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Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation

R. D. Benguria,l M. C. Depassier,1 and V. Haikala'?
1Departamento de Fisica, Pontificia Universidad Catélica de Chile Casilla 306, Santiago 22, Chile
’Escuela de Ingenieria, Pontificia Universidad Catolica de Chile Casilla 306, Santiago 22, Chile
(Received 9 March 2007; published 2 November 2007)

We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction-diffusion
equation when a small cutoff is applied to the reaction term at the unstable or metastable equilibrium point. The
results are valid for arbitrary reaction terms and include the case of density-dependent diffusion.
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I. INTRODUCTION

The effect of a cutoff of the reaction term on the speed of
reaction-diffusion fronts has received much attention since it
was observed by Brunet and Derrida [1] that fluctuations in
propagating fronts which arise due as a result of the discrete-
ness in the number N of propagating particles can be mod-
eled by introducing a small cutoff € on the reaction term in
the deterministic reaction-diffusion equation. The cutoff pa-
rameter € is inversely proportional to the number of diffusing
particles. Additional studies on front propagation up a reac-
tion rate gradient provide additional numerical evidence that
confirms the validity of representing fluctuations by a cutoff
in the reaction term [2]. We refer to [3] for a very complete
review and references on this topic. The effect of fluctuations
is particularly important for pulled fronts and for front propa-
gation into a metastable state. In this last case the speed of
the front without a cutoff may be quite small, zero in fact at
an isolated point [4], in which case the fluctuations contrib-
ute significantly to the speed of propagation of the front [5].

The effect of a cutoff on the speed of pulled fronts has
been studied extensively [1,3,6,7]; less attention has been
paid to the effect of a cutoff on pushed and bistable fronts.
For pulled fronts, with or without cutoff, the speed can be
calculated by a linear analysis at the edge of the front. The
effect of a cutoff on pushed and bistable fronts has been
studied for the exactly solvable case of the Nagumo reaction
term f(u)=u(1-u)(u—a) which, for different values of the
parameter a, describes bistable, pushed and pulled fronts
(this is also known as the Schlégl reaction term when written
in the variable p=2u—1). It was shown in [7,8] that the shift
in the speed has a power-law dependence on the cutoff pa-
rameter € in contrast to the inverse-squared logarithmic de-
pendence on the cutoff parameter for pulled fronts found by
Brunet and Derrida. It has also been shown using a varia-
tional approach [7] that a cutoff slows down pulled and
pushed fronts, but speeds up bistable fronts.

The purpose of this work is to provide an explicit expres-
sion for the shift of the speed of pushed and bistable fronts
with a cutoff for arbitrary reaction terms including the case
of density-dependent diffusion. We show that the shift in the
speed is given by

Sc=— Kf’(O)EH}\,
where
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{— 1 <AN<O0 for pushed fronts,

0<A<1 for bistable fronts,

where the constants K and A are independent of €. When the
slope of the reaction term vanishes at =0 we find

oc=—-Kf(e) when f'(0)=0.

We give explicit expressions for the constants A and K which
depend only on the front without a cutoff. The shift in the
speed with density-dependent diffusion is contained in this
last case f'(0)=0, as we indicate below.

Before proceeding with the actual derivation we need to
recall some known results on the speed of fronts of the
reaction-diffusion equation. We consider the reaction-
diffusion equation

U=y + flu)  with f(0) = f(1) =0,

where the reaction term f(u) satisfies additional conditions
depending on the physical problem under consideration. We
shall consider two generic classes. The first, type I, satisfies
/>0 in (0,1). To this category belong pulled and pushed
fronts. Type-II bistable reaction terms satisfy f(u) <0 for u
in (0,a) and >0 in (a,1) with f(llf(u)du>0.

For both types of reaction terms, sufficiently localized
initial conditions evolve into a monotonic front [9]. For re-
action terms of type I the system evolves into the monotonic
front of minimal speed. If this minimal speed is that obtained
from the linear Msis at the edge of the front [ 10]—that is,
Cmin=Cgpp=2+f"(0)—the front is called pulled. If this mini-
mal speed is greater than cgpp, the front is called pushed. For
reaction terms of type II there is a unique speed for which a
monotonic front exists. It has been shown [11] that the
asymptotic speed of pushed and bistable fronts is given by
the variational formula

co=max| 2—y— |, (1)

where the maximum is taken over all positive decreasing
functions g(u) in (0,1) for which the integrals exist. The
maximum is attained for a trial function g=¢ (unique, up to
a multiplicative constant) which, close to u=0, diverges as

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.76.051101

BENGURIA, DEPASSIER, AND HAIKALA

gA =~ c/m? (2)
u
where
1 | .2 1
m= E[C +\e*—4f(0)].

For pulled fronts the maximum in (1) is not attained
and the speed is given instead by the supremum of
2féfg du/f(l)(—gz/g’)du over the class of functions men-
tioned above.

For pushed and bistable fronts, the existence of a varia-
tional principle allows one to use the Feynman-Hellman
theorem to calculate the dependence of the speed on param-
eters of the reaction term. We shall use this theorem to study
the effect of a cutoff of the reaction term on pushed and
bistable fronts. Suppose that the reaction term f depends on a
parameter «a [i.e., f=f(u,a)]. In the context of the variational
principle (1), the Feynman-Hellman theorem reads as fol-
lows:

1

22 J gﬁ(u,a)g(u,a)du

=2 : (3)
J (- 8%8,)du

where ¢(u,a) is the function (unique up to a multiplicative
constant) that yields the maximum in (1) at the given param-
eter . We use a subscript to denote the partial derivative
with respect to the corresponding argument. Notice that the
Feynman-Hellman theorem holds only if the maximum is
attained, which is not the case for pulled fronts. In what
follows we use the Feynman-Hellman theorem, taking the
cutoff € as the parameter.

Consider a reaction term with a cutoff of the form
f(u)®(u—e€), where the reaction term f(u) without a cutoff
gives rise to a pushed or bistable front [here, ®(x) denotes
the Heaviside step function]. The Feynman-Hellman theorem
tells us that

J f(u) O(u €) ,\( e)du
ey PG X B
de

f (_ gz/glt)du J (_ ézléu)du
0 0

In the expression above g(e, €) is the optimizing function for
the speed of the front with the reaction term f(u)©®(u—e€). We
are interested in the speed when € is small. The ordinary
differential equation for the traveling fronts u._.+cu_+f(u)
=0 implies that # and u, are continuous at = € and therefore
p(u)=-u_(u) is also continuous. The optimizing g, i.e., g,
satisfies [11]

From the formula above one can see that In(g) is continuous
and that both ¢ and g, are continuous as well. Therefore, in
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leading order we may approximate g(u,€)=g(u,0). The
function g(u,0) is the optimizing function for the reaction
term f(u) without the cutoff, which we call simply go(u). To
leading order in € we obtain then

(;lc) _ f(€o(e) )
€/ e=0
f [~ go(u)/go(u)]du
The shift in the speed is given by
fo=d ) = keome, ©
€/ e0

where the proportionality constant K, which is independent
of €, is given by

=[cof< Ysid } -
2f fo du
0

In the formula above, ¢, is the speed of the front in the
absence of cutoff. Using (2) we have that

dc = — Kf(e)e' o™, (8)

Replacing the value of ¢y/m, we obtain, finally,

BELYC) if £(0)=0, 0
=K (0)€ if f(0) # 0, ®

where
_ i —4f(0)/cg—1 (10)

VI—4f' (0)/c2+1

In the expression above for 8¢ we used f(€) = €f’(0) in lead-
ing order. For pushed fronts, f’(0)>0; therefore, —1 <\
<0 and 6c<0. For bistable fronts, f'(0)<0; therefore, 0
<A<1 and éc>0.

The precise value of the constant A can be determined
when the speed ¢, in the absence of the cutoff is known. For
the determination of the constant K the maximizing function
8o(u) for the speed in the absence of the cutoff must also be
known.

As an example, we may apply the above result to the
Nagumo reaction term

Jw) =u(l - u)(u-a) (1

for which an exact solution is known. This is the case studied
previously by other methods [3,7,8].

For 0 <a<1/2 this is a bistable reaction term. For nega-
tive values of a this is a reaction term of type I, which for
—1/2<a<0 gives rise to a pushed front. The speed without
the cutoff is given by

1
60:_/__61\6’ (12)
V2

which is obtained from the variational principle (1) with the
trial function [11]
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_ 1-2a
gow):(l ) . (13)
u

For this reaction term, f’'(0)=—a. The value of K is

1 -1 [~
_ 5 _ V2I'(4)
K= lCOJ() (—go/go)dQ} = F(1+2a)F(3—2a)’ (14)

and A=2a. Therefore,

B \2I'(4)
T T(1+2a)T(3 - 2a)

ae'*?e, (15)

The power dependence of the shift on € is in agreement with
previous results [8]; the magnitude has not been calculated
elsewhere. Notice that near the value a=1/2, where the
speed of the front without cutoff vanishes, the magnitude of
the shift induced by the cutoff becomes of comparable mag-
nitude to the speed of the front itself.

When a=0, f'(0)=0, and in leading order, the shift of the
speed is given by

Sc=—6\2€. (16)

As a second example, consider the Fisher-Kolmogorov
equation with density-dependent diffusion,

u,=[Du],+u(l —u), (17)

where the diffusion coefficient D(u) satisfies D(0)=0,
D' (u) >0. When the diffusion coefficient is not constant, it is
not possible to determine the speed of the front from linear
considerations. Moreover, the wave of minimal speed is
sharp; that is, it does not decay exponentially at infinity. One
of the most studied cases is a power-law dependence of the
form D(u)=u"™. The exact solution is known for the value
m=1, the case for which the asymptotic speed of the front is
given by c=1 [12,13]. The speed of the traveling fronts of
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Eq. (17) is equal to the speed of the reaction-diffusion equa-
tion with constant diffusion, but with a reaction term
D(u)f(u)=D(u)u(1—-u) [11], and it belongs to the case of
reaction terms with vanishing derivative at the origin. There-
fore, a cutoff € produces a shift in the speed given by

6c=—KD(e)f(e) =— KeD(e), (18)

in leading order. Again, the constant K is independent of e
and it can be determined if the exact solution without a cut-
off is known.

In summary, we have established the effect of a cutoff on
the speed of fronts of the reaction-diffusion equation for all
fronts which are not pulled in the absence of a cutoff. This
has been done in a simple, unified way, making use of a
variational principle for the asymptotic speed of the fronts.
We find not only the dependence on the cutoff, but an ex-
plicit expression for the shift. The method used to obtain
these results is the Feynman-Hellman theorem, which en-
ables one to determine the effect of varying any parameter of
the reaction term. For pulled fronts, the speed is given by the
supremum of an integral expression, not the maximum;
hence, the Feynman-Hellman theorem is not valid for them.
For pulled fronts the effect of the cutoff can also be calcu-
lated from the variational expression, but by directly solving
the Euler-Lagrange equation in the linear approximation
[14]. The approach used here to calculate the effect of the
cutoff on the speed of pushed fronts can be used for the
reaction convection-diffusion equation and for the hyperbolic
reaction-diffusion equation, for which integral variational
principles have been formulated [15,16].
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