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ABSTRACT

JSON (JavaScript Object Notation) is arguably the most popular data format for API

requests and responses. Despite the existence of JSON Schema, a standardized schema

specification for JSON format, most APIs documentation relies solely on human-readable

examples with non-evident edge cases. In the current situation, developers should under-

stand by themselves if the API can produce a response with null or missing fields. At the

same time, programmers cannot take advantage of automatic request/response integrity

validation, automatic generation of examples for testing purposes, autocompletion when

working with IDEs, among other benefits that an explicit data specification can deliver.

The problem becomes evident when we take into account how fragile are implementa-

tions with a minimal change in the request/response data.

In this thesis, we explore the theoretical boundaries to learn JSON Schema from ex-

amples. We start by choosing a theoretical framework on what we think definitions and

results should base on. Next, we use that framework to analyze the learnability of different

classes of schemas and identify those with favorable results.

Then, we look at one of the few schema repositories to examine how is JSON Schema

used in practice. With theoretical results and real data, we select a set of JSON Schema

features that we can learn under the selected framework and we provide an algorithm

to perform the before-mentioned task. Finally, we show the results and the presented

challenges in the process of applying the learning algorithm over three sets of examples

from OpenWeatherMap, GitHub, and Twitter, and then we present a little improvement

out of the original framework.

Keywords: JSON, API, JSON schema, Formal languages, Identifiability in the limit,

Schema inference.
xii



RESUMEN

JSON (JavaScript Object Notation) es probablemente el formato de datos más usado

para hacer requests u obtener responses desde APIs. A pesar de la existencia de JSON

Schema, un estándar para definir la estructura de documentos tipo JSON, la gran mayorı́a

de la documentación de APIs se basa solamente en ejemplos donde no están claros los

casos bordes que pueden existir. En esta situación, los desarrolladores deben dilucidar por

ellos mismos si es posible recibir valores nulos o si existen datos opcionales. Al mismo

tiempo, los programadores no pueden aprovechar los beneficios de tener un esquema de

datos explı́cito, como por ejemplo, la posibilidad de efectuar una validación de datos,

la creación de ejemplos automática para realizar testing, autocompletado en IDEs, entre

otros. El problema se hace más evidente si se toma en cuenta la fragilidad de las imple-

mentaciones cuando se hacen cambios pequeños en el formato de las requests o responses.

En primer lugar, se analizan los lı́mites teóricos de la inferencia de JSON Schema a

partir de ejemplos. Para ello se selecciona un marco teórico sobre el cual se crean las

definiciones y se presentan los resultados. Luego, en base a este marco teórico, se analiza

la factibilidad de aprender distintas clases de JSON Schema y se identifican aquellas que

tienen buenos resultados.

Después, se examina uno de los pocos repositorios con esquemas JSON para entender

cómo se usa la especificación en la práctica. Con esos antecedentes se propone un con-

junto de caracterı́sticas que se pueden inferir a partir de ejemplos bajo el marco teórico

seleccionado. Además, se entrega un algoritmo para realizar la tarea de aprendizaje de

esquemas. Finalmente, se muestran resultados de aplicar el algoritmo sobre tres conjuntos

de ejemplos provenientes de OpenWeatherMap, GitHub, y Twitter.

Palabras Claves: JSON, API, JSON schema, Lenguajes formales, Identificación en el

lı́mite, Inferencia de esquemas.
xiii



1. INTRODUCTION

JSON (JavaScript Object Notation) is a semi-structured document format for exchang-

ing data consisting of attribute-value pairs, arrays, strings, boolean values, and numbers.

JSON has become the lingua franca for data storage and exchange among software devel-

opers.

The most frequent context where JSON plays a crucial role is in modern web and

mobile applications. When a user wants to use a service, the user needs to execute a

client application that connects to a server and exchanges information with it; with this

purpose the provider of the service exposes an API (Application Programming Interface)

which permits client applications to communicate with the servers. Although the format

of the exchanged data is up to the service provider, JSON documents are a common choice

because of its readability for developers and machines (Suárez Barrı́a, 2016).

Developers also use JSON documents as a mean to store data; for instance, MongoDB

and CouchDB are two NoSQL databases which support JSON documents and queries over

them (Jing, Haihong, Guan, & Jian, 2011). JSON documents are also useful to store user

configurations, for example, text editors such as Visual Studio Code and Atom store user

configuration in JSON files.

The growing popularity of JSON precipitated the creation of JSON Schema (JSON-

schema-org, 2018), a way to specify what a JSON document should contain (Pezoa, Reut-

ter, Suarez, Ugarte, & Vrgoč, 2016). The JSON Schema specification is currently in its

seventh draft (Wright & Andrews, 2018) and there is a growing body of applications and

tools using JSON Schema.

To observe how JSON and JSON schema work together, look at the JSON file in

Figure 1.1 that describes a person. It is reasonable to think that all the fields are mandatory

and that all the fields should have the same type as the example. With that in mind,

Figure 1.2 shows a possible schema to describe people.
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{

"name": "John",

"surname ": "Doe",

"birthdate ": "1990 -01 -07" ,

"siblings ": true

}

Figure 1.1. Example of a JSON document with person’s data.

{

"type": "object",

"properties ": {

"name": {"type": "string"},

"surname ": {"type": "string"},

"birthdate ": {"type": "string"},

"siblings ": {"type": "boolean "}

},

"required ": ["name", "surname", "birthdate", "siblings "]

}

Figure 1.2. Example of a JSON schema for people’s data.

One of the most important uses of JSON Schema is in documentation and standariza-

tion of APIs. Developers can use JSON Schema to specify the shape of JSON documents

that are expected along API requests and responses. JSON Schema is also the backbone of

more complete frameworks for standirizing APIs such as Open API Initiative (The Linux

Foundation, 2018), an endeavour seeking to build an open documentation of APIs avail-

able worldwide.

Despite the extensive use of JSON documents and the existence of JSON Schema

as a method to specify validations on the content of the documents, few of the publicly

available APIs provide schemas to validate the requests or responses. Indeed, most of their

documentation relies solely on examples or, in the best of the cases, on sparse information

across the documentation or huge tables. Clearly, this approach has several drawbacks,

and such a documentation is bound to leave gray areas and spaces whenever a particular

request or response was not covered by a specific example.
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Consider for example GitHub, a hosting service for projects using the Git version

control system. The only documentation to get the files associated with a pull request is

the example shown in Figure 1.3. One can argue that the example is simple enough to be

understood by any developer and that is why GitHub does not provide a schema; however,

some questions can still arise: which are the possible values associated to "status"?

If the actual pull request has more than 300 files, would we have some way to get all

of them? These questions are essential to ensure a smooth connection between this API

and a system application, and yet they are typically not answered in documentation with

examples. Indeed, to figure out the answers one may require a mix between trial and error,

and knowledge on the problem domain.

Figure 1.3. GitHub documentation for listing pull request files

3



The actual response of the endpoint shown in Figure 1.3 includes up to 30 files. To

retrieve the other files, the endpoint provides two links in the HTTP header of the response:

a link to go to the next portion of the data, and another to go to the last one. The limit

of 300 files does apply since the API only generates up to 10 portions of data. There is

also another detail that is impossible to infer from the example: the property "patch" is

optional since it is applicable only for text files.

Even if a human is wise enough to discover the needed answers for the situation shown

in Figure 1.3, one can find the same situation for much larger responses, where nesting,

nulls, and optional values can appear depending on the requested data. It is worth noting

that this situation does not apply only for GitHub but for almost all the public APIs.

Using a more generic example, consider a weather application providing an API to

inform about current weather. Upon prompted with a specific location, the API responds

with the JSON document in Figure 1.4. The document provides the current temperature,

a description of current weather, the amount of rainfall in the last three hours and the

coordinates of the location.

{

"temperature ": 10,

"description ": "light rain",

"precipitation_3h_mm ": 1.33,

"coords ": [51, 0]

}

Figure 1.4. Example for a weather API response

If this is the only example in the documentation of this API, users looking to work with

it will have several issues. Suppose that we need to look for places without rain. How can

we derive from this API that it is not raining in a location? Should we look for a value

close to 0 under "precipitation_3h_mm"? But what if this key:value pair is simply not

present when the weather is not rainy? We can immediately answer those questions if the

API provides a JSON Schema such as the one in the Figure 1.5. There we have the pair

4



"type": "object", so we only validate JSON objects. The "required" field indicates

that validated objects must have pairs with keys "temperature", "description" and

"coords", but "precipitation_3h_mm" is optional. Furthermore, the "properties"

field specifies how the values of these keys should look like: temperature must be a num-

ber, description must be a string, precipitation must be a number greater than 0.01 and

coords must be an array. We infer that the value "precipitation_3h_mm" only shows

up when rain is present in the last three hours.

{

"type": "object",

"properties ": {

"temperature ": {"type": "number"},

"description ": {"type": "string"},

"precipitation_3h_mm ": {

"type": "number",

"minimum ": 0.01

},

"coords ": {"type": "array "}

},

"required ": [" temperature", "description", "coords "]

}

Figure 1.5. Possible schema for weather API response shown in Figure 1.4

Without JSON schemas designed to validate requests or responses, developers face

tough times designing applications for both client and server. They not only have to write

a program to parse the document controlling all the possible cases without any guarantee

of integrity, but they also have to collect or handcraft samples for testing their code. That

does not take in consideration how fragile is the implementation if there is a minor change

in the JSON format.

Furthermore, without JSON schemas we are not taking advantage of the autocomple-

tion features of most Integrated Development Environments (IDEs). With a schema, IDEs

would be able to suggest types or name fields when operating with specific data.
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Currently, there are some efforts to standardize API definitions based on JSON schema.

Those efforts are not enough since manually creating schemas for all the endpoints for all

the public APIs is prohibitively expensive. Thus, we need to extract JSON schemas auto-

matically from existing data.

Indeed, there are also some efforts to learn schemas from provided examples. How-

ever, the previous work focuses only on getting schemas or another alternative model from

input data. They do not provide foundations nor a theoretical framework on what any in-

ference process should base on. As a result, the previous work offer algorithms that are

very complicated to understand, and with different approaches that cannot take advantage

of pre-existent knowledge. The lack of a clear framework for learning schemas has also

discouraged the integration of Machine Learning algorithms since it is not clear where

exact learning is achievable or where a probabilistic learning approach is the only way to

get good results.

In this thesis, we propose a theoretical framework to study the learnability of JSON

schemas from positive samples. Although the full specification for JSON schema is not

identifiable under this framework, we devise fragments of the language that are identifi-

able. Afterward, we define a class of schemas with some desirable properties: first, it is

identifiable our the proposed framework; second, it is useful in real-world scenarios; and

third, we can provide a simple algorithm to identify it.

We believe that providing clear and concise foundations to infer JSON schemas would

help to put in clear what are the remaining challenges on this topic, where a probabilis-

tic learning algorithm would help, and what are the theoretical boundaries for this task.

Progress on this line would promote more developers to automatize schema extraction

duties and to take advantage of the numerous benefits of JSON schema.
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1.1. Summary of contributions

First, we provide a theoretical framework to study the learnability problem from pos-

itive samples for JSON schema. Precisely, we use language identification in the limit

framework by Gold et al. (1967), and we explain why it is suitable for this problem, taking

into consideration previous work for this document schema and others.

Then, we prove that it is not possible to learn in the limit any arbitrary JSON schema.

This is expected, as for example regular expressions are known not to be learnable in

this framework either. Thus we provide a theoretical analysis of which classes of JSON

Schema can be learned in the limit, arriving at a very interesting picture of different classes

that can be learned, that are incomparable to each other, and that can be combined through

limited boolean combinations and nesting. We also identify what are the problematic

features in JSON Schema that lead to unlearnability.

We then propose one particular class of schemas as a natural alternative for our learn-

ing algorithm. The decision of the schema class to learn is based not only on theory, but

also on an empirical study about which features in JSON schema are popular in schemas

available worldwide, which is also a contribution on its own. We test the practical appli-

cability of our class by learning the schema of three popular APIs: Open Weather, GitHub

and Twitter. We show that the class is general enough to obtain a realistic schema for these

APIs, while at the same time the learned schema is more than just a description of all the

examples.

A limitation of our framework is that our class of schemas cannot specify the

"patternProperties" keyword, used to specify that in al pairs k:v in an object, if k

belongs to a regular expression then v must conform to a certain schema. However, this

keyword is useful to produce more compact schemas avoiding redundancy. Thus, as a fi-

nal contribution, we improve our learning algorithm with a component that decides when

to learn "patternProperties", that uses a heuristic based on a distance notion between

schemas. We use this algorithm to learn a schema for Wikidata, which takes advantage of
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"patternProperties", and compare it with the schema of the vanilla algorithm. Both

algorithms produce almost equivalent schemas, but indeed the schemas produced with the

heuristic variant can be much more compressed.

1.2. Related work

There are some efforts to standardize API definitions based on JSON schema. One of

them is the API Discovery Service (Google LLC, 2018), which is a service from Google

that provides metadata about Google APIs in JSON schema format. Another example is

the OpenAPI Initiative (The Linux Foundation, 2018), which describes itself as a specifi-

cation that “defines a standard, programming language-agnostic interface description for

REST APIs, which allows both humans and computers to discover and understand the

capabilities of a service without requiring access to source code, additional documenta-

tion, or inspection of network traffic”. A third example is Schema Store (Kristensen et

al., 2018), which is a repository of JSON schemas created by the community for specific

services or files.

Regarding schema extraction from examples, one tool to perform this task is JSON-

schema.net (Wootton, 2017). JSONschema.net is a web application that infers a schema

from an example, whose primary goal is to make schema generation quick and straight-

forward. To achieve that purpose, it provides a user interface to customize the space of

possible target schemas. However, the application only accepts one example, limiting

its potential use in scenarios where some fields are optional or where there are boolean

combinations of different schema types.

Another development is Schema Guru (Snowplow Analytics Ltd, 2016), which is a

tool to derive JSON schemas from a set of JSON instances. Unlike JSONschema.net,

this tool allows more than one example which is useful when there are optional fields. By

default, string schemas have both length bounds, and number schemas have both minimum

and maximum values. It also identifies some common regular expressions, like base64
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encoding, IP addresses, ISO country codes, among others. Nevertheless, there is no insight

on the limitations that this program could have, nor explanations on why it supports some

features and others not.

From the scientific community, we have a couple of attempts to infer JSON schemas or

another way to model JSON data. The work of Wischenbart et al. (2012) aims to integrate

data from user profiles extracted from Facebook, LinkedIn, and Google+. Their approach

is to generate a single data model for Eclipse Modeling Framework (EMF). They do it

by via extracting a JSON schema for each service and then merging them. Izquierdo

and Cabot (2013) made a similar work but creating a set of rules to address the need of

automatic schema discovery for APIs.

Klettke, Störl, and Scherzinger (2015) propose an algorithm to infer a JSON schema

from a MongoDB database. They generate a directed graph from the documents stored in

the database and derive a schema from that graph. Finally, they use the graph to generate

statistics and detect outliers in the DB.

The work of Wang et al. (2015) propose an algorithm to extract schemas from JSON

data stores. They use a hierachical data structure to compare and generate distinct schemas

for the database objects. They use the created structure to answer schema and attribute

existence queries.

Baazizi, Ben Lahmar, Colazzo, Ghelli, and Sartiani (2017) focus on inferring a type

data from JSON massive datasets. For this, they identify a minilanguage to represent a sort

of JSON schema. Their algorithm works in a two-step process: first, they map every single

value of the input to a JSON type (i.e., object, array, number, boolean, and others); then

they make type fusions following a set of rules trading precision for human-readability.

Their fusion process emphasized commutativity and associativity in order to use a map-

reduce programming model.

The last research on this topic, at best of our knowledge, comes from Frozza, dos

Santos Mello, and da Costa (2018). They construct an intermediate representation for
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each document describing the type of the data they have, and then they construct a JSON

schema from their structure. They make a benchmark with other previous works, claiming

that their approach is as good or better than previous work.

As we said before, the previous work regarding schema extracting from JSON data do

not provide foundations nor a theoretical framework on what any inference process should

base on. Furthermore, some works do not take into consideration the efforts to formalize

JSON schema specification from Pezoa et al. (2016) and Bourhis, Reutter, Suárez, and

Vrgoč (2017).

On the contrary, for XML documents there are works that establish a theoretical frame-

work built from the notion of learnability in the limit, and construct learnable classes of

DTD and XSD (Bex, Neven, Schwentick, & Tuyls, 2006; Bex, Neven, & Vansummeren,

2007; Bex, Neven, Schwentick, & Vansummeren, 2010; Bex, Gelade, Neven, & Vansum-

meren, 2010).

1.3. Thesis outline and structure

This Chapter motivated the problem we intend to solve and showed the current state-

of-art. It also summarized the contributions of this work.

With respect to the next chapters, Chapter 2 introduces some preliminaries to com-

plete the theoretical framework we need, including but not limiting to an extract of JSON

schema formalization and language identification in the limit framework. Then, in Chap-

ter 3 we give a formal analysis of lernability for interesting JSON schema classes. Next, in

Chapter 4 we analize which features of JSON schemas are present on real-world schemas

to create a suitable JSON schema class identifiable in the limit; we also provide a simple

algorithm to identify the created class. Afterward, Chapter 5 shows the results of the algo-

rithm on three real-world samples. In light of the observed in Chapter 5, Chapter 6 offers

an improvement to create more concise schemas. Finally, we present concluding remarks

and some future improvements and lines of research in Chapter 7.
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2. PRELIMINARIES

2.1. JSON schema specification

We first present how JSON schema works. The most recent draft of the specification

is in its seventh version (Wright & Andrews, 2018), but we will deal with a core fragment

as described in Pezoa et al. (2016), which is equivalent to the full specification.

Every JSON schema is a JSON document itself. A schema can specify the type

of document among these: numbers, strings, booleans, nulls, objects, and arrays. For

each type, there is a specific set of optional keywords that constrain the data the docu-

ment can contain. All the types share the mandatory keyword "type" which determines

the type against the document will be validated. For instance, a document of the form

{"type":"string", . . .} specifies string values, {"type":"number", . . .} specifies

numeric values, {"type":"object", . . .} specifies objects, and {"type":"array",

. . .} specifies arrays. We now summarize each of the six different types; for further details

we refer to Pezoa et al. (2016) and Bourhis et al. (2017).

• Number schemas: Number schemas represent numeric data, which can be in-

tegers or floats. If the schema describes integers, it includes the key-value pair

"type":"integer", otherwise it includes the pair "type":"float". To sim-

plify the presentation of this work we use only with integers unless otherwise

stated, although the vast majority of the results are easily extendable to use

floating-point numbers with limited precision. It is possible to specify mini-

mum value including the key-value pair "minValue":i, for i ∈ Z, which vali-

dates only numbers greater or equal than i. The key-value pair "maxValue": j,

for j ∈ Z, has a similar behavior. Additionally, the pair "multipleOf":k spec-

ifies that a number should be multiple of k, for k ∈ N \ {0}. Thus for exam-

ple {"type":"integer", "minimum":12, "multipleOf":4} describes the

numbers 12, 16, 20, and so on.
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• String schemas: String schemas represent string data. They include the key-

value pair "type":"string". These schemas can include the key-value pairs

"minLength":i and "maxLength": j, for i, j ∈ N, which validates only against

those strings whose length is equal or between i and j. Finally, they may fea-

ture the pair "pattern":regex, for regex a regular expresion over the alpha-

bet Σ, which only validates against strings that are in L (regex). For example,

{"type":"string"} and {"type":"string", "pattern":"^(0|1)+$"}

are string schemas. The first schema validates against any string, and the second

only against strings built from 0 or 1.

• Boolean schemas: Boolean schemas represent boolean values, i.e., true and

false. They feature the pair "type":"boolean" without the ability to put

more restrictions.

• Null schemas: Null schemas represent the value null, which is often utilized

to show that a there is no value for a field. They only have the key-value pair

"type":"null".

• Object schemas: Object schemas represent JSON objects, which themselves

have a key-value structure. Besides the key-value pair "type":"object", they

may feature the following:

– "minProperties":i and "maxProperties": j, which specify that an ob-

ject should have at least i pairs and/or at most j of them.

– "required":[k1, . . . ,kn], where each ki is a string value. This keyword en-

forces that all the properties ki must be present in objects validating against

the schema.

– "properties":{k1 : S1, . . . ,km : Sm}, where each ki is a key and each Si is

another JSON schema. This keyword establishes that the value associated

to the keyword ki should validate against the schema Si.

– "patternProperties":{r1 : S1, . . . ,rl : Sl}, where each ri is a regular ex-

pression over Σ and each Si is a JSON schema. This keyword determines

that a value under a key in the language of ri should validate against Si.
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{

"type": "object",

"properties ": {

"name": {"type": "string "}

},

"patternProperties ": {

"^a(b|c)a$": {

"type": "number",

"multipleOf ": 2

}

},

"required ": ["name"],

"additionalProperties ": false

}

Figure 2.1. Object schema example

– "additionalProperties":S, where S is a JSON schema. This keyword

specifies the schema for all the values associated to keys not present in

"properties" and keys not belonging to the language of any regular ex-

pression in "patternProperties". In this work we will use S = true

to refer the schema that accepts any JSON value, and S = false to make

reference to the schema that does not accept any JSON value.

For example, the schema in Figure 2.1 specifies objects where the value under

"name" must be a string, the value under any key of the form ^a(b|c)a$ must

be an even number, the key "name" must be present and there cannot be any

other keys in the document.

• Array schemas: Array schemas represent JSON arrays, which contain a collec-

tion of JSON values. This kind of schemas include the pair "type":"array"

and zero or more of the following key-value pairs:

– "items":S or "items":[S1, . . . ,Sn], where S and each Si are JSON schemas.

This keyword indicates the schema that a element should satisfy. If it is
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specified an array of schemas, then the element i of the array should vali-

date against the schema Si. Otherwise, all the elements should comply with

S.

– "additionalItems":S, where S is a JSON schema. In case "items" spec-

ifies an array of n schemas, each element whose position i is greater than

n should be verified against the schema S. If "items" specifies a single

schema, "additionalItems" keyword is ignored. In this work we will

use S = true and S = false as defined for "additionalProperties" in

object schemas.

– "minItems":i and "maxItems": j, for i, j ∈N, indicate that the arrays must

have at least i elements and/or at most j items.

– "uniqueItems":true enforces that all the elements in the array have to be

different.

For example, the schema in Figure 2.2 validates against arrays of at least 2 ele-

ments, where the first two are strings and the remaining ones, if they exists, are

numbers.

{

"type": "array",

"items": [{" type": "string"}, {"type": "string "}],

"additionalItems ": {"type": "number"},

"uniqueItems ": true

}

Figure 2.2. Array schema example

Another essential feature of JSON schema is the ability to construct boolean combi-

nations of schemas. For instance, "anyOf":[S1, . . . ,Sn] is a schema that accepts a value

if and only if at least one schema Si accepts it. Similarly, "allOf":[S1, . . . ,Sm] accepts

a value if and only if all the schemas Si accept it. We can also indicate that a value

should not be valid with respect a schema S using "not":S. For example, the schema
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{"not":{"type":"integer","multipleOf":2}} validates against any odd number, or

any document which is not a number. Finally, one can indicate that a value must be in a

fixed collection of values with "enum":[J1, . . . ,Jl], where each Ji is a valid JSON value.

From now on we will denote that the document J validates against the schema S as

J |= S. On the contrary, if the document J does not validate against the schema S we

denote it as J 6|= S. We use the same notation and idea for sets of documents, thus we say

that the set D validates against the schema S if and only if Ji |= S,∀Ji ∈ D, and we denote

it as D |= S. We also say that the schema S is consistent with X if and only if X |= S.

2.2. Language learning framework

In this section, we explain the language identification problem and then we present

the learning framework with we will work. We provide justifications of our choice using

related work.

Learning languages is a classic problem discussed in linguistics and computer science.

People tend to compare the remarkable ability of humans to learn natural languages af-

ter being exposed to a finite amount of examples. Children are capable of constructing

well-formed sentences in their mother tongue even at an early age (Mohri, Rostamizadeh,

Talwalkar, & Bach, 2012).

In computer science, we try to learn a language, potentially with an infinite amount of

words. Actually, we attempt to learn a computational representation that allows to generate

any element of the target language (Mohri et al., 2012). A learning framework determines

the input of the learning problem and the expected output. In the next paragraphs we will

talk about the identification in the limit framework.

In the identification in the limit framework, the language learning problem consists on

identifying exactly a target language L after receiving a finite amount of examples.
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Definition 2.1 (Adapted from Mohri et al. (2012)). Let Σ be a finite alphabet. A class

of languages C is “identifiable in the limit” if there exists an algorithm A that identifies

any language L∈C after examining a finite number of tagged examples, and its hypothesis

remains unchanged thereafter.

The tags in Definition 2.1 refers to a mean to distinguish positive examples (strings

which belong to the target language) from negative ones. Thus, the definition does not

restrict the nature of the example set: the learner algorithm can receive either positive

examples, negative examples, or a mix of both. In certain situations it is necessary to

restrict the input to only positive examples, for instance, Gold et al. (1967) argue that

children rarely receive negative feedback when they make grammatical errors.

Definition 2.2. Let Σ be a finite alphabet. A class of languages C is “identifiable in

the limit from positive examples” if there exists an algorithm A that identifies any language

L ∈ C after examining a finite number of positive examples, and its hypothesis remains

unchanged thereafter.

Intuitively, for each identifiable language, there exists a set of examples which allows

an algorithm to identify it unambiguously, which we call characteristic set. Thus, a learner

algorithm should identify the target language with any superset of the characteristic set.

When we only consider positive examples, the supersets should also be subsets of the

target language. Indeed, the following lemma summarizes this idea.

Lemma 2.1 (Denis, Lemay, and Terlutte (2002)). A class of language C is identifiable

in the limit from positive data if there exists an algorithm A that takes as input a set of

words and outputs the representation of a language, and if we can associate with each

language L of C a characteristic positive sample DL such that, for every sample D ⊆ L

with DL ⊆ D, A(D) is a representation of L.

Gold et al. (1967) proved that any class containing all finite languages and at least

one infinite language is not identifiable in the limit from positive examples. They also
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showed the immediate consequence: regular expressions are not identifiable in the limit

from positive data.

The previous definitions do not restrict the size of the input set, nor the learning time.

Besides, a relative basic class of languages is not identifiable in the limit from positive

samples. Then, one may wonder why the identifiability in the limit from positive examples

framework is suitable to study the learnability problem for JSON schema.

We take into account that the main difficulty when learning a schema is avoiding an

overfitted description of the examples. Indeed, assume we are given a set J1, . . . ,Jn of

examples, and that we wish to learn a JSON Schema out of this set. The learned schema

must of course validate all the examples, but we must take caution in preventing that the

learned schema validates only those given documents. Instead, we need to find a way

to learn a schema S that is at the same time specific enough to validate our examples,

but general enough to validate other similar documents. Note that this is fundamentally

different from the task of schema extraction, denoted as schema inference in (Baazizi,

Ben Lahmar, et al., 2017; Baazizi, Colazzo, Ghelli, & Sartiani, 2017). In this other task,

the focus are large JSON datasets for which one needs to obtain “complete structural

information about input data” (Baazizi, Ben Lahmar, et al., 2017). Hence the focus is on

much more precision, but at the same time using an algorithm that does not generalizes as

well as a learning algorithm, specially when given fewer examples.

Also, this framework has demonstrated to be useful to study the inference of underly-

ing schemas from other types of semistructured documents, such as XML. Works of Bex

et al. (2006); Bex et al. (2007); Bex, Neven, et al. (2010); and Bex, Gelade, et al. (2010)

consistently used this framework to analyze the learnability of DTDs and XML schemas

from data.

Furthermore, the related work for extracting schema data from JSON documents has

not used negative examples (Wootton, 2017; Snowplow Analytics Ltd, 2016; Wischenbart

et al., 2012; Izquierdo & Cabot, 2013; Klettke et al., 2015; Wang et al., 2015; Baazizi,
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Ben Lahmar, et al., 2017; Frozza et al., 2018). Intuitively, this is because not all negative

example is useful to recognize a language. Thus, negative examples should be constructed

carefully, requiring human intervention which goes against the goal of economizing hu-

man effort.

2.2.1. Definitions for JSON schema learnability in the limit from positive sample

In this subsection, we provide specific definitions for JSON schema under the pre-

sented framework. Let JSON denote the set of all JSON documents, and let S be a

subclass of all JSON schemas. We say that the class S is learnable in the limit if there is

a computable learning function A : 2JSON→S that assigns a schema in S to each finite

set of JSON documents, and such that the following holds:

(i) For every set D = {J1, . . . ,Jn} of documents, the learned schema A(D) is consis-

tent with D.

(ii) For each schema S ∈S there is a set DS of JSON documents such that for every

set D′, with DS ⊆ D′ and D′ consistent with S, we have that A(D′) = A(DS);

furthermore, each document accepted by A(DS) is also accepted by S.

The first condition is a soundness guarantee: The learned schema must always validate

the examples which are fed to it. The second condition is how we ensure the generality

of the learned schemas, and can be intuitively understood as follows. Imagine that we

are trying to learn a schema S. We do not have access to S, but can request a number

of examples of JSON documents that are accepted by S. Then, if the above conditions

hold for a learning algorithm A, once we request all examples in DS we will know that the

output of our learning algorithm will not change when more examples are provided. The

set DS is the characteristic set of S.

From now on, we will refer to the presented framework as “identification in the limit”,

“identification in the limit from positive data” and “Gold’s framework” indistinctly.
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3. LEARNABILITY OF JSON SCHEMAS

In this section we establish the learnability of JSON Schema. We study each type of

schema by separate, providing learnable subsets whenever the full class is not learnable

in the limit. JSON values true, false and null are only specified in JSON schema by

enumeration, and these are trivial to learn. Thus we only focus on numbers, strings, arrays

and objects.

3.1. Numbers

We begin by analyzing how to learn numeric JSON schemas. In JSON, numeric

schemas are mostly specified in terms of intervals (by specifying maximum and/or min-

imum values), possibly with the additional restriction of being a multiple of a specific

number.

The first observation we make is that, under Gold’s framework, it is not possible to

learn both closed intervals and infinite sets of numbers at the same time. Moreover, it

is not feasible to identify infinite intervals bounded on one side and unbounded inter-

vals simultaneously. To formalize this claim, we define the following classes of numeric

schemas.

(i) N— is the class of schemas that only use "multipleOf".

(ii) Nmin is the class of schemas using keywords "minimum" and "multipleOf".

(iii) Nmax is the class of schemas using instead "maximum" and "multipleOf".

(iv) Nmin-max is the class of schemas using all the keywords "minimum", "maximum"

and "multipleOf".

The class Nmin-max defines closed intervals, but all the remaining ones define infinite

sets of numbers. Note also that the inclusion of "multipleOf" in all those classes is

without loss of generality for integers, since "multipleOf":1 is equivalent to not having
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this keyword at all. As promised, the following proposition shows that finite and infinite

sets cannot be mixed if one hopes for learnability.

PROPOSITION 3.1.

(i) Neither (Nmin∪N—) nor (Nmax∪N—) are learnable in the limit.

(ii) Neither (Nmin∪Nmin-max) nor (Nmax∪Nmin-max) are learnable in the limit.

(iii) Let S be a single schema from N—. Then Nmin-max∪ S is also not learnable in

the limit.

To prove this proposition, we assume a learner algorithm exists for each class and then

we fool it using a set of documents for which it as to return two schemas at the same time,

leading to a contradiction.

PROOF FOR PROPOSITION 3.1.1. We begin proving that Nmin∪N— is not learnable

in the limit.

By contradiction, let us assume that this schema class is identifiable in the limit. Let S

be a schema from N— and let DS be its characteristic set. Now, let S′ be a Nmin schema

constructed in this way: set the "multipleOf" to have the same value as S, and set

"minimum" to be the smallest element of DS. Also, let DS′ be the characteristic set of

the constructed schema S′.

Let us check what happens if the algorithm that learns Nmin∪N— schemas receives

D = DS∪DS′ . On one side D is superset of DS and subset of S, then it should identify S.

On the other hand, D is superset of DS′ and subset of S′, then it should learn S′. As a result,

there is a contradiction. The process to demonstrate that (Nmax∪N—) is not learnable in

the limit is analogous.

�
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PROOF FOR PROPOSITION 3.1.2. We begin proving that Nmin ∪Nmin-max is not

learnable in the limit.

By contradiction, let us assume that this schema class is identifiable in the limit. Let S

be a schema from Nmin and let DS be its characteristic set, which in this case is simply a set

of numbers. Now, let S′ be a Nmin-max schema constructed in this way: set the "minimum"

and "multipleOf" to have the same value as S, and set "maximum" to be the maximum

element of DS. Also, let DS′ be the characteristic set of the constructed schema S′.

Let us check what happens if the algorithm that learns Nmin ∪Nmin-max schemas re-

ceives D = DS ∪DS′ . On one side D is superset of DS and subset of S, then it should

identify S. On the other hand, D is superset of DS′ and subset of S′, then it should learn S′.

As a result, there is a contradiction.

We realize that the reasoning to prove that Nmax∪Nmin-max is not identifiable in the

limit is very similar. Given a schema in Nmax and its characteristic set, it is sufficient

with constructing another schema in Nmin-max with the same values for "maximum" and

"multipleOf", and constraining the "minimum" to the smallest element of the character-

istic set. We get the same contradiction as before. �

PROOF FOR PROPOSITION 3.1.3. Following the same idea as the previous proofs,

let DS be the characteristic set of S. We construct a S′ schema of Nmin-max, where the

"minimum" and "maximum" are chosen to be the smallest and greatest element of DS, and

"multipleOf" to the same as S. Then, we encounter with the same problem: what if the

algorithm receives DS∪DS′? Like before, the algorithm should provide S and S′ as result

at the same time. Contradiction. �

So what can we do? It is easy to devise algorithms to learn schemas in one of the

classes N—, Nmin, Nmax or Nmin-max. For N— we just keep track of the GCD of what we

are learning, and for open intervals we additionally track the smallest (or greatest) number

we have seen, and for closed intervals we track both the smallest and greatest numbers.
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Interestingly, we can also show that the class (Nmin∪Nmax) of all intervals closed on one

side is also learnable in the limit. Summing up, we have the following positive results.

PROPOSITION 3.2.

(i) All of N—, Nmin, Nmax or Nmin-max are learnable in the limit.

(ii) The class (Nmin∪Nmax) is also learnable in the limit.

SKETCH. The first point of Proposition 3.2 is straightforward: we create an algorithm

for each of those classes, and we show that for each language in the hypothesis space there

exists a characteristic set complying with the identification in the limit framework.

For the second point we need a more complicated algorithm: we create an injective

map between from each schema in (Nmin∪Nmax) to a characteristic set compound of two

numbers: one indicating the bound itself, and another number (depending on the first one)

indicating the direction of the interval.

Let S be a schema in Nmin ∪Nmax, and let bound(S) be a function that extracts the

lower or upper bound of the interval that S represents. The mapping is as follows:

f (S) =

 fmin(S) S ∈Nmin

fmax(S) S ∈Nmax

fmin(S) =

bound(S),k× (2×bound(S)+1) bound(S)≥ 0

bound(S),−k× (2×bound(S)) bound(S)< 0

fmax(S) =

bound(S),−k× (2×bound(S)+1) bound(S)≥ 0

bound(S),k× (2×bound(S)) bound(S)< 0
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As example, for {"type":"integer", "minimum":3, "multipleOf":1} the char-

acteristic set is {3,7} and for {"type":"integer", "maximum":3, "multipleOf":1}

is {3,−7}.

Note that the characteristic sets do not translate into relevant numbers from a practical

point of view, and thus this algorithm is not very useful in practice. For more details of

this proof we refer to the Appendix A.1. �

3.2. Strings

We continue analyzing how to learn string JSON schemas. In JSON, string schemas

are mostly specified in terms of length limits (in other words, intervals of lengths), possibly

with the additional restriction of being accepted by a specific regular expression.

We have mentioned that schemas specifying regular expressions in full cannot be

learned in the limit (Gold et al., 1967). Given that any algorithm for learning a subset

of regular expressions can be translated into an algorithm for learning string schemas, we

do not focus on comparing these restrictions (for reference see e.g. (Bex, Gelade, et al.,

2010; Freydenberger & Kötzing, 2015; De La Higuera, 1997; Fernau, 2009; Ilyas, da

Trinidade, Fernandez, & Madden, 2017)). Instead we provide two easy learnable classes:

we can either learn complete patterns by bounding the length of strings, or we can just be

content with their minimal length. Formally, define the following classes of schemas.

(i) Smin is the class of schemas using only the keyword "minLength".

(ii) S pattern
min-max is the class of schemas using keywords "minLength", "maxLength",

and "pattern".

Note that Smin includes the schema that accepts all the strings, since it is equivalent

to setting "minLength" to zero. Also note that S pattern
min-max only defines finite sets, because

the length is always constrained. Like the number schemas case, one cannot hope to learn

both finite and infinite sets of strings.
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PROPOSITION 3.3.

(i) Both Smin and S pattern
min-max are learnable in the limit.

(ii) Smin∪S pattern
min-max is not learnable in the limit.

3.3. Objects

Objects (and arrays) are fundamentally different from numbers and strings because

they involve nesting. Thus, our first task is to understand how any learning algorithm is

supposed to work in the presence of nested documents. Let us motivate these issues by

means of an example.

Example 3.1. Consider all three documents from Figure 3.1. In trying to discover the

best schema to deduce from these documents, let us look at the keys in these documents.

First of all, the key "age" appears in all documents, and it is always an integer. It seems

fair to assume that all documents must include age, in form of an integer. Next, both J2

and J3 include the key "address", the value of this key is an object, but not the same

object: in J2 we see a "city" as a string, but in J3 we see "street", which is again an

object with two key:value pairs.

We want to be as general as possible, but at the same time compliant with Gold’s

framework. Figure 3.2 shows the schema that would be inferred by our algorithms. This

algorithm is the result of some important choices we have made, and that constitute a path

to define a class of schemas that can be learned in the limit. In particular, we note the

following choices:

• We close our schemas using the pair "additionalProperties":false. As we

see below, this is the only way we can work with Gold’s framework.

• We are assuming that if a key appears in all documents of a sample, then this key

is required (see "age").
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• A more involved choice is to assume all values under address comply to the

same schema, which yields the statement that address pairs may have a city,

a street, or both. We could have imposed instead a better fit by stating that

addresses may contain either a city or a street, but not both (since we haven’t

seen any document with both a city and a street). However, to express this we

need to use boolean combinations of schemas, a feature that we later show to

produce unlearnable classes of schemas.

• Our assumptions made it possible to learn schemas in a level-to-level fashion: to

learn the schema under address we group all documents nested under the path

leading to address, and learn the schema of those documents. This schema is

then appended to the address key when learning the outer level schema.

{

"age": 25

}

{

"age": 35,

"address ": {

"city": "Santiago"

}

}

{

"age": 35,

"address ": {

"street ": {

"name": "Merced",

"number ": 2134

}

}

}

Figure 3.1. Documents that we want to infer a schema from.

In the remainder of this section we give a formal justification for these choices.

The first choice is to work with "additionalProperties":false for all object

schemas we attempt to learn. To justify this election, define O+
prop as the class of schemas

specifying "properties" and "additionalProperties":true, and Oprop the class of

schemas specifying "properties" and "additionalProperties":false. We prove:

PROPOSITION 3.4. O+
prop is not learnable in the limit. Further, any class of schemas

including at least one schema from O+
prop and every schema in Oprop is also not learnable

in the limit.
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{

"type": "object",

"properties ": {

"age": {"type": "integer"},

"address ": {

"type": "object",

"properties ": {

"city": {"type": "string"},

"street ": {

"type": "object",

"properties ": {

"name": {"type": "string"},

"number ": {"type": "integer "}

}

}

}

}

},

"required ": ["age"],

"additionalProperties ": false

}

Figure 3.2. A possible learned schema for documents in Figure 3.1. For
readability we have left out the "additionalProperties":false key-
word from all the inner object schemas.

The argument for this proof is similar to what we used for numeric schemas. Assuming

that these classes are learnable, we look for the characteristic set of a particular schema,

and then construct another schema that fools the algorithm into returning two different

schemas. Let O† be a class of schemas including Oprop and one schema S from O+
prop.

Assume that O† is learnable in the limit, say by an algorithm A . then S has a characteristic

set DS. We construct an object schema S′ ∈ Oprop that (1) is consistent with DS and (2)

S′ ⊆ S; and let DS′ be its characteristic set. It follows that, on input DS∪DS′ , the algorithm

must learn both S and S′, which is a contradiction.

Regarding positive results, we can learn schemas with the "required" without trou-

bles. We can also add "minProperties" and/or "maxProperties", but we do not

present this result since it will not be used in our algorithm and, as we see in Section 4.1,
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they are seldom used in practice. We remark that the choices we made also allows us

to learn object schemas in a level-to-level fashion, which is highly desirable. To put

this formally, let Oprop,req be the class of object schemas allowing "properties" and

"required", but such that any key:value pair "a":S inside a "properties" clause uses

a schema S that is learnable in the limit. We then have:

PROPOSITION 3.5. Oprop,req is learnable in the limit.

Another choice we did not mention in the example above is not work with

"patternProperties" at all. Essentially, "patternProperties" allow to constrain

the possible keys in an object with respect a certain regular expression. Regular expres-

sions are themselves not identifiable in the limit from positive examples, and we can use

this result to show that schemas with pattern properties are not learnable either.

3.4. Arrays

We continue working with JSON values involving nesting, this time with arrays. Sim-

ilarly, as we did with objects, we want to deal with nesting in a level-to-level fashion; we

show that this is doable as long as we learn schemas for each position of the array. The

first result is that once again we cannot distinguish classes of array schemas where the

number of items can be upper bounded or not. To that extent, let us define these classes of

array schemas:

(i) A min is the class of schemas that use the keyword "minItems".

(ii) A min-max is the class of schemas that use the keywords "minItems" and

"maxItems".

What those classes capture is that the length of the array is constrained to a finite or

infinite interval. If we want to learn the union of both classes we arrive at the same problem

we had for numeric and string types.

27



PROPOSITION 3.6. A min ∪A min-max is not identifiable in the limit from positive ex-

amples

The rest of the features are easier to learn in arrays, as long as the nested schemas are

also learnable. Formally, let us now define the following classes:

(i) A min-max
items of schemas using keywords "minItems", "maxItems", "items" with

an array of length equal to "maxItems" and "uniqueItems", and such that all

schemas under the "items" clause are learnable in the limit.

(ii) A min
items of schemas using keywords "minItems" and "additionalItems", and

optionally the keywords "items" and "uniqueItems". We require again that

all schemas under the "items" and "additionalItems" clauses are learnable

in the limit as well.

Both classes are indeed learnable in our framework.

PROPOSITION 3.7. A min-max
items and A min

items are identifiable in the limit.

3.5. Boolean combinations

JSON Schema also allows for union, intersection and complement of a schema. So

are these boolean combinations learnable? It is not hard to suspect that the freedom of

combining any number of schemas would directly lead to non-learnable schemas. For

example, if we look at integers we can take the union of the interval [0,∞) with (−∞,0]

to obtain the schema representing any possible number, which means that augmenting

Nmin∪Nmax with unions leads to a broader class of schemas that we know is not learnable

(see Proposition 3.1). Similar examples can be found for the case of complement and

intersection.
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We do not analyze all possible boolean combinations of all learnable classes that we

have identified, as it involves studying at least three times as many cases as we have studied

so far. Instead, we do the following.

First we show a positive result about learning unions of schemas of different type (we

rule out intersection because intersection of schemas of different type is always empty).

Then, we defer further study on boolean combinations for the following section, where we

choose a particular combination of learnable classes of different types that make up for a

good overall class of schemas that can be learned. We show that adding unions leads to

the intractability of even this class of schemas, but intersection can be added at no cost

because the class we select is closed under intersection.

For now, let us formally state the following easy result about unions of different types.

PROPOSITION 3.8. Let C1, . . . ,Ck be classes of schemas such that every schema in Ci

only accepts documents of one type, and of the same type; and such that the type of the

documents accepted by schemas in Ci and C j is different whenever i 6= j. Then the class

of schemas given by the union of at most one element in each of C1, . . . ,Ck is learnable in

the limit.

The proof is straightforward when considering that the characteristic set of a union

C1∪·· ·∪Ck is simply the union of the characteristic sets of each schema Ci ∈ Ci.
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4. A LEARNABLE CLASS OF SCHEMAS

We have identified several distinct classes of schemas for each type of JSON value that

can be learned in the limit. But the union of these classes is not learnable, which means

we have to chose amongst these possible options. We provide what we think is the best

choice for real case scenarios, justifying our choice both from a formal point of view and

also with a number of real-world examples.

4.1. Analyzing current schemas in the wild

Understanding how are JSON Schemas used in practice would give us a good input to

decide the best class of schemas to learn. To this end we set up to analyse all 157 schemas

from schemastore.org (Kristensen et al., 2018), one of the few repositories of schemas

currently available online. Our goal is to understand which particular keywords are com-

monly used in practice, and which ones are not. We analyze all of the type constructs in

each of these schemas as if they were a separate entity, so that instead of 157 schemas

we count a total of 114807 entities, of which 54% were strings, 22% were objects, 21%

were boolean combinations, and only 2% were arrays and less than 1% were numbers.

Table 4.1 shows the number of entities in detail.

Table 4.1. Instances of each type of schema found in schemastore.org.

Schema type Instances % Instances Documents % Documents

Numeric 916 0.8 69 43.9
String 61769 53.8 132 84.1
Boolean 1490 1.3 90 57.3
Null 383 0.3 12 7.6
Object 24736 21.5 150 195.5
Array 1672 1.5 115 73.2
Boolean combination 23841 20.8 99 63.1

1We found that some schemas fail to declare "type" keyword.
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There was a little amount of pre-processing to be done: we corrected obvious encoding

errors and rewrote schemas so that they comply with the compact syntax presented in this

work. We next provide an analysis going through each type.

4.1.1. Numbers

For numbers, we realized that more than 90% of the schemas do not specify a max-

imum, but about 30% does for a minimum; when such bounds are present, they tend to

be near-zero values. Also, no schema in the pool of the examined examples specified the

keyword "multipleOf". We can see these results in detail in the Table 4.2. Complement-

ing the presented information, Table 4.3 exhibits the number of instances partitioned by

groups of keywords, excluding "multipleOf".

Table 4.2. Statistics for numeric schemas found in schemastore.org
grouped by keyword use. Percentage columns are with respect to the total
number of instances of the type, and the number of documents where this
kind of data appears.

Keyword Instances % Instances Documents % Documents

"minimum" 258 28.2 18 26.1
"maximum" 75 8.2 10 14.5
"multipleOf" 0 0.0 0 0.0

Table 4.3. Statistics for numeric schemas found in schemastore.org par-
titioned by combinated keywords, excluding "multipleOf". Percentage
columns are with respect to the total number of instances of the type, and
the number of documents where this kind of data appears.

Keywords Instances % Instances Documents % Documents

None 656 71.6 63 91.3
"minimum" 185 20.2 10 14.5
"maximum" 2 0.2 1 1.4
"minimum" & "maximum" 73 8.0 9 13.0
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4.1.2. Strings

Strings are the most prevalent type, but they are barely specified: around 10% of string

schemas are an enumeration of strings (with 8 elements on average), and less than 1% of

the string entities include more complex patterns. Details of these results are in Table 4.4.

Table 4.4. Statistics for string schemas found in schemastore.org grouped
by degree of specification. Percentage columns are with respect to the total
number of instances of the type, and the number of documents where this
kind of data appears.

Specification Instances % Instances Documents % Documents

Pattern or bounds 272 0.4 55 41.7
Enumeration 7010 11.3 66 50.0

4.1.3. Objects

Regarding objects, almost no schema constraints the minimum or maximum amount of

properties. Further, not all schemas specify "properties" directly, most of the cases this

is because this entity is being used as part of a boolean combination. On the other hand,

most schemas leave open the possibility of including additional properties, but the great

majority of them does this by not including the "adittionalProperties" keyword at all

(which by the standard is the same as "adittionalProperties":true). We speculate

that some, if not most, of them actually intends to constraint additional properties, but miss

this subtlety of the standard. Interestingly, 70% of schemas do include the "required"

keyword. In Table 4.5 we can observe the number of instances with a given keyword.

4.1.4. Arrays

For arrays, most of them specify a single schema in "items" to describe all the ele-

ments, and most of the times, "additionalItems" is not present. This fact captures the

idea that an array is a collection of elements of the same type. We found more schemas

specifying a minimum amount of items than a maximum (20% versus 5%), although most
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Table 4.5. Statistics for object schemas found in schemastore.org by
keyword. In this table we abbreviated "additionalProperties" as
"addProps". Percentage columns are with respect to the total number of
instances of the type, and the number of documents where this kind of data
appears.

Keyword or pair Instances % Instances Documents % Documents

"minProperties" 42 0.2 11 7.3
"maxProperties" 7 0.0 4 2.7
"properties" 7439 30.1 140 93.3
"patternProperties" 136 0.5 20 13.3
"required" 17150 69.3 86 57.3
No "addProps" 23737 96.0 135 90.0
"addProps":true 164 0.7 27 18.0
"addProps":J 262 1.1 53 35.3
"addProps":false 573 2.3 36 24.0

of them do not explicitly bound the length in any way. With respect to "uniqueItems",

we observe that about 40% of the schemas defines it as true. In Table 4.6 we can observe

the number of instances with a given keyword.

Table 4.6. Statistics for array schemas found in schemastore.org by key-
word. In this table we abbreviated "additionalItems" as "addItems".
Percentage columns are with respect to the total number of instances of the
type, and the number of documents where this kind of data appears.

Keyword or pair Instances % Instances Documents % Documents

"minItems" 317 19.0 25 21.7
"maxItems" 83 5.0 4 3.5
"items":J 1514 90.6 112 97.4
"items":[J1, . . . ,Jk] 6 0.4 2 1.7
No "addItems" 1651 98.7 114 99.1
"addItems":true 2 0.1 1 0.9
"addItems":J 2 0.1 2 1.7
"addItems":false 17 1.0 2 1.7
"uniqueness":true 596 35.6 29 25.2
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4.1.5. Boolean combinations

Finally, for boolean combinations, we observed as many unions of different types as

unions of the same type. Intersection is somewhat used as well, but the most surprising

fact is the wide presence of complement (70% of boolean combinations are complements).

This poses additional challenges in trying to learn these schemas, but we leave those for

future work.

Table 4.7 shows boolean combinations grouped by type. For unions, we decided to

group them depending on how many elements of the same type involved without consid-

ering if they were "anyOf" or "oneOf". We did not considered redundant operators, for

instance, intersections or unions of one schema.

Table 4.7. Statistics for boolean combination schemas found in schema-
store.org by type. We grouped union operators depending on the types
they are joining, without regard to the type of the union itself. Percentage
columns are with respect to the total number of instances of the type, and
the number of documents where this kind of data appears.

Boolean combination Instances % Instances Documents % Documents

Unions only distinct types 1584 8.9 80 86.0
Unions same type 1483 8.3 37 39.8
Intersection 2666 14.9 26 28.0
Complement 12158 68.0 20 21.5

4.2. Class and learning algorithm

We now define the class L of schemas that is used by our algorithms. This class is

the union of classes N learn for numbers, S learn for strings, O learn for objects and A learn

for arrays, and all possible enumerations of true, false, and null. We define this class

in a recursive fashion.

For numbers we can learn either closed intervals, intervals with only minimum or

only maximum, or the union of these two. We believe that the algorithm for learning the
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union of both classes of open intervals is too artificial to give good results, and that learn-

ing closed intervals could easily lead to overfitting when analyzing just a few samples.

One the other hand, since almost a third of the instances analyzed online do use mini-

mum, we go with this option. We also choose not to learn "multipleOf" either, because

no one is using it in practice. Summing up, we choose to go with the class N learn of

number schemas where the only present keywords are "type", with value "number" or

"integer", and "minimum".

For strings, the situation is similar to the observed with numbers, because the vast ma-

jority of the schemas did not specify a maximum nor an explicit minimum. This means

that for strings we are only learning the general class S learn where the only present key-

word is "type" with value "string".

Next is objects. From the learnability results in Section 3.3, we already know that

we must close our schemas using the "additionalProperties":false keywords and

that we cannot use "patternProperties". Minimum and maximum properties are

not very important in practice, but required is a must. Summing up, we learn the class

O learn of schemas where only the following keywords or key:value pairs

are present: "type":"object", "additionalProperties":false, "required", and

"properties", and such that each schema under the "properties" keyword belongs to

L .

For arrays, Section 3.4 gave us two options: learn arrays with a fixed length or learn

arrays with a minimum number of items. We choose to go with the latter because it seems

a more general class for some uses of arrays in JSON related to databases (where typically

arrays are used as a form of relational data). However, in light of our analysis of practical

schemas, we actually decided to further restrict this and just learn arrays in which all

elements in an array must belong to the same schema. That is, we concentrate on the class

A learn of array schemas where the keyword "items" is specified with a single schema,

the keyword "minItems" is specified with any valid value, the keyword "uniqueItems"

is present when its value is true, and the schema under "items" belongs to L .
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Finally, we are left with the issue of boolean combinations. Our review of current

JSON Schema hints that all of arbitrary unions, intersection and complement are desirable.

However, as we argued in Section 3.5, neither arbitrary complement nor union is possible

in our framework.

PROPOSITION 4.1.

(i) The class of schemas in L or a complement of a schema in L is not learnable

in the limit.

(ii) The class of unions of schemas in L is not learnable in the limit.

SKETCH. This proof uses a different technique than most of the proofs presented be-

fore because these classes allow for infinite characteristic sets. For both statements we

construct a schema, and show that any set of documents satisfying the requirements for a

characteristic set of this schema must be infinite, and therefore cannot be a characteristic

set as required in our framework. �

What we can do is to learn unions and intersections of different types of schemas

within L . Intersections we get for free because L is closed under intersection. For

unions, let L ∪ be the closure of L under unions of schemas of different types. We show

PROPOSITION 4.2. The class L ∪ is learnable in the limit.

In the rest of this section we describe the algorithm for learning schemas in L ∪.

Learning numbers and string schemas of this class is straightforward, so we only show the

portion of the algorithm that deals with nested structures.

In particular, the Algorithm 1 deals with objects. The algorithm collects all the nested

documents grouped by property name, then it learns a schema for each property. If a

property appears in all the examples the algorithm infers that that property is required. In

this case, Learn refers to the general algorithm to learn schemas (see Algorithm 3).
36



Algorithm 1: Algorithm to learn object schemas in L ∪. Learn refers to the
general learning algorithm (Algorithm 3).

Data: A set D of object JSON documents
Result: A object schema in L ∪

properties← map(), schemas← map();
required← [key | ∀d ∈ D d.key exists];

foreach document d in D do
foreach key, value in d do

properties[key].add(value);

foreach key, documents in properties do
schemas[key] = Learn(documents)

return {
"type":"object", "properties": schemas,
"required": required, "additionalProperties":false
};

The Algorithm 2 does it with arrays. The algorithm collects all the nested documents to

generate a single schema for the keyword "items", and it measures the minimum length.

Algorithm 2: Algorithm to learn array schemas in L ∪. Learn refers to the
general learning algorithm (Algorithm 3).

Data: A set D of array JSON documents
Result: An array schema in L ∪

examples← set(), minLength← ∞, uniqueItems← true;

foreach example e in the set D do
minLength←min(minLength, e.length);
uniqueItems← uniqueItems ∧ UniqueItems(example);
examples.add all(e);

items← Learn(examples);

return {
"type":"array", "items": items,
"minItems": minLength, "uniqueItems": uniqueItems
};
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Finally, the Algorithm 3 is the point of entry of the general algorithm. The algorithm

separes the documents by type, calls the corresponding subroutine for each one, and re-

turns an "anyOf" combination of the learned schemas.

Algorithm 3: General algorithm to learn schemas in L ∪.
Data: A set D of JSON documents
Result: A schema in L ∪

examples by type← SepareByType(D);
schemas← map();

foreach type, examples in examples by type do
switch type do

case "object" do
schemas[type]← LearnObjects(examples);

case "array" do
schemas[type]← LearnArrays(examples);

case "number" do
schemas[type]← LearnNumbers(examples);

case "string" do
schemas[type]← LearnStrings(examples);

case "boolean" do
schemas[type]← LearnBooleans(examples);

case "null" do
schemas[type]← LearnNulls(examples);

return {"anyOf": schemas.list()};
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5. EXPERIMENTAL EVALUATION

We just defined a class of schemas identifiable in the limit that is suitable to be used

in the real world, and an algorithm to learn that class. The next step is to check how

our algorithms works with real world examples. With that purpose, we made requests to

OpenWeather (https://openweathermap.org/), Github (https://github.com), and

Twitter (https://twitter.com) endpoints and saved the responses in order to feed our

algorithm.

We fed these three sets of examples to our algorithm, thus obtaining a schema for

OpenWeather, another for GitHub and another for Twitter. None of these services cur-

rently provide JSON Schema, so we could not compare the results directly. Instead, we

perform a manual inspection of the schemas, and end up very satisfied. For space reasons

we cannot include the complete schemas, but we highlight some portions of the result.

5.1. OpenWeather

OpenWeather is an online service that provides current weather or weather forecasts

for a given location. To collect data, we made 200 queries to 5 day forecast endpoint1,

using a different city for each request.

The main challenge in this API was the amount of optional data in the returns. An

example is the fields keyword, that informs about the rain or snow volume for three hours

intervals. The documentation does not specify what happens with those fields when the

weather is sunny. It turns out that these fields are optional, but when present, they can also

be empty (see Figure 5.1).

1https://openweathermap.org/forecast5
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5.2. GitHub

GitHub is a hosting service for projects using the Git version control system. GitHub

provides API endpoints to help developers improve their workflow and obtain data about

their repository. For Github’s API, we fetched examples from the contents API2, a query

that aims to describe the contents of a given repository. To generate the data we con-

structed a repository with a very complex structure, and then we made 75 queries for

different paths in this repository.

The response on GitHub varies with the nature of the element that is being queried.

For example, if the destination of the requested path is a folder then the API returns an

array of documents, but if the destination is a file then the API returns a single object.

There are other types of elements distinguished by the API with several edge cases, most

of them, without an explicit example. Our schema does learn this, as it provides a union of

an object schema with an array of objects. Interestingly, we can observe that the response

includes either an object, of an array of them with slightly fewer details. The schema also

reflects that folders must have at least one file (see Figure 5.2).

5.3. Twitter

Our third set of examples comes from Twitter’s API for searching tweets. We made

200 queries using a set of 33 distinct search keywords and selecting at random the number

of results we wanted to retrieve.

In this case the challenge was to deal with nested data, for example, retweets which

reference to their original source. The schema we obtained correctly suggests that nesting

is not arbitrary and it is limited to one level, since the schema for tweets included in

"statuses" can include a tweet in "retweeted status", but the latter cannot include

that keyword. Another interesting point is that the number of obtained tweets can be zero

in some circumstances, or may not have additional results available (see Figure 5.3).
2https://developer.github.com/v3/repos/contents/#get-contents
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5.4. Shared findings

Fields that do not apply in all the situations (i.e., they are nullable or optional fields)

were a common difficulty amongst the tree samples. The algorithm was capable of identi-

fying those situations. We can see examples of optional fields in Figures 5.1 and 5.3, and

examples of nullable properties in Figure 5.4.

Finally, it is interesting to see how distinct API describe geographic coordinates. Ac-

cording to Figure 5.5, OpenWeather defines coordinates with an object with "lat" and

"lon" properties, describing the latitude and longitude of the point respectively. On the

other hand, Twitter describes them with an object compliant with GeoJSON standard

which uses a small array to emulate a tuple of coordinates. The latter is an example of

when a constrained array length can be beneficial.
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{

"type": "array",

"items": {

"type": "object",

"properties ": {

"rain": {

"type": "object",

"properties ": {

"3h": {" minimum ": 0.002, "type": "number "}

},

"required ": [],

"additionalProperties ": false

},

"snow": {

"type": "object",

"properties ": {

"3h": {" minimum ": 0.0005 , "type": "number "}

},

"required ": [],

"additionalProperties ": false

},

// ...

},

"required ": [" clouds", "dt", "dt_txt", "main", "sys",

"weather", "wind"],

"additionalProperties ": false

},

"minItems ": 38

}

Figure 5.1. Piece of OpenWeather schema. Rain and snow are not in
"required", and therefore optional. They can also be empty.
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"anyOf": [

{

"type": "array",

"minItems ": 1,

"items ": {

"type": "object",

"properties ": {

"_links ": {...} ,

"download_url ": {...} ,

"git_url ": {...} ,

"html_url ": {...} ,

"name": {...} ,

"path": {...} ,

"sha": {...} ,

"size": {...} ,

"type": {...} ,

"url": {...}

},

"additionalProperties ": false ,

"required ": [...]

}

},

{

"type": "object",

"properties ": {

"_links ": {...} ,

"content ": {...} ,

"download_url ": {...} ,

"encoding ": {...} ,

"git_url ": {...} ,

"html_url ": {...} ,

"name": {...} ,

"path": {...} ,

"sha": {...} ,

"size": {...} ,

"submodule_git_url ": {...} ,

"target ": {...} ,

"type": {...} ,

"url": {...}

},

"additionalProperties ": false ,

"required ": [...]

}

]

Figure 5.2. Outline of GitHub schema for repository contents
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{

"type": "object",

"properties ": {

"search_metadata ": {

"type": "object",

"properties ": {" next_results ": {"type": "string"}, ...},

"required ": [" completed_in",

"count",

"max_id",

"max_id_str",

"query",

"refresh_url",

"since_id",

"since_id_str "],

"additionalProperties ": false

},

"statuses ": {

"type": "array",

"items ": {

"type": "object",

"properties ": {" retweeted_status ": {...} ...}

},

"minItems ": 0

}

},

"required ": [" search_metadata", "statuses"],

"additionalProperties ": false

}

Figure 5.3. Piece of Twitter schema showing that "next results" key-
word is optional. Retweets are under "retweeted status", which is sim-
ilar to the schema inside the array but without the "retweeted status"

keyword.
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"html": {

"anyOf": [

{

"type": "string"

},

{

"type": "null"

}

]

}

"coordinates ": {

"anyOf ": [

{

"type": "null"

},

{

"type": "object",

"additionalProperties ": false ,

"properties ": {

// ...

},

"required ": [

"coordinates",

"type"

]

}

]

}

Figure 5.4. Examples of nullable fields on the generated schemas. (Left)
is for GitHub data, and (Right) is for Twitter sample.

{

"type": "object",

"properties ": {

"lat": {

"minimum ": -36.906,

"type": "number"

},

"lon": {

"minimum ": -156.9223 ,

"type": "number"

}

},

"required ": ["lat", "lon"],

}

{

"type": "object",

"properties ": {

"coordinates ": {

"items ": {

"minimum ": -122.419 ,

"type": "number"

},

"minItems ": 2,

"type": "array"

},

"type": {"type": "string "}

},

"required ": [

"coordinates",

"type"

]

}

Figure 5.5. Examples of coordinates schemas, OpenWeather (Left) and
Twitter (Right). Additional properties key:value is left out for readability
reasons.
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6. CLUSTERING NESTED SCHEMAS

Our learning algorithms are very simple and appear to work well in practice.

However, one particular limitation in our learning framework is that we cannot learn the

"patternProperties" keyword. The pattern properties keyword allows one to write

schemas such as the one in Figure 6.1 to indicate that any key:value pair whose key is

either "a", "b" or "c" must validate against a schema S. As such, this keyword is vital for

producing human-readable code.

{

"type": "object",

"patternProperties ": {"(a|b|c)": S, ...}

}

Figure 6.1. Schema using pattern properties

In the previous situation, the alternative is to write instead three triples under a prop-

erties keyword. To motivate the problem we address in this section, consider a situa-

tion where our learner returns a schema as shown in Figure 6.2, where Sa, Sb and Sc are

schemas. If all three schemas are equivalent, then it is straightforward to merge them into

a "patternProperties" clause. But often this will not be the case because of optional

fields or slight variations on data. Thus, we need a way of learning that schemas Sa, Sb and

Sc, while different, are close enough that they should be merged together. This interesting

question takes us away from Gold’s framework and more into applied learning.

{

"type": "object",

"properties ": {"a": Sa, "b": Sb, "c": Sc, ...}

}

Figure 6.2. Example schema returned by our algorithm, where several
properties can have similar schemas Sa, Sb, and Sc
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We work with one solution to this problem, and show the good results it gave us in

practice.

6.1. Cluster-and-join algorithm

Our improvement is based on a notion of distances for schemas, and we apply it to

the schema already returned by our algorithm. Precisely, assume that our algorithm has

already returned the schema with properties named above. Recall that this procedure

is meant to be applied for object schemas. We describe the operations we make in the

following subsections.

6.1.1. Distance

First we compute the pairwise distance between all the schemas. For example, if we

are considering schemas Sa, Sb, and Sc, we obtain a symmetric 3×3 matrix. A natural

approach is taking the Jaccard distance between the sets of JSON documents that the

schemas accept, but this it is not immediate to define because sometimes this is too costly

or the sets are infinite. Instead, we use a modified Jaccard score that is easier to compute,

which allow us to get a distance. We refer to it as similarity score SS(x,y), and the distance

is defined as D(x,y) = 1−SS(x,y).

The idea behind is as follows. For object schemas we compute a weighted Jaccard

score between the sets of properties, where each key has a weight equal to the score of

the associated sub-schemas. Additionally, we penalize keywords that are mandatory in

precisely one schema putting an additional weight ω = 0.5.

For example, consider two schemas Sa and Sb from the Figure 6.3. Let us compute the

similarity score between those schemas. We realize that the union of the sets of keywords

is {a,b,c,d,e}, and the intersection is {a,b,c}. We also know that, from the keys in the

intersection, b and c are required precisely on one schema. Thus, the similarity score is

computed as shown in Equation 6.1.
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{

"type": "object",

"properties ": {

"a": Sa
a,

"b": Sa
b,

"c": Sa
c ,

"d": Sa
d

},

"required ": ["a", "c", "d"]

}

{

"type": "object",

"properties ": {

"a": Sb
a,

"b": Sb
b,

"c": Sb
c ,

"e": Sb
e

},

"required ": ["a", "b"]

}

Figure 6.3. Object schemas Sa, Sb from which we compute the similarity score

SS(Sa,Sb) =
SS(Sa

a,S
b
a)+SS(Sa

b,S
b
b)×ω +SS(Sa

c ,S
b
c)×ω

|{a,b,c,d,e}|
(6.1)

When measuring two "anyOf" combinations, we compute the scores type-by-type

and divide the sum of them by the number of different types considering both unions. The

idea is to penalize the score if few or none of the types coincide. For example, think of the

schemas Sa and Sb shown in Figure 6.4. We see that both unions have object and integer

schemas, but we have four types in total (object, integer, string and null). Therefore, the

similarity score is calculated as shown in Equation 6.2.

SS(Sa,Sb) =
SS(Sa

object,S
b
object)+SS(Sa

integer,S
b
integer)

4
(6.2)

{

"anyOf": [Sa
object, Sa

integer, Sa
null]

}

{

"anyOf ": [Sb
object, Sb

integer, Sb
string]

}

Figure 6.4. Union schemas Sa, Sb from which we compute the similarity score

We can apply the same idea to measure the distance between a union and a single

schema: we consider the single schema as a union of one schema and use the before

mentioned procedure. For arrays, we use the score for "items" sub-schemas. Finally, for
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all the other types, we consider pairwise score as 1. Of course, measuring schemas with

different types yields zero similarity score.

6.1.2. Clustering

Next, we need to identify clusters of similar schemas. We require an algorithm that

can work with a matrix of distances, detects clusters with any arbitrary shape, and does

not take the number of clusters to be detected as input.

In this work, we use DBSCAN (Ester, Kriegel, Sander, Xu, et al., 1996; Pedregosa et

al., 2011) with parameters ε = 0.3 and MinPts= 5. Admittedly, more algorithms comply

with our requirements, but we left the benchmarking task as future work since, as we will

see, the one we selected works reasonably well in our setup.

6.1.3. Join

Once we have identified cluster of schemas, we merge all schemas in a cluster together:

If we recognize that Sa and Sb are in a cluster, then we need to produce a merged schema

out of Sa and Sb. The merger is done by an algorithm similar in spirit to that of Baazizi,

Ben Lahmar, et al. (2017): we compute the smallest schema in our class that is capable of

representing the union of all the merged schemas. Based on Baazizi, Ben Lahmar, et al.

(2017), we go over the main ideas of the merge process type by type.

First, we observe that merging string, null and boolean schemas of our class L ∪ is

essentially trivial since none of them define constraints.

To represent the union of two numeric schemas in N learn, we use the schema with

the least bound. For example, if we want to merge the schema {"type":"integer",

"minimum":33} with {"type":"integer", "minimum":-42}, we should obtain

{"type":"integer", "minimum":-42}. Note that, for numeric schemas, the merger

is exactly the union of both schemas.
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Joining two array schemas requires merging the sub-schemas under "items", set

the keyword "minItems" as the least value of both schemas, and "uniqueItems" to

true if and only if both schemas have the pair "uniqueItems":true. For instance,

if we try to merge the schemas {"type":"array", "items":S1, "minItems":3} and

{"type":"array", "items":S2, "minItems":2, "uniqueItems":true}we obtain

{"type":"array", "items":merge(S1,S2), "minItems":2}, where merge(x,y) is

the result of joining schemas x and y.

Next, we deal with boolean unions. Given two unions, we compute the merge type-

wise, and then we return the union of those results. If one type is available only in one

combination, we include it entirely in the union output. For example, consider the unions

from Figure 6.4; the resulting merger is [merge(Sa
object,S

b
object), merge(Sa

integer,S
b
integer),

Sa
null, Sb

string].

To join a boolean union with a single schema, we suppose that that a single schema is

an anyOf combination of one schema. We apply the same principle to join two distinct

types, yielding an anyOf of the given schemas. For example, if we try to merge an integer

schema with a string schema, we get a boolean union between those schemas.

Merging object schemas is the backbone of this process. The idea is to compute the

intersection between the required properties of the two schemas to merge. Then, we com-

pute the merge recursively for each property that appears in both schemas, and we copy

the corresponding sub-schema if the property appears in precisely one schema. We can

see a brief example of how this is done in Figure 6.5: the top of this Figure contains two

schemas that are to be merged, and the resulting schema is in the bottom.

An important point is that we must rerun the cluster-and-join procedure, because if not

we would run with the same problems on a lower level of nesting. To illustrate a possible

case, consider the schemas Sa and Sb from Figure 6.6. On those, we already have merged

the schemas from the keys "x" and "y" in Sa, and the keys "z" and "u" in Sb.
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{

"type": "object",

"properties ": {

"a": {

"type": "integer",

"minimum ": 30

},

"b": {"type": "string"},

"c": {"type": "string"},

"d": {"type": "boolean "}

},

"required ": ["a", "c", "d"]

}

{

"type": "object",

"properties ": {

"a": {

"type": "integer",

"minimum ": 20

},

"b": {"type": "string"},

"c": {"type": "null"},

"e": {

"type": "integer",

"minimum ": 5

}

},

"required ": ["a", "b"]

}

{

"type": "object",

"properties ": {

"a": {"type": "integer", "minimum ": 20},

"b": {"type": "string"},

"c": {" anyOf": [{" type": "string"}, {"type": "null "}]},

"d": {"type": "boolean"},

"e": {"type": "integer", "minimum ": 5}

},

"required ": ["a"]

}

Figure 6.5. (Top) Schemas that we want to represent as one in L ∪. (Bot-
tom) The smallest schema in L ∪ that contains the union. For "required"
we use the intersection of the values, and for the keys under "properties"
we use the union. If a key is present in both schemas, we represent it joining
those subschemas recursively.

The merger at first glance should look like Figure 6.7 (Left). However, if we con-

sider the case where S1
merge(x,y) and S2

merge(z,u) are similar enough to be clustered together,

merging them would allow us to generate a more concise representation at the end of the

process. Figure 6.7 (Right) shows the result rerunning the clustering.
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{

"type": "object",

"properties ": {

"u": S1
u,

"v": S1
v ,

"x": S1
merge(x,y),

"y": S1
merge(x,y)

},

"required ": []

}

{

"type": "object",

"properties ": {

"u": S2
u,

"v": S2
v ,

"z": S2
merge(z,u),

"u": S2
merge(z,u)

},

"required ": []

}

Figure 6.6. Object schemas Sa and Sb to be merged. If S1
merge(x,y) and

S2
merge(z,u) are similar enough, we need to rerun the cluster-and-join pro-

cess.

{

"type": "object",

"properties ": {

"u": merge(S1
u,S

2
u),

"v": merge(S1
v ,S

2
v),

"x": S1
merge(x,y),

"y": S1
merge(x,y),

"z": S2
merge(z,u),

"u": S2
merge(z,u)

},

"required ": []

}

{

"type": "object",

"properties ": {

"u": merge(S1
u,S

2
u),

"v": merge(S1
v ,S

2
v),

"x": merge(S1
merge(x,y),S

2
merge(z,u)),

"y": merge(S1
merge(x,y),S

2
merge(z,u)),

"z": merge(S1
merge(x,y),S

2
merge(z,u)),

"u": merge(S1
merge(x,y),S

2
merge(z,u))

},

"required ": []

}

Figure 6.7. Merger schemas made out of the schemas in Figure 6.6. (Left)
The resultant schema without rerunning cluster-and-join process. (Right)
The resultant schema rerunning cluster-and-join process.

6.1.4. RegExp

Once the learning process ends, we attempt to represent the keys of the joined schemas

as a single pattern property. Since we want to generalize, we use an algorithm capable of

learning an expression from this set. Because of the use cases of JSON data, it makes sense

to use the method XSYSTEM presented in (Ilyas et al., 2017). We do include a backdoor

to avoid over-generalization: this backdoor involves computing a distance on intermediate
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results during the XSYSTEM process; if the distance is higher than a threshold τ then we

halt the process and just learn the enumeration of all examples1.

To see how this last step is done, let us use the merger schema at the right of Figure 6.7.

We already know that the schemas associated to the keys "u" and "v" are the same because

they were merged. The same applies for the schemas under "x", "y", "z", and "u". Then,

we try to learn a regular expression for those sets of keys, and use it as key in a pattern

property with the merger schema as value, as it is possible to observe in Figure 6.8

{

"type": "object",

"properties ": {},

"patternProperties ": {

regex(u, v): merge(S1
v ,S

2
v),

regex(x, y, z, u): merge(S1
merge(x,y),S

2
merge(z,u))

}

"required ": []

}

Figure 6.8. Merger schema from (Right) Figure 6.7, using pattern proper-
ties as a mean to make a compact representation. The function regex(w)
computes a regular expression from the set w.

To be able to use this procedure recursively, we need to preserve the properties of the

class L ∪ we defined. That is why we perform this stage only once all the learning process

has finished.

6.1.5. Using the heuristic in the general algorithm

Using the before mentioned improvements requires to add the heuristic routines to the

end of the algorithm that processes objects (Algorithm 1). Thus, the Algorithm 4 (which

implements these changes) should be used in place of Algorithm 1 when using cluesting-

and-join enhancement.

1Parameters for XSYSTEM: τ: 0.8, capture threshold: 1, p-value: 0.05, branching threshold: 0.5.
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Algorithm 4: Algorithm to learn object schemas in L ∪, using the clustering-
and-join improvement. Learn refers to the general learning algorithm (Algo-
rithm 3).

Data: A set D of object JSON documents
Result: A object schema in L ∪ using clustering-and-join improvement

properties← map(), schemas← map();
required← [key | ∀d ∈ D d.key exists];

foreach document d in D do
foreach key, value in d do

properties[key].add(value);

foreach key, documents in properties do
schemas[key] = Learn(documents)

distances← MatrixDistance(schemas);
clusters← MakeClusters(schemas, distances);

foreach cluster in clusters do
schema cluster = cluster.schemas.first;
foreach schema in cluster.schemas do

schema cluster = Merge(schema cluster, schema);

foreach key in cluster.keys do
schemas[key] = schema cluster;

return {
"type":"object", "properties": schemas,
"required": required, "additionalProperties":false
};

Also, to produce the compact representation using pattern properties we need a new

point of entry to ensure that the regex learning algorithm is applied only after all the learn-

ing process. For this, we create a new routine that first calls the original learning algorithm

(Algorithm 3), and then, calls a procedure that traverses all the structure searching for clus-

tered schemas and putting them together in a pattern property. Algorithm 5 roughly shows

the new main function.
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Algorithm 5: Main function of the learning algorithm when using clustering-
and-join improvement. Learn refers to the Algorithm 3.

Data: A set D of JSON documents
Result: An schema using cluesting-and-join approach

schema← Learn(D);
schema← TraverseAndCreatePatternProperties(schema);

return schema;

6.2. Experiments

Our first task is to gauge the effectiveness of our heuristic-based improvement by at-

tempting to learn the schema for the Wikidata database (www.wikidata.org), the central

data storage for Wikimedia and one of the most important use cases of JSON databases

with a size of over 400 GB. There is no current official JSON Schema for Wikidata, and

learning its schema gives us an interesting use case for our cluster-and-join approach be-

cause we need to be able to generalise over keys itself. We do not provide a full description

of the database, but rather concentrate on what is important for establishing our use case.

We defer interested readers to Vrandečić and Krötzsch (2014). The idea of Wikidata is

to store data in form of two different entities: items and properties. Properties link items

together, and they have their own identifier in the database; all of them are of the form

P[0-9]+. For example, P6 is the “head of goverment” property, and P123 is “publisher”.

The important thing for us is that item entities have a section where all properties link-

ing this item with others are listed as keys, followed with information about the nature of

the property (so that in the document for Donald Trump we find a key:value pair whose

key is "P6", the information here would be for example the year a president came to of-

fice). Now, if we are to learn a schema such as Wikidata’s, it is important that we realise

that documents following "P6" are under the same schema that documents following, say,

"P123", so that we can include a statement of the form "^P[0-9]+$":"{S}".
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To learn the schema of wikidata, we obtain a random sample of 0.1% of the enti-

ties in the dataset, and feed them to the learning process. Impressively, the recently pre-

sented cluster-and-join approach with pattern properties produces a more concise—yet

expressive—schema for Wikidata entities, and in particular manages to capture an expres-

sion that succesfully deal with the issue described above (see Figure 6.9).

"claims ": {

"type": "object",

"patternProperties ": {

"^(P6|P[1 -4]\\d{3}|P[1 -9]\\d{2}|P\\d{2})$": {

"type": "array",

"items ": { ... },

"minItems ": 1

}

},

"required ": [],

"additionalProperties ": false

}

Figure 6.9. Claims subschema for Wikidata entities. It uses only pattern
properties since all the appearing properties had a similar schema, and thus,
were clustered together. Using the algorithm from Section 4.2, the gener-
ated schema had 2001 properties with redundant subschemas.

As a proof of concept, we also ran our cluster-and-join approach to learn the schemas

for OpenWeather, Github and Twitter presented in Chapter 5. Here we observed that both

algorithms generate schemas that are almost equivalent, but the cluster-and-join approach

grouped equivalent subschemas, therefore making the representation more compact. For

OpenWeather and Twitter datasets, the created schemas were not exactly equivalent be-

cause sometimes the regular expressions in "patternProperties" accepted more words

than the ones we provided. In Table 6.1 we compare the size of the schemas using both

algorithms.
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Table 6.1. Comparison between size of schemas (characters, without
whitespaces) using both the method presented in Section 4.2 (†) and
Cluster-and-Join (♦).

Dataset Method 1† Method 2♦ % var

GitHub 1627 1459 -10.3
OpenWeather 2341 2139 -8.6
Twitter 54485 49164 -9.8
Wikidata 4400078 13390 -99.7
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7. CONCLUDING REMARKS

We performed an analysis of JSON Schema learnability. We first introduced the iden-

tifiability in the limit from positive samples framework, according to previous work with

JSON documents and other similar formats like XML.

Regarding learnability of JSON schema, it is immediate to prove that the full class is

not identifiable in the limit. That is why this work concentrated on identifying fragments

of the specification and check their learnability under Gold’s framework. We studied frag-

ments grouped by type (e.g., numbers, strings, objects, arrays, among others), presenting

both positive and negative theoretical results.

For numeric data, we studied intervals depending on their bounds. In general, we

discovered that one could not expect to learn intervals with a different number of bounds.

For example, it is impossible to mix finite intervals with infinite ones. Similarly, we cannot

mix unbounded intervals with intervals which have either an infimum or supremum.

About strings, we immediately stated that we could not learn the full class of string

schemas due to the presence of regular expressions. That is why we focused on two

learnable classes, one for infinite sets of strings, and other for finite ones; where the latter

class could include regular expressions since they defined finite languages.

Next, with objects, we introduced a level-to-level procedure to reach desirable results.

That means that each property value in the object has to be valid against precisely one

schema, which could be of any identifiable type. We also argued why it is necessary to

close the schemas by not including additional properties nor pattern properties. With those

restrictions, we achieved a learnable class for objects with the remaining keywords.

Arrays were particularly interesting due to their similarity with objects, in the sense of

storing more nested data, and with strings, in the sense of length limitations. In this case,

we managed to create two learnable classes with almost all the relevant keywords, one for
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length-bounded arrays and other for arrays of arbitrary size. Each class is identifiable in

the limit by separate, but the union of them is not.

With boolean combinations, we chose a safe approach. Arbitrary unions of different

schemas can potentially lead to unlearnability, and then each possible combination should

be studied thoughtfully. Instead of doing so, we provided a positive result with the union of

distinct types. We also highlighted that we could choose a class closed under intersection,

and then, add intersections at no cost.

With theoretical results, we dived in one of few schema repositories in order to under-

stand how are schemas used. The most remarkable findings are that arrays are supposed

to have elements of the same type, objects do not define separate bounds for the number

of properties, and practically nobody uses multiple constraints for numbers. Our conclu-

sions helped to devise a learnable JSON Schema class useful in real-world situations and

a simple algorithm to learn it under the proposed framework.

We showed how the algorithm works with three real samples. They confirmed that,

in general, assuming level-by-level structure and uniformity in arrays is safe. In practical

terms, the results proved to be reasonable. Nevertheless, there is room for improvement.

For instance, we noted that in the same schemas there are repeated patterns; therefore, it

would be interesting to identify them as the same subschema. Also, the generated schemas

are verbose, and a method to generate a more compact representation is needed.

Finally, we addressed the verbosity of the output using a clustering-and-join approach

inside object schemas, representing similar schemas like one. We are satisfied with the

results that this little improvement can achieve. Moreover, we think that we are close to

being ready to deploy this method and start working online to increase schema metadata.
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7.1. Future work

As we said earlier, the algorithm proved to be useful in the tests we ran, but there

was room for improvement. In particular, using JSON Schema for document APIs has the

shortcoming that we do not specify the relation between the input and the output. Thus,

if we query Twitter API with a user, then this is the same user that will be shown in the

JSON output of the API. There are some proposals to address this issue, this is also part

of the OpenAPI desiderata, and there is even an extension of JSON Schema called JSON

Hyper-Schema. It remains to see how these specifications can be learned from examples,

and whether the approach we have presented generalizes for JSON Hyper-Schema.

There is also room for improvement regarding making schemas more compact. For

instance, we did not examine similar sub-schemas across all the levels of the schema, nor

moved them to a "definitions" section to reference those with JSON Pointer.

Another potential future contribution is to create a framework to benchmark learner

algorithms from positive examples, concerning efficiency in time, space, and the number

of needed examples to give a good result.

We also should explore more algorithms out of the Gold’s framework. The framework

is intended to put a starting point and to generate an idea of what we want to learn, but if

we are going to learn broader classes, we need to introduce PAC (probably approximately

correct learning) algorithms as we briefly did in Chapter 6.

Finally, we think it is desirable to study more in deep closure properties for JSON

Schema classes. For example, it would be interesting to see a class closed under comple-

ment, union and intersection.
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A. PROOFS

A.1. Proof of Proposition 3.2

Algorithm 6 has the procedure to learn Nmin-max and it is straightforward to check that

this algorithm satisfies the desired properties. The other three classes N—, Nmin, Nmax

can be learned with similar algorithms.

Algorithm 6: Algorithm to learn Nmin-max schemas
Data: A set D of number JSON documents
Result: A schema in Nmin-max

minValue, maxValue← ∞,−∞;
multipleOf← gcd{x ∈ D, x 6= 0});
foreach e in the set D do

minValue←min(minValue,e);
maxValue←max(maxValue,e);

return {
"type":"number", "multipleOf": multipleOf
"minimum": minValue, "maximum": maxValue
};

To show that (Nmin∪Nmax) is learnable in the limit, we design an algorithm that com-

plies with Gold’s framework to detect that class of schemas. To do this, we are going to

assume that the value of "multipleOf" is correctly detected from the provided examples.

Let us say that this value is k. The core of this proof is making an injective mapping from

Nmin∪Nmax schemas to two elements that should appear in their respective characteristic

sets. We introduced this mapping in a sketch, but we rewrite it here for completeness.

f (S) =

 fmin(S) S ∈Nmin

fmax(S) S ∈Nmax
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fmin(S) =

bound(S),k× (2×bound(S)+1) bound(S)≥ 0

bound(S),−k× (2×bound(S)) bound(S)< 0

fmax(S) =

bound(S),−k× (2×bound(S)+1) bound(S)≥ 0

bound(S),k× (2×bound(S)) bound(S)< 0

Every schema accepts the pair this mapping provides for it. For instance, if the schema

has a lower bound, the generated pair includes the bound itself and a higher value. If the

schema has an upper bound, the generated pair also includes the bound itself, but instead,

it includes a lower value. Indeed, let us remember that it is possible to assume w.l.o.g that

the bound is multiple of k. Assuming this, the gcd of the generated numbers is k. Hence,

they are sufficient as a characteristic set.

In order to create an algorithm that takes advantage of this mapping, we need to create

the inverse relationship between a pair of numbers and its associated schema:

f−1(a,b) =



S ∈Nmin, bound(S) = a b = k× (2×a+1)

S ∈Nmin, bound(S) = a b =−k× (2×a)

S ∈Nmax, bound(S) = a b =−k× (2×a+1)

S ∈Nmax, bound(S) = a b = k× (2×a)

By construction is clear that, for each interval, exists a set of two elements which

identifies it. Now, we show that it is possible to identify the interval given any superset of

the characteristic pair of elements. Without loss of generality, let k be 1. Assume that S is

the target interval, DS is its characteristic set, and the sample is D′S such that DS ⊆D′S ⊂ S.

Let a be the minimum element in D′S and b the maximum. It is guaranteed that one of

them is the bound of the interval.
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(i) If a is the bound, then there exists an element c ∈ D′S such that f−1(a,c) is

defined. That is, c = 2×a+1 if a≥ 0, or c =−2×a if a < 0.

(ii) If b is the bound, then there exists an element c′ ∈ D′S such that f−1(b,c′) is

defined. That is, c′ = 2×b if b < 0, or c′ =−2×b+1 if b > 0.

One cannot hope to identify both situations. Consider these cases by contradiction:

(i) a ≥ 0: then, b ≥ 0. So, there exists c = 2× a+ 1 and c′ = −2× b+ 1. Since

a≤ c′, then this situation is impossible.

(ii) b < 0: then, a < 0. So, there exists c =−2×a and c′ = 2×b. Since b≥ c, then

this situation is impossible.

(iii) a < 0 but b≥ 0. So, there exists c =−2×a and c′ =−2×b+1. The following

holds simultaneously:

c≤ b

−2×a≤ b

a≥ −b
2

a≤ c′

a≤−2×b+1

Since b≥ 0 and a 6= b, the situation is impossible.

The previous proof gave us a procedure to identify a schema from a sample. Thus, we

use the recently constructed relationship in the Algorithm 7. First, the algorithm computes

the gcd of the provided examples; it is assumed to be correct. This algorithm checks all

the possible pairs repect the extreme values in the provided examples, and if f−1 yields a

schema, it is returned.

Finally, to accept every example currently provided (without regard to conforming a

superset of a characteristic set or not), we return a Nmin schema consistent with the sample

if there is no match.
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Algorithm 7: Algorithm to learn Nmin∪Nmax schemas
Data: A set D of number JSON documents
Result: A schema in Nmin∪Nmax

k← gcd({x ∈ D, x 6= 0});
minValue←min(D);
maxValue←max(D);

foreach x in the set D do
schema← f−1(minValue,x);
if schema 6= null then

return schema;

schema← f−1(maxValue,x);
if schema 6= null then

return schema;

return {"type":"integer", "minimum": min(D)};

A.2. Proof of Proposition 3.3

It is easy to create an algorithm to learn a Smin, since we just need to keep the shortest

word and save its length. For S pattern
min-max schemas, they are trivially learnable in the limit as

the enumeration of the sample data, since these kind of schemas only define finite sets of

strings.

Assume, by contradicition, that Smin∪S pattern
min-max is identifiable in the limit. Let S be an

schema in Smin, and let DS be its characteristic set. Now, let S′ be an schema in S pattern
min-max

such that it is consistent with DS, and let DS′ be its characteristic set.

We can guarantee that S′ exists since we only need to set the minimum length and

maximum length according to DS and choose the wildcard ∗ as the pattern. Also, we can

assure that S is consistent with DS′ since the language that S′ describes is a subset of the

language that S describes.

Now, let us check what happens if the learning algorithm receives D′ = DS ∪DS′ .

The algorithm should return S since D′ is a superset of DS and S is consistent with D′.
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However, the algorithm should return S′ at the same time by similar arguments. This

situation constitutes a contradiction.

A.2.1. Proof of Proposition 3.4

Let us assume that the class O+
prop is learnable in the limit. In particular, in this class

we can find the schema that accepts every document (SJSON), since we just need to set the

value of "properties" to an empty array and "additionalProperties" to true.

Since SJSON is learnable in the limit, there is a characteristic set DSJSON
. We can

construct another schema S′ ∈O+
prop such that it is consistent with DSJSON

, for instance, the

schema that names some properties seen in the examples (with their respective compliant

subschema) and allows additional properties. Let DS′ be the characteristic set of S′.

Let us check what happens if we have DSJSON
∪DS′ as input for the algorithm. On one

side, the algorithm should give S′ as a result, since the input is superset of its character-

istic set, and consistent with that schema. On the other hand, the algorithm should yield

SJSON under the same arguments. This situation leads to a contradiction, then O+
prop is not

identifiable in the limit.

Now let us check the second part of the proposition. Let C be a class including all

the schemas from Oprop and one schema S+ ∈O+
prop. By contradicition, let us suppose the

class C is identifiable in the limit.

Let DS+ be the characteristic set of S+. One may create an schema S′ ∈ Oprop that is

consistent with DS+ , leading to the same problem shown in the previous proof.

A.3. Proof of Proposition 3.6

Let us assume by contradicition that A min∪A min−max is identifiable in the limit. Let

S be a schema of A min class, and let DS be its characteristic set. Let us construct a S′

schema in A min−max such that it is consistent with DS. To doing so, simply check the
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shortest and longest array in DS and bound S′ accordingly. Let DS′ be the characteristic set

of the constructed schema.

So, what does happen if we provide D′ = DS ∪DS′ to the learner algorithm? For one

part, the algorithm should return S since D′ is superset of DS and S is still consistent

with D′. On the other hand, D′ is superset of DS′ and S′ is consistent with D′, then the

algorithm should return S′. This constitutes a contradiction, therefore A min∪A min−max

is not identifiable in the limit.

A.4. Proof of Proposition 3.7

We provide the Algorithm 8 to learn A min-max
items schemas. With minor modifications we

can provide the Algorithm 9 to learn A min
items schemas.

Algorithm 8: Algorithm to learn A min-max
items schemas

Data: A set D of array JSON documents
Result: A schema in A min-max

items

examples by position← ArrayOfSets();
minLength← ∞, maxLength← 0 items← list(), uniqueItems← true;

foreach e in the set D do
minLength←min(minLength, Length(e));
maxLength←min(maxLength, Length(e));
uniquItems← uniqueItems ∧ UniqueElements(e);
for i = 0; i < Length(e); i← i+1 do

example← e[i];
AddToSet(examples by position[i], example);

for i = 0; i < Length(examples by position); i← i+1 do
items[i]← Learn(examples by position[i]);

return {
"type":"array", "items": items,
"minItems": minLength, "maxItems": maxLength,
"uniqueItems":uniqueItems
};
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Algorithm 9: Algorithm to learn A min
items schemas

Data: A set D of array JSON documents
Result: A schema in A min

items

examples by position← ArrayOfSets();
minLength← ∞ items← list(), uniqueItems← true;

foreach e in the set D do
minLength←min(minLength, Length(e));
uniqueItems← uniqueItems ∧ UniqueElements(e);
for i = 0; i < Length(e); i← i+1 do

example← e[i];
AddToSet(examples by position[i], example);

for i = 0; i < Length(examples by position); i← i+1 do
items[i]← Learn(examples by position[i]);

return {
"type":"array", "items": items,
"minItems": minLength, "additionalItems": items.last(),
"uniqueItems":uniqueItems
};

A priori, the characteristic set for a A min-max
items schema is a collection of arrays such that

each inner schema can be described via examples, at least one array of minimum length

and at least one with the maximum permitted. When "uniqueItems" is false, we need

only 1+max({DS | S is an inner schema}) examples, but when it is true, we might need

more examples.

Example. Consider the schema in the Figure A.1. Which is its characteristic set?

First, we have to include an empty array in order to detect the minimum length. Second,

we have to provide enough examples for each position (1, 2, 3, 4, 5 and beyond) in order

to help the algorithm to identify those subschemas. So far, our characteristic set has

four elements: the empty array and three examples that are enough to make room for the

largest characteristic set of the involved subschemas, with nearly no restrictions on how

to construct the example arrays.
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{

"type": "array",

"minItems ": 0,

"items ": [J1, J2, J3, J4],

"additionalItems ": J5,

"uniqueness ": true

}

Characteristic sets:
• DJ1 = {2}
• DJ2 = {2,3}
• DJ3 = {2,3,4}
• DJ4 = {3,4,5}
• DJ5 = {3,5}

Figure A.1. (Left) an array schema of A min
items class. (Right) characteristic

sets for the subschemas.

Things become more complicated when we deal with "uniqueness":true. Immedi-

ately, we see that is impossible to construct a single example using only elements in the

characteristic sets of the subschemas. Let us introduce β , such that J5 is consistent with

this number. Additionally, let us assume that β 6∈ {2,3,4,5}. Then, we can construct

the example [2,3,4,5,β ]. Now we have exhausted all the elements of DJ1 , so we have to

use another element consistent with J1, let δ be this additional element. Assuming that

δ 6∈ {2,3,4,5}, we can provide the examples [δ ,2,3,4,5], [δ ,3,2,4,5], [δ ,2,4,3,5] and

[δ ,2,4,5,3]. As observed, we made strong assumptions on J1 and J5 in order to make

a small characteristic set for the schema in Figure A.1, but the impossibility of fulfilling

those assumptions could lead to a sizeable characteristic set.

We can follow a similar reasoning to provide a characteristic set for A min
items schemas.
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B. EXTRA RESULTS

B.1. Keeping track of max/min values is mandatory

PROPOSITION.

• The characteristic set of any Nmin schema should include the smallest value.

• The characteristic set of any Nmax schema should include the greatest value.

PROOF. We will prove the first part of the proposition since the second is entirely

analogous.

Let Sn be a schema with "minimum":n and "multipleOf": 1. Also, let Sn+1 be a

schema with "maximum":n and "multipleOf": 1. Let DSn and DSn+1 be their respec-

tive characteristic sets.

The first fact is that DSn should not be consistent with Sn+1. If it were, the learning

algorithm with input D = DSn ∪DSn+1 should have to return Sn, since D is superset of DSn

and subset of Sn; however, the algorithm should have to return Sn+1, since D is superset of

DSn+1 and subset of Sn+1.

So, one might wonder how to avoid that situation. The number n is the only in Sn that

is not in Sn+1, and hence, n should be in DSn in order to avoid the previously presented

situation.

For simplicity reasons, in this proof we deliberately avoided working with "multipleOf".

Let us suppose that "multipleOf" is k, then our proof have to compare Sn and Sn+k,

where n is multiple of k. This is so because we realized that it is not necessary to work

with cases where the minimum is not multiple of the value presented in "multipleOf",

given that the smallest element is the first that is multiple of that number and greater than

the minimum bound. �
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C. SOME OF THE EXTRACTED SCHEMAS

C.1. OpenWeather schema extracted in Section 5.1

1 {
2 "additionalProperties": false,
3 "properties": {
4 "city": {
5 "additionalProperties": false,
6 "properties": {
7 "coord": {
8 "additionalProperties": false,
9 "properties": {

10 "lat": {
11 "minimum": -36.906,
12 "type": "number"
13 },
14 "lon": {
15 "minimum": -156.9223,
16 "type": "number"
17 }
18 },
19 "required": [ "lat" , "lon" ],
20 "type": "object"
21 },
22 "country": {
23 "type": "string"
24 },
25 "id": {
26 "minimum": 207570,
27 "type": "integer"
28 },
29 "name": {
30 "type": "string"
31 }
32 },
33 "required": [ "coord" , "country" , "id" , "name" ],
34 "type": "object"
35 },
36 "cnt": {
37 "minimum": 38,
38 "type": "integer"
39 },
40 "cod": {
41 "type": "string"
42 },
43 "list": {
44 "items": {
45 "additionalProperties": false,
46 "properties": {
47 "clouds": {
48 "additionalProperties": false,
49 "properties": {
50 "all": {
51 "minimum": 0,
52 "type": "integer"
53 }
54 },
55 "required": [ "all" ],
56 "type": "object"
57 },
58 "dt": {
59 "minimum": 1540188000,
60 "type": "integer"
61 },
62 "dt_txt": {
63 "type": "string"
64 },
65 "main": {
66 "additionalProperties": false,
67 "properties": {
68 "grnd_level": {
69 "minimum": 544.55,
70 "type": "number"
71 },
72 "humidity": {
73 "minimum": 23,
74 "type": "integer"
75 },
76 "pressure": {
77 "minimum": 544.55,
78 "type": "number"
79 },
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80 "sea_level": {
81 "minimum": 990.86,
82 "type": "number"
83 },
84 "temp": {
85 "minimum": 249.085,
86 "type": "number"
87 },
88 "temp_kf": {
89 "minimum": -4.13,
90 "type": "number"
91 },
92 "temp_max": {
93 "minimum": 249.085,
94 "type": "number"
95 },
96 "temp_min": {
97 "minimum": 249.085,
98 "type": "number"
99 }

100 },
101 "required": [
102 "grnd_level" ,
103 "humidity" ,
104 "pressure" ,
105 "sea_level" ,
106 "temp" ,
107 "temp_kf" ,
108 "temp_max" ,
109 "temp_min"
110 ],
111 "type": "object"
112 },
113 "rain": {
114 "additionalProperties": false,
115 "properties": {
116 "3h": {
117 "minimum": 0.002,
118 "type": "number"
119 }
120 },
121 "required": [],
122 "type": "object"
123 },
124 "snow": {
125 "additionalProperties": false,
126 "properties": {
127 "3h": {
128 "minimum": 0.0005,
129 "type": "number"
130 }
131 },
132 "required": [],
133 "type": "object"
134 },
135 "sys": {
136 "additionalProperties": false,
137 "properties": {
138 "pod": {
139 "type": "string"
140 }
141 },
142 "required": [ "pod" ],
143 "type": "object"
144 },
145 "weather": {
146 "items": {
147 "additionalProperties": false,
148 "properties": {
149 "description": {
150 "type": "string"
151 },
152 "icon": {
153 "type": "string"
154 },
155 "id": {
156 "minimum": 500,
157 "type": "integer"
158 },
159 "main": {
160 "type": "string"
161 }
162 },
163 "required": [ "description" , "icon" , "id" , "main" ],
164 "type": "object"
165 },
166 "minItems": 1,
167 "type": "array" ,
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168 "uniqueItems": true
169 },
170 "wind": {
171 "additionalProperties": false,
172 "properties": {
173 "deg": {
174 "minimum": 0.000274658,
175 "type": "number"
176 },
177 "speed": {
178 "minimum": 0,
179 "type": "number"
180 }
181 },
182 "required": [ "deg" , "speed" ],
183 "type": "object"
184 }
185 },
186 "required": [
187 "clouds" ,
188 "dt" ,
189 "dt_txt" ,
190 "main" ,
191 "sys" ,
192 "weather" ,
193 "wind"
194 ],
195 "type": "object"
196 },
197 "minItems": 38,
198 "type": "array"
199 },
200 "message": {
201 "minimum": 0.0018,
202 "type": "number"
203 }
204 },
205 "required": [ "city" , "cnt" , "cod" , "list" , "message" ],
206 "type": "object"
207 }
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C.2. OpenWeather schema extracted in Section 6.2

1 {
2 "additionalProperties": false,
3 "properties": {
4 "city": {
5 "additionalProperties": false,
6 "properties": {
7 "coord": {
8 "additionalProperties": false,
9 "properties": {

10 "lat": {
11 "minimum": -36.906,
12 "type": "number"
13 },
14 "lon": {
15 "minimum": -156.9223,
16 "type": "number"
17 }
18 },
19 "required": [ "lat" , "lon" ],
20 "type": "object"
21 },
22 "country": {
23 "type": "string"
24 },
25 "id": {
26 "minimum": 207570,
27 "type": "integer"
28 },
29 "name": {
30 "type": "string"
31 }
32 },
33 "required": [ "coord" , "country" , "id" , "name" ],
34 "type": "object"
35 },
36 "cnt": {
37 "minimum": 38,
38 "type": "integer"
39 },
40 "cod": {
41 "type": "string"
42 },
43 "list": {
44 "items": {
45 "additionalProperties": false,
46 "properties": {
47 "clouds": {
48 "additionalProperties": false,
49 "properties": {
50 "all": {
51 "minimum": 0,
52 "type": "integer"
53 }
54 },
55 "required": [ "all" ],
56 "type": "object"
57 },
58 "dt": {
59 "minimum": 1540188000,
60 "type": "integer"
61 },
62 "dt_txt": {
63 "type": "string"
64 },
65 "main": {
66 "additionalProperties": false,
67 "patternProperties": {
68 "^(temp|temp_kf|temp_m[ai][nx]|pressure|sea_level|grnd_level)$": {
69 "minimum": -4.13,
70 "type": "number"
71 }
72 },
73 "properties": {
74 "humidity": {
75 "minimum": 23,
76 "type": "integer"
77 }
78 },
79 "required": [
80 "grnd_level" ,
81 "humidity" ,
82 "pressure" ,
83 "sea_level" ,
84 "temp" ,
85 "temp_kf" ,
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86 "temp_max" ,
87 "temp_min"
88 ],
89 "type": "object"
90 },
91 "rain": {
92 "additionalProperties": false,
93 "properties": {
94 "3h": {
95 "minimum": 0.002,
96 "type": "number"
97 }
98 },
99 "required": [],

100 "type": "object"
101 },
102 "snow": {
103 "additionalProperties": false,
104 "properties": {
105 "3h": {
106 "minimum": 0.0005,
107 "type": "number"
108 }
109 },
110 "required": [],
111 "type": "object"
112 },
113 "sys": {
114 "additionalProperties": false,
115 "properties": {
116 "pod": {
117 "type": "string"
118 }
119 },
120 "required": [ "pod" ],
121 "type": "object"
122 },
123 "weather": {
124 "items": {
125 "additionalProperties": false,
126 "properties": {
127 "description": {
128 "type": "string"
129 },
130 "icon": {
131 "type": "string"
132 },
133 "id": {
134 "minimum": 500,
135 "type": "integer"
136 },
137 "main": {
138 "type": "string"
139 }
140 },
141 "required": [ "description" , "icon" , "id" , "main" ],
142 "type": "object"
143 },
144 "minItems": 1,
145 "type": "array" ,
146 "uniqueItems": true
147 },
148 "wind": {
149 "additionalProperties": false,
150 "properties": {
151 "deg": {
152 "minimum": 0.000274658,
153 "type": "number"
154 },
155 "speed": {
156 "minimum": 0,
157 "type": "number"
158 }
159 },
160 "required": [ "deg" , "speed" ],
161 "type": "object"
162 }
163 },
164 "required": [
165 "clouds" ,
166 "dt" ,
167 "dt_txt" ,
168 "main" ,
169 "sys" ,
170 "weather" ,
171 "wind"
172 ],
173 "type": "object"
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174 },
175 "minItems": 38,
176 "type": "array"
177 },
178 "message": {
179 "minimum": 0.0018,
180 "type": "number"
181 }
182 },
183 "required": [ "city" , "cnt" , "cod" , "list" , "message" ],
184 "type": "object"
185 }
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C.3. Github schema extracted in Section 5.2

1 {
2 "anyOf": [
3 {
4 "items": {
5 "additionalProperties": false,
6 "properties": {
7 "_links": {
8 "additionalProperties": false,
9 "properties": {

10 "git": {
11 "anyOf": [ { "type": "string" }, { "type": null } ]
12 },
13 "html": {
14 "anyOf": [ { "type": "string" }, { "type": null } ]
15 },
16 "self": {
17 "type": "string"
18 }
19 },
20 "required": [ "git" , "html" , "self" ],
21 "type": "object"
22 },
23 "download_url": {
24 "anyOf": [ { "type": "string" }, { "type": null } ]
25 },
26 "git_url": {
27 "anyOf": [ { "type": "string" }, { "type": null } ]
28 },
29 "html_url": {
30 "anyOf": [ { "type": "string" }, { "type": null } ]
31 },
32 "name": {
33 "type": "string"
34 },
35 "path": {
36 "type": "string"
37 },
38 "sha": {
39 "type": "string"
40 },
41 "size": {
42 "minimum": 0,
43 "type": "integer"
44 },
45 "type": {
46 "type": "string"
47 },
48 "url": {
49 "type": "string"
50 }
51 },
52 "required": [
53 "_links" ,
54 "download_url" ,
55 "git_url" ,
56 "html_url" ,
57 "name" ,
58 "path" ,
59 "sha" ,
60 "size" ,
61 "type" ,
62 "url"
63 ],
64 "type": "object"
65 },
66 "minItems": 1,
67 "type": "array"
68 },
69 {
70 "additionalProperties": false,
71 "properties": {
72 "_links": {
73 "additionalProperties": false,
74 "properties": {
75 "git": {
76 "anyOf": [ { "type": "string" }, { "type": null } ]
77 },
78 "html": {
79 "anyOf": [ { "type": "string" }, { "type": null } ]
80 },
81 "self": {
82 "type": "string"
83 }
84 },
85 "required": [ "git" , "html" , "self" ],
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86 "type": "object"
87 },
88 "content": {
89 "type": "string"
90 },
91 "download_url": {
92 "anyOf": [ { "type": "string" }, { "type": null } ]
93 },
94 "encoding": {
95 "type": "string"
96 },
97 "git_url": {
98 "anyOf": [ { "type": "string" }, { "type": null } ]
99 },

100 "html_url": {
101 "anyOf": [ { "type": "string" }, { "type": null } ]
102 },
103 "name": {
104 "type": "string"
105 },
106 "path": {
107 "type": "string"
108 },
109 "sha": {
110 "type": "string"
111 },
112 "size": {
113 "minimum": 0,
114 "type": "integer"
115 },
116 "submodule_git_url": {
117 "type": null
118 },
119 "target": {
120 "type": "string"
121 },
122 "type": {
123 "type": "string"
124 },
125 "url": {
126 "type": "string"
127 }
128 },
129 "required": [
130 "_links" ,
131 "download_url" ,
132 "git_url" ,
133 "html_url" ,
134 "name" ,
135 "path" ,
136 "sha" ,
137 "size" ,
138 "type" ,
139 "url"
140 ],
141 "type": "object"
142 }
143 ]
144 }
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C.4. Github schema extracted in Section 6.2

1 {
2 "anyOf": [
3 {
4 "items": {
5 "additionalProperties": false,
6 "patternProperties": {
7 "^(url|sha|path|name|type)$": {
8 "type": "string"
9 }

10 },
11 "properties": {
12 "_links": {
13 "additionalProperties": false,
14 "properties": {
15 "git": {
16 "anyOf": [ { "type": "string" }, { "type": "null" } ]
17 },
18 "html": {
19 "anyOf": [ { "type": "string" }, { "type": "null" } ]
20 },
21 "self": {
22 "type": "string"
23 }
24 },
25 "required": [ "git" , "html" , "self" ],
26 "type": "object"
27 },
28 "download_url": {
29 "anyOf": [ { "type": "string" }, { "type": "null" } ]
30 },
31 "git_url": {
32 "anyOf": [ { "type": "string" }, { "type": "null" } ]
33 },
34 "html_url": {
35 "anyOf": [ { "type": "string" }, { "type": "null" } ]
36 },
37 "size": {
38 "minimum": 0,
39 "type": "integer"
40 }
41 },
42 "required": [
43 "_links" ,
44 "download_url" ,
45 "git_url" ,
46 "html_url" ,
47 "name" ,
48 "path" ,
49 "sha" ,
50 "size" ,
51 "type" ,
52 "url"
53 ],
54 "type": "object"
55 },
56 "minItems": 1,
57 "type": "array"
58 },
59 {
60 "additionalProperties": false,
61 "patternProperties": {
62 "^(sha|url|type|name|path|target|content|encoding)$": {
63 "type": "string"
64 }
65 },
66 "properties": {
67 "_links": {
68 "additionalProperties": false,
69 "properties": {
70 "git": {
71 "anyOf": [ { "type": "string" }, { "type": "null" } ]
72 },
73 "html": {
74 "anyOf": [ { "type": "string" }, { "type": "null" } ]
75 },
76 "self": {
77 "type": "string"
78 }
79 },
80 "required": [ "git" , "html" , "self" ],
81 "type": "object"
82 },
83 "download_url": {
84 "anyOf": [ { "type": "string" }, { "type": "null" } ]
85 },
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86 "git_url": {
87 "anyOf": [ { "type": "string" }, { "type": "null" } ]
88 },
89 "html_url": {
90 "anyOf": [ { "type": "string" }, { "type": "null" } ]
91 },
92 "size": {
93 "minimum": 0,
94 "type": "integer"
95 },
96 "submodule_git_url": {
97 "type": "null"
98 }
99 },

100 "required": [
101 "_links" ,
102 "download_url" ,
103 "git_url" ,
104 "html_url" ,
105 "name" ,
106 "path" ,
107 "sha" ,
108 "size" ,
109 "type" ,
110 "url"
111 ],
112 "type": "object"
113 }
114 ]
115 }
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C.5. Wikidata schema extracted in Section 6.2

1 {
2 "additionalProperties": false,
3 "properties": {
4 "aliases": {
5 "additionalProperties": false,
6 "patternProperties": {
7 "^(aa|ab|ace|ady|ady-cyrl|aeb|aeb-arab|af|ak|aln|am|an|ang|anp|ar|arc|arn|arq|ary|...": {
8 "items": {
9 "properties": {

10 "language": {
11 "type": "string"
12 },
13 "value": {
14 "type": "string"
15 }
16 },
17 "required": [ "language" , "value" ],
18 "type": "object"
19 },
20 "minItems": 1,
21 "type": "array"
22 }
23 },
24 "properties": {},
25 "required": [],
26 "type": "object"
27 },
28 "claims": {
29 "additionalProperties": false,
30 "patternProperties": {
31 "^(P6|P[1-4]\\d{3}|P[1-9]\\d{2}|P\\d{2})$": {
32 "items": {
33 "properties": {
34 "id": {
35 "type": "string"
36 },
37 "mainsnak": {
38 "properties": {
39 "datatype": {
40 "type": "string"
41 },
42 "datavalue": {
43 "properties": {
44 "type": {
45 "type": "string"
46 },
47 "value": {
48 "anyOf": [
49 {
50 "type": "string"
51 },
52 {
53 "patternProperties": {
54 "^(amount|calendarmodel|entity-type|globe|id|language|lowerBound c

|text|time|unit|upperBound)$":
{

↪→
↪→

55 "type": "string"
56 }
57 },
58 "properties": {
59 "after": {
60 "minimum": 0,
61 "type": "integer"
62 },
63 "altitude": {
64 "type": "null"
65 },
66 "before": {
67 "minimum": 0,
68 "type": "integer"
69 },
70 "latitude": {
71 "minimum": -85.2,
72 "type": "number"
73 },
74 "longitude": {
75 "minimum": -179.08568,
76 "type": "number"
77 },
78 "numeric-id": {
79 "minimum": 0,
80 "type": "integer"
81 },
82 "precision": {
83 "anyOf": [
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84 {
85 "minimum": 0,
86 "type": "integer"
87 },
88 {
89 "minimum": 0,
90 "type": "number"
91 },
92 {
93 "type": "null"
94 }
95 ]
96 },
97 "timezone": {
98 "minimum": 0,
99 "type": "integer"

100 }
101 },
102 "required": [],
103 "type": "object"
104 }
105 ]
106 }
107 },
108 "required": [ "type" , "value" ],
109 "type": "object"
110 },
111 "property": {
112 "type": "string"
113 },
114 "snaktype": {
115 "type": "string"
116 }
117 },
118 "required": [ "datatype" , "property" , "snaktype" ],
119 "type": "object"
120 },
121 "qualifiers": {
122 "patternProperties": {
123 "^(P[1-4][0-9]\\d{2}|P[1-9]\\d{2}|P\\d{2})$": {
124 "items": {
125 "properties": {
126 "datatype": {
127 "type": "string"
128 },
129 "datavalue": {
130 "properties": {
131 "type": {
132 "type": "string"
133 },
134 "value": {
135 "anyOf": [
136 {
137 "patternProperties": {
138 "^([lu][o-p][pw]erBound|[t-u][ein][imx][et]|amount c

|calendarmodel|entity\\-type|globe|id|language)$":
{

↪→
↪→

139 "type": "string"
140 },
141 "^(after|before|numeric\\-id|precision|timezone)$": {
142 "anyOf": [
143 {
144 "minimum": 2.7777777777778e-8,
145 "type": "number"
146 },
147 {
148 "minimum": 0,
149 "type": "integer"
150 }
151 ]
152 }
153 },
154 "properties": {
155 "altitude": {
156 "type": "null"
157 },
158 "latitude": {
159 "minimum": -34.584161111111,
160 "type": "number"
161 },
162 "longitude": {
163 "minimum": -118.847422,
164 "type": "number"
165 }
166 },
167 "required": [],
168 "type": "object"
169 },
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170 {
171 "type": "string"
172 }
173 ]
174 }
175 },
176 "required": [ "type" , "value" ],
177 "type": "object"
178 },
179 "hash": {
180 "type": "string"
181 },
182 "property": {
183 "type": "string"
184 },
185 "snaktype": {
186 "type": "string"
187 }
188 },
189 "required": [
190 "datatype" ,
191 "hash" ,
192 "property" ,
193 "snaktype"
194 ],
195 "type": "object"
196 },
197 "minItems": 1,
198 "type": "array"
199 }
200 },
201 "properties": {},
202 "required": [],
203 "type": "object"
204 },
205 "qualifiers-order": {
206 "items": {
207 "type": "string"
208 },
209 "minItems": 1,
210 "type": "array"
211 },
212 "rank": {
213 "type": "string"
214 },
215 "references": {
216 "items": {
217 "properties": {
218 "hash": {
219 "type": "string"
220 },
221 "snaks": {
222 "patternProperties": {
223 "^(P[1-4]\\d{3}|P[1-9]\\d{2}|P\\d[018])$": {
224 "items": {
225 "properties": {
226 "datatype": {
227 "type": "string"
228 },
229 "datavalue": {
230 "properties": {
231 "type": {
232 "type": "string"
233 },
234 "value": {
235 "anyOf": [
236 {
237 "patternProperties": {
238 "^(after|before|numeric\\-id|precision|timezone)$": {
239 "anyOf": [
240 {
241 "minimum": 0.000001,
242 "type": "number"
243 },
244 {
245 "minimum": 0,
246 "type": "integer"
247 }
248 ]
249 },
250 "^(amount|calendarmodel|entity\\-type|id|language|text c

|time|unit)$":
{

↪→
↪→

251 "type": "string"
252 }
253 },
254 "properties": {
255 "altitude": {
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256 "type": "null"
257 },
258 "globe": {
259 "type": "string"
260 },
261 "latitude": {
262 "minimum": 39.760178,
263 "type": "number"
264 },
265 "longitude": {
266 "minimum": -104.987096,
267 "type": "number"
268 }
269 },
270 "required": [],
271 "type": "object"
272 },
273 {
274 "type": "string"
275 }
276 ]
277 }
278 },
279 "required": [ "type" , "value" ],
280 "type": "object"
281 },
282 "property": {
283 "type": "string"
284 },
285 "snaktype": {
286 "type": "string"
287 }
288 },
289 "required": [
290 "datatype" ,
291 "datavalue" ,
292 "property" ,
293 "snaktype"
294 ],
295 "type": "object"
296 },
297 "minItems": 1,
298 "type": "array"
299 }
300 },
301 "properties": {},
302 "required": [],
303 "type": "object"
304 },
305 "snaks-order": {
306 "items": {
307 "type": "string"
308 },
309 "minItems": 1,
310 "type": "array"
311 }
312 },
313 "required": [ "hash" , "snaks" , "snaks-order" ],
314 "type": "object"
315 },
316 "minItems": 1,
317 "type": "array"
318 },
319 "type": {
320 "type": "string"
321 }
322 },
323 "required": [ "id" , "mainsnak" , "rank" , "type" ],
324 "type": "object"
325 },
326 "minItems": 1,
327 "type": "array"
328 }
329 },
330 "properties": {},
331 "required": [],
332 "type": "object"
333 },
334 "datatype": {
335 "type": "string"
336 },
337 "descriptions": {
338 "additionalProperties": false,
339 "patternProperties": {
340 "^(ab|ace|aeb-arab|af|ak|am|an|ang|ar|arc|arz|as|ast|av|ay|az|ba|bar|bcl|be|...": {
341 "properties": {
342 "language": {
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343 "type": "string"
344 },
345 "value": {
346 "type": "string"
347 }
348 },
349 "required": [ "language" , "value" ],
350 "type": "object"
351 }
352 },
353 "properties": {},
354 "required": [],
355 "type": "object"
356 },
357 "id": {
358 "type": "string"
359 },
360 "labels": {
361 "additionalProperties": false,
362 "patternProperties": {
363 "^(aa|ace|ady|aeb-arab|aeb-latn|af|ak|aln|am|an|ang|anp|ar|arc|arn|arz|as|ast|atj|...": {
364 "properties": {
365 "language": {
366 "type": "string"
367 },
368 "value": {
369 "type": "string"
370 }
371 },
372 "required": [ "language" , "value" ],
373 "type": "object"
374 }
375 },
376 "properties": {},
377 "required": [],
378 "type": "object"
379 },
380 "sitelinks": {
381 "additionalProperties": false,
382 "patternProperties": {
383 "^(abwiki|acewiki|adywiki|afwiki|akwiki|alswiki|amwiki|angwiki|anwiki|arcwiki|...": {
384 "properties": {
385 "badges": {
386 "items": {
387 "anyOf": [
388 {
389 "minimum": -1.7976931348623157e+308,
390 "type": "number"
391 },
392 {
393 "type": "null"
394 },
395 {
396 "type": "boolean"
397 },
398 {
399 "type": "string"
400 }
401 ]
402 },
403 "minItems": 0,
404 "type": "array"
405 },
406 "site": {
407 "type": "string"
408 },
409 "title": {
410 "type": "string"
411 }
412 },
413 "required": [ "badges" , "site" , "title" ],
414 "type": "object"
415 }
416 },
417 "properties": {},
418 "required": [],
419 "type": "object"
420 },
421 "type": {
422 "type": "string"
423 }
424 },
425 "required": [ "aliases" , "claims" , "descriptions" , "id" , "labels" , "type" ],
426 "type": "object"
427 }
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