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Dedicado a mi madre Leticia y a mi

esposa Ana Marı́a



ACKNOWLEDGEMENTS

Throughout this thesis and my Ph.D. development, I have received considerable sup-

port and assistance from many people.

I would like to thank first my supervisor, Professor Daniel Esteban Hurtado Sepúlveda,
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ABSTRACT

Computational cardiac electrophysiology is increasingly being used as a powerful tool

for studying the electrical behavior of the heart, especially in pathological conditions such

as heart failure. Recent advances in the acquisition of patient-specific geometrical and

structural data have created the opportunity of applying numerical tools to investigate elec-

trical abnormalities caused by ischemic heart disease. In conjunction with experimental

and clinical trials, cardiac electrical activity simulations have provided a better understand-

ing of the electrical attributes of cardiac disorders, making meaningful contributions to the

enhancement of heart failure treatments. This progress is stimulated by the many achieve-

ments in the formulation of highly specialized electrophysiological models that have been

able to describe the complex multi-scalar nature of the myocardium accurately. Despite

this, the use of computational electrophysiology for the study of alternative therapies such

as biomaterial injections and their influence in cardiac arrhythmia is still limited. More-

over, there are uncertainties about selecting an appropriate electrophysiological model in

conjunction with complex subject-specific representations of the heart where computa-

tional demands and accuracy play an essential role in arrhythmia simulation. In this work,

we study the influence of biomaterial injection therapy on the electrical behavior of in-

farcted hearts, using a highly optimized finite element code together with high-resolution

MRI and DT-MRI data from swine. We concluded that although biomaterials may not

affect the local restitutive properties of the myocardium, they may influence ventricular

fibrillation sustainability. Finally, we compared two different electrophysiological models

using the same subject-specific geometries, deducing that ventricular fibrillation dynam-

ics can be reproduced using simplified ionic models with less demanding computational

efforts.

Keywords: Computational electrophysiolgy, Biomaterial injection therapy, Ventricular

Fibrillation, Myocardial Infarction
xi



RESUMEN

La electrofisiologı́a cardı́aca computacional está siendo usada cada vez más como

una herramienta eficaz para estudiar el comportamiento eléctrico del corazón, especial-

mente en condiciones patológicas como la falla cardı́aca. Los avances recientes en la

adquisición de datos geométricos y estructurales de corazones de pacientes especı́cificos

ha creado la oportunidad de aplicar herramientas numéricas para investigar las anormali-

dades eléctricas causadas por enfermedad cardı́aca isquémica. Junto con pruebas exper-

imentales y clı́nicas, la simulación de la actividad eléctrica en el miocardio ha estable-

cido un nuevo paradigma para entender las caracterı́sticas eléctricas de las enfermedades

cardı́acas, haciendo contribuciones significativas al mejoramiento de sus tratamientos.

Todo este progreso ha sido estimulado por la basta cantidad de logros en la formulación

de modelos eletrofisiológicos altamente especializados que han ayudado a describir de

forma precisa el complejo comportamiento eléctrico del miocardio. Sin embargo, el uso

de la electrofisiologı́a computacional para el estudio de terapias alternativas, como lo son

las inyecciones de biomateriales en casos de arritmia cardiaca, es aún limitado. Además

de esto, existen incertidumbres sobre los modelos numéricos apropiados para la simu-

lación de la propagación eléctrica en corazones de sujetos especı́ficos, donde las deman-

das computacionales y la precisión juegan un rol muy importante. En esta tesis se estudia

la influencia de la terapia de inyección de biomateriales en el comportamiento eléctrico

de corazones con infarto, usando un código de elementos finitos altamente optimizado

en combinación con datos de alta resolución de corazones porcinos tomados de resonan-

cia magnética. De este trabajo se concluye que aunque las inyecciones de biomateriales

parecen no afectar las propiedades restitutivas locales del miocardio, sı́ pueden influir en

la sostenibilidad de la fibrilación ventricular. Finalmente, en esta tesis se comparan dos

modelos electrofisiológicos diferentes usando los mismos datos de sujetos especı́ficos y se

concluye que la dinámica de la fibrilación ventricular puede reproducirse usando modelos

iónicos simplificados, disminuyendo la demanda computacional.

xii
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1. INTRODUCTION

During many millenia the heart, its function, and its diseases have played a critical

role in the history of science. According to (Katz, 2008), descriptions of heart diseases

can be already encountered in ancient Greek and Roman texts. Katz affirmed that it was

during the third century BCE when it was recognized, by Herophilus and Erasistratus,

that the heart contracts and the function of the semilunar valves were understood. After

that, as reported by (Lüderitz, 2009) , throughout the late 19th and 20th centuries, many

advances in the understanding of the heart function and its pathophysiology were accom-

plished. To some extent, this could be achieved as a result of the discovery of the cardiac

conduction system . However, according to Lüderitz, it was not after the 1960s when the

mechanics of heart muscle contraction, relaxation, and excitation-contraction were eluci-

dated. In the last decades, the uncovering of heart function mechanisms continues as a

predominant topic of study in the scientific community, principally motivated by its clin-

ical relevance. However, there are still many open questions regarding heart function,

particularly in pathological conditions such as heart failure (HF).

As reported by the American Heart Association (AHA) in 2019, cardiovascular dis-

eases are the most frequent cause of death worldwide, and they are expected to increase in

the next decades (Benjamin et al., 2019). The same report informs that in 2008, 30% of all

global deaths were due to heart diseases, stroke, and other cardiovascular diseases. Solely

in the United States (US), cardiovascular diseases have substantial personal and financial

impacts. For instance, HF cost in the US is projected to be 69.7 billion dollars by 2030,

representing approximately 244 dollars for every US adult. Benjamin et al also informed

that even though survival after diagnosis of heart disease has improved over time with bet-

ter treatments and dedicated devices, 50% of people die within five years after diagnosis.

Moreover, for some patients with severe, progressive HF, transplant is the only viable op-

tion. The development of new techniques for the diagnosis and treatment of heart diseases

is necessary to manage the severe threat represented by this illness. Therefore, a better
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understanding of heart function at both normal and pathological conditions is required.

The heart acts as a pump, delivering oxygenated blood to the organs by using a highly

synchronous cycle of contraction-relaxation process of about 1010 muscle cells. A com-

plex propagation of electrical waves controls this process. Abnormal electrical activity of

the heart can lead to severe medical conditions, and most of the heart problems either re-

sults from or cause disturbances of the electrical activity (Weiss, Garfinkel, Karagueuzian,

Chen, & Qu, 2010; Zhou, Bueno-orovio, & Rodriguez, 2018; Roberts, Yang, Behrens,

Moreno, & Clancy, 2012). These disturbances are called cardiac arrhythmias. Among

the most dangerous cardiac arrhythmias are the reentrant ventricular arrhythmias, namely

ventricular tachycardia (VT) and ventricular fibrillation (VF). In the former, cardiac con-

traction rate increases considerably and, in the latter, contraction becomes completely

disorganized, developing a chaotic electrical activation (Jalife, 2000). The link between

cardiac contraction and electrical propagation led to the development of techniques to

measure the electrical activity of the heart as a way to diagnose heart problems. For in-

stance, the electrocardiogram, or ECG, is the oldest non-invasive tool for diagnosing heart

conditions. This technique is a surface recording of the electrical potential differences that

results from the electrical activity of the heart (Oresko et al., 2010). When the electrical

activity is disturbed, the potential differences change in characteristic patterns, allowing

the recognition of abnormalities (Sundnes et al., 2007).

During the last decades, vast knowledge about the electrical activity of the heart has

been accumulated (N. A. Trayanova & Chang, 2016a). We have now many insights of how

the heart works at a multiscale level: a small scale where bioelectrochemical phenomena

regulate the processes occurring at cellular and sub-cellular level, and a large scale where

processes of electrical activation are seen at tissue and organ level (Sahli Costabal, Yao,

& Kuhl, 2018). Even so, many mechanisms are not entirely understood. The knowledge

about how the interaction of the billions of small-scale processes occurring in the cell
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membrane affects the electrical activity at tissue and organ level is minimal. Research on

computational and mathematical modeling of cardiac electrophysiology has been increas-

ingly intensified since it has shown to bee a promising technique to expand our knowledge

and predictability in the field (Sahli Costabal et al., 2019; Ferrero, Trenor, & Romero,

2014; Pathmanathan & Gray, 2018). With this tool, the electrical activity of the heart

can be investigated by using detailed and precise cellular models that describe phenom-

ena at microscopic levels in combination with homogenized macroscopic tissue and organ

models. These models can be validated later by comparing simulated results with experi-

mental in vitro and in vivo data to improve multiscale models or to redesign experiments.

Moreover, electrophysiological models are being integrated into mechanical models of

myocardial tissue deformation, hemodynamics models and in general with models of the

cardiovascular system (Franzone, Pavarino, & Scacchi, 2014; Quarteroni, Lassila, Rossi,

& Ruiz-Baier, 2017).

Simplified cardiac setups, such as tissue samples with regular geometry, are often sim-

pler and less expensive to model and simulate than real heart models (Sundnes et al.,

2007). Although several achievements have been accomplished during the last years in

the field of computational electrophysiology, there is still a large need for further model

development and validations before they can be extensively used in clinical applications

(Niederer, Lumens, & Trayanova, 2019). It is crucial to overcome several computational

and mathematical issues that are still present in the numerical modeling of cardiac elec-

trical activity. Many of these issues are related to computational efficiency: current large

scale simulations of whole-heart beats require highly specialized numerical tools in order

to reduce their intense computational cost. Moreover, parameters from clinical data are

still limited given the complex and multiscale nature of electrical propagation within the

myocardium, particularly when dealing with cardiomyopathies such as cardiac ischemia

(Gray & Pathmanathan, 2018; Barone, Fenton, & Veneziani, 2017). Closely related to

this is the need for better mathematical descriptions of the biophysical nature of electrical
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propagation within the myocardium (Clayton et al., 2011).

The vast literature about computational models in cardiac electrophysiology and the

advances in image acquisition techniques, such as magnetic resonance imaging (MRI),

has made it possible to simulate complex mechanisms leading to cardiac arrhythmoge-

nesis using highly-detailed anatomical models of the heart (N. A. Trayanova & Chang,

2016a; Witzenburg & Holmes, 2017). Through MRI-based animal and human ventricular

geometries, several computational studies have uncovered the mechanisms of electrical ex-

citation wakebreaks and the onset of cardiac arrhythmias, such as VT and VF, especially in

hearts with serious diseases such as myocardial infarction (Zhou et al., 2018; H. J. Arevalo

et al., 2016; N. A. Trayanova & Chang, 2016b; Roberts et al., 2012; Karma, 2011; Ben-

son, Ries, & Holden, 2007). This in-silico approach has been used to develop quantitative

measures for vulnerability to VT, which have been validated in clinical applications using

optical mapping techniques (Christoph et al., 2018; Walton et al., 2014). The capabili-

ties of computational models to predict the electrical behavior of hearts with infarction

has been demonstrated, particularly in the development of alternative treatments such as

cell-based myocardial repair (Yu et al., 2019). Nevertheless, the are several prospective

treatments that have no been addressed yet with computational tools. This is the case of

biomaterial-injection treatments (Choy et al., 2018; Ruvinov & Cohen, 2016; Lee et al.,

2015), a topic that is widely investigated in this thesis.

Non-linear reaction-diffusion models are usually adopted to study the propagation of

bioelectrical waves within the myocardium (D. Hurtado & Henao, 2014; Göktepe & Kuhl,

2009). Many numerical approaches have been implemented to solve this set of equa-

tions, predominantly finite difference schemes , finite volume schemes, and finite element

schemes (Dupraz, Filippi, Gizzi, Quarteroni, & Ruiz-Baier, 2015; Abbasi & Clayton,

2013; Göktepe & Kuhl, 2009; Pathmanathan, Mirams, Southern, & Whitheley, 2011).
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The implementation of these methods usually requires homogenization techniques to ad-

dress the spatial multiscale nature of the problem (Peñaranda, Cantalapiedra, Bragard, &

Echebarria, 2012). From the literature, it is known that meshes with small representative

sizes are required due to accuracy constrains. Moreover, several time-integration tech-

niques to address the different time scales are used, especially in biophysical-based math-

ematical models where several state variables are represented at the cell level (Franzone,

Deuflhard, Erdmann, Lang, & Pavarino, 2006). Explicit Euler methods and variants of

these time-integration techniques have shown to be suitable for whole-organ simulations,

where the system of equations is extensive. However, these sorts of techniques are highly

restricted by the time step bounds that arise due to the mesh size constraints. Phenomeno-

logical models have been developed to tackle this problem (F. Fenton & Karma, 1998;

Bueno-Orovio, Cherry, & Fenton, 2008; Tusscher, Hren, & Panfilov, 2007; FitzHugh,

1961). These models have the property of simulating the electrical properties accurately

at cell and tissue levels with fewer state variables compared with biophysical-based mod-

els. This is an advantage when running large scale simulations. However, they can not

be used to model the behavior of particular ionic currents that may be relevant in several

applications, such as drug induced electrophysiological imbalances (ten Tusscher & Pan-

filov, 2006).

In this thesis, we first investigate the electrical behavior and arrhythmic vulnerability of

hearts treated with alginate-based biomaterial injections employing a computational mod-

eling approach. To this end, we used data from high-resolution MRI and diffusion tensor

magnetic resonance imaging (DT-MRI) of hearts treated with biomaterials to create a com-

putational model that represents the normal and deceased biventricular cardiac anatomy

as well as the myocardial fiber orientations. In addition, using the same subject-specific

heart data, we compare phenomenological and biophysical electrophysiology models in

the prediction of VF under different scenarios, and evaluate the advantages of employing

phenomenological models to asses complex electrical behavior.



6

This thesis is structured as follows: first, we briefly describe the anatomy and phys-

iology of the heart, making emphasis in its electrical conduction system. Secondly, we

introduce the modeling aspects of cardiac electrophysiology, going from the characteriza-

tion of cellular activity to the description of electrical propagation within the myocardial

tissue. Following this, we introduce the mathematical and numerical modeling of cardiac

electrophysiology using the finite element method (FEM). In addition, we give an outlook

of subject-specific modeling of the heart, making emphasis on MRI and DT-MRI data

acquisition prospects. After this, we discuss about cardiac arrhythmia and heart failure,

making emphasis in types of cardiac arrhythmia and their mechanisms of action, as well

as incidence and current therapies for HF and its relation with cardiac arrhythmia. Later,

the application of computational electrophysiology for the study of the electrical vulnera-

bility of biomaterial-treated hearts is addressed in sect. 5. Finally, in sect. 6, we introduce

the comparative study on the effect of phenomenological and byphisical electrophysiolog-

ical models on the dispersion of repolarization and VF behavior. We close this work in

sect. 7 by highlighting the main conclusions of this study, as well as discussing future

perspectives.
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2. ANATOMY AND PHYSIOLOGY OF THE HEART

2.1. Conduction system

The mammalian heart is a muscular organ composed of four chambers: the left and

right atria and the left and right ventricles. Its function is to supply the body with oxygen

and nutrients through the blood flow by periodic contractions and relaxations. The right

atrium and ventricle act as a pump for the pulmonary circulation system, whereas the

left atrium and ventricle act as a pump for the systemic circulation. Atria and ventricles

are separated by the atrioventricular septum, which contains the tricuspid valve on the

right side and the mitral valve on the left side. The right ventricle is connected to the

pulmonary artery via the pulmonary valve, and the left ventricle is connected to the aorta

via the aortic valve (Figure 2.1). The walls of the different parts of the heart have different

thicknesses. The atria walls are thin (<2 mm), because they have to produce a pressure

difference of only 20 mmHg. The ventricles walls are thicker (right: ca. 10 mm, left: ca.

20 mm), since they generate about 30 mmHg of pressure difference in the right ventricle

and approximately 50 mmHg in the left ventricle.

For an effective pumping in this four-chambered organ, a number of processes take

place. First of all, there is a synchronous contraction of the left and right atria to deliver

blood to the ventricles. An electrical signal, called action potential, regulates this contrac-

tion. The action potential is propagated by the cardiac muscle cells (cardiomyocytes) due

to a complex intracellular and extracellular ionic kinetic interaction. Neighboring cells

are electrically coupled via the so-called gap junctions, allowing the flux of ions between

cells. The electrical connection between cells leads to virtually synchronous contraction of

the cardyomiocytes. Under normal conditions, the excitation wave starts at the sino-atrial

(SA) node, located on the right atrium. The SA node is composed of pacemaker cells,

that are electrically active and produce spontaneous action potentials without the need of

external stimuli. Heart rate is regulated via frequency changes of the SA node and the

transmission rate of the atrio-ventricular (AV) node (Alonso, Bar, & Echebarria, 2016).
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(a) (b)

Figure 2.1. Representation of the human heart.(a) Heart anatomycal sub-
division and (b) representation of the electrical conduction system. The
action potential travels from the the SA node to the AV node and ends at
the ventricles through the His bundle. This highly synchronized excitation
path allows an optimal contraction of atria and ventricles.

Atrial contraction is achieved once the electrical wave travels outward the SA node,

exciting all atrial cells. The atria and ventricles are separated by a non-conductive layer

except at the AV node, allowing a delay between atrial contraction and ventricular contrac-

tion. This delay is necessary given that the ventricles must contract after being filled with

blood supplied from the atria. The AV node reduces the propagation velocity to achieve

the required delay. From the AV node, the action potential is propagated to the common

bundle, or His bundle, the left and right bundle branches, and the Purkinje fibers, which

end on the endocardial surface of the left and right ventricular wall and septum. The action

potential propagates through the ventricles, initiating ventricular contraction and an effi-

cient pumping of blood through the bloodstream. Cardiac output is adapted to the oxygen

demands of the organism through the autonomous nervous system. Contraction force is
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regulated by adapting intracellular calcium handling and restitution properties of the tissue

(Seemann, 2005).

2.2. Architecture of the ventricular myocardium

The heart ventricles exhibit a complex three dimensional spatial organization of their

reinforcing fibers (see Figure 2.2). As it was described above, the cardyomiocites are

mostly connected end-to-end via gap junctions forming cardiac fibers with varying ori-

entation. These fibers orientation changes smoothly between the endocardium and the

epicardium. Moreover, cardiac fibers also have an aditional spatial organization that con-

sists in laminar muscle sheets, typicaly 4-6 myocytes thick, changing radially from the

epicardium to the endocardium. These sheets are separated with connective tissue and

gaps called cleavage planes. At any given point of the myocardium x it is possible to

Figure 2.2. Representation of the ventricular fiber spatial distribution and
the orthogonal principal axes related with the fibers direction. Adapted
from (Holzapfel & Ogden, 2009)

identify a triplet of orthogonal principal axes f0(x), s0(x) and n0(x), where f0(x) corre-

sponds to the direction parallel to the fiber direction, while s0(x) and n0(x) correspond to
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the tangent and orthogonal to the radial laminae, respectively, and both being transverse

to the fiber axis. See 2.2 for an schematic representation of the fibers architecture and the

orthogonal principal axes.

2.3. Action potential

The contraction process of the heart is regulated by an electrical signal called action

potential. The excitation of cardiac cells causes a rapid variation of the potential differ-

ence across the cell membrane, the so-called transmembrane potential. If the stimulus is

strong enough, the transmembrane potential rapidly goes from a negative resting value

to a value above zero (depolarization), remains around this value for a given period of

time (plateau) and then returns to the resting value (repolarization). The elapsed time be-

tween depolarization and repolarization is the so-called action potential duration (APD).

A representation of an action potential is showed in Figure 2.3.

Figure 2.3. Action potential representation using the Winslow model for
the canine heart (Winslow et al., 1999)

Maps of the activation and recovery sequences provide important information about

normal heart activity and cardiac arrhythmias that are often associated with abnormal

APDs and recovery times (Hill et al., 2016). Methods for determining the activation and

recovery times within the myocardium are essential tools in clinical and experimental ap-

plications. Widely used in the study of cardiac electrophysiology are the concepts of late
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activation time (AT90) and the late recovery time (RT90) which are markers defined as

the instant in which the transmembrane potential reaches 90% of its resting value dur-

ing an activation or recovery state. Related with these is the action potential duration

(APD90) which is defined as APD90 = RT90 − AT90. Given a set of consecutive action

potential waves, the time period between two stimuli consist of two segments, the ADP

and the diastolic interval (DI). Therefore, the late cycle length (CL90) is expressed as

CL90 = APD90 + DI90 (see Figure 2.4). For numerical applications in which a high

number of degrees of freedom are needed (i.e., whole heart simulations), the estimation of

these markers may represent a considerable part of the computational time.

Figure 2.4. APD90, DI and CL from a single cell simulation of action
potential using the ten Tusscher-Panfilov electrophysiological model (ten
Tusscher & Panfilov, 2006), with a stimulation frequency of 400 ms.

Cardiac action potentials differ significantly in different regions of the heart (see Figure

2.5), as action potentials in the atria, the ventricles and in specialized conduction myocites

exhibit different shapes and duration. Furthermore, myocytes with different AP morpholo-

gies are encountered within the endocardium, epicardium and midmyocardium (M-cells)

regions (transmural heterogeneity) and along the apex-to-base direction (apex-to-base het-

erogeneity). These heterogeneities affect the propagation of the electrical stimulus within

the heart, specially the sequence of repolarization, leading to the concept of APD disper-

sion. Transmural dispersion of the APD has been found in several animal species, with
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shorter APD in subepicardial and subendocardial cells and with the longest APD in mid-

myocardial cells. Transmural heterogeneity is related with the expression of some ionic

channels, in particular the sodium channel (INa), the slow and rapid delayer potassium

channels (IKr, IKs) , the transient net outward current channel (Ito), and the Na+/Ca2+

exchanger. In addition to spatial dispersion of APD, temporal dispersion may also occur

during beat-to-beat changes.

Figure 2.5. Action potential morphology for different regions of the heart.
Referenced from (Franzone et al., 2014)
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3. MODELING CARDIAC ELECTROPHYSIOLOGY

3.1. Cellular electrical behavior

There are a number of models for the study of cardiac activation and repolarization.

They are usually grouped into three categories:

• Phenomenological models, which are simple models that reproduce the macro-

scopic properties of cell behavior. This models are usually polynomial functions

that approximate the ionic current and state variables that drives the evolution of

the system.

• First-generation biophysical models: these models attempt to approximate the

observed cellular behavior and the underlying physiology. They describe the

most important ionic currents using a simplified formulations of the underlying

physiological details.

• Second-generation biophysical models: they offer a very detailed description of

the physiology of the cells. Based on advanced experimental techniques they

enable a high detailed small-scale representation of cell physiology.

Pure phenomenological models offer significant advantages from a computational point

of view, as they typically consider a few variables (typically less than 4) and evolution

equations. The small dimensionality of these models make them very efficient in the nu-

merical simulations of the heart. In contrast, biophysical models employ a larger number

of variables and evolution equations (in the order of tens) that are stated based on ionic

and subcellular mechanisms. This larger dimensionality implies a considerably higher

computational cost in the solution of biophysical models.

For a single cell all the charge transported by the ionic current accumulates at the

membrane producing and varying the transmembrane potential v. This is described by the

balance equation

Cm
dv

dt
= −Iion + Iapp, (3.1)
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where Iion is the sum of ionic currents and Iapp is an applied stimulus current, which is

used to trigger the action potential of the cell.

3.1.1. The cell membrane

The cell membrane is a lipid bilayer that provides a boundary separating the internal

workings of the cell from its external environment. It is selective permeable, allowing

the free transfer of some materials and restricting the transfer of others. The cell mem-

brane also contains protein-lines pores, called ion channels, that allows specific ions to

travel through them by a passive process, controlled by their concentration gradient. This

concentration gradient produce a potential difference, the transmembrane potential, that

in conjunction with the channel structure drives the ionic currents. This is a fundamental

topic in molecular biophysics and the regulation of such ionic currents is one the most

extensively studied problems. Moreover, the modulation of the transmembrane potential

is one of the most important ways in which cells control their behavior or communicate

with other cells. The primary ions that flows through the ion channels for cardiac cells are

Na+, K+, Cl−, and Ca2+

Figure 3.1. The cell membrane is a lipid bilayer composed by channel pro-
teins that are selective permeable, allowing the ions transport through the
membrane (modified from (Keener & Sneyd, 2009)).
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3.1.2. The Nernst equilibrium potential

In general, the flux across the membrane of a generic ion K with valence z is the sum

of the diffusion flux JD and the electric flux JE . The constitutive law that describes this

total flux is known as the Nernst-Planck equation, defined as

J = JD + JE = −D
(
∇c+

zF

RT
c∇u

)
. (3.2)

Here, D is the diffusion coefficient, c is the ion concentration, F is the Faraday’s constant,

R is the ideal gas constant, T is the temperature, and u is a scalar potential. For the cell

membrane it is natural to assume that the variations in potential concentration occur only

in one direction across the membrane. Then, the flow of ions can be view as the one

dimensional relation

J = −D
(
dc

dx
+
zF

RT
c
du

dx

)
. (3.3)

When the total flux J is zero then JD = −JE and

1

c

dc

dx
+
zF

RT

du

dx
= 0, (3.4)

Supossing that the cell membrane extends from x = 0 (inside) to x = L (outside) and

using subscripts i and e to denote internal and external quantities respectively. Then,

integrating equation (3.4) from x = 0 to x = L results in

ln(c)|ceci =
zF

RT
(φi − φe), (3.5)

and thus the potential difference across the membrane v = φi − φe that gives zero flux is

given by the so-called Nerst equilibrium (or reversal) potential

veq =
RT

zF
ln

(
ce
ci

)
. (3.6)

This derivation is based on the constitutive Nernst-Plack equation. However this equi-

librium potential can be also derived from thermodynamical assumptions, showing the

universal character of the Nernst potential.
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3.1.3. Current-voltage relation for the ion flux

Although we are able to derive the Nernst equilibrium potential from the Nernst-

Planck equation and even from thermodynamic considerations, there is no universal ex-

pression for the ionic current (Keener & Sneyd, 2009). For instance, an expression for

the Na+ current cannot be derived from thermodynamic principles and depends on the

particular model selected to describe the Na+ channels. However, any expression for the

passive ionic flux should at least satisfy the equilibrium equation (3.6) given zero flux. In

a simple model, the Na+ current across the cell membrane can be assumed to be a linear

function of the transmembrane potential. Thus

JNa = GNa(v − vNa) (3.7)

where vNa is the equilibrium potential of Na+ and GNa is the permeability of the mem-

brane for Na+. GNa may be constant or a function of time, membrane potential and, in

some cases, ionic concentrations.

3.1.4. Ion channel gating

As described before, ion channels that open and close in response to an electrical

stimulus are essential in the behaviour of excitable cells. The mechanisms by which these

channels open and close are very complex. Here, we focus on models that describe the

channels to be composed of several sub-units. Each sub-unit may be either open or closed.

We denote the concentration of channels in the open state and closed state as [O] and [C],

respectively. Moreover, if we assume that the total concentration of channels [O] + [C] is

constant, then the change between the open and closed state may be expressed as

C O,
α

β

where α is the rate of opening and β is the rate of closing. Generally, this rates depend on

the transmembrane potential v. In a reaction of this kind, by the law of mass action, the

rate of change from one state to another is proportional to the concentration of channels in
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one state. Then, we get
d[O]

dt
= α(v)[C]− β(v)[O]. (3.8)

Usually, this equation is divide by the total concentration [O] + [C] to give

dg

dt
= α(v)(1− g)− β(v)g, (3.9)

where g = [O]/([O]+[C]) is the proportion of open channels. g may be also viewed as the

probability that the channel is open. As most channels consist of several subunits, which

may all be either open or closed, then this equation may be also viewed as the probability

for each subunit being open.

Assuming complete independency of each subunit, the probability that a channel is

open is equal to the product of the probability for each subunit of being open (Keener &

Sneyd, 2009). Then, for a channel that consist on n equal subunits, the probability O that

the channel is open is given by

O = gn. (3.10)

From the definition we have that O, g ∈ [0, 1]. Moreover, a channel may consist in several

different subunits. In that case the behavior of each subunit is modeled using equation 3.9.

For instance, if a channel consist on two subunits with probabilities g for one subunit and

h for the other, each probability have different α and β functions. Then, the probability

that the channel is open is given by

O = gmhn. (3.11)

Once the channels dynamics is established we can compute the current through the mem-

brane as the product of maximum current, i.e., the current we would have if all the channels

were open, and the proportion of open channels. For instance, the linear model defined

before for the Na+ current may expressed as

INa = GmaxNa
O(v − veq) (3.12)



18

where O is defined as products of the form (3.10) or (3.10), veq is the equilibrium poten-

tial for the specific ion, and Gmax is the maximum conductance (i.e., conductance with

all channels opened). Apart from the channel-gating models described here, there are

other types of models which are not based on the same assumptions, i.e., subunit state

independence.

3.1.5. The Hodgkin-Huxley model

As already stated, the primary ions that flows through the ion channels in cardiac cells

are Na+, K+, Cl−, and Ca2+. A model for the total ionic current across the membrane

can be constructed by using an expression for each current of the form (3.12). A model

of this kind was first proposed in 1952 by Hodgkin and Huxley (HH). They provided a

the description of the action potential for the squid giant axon. Although this model is

not directly related with the myocardium, it served as the base for the construction of

cardiac cell models. The HH model considers the total ionic current as the sum of three

contributions; a Na+ current (INa), a K+ current (IK) and an unespecified current called

a leakage current (IL). These currents are described as

INa = ḡNam
3h(ν − νNa) (3.13)

IK = ḡKn
4(ν − νK) (3.14)

IL = ḡL(ν − νL). (3.15)

Here, v is the deviation from the resting potential, defined as ν = v − veq. Equivalently,

νNa = vNa − veq, νK = vK − veq and νL = vL − veq are shifted equilibrium potentials.

Besides, m, h and n are gate variables represented by equations of the form 3.9, and ḡNa,

ḡK , and ḡL are the maximum conductances for each current. The total ionic current is then

represented as

Iion = INa + IK + IL. (3.16)
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Inserting this last expression into the single cell equation 3.1, we get that the rate of change

of the membrane potential becomes

Cm
dv

dt
= −ḡNam3h(v − vNa) + ḡKn

4(v − vK) + ḡL(v − vL), (3.17)

with the gate variables given by equations of the form

dg

dt
= αg(v)(1− g)− β(v)g, (3.18)

for g = m,h, n. The rate functions αg and βg, specified in Appendix A, enforce a func-

tional dependence on the membrane potential necessary for experiment reproduction.

3.1.6. Models for cardiac cells

Although the HH model can reproduce depolarization and repolarization of the cell

and tissue, it does not provide a good approximation to the electrical behavior of cardiac

cells. The first model that describes the action potential in cardiac cells was proposed in

1962 by Noble. This model is based on the HH equations, but the parameters have been

set to approximate action potential of the Purkinje cells (Noble, 1962). The first model to

describe ventricular cells was that of Beeler and Reuter in 1977 (Beeler & Reuter, 1977).

In this model, the role of calcium plays a fundamental role since it is essential for the con-

tractile mechanism of the muscle cells. It is based on experimental data from the guinea

pig, and it is still widely used, given its simplicity compared with more recent models.

Another broadly used ventricular cell model is the Luo-Rudy model (Luo & Rudy, 1991),

which is a extension of the Beeler-Reuter model, and include six ionic currents, controlled

by seven gate variables. In 1994, Luo and Rudy published a substantial upgrade of their

previous model, known as the Luo-Rudy phase two model, with a more detailed descrip-

tion of the specific ionic currents across the membrane (Luo & Rudy, 1994). Moreover,

this model included important internal fluxes, such as the calcium flux of the sarcoplasmic

reticulum (SR), as well as the buffering of calcium. Although this model presented a very
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detailed description of the ventricular cell, several models have been proposed since then,

in which different processes are managed in a different way.

An important characteristic of the electrical behaviour of cardiac cells is the electrical

restitution. In basic terms, this characteristic is a functional relationship between the action

potential duration (APD) and the length of the diastolic interval (DI) preceding it. In many

cases, this relationship is characterized by small changes in the APD for a broad range of

long DIs and shortening of the APD at shorter DIs. Therefore, restitution may be seen

as a form of adaptation to changes in rate (see Figure 3.2 (a)). If this adaptation does

not take place and the APD is constant regardless of the heart rate, this would result in a

blockade of the heart beat so contractions are skipped when the heart is beating extremely

rapid (i.e., intensive physical activity). The heart ability to adapt to different heart rates

allows an adequate contraction and pumping of blood under a wide range of physiological

conditions. The mechanism behind this adaptation is related to the fact that at fast rates not

all ions channels are able to fully recover from inactivation before the next action potential

occurs, resulting in a reduction in current (Keener & Sneyd, 2009; Yehia, Jeandupeux,

Alonso, & Guevara, 1999).

An APD restitution curve can be constructed by measuring the APD for a wide range

of DIs (see Figure 3.2 (b)). This curve reflects the underlining dynamics of the system

during steady-state conditions. It has been studied that alternants (i.e. , different values of

APD for a given DI) and spiral breackups may appear at APD restitution slopes bigger or

equal to one (Karma, 1994; Gizzi et al., 2013; Koller et al., 2005). Moreover, it has been

shown that some drugs have a flattening effect in the APD restitution slope, preventing

the formation of fibrillation. Therefore, the APD restitution curve is highly relevant in the

study of cardiac electrophysiology, since it allows a better understanding of the electrical

behaviour of the myocardial tissue both under physiological and pathological conditions.
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Figure 3.2. Schematic representation of the nonlinear relation between the
stimulus frequency (CL) and the APD. (a) APD changes when the stimulus
frequencies increases and (b) APD restitution curves for the Ten Tusscher-
Panfilov model (ten Tusscher & Panfilov, 2006)

3.1.7. The Fenton-Karma model

The Fenton-Karma model is a phenomenological model developed to study arrhyth-

mogenesis in cardiac tissue. It allows dealing with the computational difficulties of mod-

eling spiral and scroll waves with more complex ionic models in continuous myocardium.

The mechanisms of VF, such as the influence of fiber rotation on filaments instability, have

been successfully studied using this model. Moreover, it incorporates the restitution prop-

erties of more complex ionic models or experimentally measured restitution curves, and

reproduces accurate spiral wave behavior (F. Fenton & Karma, 1998). To capture these

properties, this model retains a minimal ionic complexity. To this end, the current Iion is

written as

Iion = Ifi(V, v) + Iso(V ) + Isi(V,w), (3.19)
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where Ifi is a fast inward current responsible for depolarization of the membrane, this

current depends only on an inactivation-reactivation gate v. This gate plays a similar role

of the gates in the sodium current of the Beeler-Reuter and Luo-Rudy models. Iso is a

slow outward current, comparable to the time-dependent potassium current, responsible

for the repolarization of the membrane. Isi is a slow-inward current, comparable to the

calcium current; it balances the slow outward current during the plateau phase of the

action potential. The activation, inactivation, and reactivation dynamics described by these

currents reproduce the recovery process of the membrane.

Usually, this model is rewritten based on a dimensionless membrane potential u =

(v − V0)/(Vfi − V0), where V0 is the resting potential, and Vfi is the Nernst potential of

the fast inward current. Currents are also scaled as Jχ = Iχ/(Cm(Vfi − V0)) with units of

inverse time. The equations are

u̇ = ∇ · (D∇u)− Jfi(V, v)− Jso(V )− Jsi(V,w), (3.20a)

v̇ = H(uc − u)(1− v)/τ−v −H(u− uc)v/τ+
v , (3.20b)

ẇ = H(uc − u)(1− w)/τ−w −H(u− uc)w/τ+
v . (3.20c)

where the currents are described by

Jfi(u, v) = −v H(u− uc)(1− u)(u− uc)/τd, (3.21a)

Jso(u) = uH(uc − u) +
1

τr
H(u− uc)/τ0, (3.21b)

Jsi(u,w) = −w(1 + tanh[k(u− usic )])/(2τsi), (3.21c)

where H(x) is the Heaviside step function defined as H(x) = 1 for x ≥ 0 and H(x) = 0

for x < 0.

The model parameters were selected originally to fit two different biophysically based

models: the Beeler-Reuter and the Luo-Rudy-I models. As was exposed before, the for-

mer was essentially the first detailed model of ventricular action potential after the No-

ble’s model based on the HH equations, and the LR-I model was an improvement of
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the BR with more realistic sodium kinetics. Parameters for diverse models, such as the

Courtemanche-Ramirez-Nattel (CRN), have been identified in different works, showing

the high adaptability of the FK model to reproduce different dynamics (Courtemanche,

Ramirez, & Nattel, 1998; Oliver & Krassowska, 2005).

3.1.8. The ten Tusscher-Panfilov 2006 biophysical model

The tenTusscher-Panfilov (TP06) biophysical model was developed based on exper-

imental data on most of the major ionic currents of human myocardial cells and human

APD restitution (ten Tusscher & Panfilov, 2006). It includes an extensive description of

the calcium dynamics and adequately reproduces human epicardial, endocardial, and M

cell action potentials. The relation between the recovery dynamics of the fast sodium

current and the onset of instabilities was shown using this model. Moreover, although

it includes a high level of electrophysiological detail, it is computationally cost-effective

enough to be used in large scale simulations, particularly on the study of VT and VF

dynamics (Ten Tusscher, Hren, & Panfilov, 2005; ten Tusscher & Panfilov, 2006). This

model is described by the following equations

V̇ =
1

χCm
(∇ · (D∇V )− χ(Iion + Istim)) (3.22)

where χ is the surface-to-volume ratio and Iion is the sum of all transmembrane ionic

currents given by the equation

Iion = INa+IK1+Ito+IKr+IKs+ICaL+INaCa+INaK+IpCa+IpK+IbCa+IbNa, (3.23)

where INaCa is Na+/Ca2+ exchanger current, INaK is Na+/K+ pump current, IpCa and

IpK are plateau Ca2+ and K+ currents, and IbCa and InNa are background Ca2+ and Na+

currents. The equations that describe each current and gating variables are reported in

Appendix A.
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3.2. Mathematical models of cardiac tissue electrophysiology

3.2.1. The bidomain model

The mathematical model for the propagation of action potential within the heart tissue

is based on a volume-averaged approach (Franzone et al., 2014). To include the effects

of the potential differences across the membrane, the tissue is divided into two separate

domains: the intracellular domain and the extracellular domain. Based on the notion of

interpenetrating domains both domains are assumed to be continuous an anisotropic, and

they both fill the complete volume ΩH of the myocardium. In each of these domains an

electrical potential is defined, which at each point is taken as an average quantity over a

small volume. Every point in the heart is assumed to be both in the extracellular and intra-

cellular space, and therefore is assigned both an intracellular and extracellular potential.

The cell membrane is also assumed to fill the complete volume of the heart. This mem-

brane acts as an electrical insulator between the two domains. Although the resistance of

the cell membrane is very high, it allows the transit of ions through specific channels. An

electrical current travels through the membrane which magnitude depends on the potential

difference across the membrane and its permeability to the ions. This potential difference

is called transmembrane potential and is defined at every point as the difference between

the extracellular potential and the intracellular potential. From Maxwell’s equations we

have that for a volume conductor, the relation between the electric and magnetic field is

described as

∇× E +
∂B

∂t
= 0, (3.24)

where E and B are the strengths of the electric and magnetic fields, respectively. In a

quasi-static condition, equation 3.24 becomes

∇× E = 0, (3.25)
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which implies that the electric field may be written as the gradient of a scalar value poten-

tial. Denoting this potential by u, we have

E = −∇u, (3.26)

where the negative sign is a convention. The current J in a conductor is given by the

general relation

J = ME, (3.27)

where M is the conductivity of the medium. From equation 3.26 we have

J = −M∇u (3.28)

For the extracellular and intracellular domains within the myocardium this quasi-static

condition also applies, thus we can express the current in the two domains as

Ji = −Mi∇ui, (3.29)

Je = −Me∇ue, (3.30)

where Ji(x, t) is the intracellular current and Je(x, t) the extracellular current at any given

point x ∈ ΩH . Mi(x) and Me(x) are the conductivity tensors in the two domains, which

are inhomogeneous functions of space that reflect the local variations of conductances

because of the presence of structural intra and extracellular inhomegeneities of resistance.

ui and ue are the respetive intra and extracellular potentials. Given the small thickness of

the cell membrane, the acumulation of charges in any point x ∈ ΩH is zero, this can be

expressed as
∂(qi + qe)

∂t
= 0 (3.31)

where qi is the intracellular charge and qe is the extracellular charge. The net current for

each domain is expressed as the sum of the rate of charge accumulation and the ionic
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current exiting the the domain, then

−∇ · Ji =
∂qi
∂t

+ χIion, (3.32)

−∇ · Je =
∂qe
∂t

+ χIion, (3.33)

where Iion is the ionic current through the cell membrane. This ionic current is usually

measured per unit area of cell membrane, whereas densities of charge and current are

measured per unit volume. The constant χ represents the area of cell membrane per unit

volume. Therefore χIion is ionic current per unit tissue volume. Combining equations

3.31, 3.32 and 3.33 we have

∇ · Ji +∇ · Je = 0. (3.34)

Relation 3.34 states that the total current is conserved. Moreover, including equations 3.29

and 3.30 into this equation gives

∇ · (Mi∇ui) +∇ · (Me∇ue) = 0 (3.35)

The difference between the extracellular and intracellular potential is in relation with the

amount of charge and the capacitance, this relation is described by

v =
q

χCm
(3.36)

where v = ui−ue, q = 1/2(qi− qe) and Cm is the capacitance of the cell membrane. The

time derivative of equation 3.36 gives

χCm
∂v

∂t
=

1

2

∂(qi − qe)
∂t

, (3.37)

and from equation 3.31 we get

∂qi
∂t

= −∂qe
∂t

= χCm
∂v

∂t
, (3.38)

Inserting this equation into equation 3.32 gives

−∇ · Ji = χCm
∂v

∂t
+ χIion, (3.39)
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using equation 3.29 we have

∇ · (Mi∇ui) = χCm
∂v

∂t
+ χIion, (3.40)

We can eliminate the intracellular potential from equations 3.35 and 3.40 using the fact

that ui = ue + v

∇ · (Mi∇(ue + v)) = χCm
∂v

∂t
+ χIion, (3.41)

∇ · (Mi∇(ue + v)) +∇ · (Me∇ue) = 0 (3.42)

If we rearrange the terms is these equations gives

∇ · (Mi∇v) +∇ · (Mi∇ui) = χCm
∂v

∂t
+ χIion, (3.43)

∇ · (Mi∇v) +∇ · ((Mi + Me)∇ue) = 0 (3.44)

This is known as the standard formulation of the bidomain model. This formulation was

introduce by (Tung, 1978) in the late 70s. The anisotropy of the intra and extracellular me-

dia, related to the macroscopic arrangement of the cardiac myocites in the fiber structure,

is described by the anisotropic conductivity tensors Mi(x) and Me(x), defined as

Mi,e = σi,el al(x)aTl (x) + σi,en an(x)aTn (x) + σi,et at(x)aTt (x). (3.45)

Here al(x), at(x), an(x) is a triplet of orthonormal principal axes with al(x) parallel to

the local fiber direction, at(x) and an(x) tangent and orthogonal to the radial laminae,

respectively, and both being transversal to the fiber axis. σi,el , σi,et and σi,en are the conduc-

tivity coefficients in the intra and extracellular media measured along the corresponding

directions.

To be able to solve the equations 3.43 and 3.44 we need to specify not only the local

basis vectors al(x), at(x), an(x) and the local conductivity parameters but also the bound-

ary conditions for ue and v. If we assume that the heart is surrounded by a non-conductive

medium, we require the normal component of both domains currents to be zero on the
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boundary. Then

n · Ji = 0, (3.46)

n · Je = 0, (3.47)

where n is the normal to the volume surrounding x. Using the expression for the two

currents we get

n·(Mi∇v + Mi∇ue) = 0, (3.48)

n·(Me∇ue) = 0. (3.49)

With these boundary conditions we obtain the parabolic-elliptic (PE) formulation of the

bidomain equation (Franzone et al., 2014).

Bidomain formulation. Given the the initial conditions v0 : ΩH → R, w0 : ΩH →

Rk, z0 : ΩH → (0,+∞)m, find the intra- and extracellular potentials ui,e : ΩH× (0, T )→

R, the transmembrane potential v = ui − ue : ΩH × (0, T ) → R, the gating variables

w : ΩH× (0, T )→ Rk and the ionic concentrations variables z : ΩH× (0, T )→ Rm such

that 

∇ · (Mi∇v) +∇ · (Mi∇ui) = χCm
∂v
∂t

+ χIion in ΩH × (0, T )

∇ · (Mi∇v) +∇ · ((Mi + Me)∇ue) = 0 in ΩH × (0, T )

∂w
∂t

= F(v,w) in ΩH × (0, T )

∂z
∂t

= G(v,w, z) in ΩH × (0, T )

n · (Mi∇v + Miue) = 0 in ∂ΩH × (0, T )

n · (Me∇ue) = 0 in ∂ΩH × (0, T )

v(x, 0) = v0(x),w(x,0) = v0(x), z(x,0) = z0(x) in ΩH .

(3.50)
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3.2.2. The monodomain model

By making the assumption of equal anistropy rates Me = λMi, where λ is a constant

scalar, then Me can be eliminated from the bidomain formulation, resulting in

∇ · (Mi∇v) +∇ · (Mi∇ui) = χCm
∂v

∂t
+ χIion, (3.51)

∇ · (Mi∇v) + (1 + λ)∇ · (Mi∇ue) = 0 (3.52)

We get, from equation 3.52

∇ · (Mi∇ue) = − 1

1 + λ
∇ · (Mi∇v) (3.53)

Inserting this into equation 3.51 we get

∇ · (Mi∇v)− 1

1 + λ
∇ · (Mi∇v) = χCm

∂v

∂t
+ χIion. (3.54)

Rearranging the terms in this last equation we get

λ

1 + λ
∇ · (Mi∇v) = χCm

∂v

∂t
+ χIion. (3.55)

Similarly, the boundary condition is set as

n · (Mi∇v) = 0 (3.56)

Monodomain formulation. Given the initial conditions v0 : ΩH → R, w0 : ΩH → Rk,

z0 : ΩH → (0,+∞)m, find the the transmembrane potential v = ui−ue : ΩH × (0, T )→

R, the gating variables w : ΩH × (0, T ) → Rk and the ionic concentrations variables

z : ΩH × (0, T )→ Rm such that

λ
1+λ
∇ · (Mi∇v) = χCm

∂v
∂t

+ χIion. in ΩH × (0, T )

∂w
∂t

= F(v,w) in ΩH × (0, T )

∂z
∂t

= G(v,w, z) in ΩH × (0, T )

n · (Mi∇v) = 0 in ∂ΩH × (0, T )

v(x, 0) = v0(x),w(x,0) = v0(x), z(x,0) = z0(x) in ΩH .

(3.57)
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There are many advantages in using the monodomain model, both from a mathemati-

cal point of view as well as from a computational point of view. However, the mon-

odomain model has important limitations. The first one is related to the assumption of

equal anisotropy ratios in the conduction of electrical impulses. It has been shown exper-

imentally that this is not the case, and it is difficult to specify the parameter λ to obtain

the closest approximation of the physiological conductivities. Moreover, some important

electrophysiological phenomena vanish when equal anisotropy rates are assumed, such

as the ability to simulate the low gap junctional coupling that arises during pathological

conditions (Costa & Dos Santos, 2010), and phenomena of arrhythmia termination (defib-

rillation) (N. Trayanova, Plank, & Rodrı́guez, 2006). Therefore, whereas the monodomain

model is still a useful tool for analysis and simplified computational studies, realistic sim-

ulations of many important phenomena must be tackle using a complete bidomain model.

In contraposition with this, there are several studies that proved the capabilities of using

the monodomain equation in clinical applications (Pathmanathan & Gray, 2018; Nash et

al., 2006; H. J. Arevalo et al., 2016).

The assumption of a non-conductive volume surrounding the heart domain limits the

monodomain and bidomain formulations to solely describe the evolution of the transmem-

brane potential through the myocardial tissue. Additional equations and boundary condi-

tions must be added to these formulations to represent the potential distribution surround-

ing the heart. Human torso coupling is of great importance for the study of body surface

maps and electrocardiograms. However, these types of problems are not approached in

this thesis.

3.3. Numerical solution of electrophysiology models

To solve the set of partial differential equations that define the bidomain and mon-

odomain models of cardiac electrophysiology we employ numerical discretizations, both

in space and in time, that lead to linear systems of equations that can be implemented
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and solved in a computer. In the following, we summarize the main spatial and temporal

numerical methods for this goal.

3.3.1. Operator Splitting method

The operator splitting method is a technique for solving coupled systems os PDE’s. It

is based on the notion of split a system of complex equations into smaller parts that may

be easier to solve. The class of operator splitting technique introduced here is the so-called

fractional step method (LeVeque & Leveque, 1992). To introduce this technique, consider

an initial value problem of the form

du

dt
= (L1 + L2)u, u(0) = u0, (3.58)

where L1 and L2 are operators on u, and u0 is a given initial condition. Choosing an small

time-step ∆t, an approximate solution at t = ∆t may be computed by first solving the

problem

dv

dt
= L1(v), v(0) = u0 (3.59)

for t ∈ [0,∆t]. After this, we can solve the problem

dw

dt
= L2(w), w(0) = v(∆t), (3.60)

for t ∈ [0,∆t]. Using this technique we have that the solution w(∆t) is a consistent

approximation of u(∆t). In fact, the splitting error at t = ∆t is given by (Sundnes et al.,

2007)

w(∆t)− u(∆t) =
∆t2

2
(L1L2 − L2L1)u0 +O(∆t3) (3.61)

Then, the error after one time step is proportinal to ∆t2. When solving the equation in a

given time interval, e. g. t ∈ [0, b], the error at t = b is proportinal to ∆t. This splitting

method is called Godunov splitting and is a first-order method. However, we can slightly

modify this method is order to get a second-order accurate algorithm. For this, we first
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solve the problem

dv

dt
= L1(v), v(0) = u0, (3.62)

for t ∈ [0,∆t/2]. Then, solve the problem

dw

dt
= L2(w), w(0) = v(∆t/2), (3.63)

for t ∈ [0,∆t]. Finally, we solve the problem

dv

dt
= L1(v), v(∆t/2) = w(∆t), (3.64)

for t ∈ [∆t/2,∆t]. This splitting algorithm is usually called Strang splitting, and is a

second-order accurate algorithm.

3.3.2. Operator Splitting for the monodomain model

Starting from the monodomain equations introduced in 3.57, the Strang splitting can

be applied by defining the operators

L1v = −Iion(v,w), (3.65)

L2v =
λ

1 + λ
∇ · (Mi∇v). (3.66)

With these operators the splitting method become

∂v

∂t
= −Iion(v,w), (3.67)

∂v

∂t
=

λ

1 + λ
∇ · (Mi∇v). (3.68)

Now we have reduced the nonlinear PDE to a linear PDE and a nonlinear ODE. As we

need to solve an ODE system for the gating variables w in the monodomain equations, this

system can be solved simultaneously with the system described by 3.67 in the splitting.

Now, assuming that vn = v(tn) and sn = s(tn) are known, the operations of the Strang

splitting consist on the following operations:
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(i) Solve the system

∂v

∂t
= −Iion(v,w), v(tn) = vn, (3.69)

∂w

∂t
= R(v,w), w(tn) = wn, (3.70)

for tn < t ≤ tn + θ∆t. The solutions at tn + θ∆t are denoted vnθ and wn
θ .

(ii) Solve the linear PDE given by

∂v

∂t
=

λ

1 + λ
∇ · (Mi∇v), v(tn) = vnθ (3.71)

for tn < t ≤ tn + ∆t. The solution at tn + ∆t is denoted vn+1
θ .

(iii) Solve the system

∂v

∂t
= −Iion(v,w), v(tn + θ∆t) = vn+1

θ , (3.72)

∂w

∂t
= R(v,w), w(tn + θ∆t) = wn

θ , (3.73)

for tn + θ∆t < t ≤ tn + ∆t. Obtaining the approximate solutions vn+1 and

wn+1 at t = tn + ∆t.

For values of θ = 1/2 we obtain the second-order Strang splitting, and for θ = 1 we obtain

the first-order Godunov splitting.

The solution of the subproblems that appear in the different splitting algorithms have

not been discussed yet. It is not usually easy to find an analytical solution of realistic

choices of cell models and geometry for the monodomain equations. Then, it is necessary

to use some numerical method to approximate a solution of the ODE system in step (i)

and the PDE in step (ii). In general, for the Strang algorithm it is necessary to use at least

a second-order accuracy method for the subproblems.

There is a large variety of methods for solving ODE systems. For the PDE system

we are going to introduce a time discretization based on a θ-rule, which is a commonly

used technique for solving PDEs. Assuming that the current value vn = v(tn) is known,

we want to find the unknown field vn+1 at the next time step. The idea behind the time
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discretization θ-rule is to approximates vn+1 from

vn+1 − vn

∆t
= θ

(
λ

1 + λ
∇ · (Mi∇vn+1)

)
+

(
(1− θ) λ

1 + λ
∇ · (Mi∇vn)

)
, (3.74)

which is a weighted average of the values from the current and the next time step, and

the time derivative is a simple finite difference approximation. For a choice of θ = 1 we

have the implicit backward Euler method. For θ = 0 the scheme is easily recognized as

the forward Euler scheme. Setting θ = 1/2 gives the Cranck-Nicolson scheme, which is

second order accurate with respect to time. If we select θ = 1/2 for the splitting method

as well as for the time approximation scheme, we can see that the accuracy matches well.

3.3.3. Spatial discretization: the finite element method

The spatial discretization of the bidomain and monodomain equations has been ap-

proached with several methods, such as finite element methods, finite volume methods,

and spectral methods (Dupraz et al., 2015; Abbasi & Clayton, 2013; Göktepe & Kuhl,

2009). Numerical methods and simulations of different eikonal approaches have also been

explored (Pashaei, Romero, Sebastian, Camara, & Frangi, 2010). In this thesis we use the

classical Galerkin procedure as the starting point for the formulation of a finite element

discretization.

Variational formulation. Let V be the Sobolev space H1(ΩH) and defined by

(ϕ, ψ) =

∫
ΩH

ϕψdx, ψ ∈ L2(ΩH) (3.75)

a(ϕ, ψ) =

∫
ΩH

(∇ϕ)TMi(x)∇ψdx, ∀ϕ, ψ ∈ H1(ΩH) (3.76)

the usual L2-inner product and elliptic bilinear forms. The variational formulation of the

monodomain model is defined as follows. Given v0, w0 ∈ L2(ΩH), Iapp ∈ L2(ΩH ×
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(0, T )), find v ∈ W 1,1(0, T ;V ) and w ∈ W 1,1(0, T ;L2(ΩH)M) such that ∀t ∈ (0, T )χCm
∂
∂t

(v(t), ϕ) + a(v(t), ϕ) + χ(Iion(v, w), ϕ) = (Iapp, ϕ) ∀ϕ ∈ V
∂
∂t

(w(t), ψ) = (R(v(t), w(t)), ψ), ∀ψ ∈ L2(ΩH)M

(3.77)

with appropiate given initial conditions on v and w.

Finite element discretization. Let T h be a uniform hexahedral triangulation of ΩH

and V h the associated finite element space. Given a finite element basis function {φi} for

V h and an appropriate quadrature rule, the symmetric mass matrix and stiffness matrix are

given by

M =

{
mrs =

∫
ΩH

φrφsdx

}
, (3.78)

A =

{
ars =

∫
ΩH

(∇φr)T∇φsdx
}
. (3.79)

If we define Ihion and Ihapp the finite element interpolants of Iion and Iapp respectively, the

finite element approximation vh of the transmembrane potential is given by solving

χCmM
∂vh
∂t

+
λ

1 + λ
Avh + χMIhion(vh,wh) = MIhapp. (3.80)

This equation is coupled with the semidiscrete approximations of the gating and concen-

tration system
∂wh

∂t
= R(vh,wh). (3.81)

Based on the same finite element spatial discretization, the θ-rule time discretization of

the PDE system in the second step of the Strang splitting algorithm, described by equation

3.74, can then be expressed as(
M−∆tθ

λ

1 + λ
A

)
vn+1
h = ∆t(1− θ) λ

1 + λ
Avnh + Mvnh (3.82)
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3.4. Subject-specific modeling of the heart

During the last three decades the scientific community has worked on the construction

of computational models of the heart that incorporate realistic geometry and physiological

behavior. This is a challenging problem given the complex geometry of the heart and the

circulatory system. One of the advantages of using the finite element method is that it

is well suited for complex geometric domains and allows the representation of the local

structure of the heart, such as myofibers. It also allows the representation of spatial het-

erogenities such as transmural heterogeneity as well as spaces of patological tissue such as

ischemic tissue or infarcted scar tissue. These representations are usually extracted from

image-based anatomy data from real patient-specific animal or human subjects.

3.4.1. Image based anatomy

The computational modeling of the electrical behavior of the heart relays in an accu-

rate description of the heart anatomy. However, complex representations of heart anatomy

are restricted by their computational demands. This has motivated the use of simplified

left ventricular geometries as the primary tool for the study of cardiac electrophysiology

and electromechanics. However, in the last decade, the use of patient-specific realistic

geometries has become prevalent in computational models (K. L. Sack, Davies, Guccione,

& Franz, 2016). Following the initial work of (Okajima, Fujino, Kobayashi, & Yamada,

1968),a finite element method was used to approximate the geometry and fiber direction of

a canine heart (Nielsen, Le Grice, Smaill, & Hunter, 1991). After this, (Stevens, Remme,

LeGrice, & Hunter, 2003) were able to extend the model to account for the four valves.

Since then, the use of realistic heart geometries has become popular. Using computer to-

mography and MRI images, the Living Heart Project has created a full four-chambered

heart with the connecting large vessels (Baillargeon, Rebelo, Fox, Taylor, & Kuhl, 2014).

Subject-specific cardiac geometries of several animal species have been used in proof-

of-concept studies of pathological and non-pathological cases (H. Arevalo, Plank, Helm,

Halperin, & Trayanova, 2013; N. A. Trayanova & Chang, 2016a). Statistically averaged
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heart geometries are another alternative for generating meaningful results within a repre-

sentative patient population (Young & Frangi, 2009; Backhaus et al., 2010).

Several imaging techniques are used to perform cardiac examinations. Ultrasound

(US), single-photon emission computed tomography (SPECT), computed tomography

(CT), and magnetic resonance imaging (MRI) are the most well-known and used tech-

niques (A. Chang, Cadaret, & Liu, 2020; Hendrikx, Vöö, Bauwens, Post, & Mottaghy,

2016; Deng, Jiao, Ye, & Xia, 2012). Moreover, their applicability has been powerfully

extended by the recent developments in hardware, contrast agents, and algorithms for

postprocessing (Attili, Schuster, Nagel, Reiber, & Van Der Geest, 2010; Kim et al., 2000).

Faster image protocols and hardware improvements in MRI, CT, and US have resulted

in near real-time dynamic three-dimensional imaging of the heart (S. Zhang et al., 2014;

Saito, Saito, Komatu, & Ohtomo, 2003).

Cardiac MRI supplies a large source of detailed quantitative data of heart structure.

The non-invasive nature, safe procedures, ability to modulate contrast in response to dif-

ferent mechanisms, and the ability to provide high-quality functional information in any

direction are some of the advantages of cardiac MRI. This technique has provided de-

tailed information on tridimensional ventricular shape and geometry, regional systolic and

diastolic strain, material microstructure, and blood flow (Fonseca et al., 2004). MRI is

increasingly being applied in cardiac research trials and clinical practice. Moreover, dif-

fusion tensor MRI (DT-MRI) has been progressively used to measure myocardial fiber

orientation in formaldehyde-fixed hearts (Holmes, Scollan, & Winslow, 2000). The dif-

fusion pattern in DT-MRI is represented by a symmetric second-rank tensor in which its

three orthogonal eigenvectors are related to cardiac structure (see Figure 3.3). The assump-

tion on this technique is that the direction of greatest proton diffusion (i.e., the eigenvector

with the largest eigenvalue) will be along the fiber parallel axis, the intermediate diffusion

(secondary eigenvector) will lie orthogonal to the fiber axis, and the minor direction of dif-

fusion will lie orthogonal to the primary and secondary eigenvectors (Helm, Beg, Miller,
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& Winslow, 2005). These results have been validated using three-dimensional histological

reconstructions of the fiber and sheet.

Figure 3.3. visualization of DT-MRI reconstruction of a heart (left) and
zoomed view (right) showing the components of the fibers direction in col-
ors. Taken from (Zhukov & Barr, 2003)
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4. CARDIAC ARRHYTHMIA AND HEART FAILURE

4.1. Cardiac arrhythmia

4.1.1. Types of reentrant cardiac arrhythmia

Cardiac arrhythmia, also known as heart rhythm disorders, are conditions in which a

failure in the timing and / or coordination of cardiac contraction occurs. Their cause is

mainly related to abnormal formation of the excitation wave (abnormal automaticity or

triggered activity), abnormal propagation of the excitation wave, or both. There are differ-

ent types of cardiac arrhythmias. A frequently occurring and dangerous category are the

so-called reentrant arrhythmias, which are caused by abnormal reentrant propagation of

excitation waves. Reentrant arrhythmias in the ventricles can be classified in monomor-

phic and polymorphic VT and VF. Monomorphic and polymorphic VT (among which is

the Torsade de Pointes) lead to increased ventricular excitation and contraction rates along

with a decrease of cardiac output. Both cases may destabilize into VF, which leads to a

further increase in excitation rate and a loss of coherence of ventricular contraction, result-

ing into a complete loss of cardiac output. This will cause death to occur within minutes

unless normal sinus rhythm is restored. VT and VF belong to the most dangerous cardiac

arrhythmias.

4.1.2. Mechanisms of cardiac arrhythmias

The term reentry refers to a wave front that reenters and hence re-excites the same

tissue repeatedly as opposed to the normal ”planar” wave front emitted by the SA node

that excites all the tissue only once. If a high-frequency re-excitation occurs, surpassing

the sinus rhythm, the sinus rhythm gets suppressed and heart rhythm is controlled by

the reentry, resulting in an increased heart rate. In one dimension, reentry can be seen

as a single pulse traveling around a circular cable of tissue. This phenomenon has been

demonstrated both in experiments and models of excitable media (Winfree, 1989). In two
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and three dimensions, reentry can be caused by a spiral or scroll wave front rotation around

an in-excitable obstacle. This has been demonstrated using abstract models of excitable

media (Ten Tusscher et al., 2005). This so called anatomical reentry is commonly seen in

the atria, where a large vessel, tissue ridge or scar may act as anatomical obstacle for the

formation of an spiral or scroll wave.

Within the ventricles VT is also thought to be caused by an spiral or scroll wave front.

It has been shown that scroll waves do not necessarily rotates around an in-excitable ob-

stacle, but can also rotate around a core that is formed by the refractory properties of the

excitable medium (Panfilov & Pertsov, 2001a). This type of reentry is usually called func-

tional reentry. Since the ventricles are more homogeneous than the atria and posses less

ridges and holes caused by large vessels relative to their tissue mass, ventricular reentry

is usually functional reentry. However, when a scar is formed due to a particular cardiac

disease, anatomical reentry may occur around the scar tissue. An experimental proof of

the possible presence of functionally reentrant spiral and scroll waves in cardiac tissue

was first given by (Allessie, Bonke, & Schopman, 1976) in rabbit atrium, and later on by

(Davidenko, Pertsov, Salomonsz, Baxter, & Jalife, 1992). Nowadays, it is a commonly

accepted fact that most VT are caused by a spiral or scroll wave front.

4.1.3. Vortex filaments computation during fibrillation

During re-entry an action potential continuously propagates around a point (in two

dimensions) or a filament (in three dimensions), forming a vortex-like wave, known as

scroll wave in three dimensions. The shape, sustainability, and overall behavior of these

phase singularities may be influenced by the anisotropy of the ventricular wall, tissue resti-

tution, and intrinsic three-dimensional instabilities. These singularities were challenging

to observe experimentally until recently were singularities could be observed within the

contracting heart using high-resolution four-dimensional ultrasound-based strain imag-

ing, showing that mechanical and electrical singularities coexist during cardiac fibrillation

(Christoph et al., 2018). VF can then be characterized by studying filament dynamics
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since decomposing the intricate activation pattern to show filaments provides insightful

information about how many sources organize the excitation propagation (see Figure 4.1).

Tracking them will explain the changes in excitation patterns over time. In order to ap-

ply this approach, we need an algorithm to identify filaments in three-dimensional wave

propagation (Clayton, Zhuchkova, & Panfilov, 2006).

Figure 4.1. Example of a spiral wave formation (a) and multiple spiral
wave formation (b) in two-dimensions. 3D scroll wave formation are also
showed (c,e) with their corresponding filaments (d,f) (from (Clayton et al.,
2006))

Scroll wave filaments were distinguished using the algorithm proposed by Fenton and

Karma (F. Fenton & Karma, 1998). In particular, a singular point is found by computing

the intersection of an isopotential line (-70 mV) with the condition dVm/dt = 0. In the

computational model here implemented, each singular point is related to a single finite el-

ement. Afterwards, scroll wave singular line, e.g. filament, was identified and labeled by

using a density-based spatial clustering algorithm (DBSCAN)(Ester, Kriegel, Sander, &

Xu, 1996). This method allows grouping elements that are closely packed together form-

ing a specific filament. Each group (filament) formed is classified, updated and counted

every 10ms of physical time directly during simulations.
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4.2. Heart failure

4.2.1. Definition and incidence

Heart failure is a chronic and progressive condition in which the heart can not supply

the required amount of blood and oxygen to meet the body needs. Heart function impair-

ment leads to fatigue and shortness of breath, and everyday activities such as walking or

climbing stairs can become very difficult (Mant et al., 2010). It is a serious condition and

usually there is no cure. Nowadays 5.1 million people in the United States live with it,

and it is estimated that 8 million people living in the United States will have heart failure

by the year of 2030. Moreover, mortality is high since patients who die within the first 5

years after a heart failure diagnosis may reach 50%. Moreover, 40% of patients die within

the first year after hospitalization for HF (Benjamin et al., 2019). Despite the advance

in treatments and devices in the last years, mortality rates are still at high levels. Heart

failure is divided into two categories: heart failure with reduced ejection fraction (HFrEF)

accounting for 50% to 70% of the cases, and heart failure with preserved ejection fraction

(HFpEF) (Savarese & Lund, 2017; Galli & Lombardi, 2016).

The American Heart Association (AHA) and the American College of Cardiology

(ACC) have classified chronic heart failure into fourth stages, with disease severity in-

creasing from the first to the fourth stage. In stage A there is presence of risk factors

for heart failure without structural heart disease, stage B is the presence of a structural

heart disease without symptoms, stage C is symptomatic heart failure, and stage D is

symptomatic heart failure with the need of medical therapy (Dolgin, of the New York

Heart Association, Committee, Fox, & Levin, 1994). Structural heart disease is related

with ventricular hypertrophy in hypertensive patients, valvular diseases and scars due to a

previous myocardial infarction. The incidence of heart failure after myocardial infarction

is 8% in men and 18% in women between 45 and 64 years old (Chandrasekhar, Gill, &

Mehran, 2018; Crespo-Leiro et al., 2018). It has been studied in animal models of myocar-

dial infarction and cardiac imaging in patients with ischemic cardiomyopathy that heart
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failure if preceded by an increase in ventricular volumes. This process is called ventric-

ular remodeling, and it implies the enlargement of the left ventricular chamber, changing

from an elliptical to a more spherical shape (Konstam, Kramer, Patel, Maron, & Udelson,

2011). This change is described by the sphericity index, which is the ratio between the left

ventricular volume and the volume of a sphere whose diameter is equal to the mayor axis

of the left ventricle. Post-infarct remodeling developed in around 30% of patients with a

history of myocardial infarction (Galli & Lombardi, 2016).

4.2.2. Post myocardial-infarction heart remodeling in heart failure

Cardiac remodeling is a physiological (adaptative) or pathological state in which cel-

lular and interstitial changes occur within the heart. Clinically, remodeling diagnosis is

based on the detection of morphological changes such as the cavity diameter, mass (hy-

pertrophy and atrophy), geometry (heart wall thickness and shape), areas of scar after MI,

fibrosis, and inflammatory infiltrate (myocarditis) (Azevedo, Polegato, Minicucci, Paiva,

& Zornoff, 2016). It is also related to ventricular dysfunction and malignant arrhyth-

mias (Konstam et al., 2011). In the acute and chronic phases of MI, remodeling may be

identified due to the dilation of the infarcted area secondary to the expansion process or

eccentric hypertrophy of the infarcted area secondary to different stimuli (Azevedo et al.,

2016). Therefore, despite its complexity, post-infarction remodeling may be clinically

characterized by an increase in the ventricles size.

Ventricular remodeling is a predictor of heart failure, and its occurrence has an essen-

tial impact on prognosis. An arbitrary definition of ventricular remodeling, but widely

adopted, is an increase of at least 20% of left ventricular end-diastolic ventricular volume

(LVEDV) from the first postinfarction imaging (Cokkinos & Belogianneas, 2016). How-

ever, as the first imaging study with cardiac magnetic resonance is usually performed a

few days after myocardial infarction, early ventricular remodeling, which is the phase of
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Figure 4.2. Myocardial infarction stages

remodeling that occurs in the first hours after myocardial infarction, could not be recog-

nized, leading to an underestimation of the final ventricular dilatation (Galli & Lombardi,

2016).

The association of malignant ventricular arrhythmias, including VT and VF, with car-

diac remodeling has been well established (Dhein et al., 2014; Ten Tusscher, Hren, &

Panfilov, 2007). Several mechanisms of cardiac arrhythmias after MI have been identi-

fied. The first mechanism is related to changes in the ion channels, such as inactivation

of the sodium channels, changes in calcium and potassium channels and alterations in the

sodium/calcium relation (Bosch et al., 1999). As a consequence of this, action potential

duration (APD) and action potential restitution abnormalities are encountered in remod-

eled hearts (Gizzi et al., 2013; ten Tusscher & Panfilov, 2006). The second mechanism

is the gap junctional intercellular communication changes, responsible for the electrical
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coupling between each cell. Finally, cardiac remodeling is associated with an increase

in collagen content (fibrosis), which may cause blockage of the electrical conduction and

reentry arrhythmia (Shinde & Frangogiannis, 2014), associated with arrhythmias and sud-

den cardiac death. Clinical strategies to reduce fibrosis have decreased the vulnerability to

arrhythmias (Hinderer & Schenke-Layland, 2019).

Due to lost of contractility of the necrotic segments, ventricular contraction is not

symmetrical in infarcted hearts. As a result, there is not a counterbalanced distribution

of forces, and the infarcted ventricular wall is thus stretched by an increased wall tension

that is not homogeneously distributed in the left ventricle. This was verified using MRI

data from human hearts (Zhong et al., 2009). This phenomenon might explain why the

infarcted wall usually has longer contraction times than the healthy remote myocardium.

The infarcted wall has to counteract a greater resultant force, and its prolonged time to

peak systolic velocity can be detected as an asynchrony of the left ventricular wall motion

(Y. Zhang et al., 2008). This wall motion defect has been recognized as a risk factor for

remodeling development, and it can be detected using MRI (S. Chang et al., 2009).

4.2.3. Current therapies to Heart Failure

Clinical evidence has shown that heart remodeling after MI can be prevented or, in

some cases, reversed. This process is called reverse remodeling and can be achieved either

with pharmacologic therapies or mechanical devices, which are usually combined (Koitabashi

& Kass, 2012). Reverse remodeling improves chamber volumes and heart-rate responsive-

ness. At the cellular level, it improves myocyte size, function, and excitation-contraction

coupling, among other important features (Koitabashi & Kass, 2012). While mechanical

interventions require surgery and are reserved for patients in stage D of heart failure who

meet strict eligibility criteria, drug delivery is the preferred treatment for patients with mild

heart failure or for preventing remodeling after a myocardial infarction(Galli & Lombardi,
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2016). Stem cells and gene therapy have shown promising results in pilot trials on adjunc-

tive therapy of myocardial infarction and heart failure and might reverse remodeling after

myocardial infarction (Windecker, Bax, Myat, Stone, & Marber, 2013).

One of the main treatments for patients with heart failure symptoms is cardiac resyn-

chronization therapy (CRT). This therapy involves the implantation of a half-dollar sized

pacemaker in conjunction with three leads that monitor the heart rate and detect abnor-

malities, emitting tiny electrical pulses to correct them. This procedure has shown to

reduce the dyssynchronous left ventricular contraction caused by regional delays in the

electrical activity in patients with heart failure due to dilated cardiomyopathy (Bristow et

al., 2004). In short-term studies, CRT has shown to improve symptoms, increase exer-

cise tolerance, and partially reduce cardiac remodeling (Bristow et al., 2004; Ruschitzka

et al., 2013; Koitabashi & Kass, 2012). In addition to this, this treatment has proved to

decrease the risk of death and related heart failure complications. Moreover, implantable

cardioverter-defibrillators have shown increased effectiveness when used in combination

with CRT (Bristow et al., 2004).

Figure 4.3. Cardiac resynchronization therapy (CRT). A pacemaker device
is implanted in conjuction with three leads that monitor the heart rate and
detect abnormalities (taken from (How CRTs Work, 2017)).
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Although several important advances in pharmacological treatments of HF have sig-

nificantly reduced mortality, the progression from asymptomatic ventricular dysfunction

to symptomatic HF is still frequent. It has been recognized that myocardial hypertrophy

is related to sustained neurohormonal activation. Although it has been shown that the

pharmacological blockade of some neurohormonal pathways may reverse this process,

attempting to blockade additional pathways may be detrimental (Mancini & Burkhoff,

2005). Given this, surgical reshaping of the dilated heart has been significantly studied

with satisfactory outcomes. The concept behind this treatment is to reduce the size of the

dilated heart, increasing the systolic myocardial wall stress (see Figure 4.4). The surgical

procedure and its effects differ depending on the properties of the removed muscle. When

a healed scar is present, non-contractile material is removed during the surgery, and sat-

isfactory outcomes have been reported (Mickleborough, Carson, & Ivanov, 2001). The

limitations of these surgeries are related to the lack of a uniform method to perform the

procedure (Buckberg, Athanasuleas, & Conte, 2012). The amount of tissue removed and

the size and shape of the reconstructed chamber are at the discretion of the surgeon, with

no defined guidelines (Mancini & Burkhoff, 2005; Stefanelli et al., 2020).

Figure 4.4. Surgical reshaping process. A mannequin is used to re-
construct the remodeled left ventricle in an elliptical shape (taken from
(Castelvecchio & Menicanti, 2013)).
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4.3. Biomaterial injection therapy

Novel strategies are being implemented to compensate for the insufficient intrinsic

ability of the adult heart to regenerate after MI. These strategies are focused on inducing

cardiac regeneration, facilitate self-repair, reverse or attenuate adverse remodeling, and ul-

timately improve the cardiac function. Cardiac tissue substitutes, biomaterial-assisted cell

transplantation to improve retention, acellular biomaterials to confer mechanical support

and extracellular matrix replacement is being studied to achieve these goals. Biomaterials

are widely used in tissue engineering and regeneration due to their biocompatibility, non-

thrombogenic nature, and their resemblance to their hydrogel matrix texture and stiffness

to that of the extracellular matrix. The injection of biomaterials within the myocardium

has shown promise as an alternative biological treatment option after MI to reduce adverse

remodeling and preserve cardiac function. They can be delivered alone or as vehicles for

carrying drugs or cells, and may provide mechanical support to the injured heart. Pre-

clinical studies have shown several improvements on hearts injected with passive bioma-

terials (Lee et al., 2015; Ruvinov & Cohen, 2016). Augmentation of LV wall thickness

with alginate hydrogel has shown to reduce LV end-diastolic and end-systolic volumes,

and improve LV sphericity in dog heart (Sabbah et al., 2013). A substantial reduction in

myofiber stress with positive effects on ventricular geometry has been shown in studies of

swine hearts subjected to biomaterial injections (Choy et al., 2018).

Recently, the mechanical response of infarcted hearts to biomaterial injections was

quantified using predictive computational modeling (K. L. Sack et al., 2016). Three-

dimensional finite element analyses informed by echocardiography data from sheep hearts

were carried out to compare different material properties of infarcted and healthy regions,

showing that the presence of tissue filler significantly reduces myofiber stresses (Wenk et

al., 2011). Idealized ellipsoidal LV models have also been used to measure the mechan-

ical effects of different biomaterials, identifying the optimal distribution of injectates in

terms of mechanical power (Wenk et al., 2009). High-resolution ex-vivo data was used
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to show that biopolymer injections act as an LV mid-wall constraint mechanism that pre-

vents adverse remodeling in the heart without secondary effects on the cardiac function

(K. L. Sack et al., 2020), see Figure 4.5. While these studies helped to elucidate the

promising outcomes of biomaterial injections from a mechanical point of view, their role

in cardiac electrical behavior remains poorly investigated. Few recent animal studies have

done so. In one study, conductive biomaterials aimed at restoring impulse propagation

in rat hearts reduced the QRS interval, suggesting improved electric conduction after MI

(Mihic et al., 2015). Hydrogel injections, with a high degree of intra-myocardial spread,

did not cause significant electrical abnormalities in rat hearts (Suarez et al., 2015). The

knowledge acquired from experimental approaches is still limited because of the complex

nature of these treatments and the strong constraints in measuring electrical propagation in

vivo. In this thesis, we focused on the study of the Algisyl-LVRTM, a Calcium-Alginate hy-

Figure 4.5. End-diastolic myofiber stress distribution comparing a control
heart (NC) and heart with HF (HFC) and a heart with HF and biomaterial
injections (taken from (K. L. Sack et al., 2020)).

drogel that consists of two components: a Na+-Alginate component supplied as a sterile

solution and a Ca2+-Alginate component. These two components are mixed immediately

before use and delivered as an intramyocardial injection with a syringe. In approximately

3-4 minutes, the biomaterial reaches its final material stiffness, which resembles that of

the passive myocardium (see Figure 4.6). Alginate is a naturally-occurring polysaccha-

ride found in certain species of brown algae. The process of isolating alginate from algal
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biomass is simple. This biomaterial is directly injected in a circumferential pattern into

the LV wall during an open chest procedure. A total of 12 to 14 injections are delivered

in two rows: one above and one below the mid-ventricular plane between the base and the

apex.

(a) (b)

Figure 4.6. (a) Biomaterial delivery process after MI and (b) histology of a
representative heart injected with Algisyl-LVRTM (from (K. L. Sack et al.,
2020))
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5. IN-SILICO STUDY OF ARRHYTHMOGENIC POTENTIAL OF BIOMATE-

RIAL INJECTION THERAPY IN SWINE HEARTS UNDER HEART FAILURE
This chapter is an adapted transcription of the article “In-silico study of the cardiac

arrhythmogenic potential of biomaterial injection therapy” published in Scientific Reports

10(1):12990, June 2020.

The vast literature about computational models in cardiac electrophysiology has made

it possible to simulate most of the complex mechanisms leading to cardiac arrhythmogene-

sis, particularly when using highly-detailed anatomical models of the heart (N. A. Trayanova

& Chang, 2016a; Witzenburg & Holmes, 2017). For instance, through MRI-based ca-

nine ventricular geometries, the arrangement and size of the peri-infarct (border) zone

(BZ) were shown to be related to electrical excitation wavebreaks and onset of subse-

quent arrhythmias (H. Arevalo et al., 2013). Detailed electrophysiological models of hu-

man ventricles were used to study the morphology of VF, confirming that VF dynamics

mainly depend on APD restitution properties (Tusscher et al., 2007). In-silico studies

of histologically-based rabbit heart models with infarction were used to develop indices

for measuring vulnerability to VT, which were previously validated in clinical applica-

tions and optical mapping(Hill et al., 2016). Prediction of electrophysiological behavior

of cell-based heart repair was addressed using 3D whole-heart modeling to explore the

sustainability of VF of these treatments, demonstrating the promising outcomes of com-

putational modeling for evaluating alternative therapies for HF (Deng, Prakosa, Shade,

Nikolov, & Trayanova, 2019). More specifically, patient-specific in-silico studies have al-

lowed the quantification of scroll-wave filaments arising during VF (Panfilov & Pertsov,

2001b; Hu, Gurev, Constantino, Bayer, & Trayanova, 2013; Dierckx, Fenton, Filippi,

Pumir, & Sridhar, 2019; Larson, Dragnev, & Trayanova, 2003), and their association to

the effectiveness of defibrillation therapies (F. Fenton et al., 2009; Luther et al., 2011;

N. Trayanova et al., 2006). This knowledge takes high relevance in the clinical manage-

ment of failing hearts, as current clinical guidelines recommend implantable defibrillators

as therapy for primary prevention of sudden cardiac death after MI (Völler et al., 2010;
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Maqsood & Rubab, 2019). The capabilities of using computational models to study the

electrical behavior of infarcted hearts have been demonstrated, but have not been used to

assess the potential role of biomaterial-injection treatments in the arrhythmic behavior of

treated subjects.

In this thesis, we investigated the electrical behavior and arrhythmic potential of swine

hearts treated with biomaterial injections by means of computational modeling. To this

end, we used high-resolution DT-MRI images of swine hearts treated with Algisyl-LVRTM

to create a computational model that represent the biventricular cardiac anatomy as well as

the myocardial fiber orientations. We modeled and parameterized the transition zone from

infarcted tissue towards the healthy tissue and modeled local tissue heterogeneities from

MRI, accounting for injectate volumes. To account for transmural dispersion of repolar-

ization, we divided the heart walls into three layers with endocardial, mid-myocardial, and

epicardial cells, and modeled their distinctive behavior using a biophysical cellular model

with specific properties for each layer. By performing an extensive computational cam-

paign, we quantitatively characterized the electrical restitution properties of treated and

untreated heart models and their performance during VF conditions. To do this, we devel-

oped a numerical method to compute important parameters such as activation time (AT)

distributions, diastolic interval (DI) distributions and filament counting during simulations.

Moreover, to assess the regional dispersion we constructed probability density functions

of the APD restitution curve in different regions of the heart. Finally, we examined how

the passive electrical properties of the injections influenced the long-term dynamics of VF

for the treated heart models. By using computational modeling, this research assesses for

the first time the potential of biomaterial injections to become a substrate for arrhythmia

and their influence in the dynamics of VF.
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5.1. Methods

5.1.1. Geometrical and morphological representation of swine hearts

This study considered one normal control heart (NC), one heart control with ischemic

heart failure without biomaterial treatment (HFC), and one heart with ischemic HF and

biomaterial injections (HFI). These subjects were selected as representative of larger co-

horts considered in a previous morphological study of the effects of fiber remodeling un-

der biogel treatment(K. L. Sack, Aliotta, Choy, et al., 2018). The three selected subjects

included natural geometrical differences due to biological variance and remodeling to is-

chemia. This has been quantified in previous studies which showed local wall thinning

and fiber reorientation due to ischemia, but that the global structure and morphology of

the hearts were not significantly different (K. L. Sack, Aliotta, Choy, et al., 2018). The

injection protocol for the hydrogel delivers a total of 12-14 intra-myocardial injections

(0.3mL each) in a circumferential pattern into the LV free wall during an open chest pro-

cedure. These are administered in roughly 1.5 cm apart and in two rows: one above and

one below the mid-ventricular plane between the base and the apex. The hydrogel, which

accounts for roughly 3% of the total LV wall volume, does not disrupt fiber orientation,

but rather conforms to the native structure it is injected into, forming ellipsoidal shapes

orientated with the local fiber structure (K. L. Sack, Aliotta, Choy, et al., 2018). The so-

lidified injections mitigate the effects of adverse remodeling by anchoring and supporting

the surrounding tissue in the nearby vicinity of the circumferential pattern. A deeper anal-

ysis of therapy efficacy and the mechanism of action in mechanical terms was recently

provided in a recent study (K. Sack et al., in press.).

Subject-specific accurate geometric representations of heart bi-ventricular structure,

infarcted tissue, and biomaterial injections are used as the computational domain for the

numerical simulations (Figures 5.1 and 5.2). Imaging data originates from ex vivo segmen-

tation of high-resolution MRI and DT-MRI of swine hearts. The experimental protocol,
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image acquisition, segmentation process and reconstruction methodology have been de-

scribed previously(K. L. Sack, Aliotta, Ennis, et al., 2018; Choy et al., 2018). In brief,

myocardial infarction was induced by occluding the obtuse marginal branches of the left

circumflex artery. Eight weeks after MI, animals underwent Algisyl-LVRTM injection, and

hearts were excised eight weeks later. Anatomical MRI and DT-MRI were acquired using

a readout-segmented diffusion-weighted spin-echo sequence with 1.0 × 1.0 × 1.0 mm3

spatial resolution.We discretized the heart domains using tetrahedral finite elements, iden-

tifying healthy, infarcted and hydrogel regions based on MRI observations (Figure 5.1).

Following previous works(K. L. Sack, Aliotta, Ennis, et al., 2018), local properties for the

infarcted and healthy tissues are modulated by the volume fraction of healthy tissue. This

volume fraction is represented by the space-dependent scalar function h = h(x) ∈ [0, 1],

where x represents the Cartesian coordinate vector. In particular, h(x) = 0 defines proper-

ties of the infarcted zone (IZ), h(x) = 1 identifies healthy tissue, and 0 < h(x) < 1 defines

the transition zone or gray zone (GZ), where mixed electrical properties of infarcted and

healthy tissue are modeled according to the literature (Mendonca Costa, Plank, Rinaldi,

Niederer, & Bishop, 2018; H. Arevalo et al., 2013). A gray zone ratio (GZR) could also

be computed from this function to characterize the differences in GZ distribution between

each heart under study. Myocardial fiber orientation, based on DT-MRI data from three

different swine hearts, was assigned to the mesh nodes and interpolated inside each fi-

nite element, delivering a continuous spatial vector field representation of the cardiac fiber

orientation f = f(x) for each heart analyzed (K. L. Sack, Aliotta, Ennis, et al., 2018).

To account for transmural dispersion of repolarization, we used a Laplace’s interpolation

method(Perotti, Krishnamoorthi, Borgstrom, Ennis, & Klug, 2015) to divide the heart wall

into epicardial, mid-myocardial, and endocardial layers using a thickness ratio of 2 : 3 : 3,

respectively. Figure 5.3 shows these transmural layers for the three hearts analyzed. The

LVMM surface used in the study of APD distribution was constructed from the Laplace’s

interpolation by creating a mesh at the mid-surface of the mid-myocardial region.
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(a) (b) (c)

Figure 5.1. Heart geometry and fiber directions: (a) normal control (NC)
heart, (b) heart-failure heart (HFC), (c) heart-failure heart treated with
biomaterial injections (HFI). The geometry was reconstructed from high-
resolution magnetic-resonance images
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Figure 5.2. Detailed views of the heart-failure treated heart (HFI) in which
biomaterial injection distribution is depicted in blue and infarcted regions
are depicted in gray. Biomaterial injections are dispersed within the mid-
myocardial left ventricle. Some injections are placed within the NZ region,
and others are placed within the intersection of IZ and NZ regions.

5.2. Numerical modeling of cardiac electrical activity

The transmembrane ionic current is modeled according to the model proposed by ten

Tusscher and Panfilov (TP06) (ten Tusscher & Panfilov, 2006) for ventricular human cells.



56

This model is fitted to reproduce APD restitution curves measured in humans, and have

an extensive description of the intracellular calcium dynamics. It has been broadly used

for the study of reentrant arrhythmia and electrical instability at cellular and tissue levels.

In this model the ionic current density, defined as the sum of all transmembrane current

densities, is given by

Is = INa+IK1 +Ito+IKr+IKs+ICaL+INaCa+INaK+IpCa+IpK+IbCa+IbNa, (5.1)

where INaCa is Na+/Ca2+ exchanger current, INaK is Na+/K+ pump current, IpCa and

IpK are plateau Ca2+ and K+ currents, and IbCa and InNa are background Ca2+ and Na+

currents. One advantage of using this model is that, by changing the parameter values it

allows for the representation of transmural heterogeneity observed in myocardial tissue.

To this end, the cardiac wall was divided into epicardial, mid-myocardial and endocardial

layers using the distribution ratio 2 : 3 : 3 as adopted in previous works (Corrias et al.,

2010), see Figure 5.3. The set of parameters corresponding to each layer, which were used

in this work for the simulation of the restitution protocol, have been reported elsewhere

(ten Tusscher & Panfilov, 2006). For the simulation of VF, the parameter values reported

in (Tusscher et al., 2007) were employed, which are included in Table 6.2. Initial values

for the gating and internal variables are included in Table 6.3.

Section GKr GKs GpCa GpK τf Inactivation
Midmyocardium 0.172 0.0515 1.8545 0.00073 ×2

Epicardium 0.172 0.2205 1.8545 0.00073 ×2
Endocardium 0.172 0.2205 1.8545 0.00073 ×2

Table 5.1. Parameter values used in VF simulations with the TP06 model.
Parameters not included in this table take the same values reported in (ten
Tusscher & Panfilov, 2006). Parameters that where modified were the max-
imum conductance of the IKr,IKs, IpCa and IpK currents. The time con-
stant of the f gate was also modified.



57

V −85.23 h 0.7444 fcass 0.9953 CaSR 3.64
Xr1 0.00621 j 0.7045 s 0.999998 Cass 0.00036
Xr2 0.4712 d 3.373× 105 r 2.42× 10−8 Nai 8.604
Xs 0.0095 f 0.7888 Cai 0.000126 Ki 136.89
m 0.00172 f2 0.9755 R̄ 0.9073

Table 5.2. Initial conditions used for the TP06 model
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Figure 5.3. Hearts ventricles sections showing the endocardium (Endo),
mid-myocardium (Mid), and epicardium (Epi) regions in (a) the NC model,
(b) the HFC model, and (c) the HFI model. These domains are defined
using a regional segmentation technique based on Laplace interpolations
(Perotti et al., 2015). Each domain considers a specific cellular model for
ionic transmembrane current. (d) Action potentials for the three type of
cells considered in the construction of the heart models
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The governing equations described in 3.57 are discretized in space using a standard

Galerkin finite-element scheme (D. Hurtado & Henao, 2014), where linear tetrahedral el-

ements are employed to approximate the transmembrane potential field. Time integration

was performed using an operator splitting method (Sundnes et al., 2006). All numeri-

cal implementations were developed in Python, using the FENICS Project software and

the Cbcbeat software collection in an in-house parallel computing platform. Given the

well-known dependency of the conduction velocity to the mesh size, conduction velocity

convergence was carried out for linear tetrahedral elements (Figure 5.4). In particular,

we found that a characteristic mesh size of ≈ 0.8 mm provides a good approximation of

the sought conduction velocity (≈ 0.67 mm/ms) at a normal pacing. This implies a set

of nonlinear equations with over 7 million degrees of freedom. Time integration of gat-

ing evolution equations at quadrature points is performed using the explicit Rush-Larsen

method with a time step of dt = 0.1 ms. Overall, 1 second of simulation required about

4.8 hours of computation using 62 CPU’s within a parallel computing platform AMD

OpteronTM Processor 6378. For the APD restitution estimation, this meant a total of 81.6

hours for each heart, whereas VF simulations involved around 48.0 hours of computation

for each heart.

selected nodes                     mesh detail

Figure 5.4. Detail of the nodes selected to compute the APD restitution
curve (black dots) during simulation time, thereby reducing computational
costs during post-processing. Regional distribution of the APD restitution
is computed using the information taken from this set of nodes, which are
selected based on unrefined meshes.
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We developed in-house routines to post-process the simulation results to compute pa-

rameters such as activation (AT) and repolarization times (RT), during numerical simula-

tions with a time step dt∗ = 5dt over selected nodes in the finite element mesh (Figure

5.4). The nodes were selected using information of unrefined meshes. This setup reduced

computational costs, especially for post-processing purposes such as the APD restitution

curve. Given the complex geometry of each model, we also performed region labeling for

the different heart surfaces by using a Laplace interpolation approach. In particular, we

computed APD restitution curves in the LV endocardium (LV), RV endocardium (RV),

left ventricle mid-myocardium (LVMM), and epicardium (EPI) on a simple subdivision

of the heart geometric features directly during simulations. Accordingly, we produced a

probability density function (PDF) using a Gaussian kernel density approach to analyze

the distribution of the APD restitution in these regions.

5.2.1. Simulation protocols and analysis

To compute the APD restitution distribution, the three heart models were paced at the

apex location (see star in Figure 5.5) 32 times with varying pacing frequency. The total

simulation time reached 17 s of physical time for each geometry model, with stimulus

value of 40mV/ms and duration of 2ms. At each pacing cycle length (CL), the APD

was computed locally to obtain a regional distribution of the restitution curves. In par-

ticular, APD was computed for each selected node (see Figure 5.4) of the finite-element

discretization and the PDF was estimated from this data (see Figure 5.6). For comparison

purposes, the PDF was examined within the EPI, LV, RV and LVMM surfaces.

An S1-S2 protocol was implemented to induce VF in each heart model. The S1 stim-

ulation site was the septum LV endocardium, while the S2 stimulus was delivered at the

posterior zone of the epicardium, near the tail of the S1 wave. The timing between S1 and

S2 was fine-tuned to obtain excitation wave-break, formation of a scroll-wave and evolu-

tion into VF. A vulnerable window was measured as the elapsed time between the S1 and
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S2 pulses for which a sustained VF was achieved (> 2s). Given the structural differences

(scar distribution) of each heart, different values for the S2 stimulus were needed. The S2

stimulus value was 300mV/ms (7.5 times the S1 stimulus value) for the NC heart, while

for both HFC and HFI hearts the S2 stimulus value was around 220mV/ms (5.5 times

the S1 stimulus value). The vulnerable window was 408ms, 406ms and 423ms for the

NC, HFC and HFI heart, respectively. The complexity of activation patterns developed

during VF dynamics was quantified by computing the number of rotors in time. These ro-

tors are 3D scroll waves that rotate around a filament (Winfree, 1994; Panfilov & Pertsov,

2001b). Scroll wave filaments were distinguished using the algorithm proposed by Fenton

and Karma (F. Fenton & Karma, 1998). In particular, a singular point is found by com-

puting the intersection of an isopotential line (-70 mV) with the condition dVm/dt = 0. In

the computational model here implemented, each singular point is related to a single finite

element. Afterwards, scroll wave singular line, e.g. filament, was identified and labeled

by using a density-based spatial clustering algorithm (DBSCAN)(Ester et al., 1996). This

method allows one to group elements that are closely packed together forming a specific

filament. Each group (filament) formed is classified, updated and counted every 10ms of

physical time directly during simulations.

The electrical properties of alginate hydrogel implants have not been reported to date,

thus in the previous experiments we have assumed that its conductivity is zero. To assess

the effect of gel conductivity on VF sustainability in the treated heart, we performed a

sensitivity analysis where the biogel is assumed to behave as a passive conductor. VF

simulations were performed assuming an isotropic conductivity in the gel of the form

Dgel = cd⊥ in Ωgel, (5.2)

where c is a conductivity ratio that modulates the conductivity of the gel based on the

value used for transversely-isotropic propagation in normal cardiac tissue. Accordingly,

for values of the conductivity ratio c < 1 the biomaterial region is less conductive than

the normal tissue and for values of conductivity ratio c > 1 the biomaterial region is more
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conductive than the normal tissue. We performed simulations for c = {0.0, 0.5, 1.0, 1.5},

and computed the number of rotors in each case to evaluate the spatiotemporal dynamics

during VF. Pseudo-electrocardiograms (EGCs) were computed by estimating the surface

potential using the approximation(Plonsey & Barr, 2007)

Ve = −
∫

Ω

∇Vm · ∇
1

||ρ||
dΩ, with ρ = |xe − x|. (5.3)

Here, ρ ∈ R3 defines the distance from each point of the heart to a point placed at some

distance from the ventricles (i.e., electrode location). This position was established at

2 cm away from the left ventricular wall, as is commonly defined to mimic pre-cordial

leads to study T waves and QT intervals(Sahli Costabal et al., 2018). ECG signals were

analyzed using Fourier Transform, from which power spectra were constructed, and the

fundamental frequency was identified.

5.3. Results

A restitution protocol simulation was performed in three different computational heart

models: a normal control heart (NC), a heart control with ischemic heart failure without

biomaterial treatment (HFC), and a heart with ischemic HF and biomaterial injections

(HFI). Figure 5.5 shows isochrone maps of the AT and APD, corresponding to the fifth

stimulus delivered for all the three hearts. The spatial distributions of AT in the LV in all

three cases look smooth and display a clear gradient along the apicobasal direction. The

APD maps in the normal heart display a transmural heterogeneity associated to the three

layers with different cell types included in the model, see Figure 5.3. The HFC and HFI

cases display a stronger transmural dispersion in APD, with lower APD values towards

the epicardium and endocardium than the NC case.

Given the heterogeneous distribution of the APD within the myocardium, the rela-

tion between the APD and the cycle length (CL) was computed for the surface of the

epicardium (EPI), the left-ventricle endocardium (LV), right-ventricle endocardium (RV)

and left-ventricle mid-myocardium (LVMM). Figure 5.6 displays these regions, as well as
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Figure 5.5. Spatial distribution of activation time (AT) and action-potential
duration (APD) as measured after the fifth stimulus delivered at the apex.
(Top row) computational model showing the biventricular geometry and
cutting planes, with stimulation sites indicated with a star. (Middle row)
AT maps for the selected cutting planes. (Bottom row) APD maps for the
selected cutting planes. Infarcted zones (IZ) and bio-gel injections (GEL)
are indicated with arrows.

the empirical probability density functions of the restitution curves on each of these sur-

faces. Each panel of Figure 5.6 also shows the grey zone ratio (GZR), defined as the area

of grey zone over the total area of the surface under consideration. The GZR was large

(> 40%) in the LVMM and EPI surfaces of the HFI heart, and in the LVMM surface of

HFC heart. The GZR was low (≤ 10%) in all other surfaces, except for the EPI surface of

the HFC heart. In all cases, restitution curves monotonically converged to APD = 250 ms

as the CL approached a value of 350 ms. In general, dispersion in APD increased as CL

increased, with the largest dispersion found in the LVMM region in all three cases studied
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for high CL values. Figure 5.7 shows APD empirical probability density functions for the

particular case of CL= 370 ms. Qualitatively, all three heart models resulted in similar

distributions of APD for the EPI and LVMM regions, while marked differences in the

distribution shape were found for the NC case when compared to the HFC and HFI cases

in the LV and RV regions. This trend is confirmed by comparing median values of the

distributions, see Supplementary Table 1. A similar analysis on the distribution of APD

for higher CL values confirms this trend, see Supplementary Figure 1.

Figure 5.6. Restitution curve of the normal (NC), untreated (HFC) and
treated (HFI) heart for the epicardial (EPI), left ventricle (LV), right ventri-
cle (RV) and left ventricle mid-myocardium (LVMM) regions. Gray zone
ratio (GZR)is reported for the HFI and HFC hearts. In general, higher dis-
persion of APD is found in the LVMM region.
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Figure 5.7. Empirical probability density functions of regional APD at
CL= 370 ms. Median values are plotted with vertical lines. All three mod-
els result in similar distributions for the EPI and LVMM, while the NC case
markedly differs from the HFC and HFI cases in the LV and RV regions.

We studied VF sustainability in all hearts via an S1-S2 stimulation protocol for in-

duction of VF. Figure 5.8 shows the depolarized (excited) tissue during the temporal de-

velopment of arrhythmia in the HFI model, highlighting how the number of scroll waves

rapidly increases as the time progresses. To induce VF, increasing levels of injected cur-

rents were employed on the different hearts until multiple scroll waves were achieved. In

our study, the ratio of the NC, HFC and HFI S1-S2 stimuli amplitude was 15:11:11, and

the vulnerable window was 408ms, 406ms and 423ms for the NC, HFC and HFI subjects,

respectively. To provide a quantitative indication of VF dynamics and sustainability, we

assessed the time evolution of scroll waves by identifying the total number of 3D filaments

at each time instant during a time window of 10 seconds, see Figure 5.9. In all cases, the

number of filaments stabilized after roughly 2500 milliseconds. After that time, the NC,

HFC and HFI subjects resulted in 27, 34 and 40 filaments, respectively.

To understand the potential impact of the electrical properties of gel injectates in VF

sustainability, we performed a sensitivity analysis where the number of filaments during

VF was studied for different levels of gel conductivity. We considered four levels of gel

conductivity by setting c = {0.0, 0.5, 1.0, 1.5}, where c is defined as the ratio between the
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Figure 5.8. Temporal evolution of ventricular fibrillation in the HFI heart.
Electrically-active regions (Vm > −75.0mV ) are depicted according to
the color scalebar. IZ is depicted in grey, and biomaterial injections are
depicted in dark green. The S1 stimulation site is the septum LV endo-
cardium, while the S2 stimulus is delivered at the posterior zone of the
epicardium. Rotors rapidly increase in time, and constantly interact with
regions where biomaterial injections are located.

Figure 5.9. Evolution of the number of filaments for all three hearts (solid
lines). Dashed lines correspond to the time-averaged number of filaments
after the first 2500 miliseconds. The time-averaged number of filaments in
the NC, HFC and HFI subjects was 27, 34 and 40, respectively.

gel conductivity and the normal tissue conductivity. Figure 5.10a shows the time evolution

of the number of filaments for the HFI model where stabilization is achieved after 2500

milliseconds, resembling the convergent behavior observed in Figure 5.9. The average

number of filaments after 2500 milliseconds found in these simulations was 40 for the

cases of c = {0.0, 0.5} and 38 for the cases of c = {1.0, 1.5}. Pseudo-ECGs for all cases
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are reported in Figure 5.10b, where the fundamental frequency was 4.3 Hz in all cases,

regardless of the biogel conductivity assumed. The volume of the injected biomaterial

represented roughly 3% of the heart total conductive volume.

(a) (b)

Figure 5.10. (a) Time evolution of the number of filaments during VF sim-
ulations of the HFI model for varying levels of electrical conductivity of
the gel injections, parameterized by the value of the c ratio. The average
value after 2500 miliseconds is depicted with dashed lines. There are not
substantial differences between each case: the average number of filaments
after 2500 milliseconds found in these simulations was 40, 40, 38 and 38
for the cases of gel conductivity ratios of 0.0, 0.5, 1.0 and 1.5, respectively.
(b) Pseudo-ECG computed for each case.

5.4. Discussion

In this work, we develop computational models of the electrical behavior of the heart

to study of the influence of biomaterial injection therapy on the arrhythmic behavior of

failing hearts. We successfully developed a robust and computationally-efficient method

that allows high-resolution subject-specific MRI and DT-MRI data to be used to evaluate

the regional distribution of the APD restitution curve and the number of filaments formed

during VF of control and treated hearts. We note that our study represents a proof-of-

concept study with only one subject per group, and therefore is not sufficiently powered to
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make inter-group conclusions. Despite this limitation, it represents a unique effort to un-

derstand how the dispersion of repolarization and VF dynamics behavior change in failing

hearts treated with alginate hydrogel injections, as no electrophysiological studies for this

treatment have been reported to date.

Simulations of standard restitution protocols suggest that there are important differ-

ences in the spatial distribution of AT and APD between the normal heart and both hearts

with ischemic HF, treated and untreated. Spatial heterogeneity in the APD was observed

in all three hearts, with a marked transmural gradient that can be explained by the use

of different ionic cellular models for the endocardium, mid-myocardium and epicardium

regions in the heart, see Figure 5.5 and Figure 5.3. The regional heterogeneity in APD

can be also confirmed from the empirical probability density functions sampled from the

restitution curves in selected regions in the heart, see Figure 5.6. In all cases, the largest

APD mean values and dispersion were found at the LVMM region, which can be partly

explained by the larger APD displayed by mid-myocardial cells, see Figure 5.3. Despite

the fact that the LVMM presented the highest ratios of gray zones in HF hearts, the APD

probability distributions did not seem to be affected when comparing normal and failing

hearts, a trend that is confirmed when analyzing the APD distributions for different values

of CL during restitution protocols in this same region, see Figure 1 in the Supplementary

Materials. In contrast, the LV and RV regions in the HFC and HFI subjects markedly

differed from the NC subject.

In the LV region, failing hearts displayed a bimodal distribution with higher dispersion

(standard deviation) and median APD than the normal heart, which displayed a unimodal

distribution. An inverse trend was found in the RV region, where the normal heart resulted

in a bimodal distribution with higher median and dispersion than both the untreated and

treated failing hearts, which displayed unimodal distributions, see Table 1 and Table 2 in

the Supplementary Materials.
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These findings suggest that, while the development of HF does result in marked changes

in the dispersion of repolarization, the use of biogel injection treatment does not seem to

affect the spatial dispersion of APD in failing hearts. Further, we attribute the differences

in dispersion of repolarization in failing hearts when compared to the normal case to the

remodelling that typically takes place after MI. This conclusion is supported by previous

work using 2D simulations of cardiac tissue under an S1-S2 protocol, where the dispersion

of APD was correlated with the formation of abnormalities in the electrical activity, such

as VT. In these simulations, regions with altered restitution properties co-localized with

zones with wave break and reentry (Clayton & Taggart, 2005; Weiss et al., 2010). Figure

5.6 shows that the restitution curve distribution at small CL values preserves a similar be-

havior for all hearts. This is an important observation since an anomalous behavior of the

restitution curve at lower CL values is related to the formation of action-potential alter-

nants and consequent wavebreaks (F. H. Fenton & Karma, 1998; F. H. Fenton & Cherry,

2002; Cherry & Fenton, 2004). For instance, experimental studies in human hearts with

different stages of cardiomyopathy have shown that altered dynamics of the restitution

curve at high pacing frequencies lead to electrical instabilities (Koller et al., 2005).

We have studied the VF dynamics in normal, untreated HF and treated HF subjects. In

all three cases, we reached conditions for inducing and sustaining fibrillation by varying

the location and duration of the excitation. We note that the injected current needed to

induce VF in the NC case was considerably higher than in the HFC and HFI cases, which

is consistent with experimental and clinical observations. During the sustained fibrilla-

tion regime, the average number of filaments in the HFC and HFI hearts stabilized around

34 and 40, respectively (Figure 5.9). The NC heart reaches a markedly lower value of

27 filaments during sustained VF. These results show that untreated and treated failing

hearts resulted in increased VF sustainability when compared to a normal heart. Further,

the larger number of filaments in the HFI subject compared to the HFC subject suggests

that the biogel treatment can result in higher VF sustainability than that expected for un-

treated failing hearts. This observation has important implications in the development
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of biomaterial-based treatments, especially when considering defibrillation procedures.

Computational investigations have shown that a successful defibrillation process requires

less energy when fewer filaments are present within the tissue (Plank, Leon, Kimber, &

Vigmond, 2005). Since the HFI resulted in a larger number of filaments than the HFC

heart, higher defibrillation-energy levels may be required in treated hearts (Luther et al.,

2011). Since ischemic HF biomaterial-treated hearts are already at high risk of developing

arrhythmias, these results provide crucial knowledge to be considered in the experimental

design of defibrillation treatment of hearts with gel injectates.

A mechanistic explanation of the higher sustainability of VF observed in treated and

untreated hearts can be supported by the changes in dispersion of repolarization resulting

from remodeling. Post-MI HF results in marked alterations in key structural features of

the heart such as cardiomyocyte principal orientation as well as changes in the cardiac

volume (K. L. Sack, Aliotta, Choy, et al., 2018). These features induce a higher dispersion

of repolarization, materialized in our case in critical changes in the distribution of APD in

the RV and LV regions. Bimodality of the LV provides a wider substrate for discordant

alternans and wavebreaks because of the larger volume of conductive mass available in the

LV that can accommodate a large number of spiral waves (Gray et al., 1995). We remark

that such an information is not directly inferrable from classical restitution curves, usu-

ally quantified only at specific locations, but it is crucial to connect the analysis of APD

restitution distributions with an intrinsic spatial feature (electrotonic and memory effects)

given by the spiral core filament in our analysis (Cherry & Fenton, 2004; ten Tusscher &

Panfilov, 2006; Clayton et al., 2011).

In the first set of simulations, we treated biomaterial injections as non-conductive re-

gions within the myocardium, which may not be the case for a biocompatible material.

To assess the validity of this assumption, we developed a sensitivity analysis study where
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injections within the myocardium were varied to understand the effect of gel conductiv-

ity in our results. We found that gel conductivity does not alter VF dynamics, as shown

in Figure 5.10a. This result is further supported by the pseudo-ECG simulation reported

in Figure 5.10b, where we found a fundamental frequency that does not depend on the

level of gel conductivity. Further investigations concerning the conductivity properties of

biomaterial injections are needed in order to fully characterize their significance in differ-

ent electrophysiological models and multiple clinical conditions. For instance, biohybrid

hydrogels composed of collagen, alginate and poly:polystyrene sulfonate have shown to

be electroconductive, preventing arrhythmia in cardiac tissue constructs from neonatal rat

hearts (Roshanbinfar et al., 2018).

This work has limitations that should be addressed in future extensions. An important

limitation is that only one subject per group was considered, which is largely justified by

the high computational burden, both in wall-clock time and in required infrastructure, that

each simulation demands. While each group necessitates a larger population in order for

the results to be statistically meaningful, we remark that the aim of this work is to present a

proof-of-concept study that demonstrates the feasibility of performing pre-clinical studies

of biomaterial injection in-silico. In particular, our results can be used as preliminary data

in the design of future computational studies. In such an effort, the electrophysiological

cellular model will require dedicated measurement and fine-tuning of the restitution pa-

rameters to set the spatiotemporal dynamics within a patient-specific framework. Further,

it is worth noting that the behavior of interfaces between healthy myocardial tissue and gel

biomaterials necessarily imply alterations in the local reaction dynamics and conduction

properties, which currently remains an open topic from the experimental and theoretical

perspectives (Choy et al., 2018). These alterations may resemble the situation of border

zones located near the boundary of the IZ, where strong cardiac remodelling is observed.

These border zones reportedly play a meaningful role in the propagation of action po-

tentials, since they may promote the formation of abnormalities such as action potential

alternans (Gizzi et al., 2013) and arrhythmias (Mendonca Costa et al., 2018). While recent
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multiscale models of cardiac tissue have been able to theoretically link the remodelling of

gap-junction conductivity with reduced conduction velocity in cardiac tissue (D. E. Hur-

tado, Jilberto, & Panasenko, 2020), further studies should quantify in biophysical terms

the level of remodelling found at the gel-intact tissue interface, in order to incorporate

additional nonlinearities in the emerging cardiac behavior (D. Hurtado, Castro, & Gizzi,

2016; Cherubini, Filippi, Gizzi, & Ruiz-Baier, 2017; Lenarda, Gizzi, & Paggi, 2018; Lop-

pini et al., 2019). Another limitation is the absence of electromechanical coupling in our

simulations. Because Algisyl-LVRTM injection treatments are specifically developed to

deliver passive mechanical support to the ventricle, the electromechanical coupling plays

a decisive role to examine the overall performance of treated hearts. Computational mod-

els that incorporate electromechanical coupling have become increasingly relevant given

the role of deformation in the local electrical behavior and spatial propagation of electri-

cal impulses, particularly in VF dynamics (Land & et al., 2015; D. E. Hurtado, Castro,

& Madrid, 2017; Quarteroni et al., 2017; Costabal, Concha, E.Hurtado, & Kuhl, 2017;

Christoph et al., 2018). Therefore, future efforts should include electromechanical cou-

pling in order to better characterize the behaviour of biomaterial-treated hearts, at the

expense of increasing the computational costs.

Future work may help to elucidate how biomaterial injection treatments can be en-

hanced such that the overall function of HF hearts could be improved without affecting

their electrical performance. For instance, future efforts could focus on understanding

how the distribution of injections can affect the electrophysiological behavior of treated

hearts. Recent studies show that the volume and location of biomaterial injections corre-

late with the reduction of pathological conditions within the heart (Wall, Walker, Healy,

Ratcliffe, & Guccione, 2006). Another avenue of research is to extend the current simu-

lations to include electrophysiological models that could take into account the multiscale

nature of the myocardial tissue, and muscle contraction.



72

6. ON THE EFFECT OF IONIC MODELING IN THE DISPERSION OF REPO-

LARIZATION AND SUSTAINABILITY OF VENTRICULAR FIBRILLATION:

A COMPARISON STUDY
This chapter is an adapted transcription of the article “On the Role of Ionic Model-

ing in the Signature of Cardiac Arrhythmias for Healthy and Diseased Hearts” submitted

to the Special Issue “Mathematical Modeling in Biomechanics and Mechanobiology” of

Mathematics 2020, 8(12), 2242.

Recent developments in computational modeling of the heart’s bio-electrical activity

have established the most highly detailed example of a virtual organ (N. A. Trayanova,

2011; N. A. Trayanova & Chang, 2016a; Dierckx et al., 2019). These advances are

due to the significant progress achieved in cardiac cell modeling, corroborated with ex-

perimentation and clinical practice. Besides, due to the continuous increment in com-

putational power, whole-heart electrical models have shown promising translational out-

comes, improving the general understanding of the heart function, its pathologies, and

therapies (Quarteroni et al., 2017; Kaboudian, Cherry, & Fenton, 2019; Kariya et al.,

2020; Viola, Meschini, & Verzicco, 2020; Ramirez, Gizzi, Sack, Guccione, & Hurtado,

2020). Still, critical modelling challenges arise when local heterogeneities at different

spatio-temporal scales are taken into account (D. Hurtado et al., 2016; Loppini et al.,

2018, 2019; Cusimano, Gizzi, Fenton, Filippi, & Gerardo-Giorda, 2020; Propp, Gizzi,

Levrero-Florencio, & Ruiz-Baier, 2020; D. E. Hurtado et al., 2020).

Various approaches have been proposed to simulate complex electrical behaviour of

the heart, e.g., ventricular arrhythmias. First, detailed cell models, with highly accurate

and validated biophysical relationships representing the ground truth, have been incorpo-

rated to improve the physiological relevance of in silico cardiac predictions. Nonetheless,

these approaches may result computationally demanding, further requiring advanced opti-

mization tools (Barone et al., 2017; Peirlinck et al., 2019; Barone, Gizzi, Fenton, Filippi,

& Veneziani, 2020; Niederer et al., 2020). Alternatively, reduced phenomenological mod-

els were developed, preserving the main features of physiological approaches, but still

allowing for a robust in silico investigation. Depending on the application at hand, one of
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the two options is favorable, identifying the specific characters that minimize alterations

of the final results (Clayton et al., 2011). This is especially true in the study of abnor-

mal electrical waves, e.g., ventricular tachycardia (VT) and ventricular fibrillation (VF),

in healthy and diseased conditions (Ten Tusscher et al., 2009).

The computational cardiology literature is populated by a plethora of biophysical mod-

els that describe the electrical behavior of the human myocardium. A detailed description

of ion channels, pumps, and exchangers is usually included to explain experimental ob-

servations (F. H. Fenton & Cherry, 2008). However, many parameters are highly difficult

or nearly impossible to measure in vivo, and different formulations have been shown to

replicate similar dynamics. For example, the O’hara Rudy dynamic (Ord) model (41 vari-

ables, 16 parameters) and the Ten Tusscher-Panfilov 2006 (TP06) model (19 variables, 48

parameters) produce similar electrical behaviors (O’Hara, Virág, Varró, & Rudy, 2011;

ten Tusscher & Panfilov, 2006; Abbasi & Clayton, 2013). In addition, the multiple time

scales involved in the formulation, from ms to s, make the resulting system of equations

stiff and challenging to solve numerically. Alternatively, phenomenological models derive

from the overall description of cumulative inward and outward currents across the cell

membrane and rely on a smaller set of variables. For instance, the Fenton-Karma (FK)

model (3 variables, 14 parameters) and its later extensions (minimal model–4 variable, 28

parameters) (F. Fenton & Karma, 1998; Bueno-Orovio et al., 2008) are well-known in-

stances of simplified phenomenological descriptions able to reproduce several dynamical

properties of the cardiac electrical activity: threshold of excitation, maximum upstroke

velocity, action potential (AP) shape and morphology, restitution properties, action po-

tential duration (APD) and alternans dynamics (F. H. Fenton, Cherry, Hastings, & Evans,

2002; F. H. Fenton, Gizzi, Cherubini, Pomella, & Filippi, 2013). Increased numerical effi-

ciency is enforced, lacking detailed ionic descriptions, although well-suited for large-scale

whole-heart numerical studies.

Cardiac arrhythmias, such as VT and VF, have been studied in detail using physiologically-

based computational approaches. Various cardiac diseases, such as long-QT syndrome or
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Brugada Syndrome, have been elucidated using advanced computational techniques (Ten

Tusscher et al., 2007; Zhou et al., 2018; Roberts et al., 2012). Besides, computational car-

diology modeling has been used to explain the relation between AP shape changes with the

likelihood of a reentrant arrhythmia (see e.g. (Clayton et al., 2011) and references therein).

Subject-specific whole-heart computational models explored arrhythmia risk stratification

in patients with myocardial infarction (MI) (N. A. Trayanova & Chang, 2016b; Ramirez

et al., 2020), and complex VF dynamics have also been characterized in terms of scroll

wave filaments through detailed ventricular models (Tusscher et al., 2007). Likewise, the

study of AP vortex dynamics has been conducted via phenomenological descriptions in

whole-heart simulations (Clayton & Holden, 2004; Cherry & Fenton, 2008).

Regardless of such rich literature, in this chapter, we propose a novel extended compar-

ison among phenomenological and biophysically-based approaches considering subject-

specific whole-heart geometries in healthy and MI cases. In particular, we develop a ro-

bust finite element computational framework investigating similarities and differences be-

tween FK and TP06 formulations during physiological and pathological electrical dynam-

ics. High-resolution geometry models, reconstructed from DT-MRI swine hearts dataset,

are used to evaluate statistical descriptions of AP restitution properties and VF dynam-

ics. We consider the different local electrical properties of the healthy and infarcted my-

ocardium (epicardium, mid-myocardium, endocardium, and transition zones or grey zones

(N. A. Trayanova & Chang, 2016b; Gokhale, Medvescek, & Henriquez, 2017; Zhou et al.,

2018)), further including image-based myocardial fiber orientations. We compute classi-

cal features of cardiac excitation, e.g. CV and APD restitution curves, also generalizing

APD measures over specific anatomical surfaces introducing a novel statistical descrip-

tion. Moreover, we quantify multiple well-recognized VF signatures, such as the number

of filaments and pseudo-ECG fundamental frequency during sustained VF. We aim to

show that FK ionic model can reproduce VF signatures predicted by TP06 model in both

normal and failing hearts using a fraction of the computational effort, despite the apparent

differences in repolarization.
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6.1. Methods

6.1.1. The Fenton-Karma model

The Fenton-Karma (FK) model is a 3-variable phenomenological model developed to

study arrhythmogenesis in cardiac tissue reproducing restitution properties and spiral wave

dynamics by using a minimal set of field variables (F. Fenton & Karma, 1998). Model

equations are formulated in dimensionless form, defining the nondimensional membrane

potential u = (V −V0)/(Vfi−V0), and scaling the ionic currents as JX = IX/(Cm(Vfi−

V0)), with units of inverse of time. According to the monodomain approach, Eq.s (3.57)

becomes

∂u

∂t
= ∇ · (D∇u)− Jfi(u, v)− Jso(u)− Jsi(u,w) + Jstim, (6.1a)

dv

dt
= H(uc − u)(1− v)/τ−v −H(u− uc)v/τ+

v , (6.1b)

dw

dt
= H(uc − u)(1− w)/τ−w −H(u− uc)w/τ+

v , (6.1c)

where

Jfi(u, v) = −v H(u− uc)(1− u)(u− uc)/τd, (6.2a)

Jso(u) = uH(uc − u) +
1

τr
H(u− uc)/τ0, (6.2b)

Jsi(u,w) = −w(1 + tanh[k(u− usic )])/(2τsi), (6.2c)

Jstim = Jstim(t) represents the external electrical impulse, and H(x) is the Heaviside

step function defined as H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0. Different

parametrizations of the FK model have been proposed (Courtemanche et al., 1998; Oliver

& Krassowska, 2005). In the present contribution we refer to (F. Fenton & Karma, 1998),

with model parameters provided in Table 6.1 below.
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uc uv ḡfi τ−v1 τ−v2 τ+
v τ0 τr k τsi ucsi τ−w τ+

w Cm
0.13 0.04 4 1250 19.6 3.33 12.5 33.33 10 29 0.85 41 870 1

Table 6.1. Parameters used in the FK electrophysiologycal model.

6.1.2. The TenTusscher-Panfilov 2006 model

The TenTusscher-Panfilov 2006 (TP06) model is a 19-variable physiological model

that includes an extensive description of the intracellular calcium dynamics and well-

reproduces cardiac action potentials of human epicardial, endocardial, and mid-myocardial

cells (ten Tusscher & Panfilov, 2006). In this case, the sum of ionic currents is defined as

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa (6.3)

+INaK + IpCa + IpK + IbCa + IbNa + Istim , (6.4)

where INaCa is theNa+/Ca2+ exchanger current, INaK theNa+/K+ pump current, IpCa

and IpK are the Ca2+ and K+ plateau currents, and IbCa and InNa are the background

Ca2+ and Na+ currents. The description of each current and related gating variables are

provided in Table 6.2 together with model parameters and initial conditions in Tables 6.2

and 6.3.

Section GKr GKs GpCa GpK τf Inactivation
Midmyocardium 0.172 0.0515 1.8545 0.00073 ×2

Epicardium 0.172 0.2205 1.8545 0.00073 ×2
Endocardium 0.172 0.2205 1.8545 0.00073 ×2

Table 6.2. Parameter values used during VF simulations for the TP06
model. Parameters not included in this table take the same values reported
in (ten Tusscher & Panfilov, 2006). Modified parameters are the maximum
conductance of the IKr,IKs, IpCa and IpK currents. The time constant of
the f gate was also modified.

Layer-specific electrophysiological properties are included in this model through the

transient outward and slow delayed rectifier currents. In particular, epicardial cells show
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V −85.23 h 0.7444 fcass 0.9953 CaSR 3.64
Xr1 0.00621 j 0.7045 s 0.999998 Cass 0.00036
Xr2 0.4712 d 3.373× 105 r 2.42× 10−8 Nai 8.604
Xs 0.0095 f 0.7888 Cai 0.000126 Ki 136.89
m 0.00172 f2 0.9755 R̄ 0.9073

Table 6.3. Initial conditions used for the TP06 model

higher Ito current (via Gto) and higher inactivation recovery (via τs). Differently, mid-

myocardial cells are characterized by a lower IKs current.

6.1.3. Stimulation protocols and post-processing

We compute APD restitution distribution for both ionic models by applying repetitive

electrical stimulations at the apex of the bi-ventricular heart models (see S1 location in

Fig.6.1) with varying pacing frequency. The total stimulation time corresponded to 17 s

of physical time (32 electrical stimulations) for each case. At every pacing cycle length

(CL), the APD was computed locally to obtain a regional distribution of the restitution

curves. An empirical probability distribution function (PDF) was estimated then using

APD data extracted from selected nodes of the finite-element discretization. Activation

and repolarization times were obtained from unrefined mesh data and interpolated over

the finite element discretization.

We further implemented an S1-S2 stimulation protocol to induce a sustainable VF

within each bi-ventricular heart geometry. For the TP06 model, we identified the S1

stimulation site on the LV endocardium and delivered the S2 stimulus on the posterior

epicardium layer. For the FK model, the S1 stimulation site was identified on the apex,

while the S2 stimulus was delivered on the anterior epicardial surface (see Figure 6.1).

The S2 stimuli were selected on different locations depending on the ionic model, given

the differences in conduction velocity. The effects of the initial site on VF formation have

been studied previously in dog and human heart geometries, concluding that although the

stimulation site may affect VF onset, the number of filaments (e.g. VF signatures) reach
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the same steady-state value (Clayton & Holden, 2004; Ten Tusscher et al., 2009). We

calculated the vulnerability window for each electrophysiological model by measuring

the elapsed time between the S1 and S2 pulses for cases that resulted in sustained ven-

tricular fibrillation (i.e., VF duration > 2s). To further characterize VF dynamics, we

computed scroll wave filaments evolution during 10 s of physical time with a time step

of 10 ms. After identification of the intersection between an isopotential line (−70 mV)

and the constraint dVm/dt = 0, each intersection was related with a finite element and fil-

aments were labeled and counted using a density based clustering algorithm. Finally, to

assess the global behavior of cardiac simulations, pseudo-ECG were computed to study

VF signatures such as the fundamental frequency for all of the ionic models analyzed

Figure 6.1. Location of the S1 and S2 stimuli for the different electrophys-
iological models used in this study.

6.2. Results

6.2.1. Dispersion of APD restitution

APD restitution curves were computed for the two electrophysiolgical models over

four selected cardiac surfaces (see Fig. 6.2a): epicardium (EPI), left ventricular endo-

cardium (LV), right ventricular endocardium (RV), left ventricular mid-myocardium (LVMM).

Accordingly, a numerical probability density function (PDF) of the action potential du-

ration was derived for each anatomical region both for NC and HFC geometry mod-

els. The eight distributions of restitution curves computed are shown in Fig.s 6.2b and
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6.2c. For comparison purposes, APDs were normalized according to the formula APDn =

(APD−APDmin)/(APDmax−APDmin), where, APDmin and APDmax are provided in Tab. 6.4-a for

each anatomical surface.

In the FK case, APDn distributions stabilize around 0.78 ± 0.07 for CL ≥ 500 ,

whereas, in the TP06 case, PDF restitutions show different average values and a non-

uniform variance. Besides, a steeper and narrower distribution is observed for the FK

model for CL < 400 ms while a gradual reduction can be noted for TP06. Interestingly,

the FK distribution display peaks at the center of the distributions that remain stable dur-

ing the whole restitution curve. The four anatomical surfaces show similar trends in both

healthy and diseased conditions. Unlike, TP06 presents a strong dependence of the dis-

tribution peaks on the selected region. In particular, LV and RV surfaces show severe

differences among NC and HFC models. Moreover, the left ventricle shows the highest

dispersion of repolarization, i.e. higher variance, in the pathological case. Mean and stan-

dard deviations of the distributions are provided in Tab. 6.4-b for CL = 400 ms. Using

62 CPU’s within a parallel computing platform, the restitution protocol simulation took

around 55 hours and 82 hours of wall-clock to compute for the FK and TP06 model, re-

spectively.

6.2.2. VF sustainability

We studied cardiac arrhythmias signature implementing an S1-S2 stimulation protocol

to induce sustained VF, i.e., multiple scroll wave formations. Figure 6.4 shows a quali-

tative visual assessment of the scroll wave evolution for the two ionic models within the

HFC geometry. Three selected times of transmembrane activation, Vm > −75 mV, are

compared where the intramural transparency of the excitation highlights both the com-

plexity of the dynamics and the differences among the two ionic models (Fig. 6.4a for FK

and Fig. 6.4b for TP06). It is worth noticing the ratio of the amplitude for the two S1-S2

stimuli. The FK model sufficed an equal 1 : 1 ratio with a vulnerable window of 345 ms in

both NC and HFC subjects. In contrast with this, the TP06 model required a much higher
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(a)

FK TP06
APDmin 250 ms 250 ms
APDEPI

max 273 ms 335 ms
APDLV

max 273 ms 350 ms
APDRV

max 273 ms 350 ms
APDLVMM

max 273 ms 390 ms

(b)

FK 400 ms
NC HFC

Avg SD Avg SD
EPI 0.40 ±0.07 0.38 ±0.08
LV 0.41 ±0.08 0.40 ±0.06
RV 0.38 ±0.07 0.41 ±0.07

LVMM 0.40 ±0.05 0.40 ±0.06
TP06 400 ms

NC HFC
Avg SD Avg SD

EPI 0.30 ±0.08 0.28 ±0.07
LV 0.30 ±0.08 0.34 ±0.11
RV 0.34 ±0.10 0.25 ±0.06

LVMM 0.40 ±0.05 0.42 ±0.06

Table 6.4. (a) Normalization values for the FK and TP06 models. (b) APD
mean (Avg) and standard deviation (SD) for CL = 400 ms, see Fig. 6.3.

stimulation amplitude ratio of 11 : 2 for the NC case and 15 : 2 for the HFC case, with a

higher vulnerable window of 408 ms.

To provide a quantitative indication of VF dynamics and sustainability, we assessed

the time evolution of scroll waves by identifying the total number of 3D filaments during

10 seconds of physical time (see Fig. 6.5a). Employing the same computational settings

adopted for the restitution protocol, the VF wall-clock time was 34 and 48 hours for FK

and TP06 model, respectively.

Similarities are observed among the two ionic models in terms of rolling averages

computed with a time window of 500 ms. In all cases, the number of filaments stabilizes

after about 2.5 s from arrhythmias induction (see Fig. 6.5b). FK and TP06 models revealed

a mean value of filaments equal to 24/34 and 27/34 for NC/HFC, respectively. Besides, we

provide mean and variance, maximum and minimum values in Tab. 6.5 comparing ionic

and geometry models. The L1 error between the mean number of filaments among FK and

TP06 was 12.2% and 9.6% for NC and HFC, respectively. Additionally, the application of
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(a)

(b) FK model

(c) TP06 model

Figure 6.2. (a) Anatomical surfaces for restitution quantification: epi-
cardium (EPI), left ventricular endocardium (LV), right ventricular en-
docardium (RV), left ventricular mid-myocardium (LVMM). Normalized
APD restitution distribution (APDn) for (b) FK and (c) TP06 model com-
paring healthy (NC–red) and myocardiacl infarcted (HFC–blue) hearts.
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(a) FK model

(b) TP06 model

Figure 6.3. Normalized probability distribution function of normalized ac-
tion potential duration at CL = 400 ms for (a) FK and (b) TP06 model,
respectively. Blue and red traces refer to healthy (NC) and myocardyal
infarction (HFC) cases, respectively. Mean values are depicted with solid
vertical lines.

the Mann-Whitney-Wilcoxon test among the corresponding distributions of the number of

filaments indicated equal probability for the HFC case (p = 0.41). For the NC case, the

same result is not obtained.

Finally, the quantification of pseudo-ECG is shown in Fig. 6.6 providing the time

course of the computed signal for both models in healthy 6.6a and diseased 6.6b heart

geometries. The resulting fundamental frequencies was about 12 Hz for FK and 5 Hz for

TP06 independently on the anatomical model considered.
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(a) FK model - HFC geometry

(b) TP06 model - HFC geometry

Figure 6.4. Ventricular fibrillation evolution for (a) FK and (b) TP06 ionic
model within the HFC heart induced via an S1-S2 protocol. Active regions
(Vm > −75 mV) are shown with color bar while IZ is depicted in light gray.
Three times are selected showing the increase of scroll waves in accordance
with the number of filaments shown in Fig. 6.5.

(a) (b)

Figure 6.5. (a) Number of filaments and (b) rolling mean for the FK and
TP06 model during 10 s of sustained VF. Mean values are depicted with
dashed lines in panel (b) after 2.5 s.
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(a) FK model

(b) TP06 model

Figure 6.6. Pseudo-ECG computation for the (a) FK model and (b) the
TP06 model. The fundamental frequency is also shown for each case stud-
ied.

NC HFC
mean max min mean max min

FK 24 ± 5 40 6 34 ± 7 54 10
TP06 27 ± 6 46 11 34 ± 8 60 14

Table 6.5. Number of filaments: mean, maximum and minimum values
after 2.5 s from arrhythmias induction. Comparison among ionic (FK and
TP06) and geometry (NC, HFC) models.

6.3. Discussion

In this work, we have studied how the choice of ionic models impact the repolariza-

tion properties and VF signatures of computational models of normal and failing hearts.
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Numerical analyses allowed us to build up probability distribution functions of APD resti-

tution curves for four selected anatomical surfaces. Accordingly, we identified left and

right ventricular endocardium as the anatomical regions characterized by a higher degree

of dispersion of repolarization (multimodal PDFs) for the myocardial infarction case. On

the other hand, strong electrotonic effects within the mid-myocardial layer homogenize the

resulting electrical behavior, thus providing coherent PDFs among the two ionic models

for healthy and diseased cases though non-negligible differences appear for epicardium,

left and right endocardium.

This result, consistent with the literature and specific kinetics described by the TP06

ionic model, was further confirmed by long-run simulations conducted for ventricular fib-

rillation. The statistical examination of the evolution and the number of vortex filaments

provided an enhanced arrhythmogenicity in the diseased case. Though constitutive differ-

ences among the two electrophysiological models appear in terms of restitution dynamics

at large cycle lengths and vulnerable windows, negligible discrepancies were found for

ventricular fibrillation signature. Specifically, irrespective of the healthy or pathological

geometry model, the fundamental frequency of the pseudo-ECG during sustained VF is

constant. Moreover, the number of filaments in the HFC case results statistically equal

among FK and TP06 models.

Accordingly, our results suggest that VF signatures are mainly controlled by anatom-

ical and structural features rather than regional restitution properties. Therefore, given

the large-scale computational models and clinical translation, the choice of a simplified

phenomenological description seems favorable. From a computational point of view, phe-

nomenological models allows the implementation of highly efficient and simple integra-

tion schemes while biophysical-based model, such as the TP06, requires the employment

of specialized and adequate time integration schemes that demand a complex implemen-

tation. Several works have tackled the development of time-integration strategies to cope

with the stiff nature of these models (Maclachlan, Sundnes, & Spiteri, 2007; Pathmanathan

et al., 2011).
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The current work can be extended in several directions. First, phenomenological

versus biophysical computational analyses should also consider the bidomain theoreti-

cal framework to emphasize the role of structural material heterogeneities (Potse, Dube,

Richer, Vinet, & Gulrajani, 2006). On the same line, comparing linear, nonlinear, and frac-

tional diffusion formulations will significantly help to identify the best computational ap-

proach to apply in subject-specific cardiac studies (Bueno-Orovio, Kay, Grau, Rodriguez,

& Burrage, 2014; D. Hurtado et al., 2016; Weinberg, 2017). Moreover, the characteriza-

tion of the border zone of the scar and gray zones in the infarcted myocardium is related

to small-scale components (Ramı́rez, Gizzi, Sack, Guccione, & Hurtado, 2020). Such

features are accurately modeled by detailed biophysical constitutive models reproducing

modified ion channel dynamics (electrical remodeling). Though, reduced-order models

have been shown to provide a viable alternative also in this context (Ariful Islam et al.,

2015). This is key in clinical-related applications such as drug delivery, stem cell delivery,

and other innovative applications where the pathology’s characterization and treatment

depend on the cell membrane’s electrochemical dynamics and the associated local hetero-

geneities.
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7. CONCLUSIONS

In this thesis, we developed a robust and computationally-efficient framework that al-

lows the study of high-resolution subject-specific MRI and DT-MRI geometric and struc-

tural data. Within this framework, we could adequately estimate the regional distribution

of the APD restitution curve and the number of filaments formed during VF for different

characteristics of the myocardium. This provided a scheme to compare the electrical be-

havior of healthy and diseased hearts in different stimulation protocols. Using this scheme,

we develop two main studies using data from normal and infarcted hearts. First of all, we

could evaluate the influence of biomaterial injection treatments in the restitution proper-

ties of the heart and VF sustainability. Secondly, using subject-specific data in normal and

pathological electrical propagation contexts, we could establish the limitations and advan-

tages of a phenomenological cell model compared with a biophysically-based model.

The impact of biomaterial injections could be measured in normal, infarcted, and

treated hearts during normal and abnormal pacing protocols. As shown in chapter 5, al-

though the influence of biomaterial injections in the restitutive properties of treated hearts

is negligible, they may be of importance in the dynamics of abnormal electrical forma-

tion, specifically in the sustainability of VF. A meaningful finding of this investigation is

that the restitution properties may be primarily influenced by the distribution of the gray

zone and infarcted zone. Since the biomaterial volume is not substantial, it does not have

a relevant influence on these properties. Although this work is limited by the number of

subjects per case, it constitutes the first computational approach to investigate the elec-

trical effects of biomaterial injection therapies. This work opens the possibility of using

in-silico approaches to asses the electrical attributes of alternative therapies for diseased

hearts.

In chapter 6 we showed that a simplified phenomenological ionic model might be

reliable in identifying critical characteristics of VF in healthy and myocardial infarction

cases. Given the lower computational costs associated with simplified phenomenological
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models and the easy scalability of these models to whole-heart simulations, they appear

to be the right choice for the study of ventricular fibrillation in hearts in healthy or patho-

logical conditions. However, richer information is obtained through a detailed biophysical

model when we want to characterize statistical features of restitution properties and associ-

ated dispersion of repolarization behavior. Therefore, future studies in large-scale cardiac

models require a careful a priori evaluation of the most convenient modeling choice for

the specific problem at hand.

There are several limitations in this work. First, phenomenological versus biophys-

ical computational analyses should also consider the bidomain theoretical framework to

emphasize the role of structural material heterogeneities. Moreover, comparing differ-

ent formulations, such as fractional diffusion formulations, will greatly help to identify

the best computational approach to apply in subject-specific cardiac studies. Besides, the

characterization of the border zone of the scar and gray zones in the infarcted myocardium

is related to small-scale components. Such features may only be accurately modeled by

highly detailed biophysical constitutive models reproducing modified ion channel dynam-

ics due to electrical remodeling.

We conclude from these investigations that there is a high capability of in silico ap-

proaches for the study of subject-specific problems in electrophysiology. Future prospec-

tive investigations on biomaterial injection therapies include the impact of the electrome-

chanical feedback and the use of a more complete model, such as the bidomain model, to

study the significance of the extracellular potential in this problem. Besides, an exhaustive

characterization of the electrical properties of biomaterial injections is necessary to make

progress in the numerical modeling of these set of therapies. Finally, a comprehensive de-

scription of the border zone electrical features is not yet complete, limiting our knowledge

to select an adequate modeling approach. Future investigations may be focused on iden-

tifying better the border and gray zone properties to make a suitable choice to simulate

ischemic heart disease.
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A. APPENDIX A

A.1. tenTusscher-Panfilov (2006) EP model equations

L-type Ca+2 current reads:

ICaL = 4GCaLf2dfcassf
(V − 15)F 2

RT

0.25Casse
2(V−15)F/RT − Ca0

e2(V−15)F/RT − 1
, d∞ =

1

1 + e(−8−V )/7.5

αd =
1.4

1 + e(−35−V )/13
+ 0.25 , βd =

1.4

1 + e(V+5)/5

γd =
1

1 + e(50−V )/20
, τd = αdβd + γd

f∞ =
1

1 + e(V+20)/7
αf = 1102.5e−(V +27

15 )
2

βf =
200

1 + e(13−V )/10
, γf =

180

1 + e(V+30)/10
+ 20

τf = αf + βf + γf , f2∞ =
0.67

1 + e(V+35)/7
+ 0.33

αf2 = 600e−
(V +25)2

170 , βf2 =
31

1 + e(25−V )/10

γf2 =
16

1 + e(V+30)/10
, fcass∞ =

0.6

1 +
(
Cass
0.05

)2 + 0.4

τfcass =
80

1 +
(
Cass
0.05

)2 + 2

Slow delayed rectifier currents are:

IKs = GKsx
2
s(V − EKs) , xs∞ =

1

1 + e(−5−V )/14
, τxs = αxsβxs + 80

αxs =
1400√

1 + e(5−V )/6
, βxs =

1

1 + e(V−35)/15
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Calcium dynamics is ruled by:

Ileak = Vleak(CaRS − Cai) , Iup =
Vmaxup

1 +K2
up/Ca

2
i

Irel = VrelO(CaSR − CaSS) , Ixfer = Vxref(CaSS − Cai)

dR̄

dt
= −k2CaSSR̄ + k4(1− R̄) , O =

k1Ca
2
SSR̄

k3 + k1Ca
2
SS

k1 =
k1’

kcasr
, k2 = k2’kcasr , kcasr = maxsr −

maxsr −minsr

1 + (EC/CaSR)2

dCaitotal

dt
= −IbCa + IpCa − 2INaCa

2VcF
+
Vsr

Vc
(Ileak − Iup) + Ixref , Caibufc =

Cai × Bufc
Cai +Kbufc

dCasSRtotal

dt
= (Iup − Ileak − Irel) , Casrbufsr =

Casr × Bufsr

CaSR +Kbufsr

dCaSStotal

dt
= − ICaL

2VssF
+
Vsr

Vss
Irel −

Vc
Vss

Ixref , Cassbufss =
Cass × Bufss
Cass +Kbufss
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