced (CH is increased from 1 to 2). Then, as ’01’, with a simple
copying procedure can recreate the whole rest of the signal, (with a pointer = 2 and length = 16)
the recreation of S1 is completed with 3 steps. Right: For a binary non-periodic signal we also
begin by producing the first symbol. Then, as ’0’ and ’00’ can be reproduced from the previously
observed part of S2. This symbol is ’1’, thus only then CH increases (CH = 2). Afterwards,
as ’1’ can be reproduced from ’0001’, a process continues until the whole signal is recreated
(analysed). It is noteworthy that the reproduction process does not need to occur from the end
of the already analysed signal, but can take place from the middle (see row 6, CH(S2) = 5).
The number of production processes, or equivalently the number of elements in the exhaustive
production history of the signal, constitute the base of the LZc measure. LZc corresponds to this
value, divided by n/logk(n) where n is the length of the signal and k is the number of possible
symbols of the signal (2 for binary signals).
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Figure 2.6: Illustration of Notch filters. Each panel depicts the Power Spectral Density plot
after eliminating, via notch filter, the spectral power within specific frequency ranges. The
frequency range is represented by gray rectangles. Lines correspond to the average normalized
spectral power across all subjects, conditions, epochs and electrodes.
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Figure 2.7
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Figure 2.8: Lempel-Ziv Complexity vs Spectral Power per frequency band. Scatter plots
showcasing the dependency of LZc with the spectral power of different frequency bands. Each
data point depicts the average value for each subject and TPC condition.Circles indicate High
performance subjects; Triangles indicate Low performance subjects. Colours indicate conditions:
Green = Baseline, Orange = Low TPC, Red = High TPC, Blue = Recovery. Each plot also shows
the results of a Pearson correlation. It can be broadly seen that LZc is negatively correlated with
the power of low-frequency activity (R < 0), while it is positively correlated with the spectral
power of high-frequency activity (R > 0).
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Chapter 3

Interpreting the neuromodulation of

1/f aperiodic activity through the

switch of adaptation currents

Abstract

Brain activity can switch between a variety of states that each have different

effects on perception, cognition and behavior. Fluctuations in arousal and neural

desynchronization are related to changes from innatentive to vigilant states. How-

ever, their relation and the underlying mechanisms relating them are unclear. Here,

using in-silico modeling we show that changes in desynchronization -as indexed by

1/f slope- and arousal can be adressed by changing activity-dependent adaptation,

which diminishes K+ channels. Predictions from the model are validated in three

published data from two species (Macacque and human). We find that pharma-

cological decrease of noradrenergic modulation -which increases baseline activity-

dependent adaptation- steepens the 1/f slope in invasive recordings. In contrast,

pharmacological increase of arousal-related modulation increases neural desynchro-

nization, as adressed by 1/f slope of the power spectrum. These results suggest

that neural desynchronization is achieved by shifts in activity-dependent adaptation

currents which can be modulated by arousal-related neuromodulation.

80



CHAPTER 3. INTERPRETING THE NEUROMODULATION OF 1/F APERIODIC
ACTIVITY THROUGH THE SWITCH OF ADAPTATION CURRENTS

3.1 Introduction

To actively engage in ever changing environmental demands, animals dynamically switch

between a variety of behavioral states that differentially affect neural responsiveness and the

ability to optimally process information. Variations in these so-called “cortical states” have

been studied at different timescales, ranging from slow changes occurring in the sleep-wake cycle

(Lee and Dan, 2012), and at faster timescales during wakefulness where rapid switches from

inattentive to vigilant state is required (McGinley et al., 2015). These switches are supported by

a tightly controlled activity in brainstem neurons that diffusely release neuromodulators at their

cortical target sites, shaping the neural activity at both meso (McCormick et al., 2020) and the

macro scale (Shine, 2019).

Decades of research have characterized global electrophysiological patterns that depend on

the cortical state of the animal. Classic electroencephalographic (EEG) studies have shown that

the EEG has fast low-amplitude fluctuations when the animals are awake, and as the animal

transits to sleep, the EEG starts to show increasing high-amplitude slow patterns (Harris and

Thiele, 2011). Multi-scale approaches have revealed that high-amplitude slow EEG activity

reflects synchronous cortical states, in which silent and highly active periods are alternated

slowly (Steriade et al., 1993) while fast low-amplitude fluctuation corresponds to irregular firing

and desynchronized EEG (Lee and Dan, 2012).

Computational approaches have shown that the range of firing patterns from synchronized

to desynchronized, can be achieved by simulating a network of neurons with balanced excitatory

and inhibitory synaptic activity (van Vreeswijk and Sompolinsky 1996; Brunel, 2000) modu-

lated by activity-dependent adaptation on excitatory cells which dynamically close K+ channels

(Nghiem et al., 2020; Goldman et al., 2020b; Zerlaut et al., 2018). From this perspective, in

order to shape the so-called “default activity pattern” of cortical activity (Sanchez-Vives et al.,

2017) and transition the cerebral cortex from a synchronized to desynchronized state, the brain

depends on global variables, such as relative levels of excitation and inhibition (Haider et al.

2006) and the level of activity-dependent adaptation on excitatory populations (Goldman et

al., 2020a; Zerlaut et al., 2017; Sanchez-Vives et al., 2017; D’Andola et al., 2018). Interestingly,

there is strong evidence showing that extracellular application of common neuromodulators, such
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as noradrenaline or acetylcholine, eliminates the activity-dependent adaptation seen by the in-

jection of a depolarizing current. This evidence suggests that diminishing adaptation through

neuromodulation could facilitate E/I balance (Nghiem et al., 2020) and suggests a mechanistic

role of ascending arousal system in regulating E/I balance and cortical state.

A sensitive means for quantifying cortical state involves the background activity of the spec-

tral power of brain field potentials. Specifically, models have shown that the background 1/f

slope of the power spectral density (PSD) is well explained by the sum of stochastic excitatory

and inhibitory currents (Sheehan et al. 2018; Destexhe et al. 2001; Gao et al., 2017). Moreover,

by parameterizing the 1/f shape of the PSD, E/I balance can be directly inferred from back-

ground field potential activity (Gao et al., 2017; Trakoshis et al. 2020; Waschke et al., 2021;

Colombo et al., 2019; Medel et al., 2020). These lines of evidence suggest a tractable hypothesis:

that neuromodulatory tone should shape E/I balance, and hence, alter the 1/f slope of the PSD

of field potentials.

To test this hypothesis we use both computational and empirical approaches to demonstrate

the close relationship between activity-dependent adaptation and the 1/f slope of electrophysio-

logical field potentials. First, we extend previous simulation approaches (Destexhe et al., 2001;

Gao et al., 2017; Medel et al., 2020) by adding an activity-dependent adaptation parameter over

inter-spike interval distributions and show that changing adaptation shapes the 1/f slope. Next,

we test our computational predictions on two open datasets. The first dataset contains a Monkey

(Macaca mulatta) local field potential (LFP) signal under dexmedetomidine (Ballesteros et al.,

2020), a well known α2-agonist that strongly decreases noradrenergic transmission by inhibiting

locus coeruleus neurons (Nacif-Coelho et al., 1994; Jorm and Stamford, 1993; Chiu et al., 1995)

and show that diminishing noradrenaline steepens the 1/f slope, putatively increasing adapta-

tion. Next, we analyze human EEG data (Albrecht et al., 2016) of eyes-closed resting-state

EEG with pharmacological manipulation of both dopaminergic and noradrenergic systems and

show that increasing neuromodulation flattens the 1/f slope, putatively eliminating adaptation.

These results suggest that arousal-related neuromodulators shape activity-dependent adaptation

currents in the cerebral cortex shaping E/I balance.
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3.2 Materials and Methods

Local Field Potential Simulations

We simulated cortical Local Field Potential (LFP) time series as a sum of excitatory and

inhibitory point-conductances (Destexhe et al., 2001; Gao et al., 2017). Briefly, we obtained

different inter-spike intervals (ISI) from independent Poisson processes with specified average

rates and number of neurons for GABA-A and AMPA neurons and generated binary time series.

The ISI distribution is described by white noise (Schwalger et al., 2010) which can capture ISI

density (Schwalger et al., 2010) and satisfies the Poisson property that mean equals variance:

µ = (FR ∗Ni) (3.1)

σ2 = µ (3.2)

ISI N(µ, σ2) (3.3)

where µ, σ2 are the mean and variance of the Poisson distribution, FR is the firing rate of

the simulated population, and N is the number of simulated neurons. Sampled values with ISI ¡

0 were set as 0. Each spike time sk was then computed as the cumulative sum of the ISI vector

of length K:

Sk =

k∑
i=1

ISIi, for k = 1, 2, ...,K (3.4)

These signals describe the firing rate of all simulated neurons. We discretized the spike train

vector to obtain the firing rate at each time bin, defined as 1ms. To obtain synaptic signals

we convoluted the discretized spike time series with empirically defined rise and decay time-

constant conductance kernels for GABA-A and AMPA synapses (Gao et al., 2017; Destexhe et al.,

2001; Supplementary Figure 3.4). The conductances of each neural population was obtained by

convolving the discretized spike train vector B with a kernel resembling the synaptic conductance
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function g:

G = (B ∗ g(t)) (3.5)

where the synaptic conductance function g that spans the time t is defined as

g(t) = −et/τrise + et/τdecay (3.6)

Finally, the LFP was computed as the sum of each synaptic current (Mazzoni et al., 2015;

Destexhe et al., 2001), which were obtained by multiplying each conductance by the difference

between the resting potential VE and the typical reversal potential for GABA-A and AMPA

receptors (see Supplementary Table 3.1) Vr.

LFP = IE + II (3.7)

LFP = GE(VE − Vr) +GI(VI − V r) (3.8)

The detailed parameters used in the LFP simulations can be found in Supplementary Table

3.1. Each simulated LFP time series consisted of 10 seconds with timesteps of 1 millisecond. We

employed this modeling strategy due to the fact that it has been shown to capture amplitude

and spectral characteristics of synaptic conductances observed in vivo (Destexhe et al., 2001),

and has been previously validated as a tool to infer the E/I balance of cortical tissues (Gao et

al., 2017).

Simulating Adaptation in Inter-Spike Interval distributions

We manipulated adaptation by shaping the ISI distributions drawn from the independent

Poisson processes. Previous modelling and characterization work have shown that adaptation

lowers the mean while increases the variance of the probability density function of the ISI (Laden-

bauer et al., 2014). To simulate adaptation, we shaped the ISI distribution by using a modulated

Poisson signal (See Methods), similar to known modulations of variance seen at in vivo condi-

tions (Goris et al., 2010; Munn et al., 2020). We added adaptation to the ISI by modulating the
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variance of the distribution:

σ2 = µ+ α (3.9)

where µ, σ2 are the mean and variance of the Poisson distribution, and α is the additive

gain modulation term. Based on previous work (Ladenbauer et al., 2014; Nghiem et al., 2020;

Barranca et al., 2018; Pozzorini et al., 2013), we applied adaptation effect only in excitatory and

not inhibitory neurons, maintaining inhibitory neurons in the canonical relation of poisson-point

processes where the mean equals the variance of the distribution.

Power Spectral Density and Aperiodic 1/f Analysis

We calculated the Power Spectral Density (PSD) using Welch’s method of the Fourier Trans-

form as implemented in the MNE toolbox (Gramfort et al., 2014; Jas et al., 2018). We param-

eterized periodic and aperiodic components of the PSD using the “Fitting Oscillations& One

Over f” (FOOOF) toolbox (Donoghue et al., 2020). The FOOOF algorithm decomposes the

log PSD into a summation of narrowband Gaussian periodic (oscillations) and aperiodic (1/f

offset and slope) components for the whole frequency range. The algorithm estimates periodic

and aperiodic components, removes the periodic ones and estimates again until only the aperi-

odic components of the signal remain. This allows for estimation of offset and power-law slope

with considerable independence from oscillatory behavior, which is particularly important for

empirical signal analysis (Donoghue et al., 2020; Voytek & Knight, 2015). FOOOF toolbox also

contains a “knee” parameter, which was not considered as it corresponds to changes in the 1/f

slope at higher frequencies that were not analyzed in this study. We set the algorithm with

peak width limits: [1-8], maximum number of peaks: 6; peak threshold 1.5; and ‘fixed’ aperiodic

mode. Power spectra were parameterized across the frequency range 20 to 70 Hz in simulated

data, 10 to 50 Hz in LFP and 20 to 40 Hz in EEG.

LFP Data

We analyzed an open dataset of one monkey with extracellular microelectrode arrays (Balles-

teros et al., 2020) implanted in the primary somatosensory cortex (S1) and the ventral premotor
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area (PMv). Each array contained 16 (S1) or 13 (PMv) platinum-iridium recording microelec-

trodes separated by 400 µm and had a total size of 1.95 × 2.5 mm. Analog data were amplified,

band-pass filtered between 0.5 Hz and 8 kHz and sampled at 40 kHz. LFPs were filtered with a

low-pass filtering at 200 Hz and down-sampled at 1 kHz.

Dexmedetomidine was infused for a total 60 min at 18 µg/kg/h for the first 10 min. The

infusion rate of dexmedetomidine was determined to induce loss of consciousness (LOC) in ap-

proximately 10 min. A behavioral task was used to monitor the animal’s arousal. LOC was

defined as the time at which the probability of task engagement was decreased to less than 0.3

(Mukamel et al., 2014). The monkey had 3 sessions of dexmedetomidine infusion. In Figure 3.2

we report average result of all sessions, and each session’s results can be found in Supplementary

Figure 3.5.

The original paper (Ballesteros et al., 2020) was focused on the relation between task perfor-

mance and the transition between loss of consciousness (LOC), return of consciousness (ROC)

and the abrupt wakefulness induced by the α2 antagonist. As the periods of consciousness of the

original dataset are based on behavior alone and not on plasma concentration of dexmedetomi-

dine, and as we are mainly interested in the acute effect of decreased noradrenaline transmission,

in this work we only focus on Awake and LOC periods.

EEG Data

We analyzed an open dataset of human resting-state EEG (Albrecht et al., 2016). The data

consisted in twenty-eight healthy participants (14 male and 14 female) with mean age of 25 years.

Participants were administered either dexamphetamine or placebo in a counterbalanced order:

14 participants received placebo on first the week and dexamphetamine in the second week,

while 14 participants received dexamphetamine first and placebo second. With a dose of 0.45

mg/kg and a mean participant weight of 71 kg, the average dexamphetamine per person was 32

mg which was orally administered. Participants came to the centre for two testing sessions, 1

week apart. The resting state procedure testing began at 200 min post dose, shortly after the

reference peak dexamphetamine concentration for oral administration of 25 mg (Asghar et al.,

2003). This is also close to the peak time of the autonomic effects of dexamphetamine (Albrecht
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et al. 2011).

The EEG was recorded at 1 kHz with a Neuroscan 32-channel system according to the

extended 10–20 system using an Ag/AgCl electrode cap that included vertical and horizontal

electrooculograms. Data was segmented into 2 s non-overlapping epochs and baseline-corrected

using the entire epoch. The average number of epochs used after artifact rejection for the dex-

amphetamine and placebo conditions respectively, were 57 (dexamphetamine) and 59 (placebo)

epochs per person. We used eyes-closed resting-state data, where participants were instructed

to relax as much as possible (to reduce muscle artefacts) and limit eye movements during 4

minutes. For repeated-measure analysis at the subjects level, we selected ROIs based on elec-

trode comparison (Figure 3.3C) and literature (Arnsten, 1998). The selected ROIs were frontal

electrodes corresponding to FP1, FP2, F3, F4, F7, F8, FZ, FCZ, FC3, FC4, FT7, FT8. Further

preprocessing and experimental details can be found in the original paper (Albrecht et al., 2016).

Statistical Analysis

Experimental data was visualized using a python implementation of raincloud plots (Allen et

al., 2021; van Langen, 2020) and topoplot from open-source python package MNE (Gramfort et

al., 2014; Jas et al., 2018). The relation between 1/f slope and adaptation was calculated using

nonparametric Spearman rank-order correlation coefficient (Figure 3.1D). Aperiodic 1/f slope

differences between awake and dexmedetomidine were assessed by repeated measures ANOVA

using the mean values of each electrode across sessions (Figure 3.2C, D). Topographic differences

among groups in 1/f slope (Figure 3.3C) were assessed using Wilcoxon signed-rank test, which

is a non-parametric version of the paired T-test. Differences among groups in 1/f Slope in

the region-of-interest (ROI) across subjects (Figure 3.3D) were assessed by repeated measures

ANOVA, Group (Placebo, Dexamphetamine) and Session (First, Second) where used as levels.

All reported p-values were corrected by multiple comparison.

3.3 Results

To explore the role of adaptation in 1/f slope of field potentials, we used a previously vali-

dated simulation of synaptic background activity of LFP based on independent excitatory and
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inhibitory point-conductances (Destexhe et al., 2001; Gao et al., 2017; Medel et al., 2020; See

Methods). As it has been shown previously with these models we observe that the log-log of the

PSD follows a decaying 1/f power law for frequencies past 20 Hz (Figure 3.1C) which directly

results from the addition of the different rise and decay time constant profiles of AMPA and

GABA-A currents (Gao et al., 2017; Destexhe and Rudolph, 2004). It has been shown with

the same model that artificially disrupting the excitation and inhibition balance changes the 1/f

slope of the power law (Gao et al., 2017).

We next added an adaptation parameter that replicated the effects of adaptation over the

variance of the ISI distribution (Schwalger et al., 2010; Ostojic, 2011; Ladenbauer et al., 2014)

we used an additive gain modulation α over the Poisson-like white noise that constructed the

ISI distribution (Figure 3.1A; See Methods). We generated 30 LFP time series with different

α (Figure 3.1B) ranging from 0 to 0.3 with 50 repetitions each. Next, we calculated the power

spectral density of each signal and calculated the spectral parameter of 1/f slope (Donoghue et

al., 2020).

Consistent with the unaltered model (Destexhe et al., 2001; Gao et al., 2017; Trakoshis et al.,

2020), we found that manipulating α did not change global structure of the PSD. However, we

found a robust modulation of the 1/f slope towards higher values (steeper slope) as α increased

(Figure 3.1C). Next, we averaged the aperiodic values of the 50 repetitions in each α gain level

and found that both signals were highly correlated (rho = 0.993, p<0.001; Figure 3.1D). Our

result shows that adding variance to the ISI distribution -our proxy to adaptation- steepens the

1/f slope. This showcases the relation between excitatory synaptic adaptation and 1/f slope in

silico.
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Figure 3.1: LFP simulation shows a tight relation between adaptation (α) and 1/f Slope. (A)
Inter-spike Interval distribution for different adaptation α . Replicated from Ladenbauer and
cols. (2014). (B) Voltage traces of 0.5 seconds of simulated signals with different α. Colors are
the same as for panel A. (C) Power spectral density of the simulated signals with different α,
denoted by the colorbar. (D) Scatter plot of the 30 α values averaged across the 50 simulation
repetitions. Lines denotes the standard error of the mean and color the level of α. The inner
panel shows the Spearman rank-order correlation coefficient.

Next, we asked whether the steepening of the 1/f slope due to the increase of adaptation

seen in our model could be reproduced in electrophysiological data by decreasing the neuromod-

ulation of the ascending arousal system. To test this hypothesis, we analyzed an open dataset

(Ballesteros et al., 2020) of monkey LFP under dexmedetomidine anesthesia with two micro-

electrode arrays implanted in the primary somatosensory cortex (S1) and the ventral premotor

area (PMv) (Figure 3.2A). Dexmedetomidine differs from common anesthetics many of which
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act by increasing inhibitory postsynaptic currents through GABA receptor targeting (Nelson et

al., 2002). Instead, it selectively targets α2a adrenergic receptors altering the level of arousal

by reducing the firing rate of the locus coeruleus, thus diminishing noradrenergic tone in the

cortex (Correa-Sales et al., 1992; Jorm and Stamford, 1993; Chiu et al., 1995), possibly due to

selectively targeting postsynaptic α2a receptors on noradrenergic neurons (Gilsbach et al., 2009;

Hu et al., 2012).

Consistent with well-known effects of dexmedetomidine over extracellular potentials, we found

that decreasing noradrenergic neuromodulation shifted LFP signals towards a highly synchro-

nized signal (Figure 3.2B), with a clear slow oscillation similar to N2 sleep stage (Akeju et al.,

2016). Next we calculated the PSD of awake and dexmedetomidine conditions across the 3 ses-

sions of sedation and found that both PMv and S1 showed a clear increase in low-frequency and

decrease in high-frequency power (Figure 3.3C, D left panel). We then calculated the 1/f slope by

parameterizing the power spectra (see Methods) in each session and electrode. As predicted, 1/f

slope becomes significantly steeper for S1(for mean sessions, F = 346.572, p < 0.001 Bonferroni

Corrected, η2 = 0.959) as well as in PMv (for mean sessions, F = 165.443, p < 0.001 Bonferroni

Corrected, η2 = 0.932) when decreasing noradrenergic transmission (Figure 3.3C, D right panel),

which suggests that increased adaptation due to a decrease of noradrenergic neuromodulation

steepens the 1/f slope.

90



CHAPTER 3. INTERPRETING THE NEUROMODULATION OF 1/F APERIODIC
ACTIVITY THROUGH THE SWITCH OF ADAPTATION CURRENTS

Figure 3.2: Decrease in noradrenergic neuromodulation by dexmedetomidine steepens 1/f Slope
in intracortical Monkey LFP. (A) Location of the microelectrode implantation sites. Analyzed
neural recording was performed in the Ventral Premotor Cortex (PMv, red) and the Primary
Somatosensory Cortex (S1, beige). (B) Example voltage of 10 seconds traces from S1 under
awake (blue) and dexmedetomidine (green) conditions. (C , D) Left panel show the PSD of a
representative electrode in PMv (C) and S1 (D) in awake and dexmedetomidine conditions. In
the right panel, repeated-measure raincloud plot of the 1/f average across sessions depicting the
differences between electrodes in awake and dexmedetomidine conditions. See Supplementary
Figure 3.4 for dissagregated results by session.

Transitions from synchronized to desynchronized state are likely supported by an increase in

arousal-related neuromodulation which would diminish adaptation and, thus, tighten E/I balance

(Harris and Thiele, 2011; Lee and Dan, 2012; Waschke et al., 2021). Intermediate levels of arousal

-such as spontaneous awake resting state- would recruit only baseline levels of neuromodulation

and thus have intermediate levels of adaptation, which might be decreased by increasing arousal

or pharmacologically increasing arousal-related neuromodulation. This decrease of adaptation

should conclude in a flatter 1/f slope as compared to resting-state baseline conditions. We test

this hypothesis by analyzing an open dataset of human resting-state EEG (Albrecht et al., 2016)

91



CHAPTER 3. INTERPRETING THE NEUROMODULATION OF 1/F APERIODIC
ACTIVITY THROUGH THE SWITCH OF ADAPTATION CURRENTS

with dexamphetamine, a monoaminergic agonist which inhibits the monoaminergic transporters,

mainly noradrenergic and dopaminergic transporters (Rizzo and Gulisano, 2013), thus increasing

noradrenergic and dopaminergic neurotransmission.
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Figure 3.3: Increase in noradrenergic and dopaminergic neuromodulation by dexamphetamine
flattens the 1/f Slope in Humans eyes-closed resting-state EEG. (A) Types and time course
of the experimental session. Each subject participated in two sessions, involving the adminis-
tration of placebo (green) and dexamphetamine (blue) (1 week apart, counterbalanced order).
(B) Example of single-subject power spectral density from FZ electrode. In light green placebo
conditions, and blue depicts dexamphetamine. Solid black line shows the 1/f aperiodic fit for
dexamphetamine, while the dashed black line shows placebo aperiodic fit. (C) Upper topoplots
show the grand average topological distribution of 1/f slope during placebo (left) and dexam-
phetamine (right). Central maxima can be seen for both conditions. Bottom topoplot represents
Wilcoxon signed-rank test for each electrode in -log10 p-values for better visualization. White
dots represent statistically significant values after FDR multiple comparison correction (p<0.05).
(D) Average on frontal ROIs (see Methods) with repeated-measure raincloud plot of the 1/f av-
erage across subjects (p<0.001, Bonferroni corrected). Each dot represents a subject and the
gray line connects the same subject in the different conditions.
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The resting state procedure testing began at 200 min post dose (Figure 3.3A), shortly after

the reference peak dexamphetamine concentration for oral administration of 25 mg (Asghar et al.,

2003). This is also close to the peak time of the autonomic effects of dexamphetamine (Albrecht

et al. 2011). We transformed the signal to the frequency domain and analyzed the PSD of

the subjects. Notably, we found that at higher frequencies (>20) there was a clear 1/f power

law decay (Figure 3.3B). Next, we compared topographic distribution of the 1/f slope in the

high-range (see Methods) from placebo and dexamphetamine group and found a topographical

distribution with the highest values (steeper slope) in central electrodes, while lesser values

(flatter slope) in frontal and occipital areas (Figure 3.3C, upper panels). Although the differences

in 1/f slope were distributed across the scalp, the main differences between conditions (Wilcoxon

signed-rank test for each electrode, FDR corrected p<0.05) were in frontal and central areas

(Figure 3.3C, lower panel). This is consistent with previous evidence showing the acute effect of

dexamphetamine on frontal and central areas (Arnsten, 1998). In order to explore the robustness

of change across subjects, we selected a broad region-of-interest including frontal and central

electrodes (See Methods) and average them to obtain a mean value per participant in both

conditions. We found that dexamphetamine flattened the 1/f slope (Figure 3.3D) independent

of session order (Condition effect F = 19.398, p < 0.001 Bonferroni Corrected, η2 = 0.160;

Session effect F = 0.4, p = 0.448, η2 = 0.03, Condition*Session effect F = 8.758e-5, p = 0.993,

η2 = 3.664e-6) which suggests that decreased adaptation due to an increase of arousal-related

neuromodulation flattens the 1/f slope.

3.4 Discussion

In the current work, we tested the hypothesis that the ascending neuromodulatory system

shapes the aperiodic 1/f slope of field potentials from the cerebral cortex of both monkey and

human participations. Within our framework, adaptation is diminished by monoaminergic neu-

romodulation and thus prevents the endogenous closure of K+ ion channels (McCormick and

Williamson, 1989). This mechanism thus putatively maintains E/I balance (Nghiem et al., 2020).

We first tested this mechanism by developing a simple modelling strategy of background LFP

signals with E/I balance based on ISI distribution with an adaptation parameter on excitatory
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neurons which adds variance to the ISI histogram (Figure 3.1A; See Methods). When calculat-

ing the aperiodic activity of the simulated signals, we found that increasing adaptation robustly

steepened the 1/f slope of the PSD. We next showed that the steepening of the 1/f slope due to

the increase of adaptation seen in our model was reproduced in in vivo intracranial LFP data

(Ballesteros et al., 2020). Specifically, the aperiodic 1/f slope was decreased by the administra-

tion of dexmedetomidine (Figure 3.2), which decreased noradrenergic signaling by inhibiting the

spiking activity within the locus coeruleus (Nacif-Coelho et al., 1994; Jorm et al., 1993; Chiu et

al., 1995). Finally, we show that pharmacologically increasing arousal-related neuromodulation

with dexamphetamine induced a flatter 1/f slope (Figure 3.3) in human scalp EEG data (Albrecht

et al., 2016). Our results suggest a mechanistic role of ascending neuromodulatory arousal sys-

tem in shaping aperiodic signal and neural variability through the switch of activity-dependent

adaptation currents.

Activity-dependent adaptation can be related to several biophysical mechanisms (Benda and

Herz, 2003). Recent work has shown that spike-triggered and subthreshold adaptation have

different effects on threshold, gain and spike train statistics (Ladenbauer et al., 2014). However,

the reported biophysical mechanisms and types of adaptation all include a form of slow negative

feedback to the excitability of the cell. Moreover, it has been shown that increasing spike-

triggered or subthreshold adaptation both lead to activity-dependent adaptation as shown by

the gradual increase of the ISI, represented by an increase in the variance of the ISI distribution

(Liu et al., 2001; Schwalger et al., 2010; Ladenbauer et al., 2012; Ladenbauer et al., 2014).

From this perspective, our approximation is a simple yet well supported strategy to simulate

adaptation as ISI distributions on point-conductance based signals (Destexhe et al., 2001).

It has been proposed that adaptation is a key element supporting the“default activity pat-

tern” of cortical activity (Sanchez-Vives et al., 2017). The bistable dynamics that emerge at

high levels of adaptation have been suggested as the mechanism that triggers the transition from

Up to Down states in the synchronized state (Sanchez-Vives et al., 2017; Zerlaut et al., 2017).

Recent evidence has proposed that two types of synchronized activity can be seen as a function

of adaptation, which switch from high adaptation anesthesia-like to sleep-like slow waves with

lower adaptation due to endogenous neuromodulatory control (Nghiem et al., 2020). Moreover,

the authors show that the highly regular synchronized state can be transitioned to a more sleep-
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like synchronized state by adding arousal-related neuromodulation (Nghiem et al., 2020). This

is consistent with recent evidence showing that adding arousal-related neuromodulation in cor-

tical slices in vitro increases increases the complexity of the signal as compared to spontaneous

slow oscillation and the high-excitability state with kainate (D’Andola et al., 2018). Moreover,

computational evidence showing that the effect of adaptation on adaptive exponential integrate-

and-fire neurons as well as in more realistic Hodgkin-Huxley-based neurons show an increase in

global synchronization and neural coupling (Ladenbauer et al., 2012), and also promotes periodic

signals facilitating network-based oscillations (Augustin et al., 2013).

There are several studies indicating that dexmedetomidine-induced sedation depends on the

inhibition of locus coeruleus neurons (Nacif-Coelho et al., 1994; Jorm et al., 1993; Chiu et al.,

1995). Interestingly, recent evidence has shown locus coeruleus exhibited an increased functional

connectivity to the brainstem while a decreased connectivity to the cortex in dexmedetomidine

condition (Song et al., 2017). This is complementary with results from the same group reporting

a decreased metabolic response accompanied with a decreased thalamic functional connectivity

with posterior cingulate cortex (Akeju et al., 2014). Consistent with these findings, increasing

arousal-related neuromodulation through dexamphetamine can induce reanimation from gen-

eral anesthesia (Kenny et al., 2015). Increasing arousal-related neuromodulation also shapes

large-scale correlations (reviewed in van den Brink et al., 2019) which has topological dynamics

sensitive to cognitive demands (Shine et al., 2018). Similarly, evidence has shown that the effect

of acute dexamphetamine can reduce the connectivity in the default-mode network (Schrantee

et al., 2016), while amphetamine can increase brain signal variability in BOLD fMRI during a

working memory task (Garret et al., 2015).

When interpreting the role of neural variability in optimal behavioral state (McGinley et al.,

2015), it should be considered that background noise fluctuations can serve as gain modulators of

information in the cortex where the addition of noise can enhance neural responsiveness (Chance

et al., 2002; Zerlaut et al., 2017; Destexhe et al., 2003). Moreover, it has been shown that

synaptic background activity controls information transfer from thalamus to cortex (Wolfart et

al., 2005). Interestingly, activity-dependent adaptation represents a cellular mechanism of the

modulation of response gain associated with selective attention (McAdams and Maunsell, 1999).

Moreover, arousal-related neuromodulators contribute substantially to attentional upregulation
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of neural excitability (Herrero et al., 2009) which is likely produced via downregulation of activity-

dependent adaptation which decreases K+ currents (Madison et al., 1987; McCormick, 1992;

Sripati and Johnson, 2006).

Neuromodulation is known to play a key role in cortical plasticity (Sara and Segal, 1991),

which in turn has been proposed to affect E/I balance (Murphy and Miller, 2003; Froemke, 2015)

by suppressing ongoing inhibitory inputs to pyramidal cells (Martins and Froemke, 2015). This

framework has been used to develop whole-brain modelling with local changes of E/I balance

induced by increased neuromodulation (Pfeffer et al., 2020). Our work could be understood

as complementary to this perspective, as it points out an alternative approach which considers

that the decrease in excitation due to activity-dependent adaptation can increase inhibitory gain

(Nghiem et al., 2020), thus shaping E/I balance. This is funded in the well-known experimen-

tal observation that pyramidal neurons are typically more likely to undergo adaptation than

inhibitory neurons, where the latter appear to have absent adaptation response (La Camera et

al., 2006; Augustin et al., 2013; Barranca et al., 2019). Our approach also differs from previous

theoretical evidence suggesting that spike-frequency adaptation exhibits a necessary attenuation

over excitatory neurons in order to maintain balanced dynamics (Barranca et al., 2019). We here

have a different theoretical focus, as we wanted to study effect on neural variability and aperiodic

1/f signal in balanced activity as the initial condition, where the number of excitatory neurons

was higher than inhibitory, but inhibition was faster (See Methods; Supplementary Table 3.1).

The slope of the spectral power law has been extensively related to E/I balance (Lombardi

et al., 2017; Gao et al., 2017; Colombo et al., 2019; Trakoshis et al., 2020; Medel et al., 2020;

Washcke et al., 2021). It is important to note that the 1/f parametrization (Donoghue et al.,

2020) can model other two parameters that were not explored in this work: the ‘knee’ which is

related to the timescale of the signal (Gao et al., 2020); and the ‘offset’ which is the intercept

of the 1/f function, and represents the broadband signal (Manning et al., 2009; Ossandón et

al., 2011). Although ISI distributions and the autocorrelation function have been shown to be

analytically related (Gerstner and Kistler, 2002) they can present qualitatively different features

in each different explored regime (Ostojic, 2011) which suggest a more complex relation that

has to be further explored and are beyond the scope of this work. We recently showed that

E/I balance is tracked specifically by 1/f slope and not offset, and that the aperiodic slope
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was intimately related with Lempel-Ziv complexity (Lempel and Ziv, 1976; Medel et al., 2020)

which is an information-based measure calculated in the time domain and reflects the vastness of

repertoire of brain activity patterns (Wenzel et al., 2019). Other measures have reported similar

relations with 1/f aperiodic signal and E/I balance, namely entropy-based measures (Waschke et

al., 2019) and memory-based signals such as Hurst exponent (Trakoshis et al., 2020). Considering

the robustness of the spectral parameterization in separating oscillatory from aperiodic signal

in the frequency domain, further work should explore how each of these similar measures in the

temporal domain relate in a broad parameter space and conditions.

Animals interact with the dynamic nature of the world with a high temporal resolution that

is supported by a tightly controlled ascending neuromodulation. Our results could be interpreted

as a possible mechanism where selective top-down allocation of attentional resources recruit as-

cending neuromodulation, which may rapidly eliminate adaptation thus providing a tighter E/I

balance and the necessary desynchronized cortical state to process high-level information. Note

that this hypothesis can be understood as complementary with recent proposed neural mecha-

nisms controlling attention-related shifts in neural variability (Harris and Thiele, 2011; Washke

et al., 2021). Placing our findings into the perspective of cognition, it appears as highly relevant

to characterize the dynamic shaping of 1/f aperiodic activity by ascending neuromodulators on

a finer temporal scale. In fact, recently it was shown that a single dose atomoxetine -a selective

noradrenergic agonist- shapes a neural variability measure during perception of ambiguous visual

stimuli (Pfeffer et al., 2018). This is consistent with evidence that show aperiodic measures im-

plicated in neuromodulator-related psychiatric disorders such as ADHD (Robertson et al., 2019;

Pertermann et al., 2019; Ostlund et al., 2021) and ASD (Trakoshis et al., 2020; Bruining et al.,

2020). as the level of background neural activity (Voytek and Knight, 2015) as physiological

markers of network dynamics. Even though pharmacological interventions are ideal to elucidate

the acute effect of arousal-related neuromodulation on cortical states, they fail to describe its

dynamic nature. Given the well-established role of the locus coeruleus in driving cortical states

and pupil diameter (Aston-Jones and Cohen, 2005; Joshi et al., 2016; Yüzgeç et al., 2018), the

analysis of the pupil appears as an excellent candidate to relate endogenous time-varying neu-

romodulation levels with brain states (Vinck et al., 2015; Reimer et al., 2016; Wainstein et al.,

2017; Medel et al., 2019). Extending our results using non-invasive measures of arousal-related
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neuromodulation such as pupillometry would give a broader understanding of how neuromodula-

tors temporally interact with brain state fluctuations and cognition. This could potentiate future

research to further understand the mechanisms underlying switches in cortical state (McGinley

et al., 2015) and understand the functional dynamics underlying several neuromodulator-related

psychiatric disorders, as well as to pave the path to design targeted therapeutic strategies.

3.5 Supplementary Material

Neuron

Type

Parameter Name Value

E & I Resting Membrane Po-

tential

-65 mV

E Population Size 8000

E Population Firing Rate 2 Hz

E Reversal Potential 0 mV

E Conductance Time Rise 0.1 ms

E Conductance Time De-

cay

2 ms

E Adaptation α varies

I Population Size 2000

I Population Firing Rate 5 Hz

I Reversal Potential -80 mV

I Conductance Time Rise 0.5 ms

I Conductance Time De-

cay

10 ms

Table 3.1: Local Field Potential model Parameters
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Figure 3.4: Top shows the AMPA and GABA conductance profiles drawn from the double-
exponential defined by the decay and rise time-constant kernels that convoluted the discretized
spike time series. Bottom shows excitatory (red), inhibitory (blue) currents, and in the middle
the linear sum (Mazzoni et al., 2015) which represents the LFP.
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Figure 3.5: Effect of decreasing noradrenergic neuromodulation by acute Dexmedetomidine in
Monkey LFP across sessions in (A) Ventral Premotor Cortex micro Electrodes and (B) Primary
Somatosensory Cortex micro electrodes.
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Figure 3.6: Summary of proposed interpretation of arousal-related neuromodulation in elimi-
nating activity-dependent adaptation and shaping 1/f slope.
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Chapter 4

Attentional rapid state shift is

related to transient 1/f aperiodic

activity and phasic Arousal in human

iEEG and scalp EEG

Abstract

Brain states dynamically couple to environmental and cognitive demands. Ev-

idence suggest that these brain state shifts are the result of a close interrelation

between the degree of desynchronization and the activity of arousal-related neuro-

modulation such as the locus-coeruleus noradrenergic (LC-NE) system. We examine

this nexus in humans during a visuospatial working memory task with invasive and

non-invasive electrophysiological recordings with simultaneous pupil data as an in-

direct index of arousal-related LC-NE system activity. We show that the temporal

fluctuation of neural desynchronization -as adressed by time-resolved 1/f aperiodic

activity- is flattest at the highest attentional demand, suggesting a transient atten-

tional recruitment of neural desynchronization. These 1/f rapid attentional shifts

can be represented as a low-dimensional signal which strongly correlates with pupil
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diameter at both intracranial and scalp EEG scales. Our results speak to mechanis-

tic models linking neural desynchronization and arousal-related neuromodulation at

behaviorally-relevant timescales.

4.1 Introduction

In this chapter, we present evidence supporting the integration of the observations from the

previous chapters -aperiodic activity, E/I balance, neuromodulation, and behavior-. In the pre-

vious chapters, we introduced the 1/f slope of the field potential’s PSD as a proxy of E/I balance

(Gao et al., 2017; Colombo et al., 2019; Trakoshis et al., 2020; Medel et al., 2020) and study

its effect in behavior (Boncompte et al., 2021; Chapter 2). We also presented computational

and experimental evidence that supports that 1/f slope -our proxy of E/I balance- is related

to LC-NE system and arousal-related neuromodulation through the effect of eliminating spike-

frequency adaptation currents (Medel et al., In Prep; Chapter 3). Here we propose that the

relation between LC-NE system tracks the temporal dynamics of E/I balance -as adressed by

quantifying time-resolved 1/f slope- and that this fluctuation will be coupled to the attentional

demand of the subjects.

To examine the nexus between E/I balance and phasic arousal-related neuromodulation during

attentional information processing, the 1/f aperiodic activity can be integrated (correlated) with

pupil diameter data while participants perform a task. Pupil diameter is an established indi-

rect index of Locus-Coeruleus noradrenergic (LC-NE) system activity (Chmielewski et al. 2017;

Costa and Rudebeck 2016; Joshi et al. 2016), although acetylcholinergic (ACh) system have also

been reported to modulate pupil diameter (Fotiou et al. 2009; Naicker et al. 2016; Reimer et

al., 2016). Larger pupil diameters reflect higher arousal-related neuromodulation concentrations

(Phillips et al. 2000) and are related to an increase in the firing rate of NE neurons (Costa

and Rudebeck 2016; Joshi et al. 2016; Varazzani et al. 2015). In contrast to acute activation

of arousal-related neuromodulatory system as seen in electrical stimulation (Liu et al., 2017)

or pharmacological intervention (Phillips et al., 2000), the integration of electrophysiological

parameters with pupillometry provides more ecological and time-resolved information on the

interaction between arousal-related neuromodulation, brain, and the dynamics of behaviorally
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relevant state switches (Schwalm & Jubal, 2017). With this structure, we can observe the behav-

iorally relevant time points at which neural aperiodic activity is modulated by arousal-related

neuromodulation.

In awake attentive state, animals are in a dynamic state of cortical activity which is charac-

terized by fast switching from inattentive awake to high attentional state, which is related to

environmental and cognitive demands (McGinley et al., 2015a; McGinley et al., 2015b). This

fast switching behavior has been related to intrinsic top-down modulation of cortical activity

related to attentional recruitment (McCormick et al., 2020) and it has been intimately linked

to pupil diameter, (Reimer et al., 2016) a proxy of noradrenergic neuromodulation (Vinck et

al., 2016; Aston-Jones and Cohen, 2005). Although these results have been widely studied in

animal models with invasive electrophysiology of membrane potential recordings, here we seek to

understand these phenomena from a multi-scale approach grounded in theoretical considerations

of neural activity and cognition. Using a bottom-up strategy, starting with field-potential simu-

lations showing that E/I balance is related to 1/f slope and high complexity, to the interpretation

of changes in 1/f slope as a result of neuromodulatory action over adaptation currents (Medel

et al., In Prep; Chapter 3), we have shown that 1/f and complexity are intimately related to

behavior (Boncompte et al., 2021). In this line, we propose that attentional fast cortical state

switching occurs as a result of the interaction between ascending arousal neuromodulation which

shapes E/I balance.

In this chapter, we present evidence that supports 1/f aperiodic activity as a multiscale global

signal that is grounded on theoretical considerations and fluctuates according to behavioral de-

mand. We explore 1/f principal component analysis at intracranial EEG and scalp EEG scales,

and show that both scales have similar characteristics and are highly correlated with pupil di-

ameter -our proxy of arousal-related neuromodulation (Aston-Jones and Cohen, 2005)-.
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4.2 Materials and Methods

Subjects

For the iEEG group, four patients with drug-resistant epilepsy participated in this study. The

participants were stereotactically implanted with multisite EEG depth electrodes at the Epilepsy

Department of the Grenoble Neurological Hospital (Grenoble, France). In collaboration with

the medical staff, and based on visual inspection, electrodes presenting pathological waveforms

were discarded from the present study. All participants had normal vision without corrective

glasses. All participants provided written informed consent, and the experimental procedures

were approved by the local Ethical Committee (CPP Sud-Est V n 09-CHU-12). For the EEG

group, subjects were 18 typically developing children ranging from 10 to 13 yo (mean = 11.8,

SD = 0.85, 15 male).

Visuospatial Working Memory Task

Subjects performed a Sternberg-type delayed visuospatial working memory task. The mem-

oranda were 1- or 2-dot arrays, with the dots located variably in any of the sixteen spaces of a

4×4 grid (Figure 4.1A).

On each trial, subjects were instructed to start by fixating on the center of the empty grid. After

1.5 seconds, the dot array presentation commenced. Three different dot arrays were presented

on each trial. Each array was presented for 1 second, with a 0.5 seconds inter-stimulus interval

delay between arrays, during which the empty grid was presented (Figure 4.1A). After the last

delay period, a distractor image was presented for 1 second. After the distractor, a ‘probe’ dot

was presented for 2 seconds. This was a dot within the grid, and subjects had to answer ‘yes’

if the probe dot had been presented in one of the trial’s previous arrays, or ‘no’ if it had not.

Immediately after probe offset, we provided a feedback image for 1.5 seconds, indicating if the

subject response was correct or incorrect. The participants were instructed to respond as fast as

possible.

We used three distractors: (1) A fixation cross; (2) a neutral face; and (3) an emotional face.

Distractors were constructed and modified from Karolinska Directed Emotional Faces database
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(Calvo & Lundqvist, 2008). Distractor types were presented randomly. There were two trial

types, according to cognitive load: in low-load trials, only one dot was presented on each image,

whereas in high-load trials, two dots were presented on each image. Therefore, in low-load trials

subjects had to retain the location of three dots (one per image) and in high-load trials, they

had to retain the location of six dots (two per image).

A total of 80 trials were presented in each session, separated in 4 blocks of 20 trials. Sessions usu-

ally lasted 30 minutes. Stimuli were presented using Presentation® software (Neurobehavioral

Systems, Inc.) and subjects delivered their responses using a keypad.

Intracranial EEG

Each participant was implanted with SEEG electrodes (diameter of 0.8 mm). Depending on

the implanted structure, electrodes were composed of 10 to 15 contacts that were 2-mm wide

and 1.5-mm apart (DIXI Medical Instrument, Besancon, France). Intracranial neural record-

ings were conducted using an audio–video-EEG monitoring system (Micromed, Treviso, Italy),

which allowed simultaneous recording of up to 210 depth-EEG channels sampled at 1024 Hz.

Intracranial EEG signals were recorded from a total of 773 intracerebral sites across all partic-

ipants (between 162 and 210 sites per participant). The coordinates of each electrode contact

were given following these references: origin (anterior commissure), anteroposterior axis (anterior

commissure–posterior commissure), and vertical axis (interhemispheric plane). The electrodes

were then localized in each individual participant using Talairach coordinates, which were then

transformed to MNI coordinate system using standard procedures (i.e., tal2mni.m MATLAB

function). We then automatically assigned electrodes to brain regions based on 2 distinct at-

lases: Brodmann areas and Schaeffer atlas (Schaeffer et al., 2018).

Data from iEEG recordings were preprocessed using a pipeline consistent with previous work

(Kucyi et al., 2018; Kucyi et al., 2020). Notch filtering was performed to attenuate power-line

noise (zero-phase, third order, Butterworth filter with band-stop between 47–53, 97–103, and

147–153 Hz for data. We then re-referenced the signal from each channel to the common average

signal across all channels, with the following channel types excluded from the common average:

those that (a) showed pathological activity during clinical monitoring (as noted by a neurolo-
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gist); (b) were manually labeled as clear outliers on power spectra plots of all channels; (c) had

a variance greater or lesser than five times the median variance across all channels; or (d) had

greater than three times the median number of spikes across all channels, with spikes defined as

100 µV changes between successive samples.

Scalp EEG

The EEG data were recorded using a 10-5 34 channel Neuroscan EEG system at a sampling

rate of 1000 Hz. All the pre-processing of EEG data was conducted in MATLAB using the

EEGLAB 13.6.5b toolbox. First, the data were resampled to 500 Hz, referenced to mastoids,

filtered between 0.5 and 42 Hz, and epoched leaving us with an 8 s trial. Then we visually

inspected the complete recordings and spherically interpolated channels which were extremely

deviated, without taking into consideration eye blink artifacts, as these were removed later using

independent component analysis (ICA). Then, we rejected epochs using a threshold of -150 to

+150 uV, without considering eye blink artifacts as well. Each recording was again visually

inspected to check whether it was needed to interpolate more channels, reject more trials or

too many trials were rejected leaving the recording unusable. Until this step the data was thus

resampled, filtered, epoched, and semi-cleaned up, ready to be further cleared from eye movement

and blink artifacts using ICA implemented in EEGLAB. Only independent components with clear

and specific patterns of eye movement and blink artifacts were rejected from the data.

Pupil data acquisition, preprocessing and analysis

Pupil diameter data were acquired with Eyelink 1000 (SR Research Ltd., Mississauga, On-

tario, Canada), with a 1kHz sampling frequency. Subjects sat in front of a table containing the

computer screen for image presentation and the eye tracker device. For the EEG group, the

subjects kept their head in a forehead/chin rest (SR Research Ltd.). Subjects were placed at a

viewing distance of 30 cm from the display monitor.

Pupil diameter data preprocessing was performed using Matlab software with in-house functions

consistent with previous preprocessing strategies (Wainstein et al., 2017). Periods of blinks in

which no pupil diameter information was available were detected by the Eyelink software. Pupil
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data surrounding blinks were removed from the time series used in the analyses and were inter-

polated using a cubic spline, implemented through Matlab function spline. To obtain the pupil

diameter average profile (Figure 4.4A), the data of each participant were filtered by a bandpass

Butterworth filter between 0.025 Hz and 4 Hz. This strategy extracted the high-frequency noise

and eliminated the basal slow drift of the pupil diameter across trials. All trials with more than

50% of missing data (due to blinks or outliers) were not considered in the analysis. Data analysis

was restricted to the 12-s trial period (Figure 4.1A). Finally, the pupil time-series was normalized

by means of a z-score, separately for each trial.

Spectral Analyses

We conducted two analysis techniques to assess spectral activity from neural recordings.

First, we computed a time-frequency analysis (Figure 4.2) using the multitaper method (8 tapers,

frequency range 0.5 to 150 Hz with a scaling number of cycles depending on frequency bin)

implemented in MNE python toolbox (Gramfort et al., 2014; Jas et al., 2018). The Time-

frequency signal was normalized by using z-score of the complete trial. Second, we separated the

spectrum in several standard-frequency bands defined as follows: theta (θ) [4–8 Hz], alpha (α)

[8–15 Hz], beta (β) [16–30 Hz]. This was achieved by first filtering the raw EEG signals using

a finite impulse response filtering (FIR, order = 3) and then computing the Hilbert transform

over the complete trial. Additionally, we calculated broadband gamma [50–150 Hz] using 10

Hz frequency bands (e.g., 10 bands, beginning with 50-60 Hz up to 140-150 Hz) and for each

bandpass filtered signal, we computed the envelope using Hilbert transform. To account for the

1/f decay, we normalized by means of z-score the signal of each 10 Hz step band-pass envelope

and averaged together, to provide one single time-series of broadband gamma across the entire

session.

Time-resolved aperiodic 1/f activity

To obtain a time-resolved measure of aperiodic 1/f activity, the squared magnitude of the

Hamming-windowed Fourier Transform (window size of 1 s, 0.05 s step) was used. We param-

eterized the PSD using the “Fitting Oscillations & One Over f” (FOOOF) toolbox (Donoghue
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et al., 2020). The FOOOF algorithm decomposes the log PSD into a summation of narrowband

Gaussian periodic (oscillations) and aperiodic (1/f offset and slope) components for the whole

frequency range. The algorithm estimates periodic and aperiodic components, removes the pe-

riodic ones, and estimates again until only the aperiodic components of the signal remain. This

allows for the estimation of offset and power-law slope with considerable independence from os-

cillatory behavior, which is particularly important for empirical signal analysis (Donoghue et al.,

2020; Voytek Knight, 2015). FOOOF toolbox also contains a “knee” parameter, which was not

considered as it corresponds to changes in the autocorrelation function (Gao et al., 2020) which

is related to lower frequencies power (Fallon et al., 2020), and is beyond the scope of this study.

We set the algorithm with peak width limits: [1-8], the maximum number of peaks: 6; peak

threshold 1.5; and ‘fixed’ aperiodic mode. Due to the differential distribution of basal 1/f signals

across the cortex (Mahjoory et al., 2020), we normalized the time-resolved signal by means of

z-score using the whole trial. Power spectra were parameterized across the frequency range 1 to

40 Hz and 40 to 80 Hz in iEEG, while for scalp EEG the range of 10 to 40 Hz was used.

Principal Component Analysis

We used linear dimensionality reduction of the data temporal 1/f signal using principal com-

ponent analysis (PCA) to project it to a lower-dimensional space. For the iEEG dataset, data

from each trial were concatenated to form a single-trial time series per subject and a temporal

PCA was performed on the resultant data. Principal axes in feature space, representing the

spatial directions of maximum variance in the data, were used to consider the spatial contri-

butions of each electrode to the tPC. Data were segmented to obtain the single-trial tPC and

were averaged to obtain the mean tPC across trials. For the EEG dataset, we concatenated

each subject’s 1/f trial average signal to form a single time series for all subjects. Data were

segmented to obtain the single-subject tPC and then averaged to obtain the mean tPC. The

algorithm was implemented with sklearn.decomposition.PCA function from scikit-learn python

toolbox (Pedregosa et al., 2011).
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Statistical Analysis

Data were visualized using a python implementation of raincloud plots (Allen et al., 2021;

van Langen, 2020). Single-trial, time-frequency, and topoplot from open-source python package

MNE (Gramfort et al., 2014; Jas et al., 2018). Scatter plots from Seaborn (Waskom et al., 2020).

Glass brains were visualized using python pysurfer toolbox. Cross-correlation was obtained with

scipy function scipy.signal.correlate and then the value of each correlation value in each tem-

poral lag was normalized to obtain the maximum value of correlation as value 1. Correlation

between tPC1 and band-limited amplitude was obtained by resampling each band-pass signal to

the number of samples of tPC1, and then calculating the Pearson correlation coefficient using

scipy.stats.pearsonr function.

We constructed null distributions to test the significance of the correlation between pupil diam-

eter and tPC1 of the 1/f signal. In order to preserve temporal dependence in time-series data,

bootstrap algorithms sample from the original data in blocks rather than sampling single ob-

servations. We used a data-driven block length selection algorithm based on Politis and White

(2004) with corrections by Patton, Politis, and White (2007). Based on the notion of spec-

tral estimation via the flat-top lag windows (Politis and Romano, 1995) the algorithm produces

optimal block-lengths for the circular block bootstrap preserving canonic temporal properties

of time series (Politis and White, 2004). We implemented this algorithm with recombinator

python repository (https://github.com/InvestmentSystems/recombinator). We generated

10000 new time-series by resampling using a circular-block bootstrap and calculated the corre-

lation value between each null pupil signal and the tPC1 1/f, thus generating a null distribution

of correlation values. The significance of the original value can be tested if the value is lesser

than the 2.5th percentile or greater than the 97.5th percentile of the distribution (Supplementary

Figure 4.9).

4.3 Results

Four participants performed a visuospatial working memory task (Figure 4.1A) while elec-

trophysiological data were recorded from multilead EEG depth electrodes (Figure 1B). In each

trial, participants were instructed to answer whether a target dot (Probe) in a spatial grid was
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present or absent in the previously shown dots (Load; Figure 4.1A). The participants were in-

structed to respond as fast as possible. The working memory recall condition of the probe is

intimately related to attentional recruitment and ascending system activation (Wainstein et al.,

2017). Although the task has two load conditions (see Material and Methods), we did not find

performance nor reaction time differences between conditions. For this reason, further analysis

is done in both conditions indistinctly.

We analyzed the spatially heterogeneous electrodes (Figure 4.1B; n=773). These intracranial

recordings provided a means to assess data with minimal contamination from non-neural sources.

We develop a novel pipeline analysis that obtains the time-varying aperiodic component of the

signal by applying sliding-window analysis and computing the fitting of the 1/f slope in each

PSD (Figure 4.1C; see Material and Methods). Due to a clear “knee” at 40 Hz (Figure 4.1C,

Figure 4.3A) we, therefore, split the spectrum in two equally spanning sub-ranges, obtaining

low-range (1-40 Hz) and high range (40-80 Hz) fits (Figure 4.1C). Note that both of these ranges

have been extensively used in previous reports (Gao et al., 2017, Medel et al., 2020; Trakoshis

et al., 2020; Colombo et al., 2019).
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Figure 4.1: Experimental design, distribution of intracranial electrode contacts across partici-
pants, and analysis pipeline. (A) Experimental design of the visuospatial working memory task.
For each trial, participants were instructed to respond whether the presented dot appeared in
the three previously presented grids. (B) Depth-electrode recording sites across subjects, pro-
jected on inflated fsaverage brain. Left: dorsal; Right: lateral (top/bottom) and medial (middle)
views. Each color represents a participant. (C) Analysis pipeline. At the single-subject level,
we segment the data into trials in each electrode. Next, we apply a sliding-window analysis with
temporal overlap to obtain time-resolved PSD. To each PSD in each time window, we fit the 1/f
slope to low (1-40 Hz) and high (40-80 Hz) frequency ranges. Finally, for every time window, we
obtain an estimate of the 1/f slope of each frequency range to construct a time-resolved aperiodic
activity.

Spectrograms showing power amplitude for frequencies ranging from 0.5 to 150 Hz revealed

heterogeneous spectral signatures across electrodes. As is to be expected, some electrodes showed

specific sensitivity to the attentional recruitment, manifesting a transient increase in broad-band
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gamma (50-150 Hz; Figure 4.2A, B) while others did not appear to be specifically responsive

to the probe. Related to broad-band activations, we found that the high-range 1/f slope also

changed transiently before probe onset (Figure 4.2A, B, top), where attentional recruitment had

an acute effect in flattening the 1/f slope. We analyzed the single-trial resolution of this effect

and found that the flattening of the 1/f slope had a single-trial resolution which was coupled to

the onset of the probe and decreased once the subject pressed the button of response (Figure

4.2A, B, middle). Thus, 1/f slope temporal dynamics are consistent with attentional recruit-

ment at the visuospatial working-memory task, which suggest a rapid top-down modulation of

desynchronization (See Supplementary Figure 4.7).
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Figure 4.2: Illustrative time-frequency maps and single-trial 1/f aperiodic activity in example
areas. (A) and (B) shows one brain area of each of the two illustrative participants. At the top,
morlet-wavelet time-frequency maps are presented for the range between 0.5 to 150 Hz. Note
the broad-band gamma activation at probe onset. At the middle-top, a single-trial 1/f slope
of the high-range is presented. Colors represent 1/f z-score, where positive values represent a
steepening of the slope, while more negative values depict a flattening. Trials are sorted according
to reaction-time latencies (black line). The middle-bottom shows the median across trials of 1/f
z-score fluctuation at high-range. The dashed line represents the onset of the attentional probe.
At the bottom, the recording sites of the brain area represented, corresponding to (A) Cingulate
Gyrus, and (B) Precentral Gyrus.

We noted -as it has been previously reported (Miller et al., 2007)- that activations of broad-

band gamma were accompanied by an increase in low-frequency power (delta) and a decrease in
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intermediate frequencies such as theta, alpha, and beta bands, which is consistent with the dual

shape of the PSD seen in Figure 4.1. Previous reports have shown that the 1/f slope at a high

range (between 30 and 80 Hz approximately) is correlated with the balance between excitation

and inhibition. Interestingly, further reports have found consistent results in different ranges

(Waschke et al., 2021; Medel et al., 2020; Trakoshis et al., 2020; Colombo et al., 2019).

As mentioned above, we explored two ranges of 1/f slope due to a prominent “knee” in the

PSD. Interestingly, we found that the knee only appeared at baseline, at 40 Hz (Figure 4.3A).

Moreover, this shape changed in the attentional recruitment at the probe, transitioning to a

single 1/f slope across from 1 to 80 Hz. We next tested whether these signals presented temporal

correlations. To have a general signal that can be extrapolated to the whole brain state, we

obtained a low-dimensional aperiodic activity by means of principal component analysis (See

Material and Methods). We obtained the first temporal principal component (tPC1) of the 1/f

signal, which represented more than 30% of the variance of the electrodes. We found that both 1/f

ranges presented a high anti-correlated structure (Figure 4.3B). This result is consistent with the

time-frequency chart displayed in Figure 4.2, considering that an increase in delta and a decrease

in middle frequencies are accompanied by an increase in broadband gamma. To further explore

this relation, we calculated the cross-correlation of both tPC1. We found that tPC1 at the high

range fit (which is canonically related to balance between E/I) has its highest correlation when

it lags -500ms before tPC1 of the low fit (Figure 4.3C). This show that changes in the high-range

desynchronization (tPC1) shape low-range desynchronization (tPC2), suggesting that local E/I

balance could be shaping the aperiodic activity at lower frequencies.

We next explored the relation between tPC1 of both ranges with canonical band-limited power by

means of Hilbert Transform. As expected, the tPC1 of the low range correlated significantly with

the lower frequencies of the spectrum in a relatively proportional manner (Figure 4.3D), which

suggests that common band-limited filtering of the signal may capture part of the aperiodic signal

contained at the lower range. On the other hand, tPC1 of the high range correlated significantly

with higher band-limited power fluctuations, suggesting that these signals may also contain part

of the 1/f signal activity (Figure 4.3D).
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Figure 4.3: Low-dimensional 1/f fluctuation across the cortex and frequency ranges. (A) Illus-
trative 1/f fit at two frequency ranges shows different characteristics depending on the attentional
state. The blue line represents the baseline, while the red line depicts the attentional probe seg-
ment. The solid line shows the low-range fit and the dashed line represents the high-range fit.
(B) shows a subject and electrode example of the antagonist temporal dynamics between high
and low range fits during VSWM. (C) Illustration of dimensionality reduction (n=4) of 1/f fluc-
tuation in each range by means of temporal Principal Component Analysis (tPC). At the bottom,
the low-dimensional aperiodic activity cross-correlation in each range has its maximum correla-
tion when the high-range tPC1 precedes by 500 ms the low-range tPC1. (D) shows a correlation
matrix of each averaged activity of band-limited power with low and high-range tPC1, depicting
the spectral contributions are relatively homogenous, suggesting that each band-limited power
contains some portion of variance explained by low-dimensional aperiodic activity.

Pupil diameter is a well-known proxy of ascending arousal system activation, which has been

shown to be coupled to behaviorally relevant fast switching of cortical states (McGinley et al.,

129



CHAPTER 4. ATTENTIONAL RAPID STATE SHIFT IS RELATED TO
TRANSIENT 1/F APERIODIC ACTIVITY AND PHASIC AROUSAL IN HUMAN

IEEG AND SCALP EEG

2015a). We hypothesize that transient flattening of 1/f slope of high range, and steepening at

the low range is temporally coupled to arousal-related neuromodulation as observed by pupil di-

ameter fluctuations. We analyzed the simultaneous recording of pupil diameter in three subjects

that performed the VWM task. We found that each subject presented a fluctuation of their pupil

diameter according to the task (Figure 4.4A). Moreover, we found that attentional recruitment

at the probe had a significant effect in widening pupil diameter, as compared to baseline, at a

single-trial basis (Figure 4.4B).

Next, we explored the relation between pupil diameter and tPC1 of both ranges. We generated

10000 null pupil signals with a bootstrap block-resampling method (See Materials and Methods)

and correlated each null signal with tPC1. We found that each real correlation was significant.

To further explore this relation, we calculated the correlation value of the pupil diameter with

each electrode, obtaining a distribution of correlation coefficients. We then correlated this distri-

bution with the tPC1 weight of each electrode and found that the higher the correlation of the

electrode with the pupil diameter, the higher was its participation in tPC1 (Figure 4.4C). Inter-

estingly, the electrodes that were most significant at their relation with pupil diameter, and had

their highest weights in the tPC1, were mostly distributed in the frontoparietal network (Figure

4.4D). These results suggest that the shape of the spectrum (1/f slope) is a general property

of electrophysiological signals that fluctuates in a low-dimensional structure and is coupled to

arousal-related neuromodulation, as observed by its correlation with pupil diameter.
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Figure 4.4: Temporal Coupling between tPC1 in the low and high range of 1/f activity with
phasic pupil dilation. (A) Each panel shows averaged pupil diameter fluctuation for each subject,
in the VSWM task. Shaded lines show the standard error of the mean. Note the phasic increase
of pupil diameter at the attentional probe (8s). (B) Single-trial change in phasic pupil diameter
shows an increase at the attentional probe as compared to the baseline state. (C) The distribution
of correlation values between each iEEG electrode and pupil diameter is correlated with the
tPC1 weight in each subject, suggesting that tPC1 captures a low-dimensional aperiodic spatial
component that corresponds to pupil fluctuations. (D) shows the electrodes with the highest
correlation with pupil and highest tPC1 weight.

131



CHAPTER 4. ATTENTIONAL RAPID STATE SHIFT IS RELATED TO
TRANSIENT 1/F APERIODIC ACTIVITY AND PHASIC AROUSAL IN HUMAN

IEEG AND SCALP EEG

The low-dimensional structure of the 1/f aperiodic activity consists -as we have shown- of

two aperiodic ranges inversely correlated that are both consistently related to arousal-related

neuromodulation, as seen by its relation with pupil diameter signal (Figure 4.4). We hypothesize

that the low-dimensional structure of this relation is scalable to mesoscale signals as the EEG.

Considering that EEG recordings are considered to have important artifacts in frequencies higher

than 40 Hz, the low-dimensional aperiodic activity that is consistent with that range is the low

range. Thus, we hypothesize that the tPC1 of low-range at EEG is correlated with pupil diameter

in attention.

To test this, we explored the tPC1 of the 1/f slope in scalp-EEG in healthy children. The pupil

diameter data of this experimental group has been already published elsewhere (Wainstein et

al. 2017; Rojas-Ĺıbano et al. 2019). Similar to the task done by the iEEG group, in this

experimental paradigm subjects performed an almost exact version which only differed by the

total time duration of the stimuli, being this version faster and longer in trials (See Wainstein

et al., 2017; Rojas-Ĺıbano et al., 2019; Supplementary Figure 4.10). We analyzed data from 18

subjects using the same methodological approach described in Figure 4.1, with the exception that

due to the high signal-to-noise ratio we calculated the time-varying 1/f slope over the mean trial

of each subject instead of the single-trial version reported in the iEEG group. To avoid event-

related potentials which are known to have an effect over broad frequency ranges in scalp EEG,

we subtracted evoked activity to each trial before averaging thus obtaining induced activity, and

then calculated the 1/f slope at low-range (1-40 Hz) for each electrode and subject. Next, we

calculated the tPC1 for each subject by concatenating each subject’s signal (See Materials and

Methods).
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Figure 4.5: Temporal Coupling of Low range tPC1 of 1/f across control subjects in scalp EEG
and pupil dilation. (A) shows the averaged pupil diameter (blue) and averaged tPC1 (red)
across subjects, where phasic pupil diameter is coupled with tPC1 of low-frequency range 1/f fit,
mainly at the attentional probe. Note that the tPC1 signal was normalized to fit in a similar
range as the pupil diameter. (B) Illustrative power spectral density of baseline (yellow) and
probe (gray), showing a similar tendency as seen in Figure 4.3 in the steepening of the 1/f slope
at lower frequencies when attentional recruitment occurred. (C) Mean explained variance of each
principal component across subjects. Average tPC1 explained more than 40% of the variance.
(D) shows the spatial topography of the tPC1 weights, distributing mainly at midline electrodes,
with its peak at the mid-frontal area. (E) Subject relation between maximum pupil diameter
and maximum value of tPC1 shows a positive correlation (Pearson r = 0.65, p-value ¡ 0.005).
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We found that mean tPC1 of 1/f slope in scalp EEG -which explained more than 40% of the

variance (Figure 4.5C)- had a temporal fluctuation in accordance with the task design, having its

maximum peak value at the attentional recruitment in the probe (Figure 4.5A), which represents

a steeper 1/f slope at probe as compared to baseline state (Figure 4.5B). The spatial weight of

the tPC1 which depicts the individual contribution of each electrode to the tPC1 had maximum

in midline electrodes, particularly in mid-frontal electrodes (Figure 4.5C). To test the correlation

between tPC1 of the aperiodic signal and the pupil diameter, we correlated the mean maximum

pupil dilation with their maximum tPC1 at the subject’s level. We found that both measures

were significantly correlated (Pearson R = 0.65, p ¡ 0.005; Figure 4.5E).

We thus show that the low-dimensional fluctuation of 1/f slope transiently changes in close

relation to attentional recruitment, and this signal is also highly correlated to phasic pupil

dilation across spatial and temporal scales.

Figure 4.6: Summary figure. Attentional rapid state shift is related to an increase in noradren-
ergic signaling as represented by the dilation of pupil diameter and is coupled to 1/f aperiodic
signal fluctuation.
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4.4 Discussion

This chapter presents evidence that attentional rapid state switch is related to transient

low-dimensional 1/f aperiodic activity and phasic pupil diameter increase in human iEEG and

scalp EEG. First, we show that the spectral periodic and aperiodic features showed strong task

responsiveness (Figure 4.2; Supplementary Figure 4.7). To capture the global cortical state,

we calculated the temporal low-dimensional aperiodic activity through temporal PCA (Supple-

mentary Figure 4.8; see Materials and Methods) and found two antagonistic frequency ranges

of aperiodic activity, where both responded transiently to attentional recruitment (Figure 4.3).

Particular band contributions to 1/f aperiodic tPC1 were relatively proportional, suggesting that

each band activity is composed of both aperiodic and periodic components (Figure 4.3D). Next,

we show that pupil diameter had phasic dilation at the probe’s onset (Figure 4A, 4B), which

suggests that attentional shifts are coupled to higher arousal-related neuromodulation. We found

that tPC1 was intimately related to pupil diameter (Figure 4.4C), and both time series had sig-

nificant correlation values (Supplementary Figure 4.9). Finally, we show the low-dimensional

aperiodic activity can be extrapolated to a broader electrophysiological scale with EEG data at

the low-frequency range. As expected, we found that pupil diameter was highly coupled with

tPC1 (Figure 4.5).

Recently, it has been proposed that the action of neuromodulatory systems like LC-NE system

over cognition occurs in a low-dimensional manifold (McCormick et al., 2020; Shine et al. 2019).

For example, Shine et al. (2019) performed a temporal principal component analysis (PCA)

over fMRI-BOLD activity, which is known to have a less complex spectrum of frequencies as

compared to electrophysiology. This suggests that the dimensionality reduction of BOLD is

capturing the main fluctuating property of this signal. However, electrophysiological signals are

known to have multiple sources interacting, such as ultra-slow oscillations (He and Raichle 2009),

cross-frequency coupling, local oscillatory power, and background activity (He and Raichle 2009;

Voytek and Knight 2015). From this perspective, to perform a similar dimensionality reduction

as the one done by Shine et al. (2019), it is necessary to filter the desired signal hypothesized

under neuromodulatory control, representing the global cortical state. We here show that by

performing a similar dimensionality reduction approach as Shine et al. (2019) over our selected
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signal (1/f slope), we were able to identify a low-dimensional signal that was heavily task-related

and highly correlated with pupil diameter.

Our results are consistent with recent findings suggesting the aperiodic exponent as a neural cor-

relate of information processing in children and adolescents (Ostlund et al., 2021) and can serve

as a proxy of neuromodulatory ascending-system integrity (Robertson et al., 2019; Pertermann

et al., 2019). Our work highlights the usage of temporal resolution of 1/f aperiodic activity and

suggests that dynamic transition between cortical states is highly related to noradrenergic sig-

naling as observed by the relation between 1/f slope and pupil diameter. Although recent work

had studied 1/f exponent in the EEG across the cognitive task and its relation with event-related

potential (Dave et al., 2018), we here discard evoked activity and analyzed aperiodic signal in a

time-resolved fashion.

When interpreting the role of neural background activity in rapid attentional recruitment, it

should be considered that its fluctuations can serve as fast modulators of information (Harris

and Thiele, 2011), where a state with higher noise can enhance neural information and respon-

siveness (Chance et al., 2002; Zerlaut et al., 2017; Destexhe et al., 2003). Moreover, LC-NE

system and arousal-related neuromodulators contribute substantially to attentional upregula-

tion of neural excitability (Herrero et al., 2009), which is likely produced via downregulation of

activity-dependent adaptation, decreasing K+ currents (Madison et al., 1987; McCormick, 1992;

Sripati and Johnson, 2006; Medel et al., In Prep).

The spectral power-law slope has been extensively related to E/I balance (Lombardi et al., 2017;

Gao et al., 2017; Colombo et al., 2019; Trakoshis et al., 2020; Medel et al., 2020; Washcke et

al., 2021). It is important to note that the 1/f parametrization (Donoghue et al., 2020) can

model other two parameters that were not explored in this work: the ’knee’, which is related

to the timescale of the signal (Gao et al., 2020); and the ’offset’ which is the intercept of the

1/f function, and represents the broadband signal (Manning et al., 2009; Ossandón et al., 2011).

We recently showed that E/I balance is tracked precisely by 1/f slope and not offset and that

the aperiodic slope was intimately related with Lempel-Ziv complexity (Lempel and Ziv, 1976;

Medel et al., 2020), which is an information-based measure calculated in the time domain and

reflects the vastness of repertoire of brain activity patterns (Wenzel et al., 2019). Other measures

have reported similar relations with 1/f aperiodic signal and E/I balance, namely entropy-based
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measures (Waschke et al., 2019) and memory-based signals such as Hurst exponent (Trakoshis et

al., 2020). Considering the robustness of the spectral parameterization in separating oscillatory

from the aperiodic signal in the frequency domain, further work should explore how each of these

similar measures in the temporal domain relates to broad parameter space and conditions.

Consistent with our biological framework, clinical and animal models of ADHD and ASD have

shown altered GABAergic and glutamatergic activity (Edden et al., 2012; Hammerness et al.,

2012; Zimmerman et al., 2015), suggesting that arousal-related neuromodulation affects multi-

scale activity by disrupting the balance between excitation and inhibition (Morello et al., 2020;

Lee et al., 2017; Sohal Rubenstein, 2019). Coherent with this, evidence has shown that static

aperiodic measures implicated in neuromodulator-related psychiatric disorders, such as ADHD

(Robertson et al., 2019; Pertermann et al., 2019; Ostlund et al., 2021) and ASD (Trakoshis et

al., 2020; Bruining et al., 2020), both of which have previously been related with pupil diameter

alterations (Wainstein et al., 2017; DiCriscio et al., 2017). It has recently been argued that clin-

ically relevant measures, such as band ratio, can be conflated by aperiodic activity (Donoghue et

al., 2020b). We contribute to this literature by showing that dynamic aperiodic shifts can give

a more refined analysis of the possible brain mechanisms involved in arousal-related neuromod-

ulation and its effect on attention. Studies that simultaneously consider periodic and aperiodic

changes from a time-resolved perspective will be critical for clarifying these impairments’ neural

mechanisms and their relation with LC-NE system and arousal-related neuromodulation.

Placing our findings into the perspective of cognition, our novel results shed light on the temporal

resolution of the dynamic shaping of cortical states putatively by ascending neuromodulators on

a fine temporal scale relevant for attentive behavior.
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4.5 Supplementary Material

Figure 4.7: Complementary approach to show task-responsive electrodes. We used the z-score
normalized 1/f signal and selected the probe temporal samples. Next, we selected the electrodes
that had +3 or -3 standard deviation. (A) shows the t-statistics comparing the signal with null
hypothesis that the mean was equal to 0. Dashed lines show multiple comparison threshold
of significance. Vertical red blocks show significant clusters (p¡0.05). (B) shows the selected
electrodes, and horizontal dashed lines represent the SD criteria. Selected electrodes are shown
in the glass-brain. (C) Top shows single-trial time-resolved 1/f aperiodic activity of the median
of the selected electrodes. Bottom shows the median across selected electrodes and trials of 1/f z-
score activity. (Glass-brain from LAN toolbox; http://neurocics.udd.cl/LANtoolbox.html).
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Figure 4.8: Illustration of temporal principal component analysis (tPC). (A) shows the single-
trial signal of 1/f activity. To obtain tPC we concatenated each trial to obtain a single time-serie
containing all trials across electrodes. Next, we calculated tPC and reduced the spatial dimension
to 5 components that together explained near 40% of the variance (B). We then segmented the
tPC to recover single-trial resolution. (C) shows the mean tPC1 in an example subject at the
low 1/f frequency range.

139



CHAPTER 4. ATTENTIONAL RAPID STATE SHIFT IS RELATED TO
TRANSIENT 1/F APERIODIC ACTIVITY AND PHASIC AROUSAL IN HUMAN

IEEG AND SCALP EEG

Figure 4.9: Pipeline of correlation between pupil diameter and tPC1. (A) shows illustrative
mean tPC1 for low-range 1/f fit. (B) shows illustrative mean pupil diameter. Both signals
depicted in (A) and (B) are correlated. Next, we built null signals of pupil diameter implementing
block-resampling with 10.000 permutations, and to each null pupil signal we calculated the
Pearson correlation with tPC1. (C) shows the null distribution of p-values for each correlation.
Dashed lines represent the 2.5 and 97.5 percentiles, while the red line shows the p-value of the
original correlation.

140



CHAPTER 4. ATTENTIONAL RAPID STATE SHIFT IS RELATED TO
TRANSIENT 1/F APERIODIC ACTIVITY AND PHASIC AROUSAL IN HUMAN

IEEG AND SCALP EEG

Figure 4.10: Experimental design of VSWM task (obtained from Wainstein et al., 2017).
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[39] Rojas-Ĺıbano, D., Wainstein, G., Carrasco, X., Aboitiz, F., Crossley, N., Ossandón, T.

(2019). A pupil size, eye-tracking and neuropsychological dataset from ADHD children during

a cognitive task. Scientific data, 6(1), 1-6.

[40] Shine, J. M., Breakspear, M., Bell, P. T., Martens, K. A. E., Shine, R., Koyejo, O., ...

Poldrack, R. A. (2019). Human cognition involves the dynamic integration of neural activity

and neuromodulatory systems. Nature neuroscience, 22(2), 289-296.

[41] He, B. J., Raichle, M. E. (2009). The fMRI signal, slow cortical potential and consciousness.

Trends in cognitive sciences, 13(7), 302-309.

[42] Ostlund, B. D., Alperin, B. R., Drew, T., Karalunas, S. L. (2021). Behavioral and cognitive

correlates of the aperiodic (1/f-like) exponent of the EEG power spectrum in adolescents with

and without ADHD. Developmental cognitive neuroscience, 48, 100931.

[43] Robertson, M. M., Furlong, S., Voytek, B., Donoghue, T., Boettiger, C. A., Sheridan, M. A.

(2019). EEG power spectral slope differs by ADHD status and stimulant medication exposure

in early childhood. Journal of neurophysiology, 122(6), 2427-2437.

[44] Pertermann, M., Bluschke, A., Roessner, V., Beste, C. (2019). The modulation

of neural noise underlies the effectiveness of methylphenidate treatment in attention-

deficit/hyperactivity disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimag-

ing, 4(8), 743-750.

[45] Dave, S., Brothers, T. A., Swaab, T. Y. (2018). 1/f neural noise and electrophysiological

indices of contextual prediction in aging. Brain research, 1691, 34-43.

146



BIBLIOGRAPHY

[46] Harris, K. D., Thiele, A. (2011). Cortical state and attention. Nature reviews neuroscience,

12(9), 509-523.

[47] Chance, F. S., Abbott, L. F., Reyes, A. D. (2002). Gain modulation from background

synaptic input. Neuron, 35(4), 773-782.

[48] Zerlaut, Y., Destexhe, A. (2017). Enhanced responsiveness and low-level awareness in

stochastic network states. Neuron, 94(5), 1002-1009.
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... Rust, M. B. (2015). Attention-deficit/hyperactivity disorder–like phenotype in a mouse

model with impaired actin dynamics. Biological psychiatry, 78(2), 95-106.

[60] Hammerness, P., Biederman, J., Petty, C., Henin, A., Moore, C. M. (2012). Brain biochem-

ical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with

attention-deficit hyperactivity disorder: A controlled pilot study. CNS neuroscience thera-

peutics, 18(1), 34-40.

[61] Morello, F., Voikar, V., Parkkinen, P., Panhelainen, A., Rosenholm, M., Makkonen, A.,

... Partanen, J. (2020). ADHD-like behaviors caused by inactivation of a transcription factor

controlling the balance of inhibitory and excitatory neuron development in the mouse anterior

brainstem. Translational psychiatry, 10(1), 1-15.

[62] Sohal, V. S., Rubenstein, J. L. (2019). Excitation-inhibition balance as a framework for

investigating mechanisms in neuropsychiatric disorders. Molecular psychiatry, 24(9), 1248-

1257.

[63] Bruining, H., Hardstone, R., Juarez-Martinez, E. L., Sprengers, J., Avramiea, A. E., Sim-

praga, S., ... Linkenkaer-Hansen, K. (2020). Measurement of excitation-inhibition ratio in

autism spectrum disorder using critical brain dynamics. Scientific reports, 10(1), 1-15.

[64] DiCriscio, A. S., Troiani, V. (2017). Pupil adaptation corresponds to quantitative measures

of autism traits in children. Scientific reports, 7(1), 1-9.

148



BIBLIOGRAPHY

[65] Donoghue, T., Dominguez, J., Voytek, B. (2020). Electrophysiological frequency band ratio

measures conflate periodic and aperiodic neural activity. Eneuro, 7(6).

149



Chapter 5

Conclusions

This dissertation combines computational neuroscience by simulating brain activity as well

as modelling-driven analysis of electrophysiological data to infer mesoscale neural dynamics.

With this strategy the selected signals -aperiodic and complexity- are beyond mere correlates

of cognition and allow the possibility to serve as proxies of low-level biological mechanisms

underlying attention.

The main hypothesis of this dissertation was that cortical states, balance between E/I, LC-

NE neuromodulation and cognitive processes such as attention, are tightly intertwined. This

junction and the brain mechanisms supporting this junction was explored. Our evidence shows

that this relation is supported by LC-NE neuromodulatory mechanism which would change E/I

balance shaping mesoscale signals. We presented our results, in a two step hypothesis procedure

to incorporate computational modelling with experimental data analysis.

Our Objective 1 was explored in Chapter 1, where we make use of neural modelling and

simulation to relate two apparently diverse field potential signals (Lempel-Ziv Complexity and

1/f slope of the power spectrum) as reflecting the cortical state, and thus the balance between

excitation and inhibition. With this model-driven analytical tool, we extend the analysis towards

cognition to explore Objective 2. In Chapter 2, we make use of an open dataset to show that

changes in our proxy of balance between excitation and inhibition can track the state of seda-

tion and behavioral performance of subjects with pharmacologically increased inhibition. The

modulation of the balance between excitation and inhibition does not occur by itself, though.
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Changes in the balance may occur by direct pharmacological intervention (as in Chapter 1 and

2), or it can be regulated by a dynamical top-down controlled system, which is what we pro-

posed to explore in Objective 3. In Chapter 3 we show that changes in our proxy of balance

between excitation and inhibition can also occur by manipulating spike-frequency adaptation,

a mechanism known to depend on K+ channels which regulate the burstiness of neural activ-

ity. The dynamic elimination of spike-frequency adaptation by arousal-related neuromodulation

diminishes K+ and increases the burstiness of neural population activity, making the system

enter in a highly non-linear state. Although the balance between excitation and inhibition can

be regulated by arousal-related neuromodulation, this mechanism is known to be under impor-

tant top-down control with strong temporal resolution depending on the behavioral context. We

explored Objective 4 in Chapter 4 where we show how our proxy of excitation and inhibition

changes in a visuospatial working memory task. Furthermore, we characterize the temporal

dynamics of this fluctuation according to the attentional demand, and show that the balance

between excitation and inhibition is maximal in the highest attentional demand, suggesting that

this mechanism is under fine top-down control. Indeed, our proxy of excitation and inhibition

balance strongly correlates with arousal-related neuromodulation as addressed by pupil diameter

signal. As predicted, the balance between excitation and inhibition reflects a multiscale param-

eter of cortical state which can be observed as a low-dimensional signal across the brain. This

low-dimensional signal tracks attentional loading, as well as arousal-related neuromodulation in

both invasive and non-invasive electrophysiological recordings, evidencing the scalability of the

proposed modeling-driven measure.

Neuroscience is quickly moving towards big data. In the case of cognitive neuroscience, where

space and time are of essence, the high-dimensionality of brain signals makes as an important

task in the field, to provide meaningful description of the mechanisms underlying each latent

process that compose the whole complex signal. With this established, insightful questions and

hypotheses can be formulated to search for the biological underpinnings of cognition.

Adaptive cognitive flexibility is thought to arise from coordinated mesoscopic circuit dy-

namics which organize in macroscopic brain networks. The ascending arousal system innervates

heterogeneously to different areas, modulating diverse aspects of cortical brain dynamics. A

major challenge to step further this dissertation is to integrate macroscale brain connectivity,
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such as large-scale functional network topology, and explore brain activity and its multiple con-

figurations linking dynamics to biology in order to step closer to a mechanistic understanding of

cognition.
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A Commentary on

Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines

by van den Brink, R. L., Nieuwenhuis, S., and Donner, T. H. (2018). J. Neurosci. 38:7476–7491.
doi: 10.1523/JNEUROSCI.0514-18.2018

Brain states like sleep and vigilance, as well as fluctuating levels of arousal and attention, are
characterized by diverse patterns of brain activity. These global dynamics are strongly driven by
the activity of catecholaminergic neuromodulatory systems (Sara and Bouret, 2012; Reimer et al.,
2014; van den Brink et al., 2016). Specifically, norepinephrine (NE) levels have been shown to be
coupled to brain states (Eschenko et al., 2011; McGinley et al., 2015). The cortical influence of NE
comes from neurons originating in the locus coeruleus (LC) which has widespread projections
to the forebrain and has been assumed to have a uniform impact on brain activity. However,
neuromodulatory effects vary in part because of the heterogeneous cortical distribution of NE
synaptic receptors (Zilles and Amunts, 2009) which suggests that cortical modulation of NE is more
complex than previously thought (Totah et al., 2018).

Using fMRI and pharmacological intervention, van den Brink et al. (2018) sought to determine
whether NE modulation on brainwide interactions occurred in a spatially distributed manner
depending on receptor genes. For this, they analyze resting-state fMRI functional connectivity
(FC) in healthy subjects under both placebo condition and a pharmacological increase of NE
levels by a single dose of atomoxetine (ATX), an inhibitor of the NE transporter. They use a
previously proposed approach (Donner et al., 2013) to decompose the FC matrices into spatial
modes of brain organization that capture the heterogeneous atomoxetine-induced effects over
intrinsic brain variations.

To compare the spatial modes with well-known brain characteristics, the authors correlate these
spatial modes with canonical resting-state FC networks (Smith et al., 2009). Interestingly, the ATX
spatial mode correlates with the right frontoparietal network (FPN) while the placebo spatial mode
correlates with the left FPN and the default-mode network, which has important roles in cognition.
This is of special interest, considering that these networks are obtained from the resting-state,
which suggests that slow spontaneous fluctuations are modulated by NE even in the absence of
task. Indeed, the authors interpret that ATX might induce a shift toward a goal-oriented stimulus
processing brain state. Considering the computational evidence that resting-state fluctuations may
arise from slow fluctuation of ionic concentrations (Krishnan et al., 2018), van den Brink et al.
(2018) results experimentally supports the understanding of catecholaminergic modulation as a
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spatially heterogeneous gain function of biophysical dynamics
(Shine et al., 2018).

If the above were true, a strong coupling between the spatial
modes and the localization of NE receptors would be expected.
Indeed, using the receptor’s transcriptional maps from the
Allen Brain Institute (Hawrylycz et al., 2015), the authors show
that the heterogeneous spatial modes are partially explained
by the spatial heterogeneity of NE receptors. Specifically, the
distribution of the spatial modes significantly correlates with
the localization of β NE receptors and with α1 NE receptors,
but not with α2 NE receptors or NMDA receptors. This is
of special interest because α2 shows higher affinity to NE
than α1 receptors (Berridge and Spencer, 2016). Both of
these receptors are known to be cognitively important but
in different ways. α2 activation has been linked to enhanced
working memory capacity, while α1 is related to high arousal
situations and impaired working memory while promoting
attention flexibility (Berridge and Spencer, 2016). This is in
line with the adaptive gain theory proposed by Aston-Jones
and Cohen (2005), which links LC-NE activity with cognitive
performance. Interestingly, as the authors note, there is a
significant expression of NE receptors in subcortical areas,
including α2 NE autoreceptors in the LC, which should be taken
into account to describe these complex phenomena. However,
and perhaps more importantly, recent evidence has shown that
ATX has opposite effects in network integration in resting state
compared to cognitive tasks, which supports a state-dependent
modulation of brain connectivity by catecholamines
(Shine et al., 2019).

Humans interact with the dynamic nature of the world
with a high temporal resolution. Placing van den Brink et al.
(2018) findings into the perspective of spontaneous fluctuations
in cognition, it appears as highly relevant to characterize the
dynamic shaping of brain activity by neuromodulators on a finer
temporal scale using electrophysiology (e.g., McGinley et al.,
2015). In this line, Pfeffer et al. (2018) found that a single dose
of ATX shapes an aperiodic measure of the field potential during
perception of ambiguous visual stimuli. This is consistent with
evidence that proposes aperiodic measures such as the level
of background neural activity (Voytek and Knight, 2015) as
physiological markers of network dynamics. Interestingly, the
aperiodic activity has been shown to highly correlate with spiking
activity (Manning et al., 2009), and is a good electrophysiological
correlate of the BOLD signal (Wen and Liu, 2016), emerging

as a candidate to link micro and macro scale in the study of
neuromodulation of brain activity. Thus, it is tempting to test if
the spatial modes revealed by fMRI are spatially coincident with
electrophysiological field potential patterns, such as aperiodic
broadband, as previous studies have done (Ossandón et al., 2011).

The results presented by van den Brink et al. (2018) extend
our understanding of the fine-grained spatial architecture
of brain activity and its reshaping by ATX. Although
pharmacological interventions studies contribute to elucidate
the catecholaminergic effects on cortical states, they fail
to describe its naturally dynamic fluctuations. Given the
well-established role of the LC in driving cortical states and
pupil diameter (Aston-Jones and Cohen, 2005; Yüzgeç et al.,
2018), pupillometry appears as an excellent candidate to relate
endogenous time-varying NE levels with brain states (Reimer
et al., 2014; Wainstein et al., 2017).

van den Brink et al. (2018) contribute to the challenge
of linking macro scale brain organization with low-level
characteristics of neurotransmitter receptors. Extending these
important results using higher temporal resolution methods, as
intracranial EEG, and adding in parallel pupillometry would
give a broader understanding of how neuromodulators spatially
interact with brain state fluctuations and cognition. This
could potentiate future research to understand the multiscale
functional dynamics underlying several neuromodulator-related
psychiatric disorders as well as to pave the path to design targeted
therapeutic strategies.
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A B S T R A C T

Resting-state functional MRI activity is organized as a complex network. However, this coordinated brain activity
changes with time, raising questions about its evolving temporal arrangement. Does the brain visit different
configurations through time in a random or ordered way? Advances in this area depend on developing novel
paradigms that would allow us to shed light on these issues. We here propose to study the temporal changes in the
functional connectome by looking at transition graphs of network activity. Nodes of these graphs correspond to
brief whole-brain connectivity patterns (or meta-states), and directed links to the temporal transition between
consecutive meta-states. We applied this method to two datasets of healthy subjects (160 subjects and a repli-
cation sample of 54), and found that transition networks had several non-trivial properties, such as a heavy-tailed
degree distribution, high clustering, and a modular organization. This organization was implemented at a low
biological cost with a high cost-efficiency of the dynamics. Furthermore, characteristics of the subjects’ transition
graphs, including global efficiency, local efficiency and their transition cost, were correlated with cognition and
motor functioning. All these results were replicated in both datasets. We conclude that time-varying functional
connectivity patterns of the brain in health progress in time in a highly organized and complex order, which is
related to behavior.

1. Introduction

The brain uses a large amount of energy in organizing its spontaneous
intrinsic activity into a complex network (Achard and Bullmore, 2007;
Bullmore and Sporns, 2012, 2009; Raichle and Mintun, 2006). This or-
ganization is specific to the individual (Amico and Go~ni, 2018; Finn et al.,
2015), and its changes have been associated with development (Dos-
enbach et al., 2010; Sato et al., 2015), cognition (Crossley et al., 2013;
van den Heuvel et al., 2009), emotion (Ramirez-Mahaluf et al., 2018),
and the presence of disease (Crossley et al., 2017; Fornito et al., 2015).

Several functional MRI studies have also suggested that the brain’s
slow oscillatory activity and interactions between regions change over
time (Chang and Glover, 2010; Hutchison et al., 2013; Smith et al.,
2012). These fluctuations present stable periods or meta-states with a

distinct organization (Betzel et al., 2016; Shine et al., 2016; Vidaurre
et al., 2017). Using different approaches, recent studies have proposed
that the time the brain dwells in specific meta-states is of biological
importance. For example, the amount of time brain dynamics remain in
meta-states dominated by connections between areas usually related to
higher-order cognitive traits (such as the default-mode network, lan-
guage and prefrontal areas) has been associated with the individual’s
cognitive skills (Vidaurre et al., 2017). Failure to engage brain dynamics
in meta-states involving long-range connections has been observed in
pathological brain states such as schizophrenia (Damaraju et al., 2014).
Similarly, cognitive impairment associated with brain ageing has been
linked to brain dynamics remaining shorter periods in states character-
ized by strong global connectivity (Cabral et al., 2017). A natural focus of
studies examining these dynamic changes has been on describing the
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interactions between regions in specific meta-states, and the time spent
in each state. Less has been centered on examining the temporal
dimension of these phenomena, exploring the way the brain visits these
meta-states. In other words, it is yet unclear whether the temporal pro-
gression of these changes follows a specific order, or whether the brain
transits through these different meta-states in a random way. The pre-
viously mentioned study on ageing (Cabral et al., 2017) not only high-
lighted that cognitive decline was associated with less time spent in
globally connected brain states, but also with a higher rate of change
between different meta-states. Examining more in detail the temporal
organization of howmeta-states are visited could provide further clues of
brain functioning in health and disease.

Unpacking the temporal dynamics of brain functional networks re-
quires new insights and tools to examine them (Sizemore and Bassett,
2018). In order to explore the complex temporal organization of brain
networks, we developed further the idea of considering the order in
which the brain visits different meta-states as a path (Miller et al., 2016;
Vidaurre et al., 2017). We extended this insight by considering the tra-
jectory through meta-states during the whole registering period as a
directed graph. Nodes in these graphs represent whole-brain connectivity
states (meta-states) and links represent the temporal transition between
them. Analyzing these graphs allowed us to explore whether meta-states
were visited in a non-random sequence. We used this approach to
examine resting-state functional MRI data from 160 healthy subjects
from the Human Connectome Project, and a second replication sample
from 54 healthy subjects. We explored whether these transition networks
of brain functioning had several non-trivial properties, and their rela-
tionship to cognition and behavior.

2. Methods

2.1. Subjects

We included in our analyses two datasests of resting-state fMRI data.
The first included 160 healthy, unrelated adult participants (age: 22–35
years) from the Human Connectome Project (HCP) (Van Essen et al.,
2012). All subjects underwent a neuropsychological assessment, and
none had a prior history of psychiatric or neurological illnesses (Van
Essen et al., 2012). A second cohort of healthy subjects included 54
participants (age: 22.9 � 3.6 years, mean � standard deviation; 34
males) without any psychiatric, neurological or medical illness who were
recruited at our center in Santiago, Chile. The study was carried out in
accordance with ethical guidelines criteria established by the Pontificia
Universidad Cat�olica de Chile as approved by its Ethics Committee (Ref:
15–297) and written informed consent was obtained from all
participants.

2.2. Data acquisition and preprocessing

HCP data comprised 1200 frames of multiband, gradient-echo planar
imaging acquired during a period of 14 min and 33 s with the following
parameters: TR 720 ms; TE 33.1 ms; flip angle, 52�; field of view, 280 �
180 mm; matrix, 140 � 90; and voxel dimensions, 2 mm isotropic. In-
dividuals fixated on a projected bright crosshair on a dark background
during data acquisition. Two runs acquired for each individual were
concatenated and analyzed in our study. Resting-state fMRI data were
preprocessed with the HCP functional pipeline, including fMRIVolume
and fMRISurface pipeline outputs and motion parameters (Glasser et al.,
2013).

Our second cohort of subjects were scanned in a Philips Ingenia 3T
MRI with a 16-channel coil. Resting-state images were acquired during
8.33 min while subjects had their eyes opened using an EPI acquisition
with a TR of 2.5s, TE 32 ms, and a flip angle of 82�. Forty slides with a
continuous descending order were acquired, using a field of view of 220
� 220mm, and an isotropic voxel size of 2.75 mm. A structural T1-
weighted image with a voxel size of 1.0 mm3 isotropic, a minimum TI

delay of 965.2, TE 3.5, TR 7.7 and flip angle of 8� was also acquired.
Preprocessing of the functional images followed previously published
pipelines (Parkes et al., 2018). Briefly, this included slice-time correction,
realignment, normalization, spatial smoothing with a 6 mm FHWM
kernel and temporal filtering between 0.008 and 0.08 Hz. Management
of residual movement was performed using an automated-ICA method
(Pruim et al., 2015).

3. Data analysis

3.1. Temporal meta-states

All data analyses were done with MATLAB (Mathoworks®). We used
a whole-brain template with similarly-sized regions (638 nodes)
(Crossley et al., 2013), to explore functional connectivity between every
pair of regions in the resting state sessions from each individual. Multi-
plication of temporal derivatives (MTD) (Shine et al., 2015), a method
with a high sensitivity to changes in functional connectivity and robust to
noise introduced by headmovement, was used as our metric of functional
connectivity within time windows of length of 7 vol (5040 ms) for our
HCP dataset. The size of this time window was selected since it has been
described as the most effective trade-off between sensitivity and speci-
ficity (Shine et al., 2015). Considering the longer TR used in the acqui-
sition of the data in our second cohort, we used a similar window length
of 5000 ms, but which consisted of 2 volumes. The differences in the
temporal resolution between datasets allowed us to test the reliability of
our analyses. The full connectivity matrix of the time window (638 �
638) was defined as a brain state.

3.2. Brain state transitions network construction

We then estimated the similarity between all brain states within a
subject using correlations, and clusterized the brain states according to
their similarity using k-means (Peer et al., 2017). This procedure allowed
us to assign each brain state a brain state cluster or meta-state. For each
subject, we explored a range between 35 and 55 numbers of clusters.
While previous studies have suggested that brain dynamics organize into
fewer number of meta-states, clustering is likely to be influenced by the
amount of data analyzed. On the other hand, graph analytic methods
provide interesting insights into complex networks, which consist of a
large number of interacting components. We therefore capitalized on the
high temporal resolution and longer period of recording of the HCP data
to extract between 35 and 55 meta-states, which would suit our analysis.

3.3. Construction of the transition network between meta-states

We then built a network of meta-state transitions in time, where each
meta-state was a node and the transitions between meta-states were the
directed edges. A weight was assigned to each edge according to the
number of times the brain transitioned between the connected meta-
states, in the direction of the edge. Fig. 1 summarizes the construction
of this directed and weighted network.

Several parameters were measured from the resulting directed and
weighted graph, including widely-used graph-analytic measures such as
the weighted degree distribution (Achard et al., 2006; Rubinov and
Sporns, 2010), modularity (Newman, 2006), and local and global effi-
ciency (Latora and Marchiori, 2001). We also measured parameters
trying to provide insights into the biological cost of the network,
including:

- Transition cost: This is a global parameter of the transition network. It
is defined as the distance between one meta-state and the next one (1
– correlation coefficient of their connectivity matrices), possibly
reflecting the metabolic cost associated with switching from one
pattern of connectivity to another. This cost was composed of two
parameters, which we describe as the immobility of the network
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(number of times the brain dynamics remained in the samemeta-state
between two consecutive windows), and the leap size (the transition
cost without considering the immobility periods).

- Static cost: This is a cost parameter previously used in the literature
(Fornito et al., 2011) that applies to each specific meta-state. It is
defined as the sum of all products generated by the multiplication of
the connectivity between two regions with the Euclidean distance
between the centroids of them.

- Cost-efficiency: Following previous studies (Fornito et al., 2011), we
also examined the global efficiency of the transition network ac-
counting for its cost (in this case, the transition cost).

3.4. Null models

We compared the observed transition-network parameters described
above with 3 different null models (Fig. 1):

a) Random null model, where the probability of the transition from one
meta-state to another one was completely random, generating a
random network (10,000 iterations) (Bullmore and Sporns, 2012).

b) Degree conserved null model, where the rewiring of the network was
performed in such a way that the distribution of the number of con-
nections to nodes, or the degree distribution of the network, was
maintained (10,000 iterations). This is similar in principle to the
popular (Maslov and Sneppen, 2002) algorithm. This was accom-
plished by scrambling the full path of transitions underwent by brain
dynamics (for example, from ABABCABCD to AADBACBCB).

c) BOLD time-series randomization,where the phase of the extracted time-
series from all regions of interest were scrambled and then time-series
were reconstructed (100 iterations) (Zalesky et al., 2012). We used
the same scrambling sequence across ROIs in a null model to maintain
not only the autocorrelation function and power spectrum, but also
the distribution of correlation values.

Fig. 1. Construction of transition networks and null models used.
Brain areas are defined using a template (A), and their average time course is extracted (B). A measure of functional connectivity, namely multiplication time de-
rivatives, is measured between all pairs of regions for each non-overlapping time window of approximately 5 s (7 or 2 vol, depending on each dataset). Functional
connectivity across regions within the window defines a brain state (C), which are clustered to allocate them to specific meta-states (D). Finally, the directed graph of
the trajectory taken by the brain through each meta-state is calculated (E). Note that connections between two nodes A to B and B to A in the resulting directed graph
are not equivalent. Three null-models are used at different stages of the analysis.
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The graph measures of transition networks were normalized by the
respective null model when visually presented (observed metric/null
model metric). They were also plotted in a natural logarithmic scale to
maintain the symmetry between increases or decreases. Values of 0,
highlighted with a dotted line in the graphs, correspond to no differences
between the observed metric and null model.

3.5. Behavioral analyses

To explore the biological importance of the non-trivial properties of
these graphs, we correlated the graph measures across subjects with
behavioral measurements. For the HCP dataset, we examined tests in
different domains, including cognition, emotion, motor, personality and
sensory. Due to the large number of behavioral tests, we performed a
principal component analysis (PCA) for each behavioral category to
reduce its dimensionality, and used the two principal components that
together explained more than 50% of the variance in the data.

Furthermore, we were aware that we would compare these two compo-
nents with multiple graph-analytic metrics. We therefore corrected for
multiple comparisons using false discovery rates independently for each
of the 5 behavioral domains measured (2 components x 7 graph metrics
¼ 14 comparisons). Information regarding the domains measured by
cognitive and motor assessments can be found on Table S1 and S2
respectively. For our second cohort scanned in Santiago, we used the
general intelligence quotient (IQ) value as a measure of global cognitive
performance. This value was estimated from 7 subtests of the Chilean
version of the WAIS-IV cognitive battery (block design, similarities, vo-
cabulary, matrix reasoning, arithmetic, information and coding).

3.6. Meta-state organization and its relationship with canonical resting-
state networks

We also related the meta-states found in discrete windows with the
previously-known brain organization into canonical resting-state

Fig. 2. Topological properties of transition networks.
A. Mean degree distribution histogram across subjects. B. Intra-network connections of canonical networks included visual (red), default mode (yellow), cerebellum
(green), sensorimotor (magenta), auditory (blue), executive control (cyan) and frontoparietal (gray) networks. Only the strongest connections (0.2%) are displayed for
visualization purposes. C. Degree and ratio of intra-cannonical network connections for each meta-state were positively correlated (all meta-states from all subjects
pooled). D. Histogram of correlations between degree and intra-module connections for each subject. E, F, and G describe the ratio between the observed property in
the transition graph and different null models for (E) modularity (Q value), (F) local efficiency and (G) global efficiency. The ratios between the transition network and
a null model are plotted on a natural logarithmic scale, and plotted alongside its 95% confidence interval of the mean. Dotted lines mark the line of no difference with
the null models. Comparisons with random null model networks are plotted in gray, with degree-conserved null network in red, and the randomized time series null
model in blue.
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functional networks. We used 10 ICA-based rsfMRI maps from previous
work (Smith et al., 2009), defining 7 networks corresponding to: visual
(including components describing primary and secondary visual
cortices), default mode, cerebellum, sensorimotor, auditory, executive
control and frontoparietal networks (jointly left and right). We then
thresholded the 10% of strongest connections for each meta-state, and
calculated the proportion of connections from the total that linked re-
gions within the ICA-described networks. A high index would imply that
the strongest connections within a specific meta-state were between re-
gions known to be organized into canonical resting-state networks from
previous studies. On the contrary, a low index would suggest that the
whole-brain organization within that time window departs greatly from
these canonical resting-state networks.

4. Results

4.1. Transition networks of resting-state fMRI meta-states have non-trivial
topological properties

We first present the results from our discovery sample from the HCP
dataset. Like other complex networks, the degree distribution of the brain
transitions network was heavy-tailed across subjects. Following a previ-
ous study (Achard et al., 2006), four distributions were compared using
Akaike’s information criterion: a power law, P(k)~ K�α; an exponential,
P(k)~ e-αk; an exponentially truncated power law, P(k)¼ Kα�1 ek/kc; and a
gaussian distribution. The exponentially truncated power law was the
best-fitting model for 92% of the subjects (n ¼ 147), while a power law
was the best-fitting for the remaining subjects (8%, n ¼ 13) (Fig. 2A).
This observed degree distribution among the subjects differed to the
degree distribution of their respective null models that did not conserve
this characteristic, namely random networks and phase-randomization
networks (Table S3; χ2 ¼ 130.8, p < 10�29 and χ2 ¼ 6.7, p ¼ 0.035,
respectively). Post-hoc analyses suggested these differences were driven
in both cases by the higher proportion of exponentially-truncated power
law fit in the observed networks (χ2¼ 111.6, p< 10�25 and χ2 ¼ 6.3, p¼
0.012, respectively).

Then, we explored if these hub meta-states were similar to well-
known functional canonical resting-state networks, looking at the pro-
portion of strongest connections between regions within the same ca-
nonical resting-state network (Fig. 2B). We found a positive correlation
between the weighted degree of the meta-state and its ratio of intra-
canonical-network connections in the whole group (Fig. 2C, R ¼ 0.48,
[95% CI 0.46 to 0.50]). This relationship applied within most subjects,
who presented a positive correlation between degree and the ratio of the
intra-canonical-network connections (Fig. 2D, median correlation of
0.5711, [95% CI 0.5379 to 0.6135]). In other words, the brain spent most
time in meta-states that resembled most the canonical-network
organization.

Previous work has shown that whole-brain dynamics grouped into
different clusters of meta-states with similar characteristics (Shine et al.,
2016; Vidaurre et al., 2017). In line with these results, a community
detection algorithm (Newman, 2006) showed that the brain transition
network could be decomposed into a few clusters, identifying a range
between 2 and 7 modules (median ¼ 4) across subjects. Newman’s
modularity index Q was significantly higher for the brain transition
networks than for all 3 null models across all k-values of meta-states
(Fig. 2E, see also Table S4).

We then explored the efficiency of the network (Latora andMarchiori,
2001). First, we examined the local efficiency, a concept closely related
to the clustering coefficient, which describes how fault-tolerant is the
system by measuring the number of connections between neighbors of a
node. Local efficiency in the transition networks was significantly higher
compared to all 3 null models (Fig. 2F, see also Table S4).

The global efficiency of the transition networks, which is closely
related to path length and describes howmuch resources should travel on
average in the network to get from one point to another, was consistently

lower than null models (Fig. 2G, see also Table S4). Transition networks
were thus not efficient in visiting a brain state from another point in the
network, traversing on average too many nodes. Considering the tem-
poral nature of the network, this meant brain networks were significantly
slower to visit brain meta-states compared to random networks.

4.2. Transition networks are highly cost-efficient

Our result showing that the dynamics of brain meta-states were
significantly slow (low global efficiency) could be explained as a way of
keeping biological costs low (Zalesky et al., 2014). We therefore evalu-
ated the cost of transitions, which we conceptualized as how much the
brain had to change its connectivity pattern between one meta-state and
the other (measured by 1-ρ, where ρ is the Pearson’s correlation coeffi-
cient of their connectivity matrices). The transition cost was significantly
lower compared to all three null models (Fig. 3A, see also Table S5).

As described in the methods, costs in transition networks could be
kept low by reducing the size of the leap from one brain-state to the next
one, or else by staying in the same meta-state in consecutive time-
windows, which we define as immobility. Immobility was significantly
higher in the observed data compared to all three null models (Fig. 3B,
Table S5). Leap size, the average distance from one brain-state to the next
one (excluding the cases when the brain remains in the same meta-state
in consecutive windows), was significantly lower compared to all three
null models (Fig. 3C, Table S5). Thus, the lower transition cost was driven
by a network that remained more frequently within the same meta-state,
but also by reducing its leap size, or moving to another meta-state which
was not that different from the current one.

Examining costs in functional networks also raised the question about
how the system solved the costs of remaining in one meta-state. Previous
fMRI studies have inferred this cost from the product of the strength of
the functional connectivity and the Euclidean distance between the re-
gions, assuming that interactions at longer distances convey a higher
cost. We found that most subjects presented a negative correlation be-
tween this “static” cost of the meta-state and the number of times it was
visited (Fig. 3D, median correlation ¼ �0.4566, [95% CI –0.4872 to
�0.3785]). As such, brain dynamics tend to avoid spending long time in a
state which requires a high biological cost to maintain.

We then explored whether transition networks were organized effi-
ciently considering this low running cost (Achard and Bullmore, 2007).
Cost-efficiency (global efficiency normalized by the cost) was indeed
higher than random networks and randomized time series networks (Fig. 3E,
Table S5). When compared to degree conserved random networks it
depended on the number of meta-states (k-value): the cost-efficiency was
higher for k ¼ 35 and 40 (Fig. 3E; Table S5), it was not statistically
different for k ¼ 45 and 50 (Fig. 3E; Table S5) and was lower for k ¼ 55
(Fig. 3E; Table S5). Therefore, the cost-efficiency of the network was
partly driven by its heavy-tailed degree distribution.

4.3. The cost of switching between transitions and the network’s global
efficiency is related to the overall cognitive functioning and motor capacity
of the subjects

The large number of subjects scanned in the Human Connectome
Project also allowed us to relate individual differences in the dynamics of
brain meta-states transitions with cognitive, motor, perceptual,
emotional or personality related traits measured in that project (Van
Essen et al., 2012).

4.4. Cognition

We found a positive correlation between the cost of the transitions
and the first cognitive dimension, which weighed equally across cogni-
tive tasks (R ¼ 0.2587, p-FDR ¼ 0.0092; see Table S1 for cognitive-
coefficients PCAs). In other words, subjects with better general cogni-
tive function were also more capable of switching between very different
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Fig. 3. Economical properties of transition networks.
A. Transition cost, B. Immobility C. Leap size D. Correlations of static cost of meta-states and number of times they are visited across subjects. The inset displays an
example of static cost evolution in time from one subject. Note that this subject remains most of the time in meta-states with low static cost, and this property is seen
across all subjects E. Cost-Efficiency. As in Fig. 2, the ratio between the transition network and a null model is plotted on a natural logarithmic scale, alongside its 95%
confidence interval of the mean. Doted lines mark the line of no difference with the null models. Comparisons with random null model in gray, degree conserved null
model in red, and randomized time series null model in blue.

Fig. 4. Transition networks properties are related to cognition and motor capacity.
Scatter plots showing the significant correlations between topological characteristics of the transition networks in subjects and the PCAs of cognitive and motor tasks.
Graph measures are displayed using z-scores.
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brain states that allegedly would incur a high biological cost. When
looking at whether the higher cost of transitions depended on a longer
leap or a less mobile network, we found that the first cognitive dimension
correlated with leap size (Fig. 4A, R ¼ 0.252, p-FDR ¼ 0.0092), but not
with immobility (R ¼ –0.1382, p-uncorrected ¼ 0.0814). Global effi-
ciency and the first cognitive dimension were also positively correlated
(Fig. 4B, R ¼ 0.2115, p-FDR ¼ 0.0339). Subjects with higher cognitive
performance visited more efficiently different meta-states.

A negative correlation between local efficiency and first cognitive
dimension was also present (Fig. 4C, R ¼ �0.1976, p-FDR ¼ 0.0429).
Subjects with a higher cognitive performance presented less redundant
trajectories between meta-states.

To illustrate these differences, Fig. 5 displays the transition graphs of
two subjects, one scoring among the best and the other the worst in
cognitive performance. The layout of nodes is proportional to their
transition distance, so the spatial proximity in the figure of the meta-
states is proportional to their similarity. As can be seen, the temporal
path depicted in the transition graph of the subject scoring highest spans
longer distances (larger leap size), reaching rapidly other nodes (higher
global efficiency), with an apparent less redundant path (lower local
clustering).

4.5. Motor

A significant correlation was also present between both first and
second dimensions of motor tasks and transition cost (R¼ 0.1855, p-FDR
¼ 0.0441 and R ¼ 0.2599, p-FDR ¼ 0.0063, respectively). As such,
subjects who were better in physical endurance, strength, locomotion,
and dexterity (Table S2, see for motor-coefficients PCAs), were capable of
transiting between very different meta-states. We also found a significant

correlation between the second motor dimension and leap size (Fig. 4D,
R ¼ 0.322, p-FDR ¼ 0.0005), but not immobility (R ¼ �0.1553, p-un-
corrected ¼ 0.05 and R ¼ �0.0167, p-uncorrected ¼ 0.8338, for 1st and
2nd motor dimensions).

A significant correlation between global efficiency and first motor
dimension was also found (Fig. 4E, R ¼ 0.1861, p-FDR ¼ 0.0441). Sub-
jects who were better in motor performance (endurance, locomotion and
strength) used shorter paths to visit different meta-states.

A negative correlation between local efficiency and the first motor
dimension was also present (Fig. 4F, R ¼ �0.2396, p-FDR ¼ 0.0106).
Subjects with a higher motor performance presented less redundant
trajectories between meta-states.

We also found a negative correlation between cost-efficiency and the
second motor dimension (R ¼ �0.2192, p-FDR ¼ 0.0188). This result
must be interpreted with care, since this negative association appeared to
be driven by the high correlation between transition cost and the second
motor dimension.

4.6. Emotion, sensory and personality traits

We did not find any significant association between emotion, sensory
and personality domains, with the graph measures of the transition
networks.

Subject-specific characteristics are not correlated with analogous to-
pological organization calculated from the static graph (whole-regis-
tering period network).

We also explored the relationship between all these cognitive and
behavioral metrics with graph metrics from the network built from the
whole registration period (the “static” network traditionally explored in
fMRI studies). We found no significant correlation between the cognitive,
motor, or any other dimension examined and the equivalent graph an-
alytic properties of the static (whole time-series) brain network (Table S6
and S7).

4.7. Transition graphs are reliable for each subject

Since the Human Connectome Project data were acquired in two
stages of 15 min, we used this division to explore the reliability of our
network metrics. As can be seen in Figure S1, all network metrics
measured in the different stages were significantly correlated, with cor-
relations ranging from 0.19 for immobility, to 0.71 for leap size.

4.8. Transition networks measures and their relationship with cognition are
replicable

We replicated our analyses of the transition networks using a second
dataset of resting-state fMRI data of 54 healthy subjects. Although the
acquisition of resting-state data differed greatly, with a shorter acquisi-
tion time (8 min) and a lower temporal resolution (TR ¼ 2.5s), the non-
trivial graph properties of transition networks were replicated. As
Figure S2 shows, transition networks had a heavy-tailed distribution,
with high clustering and modularity, with low transition costs, and high
cost-efficiency.

We then explored the relation between transition networks metrics
and cognition, using the intelligence quotient (IQ). Remarkably, we
replicated our findings of a positive correlation between IQ and the cost
of the transitions (Fig. 6A, R ¼ 0.3003, p ¼ 0.0274), leap size (Fig. 6B, R
¼ 0.3062, p ¼ 0.0243), and global efficiency (Fig. 6C, R ¼ 0.2764, p ¼
0.0431). Local efficiency, previously found to correlate negatively with
cognition, was negatively correlated with IQ as well (Fig. 6D, R ¼
�0.2767, p ¼ 0.0428).

5. Discussion

We here showed that functional brain networks have a highly orga-
nized temporal structure, where different brain states are visited in a

Fig. 5. Example networks of subjects with differing levels of cognition.
Transition networks from two subjects who perform among the best and worse
in cognitive tests. Layout of the graph is such that the distance between nodes is
proportional to their transition cost (1 – correlation of connectivity matrices).
The color of nodes denote the degree, the arrow of links represent the direction,
and the width of links the number of transition between the connected nodes
(weight). Self-connections of the nodes represent consecutive periods (time
windows) in which the brain remained in the same meta-state (immobility). The
inset shows the scatter plot between leap size and cognitive dimension high-
lighting both subjects.
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cost-effective, locally-clustered, and modular arrangement. Furthermore,
the characteristics of these paths are related to the cognitive and
behavioral characteristics of the individuals. We replicated our findings
in two datasets, providing evidence that our results are consistent across
samples and differences in image acquisitions. Brain networks and their
progression in time thus behave like a piece of music, for example
Beethoven’s 5th symphony. Different musicians may play sometimes in a
coordinated way, similar to brain areas functionally connected. The
overall harmony revolves around a dominant chord (C minor), which one
could consider analogous to the information one gets when looking at
whole-registering period (static) functional connectivity networks.
However, the essence of the musical piece, and we here argue that brain
functioning as well, is not grasped until one considers how it temporally
progresses from note to note forming harmonized melodies.

Economic constraints have been suggested as one of the main prin-
ciples ruling how the brain organizes itself (Bullmore and Sporns, 2012).
Their modulating effect has also been shown for the dynamic fluctuations
observed in functional networks with fMRI, with temporal changes
concentrating in the long-range, integrative, but costly brain connec-
tions, providing a cost-efficient solution for the brain (Zalesky et al.,
2014). Our findings are very much in line with this idea, with the brain
path minimizing the biological costs that require switching from one
state to the other, and avoiding spending a long time in brain states that
require high biological investment for their maintenance.

Transition networks also had other hallmarks of complex systems.
Our finding of an exponentially-truncated power-law distribution mir-
rors other systems with complex organization instantiated in physical
systems that limits their organization (Achard et al., 2006). Within this
heavy-tailed distribution, there were a few highly visited meta-states,

which were similar in their organization to resting-state networks. This
is perhaps unsurprising when one considers that resting-state networks
are the average connection profiles of a whole recording period in which
hub meta-states account for a significant part. Other relevant character-
istics of our transition networks were their highly modular organization,
which echoes previous findings on resting-state fMRI dynamics (Shine
et al., 2016; Vidaurre et al., 2017), as well as their redundant trajectory
(high local efficiency). This organization suggests that predicting a future
brain-state from a preceding one might be possible to a certain level.

This new approach to brain dynamics provides new insights into
brain functioning otherwise missed, as shown in our results relating the
paths’ organization with the cognitive and behavioral individual char-
acteristics, which were not present in the “static” connectivity analyses.
Previous studies had suggested that configurations in structural and
functional brain networks with high global efficiency, allowing for
proper parallel processing, would facilitate cognition (Li et al., 2009; van
den Heuvel et al., 2009). Adding a new level of complexity, we found that
trajectories between functional networks with high global efficiency
were also related to higher cognition, reflecting that not only is relevant
how efficiently connected are the brain networks, but also how efficiently
these networks are visited in time. Another interesting insight related to
general cognition was that it was correlated with a higher capacity to
switch between very different meta-states (longer leap size). This reso-
nates with the suggestion that higher cognition is related to rapid
adaptation of different patterns of functional connectivity according to
task demands (Cole et al., 2013). Thus, higher cognition is related to
efficient planning of how to explore the landscape of possible
meta-states, as well as the capacity to jump farther from one point to the
other. It is true that our measures of cognition were different in the two

Fig. 6. Transition networks properties are related to IQ value in a second cohort.
Scatter plot shows the significant correlations between graph measures and the IQ value. Graph measures are expressed as z-scores.
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datasets analyzed, namely the principal components explaining most of
the variance of a cognitive battery and measured IQ. However, we would
argue that both characterize similar cognitive profiles (general cogni-
tion), increasing the replicability of our results when changing method-
ological considerations.

Our network metrics were also correlated with motor skills, including
transition cost, which was also related to general cognition. Since we did
not measure motor skills in our subjects recruited locally, we could not
explore how replicable these results were. However, our results are
interesting since they could help us relate cognition with physical ac-
tivity, particularly considering that there is a large amount of evidence
supporting a beneficial effect of physical activity on cognition (Erickson
et al., 2011; Hillman et al., 2008). Our results suggest another possible
mechanism: physical training helps the brain jump farther to more
distant meta-states. From a neurobiological perspective, it is interesting
to note that growth factors have been suggested to mediate the brain
effects of exercise. Growth factors also modulate synaptic plasticity and
functional connectivity (Cotman et al., 2007; Voss et al., 2013), linking
our observation of greater changes in the functional connectivity patterns
with exercise.

Examining complex systems of interacting components as networks is
a simple and useful solution to discover the underlying organizational
principles from the large amount of data acquired. This indeed is the case
in the brain (Bullmore and Sporns, 2009). The dynamic nature of func-
tional brain networks has increased again the order of data examined,
and challenged scientists to come up with newways of understanding the
temporal organization (Sizemore and Bassett, 2018). Our suggestion to
consider the paths as a directed graph is a simple yet powerful one,
providing several novel insights into brain functioning. It has yet to be
seen whether it will also provide new insights into brain dysfunction. It is
also a flexible conceptual approach, that can well be applied to other
brain signals (such as EEG), or even to other dynamic systems beyond the
brain.

Our study has several limitations. Perhaps the most important one is
that we used windows of the same length assuming that meta-states last
all the same amount of time. This imposed pacing on brain dynamics is
unlikely to be correct (Vidaurre et al., 2017). However, a temporal path
could stay within the same meta-state in consecutive time windows, and
our metric of immobility allowed us to examine what role this possibility
had in the organization. One could also question the number of
meta-states expected, which we considered to be between 35 and 55 that
is higher than the number of previously cited meta-states. Forcing the
data to cluster into smaller groups could introduce some organization;
however, we do not see that in our null models, including one based on
surrogates of fMRI time-series (phase randomization). Differing views on
these two methodological decisions (fixed windows, and number of
meta-states) are expected since we do not yet know the characteristics
and numbers of meta-states in the healthy brain. It is also unclear how
similar is the organization across different subjects. To some extent, this
problem resonates with the discussion about how to divide the brain into
regions. This is undoubtedly important for connectivity analyses (Smith
et al., 2011; Zalesky et al., 2010), but does not necessarily prevent
network analyses from providing insights into brain functioning (Bull-
more and Sporns, 2009). We aimed to show a novel approach to the
higher-level analysis of the brain’s dynamic organization, that could be
used in the future with more precise definitions of dynamic meta-states
provided by new research. We also showed significant reliability on
metrics measured in different 15-min resting-state periods. However,
some of the global metrics such as immobility had relatively low corre-
lation values between sessions. On the one hand, this could suggest that
some metrics derived from our method require extended periods of fMRI
measurement to provide a full and reliable view of the temporal orga-
nization of an individual’s brain. Future work will focus on examining
the limits of this temporal resolution, and ways to improve its reliability.
On the other, one could speculate that a low reliability between sessions
would be expected in graph metrics related to intra-individual

characteristics that changed significantly during this very short period.
As most of us have experienced when volunteering in a neuroimaging
study, it is likely that there were changes in the level of arousal of sub-
jects between the two sessions. The extent to which network character-
istics such as immobility are related to different levels of arousal is an
area we would like to explore further.

Our study also has several strengths. Firstly, we replicated our results
in a second cohort. The functional MRI sequence from that second cohort
did not share the high temporal resolution of the Human Connectome
Project Data, ending with a noisier estimate of the functional connec-
tivity within each time window. The fact that our results were overall
similar to the original analysis supports the replicability of our findings.
Secondly, we also compared our findings against 3 null models: a random
network, a degree-conserved random network (Maslov and Sneppen,
2002), and a BOLD-time series randomization null models (Zalesky et al.,
2014). Each null model has its limitations, but jointly provided a robust
proof of our findings. These included accounting for the effect of some of
the characteristics of the network’s organization, such as its degree dis-
tribution (degree-conserved random network), or the correlated noise in
time-series (BOLD-time series randomization). The latter model allowed
us to conclude for example that the observed low transition cost is not
simply due to temporal blurring. Furthermore, our results were consis-
tently found along with a range of clustering solutions. Overall, all these
analyses performed show that our findings were not restricted to specific
acquisition of the data or restricted to certain methodological assump-
tions in the analyses.

In summary, we conclude that the paths that brain dynamics take are
non-trivial and related to differences in cognition and motor skills.
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Abstract 

Previous research has shown that the autonomic nervous system provides essential 

constraints over ongoing cognitive function. However, there is currently a relative 

lack of direct empirical evidence for how this interaction manifests in the brain at the 

macro-scale level. Here, we examine the role of ascending arousal and attentional load 

on large-scale network dynamics by combining pupillometry, functional MRI and 

graph theoretical analysis to analyze data from a visual motion-tracking task with a 

parametric load manipulation. We found that attentional load effects were observable 

in measures of pupil diameter and in a set of brain regions that parametrically 

modulated their BOLD activity and meso-scale network-level integration. In addition, 

the regional patterns of network reconfiguration were correlated with the spatial 

distribution of the α2a adrenergic receptor. Our results further solidify the 

relationship between ascending noradrenergic activity, large-scale network 

integration, and cognitive task performance.  

 

Author Summary 

In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been 

traditionally regarded as challenges that are solved mainly through cerebral activity, 

specifically via information-processing steps carried by neurons in the cerebral cortex. Activity 

in cortical networks thus constitutes a key factor for improving our understanding cognitive 

processes. However, recent evidence has shown that evolutionary older players in the central 

nervous system, such as brainstem’s ascending modulatory systems, might play an equally 

important role in diverse cognitive mechanisms. Our article examines the role of the ascending 

arousal system on large-scale network dynamics by combining pupillometry, functional MRI 

and graph theoretical analysis. 
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Introduction 

Cognitive processes emerge from the dynamic interplay between diverse mesoscopic 

brain systems 1,2. Thus, the neural activity supporting cognition does not exist in a 

vacuum, but instead is deeply embedded within the ongoing dynamics of the 

physiological networks of the body3. In particular, the neural processes underlying 

cognition are shaped and constrained by the ascending arousal system, whose activity 

acts to facilitate the integration between internal states and external contingencies4. 

Timely and selective interactions between the ascending arousal system and the 

network-level configuration of the brain are thus likely to represent crucial constraints 

on cognitive and attentional processes. Yet, despite these links, we currently have a 

relatively poor understanding of how the ascending arousal system helps the brain as 

a whole to functionally reconfigure during cognitive processes, such as attention, in 

order to facilitate effective cognitive performance.   

 

Recent evidence has linked higher-order cognitive functions in the brain to the 

intersection between whole-brain functional network architecture and the autonomic 

arousal system2,5–8. Central to these relationships is the unique neuroanatomy of the 

ascending noradrenergic system. For instance, the pontine locus coeruleus, which is a 

major hub of the ascending arousal system, sends widespread projections to the rest 

of the brain9. Upon contact, adrenergic axons release noradrenaline, which acts as a 

ligand on three types of post- and pre-synaptic adrenergic receptors (i.e., α1, α2 and 

β). The functional effects of each of these receptors depend on their differential 

sensitivities to noradrenaline (affinities for the ligand differ across receptors: α2 > α1 

> β) and intracellular cascades, as well as their neuronal and regional distributions9–14. 

By modulating the excitability of targeted regions, the locus coeruleus can effectively 

coordinate neural dynamics across large portions of the cerebral cortex15,16. However, 

it is challenging to non-invasively track the engagement of the locus coeruleus during 

whole-brain neuroimaging and cognitive task performance. 

 

Fortunately, it has been widely shown that the pupil diameter directly responds to 

changes in the activity of the locus coeruleus, and thus serves as an indirect, non-

invasive measure of the noradrenergic system17,18.Specifically pupil diameter has been 

shown to indirectly monitor the neuromodulatory influences of the ascending arousal 

system on a variety of different brain regions5,11,19–21 . Moreover, noradrenergic-

mediated dilations in pupil diameter have been shown to effectively track the 

allocation of attentional resources22–24, in addition to both physical and mentally 

effortful processes25,26 . Fast, phasic changes in pupil diameter  have also been shown 
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to directly relate to changes in the activity of the locus coeruleus18,27,28. While there is 

some evidence that pupil diameter covaries with other subcortical systems, such as 

the cholinergic29 and serotoninergic system30, the physiological mechanism for these 

effects is more opaque, and there is also clear causal evidence linking stimulation of 

the locus coeruleus to dilation of the pupil19,31. Despite these insights, several questions 

remain unanswered regarding how these processes are related to the complex 

architecture of the brain32. For instance, the processes by which the ascending arousal 

system modulates the functional dynamics of brain networks to facilitate attention, 

decision making and optimal behavioural performance have only begun to be 

explored31,33–35.  

 

To examine these relationships in more detail, participants performed a motion-

tracking task (top panel of Figure 1A) involving four levels of increasing attentional 

load, which was modulated by manipulating the number of items required to covertly 

attend to over an 11s tracking period. Specifically, subjects were instructed to covertly 

track the movement of several pre-identified targets (two to five) in a field of non-

target stimuli (ten in total, including targets; see Figure 1). To investigate the network 

topological signatures of performing this task, we collected concurrent BOLD fMRI 

and pupillometry data. We hypothesized that, if increasing mental effort led to the 

reconfiguration of large-scale network architecture via the ascending arousal system, 

then the number of items required to be tracked over time (i.e., the attentional load) 

should relate to: i) increased pupil diameter; ii) heightened BOLD activity within 

attentional networks; and iii) augmented topological integration. Also, we predicted 

that individual differences in pupil diameter should track individual differences in 

effective attentional performance and decision processes35–37. Finally, we tested if the 

regional patterns of network configuration were predicted by the distribution of a 

predefined adrenergic receptor density atlas31,34,38,39. Our results confirm these 

predictions, and hence provide a mechanistic link between network topology, 

ascending noradrenergic arousal and attentional load. 
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Figure 1: Effect of task difficulty on pupil diameter. A) Group average (z-score) pupil diameter time 

series for each Load condition. Colors represent passive viewing (PV) in blue, and Loads 2 to 5 in green, 

orange, red and black, respectively. The shaded area represents the standard error of the mean. We 

observed an average increase in pupil diameter, during tracking, with each Load condition. The light 

grey area represents timepoints with significant parametric effect (βpupil > 0; FDR corrected at p < 0.01). 

Dotted lines represent the onset of each trial event (showed in the top part of the Figure). The red dotted 

line (Time = 0) is the tracking onset period when the dots began to move; B) Drift rate in each load 

condition. Each dot is the drift rate for each subject and load (mean βDrift = -0.03, t(17)  = -7.43, p = 9.7x10-

7); C) Pearson correlation between the pupil parametric effect of Load (βpupil) with the average drift rate 

across subjects (rdrift = 0.8, p = 1.0x10-4). The x-axis is the mean beta estimate of the pupillary load effect 

of the significative time window (βpupil) and the y-axis represents the mean drift rate across Loads. 

 

Results 

The Relationship Between Sympathetic Tone and Attentional Processing 

Consistent with previous work5, our  two level analysis - linear regression within each 

subject, and a two-tailed t-test between subjects -  found that task performance (i.e., 

correct responses) decreased with attentional load (mean βAcc = -6.66; t(17) = -5.19, p = 

7.2x10-5;  Figure S1B) while RT increased with attentional load (mean βRT = 0.06, t(17) = 

5.10, p = 8.8x10-5). We expanded on this result by translating performance into EZ-

diffusion model parameters. Roughly, this approach uses the accuracy and reaction 

time distribution to estimate three latent parameters40: drift rate, a marker of the 

accumulation of decision evidence (Eq. 1); boundary criteria, the amount of evidence 

required to make a decision (Eq. 2); and non-decision time, the epoch spent processing 

the tasks perceptually (Eq. 3). The advantages of using this model are twofold: firstly, 

there are well-known links between the parameters to decision making processes41,42, 

pupil diameter27,43 and network reconfiguration2; secondly, drift rate accounts for the 

accuracy-reaction time trade off, as it takes into consideration both accuracy and the 
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variability in reaction time into its calculation. In this way, our approach offers a better 

approximation of the ongoing computational processing during the task than 

accuracy and RT44,45. Using this approach, we observed a decrease in both the 

boundary criteria (βBound  = -0.01, t(17)  = -2.70, p = 0.015) and drift rate (mean βDrift = -0.03, 

t(17)  = -7.43, p = 9.7x10-7; Figure 1B), and an increase in the non decision time (mean βnd 

= 0.07, t(17)  = 5.32, p = 5.5x10-5) with increasing attentional load. 

 

By calculating the linear effect of load on pupil size across a moving average window 

of 160ms (see Methods), we observed a main effect of increased pupil diameter across 

both the tracking and probe epochs (βpupil > 0, pFDR < 0.01; light grey in Figure 1A depict 

significant epochs of time during the task; and in Figure S1A show the group average 

βpupil time series). We also observed a positive correlation between mean βpupil during 

the significant period (for simplicity we will refer to this value as βpupil) to the mean 

drift rate, mean boundary criteria and accuracy across all loads (Pearson’s rdrift = 0.8, p 

= 1.0x10-4; Figure 1C; racc = 0.68, p = 1.5x10-3, Figure S1C; rα = 0.71, p = 9x10-4). The same 

relationships were not observed with non-decision time (Pearson’s rnd = -0.31, p = 0.19). 

Additionally, we analysed whether this effect was present both within and between 

subjects in a trial-by-trial manner. To this end, we created a logistic linear mixed model 

(Eq. 6) to test whether pupil diameter was a predictor of performance (i.e., correct or 

incorrect response), as we would expect that incorrect responses should relate to 

decreased pupil diameter in difficult trials. We used the average pupil diameter within 

each trial of Load 4 and 5 (to account for the ceiling effect of Load 2 and 3) as regressors 

and subject as a grouping variable. We found a statistically significant fixed effect of 

pupil diameter on performance within each trial (β = 0.0127 ± 5x10-4; t(286)= 2.48; p = 

0.013). Furthermore, we analyzed the random effect coefficients, which are the 

dispersion of the regressor across the grouping variable from the fixed regressor (in 

this case there is one value per subject), to assess the role of average across task 

performance. We found that the random effect covaried with the average performance 

and drift rate of each subject (Accuracy: Pearson’s r = 0.73, p = 8x10-5 ; Drift: Pearson’s 

r = 0.73, p = 5x10-5) suggesting that trial by trial pupil diameter was a better predictor 

of performance (i.e., correct or incorrect) on subjects with higher average performance 

in comparison to subjects with lower performance across the task. In conclusion, these 

results suggest that attentional load manipulation and pupil dilation covaried with 

performance on this attentionally demanding task both within and between subjects. 

 

Network Integration Increases as a Function of Attentional Load 
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Based on previous studies, we hypothesized that an increase in attentional load 

should recruit a distributed functional network architecture5, heightening network 

integration2,12,34. To test this hypothesis, we implemented a hierarchical topological 

network analysis46–48 on the average time-resolved functional connectivity matrix 

calculated across the tracking period of the task. Our analysis identified a subnetwork 

of tightly inter-connected regions that were part of attentional, somatomotor, and 

cerebellar network (red in Figure 2) that increased its BOLD activity after the tracking 

onset (Figure 2F). The tightly integrated regions were diversely connected to a 

separate frontoparietal sub-module (blue in Figure 2) that was less active during the 

trial. Two remaining sub-modules (yellow and green in Figure 2) showed a negative 

BOLD response during the tracking period and were part of a diverse set of networks. 

Interestingly, 81% of the Frontoparietal network (FPN) and all the Default Mode 

Network (DMN) were found to be within this less active group (see Supplementary 

Table S2 for the complete list of regions and sub-module assignments).  

 

 

 
Figure 2: Hierarchical functional topology analysis of the brain during tracking across all loads. We 

observed two large-scale modules, and two meso-scale modules within each larger module (Module 

one [M1, red/blue] and Module two [M2, green/yellow], respectively): M1 corresponded to 

predominantly attentional and somatomotor network, and M2 to Frontoparietal (FPN) and Default 

Mode Network (DMN) among others (B and E). A) Forced directed plot representation of the average 

cluster across subjects. Edges higher than 0.15 are shown. Each color represents a unique sub module; 

B) A circle plot representing the resting state regions that were included within each sub module, with 

networks with > 30% of regions in each submodule shown in the plot. The diameter of the circles 

corresponds to the percentage of network regions that participated in that cluster. Connection width 

relates to average positive connection strength (functional connectivity), however only connections 

with r > 0.1 are shown; C) Connectivity matrix (Pearson’s r) between all pair of regions ordered by 
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module assignments – note the strong anti-correlation between the red and green/yellow sub-modules; 

D) Correlation between parametric load effect on large scale modularity (βQ value), and drift rate 

(Pearson’s r = 0.53; p = 0.022); E) Hierarchical analysis representation: QL, QM1 and QM2 represent the 

modularity value for each level (QL large scale, and QM1-M2 meso-scale level) and ** represents the 

probability of finding this value when running a null model (p = 0 for all three modularity values). The 

brain maps correspond to the cortical regions associated with each sub module; F) BOLD mean effect 

for each sub-cluster, each line represents the group average, and shaded areas are the standard error of 

the mean, x-axis is Repetition Time (TR) centered around tracking onset (TR = 0). DAN, dorsal attention; 

VN, visual; FPN, frontoparietal; SN, salience; CO, cingulo-opercular; VAN, ventral attention; SMm, 

somatomotor mouth; SMh, somatomotor hand; RSpN, retrosplenial; FTP, frontotemporal; DMN, 

default mode; AN, auditory; CPN, cinguloparietal; SubC, subcortex; Cer, Cerebellar. 

 

Contrary to expectations, we did not observe significant parametric topological 

change (i.e., modularity, Q) at the macroscopic level as a function of attentional load 

(p > 0.05 for all TRs, Figure S2A). However, when analysing the correlation between 

modularity and performance measures (i.e., accuracy, drift rate and pupil diameter), 

we observed that an increase in the large-scale modularity load effect (i.e., higher 

modularity with load, βQL) positively correlated with higher mean drift rate (Pearson’s 

r = 0.53; p = 0.022; Figure 2D), mean accuracy (Pearson’s r = 0.61; p = 0.007; 

Supplementary Figure S3A), but was independent from βpupil (Pearson’s r = 0.43; p = 

0.073). These results suggested that the system reconfigured during tracking towards 

increasing modularity, which in turn affected the efficient encoding of the ongoing 

task during tracking and hence, the decision-making process during the task probe. 

 

Upon closer inspection of the data (Figure 2C), we observed a substantial number of 

nodes that were playing an integrative role during task performance, albeit at a finer 

resolution than the initial analysis suggested. We performed the modularity 

assignment within each large-scale module. The hierarchical analysis resulted in two 

pairs of sub-modules at the meso-scale level with a significant modularity (compared 

to 100 random graphs with preserved signed degree distribution; QM1 = 0.137, p = 0; 

QM2 = 0.137, p = 0; Figure 2E). Specifically, the red sub-module was found to selectively 

increase its participation coefficient (PC) at the meso-scale level (i.e., by increasing the 

connection weights to the blue submodule in comparison to intramodular 

connections; Eq. 5) as a function of increasing attentional load (βPC = 2.4x10-3, t(17) = 3.57; 

p = 0.002; Figure 3A). Additionally, the extent of integration in the red sub-module 

was positively correlated across subjects with βpupil(Pearson r = 0.62, p = 0.006; Figure 

3B), drift rate (Pearson’s r = 0.66, p = 0.002; Figure 3C) and accuracy (r = 0.57, p = 0.012, 

Figure S3B). Importantly, these relationships were found to be specific to the red sub-

module (Blue: Pearson’s r = -0.02, p = 0.936; Yellow: Pearson’s r = -0.011, p = 0.965; 
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Green: Pearson’s r = -0.12, p = 0.617). 

 

Based on these results, we implemented a linear mixed model (Eq. 7), using the 

subjects’ average pupil response within each Load as a regressor and the average 

participation of the red sub module as the dependent variable, with grouping by 

subject. Using this approach, we observed a significant fixed effect of pupil diameter 

on PC (β = 7.6x10-3 ± 3x10-3, t(70) = 2.60, p =  0.011). Furthermore, the random effect 

coefficients (i.e., the between subject variation of the regressor value) correlated 

positively with accuracy (Pearson’s r = 0.47, p = 0.048) and drift rate (Pearson’s r = 0.62, 

p = 0.005), suggesting that subjects with a strong relationship between red module 

integration and pupil diameter have better behavioural outcomes. We then correlated 

the red βPC to the load effect on large scale modularity (βQL, Fig. 2D) and observed a 

significant positive correlation (Pearson’s r = 0.59, p = 0.009).  Finally, given that both 

of the topological parameters were correlated to drift rate and also with each other, 

we performed a partial correlation between drift rate and βPC controlling by βQL (r = 

0.51, p = 0.034), and the partial correlation between drift rate and βQL controlling by 

βPC (r = 0.36, p = 0.145). This suggests that drift rate is correlated to the mesoscale 

integration of the red sub-module, but less so with increases in large scale modularity. 

Thus, although the macroscale network did not demonstrate increased integration per 

se, the relative amount of meso-scale integration within the red community was 

associated with increased performance (i.e., drift rate) and sympathetic arousal (i.e., 

pupil diameter), both between and within subjects. In this way, these results provide 

a direct relationship between the effect of attention load on pupillometry, drift rate, 

and a trade-off between large-scale segregation and meso-scale network integration.  

 

Figure 3: Relationships between load effect on participation, drift rate and pupil load effect. A) 

Average participation coefficient (PC) for each load, for the red module, during tracking. Each color 

represents the corresponding tracking load (from 2 to 5). Grey lines correspond to each subject; B-C) A 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2020.12.04.412551doi: bioRxiv preprint 



 10 

regression parameter (βPC) was calculated for each subject and then correlated to βpupil (B; r = 0.62; p = 

0.006) and Drift rate (C; r = 0.66; p = 2.4x10-3). Each circle corresponds to the mean value per subject. 

 

Network meso-scale integration and adrenergic receptor density 

Given the relationship between mental effort, noradrenergic tone and pupil 

dilation5,18,26,49,50, the results of our analyses strongly suggested that the adrenergic 

system is involved in the meso-scale network reconfiguration observed during 

attentional tracking. The locus coeruleus can impact the cortical system in multiple 

ways, both through direct release of noradrenaline onto cortical neurons, and through 

the modulation of subcortical regions (such as the thalamic nuclei) with concurrent 

impact on the cortical dynamic. Importantly, in either case, the modulation is 

dependent on the noradrenergic receptors subtypes, which have different sensitivities 

to noradrenaline13,51,  variable expression in the cerebral cortex52,537,58 and also belong 

to distinct classes (i.e., α1, α2, and 𝛽 receptors). In particular, the α2a has been 

previously associated with working memory, adaptive gain and effective 

attention13,51,54. To gain a deeper insight into the role of α2a receptors in mesoscale 

integration during attentional tracking, we extracted the regional expression of the 

ADRA2A gene (which codes for  α2a adrenoceptors) from the Allen Human Brain 

Atlas repository55,56, and compared the cortical regional expression of this gene with 

the brain activity patterns identified in our network analysis (Figure 2E).  

 

Based on the relationships between pupil diameter (Figure 1), topological signatures 

(Figure 2) and task performance (Figure 3), and the known link between these 

variables and engagement of the noradrenergic system, we hypothesized that the 

different modules and sub-modules that we observed should have different densities 

of neuromodulatory receptors to account for the differential patterns across the 

network. To test this hypothesis, we conducted a two-tailed t-test in each hierarchical 

level comparing the density of the ADRA2A expression between modules. To account 

for spatial autocorrelation, we generated 5,000 surrogates maps with the same spatial 

autocorrelation of the ADRA2A map, calculated a t-statistic for each surrogate and the 

evaluated the probability of finding the observed t-statistic against the null 

distribution57,58. We indeed observed significant differences between modules at the 

meso-scale level. Specifically, we found significant differences between the blue and 

yellow sub-modules (t(194) = 3.82, p =  2x10-4 , pSA = 0.02) and the differences between 

green and yellow sub-modules (t(177) = -4.47, p =  1.3x10-5 , pSA = 0.004), while the other 

differences did not survive the spatial autocorrelation test (green-red: t(152) = 0.47; p =  

0.635, pSA = 0.590; yellow-red: t(156) = -3.02, p =  0.003, pSA = 0.121; green-blue: t(173) = -0.68, 
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p =  0.496, pSA = 0.324; red-blue: t(135) = -1.30, p = 0.195 , pSA = 0.237; Figure S5A).  

 

The modulatory effects of noradrenaline have been argued to depend directly on 

ongoing glutamatergic activity in target regions59,60. Moreover, it has been shown that 

the main source of the BOLD activity is the neurovascular response caused by 

pyramidal neurons containing Cyclo-oxygenase-261. Importantly, this evoked 

response following noradrenergic activation is dependent on the ongoing activity of 

the pyramidal neurons62. Thus, the role of noradrenaline on brain dynamics and BOLD 

response depends critically on ongoing glutamatergic activity, which putatively 

represents pooled neural spiking activity63. Given the differential task-related BOLD 

activity of the different sub-modules (i.e., Figure 2F, Figure S4and Figure 4A), and the 

observed regional variability and specificity of integration across the network, we 

hypothesized that network-level integration would be explained by the combined 

effect of ongoing BOLD activity and the distribution of the adrenergic receptor 

expression. Finally, we predicted that the role of the α2a receptor atlas in shaping 

brain activity and topology should be dependent of the subjects’ pupil diameter, such 

that higher βpupil should rely on a stronger relationship between network topology 

and α2a receptor expression. 

 

 
Figure 4: Receptor density analysis. A) Spatial maps of α2a density (left), BOLD parametric effect 

(middle) and Participation Coefficient parametric effect (right);  ‘~’ represents the linear model tested 

in the analysis; B) Scatter plot depicting the relationship between βPupil and the random effect of α2a (RE 

α2a; r = 0.54, p = 0.02); C) Scatter plot depicting the relationship between the random effect of α2a and 

drift rate (r = 0.70, p = 0.001) – the colors of the dots represent the pSA value from the linear effect of α2a 

on βBOLD within each subject and the marked circles correspond to subjects with pSA < 0.05; D) Pearson 

correlation of the group average BOLD parametric effect (βBOLD) and participation coefficient (βPC; r = 

0.26, p = 17 x 10-7). Colors represent each module assignment as in Figure 2.  
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To evaluate between these different hypotheses, we created three linear mixed models 

in order to better disentangle the different plausible interactions between the variables 

(see Methods), while still controlling for between subject’s variability as grouping 

variable. Additionally, to control for spatial autocorrelation, we used 5,000 surrogate 

maps that maintained the spatial autocorrelation of the α2a while permuting the 

density values. In the first model (Eq. 8), we tested the hypothesis that the parametric 

BOLD effect (i.e., βBOLD, Figure S4) is shaped by the distribution of α2a receptors. 

We found significant evidence for a positive fixed effect of α2a on βBOLD activity, 

however this effect did not survive correction for spatial autocorrelation (βα2a = 0.037± 

0.016; t(5992)= 2.29; p = 0.022; pSA = 0.106; Table S2). Furthermore, we correlated the 

random effect coefficients (from the original and the surrogate maps) to  both βPC and 

βpupil, and observed a significant positive correlation between the participation 

coefficient and both pupils (Pearson’s r = 0.54, p = 0.02, pSA = 0.036; Figure 4B) and mean 

drift rate (Pearson’s r = 0.70, p = 0.001, pSA = 0.001; Figure 4C). This result shows the 

manner in which pupil diameter linearly shapes βBOLD cortical map through the 

engagement of the α2a receptor expression map. Importantly, although the fixed effect 

of α2a on βBOLD didn’t survive the spatial autocorrelation correction, the linear 

correlation of this effect with both βpupil and drift rate (between subjects) did survive 

the correction. 

 

To further analyze the between subject differences in the role of α2a receptor atlas in 

shaping the βBOLD map, we ran a separate linear model within each subject with α2a 

as a regressor and βBOLD of each region as the dependent variable (while also 

correcting for spatial autocorrelation using 5,000 surrogate maps). As can be seen in 

Figure 4B-C, we observed a dependency between the pSA value, βpupil and drift rate, 

in which the βpupil and drift rate subject effects survived the spatial autocorrelation 

correction (pSA < 0.05; marked circles in Fig. 4B-C). Despite these results, there was no 

significant effect of α2a on βPC (Eq. 9; β α2a = 0.001 ± 0.003; t(5992)= -0.51; p = 0.6), and no 

significant Pearson’s correlation were found between the random effects and both 

βpupil or drift rate (r = -0.24, p = 0.33 and r = -0.23, p = 0.341, respectively). However, we 

did find a significant effect of βBOLD on βPC (Eq. 10; β = 0.0259 ± 0.006; t(5992) = 3.96; p 

= 7.55 x 10-5). Together these results propose a closer link between pupil diameter, 

ascending neuromodulation and the cortical neuromodulation dependent on α2a 

receptor density.  
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Finally, we observed a differential relationship between βPC and βBOLD depending 

on the large-scale module to which the regions were assigned (Figure 4D). We 

expanded the former result by measuring, within each subject, the Pearson correlation 

between the βBOLD and βPC separately in each module (M1 being the modules assigned 

as red and blue, and M2 assigned as yellow and green; Figure 2). The results 

demonstrated a significant difference between modules, meaning that the M1has a 

higher correlation with βPC, in comparison to M2 (t(17) = -12.99, p = 2.93 x 10-10). These 

results provided evidence that the adrenergic receptor distribution of α2a shapes the 

βBOLD activation map in proportion to the subject's pupil diameter. Additionally, 

βBOLD activation map modulates (i.e., was related to) meso-scale integration, and 

meso-scale integration is related to pupil diameter. Based on these results, we 

hypothesise that the adrenergic system shapes the BOLD activity, which in turns 

shapes the topology of the network towards integration. However, future work is 

required in order to test this hypothesis more directly, for instance by combining 

optogenetic approaches with neuronal recordings in awake animals.  

 

Discussion 

Here, we leveraged a unique dataset to simultaneously track pupil diameter and 

network topology during an attentional demanding task with increasing attentional 

load. Our results provide integrative evidence that links the ascending arousal system 

to the mesoscale topological signature of the functional brain network during the 

processing of an attentionally demanding cognitive task. Pupil diameter tracked with 

attentional load (Figure 1A) and was related to the speed of information accumulation 

as estimated by a drift diffusion model (Figure 1B-C). Additionally, we observed 

concurrent pupil dilations and adaptive mesoscale parametric topological changes as 

a function of task demands (Figures 2 and 3). Finally, we found evidence that 

topological reconfiguration was dependent on the regional activity and the genetic 

expression of the adrenergic receptors in the brain (Figure 4). Together, these results 

provide evidence for the manner in which the ascending arousal noradrenergic 

system reconfigures brain network topology so as to promote attentional performance 

according to task demands. 

 

The relationship between performance and pupil diameter is consistent with the 

predictions of Adaptive Gain Theory17. Within this framework, the locus coeruleus is 

proposed to adaptively alter its activity according to the demands imposed on the 

system. More specifically, the theory proposes that performance follows an inverted 

U-shaped relationship with arousal, such that maximal operational flexibility in the 
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noradrenergic system is associated with optimal task performance13,54. We observed 

that load-related increases in pupil diameter, presumably due to increased activity in 

the ascending arousal system17,18,64, relates closely with the activity and topology of the 

broader brain network (Figure 2), in a manner that is reflective of effective task 

performance (Figure 3). Similar effects have been described in animal models after a 

chemogenetic activation of the locus coeruleus, which strongly alters the large-scale 

network structure towards large-scale integration, specifically in regions with 

heightened adrenergic receptor expression31. How these changes, which are likely 

related to the modulation of the neural gain that mediates effective connections 

between distributed regions of the brain15,33, are traded-off against requirements for 

specificity and flexibility remains an important open question for future research.  

 

The addition of attentional load was found to alter the integration of meso-scale sub-

modules, but not the higher-level modular organization. This topological result is 

somewhat more targeted than those described in previous work2,34,65. While these 

differences may be related to disparities in the way that the data were analyzed, the 

results of our study do demonstrate that alterations in the cerebral network topology 

at a relatively local (i.e., sub-modular) level are crucial for effective task performance66. 

Additionally, our results replicate and expand upon a previous study67, in which the 

authors found that short term practice on an attentional task was related to increased 

coupling between attentional networks and segregation among task-negative (DMN) 

and frontoparietal network (FPN). Our study replicates the graph theoretical results 

of that study, while also directly relating the findings to the architecture of the 

ascending neuromodulatory system. One potential explanation for these results 

comes from animal studies, in which rapid changes in pupil diameter have been 

compared to changes in neural population activity at the microscale18,49,50. These 

studies suggest that the ascending arousal system may be able to alter the topology of 

the network in a hierarchical manner that is commensurate with the spatiotemporal 

scale of the arousal systems’ capacity 2. Future work that integrates results across 

spatiotemporal scales is required to appropriately adjudicate the implications of this 

hypothesis. 

 

Importantly, our approach is not without limitations. For one, the participation 

measures used in our linear mixed model were estimated at the meso-scale level, and 

hence derived from different modular partitions. Furthermore, the specificity of the 

pupillary response as a correlate of LC activity is currently under active debate. For 

instance, in addition to the strong empirical links between the noradrenergic system 
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and pupil dilation, there is also evidence that the pupil is dilated in concert with 

activity in the basal forebrain cholinergic system68, however it bears mention that both 

peripheral69 and central cholinergic tone21 is associated with pupillary constriction. 

There are more plausible physiological routes for the serotonergic system to dilate the 

pupil (via the excitation of the intermediolateral cell column), and in keeping with 

this, there is evidence that the serotonergic system is linked with pupil dilation30. 

Nevertheless, it is important to take into account that the neuromodulatory arousal 

system is replete with complex interconnections70–73. In addition, based on the current 

lack of a specific mechanism involving pupillary changes through the cholinergic 

system, it is highly probable that those correlations are due to indirect modulation of 

pupillary responses (e.g., via indirect neuromodulation mediated by the LC system). 

On another hand, we acknowledge the limitations of the atlas receptor analysis and 

the linear model used in our study. More specific neurobiological properties of the 

receptor distributions are needed to make better inferences, and hence provide more 

accurate answers of their role in brain dynamics. For instance, it would be ideal to 

compare receptor distributions that incorporated layer-specific expression, as there 

are well-known cellular and circuit differences across layers in the cerebral cortex74,75. 

Importantly, taking into consideration the strong correlation between different genetic 

expression maps76, it is possible that the current correlation between ADRA2A 

expression and brain activity is a false positive caused by another neuroanatomical 

gradient strongly correlated to the ADRA2A. Therefore, future work studying the 

interaction between genetic expression of the neuromodulatory receptors, pupil 

diameter and brain activity is needed. In spite of this limitation, we believe in the 

importance of integrating pupil diameter and receptor distribution in the analysis as 

the relationships between noradrenergic tone, brain activity and network topology 

will help us to disentangle the mechanistic steps connecting the locus coeruleus 

system to both pupil diameter and brain dynamics. 

 

In summary, we provide evidence linking mesoscale topological network integration, 

hierarchical organization and BOLD dynamics in the human brain that increases in 

attentional load, thus providing further mechanistic clarity over the processes that 

underpin the Adaptive Gain Model of noradrenergic function in the central nervous 

system. 

 

Methods 

Participants 
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18 right-handed individuals (age 19–26 years; 5 male) were included in this study. 

Exclusion criteria included: standard contraindications for MRI; neurological 

disorders; mental disorders or drug abuse. All participants gave written informed 

consent before the experiment. 

 

Parametric Motion Tracking Task 

Each trial of the task involved the same basic pattern (Figure 1A): the task begins with 

a display presenting the objects (i.e., blue colored disks); after a 2.5 s delay, a subset of 

the disks turns red for another 2.5 seconds; all of the disks then return to blue (2.5 

seconds) before they started moving randomly inside the tracking area. The 

participants’ job is to track the ‘target’ dots on the screen while visually fixating at the 

cross located at the center of the screen. After a tracking period of ~11 seconds, one of 

the disks is highlighted in green (a ‘probe’) and the subject is then asked to respond, 

as quickly as possible, as to whether the green probe object was one of the original 

target objects. The number of objects that subjects were required to attend to across 

the tracking period varied across trials. There were five trial types: passive viewing 

(PV), in which no target is assigned; and four load conditions, in which two to five 

targets were assigned for tracking. We operationalized attentional load as the linear 

effect of increasing task difficulty (i.e., the number of targets to be tracked). 

 

The experiment was conducted using a blocked design, in which each block included: 

instruction (1s); fixation (0.3s, present throughout the rest of trial); object presentation 

(all objects were blue; 2.5s); target assignment (i.e., the targets changed color from blue 

to red; 2.5s); object representation (objects back to the original blue color; 2.5s); object 

movement/attentional tracking (moving blue dots; 11s); object movement cessation 

(0.5s); and a final probe (color change to green and response; 2.5 s). The total duration 

of each trial was 22.8s. Each condition was repeated 4 times in one fMRI-run, which 

also included 4 separate fixation periods of 11s each between five consecutive trials. 

All participants completed 4 separate runs of the experiment, each of which comprised 

267 volumes. The order of the conditions was pseudo-random, such that the different 

conditions were grouped in sub-runs of triplets: PV, pseudo-random blocks of Loads 

2 through 5 and a fixation trial. All objects were identical during the tracking interval 

and standard object colors were isoluminant (to minimize incidental pupillary 

responses during the task). 

 

Behavior and EZ-Diffusion Model 
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The EZ-diffusion model was used to interpret the performance measures from the 

task45,77. This model considers the mean RT of correct trials, SD-RT across correct trials, 

and mean accuracy across the task and computes from these a value for drift rate (v, 

equation 1), boundary separation (a, equation 2) , and non-decision time (equation 3) 

– the three main parameters for the drift-diffusion model77,78.  

 

𝑣 = 𝑠𝑖𝑔𝑛 (𝑃 −
1

2
) ∙  0.1 ∙  

√𝑙𝑜𝑔 (
𝑃

1 − 𝑃
) ∙  [𝑃2  ∙  𝑙𝑜𝑔 (

𝑃
1 − 𝑃

) − 𝑃 ∙  𝑙𝑜𝑔 (
𝑃

1 − 𝑃
) + 𝑃 −

1
2]

𝑉𝑅𝑇

4

 

 

𝑎 =  0.01 ∙
𝑙𝑜𝑔 (

𝑃
1 − 𝑃)  

𝑣
 

 

𝑇𝑒𝑟 = 𝑀𝑅𝑇 −  
𝑎

2 × 𝑣
×

(1 − 𝑒−100∙𝑣∙𝑎)

(1 + 𝑒−100∙𝑣∙𝑎)
 

 

In which P is the average performance (range between 0 to 1); sign is an operator that 

will be -1 if P < 0.5 or +1 if P > 0.5; VRT is the standard deviation of reaction time (in 

seconds); and MRT is the mean reaction time (in seconds).  

 

Pupillometry 

Fluctuations in pupil diameter of the left eye were collected using an MR-compatible 

coil-mounted infrared EyeTracking system (NNL EyeTracking camera, 

NordicNeuroLab, Bergen, Norway), at a sampling rate of 60 Hz and recorded using 

the iView X Software (SensoMotoric Instruments, SMI GmbH, Germany). Blinks, 

artifacts and outliers were removed and linearly interpolated79. High frequency noise 

was smoothed using a 2nd order 2.5 Hz low-pass Butterworth filter. To obtain the pupil 

diameter average profile for each level of attentional load (Fig. 1B), data from each 

participant was normalized across each task block (corresponding to the five 

consecutive trials between fixations). This allowed us to correct for low frequency 

baseline changes without eliminating the load effect and baseline differences due to 

load manipulations80,81. Following this, a linear regression was performed in each time 

point using the task load as regressor and resulting in a ‘load effect’ time series for 

each subject.  

 

MRI Data 

Imaging data were collected on a Philips Achieva 3 Tesla MR-scanner, equipped with 

an 8-channel Philips SENSE head coil (Philips Medical Systems, Best, Netherlands) at 

the Interventional Centre, Oslo University Hospital, Norway.  Functional data were 

(1) 

(2) 

 

 

(3) 
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collected using a BOLD-sensitive T2* weighted echo-planar imaging sequence (36 

slices, no gap; repetition time (TR), 2,2s; echo time (TE), 30 ms; flip-angle, 80°; voxel 

size, 3x3x3; field of view (FOV), 240x240 mm; interleaved acquisition). Anatomical T1-

weighted images consisting of 180 sagittal oriented slices were obtained using a turbo 

field echo pulse sequence (TR, 6.7 ms; TE, 3.1 ms; flip angle 8°; voxel size 1x1.2x1.2 

mm; FOV, 256x256 mm).  

 

fMRI Data Preprocessing 

After realignment (using FSL’s MCFLIRT), we used FEAT to unwarp the EPI images 

in the y-direction with a 10% signal loss threshold and an effective echo spacing of 

0.333. Following noise-cleaning with FIX (custom training set for scanner, threshold 

20, included regression of estimated motion parameters), the un-warped EPI images 

were then smoothed at 6 mm FWHM, and non-linearly co-registered with the 

anatomical T1 to 2 mm isotropic MNI space. Temporal artifacts were identified in each 

dataset by calculating framewise displacement (FD) from the derivatives of the six 

rigid-body realignment parameters estimated during standard volume realignment82, 

as well as the root mean square change in BOLD signal from volume to volume 

(DVARS). Frames associated with FD > 0.25mm or DVARS > 2.5% were identified, 

however as no participants were identified with greater than 10% of the resting time 

points exceeding these values, no trials were excluded from further analysis. There 

were no differences in head motion parameters between the four sessions (p > 0.500). 

Following artifact detection, nuisance covariates associated with the 6 linear head 

movement parameters (and their temporal derivatives), DVARS, physiological 

regressors (created using the RETROICOR method) and anatomical masks from the 

CSF and deep cerebral WM were regressed from the data using the CompCor 

strategy83. Finally, in keeping with previous time-resolved connectivity experiments84, 

a temporal band pass filter (0.0071 < f < 0.125 Hz) was applied to the data. 

 

Brain Parcellation 

Following pre-processing, the mean time series was extracted from 375 predefined 

regions-of-interest (ROI). To ensure whole-brain coverage, we extracted: 333 cortical 

parcels (161 and 162 regions from the left and right hemispheres, respectively) using 

the Gordon atlas85, 14 subcortical regions from Harvard-Oxford subcortical atlas 

(bilateral thalamus, caudate, putamen, ventral striatum, globus pallidus, amygdala 

and hippocampus; http://fsl.fmrib.ox.ac.uk/), and 28 cerebellar regions from the SUIT 

atlas86 for each participant in the study. 
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Time-Resolved Functional Connectivity and Network Analysis 

Following pre-processing, the mean time series was extracted from 375 predefined 

regions-of-interest (ROI). To estimate functional connectivity between the 375 ROIs, 

we used the Jack-knife correlation approach (JC)87. Briefly, this approach estimates the 

static correlations between each pair of regions, and then recalculates the correlation 

between each pair after systematically removing each temporal ’slice’ of data (i.e., each 

TR). By subtracting the jack-knifed correlation matrix from the original ’static’ matrix, 

the difference in connectivity at each slice from the static connectivity value can be 

used as an estimate of time-resolved functional connectivity between each pair of 

regions at each TR in a way that does not require windowing.  

 

Community Structure 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT)88 was 

used in combination with the JC to estimate both time-averaged and time-resolved 

community structure. The Louvain algorithm iteratively maximizes the modularity 

statistic, Q, for different community assignments until the maximum possible score of 

Q has been obtained (equation 1).  

 

𝑄𝑇 =
1

𝑣+
∑ (𝑤𝑖𝑗

+ − 𝑒𝑖𝑗
+)𝛿𝑀𝑖𝑀𝑗𝑖𝑗 −

1

𝑣++𝑣−
∑ (𝑤𝑖𝑗

− − 𝑒𝑖𝑗
−)𝛿𝑀𝑖𝑀𝑗𝑖𝑗   (4) 

 

Equation 1 – Louvain modularity algorithm, where v is the total weight of the network (sum of all 

negative and positive connections), wij is the weighted and signed connection between regions i and j, 

eij is the strength of a connection divided by the total weight of the network, and δMiMj is set to 1 when 

regions are in the same community and 0 otherwise. ‘+’ and ‘–‘ superscripts denote all positive and 

negative connections, respectively.  

 

For each subject, we calculated the mean adjacency matrix from 1 TR before tracking 

until the end of the tracking period. Afterwards, a consensus partition was estimated 

across subjects. Finally, to identify multi-level structure in our data, we repeated the 

modularity analysis for each of the modules identified in the first step46,47. With this 

final module assignment, we were afforded an estimate of the time resolved, multi-

level modularity (QT) within each temporal window for each participant in the study.  

 

Regional Integration 

Based on the group consensus community assignments, we estimated between-

module connectivity using the participation coefficient, BT, which quantifies the extent 

to which a region connects across all modules (i.e. between-module strength; equation 

2). In our experiment, we used two separate community assignments, one for each of 
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the modularity levels. In this manner we measure: 1) how the first hierarchical level 

(i.e., large scale) topology changed during tracking across the complete brain; and 2) 

how the topology of the sub-modules changed across the task. These values were 

calculated in each time point using the time-resolved adjacency matrix across each 

load condition.  

 

             𝐵𝑖𝑇 = 1 − ∑ (
𝜅𝑖𝑠𝑇

𝜅𝑖𝑇
)

2
𝑛𝑀
𝑠=1   (5) 

 

Equation 2 - Participation coefficient BiT, where κisT is the strength of the positive connections of region 

i to regions in module s at time T, and κiT is the sum of strengths of all positive connections of region i 

at time T. The participation coefficient of a region is therefore close to 1 if its connections are uniformly 

distributed among all the modules and 0 if all of its links are within its own module. 

 

Neurotransmitter Receptor Mapping 

To investigate the potential correlates of meso-scale integration, we interrogated the 

neurotransmitter receptor signature of each region of the brain. We used the Allen 

Brain Atlas micro-array atlas dataset (http://human.brain-map.org/)55 to identify the 

regional signature of genetic expression of the α2a subtype of the adrenergic receptor 

(ADRA2A). This receptor has been a priori related to cognitive function and attention89, 

and is one of the most abundant adrenergic subtypes expressed in the cerebral cortex90. 

This atlas contains postmortem samples of six donors that underwent microarray 

transcriptional characterization. The spatial map of α2a mRNA expression was 

obtained in volumetric 2mm isotropic MNI space, following improved nonlinear 

registration and whole-brain prediction using variogram modeling91. We used this 

data instead of the native sample-wise values in the AHBA database to prevent bias 

that could occur due to spatial inhomogeneity of the sampled locations. We projected 

the volumetric α2a expression data onto the Gordon atlas with linear interpolation 

and calculated the mean value within each parcel using custom MATLAB codes. 

 

Statistical analysis 

The Relationship Between Sympathetic Tone and Attentional Processing 

We analysed the between subjects’ effect of load on the behavioural, pupillometric 

and fMRI related variables by performing a two-level linear model analysis. In the 

first level, we used attentional load as a regressor (2 to 5) and -in independent models- 

the mean accuracy, reaction time, standard deviation of reaction time, drift rate, 

boundary criteria and non-decision time as dependent variables (i.e., 4 values per 

subject). From this, we ran a two-tailed t-test on the statistical effects (i.e., the β value 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2020.12.04.412551doi: bioRxiv preprint 



 21 

from the regression, one for each subject; N = 18). Similarly, to calculate the load effect 

on pupil diameter, we calculated the average pupil diameter on each load condition 

within each subject. Then, we performed a first-level analysis in which we ran a linear 

regression in each time frame (1600 frames in total, corresponding to 26.6 seconds). 

This procedure resulted in one β timeseries (i.e., the statistical load effect on pupil 

diameter) for each subject across the trial (Figure S1A). After this, we performed a 

right tailed t-test in each frame across subjects (n = 18 in each frame) to find the periods 

of time where the β value where higher than zero. Finally, we corrected by false 

discovery rate (FDR)92 for multiple testing, which resulted in a period of time where 

the load effect was higher than 0 (light grey area in Figure 1A). The mean β values 

during this section was calculated in each subject and defined as ‘βpupil’. Finally, 

following the same pipeline, we calculated the effect of attentional load on the brain 

related signals (i.e., BOLD, participation coefficient [PC] and modularity [Q]). The 

effect of load on BOLD was calculated running a separate linear model in each subject 

and region within each TR (18 subjects; 375 regions; 10 TRs; 4 load condition), resulting 

in a matrix of β values of 18 x 375 x 10.  

 

To evaluate the statistical effect of pupil diameter on accuracy, we performed a logistic 

linear mixed effects model. We used the mean pupil diameter of the significant time 

period (Figure 1A) of the high load trials (Load 4 and 5), and the accuracy (i.e., correct 

or incorrect) as the predictor variable of each trial, grouping by subject as the random 

effect. The statistical model is described in the following equation:  

 

Accuracy ~ Pupil   + 1 + (Pupil   + 1|Subject)      (6) 

 

Network meso-scale integration and adrenergic receptor density 

To evaluate whether the modularity of the network we observed was higher than 

chance, we generated 100 random networks in each hierarchical level (300 random 

networks in total), with a preserved degree distribution (using the MATLAB 

randmio_und_signed function from the Brain connectivity toolbox88). We calculated the 

modularity value of each random network and used the resultant values to populate 

a null distribution (Figure 2D). 

 

We analyzed the statistical effect of pupil diameter on the participation coefficient 

both within and between subjects by performing a linear mixed model using the time 

varying PC of the red sub-module (Figure 3A) of each load as a dependent variable 
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(N=72), and the respective pupil diameter as a regressor, with grouping by subject. 

The statistical model is described in the following equation: 

 

PC ~ Pupil   + 1 + (Pupil   + 1|Subject)               (7) 

 

Network meso-scale integration and adrenergic receptor density 

Expression of brain genetic atlas vary smoothly across the surface and thus is 

associated with non-trivial spatial autocorrelation that in turn violates the 

assumption of independence between samples57,58,93. To account for the spatial 

autocorrelation in these brain maps, we used spatial autocorrelation null maps 

as implemented in Brain Surrogate Maps with Autocorrelated Spatial 

Heterogeneity (BrainSMASH) python toolbox57. A geodesic distance matrix of 

the atlas parcels using the surface of the Gordon atlas was obtained to build the 

surrogates using BrainSMASH functions. We generated 5,000 null maps which 

were used to generate null distribution of the different statistics corrected by 

spatial autocorrelation. 

 

We measure the statistical difference in the receptor density between sub-modules by 

a two-tailed t-test between each pair of modules. The same procedure was performed 

using the surrogate maps to generate a null distribution of t-statistics. To evaluate the 

effect of the density of each adrenergic receptor on the neural activity in the attentional 

task, we built a linear mixed model aimed at predicting regional differences in BOLD 

activity and participation coefficient. We created a model using the receptor density 

atlas of α2a receptor to predict parametric BOLD activity (i.e., linear increase of BOLD 

activity with task load) during tracking (Eq. 8). To evaluate the relationship between 

BOLD activity, adrenergic receptor expression and changes in participation coefficient 

as a function of attentional load, we tested two models: one using the adrenergic 

receptor density as independent factor (Eq. 9); and another using the parametric 

BOLD effect as an independent factor (Eq. 10). Additionally, we assessed the across-

subject variability using the subjects ID as grouping variable in order to evaluate the 

random effects on the independent factor. We corrected the spatial autocorrelation by 

running the same model using 5,000 surrogate maps. Then we used the fixed effect 

null distribution to calculate the pSA (i.e., the probability of finding the fixed effect 

within the 95th percentile of the null distribution). The deterministic part of the model 

is expressed in the following equations94:  

    

βBOLD ~ α2a   + 1 + (α2a   + 1|Subject) (8) 
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βPC ~ α2a   + 1 + (α2a   + 1|Subject)             (9) 

  βPC ~ BOLD   + 1 + (BOLD   + 1|Subject)    (10) 

 

Where PC is the parametric effect of meso-scale participation coefficient (i.e., βPC), 

BOLD is the parametric effect of load on BOLD activity during tracking for each 

region, and α2a are the regional densities of the respective adrenergic receptor atlas. 

We then correlated the random effects parameters to pupil diameter responses and 

behaviour and then compared these with the Pearson’s correlation of the null 

distribution using the random effect of the surrogate maps. Finally, we performed a 

linear model within each subject with α2a as a regressor and βBOLD as dependent 

variable. Again, the statistical effect (i.e., β value) was compared against the null 

distribution when performing the regression using the surrogate maps (figure 4B-C).  

 

Data and code availability 

The anonymized preprocessed fMRI and pupillometry data can be found at 

https://figshare.com/articles/dataset/MOT_data_mat/13244504. The ADRA2A 

expression atlas can be downloaded from 

http://www.meduniwien.ac.at/neuroimaging/mRNA.html. All analysis of the fMRI 

and pupil diameter data were performed on MATLAB 2020a. The surrogate maps of 

the ADRA2A atlas were generated on python. Documented code for reproducing the 

analyses is provided in https://github.com/gabwainstein/MOT. 
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