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Quantum gravity phenomenology opens up the possibility of probing Planck scale physics. Thus, by ex-
ploiting the generic properties that a semiclassical state of the compound system fermions plus gravity should
have, an effective dynamics of spin-1/2 particles is obtained within the framework of loop quantum gravity.
Namely, at length scales much larger than Planck lergth 10 23 cm and below the wavelength of the
fermion, the spin-1/2 dynamics in flat spacetime includes Planck scale corrections. In particular we obtain
modified dispersion relations vacuofor fermions. These corrections yield a time of arrival delay of the
spin-1/2 particles with respect to a light signal and, in the case of neutrinos, a novel flavor oscillation. To detect
these effects the corresponding particles must be highly energetic and should travel long distances. Hence
neutrino bursts accompanying gamma ray bursts or ultrahigh energy cosmic rays could be considered. Re-
markably, future neutrino telescopes may be capable of testing such effects. This paper provides a detailed
account of the calculations and elaborates on results previously reported in a Letter. These are further amended
by introducing a real paramet&f aimed at encoding our lack of knowledge of scaling properties of the
gravitational degrees of freedom.
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[. INTRODUCTION framework also has been used previously in studying light
propagatior{3,5].

It is commonly accepted that quantum gravity should hold In essence, the specific structure of spacetime for a given
at scales near the Planck lengthp:=+\Gyewtodt/C® quantum.gravity_scenario can be probed by matter propagat-
~10"33cm or, equivalently, Planck energgp:=fc/€p ing anq interacting thgre: Whgt could be con_S|dered as _ﬂat
~10" GeV. Accordingly, neither astrophysical observationsSPacetime macroscopically, might produce microscopic im-
nor ground experiments were considered in the past as Rrints Qf its de_talled structure on the interaction of particles.
means to directly reveal any quantum gravity effect but only!n particular, dispersion relations of propagating matter could
to test indirect consequences. In recent years however thXhibit corrections due to such effects. For particles with
attitude has changed on the basis of potentially testable phenergy E<Ep and momentump the following in vacuo
nomena probing quantum gravity scenarios in which scalesodified dispersion relations were propos$éd
combine to lie not far from experimental resolution. Promi-
nent among such phenomena we fimdvacuo dispersion
relations for gamma ray astrophysicfl—6], laser-
interferometric limits on distance fluctuatiofig,8], neutrino
oscillations[4,9], threshold shift in certain high energy phys- where Eqc<Ep and é~1. In general, such corrections
ics processeg10-13, CPT violation [14] and clock- might behave as E/EQG)Y“, where Y=0, namely not
comparison experiments in atomic phys[d$]. These are necessarily an integer. This possibility has been considered
the prototypes of the emergimmiantum gravity phenomenol- for photons[5,21] and spin zero particle1]. In this work
ogy[16-20. we show it applies also to spin-1/2 particles.

The present work is aimed at elaborating on effective cor- According to Eq.(1) the corresponding particle’s speed
rections to propagatiom vacuofor spin-1/2 particles in the yields a retardation time
framework of loop quantum gravity as reported[#. This

2

e | M

- E
c’p?= EZ( 1+é=—+0
EQG

At =L 2
NE_QGE, 2

*Email address: jalfaro@fis.puc.cl

"Member of Abdus Salam International Center for Theoreticalwith respect to a speetisignal after traveling a distande
Physics, Trieste, Italy. Email address: hugo@xanum.uam.mx Interestingly, for gamma ray burst§GRB’'s) with E

*Email address: urrutia@nuclecu.unam.mx ~0.20 MeV, L~10ly and settingEqg~Ep, the naive

0556-2821/2002/68.2)/12400619)/$20.00 66 124006-1 ©2002 The American Physical Society



ALFARO, MORALES-TEZOTL, AND URRUTIA PHYSICAL REVIEW D 66, 124006 (2002

estimation Eq(2) gives At~0.01 ms, barely two orders of not necessarily imply violations of Lorentz covariarjéd].
magnitude below the sensitivit§t for current observations Recently the use of non-linear representations of the Lorentz
of GRB’s [22,23. Moreover, it is expected to improve this group, leading to what has been called special relativity with
sensitivity in the foreseeable futur24]. Using an expression two invariant scales, allows for a systematic construction of
analogous to Eq(2) for the delay of two photons detected theories exhibiting these featurg4s].
with an energy differenceAE, the observational bound The paper is organized as follows. In Sec. Il we summa-
Eqc/é=4X 10' GeV was established in R4R5] by iden-  rize the basics of loop quantum gravity in the case of fermi-
tifying events havingAE=1 TeV arriving to earth within  ons plus gravity. Section Il is devoted to reviewing the regu-
the time resolution of the measuremexit=280 s, from the larization of Thiemann for the corresponding Hamiltonian
active galaxy Markarian 421. constraint. Section IV explains general aspects of our ap-
Now, accompanying GRB'’s there seems to be neutringyroximation scheme whereas Sec. V provides the details of
bursts (NB) in the range 10-10' GeV according to the the calculations. In Sec. VI the effective Hamiltonian for
so-called fireball model26,27. If detected they could pro- nponinteracting spin-1/2 particles is obtained. In particuitar,
vide an excellent means to test quantum gravity effects of thgacyo dispersion relations are given. Section VII contains
type given by Eq.(2) above. Experiments like Neutrino g,me preliminary estimates of the paramatefTo conclude,

Burst ExperimentNuBE) might detect~20 events per year , smmary and discussion of our results is presented in Sec.
of ultrahigh energy neutrinosE(>TeV) coinciding with

GRB’s [28]. Among other experiments aimed at studying

ultrahigh energy cosmic rays including neutrinos we find the

OWL-Airwatch project which could detect 3x 10°—10°

events E>10°° eV) per year29,30. This experiment also II. LOOP QUANTUM GRAVITY

can look for time correlations between high energy neutrinos  Thjs section provides the basic ingredients of this ap-
and GRB’s. Complementary to the GRB effect, there is theproach, also known as quantum geomds], which we
possibility of looking for neutrino oscillation effect as in- ghg|| yse in the sequel. Among the main results along this
duced by quantum gravitj4]. An ana_ly5|s sw_mlar to_tha_t approach one findsi) well defined geometric operators pos-
performed in the case of atmospheric neutrino OSC'”at'or@essing a discrete spectrum, thus evidencing discreteness of

[9.31], can help to set bounds on the parameters entering thsepace[46]; (i) a microscopic account for black hole entropy

description as we will suggest below. ) .
; . 47] and, more recently, hints on quantum avoidance of a
In summary, astrophysical observations of photons, neu- . . .
ould be classical cosmological singular[@8]. (For a re-

trinos or cosmic rays could make it possible to test quantum. X
y b q view on these topics see for example Rd].)

gravity effects or at least to restrict quantum gravity theories. TR . .
Indeed, an alternative approach to quantum gravity is To begin with it is assumed that the spacetime manifbld

based on string theofi32]. On such a basis modified disper- "2S to_polc?g_yZ xR, with % a Riemannian 3-manifold. Here
sion relations of the typél) have been regainei®3]. The @ cotriade, is defined, witha,b,c, ... being spatial tensor
main difference in the case of photons is the absence dhdices and,j,k, ... beingSU(2) indices. Thus the corre-
helicity dependence that is present in the loop quantum grawsponding three-metric is given lgy,,= e'ae'bT In addition, a
ity approach. As for the case of sfp_in-;lz particles both apfield K}, is defined byK ,,=sgri det(el) K e}, , which is re-
proaches seem to agree in its helicity independence to leaghted to the extrinsic curvatuké,;, of 3. A canonical pair for
ing order of the corresponding effe[@t,BA,BS. , the gravitational phase space iKY(EP/x), where E}

Further comments in order here are: delay time effects for, 1€3%%;; el ek and« is Newton's constant. It turns out that
traveling particles have also been considered on a different J . o )

: such a canonical pair yields a complicated form for the
basis, for example an open system apprd&. Also, per-

turbative quantum gravity has been considered to obtain eil:|ami|tonian constraint of general relativity. A convenient ca-
fective dispersion relations7] nonical pair, making this constraint polynomial, was intro-

Noticeably, the effect considered thus far involves a Lor-duced by AshtekaiS0]. Nevertheless, two severe difficulties
entz symmetry violatiori3,4,34,33, which seems to be in to proceed W_lth the qua_ntlzanon r_emalneld:the_ |mplemen-
agreement with some astrophysical and cosmological scd@tion of a_dn‘feomorphls_m covariant regularlzanon for _the
narios [11,13,38,3% In this way, these studies naturally density-weight two Hamiltonian constraint hereby obtained
overlap with the systematic approach developed by Colladagnd (i) the extension to non-compact groups of the diffeo-
and Kostelecky40] which provides the most general power morphism covariant techniques already developed for gauge
counting renormalizable extension of the standard model thdheories with compact group$1l]. In fact, the Ashtekar
incorporates both Lorentz an@PT violations. This frame- variable§*AL=T",—iK},, iE/x) [50], with I'; being the
work has been widely used to set experimental bounds upotorsion free connection compatible wigh, are complex val-
the interactions that produce such violations and the obsered. Namely the gauge group$4.(2,C), which is noncom-
vations performed so far cover a wide range of experimentgbact.
settings[41]. Additional progress in establishing bounds to  Some proposals to come to terms with difficulily were:
such symmetry violation can be found in Rdi8,15,42,43  to consider real connection variablgs2], to implement a

Finally, it is interesting to emphasize that Planck scaleWick transform[53] and to define tractable reality con-
corrections to either particle propagation or interactions needtraints [54]. All of these left open(i). Thiemann subse-
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quently proposed to solv@) and (ii) by incorporating real It turns out that the Hilbert space of gauge invariant func-
connection variables while keeping the density weight ondions of gravitational and spinor fields is given 5]
character of the Hamiltonian constraint. He further provided — N

a quantum version of the theory in the pure gravity case, as Hinv=L2([Asu2)® 511G, dua (SU(2)) @ dug).  (4)
well as in those cases including the coupling of matter toH

gravity [55]. His approach is next reviewed, since we rely greg dengtes the act|0r? 0_$_U(2) on all fields at every
upon it for our analysis of the fermionic case. point of 3. S denotes the infinite product measurable space

As for the fermionic sector a convenient canonical choice® xS« Sk being the Grassmann space at the paird . is
is (£, m=1£&%). Hereé=(detq)Y*7 is a half density andy is  the corresponding measure 8nAn orthonormal basis using
a GrassmanrSU(2) spinor. Half densities are convenient #r €an be built up. Let the spinor labels be ordergd
because they do not lead to cumbersome reality conditions at 1,2. Takev a finite set of mutually different points. For
the quantum level and, furthermore, they do not require &achv v denote byl, the array[A(v)<---<A(v)],
complex gravitational connection. However, problems withwith 0<k=2 and Aj(v)=1,2 for each &j=<k. Also set
diffeomorphism covariance can emerge. For this reason H |=k. Thus fermionic vertex functions; i can be defined
further canonical transformation in the fermionic sector isasF; i:=II,_;F,, F,, ::Hﬁ;laA_(v,(v) yielding the de-
necessary in order to dedensitize the Grassmann field§red orthonormal basis. :

through:  6(x):=/sd\a(x,y) &(y) and  £&(x) Gauge invariant objects are spin network states defined as

=3y cxVa(X,y) o(y). follows. Takey as a piecewise analyt.ic graph with edges
The pieces of the gravity-spin-1/2 system Hamiltonianand vertices» which are not necessarily closed. Every edge

constraint read can be read as outcoming from a vertex by suitably subdi-

viding edges into halves. Given a connectidg we can
compute the holonomy along the edgeh.(A). To eache
_ 3 we also associate a spjp corresponding to an irreducible
Heinsieid N1= Ld XNK\/ﬁtr((z[Ka’Kb]_ Fab)[Ea o)), representation o8 U(2). In addition, we attach to each ver-
tex an integer labet,, 0<n,<2, and a projectop, . For a
givenn, , one considers the vector subspac&f[the vec-
1 tor space spanned by holomorphic functions @&f(v),
Hspin_l,z[N]=f d®xN Eia—( i 1 Daé+ Do 7€) spanned by those vectdfs , such thafl|=n(v)]. The pro-
2 2ydetq) jector p, is a certainSU(2) invariant matrix which projects
onto one of the linearly independent trivial representations

i m ; : DN . .

+oK ) métec|+ 5 (ET(i0?)¢ contained in the decomposition into irreducible representa-
2 2h tions of the tensor product consisting(of the n,-fold tensor

+ 7102 m) 3) product of fundamental representationssdf(2) associated

with the vector subspace dp, spanned by theF, |l

=n(v) and(ii) the tensor product of irreducible representa-
Herer=—(i/2)c, wherec={c¢'} are the standard Pauli ma- tions j, wheree runs through the subset of edges,obtart-
trices and we have included an explicit mass term. Only onéng atv. The resulting gauge invariant states are denoted by
chirality fermion is usedy=3(1+ ys)¥, which is equiva- o
lent to have a Dirac spinob "= (7", .") satisfying the Ma- Tylinpl ®)
jorana condition. The classical configuration space is thefvhich extend the definition of the matter free case. They
A/G of connections modulo gauge transformations, togetheform a basis ofH;,,. Although not orthonormal it can be
with that of the fermionic field. transformed into one that is by suitably decomposing the

The gquantum arena is given as folloWsl]. As in any  fermionic dependence into an orthonormal basis of@he

quantum field theory, because of the infinite number of de- To extract physical information we will further need a
grees of freedom, an enlargement of the classical configurastate describing a flat continuous spateat scales much
tion space is required. This is far from trivial since the mea-|arger than the Planck |ength, but not necessar”y so at dis-
sures defining the scalar product, which are required t@ances comparable to the Planck length itself. States of this
provide a Hilbert space, get concentrated on distributionakind were introduced under the name of wef¥8] for pure
fields and hence lie outside the classical configuration spacgravity. Flat weave statd¥V), having a characteristic length
The key idea to build up such an enlargement is to make:, were first constructed by considering collections of
Wilson loop variablestraces of parallel transport operators planck scale circles randomly oriented. If one probes dis-
well defined. The resulting spac4/G can be thought of as tancesd> L the continuous flat classical geometry is re-
the limit of configuration spaces of lattice gauge theories fogained, while for distance$< £ the quantum loop structure
all possiblefloating (i.e. not necessarily rectanguldattices.  of space is manifest. In other words, one expects a behavior
Hence, geometric structures on lattice configuration spacgs the type(W|qap/ W)= 8,5+ O(£p/L). It was soon real-
are used to implement a geometric structure 4. This  ized that such states could not yield a nontrivial volume due
enables us to define a background independent calculus ontd the lack of self-intersection$7]. Couples of circles, in-
which, in turn, leads to the construction of the relevant meatersecting at a point, were also considered as specific models
sures, the Hilbert space and the regulated operators. of weaves to overcome this defd&8]. With the recent ad-
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vances on the kinematical Hilbert spakg,, it became clear i

that all proposed weaves were afflicted by two undesirabléd {4 N]= — —zf d®xN(x)
features. First, they are defined to be peaked at a spétitic 2k

or curved metric, but not at a connection. This is in contrast

with standard semiclassical states in terms of coherent states, X ( ek edbeq
for example. Second, the known weave states do not belong

either toH,,, Or to a dense subspace of{§9]. It may be
possible to come to terms with such difficulties by defining
coherent states for diffeomorphism covariant gauge theories

[60].0r by implementing a genuine statistical geom.ét“fy], where & is small andV(x,8) = [d3yxs(x,y)Vq(x) is the
for m;tance. Both approaches have recently achieved sulplume with respect to the metrig,, of a box centered at
stantial progress. xs(x,y)=II3_,6(58/2—|x3—y?|) is the characteristic func-

Nonetheless, in order to extract physics, there is the altetjon of the box. Next one changes frofrto @ variables and
native possibility of using just the main features that semi-ntroduces

classical states should have. Namely, peakedness on both ge-
ometry and connection together with the property that they
yield well defined expectation values of physical operators. a —
An advantage of this alternative is that one may elucidate 2 FEO) (11 Dad) a(X) Oa(X), @
some physical consequences before the full fledged semiclas-
sical analysis is settled down. Indeed, such alternative may
be considered as Complementary, in the sense of hlntlng &hich regu|arizes EC{G) as we show now. Her&a is a real
possible features of semiclassical states which could be fugzglued adyg) vector field. By defining ¢a0a)(X)
ther elaborated. After its completion, a rigorous semiclassical=|im__ ,3,265(x), and recalling
treatment should tell us whether the results arising from this
alternative turn out to hold or not. The weakness of the treat-
ment resides on its generality, since no detailed features of 3 L
the would be semiclassical states are used—as opposed, say, Oa(x) = J d°yVa(x,y)€aly) = lim G ®)
to the original weave states—and hence a set of numerical <0
coefficients cannot be calculated. Evaluating them will be the
task of the rigorous semiclassical treatment. . c

On top of%he purely gravitational semiclassical states, a\lNlth GA:fdsy[Xf(X’y)/\/?]gA' one gets
generalization is required to include matter fields. For our
analysis it will just suffice to exploit the same aspects of (x.y)

eakedness and well defined expectation values, extended to _ 3 XX

iF;\cIude the case of the fermion figld. The semiclassical states (&XaaA)(X)_f dy Jel (9y20)(¥)- ©
here considered will describe flat space and a smooth spin-
1/2 field living in it. Such a state is denoted W, ¢) and has
a characteristic lengtif. Since no detailed information is Now let us divideS into boxes of Lebesgue measued
used on how the semiclassical state is constructed in termgntered ak,, and let Eq.(7) be the limite—0 of
of, say, a graph, as opposed to weave states, the present
approach yields results relying only on the following as-
sumptions:(i) peakedness of the statés) well defined ex- _
pectation values andlii) existence of a coarse-grained ex- 2 FAX) (17D 209 A(Xn) O5(Xn), (10
pansion involving ratios of the relevant scales of the "
problem: the Planck lengthip, the characteristic lengtii
and the fermion wavelength. States satisfying such re-
quirements are referred to a®uld be semiclassical states
the sequel.

{AL(X),V(X, O HALX),V(x,8)}
Ja(x)

X[ 7 7 Dé—c.c] (6)

which upon expressing© in terms of¢ becomes

63

X (X, Xn) X (Y5 Xn)
dgxf d3y| > f3(x,,)
IIl. THE REGULARIZATION f mo

We will use the regularization method of Thiemargb] X[Ti&ag(x)_"(wa(xn)g(x))]AEA- (11
in the following. We focus on the first term fgpn.1/4 NJ,
Eq. (3). The other terms can be dealt with similarly or, in the
case ofK} dependence, along the lines of the purely gravi-Notice that in spite of the density weight éfno Christoffel
tational sectoH gineif N] @s shown in the sequel. The iden- connection is needed since it will drop after the H.c. part is
tity (1/x){A,,V}=2sgn(det])e} yields considered. In the limitt—0, y.(X,X,)/€— 8(x,x,) and
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X (Y Xn)— 8, , SO that aftex integration and sum oveq, ~ <\. Here is the de Broglie wavelength of the neutrino.
Corrections arise at this level. Let us start by taking the
would be semiclassical staf#/BSC) expectation value of
Thiemann’s regularized Hamiltonian

the result is Eq(6) wheref? has to be properly identified.
To proceed with the quantization one keeps fermionic mo-

menta to the right and replace9§ by #(9/96,) in Eq. (7).

By further multiplying and dividing by &° the factor HF =(W, &A% INT|W, &
53\q(x) in the denominator is changed ¥{x, §). This can < | spin1rd | )
be absorbed into the Poisson brackets already appearing in 8 ik ik
Eq. (6). When Poisson brackets are replaced by commutators =+ m % N(v)% elfe
times 1i% one obtains an operator whose action on a cylin- p sVl

drical function f, associated to a graph and containing
fermionic insertionsd, at the verticew e V(y) gives X4 (W, §| TkhSK(A)a(U +sK(A))}
INIF, ——i > 2 N(x)ellkeres A A W, €)= (W, ]| —
spln 1/ 2€P e XWiIA(U)WjJA(U)| ,§>—< ,§| 96(v )Tké’(v)
X[AL(X), NV (%, 8) TTALX), VV(x,5)] x\fvi,A(v)\fva(u)|W,§>—c.c.] (15)
J
x (T"DCQ)A(U)MA(U) OxoTHC Ty whered/d6(v) is the fermionic momentum operator.
(12) Our strategy to use the proposed regularization as a com-

putational tool will be to expand the expressidrb) around

To complete the regularization an adapted triangulatiop to each vertex of the triangulation in powers of the vectors
of S is introduced. Using hy(0,8)6(s(8))— 6(s(0)) s|(A) To proceed with the approximation we think of space

. 3
— 55%(0)(D,) 6(s(0)) and replacing the connection opera- rpade up of boxes gf volun&®, whose center |s. denoted
tors by holonomy operators allows one to absorbdhéac- by x. Each box contains a large number of vertices of the

tor. Also one replace¥(v, 8)—V, . Because of the presence graph a§sociated with the WBSC, but is considered infini-
of '5 S becomes cohcentrgtéd in the verti tesimal in the scale where the space can be regarded as con-
X, 1 X ®1§A):U .

. tinuous, so that we také 3~d>x.
Hence we obtain Next we discuss how to estimate the average contribution
in each box. To begin with we consider that the volume of
N]=- — N ek lIK the box is
spln 1/3: 2€P v ) UU(A)

- 8
Xtr( g [ Ng fay VY1) dx~ ei( ﬁ) (16)

v € Box(x)

v

Xtr( T TR -
7Ny s o) NA and define the averagd(x)) of the quantityT(v) defined

in each of the vertices contained in the box, as
X|[(7¢hs, (5 0)(sk(A)(8)) = 6(v)]a

. 8
B(T(x))= 2 €§<w T(v). (17)
X +H.c. v e Box(x)
70n(0) H.c (13
The WBSC expectation value of the Hamiltoniékb) is of
which is the operator we shall use below. the type
At this stage we introduce the notation
\;\\/||A:tr(Tth|(A)[h;(1A),\/V—v]) (14) ve%(y) E( )<W §|F(U)G(U |W g)
IV. GENERAL STRUCTURE OF THE CALCULATION = 2 F()Z) 2 gP
Box()?) ueBox(x) E( )

The effective Dirac Hamiltonian His obtained by con-
sidering the expectation value of the fermionic sector of the
quantum Hamiltonian, with respect [/, £). Inside this ex- X(W, §| G(v)|W &)
pectation value, operators are expanded around all relevant
vertices of the triangulation in powers of the segments 1
sf(A), having lengths of the ordefp. In this way, a sys- :f F(>Z)<—3G(>Z)>d3x. (18)
tematic approximation is given involving the scalgs</. z {p

124006-5



ALFARO, MORALES-TEZOTL, AND URRUTIA PHYSICAL REVIEW D 66, 124006 (2002

Here, IE(U) is a fermionic operator which produces the . O 19K
slowly varying functionF(x) within the box; i.e.L<\. Fur- H™=+ M BOEX(;) g}x@ N(v) Ew) ¢ ©
thermore,((1/¢3)G(x)) is the box average of the rapidly
varying WBSC expectation values of the gravitational opera- J -
ying N2> expe gravi g X <w,§|[—rk(<siva<v)>
tor (1/#3)G(v) within the box, whose tensorial and Lie- d0(v)
algebra structure is determined by the tensors characterizing 1
the continuum spacetime we are dealing with, i.e. + E(Sﬁva(v))(sﬁvb(v)” 1 6(v)
0 ~ ~
€2, 7k g, , ecde kim. X Wija(0)Wjza(v)|W, §>—C.C.] (21

ab oiao b ) ) . where the derivativeV, includes the covariant derivative
where g®°=e'%¢;” is the corresponding classical 3-metric. 0

The order of magnitude of these box averaged quantities i§_(x) which is compatible with the classical metric that we
estimated according to some prescriptions to be specified in

the sequel. The method does not provide exact numericdl' con5|der|ng a.nd a p'.edéa(v) pr(_)du_cmg the quantum
coefficients which can only be obtained from a detailegcorrections associated _W|th the beglnmng_of the continuum
knowledge of the semiclassical state at the scaleC . Upon taking WBSC expectation value we can

Since we assume the fermionic fields to be sIowa-varyingmake the following substitution:
functions inside each box, we demand the following behav-

ior of the fermionic operators inside the WBSC: N o . -
Va(v) 0(v) — (Va(X) + Ax(v) 1) €(X). (22)
A From now on we restrict to a continuum flat metric, in such

The partial derivative does not change inside each box,

Whehre the n(t);mtallhzatlon iﬁnStgﬁt Is to b? det'termlned (;n which is consistent with the idea that each box is supposed to
such a way that the zeroth order approximation repro uce|Sepresent a point of the continuum. In this way,

the corresponding classical kinetic energy term in the Hamil-
tonian. In this way we have

HF:+ 2) 2 ) N(U)%EijkelJK
HE=(W,[AG) 1 ANTIW, &) P BoK09 wepot)
J ~ 1 ~
1SS N ke |8 | S0 gt
4€|i Box(;) veBox(i) E(U)
P XVp(v)+ -+ |0(v)
X:<W,§|[m Tkth(A)a(U"'SK(A))}
A ) P X\;ViIA(U)\;VjJA(U)|Wa§>_c-c-]- (24)
X Wi A (0)Wj35(0) W, €) —(W, & W(U)Tke(v)
Our problem now is to parametrize and to estimate the gen-
><\7Vi|A(U)\7VjJA(U)|W,§>_C-C-)- (200 eral spinor

Yio(0)=e™ePK(W, gsisi? s

In the above equation we have written only the fermions in

its classical version and we have kept them inside the WBSC Xﬁal(v)@az(v) .. .%an(v)e(v)
expectation value just in order to be able to write the above . .
expression in a more compact way. The holondrp'XA) still ><wi|A(v)WjJA(v)|W, &) (25

contains the gravitational connection. In order to have a con-
venient bookkeeping of the terms involved, we write Eq.in a given box. Heren denotes the number of covariant de-
(20) as rivatives in the expression. Using the above we can write
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4€p n=12,... Box(x) veBox(X)

8
(N(")Ew))

W(U)TkY(n)(U)—C.C. (26)
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first set count the number of partial derivatives acting upon
the fermion. The indices of the second set count the number
of 7 matrices involved which is equal to the number of ad-
ditional connections, i.e. besides those contained in the com-

binationw;; s (v)Wj;4(v), appearing in Eq(30).

Before calculating the corresponding box averaged contribu- The box-averaged expression for the Hamiltonian reduces
tions let us obtain the expressions for some of the first quarthen to

tities Y (v). A direct calculation shows

YE(0) =2 (0) (X<(0) 92£() + XT K (0) ) €(%),

27
Y(o)(0) = $%(0) S (V)X (0) Fadn€(X)
+S3(0) SR V)XT W) T2 E(X)
+S3()SR)XT W) TTé(X),  (28)

YE3)(0) = SESRSE(XK(0) dadpde+ 3XT ¥(v) Tydnde+ ) E(X)
K(U ) TmTndc

;nbncp kIYU)TanTp)'S( X),

+s3sps%(3XMN

where we have explicitly enforced the symmetry implied by

the factorssisisy . .. in Eq.(25). The gravitational quanti-
ties, which are rapidly varying inside the box are

XKK(v) = e €AW, €| Wiy 5 (0) W32 (0) | W, )
X3 K(0) = e eV (W, €[ AD(0) Wiy 4 (0) W32 (0) | W, €)
Xy v)= €1 (W, E[AT(v)
X AR (0)Wip 4 (0)Wj3a(0) W, €)
Xope (o) = eV (W, E[AT(v) AT (0) AB(v)

X Wi 5 (0)Wjsa(0)|W, ).
Next we write the corresponding general expressions

Yoy (0)=(SRisg? . . .S (s s 2 sp)

n
m L qm ... mp kK
X 1+1"M1+2 n
I—n,nzl,...l,0(|)Xal+lal+2"'an (v)
X T Tmyp o - Tm 02,0, - - - 2 €(X)  (29)
with

M4 1M 42 - mnkK _ _ijk 1K mHl m|+2
a4 1342 - (v)=€"e <W§|A (U)A (U)

X . A)
X Wipa(0)Wjga(v) W, €). (30)

In the above expressions the partition (1,2.1) and (
+1]+2,..

i0
= >

4€Z, n=12,... jdsiw(i)TKYl((n)()Z))—C.c. (31)

In more detail this is

a a a,
X(SK|+1SK|+2 )

<3 Ll

XT T,
M1 M2

M+1M+2-
A 41842

mnkK( )>

. aalg(i). (32

Tm 0g. 04 ..
my”a;”ag

Here it is convenient to define the auxiliary quantities

Talaz...a|m|+1m|+2...mnk
® ay a2 a| A +181+2 an
4€7<(S S ---S)(s /s /L8
Compk
XX @) (33
in such a way that
n I
Hf= > > fd3xi7-r(x)rk
n=12,...1=n,n=1,... 120\l
XTalaz...a|m|+1m|+2...mnTmHleHz L. Tmn
X Ja 0, - - - Oa £(X) (34)
HF=: > > HE, (35)

n=12,...l=nn-1,...10

The box averageéF(v)) are subsequently estimated using
the corresponding dimensions in terms of the available ten-
sors in flat space

O .

e|a=5ia 7_k cde kim
1 1

ﬁbl € , € ’
qP=6%, &, & (36)

in a manner described in the next section. In this way we are
demanding covariance under rotations at the s€alAs the

.n) is made in such a way that the indices of thefinal input in our prescription we impose that when averag-
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ing inside each box, the order of magnitude of the corre- 1

sponding expectation values of the gravitational operators Wija=—Tr| 7| [A, ,\/v]+§[A| TA VI ],
are estimated according to

. 1
(Wt AV (WL A =5 AP =55 (A V]
1 <€P>YO 312
e — | — e',---y€ veey (37) 1
c\c) P +S|aslb§5ikl[Akav[Alb VI (42)
respectively.

In previous work[4] we have sel =0 on the basis that which finally allows us to identify
the coarse graining approximation does not allow for the
continuum connection to be probed below. 10n the other 1 1
hand, by adopting say kinematical coherent states for repre- Wia:E[Aia*\N]- Wiab:géikl[Akav[Alb ,\/V]].
senting semiclassical states, one would ¥et1 for two (43
reasons: first, in the limit —0({,—0) Eq.(37) yields just
zero, in agreement with a flat connection, and, second, such The scaling properties under the semiclassical expectation
an scaling would saturate the Heisenberg uncertainty relasalue of the above gravitational operators is
tion. Nonetheless, physical semiclassical states may lead to a

leading order contribution withY' #0,1, thus we leave it 32 p \nY
open here. Now we have all the ingredients to perform the (WE| .. . Wia o .|W§>H_P<_P) . (49
expansion in powers . o £\ L

Let us consider now the contribution arising from the

gravitational operators containedwn, ,(v) of Eq. (30). We V. THE CALCULATION
choose the parametrization _ . . .
The detailed calculation of the correction terms is per-

Wiia(0)=5W;,+5,%, OWiapt - - - (38  formed according to the following prescription: first we set
Y =0, then we consider an expansion to ordérand finally
leading to we reintroduce the non-zero value f6rin the corresponding
terms.
Wira(0)Wj35(0) =5,28,"WiaWjp + 28,8, Wia Wi, Let us recall the general expressions from the last section:
+SIaSIbSJCWiaijc+O(S4)a (39 n o
_ _ HE =i f d3xm(x) 7y
wherew;, andw,,;,, which are independent &f need to be |
calculated explicitly. The product of starts quadratically in X T2182 - M 1M4p .. My k
S.
To. this end we will r]eed the algebra, recglling .thaftk X T Tmy,p - - - Tm 0a,0a, - - 2 §(X) (45
=—(i/2)oy, with o being the standard Pauli matrices. We
have T8z - My1Myp .. .My K
1 5 1 0
TiTi= — & 0ij T 5 €iik Tk »
T g % T Bk Tk =F<(s§15§2 S (SR ISR LR
1 1 1 1 M4 1Myo...my kK
TiTiTk= ~ g €ilk 7 9 kT 7 Ok Ty~ 7 9k Ti XK o eay (V) (46)
M 41M42 .My kK
EcabTaTbZ %ecabeamem: e xaHla|+2 co.ay (v)
_ ijk _1IK AM+1 AM+2
. e*e <W’§|Aa|+1(v)Aa|+2(v)
TTaTk= ZTa. (40 X .. -A;nnn(v)\;vim(v)
From the definition(14) we obtain X Wiy (0)|W,E). 47
" _ \/__h \/_h*l L. .
Wija=Tr((ri(VV—hg VVhg 7). (41)  The partition is made of the number such that we have
| derivatives andrif—1) 7-matrices, all arising from the pres-
Up to second order is, we have ence ofn covariant derivatives in Eq.24). We recall that
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Wi 2 (0) W3 (0) = (8178, WigWjp) + (8,%8,°8, WigWine where
+5,%5,°5,°Wi5pWjc) + O(s%), 0p\ @Y
. . flj_: 1+1311 f LR I (55)
= (Wi a(0)Wj3a(0))2
+(\7Vi|A(v)\7VjJA(v))3' .. Our convention in the sequel is to writE,; so that its first
A . term isd,,,, which is a pure number not depending either on
+ (Wi a ()W (0Nt - -+ (48)  €p oronZL. Inthis way
whereN counts the powers afin the termw;; ,(v)w;jA(v)- @ [€p)20+) o A
Under the semiclassical state we can estimate the contribu- HZ:—S(f) J—'MJ d3Xi m(X) 740,6(X).  (56)
tion of each term in Eq(48) as 4€p
. . o Cp\ NN In order to recover the standard kinetic term we have to
(W, E[ ... (Wi a(0)Wjga(0)n - - - [W,E) =15 a , choose
(49
£\ 2(1+Y)
where we have used Eq&7) and (44). ®=4€3§(€—) , (57)
P

A. The casen=1 which reduces to our choice in R¢#], for Y =0. We obtain

Here we have two possibilities which we consider sepa-
rately: (h=1,1=1) and f=1,1=0). F I -
H11:-7:11f d3XN(X)i 7(X) TadaE(X) (58
1. Casen=1l,1=1

as the final result for the kinetic term piece of the Hamil-

Wi [ (0 sTHE0) G0 tonian
0 2. Case r=1,1=0
Tilk:m@?XKK(U» (51 The basic quantities are
P
XK (v) = K eI (W, €| o (0) W32 ()W, E).  (52) Hfo=if A3X77(X) e TTH E(X) (59)

We present this first calculation in some detail since it sets

the stage for all the remaining estimates miC @ o ok ~ N
Tio :m<SKEJ € <Wr§|Aa(U)WiIA(U)WjJA(U)|W!§>>'

) . . P
Tixt 7 (SR WL i (0) W0 (1) W) (60
P
Under the scaling properties we obtain
® o N(1+Y)
= —tp > ﬂllNeg(_> 1/ep\Y
a0l "N=23, L k= 5mkz<fp) Fuo 61)
0 0p 2(1+Y) Op 3(1+Y)
P
Op (1+Y)

2(1+Y) (1+Y) F: =(ﬁ + 3 (—) + .- ) 62

T3 = yk%(%) ( U110t 0113( %) e ) . 10 02T L (62
P

2 M= — o F f d3xi m(X) £(X) 1(€P)Y (63)

=—— Xim(X)E(X) = —] -
The notation isd,,y and these numbers are assumed to be of 10 4710 L\ L
order one. Choosing,;,= 1 we are left with
o [t 2(14Y) B. The casen=2
T"i‘l"z é‘akm(f Fi1 (549 Here we have three possibilitiesn€2,1=0),(n=2, 1
P =1) and h=2,1=2)
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1. Case(n=2,1=2) C. The casen=3

Here we have four possibilities:nE3,1=0),(n=3, 1
H§2=iJ d3xa(X) 7y Ta2 K9, 0, £(X) (64 =1),(n=3,1=2) and o=3,1=3).
1. Case(n=3,1=3)

) ) ) )
Tab ke (525D eIk eVK(W, &|Wij 2 (0)Wisa(0)|W, €)). L )
GVTIRR AT . HE,=i f A3X7(X) T TR0, 9 deE(X) (72)

From the above equation we see tha}* must be symmetric .« abc i ~ ~
- Jk lIK : .
in the indicesa,b. Nevertheless, the only three index tensor ' 33 4€|73<5KSK5K6 € (W, &[wij 2 (0)Wj3a(0) W, 6)).
at our disposal in flat space & so we must conclude that (73

this contribution is zero, that is to say,j# 0.
Here we have to impose the symmetry in the indiads,c.
2. Case(n=2,1=1) In flat space the required tensor is

.o . 1
H5,=2i f d3X7(X) 7T T3] 90 €(X) (66) t55°= 5 (80 8%+ 8708%+ 5°28%) (74)

) o R which turns out to be symmetric in all four indices. Then
T = 7 (sksce ™ e (WL AT (v)

4lp ngc ‘= tg§Ck€%733a
X Wi 2 (VW34 (0)|W,£)). (67) p) 1Y
) _ Faz= ( V330t 13333( f) +eee ) (75)
Here we have no symmetry requirement, so the antisymmet-
ric tensor is allowed and we have - :
Combining the above results we obtain
eP 1+Y
ToP =™ | Fau, F 32 2 24021 p2
L Hss=Fa3 | d°Xim(X) 74da9°E6(X) €5, (76)
€P 1+Y . . ..
For= ( St ﬁ213(f ... (68) the leading term of which is independent of the scéle

2. Case r=3,|=2
The final contribution is

()Y Ha,=3 f d¥xi m0) 7T Tmdado(X)  (77)
H§l= - 2.7:21f d3xi r(x) Ta&af(x)(f) (69
(C] . -
This is a correction of orderé/£)**Y to the standard ki- T = — (sksksre €W, ¢|AT(v)
netic term. 4¢;
3. Case r=2,1=0 XWilA(U)WjJA(U)|W,§>>- (78)

o ) The above tensor must be symmetrical in the indecds
Hgozij d3x 7 (X) 7T o Tmé (X) (700  only. In flat space we can construct

tggmk: a325ab5mk+ﬂgz(5am5bk+ 5bm5ak). (79)

(C] . A ~
Tomk= —7(S§SE6'JKE'JK<W,§|AQ(U)A?(v)
=)

Then we have

- ~ Y
XWija(0)Wj3a(0)|W,8)). (71) Tabm k_ yabmie 2 l(g_) Fan,
Here we do have symmetry requirements. Since the opera-
tors Al(v) and Al'(v) commute, the above tensor must be
symmetrical in the indices,m. Again, in flat space the only
three index tensor at our disposal is #/€'% which leads to
H5,=0. which leads to

(1+Y)
+oo ) (80)
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F 3 1 33 (N2 240
Hgo=—3 7 %" 5,332 Fap| dXim(X)€pdE(X)
1(€¢p\Y
X=|—1 . (81
3. Case =3,1=1

HE,=3 f d3xi 7 (X) 7 Ta 87 732 E(X) (82)

() R R
TaT" = 7 (skskske €T UWL S AT) AL (w)
P

X\;VilA(U)WjJA(UHW,g))- (83
The above tensor must be symmetricahimn. We have
t50 "= a3y 80K+ Bay(SMASKH sMaS™). (84)

Then

2(1+Y)
el 2]

€p\ D)
which produces
F 1 3Xi r(x X
Ha1= — 77 a1(9aa1+6B3) | d°Xi m(X) 7adag(X)
€P 2(1+Y)
S (86)
4. Case r=3,1=0

H50= Jd Xi ()T TkTanTpf(X) (87)

Toe ke m(sﬁsﬁs&e”ke'”(w,§|A?(U)Ag(v)
P

X AP(0) Wi 5 (0)Wi34(0)|W, £€)). (88)

The above tensor is symmetrical with respect to the indices

m,n,p. This means that we need
1
tmnpk_3(5mn5pk+ 5np5mk+ 5pm5nk) (89)
so that

2 3Y
Tmnpk_ mnpk€P fp F
£3 L 303

PHYSICAL REVIEW D 66, 124006 (2002

eP (1+Y)
Fao= ( D300t '3303( f) +--- ) , (90)

which produces

g 3Y
Hao= 48fsof d3xi m(x (X)—(—) . (91)

D. The full contribution H F
It is given by

HF:EI HE (92)

where the different pieces were calculated in the previous
subsection. Next we make a clear separation among terms
containing eithe€p or £ and those purely numerical factors
not including these quantities, through the following series of
redefinitions. First we changg,, into G, where

o )(1+Y)

Oni= ( %nl2+%nls( r e, (93

by absorbing all numerical factors in the latter coefficients,
in such a way that the Hamiltonian is written as

i . N R eP 1+Y
H =j d*XN) i m(X)| Gu1+ Gaa| 7

2(1+Y)
NE

e\ Y
L

- Ex).

+Ga Tada(X)

3

1

_,i R ¢ 2(1+Y)
+ f A, w(X) P)

G0t 930( v

+Ganl BV 2+

In particular we haveG,,=F;; and what we have done
amounts effectively to a numerical redefinition of eathy
into x,. Finally we factor out the contributions arising
from different powers of (/L) and{p. To the order con-
sidered we have

1+Y

{p
G11+ G| — +---

L

£p) 20H)
+ 3 ya

1+Y £\ 2(1+Y)

)

=1+, T

L a

K3

g33_ 2

(94)

where kp are numbers not containing eithép or £. The
factor one in the right-hand sid®HS) of the first equation
arises from the condition that in the limit,— 0 we recover
the standard fermionic Hamiltonian. Analogously we rede-
fine
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0p|20Y) 0o\ 1Y €p\20Y) which is our final expression for this piece of the effective
10t YGso| 7 =Kot Ks| 7 +Ke| 7 Hamiltonian.
T E. The mass term
K7 Since the spinorg, 7 are half-densities regularization of
Gao= > (95  the mass term requires a treatment along the lingS5ifthat
effectively dedensitizes them. For our purposes, however, it

be done consistently with our strategy above. Namely, using

previous ones. The above leads to ) > ]
the triangulation again,

Hsz d3XN(X)i 7(X)| 1+ Ky ﬁ)lwﬂz e—P)Z(M) m
L L Hmzﬁf d®xNéT(io?)é+c.c.
K3 -
+ ?E%V2+ oo | Tadaé(X) ZEA: N(U(A))le(v) EuKEabcsla(A)s?(A)
NI N p| 1Y '
+J d3XZ7T(X)Z(f) K+ Ks f) XSCK(A)fT(S(A))(ia'z)hS(A)f(v(A))-i-C.C. (97)
€p\ 2 kg - and in the quantum theory, by adapting the triangulation to

- Kﬁ(f) T VI 60 (98 the flat WBSC state with fermions, we get

. 8
Hm={(W,&H|W, &)= ; N(U(A))S!E—(U) €K e A)SD(A)SE(A)(W, & 6T(s(A))i o) hga) 0w (A))|W, &) +c.c.

8
=v€§vjm N(U(A))me'JKeasz,a(A)s‘j(A)s@(A)((W,§| 0T (0)(i0?) 6(v)|W, &)+ (W, £]s23,0"(v) (i 0?) B(v)|W, €)

+(W,£07(0)(10%)S*A4(0) B(0) |W, ) +(W, £]523,0"(v) (1 67)S*A,(v) B(V)|W, €) + - - ) +c.C. (99)

Hence, to leading order, the modifications coming from

Planck scale to standard flat space mass term for fermions ~ H®) | IN]=— —P3 > N, kel
208 vy u®=o

are just
mi( (. 5 T Xtr(Tihsl(A)[hglg-A)1\/v_u])
Hm=ﬁ d°x| E'(10°)E+ kol pE' (i) T20,€
-1 ~
RSS! RRRE Xt s o) [Ny NV, )
+ kg f) §T(i02)§+K11€P(f
X[ L(hg, () Tids, () 0) (Sk(A) (8)]a
X EN(i0?) 20,6+ c.c.) , (99
X — [ 70
F0ascA)(5) LKA
where we have sdti=1.
X +H.c.|. 101
F. The extra contributions 30p(v) (10D
Here we study the second term of E§)
a The corresponding expectation value behaves as
HE, 1= Ld&mwam nié)+c.cl. (100
A2 =f d3X[Z10,B2+ Z»0,0,B2°+ - - -
Repeating the procedure applied 1), , step by step {Hepn- 12 s [217a 272t |
(102

with the pertinent modification in the fermionic term leads to
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where theZ;’s represent the estimate of the nonfermionic V1. EFFECTIVE DYNAMICS FOR SPIN- 3 PARTICLES
factors in Eq.(101) and theB’s represent the fermionic bi-

. . . . 1 .
linears. Clearly evenB term, being a boundary term, wil The total effective Hamiltonian Hfor our spins particle

not affect the effective dynamics of the spirparticle. Is then
We proceed to describe the third term in E8) H=H+H,,
H b 1= fd x— [iKiavTT§+c.c.]. (103 fd3 X im(x) 7994 A&(X)+c. C+4ﬁ EW(X)Cf(X)
. . - m Tro\(i 2 a o
To regularize it we can treat thg{/2\/q factor similarly as + 57 & (o) (@t 20 f7d,) €(X)
with HG) 1, term. As for theK |, factor we recal[55]
m - -
1 top T(X)(a+ 28 B723,)(10?) 7w (X) |, (109
== ;{Afa AV, Hel} (104
where
2 Y+1 2Y+2
E_ 2| 43y .ab ~ 14 ¢
HE= KLd Xe22%r(F ap{Ac, V). (105 A=(1+K1 fp +K2(EP) K3€PV2)
Upon regularization of the quantuk® one gets R €p\Y o\ 2Y+1 €p\ 3V 12
C:h<K4(Z +K5 f) +K6 f)
HE=> HE, 106 Y
% A ( ) + ﬂ ﬁ €2v2
2\ L T )
peo_ AN eltr(h,  hg olhsiy,V,1) €p\ Y1t
b Biked aij(a) A s (a) Fo a=(1+ K| 7 ,
(107
. ) ) K11 €P Y+1
Following the standard procedure to incorporate holonomies B= €P —¢ (— (1109
and fermions one arrives at the quantum version of(EG3) Zﬁ 2h

as It can be seen that the terms proportionakigxs and g

correspond to a renormalization of the fermion mass. They
i 2 IKMN G W Wiy vv_iII not be considered in.the seque_l, although they wogld
kAT give rise to standard neutrino oscillations even if the neutrino

e 6%,0 YT eah= bare mass is zero

xtr(rkhSK[hs‘Kl,{Vv ,tr(haLM(A,)hsN(A,) The wave equation becomes
-1 J cl . . .
X[hSN(A,),VU])}])gA(U(A))m"FH.C. fy Iﬁ—_lﬁAO' V"rz E(t,X)+m(a—Biko-V)x(t,X)
(108 =0, (119

where the prefactoh/t’,%0 was obtained from (1) (%) (1/ C - - -
£#2)(1/x*h2€3) with the « factors coming from the different 'h +'ﬁA‘T V- 2L x(tx)+m(a—pBiia-V)E(LX)
Poisson brackets identities, tfhefactors from the quantiza-

tion procedure and thé3 factor arises similarly as in previ- =0, (112
ous steps. We want to estimate the leading order contribution

of Eq. (103 to the effective dynamics of the spinparticle. ~ With x(t,x)=i0,¢* (t,x). Following the standard steps one
For simplicity in the discussion we sat=0, but an exten- can verify the consistency of the above equations.

sion can be given fol¥ >0. The leading order is estimated  Eliminating y from Eq. (111 we obtain
by noticing that undek(- - -)) the contribution of an ho-

lonomyhis 1 if it is not an entry of a commutator, otherwise 1 1 C

it scales like€p/L. Such a leading order contribution be- X~ m a—Biho-V ﬁ__'ﬁAU v+ 2715

haves then like K/¢X)(€¥2(€p /L)) (€plL)20S=(h1{p) (113
X(€plL)*=mp(€p/L£)*, which is highly suppressed given

the quartic order andp<<L. Substituting in Eq(112) we obtain the second order equation

124006-13



ALFARO, MORALES-TEZOTL, AND URRUTIA PHYSICAL REVIEW D 66, 124006 (2002

P . ¢ P . ¢ coefficient of each power is subsequently expanded in pow-
iAi—+ihAoc-V— 27 iAi——ihAc-V+ > ers ofmin the combinations eithem{/p) or (m¢;p). In this
at at way we obtain
—mz(a—ﬁih&-V)Z) £(1,x)=0. (114 m2 1 1 1
E.-(p.L)= p+$i€p(§mzf<9 +3 _§K3P3+§
The above equation has positive and negative energy solu-
tions o o Cp\ Y11 0,m?
X(2K3+ Kg)m p + f Klp_ 4
W(F;,h)e—(i/h)EtJr(i/h)ﬁ-;, W(ﬁyh)e(i/ﬁ)Et—(i/ﬁ)ﬁ.i, P
p2 m2 €P 2Y +2
_)(115) *lp _K7Z+®12E + v
where it is convenient to take the spinorial p#/{p,h) as )
.. -~ . . _ m
helicity (o- p) eigenstates, withh=+*1, so that x| Kp %(922) (119
&
cos =
S where the previous coefficients denoted byppear in the
W(p.1)= 6\ |’ following combinations:
e“”sin(—) J '

01,=(2k1—4kg), O1,=(8ky1+2K7+8kgky),
i («9) (120
—e sin 5

W(p,—1)= 116
(p.—1) S(a) (118 0 5,= — 32x5+ 32k, + 64K Kg. (122
cog 5
2
The dispersion relation has the following form: The velocity is defined as
- c\> . IE.(p,L
E.= \/(A2+m2B2)|p| 2+mPa®+| | +Bpl, v-(p,0)= Z=PE) (122
2L p
(117
with and is
Y+1 2Y+2
fp) K3 2 )
A=|1+Ky|—| +xo|l— - —€pp?, m? 3 1
1 2\ 2 'PP va(p,L)=|| 1— — | +€3| — s k3p?+ —(2K3+K3)m2>
2p2 2 8
B=A(E+2a,8m2> €p\ Y11 0,m?| ke
L + f K1+ 4p2 ):7(€Pp)
Y
C__ﬁ(ﬁ 02p? o\ 2Y+2 m?
2\ L ' il -
+ E K2+ 64p2®22) y (123)
Y+1
a=|1+ Kg(_) ), o ) )
L within the same approximation.
Vi1 We will be mainly interested in the case of ultrarelativistic
B= ﬂ(’ +K_11€ €_P (118 cosmological neutrinos, whose mass we take to rbe
20 P20 P\ L =10"° GeV, in the range of momenta 3@ p=<10'° GeV,
where
The * in Eq. (117 refers to the dispersion relation of the
helicities = respectively. Let us emphasize that the solution m
£(t,X) to either Eq.(111) or Eq.(112) is given by an appro- p>m = (plp)>(Mlp)—, (plp)>>(mep).
priate linear combination of plane waves and helicity eigen- P 12
states. This is not unexpected since we are dealing with mas- (124

sive particles.
In the sequel we write down the dispersion relation inSuch a regime allows us to introduce some simplifications in
terms of an expansion up to second orderB (£)Y. The  the coefficients of {p/£)Y. The results are
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m 1 m2 3
€PEi(pv£):(p€P)+(€Pm)ﬁi (E(epm)2'<9) Ui(pa£)|£=l/p:l_2_pz_ §K3(€Pp)2+(€Pp)Y+l
1 . b Y+1
- — K
g Kol teP) +( s X| k1T (€pp) | +(€pP)? "2ty
(€pp)? (129

X

k1(plp)+ K7
4
In the cas€Y =0 we recover the expressiof® and(10) of

22 Ref. [4].

+ Ko(plp), (129

tp
L

2. A universal scale forl

) Recently, in[13] a universal value foZ was considered
together with in the context of the GZK anomaly. The study of the differ-
ent reactions involved produces a preferred bound’h6
X108 GeV '=£=8.3x10"° GeV 1. Actually, in this
€p)Y+1 case the general expressidd®5 and(126) are valid.

L

¢ )2Y+2

m? 3 5
U‘:(prﬁ)zl_z—pz_ §K3(€Pp) +

B. The exponentY

ky. (126 In this section we follow the conclusion derived fom the
Super-Kamiokande atmospheric neutrino experiment that
neutrino oscillations are well described by the mass differ-
ences contribution to the energyn£—0.9+0.4 at 90%
VIl. PARAMETER ESTIMATES C.L., in the standard notatio62]) [9]. That is to say, any
A The scaler’ additional contribution. to thg_oscil!ation length must be
highly suppressed. This condition will set a lower bound to
In order to estimate some numerical values for the modiyy which we will use in further estimates.
fications to the velocity of propagation we must further fix  The oscillation length. = 27/|AE| is
the value of the scal€. Two distinguished cases arise.

X

L

_ k7
Kl+7(€Pp) +

) 1 1 N 1 L_L 1 L AmE
1. The mobile scale£=)\=5 L Lm Los” m1+ Lm © ™ (Aam)?’
. . . , L
Recall thatZ is a macroscopic length scale, being defined Qe (129

by the given geometry which indicates where the nonpertur-

bative states of the spin network can be approximated by th@here we have usep~E, €p=1/Mp and Log is calculated
classical flat metric. The neutrino is characterized by eneraccording to each specific additional term|XE|. Since the
gies which probe to distances of orderTo be described by dominant contribution to the oscillation arises form the mass
a classical continuous flat geometry equation, as the foungbrm, j.e.L~L,,, we must have the condition

Dirac equation, it is necessary that one remains in the correct

range with respect td, i.e. L<\. We take the marginal Loc>Lm=X, (130
choice of the equality in order to be able to make some
further estimates. Previous expressions reduce to where X is the distance travelled by the neutrinos in each

experiment. Let us observe that the energy range for current
neutrino observatories lies between “20GeV and

CpE-(P,L)| = 1p 10*2 GeV, which amply satisfies the conditiop£)<1. In
particular we will consider the case of the SNO experiment
=(ptp)+ (€pm) 22 i%(€Pm)2K9 characterized by the following parameté6s]:
p

L E=102 GeV, X=10° km=10?" GeV . (13)
_ = 3 Y+1
5 a(CpP)"+ (Plp) The estimates proceed by considering first the separate con-
2 tribution of each arbitrary parametérx and subsequently
(€eP) £.)2Y+2 ¢ the case where we have more than one non-zero contribution
+(ptp) ko(plp) o
4 to the oscillation.

X| k1(plp)+ K7

(127
1. The caseL=\=

Tl

and (|) AK3¢O,AK1:AK7:0.
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The quantum gravity contribution to the oscillation length
is
L 47 (M\?1 13
S = = (132
from which we get that

Ak3<6.28< 10",

PHYSICAL REVIEW D 66, 124006 (2002

Using Ax;~1, we obtain
Y>1.2. (138

(i) Ak7#0, Ak;=Ak3=0.
Here we have

which is a very weak bound on the variable. The reason i#\SSumingA«;~1, we get a bound oiv:

that this term corresponds to a second order correctibp.in
(||) AK]_?EO, AK3:AK7:0.
Here we have

_ 2w (MY 133
© gl E]  E (133
Using Ax;~1, we obtain
Y>0.152. (134
(i) Ax7;#0, Ak;=Ak3=0.
Here we have
. 8w (M|Y?21 13
© ol E] E (139
Using Ax;~1, we obtain
Y>—0.87. (136

(iv) When two of theA «; do not simultaneously vanish,
we get the following situations:

(iv-1) A k,#0.

In this case the term proportional tbk; is suppressed
with respect to the one proportional Aoc;. The comparison
among the terms proportional tox; and A x5 leads to the
thresholdY =1. WhenY>1 the term proportional ta x5
dominates, while the term proportional Ao<; dominates in
the other situation.

(iv-2) Ax,=0.

In this case the competition is among the terms propor
tional to A k3 andA 5. The threshold here i¥ =0, so that
we consider only the cad>0, where the term proportional
to Ak3 dominates.

2. A universal scale forl

In this estimate we will assume that=10 8 GeVv ?!
[13].

(|) AK3?£O, AK]_:AK7:0.

Since this contribution does not depend up&nwe ob-

8w [ L)Y TMp 1 139
W i \7. EE (139
Y>—0.764, (140

which is also a weak bound on the variable.

(iv) When two of theA k; do not simultaneously vanish,
we get the following situations:

(iv-1) Ak,#0, which leads to the threshold > 3.
WhenY >17/11 the term\ k3 dominates and we are back to
the case(i). On the other hand, whe¥i<if we obtain the
interval >Y>1.2. It should be stressed that the latter
bound onY is also compatible with the bound on the maxi-
mum speed of Ref.64], which in our case reads

b Y+1
— <1072
E) 10

m2
Avge=|v+(p,L)— 1_2_p2 =Ky

(141

(iv-2) Ax,=0.

The threshold here i¥'=3/11. WhenY >3/11 the term
proportional toA k3 dominates over the one proportional to

K7.

So, the present data on neutrino oscillations do not pre-
scribe the theory considered in this work with a universal
scale£L~10"8 Gev L.

VIIl. SUMMARY AND DISCUSSION

In this work we have derived an effective Hamiltonian
exhibiting Planck scale corrections with respect to standard
propagation for the theory describing spin-1/2 fermions, us-
ing an heuristical approach based upon Thiemann'’s regular-
ization within the framework of loop quantum gravity. Cor-
rections arise as a consequence of the discrete nature of
space which are manifest at Planck scale. The effective spin-
1/2 particle Hamiltonian given in Eq$109),(110 was ob-
tained by taking the expectation value of the regularized ver-
sion of the quantum operator corresponding to €g.with
respect to avould be semiclassical staf@/, &) describing a
large scale flat metric together with a slowly varying classi-
cal spinor field. Only the basic properties of such a state were
used:(i) peakedness both in a flat space metric together with
a flat connection for large distancés- £> ¢, where£ can

tain the same result as the corresponding case in the mobifg: thought of as the scale that settles the transition between a

scale.
(||) AKlio,AK3:AK7:0.
Here we have

Y+1 1

2 ( L
E (137

LQG:AKl €_P

discrete and a continuous description of spditewell de-
fined expectation valuesiii) existence of a coarse-grained
expansion involving ratios of the relevant scales of the prob-
lem: the Planck lengtlip, the characteristic lengtf of the
state and the de Broglie wavelengtlof the spin-1/2 particle
and (iv) invariance under rotations at scales larger tifan
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which amounts to expressing the box-averaged values intro- (i) At,~(L/c?)(v—v,), which measures the time delay

duced after Eq(18) only in terms of flat space tensors. of the arrival of the neutrino coming from a distarcefly-
The effective theory violates Lorentz invariance and, ining with velocity v=0E/dp, with respect to the time of

analogy with the photon ca$é], we assume that the effec- flight corresponding to a particle of mass with velocity

tive Hamiltonian so found corresponds to that in the particuy = p/\/p?+m’~1.

lar frame of reference where the cosmic radiation back- (i) At.~(L/c?)(v_—v.), which is a measure of the

ground IOka isotropic. . o birrefringence effects and it is defined by the difference in
Some improvements with respect to our original presenthe arrival time of two neutrinos with opposite polarizations.
tation [4] are the following:(i) in Sec. VF we have eluci- In the range 0.8Y <2.0 and within the two scenarios

dated the contribution of the derivative term and the extrinsigyresented here for dealing with the scdle we obtain the
curvature dependent term in E®) by showing that they are estimates

highly suppressed in powers 6. (ii) We have extended

the corrections to the scaling of the connection by including

the new parameteY, already considered in our discussion 10 19s<At,<107*s, (143
of photong[5], in the form

At. <107 s. (144
1(¢p\Y To conclude we point out that an effective dynamics and
W, €|Aig|W, 6 =0+ —| —| , 142 dispersion relations for gravity plus matter were thoroughly
ElAE| W, £) =0+~

studied recently by Thiemann and Sahim#gh], where the
whereY >0 can be any real number semiclassical states were taken as coherent states. They in-
' cluded photons and scalar particles and their results for the

In Sec. VIII we have estimated some boundsYqrbased . ! . ! . .
Q|sper5|on relations essentially agree with what we obtain

on the observation that atmospheric neutrino oscillations ah for fermi th hility of havi int I
average energies of the order £6- 10 GeV are dominated ere for fermions, even the possibility of having nonintegra
jpowers in¢p for the correcting terms, which is encoded in

by the corresponding mass differences via the oscillatio ) . . g
lengthL,, in EqQ. (129. This means that additional contribu- our parametelf . Besides they provide a detaﬂed <.:Ia53|f.|cfa-
tions to the oscillation length, in particular the quantum grav—tIon of the qqantum .geo”?e”-‘./ aspects requwed n dpfmmg
ity correctionL should satisfyL og>L,,, which is used the semiclassical regime yielding the effective dynamics. Yet
to set a lower ngl,md upoN Withir?Gthe Sr,oposed two dif- another avenue to tackle the problem of defining semiclassi-
ferent ways of estimating the scafeof the process we ob- cal states in quantum geom_etry is currently under investiga-
tain: (i) Y >0.15 whenc is considered as a mobile scale andtion that establishes a relation between Fock space and the
it is .estimate.d by E and(ii) 1.2<Y when the scale takes kinematical Hilbert space for diffeomorphism covariant theo-
y ' ries of connections such as quantum geoméwogp quan-

e s e e enans et Graviy 656 Gee o 1wl b erestng o
(pL)=1 compare all of the above pro.posed semiclassical states in the
Let u§ observe that according to E@L27) the mass- context of the quantum gravity phenomenology.
difference contribution to the neutrino oscillation process
will be highly suppressed at high energies while other
mechanisms, like those arising in the quantum gravity frame- The authors would like to thank A. Ashtekar, M. Bo-
work, could be the dominant ong81]. It is an experimental  jowald, R. Gambini and T. Thiemann for suggestions on this
issue to settle this question. Since the bound upatrongly  work. Partial support is acknowledged from the bilateral pro-
depends on the dominant mechanism there is the possibiligyram CONICYT-CONACYT, DGAPA IN11700 and CONA-
that the exponenY be energy-dependent. This situation is CYT 32431-E. L.F.U. acknowledges the hospitality of CERN
not considered in the present approach. Nevertheless, in ofegether with support from the program CERN-CONACyYT
der to make some numerical estimates related to cosmologiMexico). We also acknowledge the project Fondecyt
cal neutrinos we will make the extrapolation of our bounds7010967. The work of J.A. is partially supported by Fond-
in Y, which have been obtained in the range of a few GeVecyt 1010967. He acknowledges the hospitality of LPTENS
to energies of the order of 1@eV, corresponding to typical (Pariy and CERN; and financial support from an
neutrinos arising from gamma ray bursts. Let us consideEcogFrance-Conicyt(Chile) project. H.A.M.T. acknowl-
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