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The electromagnetic form factors of the nucleon have been studied in perturbative

QCD (PQCD), together with QCD sum rule estimates of the nucleon wave functions [1].

Comparison with data is difficult due to the extreme asymptotic nature of these theoret-

ical results. In fact, the onset of PQCD in exclusive reactions does not appear to be as

precocious as in inclusive processes. In addition, these wave functions are affected by some

unavoidable model dependency. In any case, the Dirac form factor F1(Q
2) does exhibit the

expected leading asymptotic 1/Q4 behaviour. However, the Pauli form factor F2(Q
2) turns

out to be of higher twist, and therefore not accessible in the standard PQCD approach. At

current experimental space-like momentum transfers, the results from the standard hard-

scattering approach for F1(Q
2) do not compare favourably with the data. On the other

hand, some recent light-cone QCD sum rule determinations appear to improve the agree-

ment with data from within a factor 5-6 to within a factor of two [2]. The source of this

persistent disagreement does not seem easy to identify. In view of this, it is desirable to

attempt a QCD sum rule determination in a region of experimentally accessible momentum

transfers, and without any reference to the concept of a wave function. In addition, one

should employ sum rules of a type which would provide a clear insight into the source(s) of

potential disagreement with experiment. This can be achieved e.g. by using Finite Energy

Sum Rules (FESR). In fact, in this framework the power corrections involving the vac-

uum condensates decouple to leading order in PQCD. In other words, power corrections of

different dimensionality contribute to different FESR.

In this note we determine the Dirac and

k1
k2

k3

k4

p

q

p’
x

y

0

Figure 1: The three-point function, equa-

tion (1), to leading order in perturbative QCD.

Pauli electromagnetic nucleon form factors, in

a wide range of (space-like) momentum trans-

fers, in the framework of three-point function

QCD-FESR of leading dimensionality. As is

well known by now, this technique is based

on the Operator Product Expansion (OPE)

of current correlators at short distances, and

on the notion of quark-hadron duality [3]. An-

alyticity and dispersion relations connect the

QCD information in the OPE to hadronic pa-

rameters entering the corresponding spectral

functions. We compute the QCD correlator

to leading order in perturbative QCD in the

chiral limit (mu = md = 0), and include the leading order non-perturbative power correc-

tions proportional to the quark-condensate and the four-quark condensate (with no gluon

exchange). We begin by considering the following three-point function (see figure 1)

Πµ(p
2, p′2, Q2) = i2

∫

d4x

∫

d4y ei(p
′·x−q·y) 〈0

∣

∣T{ηN (x)JEM
µ (y)η̄N (0)}

∣

∣ 0〉 , (1)

where Q2 ≡ −q2 = −(p′ − p)2 ≥ 0 is fixed, and

ηN (x) = εabc

[

ua(x)(Cγα)u
b(x)

]

(γ5γαdc(x)) (2)

– 1 –
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is an interpolating current with nucleon (proton) quantum numbers; the neutron case u↔ d

will be discussed at the end. In equation (1), Jµ
EM is the electromagnetic current

Jµ
EM (y) =

2

3
ū(y)γµu(y)− 1

3
d̄(y)γµd(y) . (3)

The current equation (2) couples to a nucleon of momentum p and polarization s accord-

ing to

〈0 |ηN (0)|N(p, s)〉 = λNu(p, s) , (4)

where u(p, s) is the nucleon spinor, and λN , the current-nucleon coupling, is a phenomeno-

logical parameter a-priori unknown. This parameter can be estimated, e.g. using QCD

sum rules for a two-point function involving the currents ηN [3]–[4]. In this case one can

determine the nucleon mass, as well as the coupling λN .

Concentrating first on the hadronic sector, and inserting a one-particle nucleon state in the

three-point function (1) brings out the nucleon form factors F1(q
2), and F2(q

2), defined as

〈N(k1 , s1)
∣

∣JEM
µ (0)

∣

∣N(k2 , s2)〉 = ūN (k1, s1)

[

F1(q
2)γµ +

iκ

2MN
F2(q

2)σµνq
ν

]

uN (k2, s2) ,

(5)

where q2 = (k2 − k1)
2, and κ is the anomalous magnetic moment in units of nuclear

magnetons (κp = 1.79 for the proton, and κn = −1.91 for the neutron). The form factors

F1,2(q
2) are related to the electric and magnetic (Sachs) form factors GE(q

2), and GM (q2),

measured in elastic electron-proton scattering experiments, according to

GE(q
2) ≡ F1(q

2) +
κq2

(2m)2
F2(q

2) , (6)

GM (q2) ≡ F1(q
2) + κF2(q

2) , (7)

where Gp
E(0) = 1, Gp

M (0) = 1 + κp for the proton, and Gn
E(0) = 0, Gn

M (0) = κn for the

neutron. Next, the hadronic spectral function is obtained after inserting a complete set

of nucleonic states in (1), and computing the double discontinuity in the complex p2 ≡ s,

p′2 ≡ s′ plane. For s, s′ < 2.1GeV2, i.e. below the Roper resonance, one can safely

approximate the hadronic spectral function by the single-particle nucleon pole, followed

by a continuum with thresholds s0 and s′0 (s0, s
′
0 > M2

N ). This hadronic continuum is

expected to coincide numerically with the perturbative QCD (PQCD) spectral function

(local duality). This procedure is standard in QCD sum rule applications, and leads to

ImΠµ(s, s
′, Q2)

∣

∣

∣

HAD
= π2 λ2N δ(s−M2

N )δ(s′ −M2
N )×

×
{

F1(q
2)
[

/p′γµ/p+MN (/p′γµ + γµ/p) +M2
Nγµ

]

+
iκ

2MN
F2(q

2)×

×
[

/p′σµν/p+MN (/p′σµν + σµν/p)+M
2
Nσµν

]

qν

}

Θ(s0−s) +

+ ImΠµ(s, s
′, Q2)

∣

∣

∣

PQCD
Θ(s− s0) , (8)

where we have set s0 = s′0 for simplicity.

– 2 –
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Turning to the QCD sector, the three-point function (1) to leading order in perturbative

QCD, and in the chiral limit, is given by

Πµ(p2, p′
2
, Q2) = 16

∫

d4x

∫

d4yei(p
′·x−q·y) ×

×Tr

[
∫

d4k1
(2π)4

/k1
k21
e−ik1·(x−y)γµ

∫

d4k2
(2π)4

/k2
k22
e−ik2·yγν

∫

d4k3
(2π)4

/k3
k23
e+ik3·xγα

]

×

×
(

γ5γα
∫

d4k4
(2π)4

/k4
k24
e−ik4·xγνγ5

)

+ 4

∫

d4x

∫

d4yei(p
′·x−q·y) ×

×Tr

[
∫

d4k4
(2π)4

/k4
k24
e−ik4·xγν

∫

d4k3
(2π)4

/k3
k23
e+ik3·xγα

]

×

×
(

γα
∫

d4k1
(2π)4

/k1
k21
e−ik1·(x−y)γµ

∫

d4k2
(2π)4

/k2
k22
e−ik2·yγν

)

. (9)

After computing the traces and performing the momentum space integrations, equation (9)

involves several Lorentz structures analogous to those entering the hadronic spectral func-

tion equation (8). Before invoking duality one needs to choose a particular Lorentz struc-

ture present in both (8) and (9). A convenient choice turns out to be /p′γµ/p, which allows

to project F1(q
2), as this structure does not appear multiplying F2(q

2) in equation (8).

An additional advantage of this choice is that the quark condensate contribution, to be

discussed later, does not involve the structure /p′γµ/p, on account of vanishing traces. There

is, though, a non-perturbative term involving this structure and proportional to the four-

quark condensate. However, eventually this term will not contribute to the FESR as its

double discontinuity vanishes. Hence, F1(q
2) will only be dual to the PQCD expression.

It must be pointed out that the PQCD spectral function contains the structure /p ′γµ/p ex-

plicitly, as well as implicitly, i.e. there are terms proportional to this structure which are

generated only once the momentum-space integration is performed.

After a very lengthy calculation, the imaginary part of equation (9) is given by

ImΠµ(s, s′, Q2) =

[

4

(2π)8
(3Ω1 + 4Ω2 −Ω3)

]

(

/p′γµ/p
)

+ · · · , (10)

where

Ω1 =
π6

2



Q2 + s− s′ − Q4 + 2Q2 s+ s2 − 2 s s′ − s′2
√

Q4 + (s− s′)2 + 2Q2 (s+ s′)



 , (11)

Ω2 = π6











(

2Q2 + 3 s− 3 s′
)

3
−

[

(Q2 + s)3(2Q2 + 3s) + 3
(

Q6 − 5Q2s2 − 4s3
)

s′
]

3
[

Q4 + (s− s′)2 + 2Q2(s+ s′)
] 3

2

+

+

[

(3Q2 − 4s)(Q2 + 3s)s′2 + 7Q2s′3 + 3s′4
]

3
[

Q4 + (s− s′)2 + 2Q2(s+ s′)
]

3
2











, (12)
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Ω3 =
−
{

π6
[

23Q2 + 18 (−s+ s′)
]}

72
+

π6

72
[

Q4 + (s− s′)2 + 2Q2 (s+ s′)
]

5
2

×

×
[

(

23Q2 − 18 s
) (

Q2 + s
)5

+
(

Q2 + s
)3 (

133Q4 − 169Q2 s+ 108 s2
)

s′+

+ 2
(

160Q8 + 6Q6 s+ 3Q4 s2 + 40Q2 s3 − 117 s4
)

s′
2
+

+ 2
(

205Q6 − 61Q4 s− 122Q2 s2 + 108 s3
)

s′
3
+

+
(

295Q4 − 37Q2 s− 54 s2
)

s′
4
+
(

113Q2 − 36 s
)

s′
5
+ 18 s′

6
]

. (13)

Equation (11) corresponds to the terms containing /p′γµ/p explicitly, and equations (12-13)

to the implicit case. The spectral function (10) contains additional terms proportional to

other (independent) Lorentz structures, which are not written above. Collecting all three

terms in (10) leads to

ImΠµ(s, s′, Q2) =
323Q2 + 378 (s− s′)

4608π2
+

1

4608π2 [Q4 + (s− s′)2 + 2Q2(s+ s′)]
5
2

×

×
[

−323Q12 −Q10(1993s + 1237s′)− 10Q8(512s2 + 323ss′ + 134s′
2
)+

+ Q6(−7010 s3 + 1188 ss′
2
+ 550 s′

3
)+

+ Q4(−5395s4 + 7010s3s′ + 2610s2s′
2
+ 3146ss′

3
+ 2165s′

4
)−

− Q2 (s− s′)2(2213 s3 − 2859 s2 s′ − 3099 s s′
2 − 1567 s′

3
)−

− 378 (s − s′)4(s2 − 2 s s′ − s′
2
)
]

/p′γµ/p+ · · · (14)

The next step is to invoke (global) quark-hadron duality, according to which the area

under the hadronic spectral function equals the area under the corresponding QCD spectral

function. The integrals in the complex energy plane may involve any analytic integration

kernel; this leads to different kinds of QCD sum rules, e.g. Laplace (negative exponential

kernel), Finite Energy Sum Rules (FESR) (power kernel), etc. We choose the latter, as

they have the advantage of being organized according to dimensionality (to leading order

in gluonic corrections to the vacuum condensates). In this case the FESR of leading

dimensionality is

∫ s0

0
ds

∫ s0−s

0
ds′ ImΠ(s, s′, Q2) |HAD=

∫ s0

0
ds

∫ s0−s

0
ds′ ImΠ(s, s′, Q2) |QCD . (15)

The integration region, shown in figure 2, has been chosen as a triangle; the main con-

tribution being that of region I, and the area included from regions II and III tends to

compensate the excluded regions. Other choices, e.g. rectangular regions, lead to similar

final results, as discussed in [6]–[7]. After performing the integrations, one finally obtains

F1(Q
2) =

2 s0
(

96Q6 + 297Q4 s0 + 158Q2 s0
2 − 112 s0

3
)

9216π4 (Q2 + 2 s0) λN
2 +

+
3 ln( Q2

Q2+2 s0
)
(

Q2 + 2 s0
) (

32Q6 + 67Q4 s0 + 7Q2 s0
2 − 21 s0

3
)

9216π4 (Q2 + 2 s0)λN
2 , (16)
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where one can recognize the standard logarithmic singularity arising from the chiral limit.

In order to obtain the asymptotic behaviour of F1(Q
2) it is essential to expand this loga-

rithm. In fact, there is an exact cancellation between several terms in equation (16) such

that the leading asymptotic term is

lim
Q2→∞

Q4 F1(Q
2) =

11s50
2560π4λ2N

, (17)

Qualitatively, this asymptotic behaviour agrees with expectations.

There are two leading power corrections with

Figure 2: Triangular and rectangular

integration regions of the Finite Energy

Sum Rules, equation (15).

no gluon exchange in the OPE of the correlator

equation (1). The one proportional to the quark

condensate does not contribute to F1(q
2), while

the other, proportional to the four-quark conden-

sate, leads to

Πµ(p2, p′2, Q2) =
8

9

〈ūu〉2
Q2

(

1

p2
+

1

p′2

)

/p′γµ/p+ · · · ,
(18)

where 〈ūu〉 = 〈d̄d〉 has been assumed. The dou-

ble discontinuity of this term in the (s,s’) complex

plane vanishes, so that it does not contribute to

equation (14).

We now turn to the extraction of F2(q
2), and

consider the leading order non-perturbative power

correction to the OPE, in this case given by the

quark condensate. It turns out that the contribution involving the up-quark condensate

vanishes (on account of vanishing traces), leaving only the piece proportional to 〈d̄d〉. The
three-point function (1) becomes (see figure 3)

Π〈q̄q〉
µ(p2, p′

2
, Q2) = i

〈d̄d〉
3(2π)4

[

4

∫

d4k
Tr [/kγµ(/k − /q)γν(/k − /p′)γα]

(k − q)2(k − p′)2k2
γαγν −

−
∫

d4k
Tr [/kγν(/k − /p′)γα]

k2(k − p′)2q2
(γαγµ/qγν) +

+

∫

d4k
Tr [/kγν(/k − /p)γα]

k2(k − p)2q2
(γα/qγµγν)

]

. (19)

Our choice of Lorentz structure in this case is /qγµ, which appears in equation (19), as well

as in equation (8) where it multiplies F2(q
2), but not F1(q

2). In fact, after some algebra

ImΠ〈d̄d〉
µ(s, s′, Q2)

∣

∣

∣

QCD
= −〈d̄d〉

3

{

Q2s′
(

Q2 + 3s+ s′
)

[

Q4 + (s− s′)2 + 2Q2 (s+ s′)
]3/2

+

+
1

(2π)

(s′ − s)

Q2

}

/qγµ + · · · , (20)

– 5 –
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X

uu

up

q

p’

X X

dd

d

u

u

p

q

p’

X

Xdd

u

u

q

d

p p’

X

X

dd

Figure 3: Non-vanishing terms proportional to the down-quark condensate, equation (19).

and

ImΠµ(s, s′, Q2)
∣

∣

∣

HAD
= F2(Q

2)
κp
2

(

s′

MN
+MN

)

/qγµ + · · · (21)

After substituting the above two spectral functions in the FESR equation (15), and

performing the integrations one obtains

F2(Q
2) = − 〈d̄d〉

24κpMN π2 λ2N

[

2s0
(

Q2 + s0
)

+Q2
(

Q2 + 2s0
)

ln

(

Q2

Q2 + 2s0

)]

. (22)

After expanding the logarithm there are exact cancellations between various terms above,

leaving the asymptotic behaviour

lim
Q2→∞

F2(Q
2) = − 〈d̄d〉

18κpMNπ2λ2N

(

s30
Q2
− s40
Q4

+ · · ·
)

, (23)

Qualitatively, this asymptotic behaviour does not agree with expectations. In fact, one

expects F2(Q
2) to fall faster than F1(Q

2) at least by a factor of 1/Q [8]. Quantitatively,

there is also a disagreement with data even at intermediate values of Q2, as discussed

below.

The results for the form factors F1,2(q
2), equations (16) and (22), involve the free

parameters λN and s0. From QCD sum rules for two-point functions involving the nucleon

current (2) it has been found [3]–[5] that λN ' (1 − 3) × 10−2 GeV3, and
√
s0 ' (1.1 −

1.5)GeV. The higher values of λN and s0 come from Laplace sum rules [4], and the lower

values are from a FESR analysis [5] which yields the relation s30 = 192π4λ2N . After fitting

equation (16) to the experimental data, as corrected in [9], we find λN = 0.011GeV3, and

s0 = 1.2GeV2, in line with the values discussed above. Numerically, s0 is well below the

Roper resonance peak, thus justifying the model used for the hadronic spectral function,

equation (8). The predicted form factor F1(q
2) is shown in figure 4 (solid line) together

– 6 –
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Figure 4: Corrected experimental data on F1(Q
2) for the proton, [9], together with the theoretical

result from equation (16) (solid line).

with the data, the agreement being quite good. A comparison of F2(q
2) from equation (22)

with data shows a disagreement at the level of a factor two. This cannot be improved

by attempting changes in the values of the free parameters λN and s0, and is basically a

consequence of the soft q2- dependence of F2(q
2), as evidenced by equation (23).

Considering now the neutron form factors, one needs to make the change u ↔ d in

equation (2). The perturbative QCD spectral function, equation (10), involves now the

combination (Ω3 − Ω2). After using the FESR equation (15) it turns out that F1(Q
2) for

the neutron is numerically very small and consistent with zero, except near Q2 = 0 where

it diverges in the chiral limit. The explicit expression is

F1n(Q
2) =

1

9216π4(Q2 + 2s0)λN
2

[

2 s0
(

−75Q6 − 207Q4 s0 − 106Q2 s0
2 + 32s0

3
)

−

− 3 ln

(

Q2

Q2 + 2s0

)

(Q2 + 2s0)×

× (25Q6 + 44Q4s0 + 8Q2s0
2 − 6s0

3)

]

. (24)

This smallness of the neutron Dirac form factor provides a nice self-consistency check of

the method. Using F1n(Q
2) ' 0, the Sachs form factors are then proportional to F2n(Q

2),

which is given by

F2n(Q
2) =

1

48κnMnπ2λ2N
〈ūu〉

[

2s0(Q
2 + s0) +Q2(Q2 + 2s0) ln

(

Q2

Q2 + 2s0

)]

. (25)

In figure 5 we show the result for the electric Sachs form factor of the neutron, together with

data at low Q2 [10]. At higher momentum transfers, there will be a serious disagreement

with experiment on account of the soft 1/Q2 behaviour of F2n(Q
2), equation (25). Since

– 7 –
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Figure 5: Experimental data on GE(Q
2) for the neutron [10], together with the theoretical results

from equations (24-25).

GM (Q2) for the neutron appears well fitted by the dipole formula, our QCD sum rule

results do not agree with the data. This disagreement, though, is within a factor of two,

i.e. not different from other recent QCD sum rule results [2].

In summary, Finite Energy QCD sum rules of leading dimensionality in the OPE lead

to Dirac form factors in very good agreement with experiment for both the proton and the

neutron. However, this is not the case for the Pauli form factor, which exhibits a soft Q2

dependence proportional to the quark condensate. This is a welcomed feature in several

mesonic form factors where the quark condensate contributes with a 1/Q2 behaviour, as

expected from experiment. Unfortunately, this is not the case for the nucleon (for a dis-

cussion about this ”wrong” Q2-dependence of the quark condensate see [11]). While the

results for F2(Q
2) are dissapointing, they are not worse than those from other QCD sum

rule approaches. In fact, the disagreement with data is within a factor two. The present

method at least allows to identify clearly the source of discrepancy with experiment. The

method used here does not allow an exploration of the infrared region of small Q2. In [12]

this region was accessed using current correlators (two-point functions) in a variable ex-

ternal field, and projecting out the magnetic Sachs form factor GM (Q2). With a choice of

Laplace-transform QCD sum rules these authors claim good agreement with experiment

in the narrow infrared region 0 ≤ Q2 ≤ 1GeV2.

We comment, in closing, on the next-to-leading order (NLO) contributions to the three-

point function, equation (1), which were not considered here. On the perturbative sector

we expect the gluonic corrections to be small, on account of the extra loop involved, plus

the overall factor of αs. The NLO power correction in the Operator Product Expansion

involves the gluon condensate. This contribution is also expected to be small, as it contains
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one more loop with respect to the leading quark condensate term. In addition, further

suppression of about one order of magnitude would arise from numerical factors involved

in the contraction of the gluon field tensors. On the hadronic sector, the standard single-

particle pole plus continuum model adopted for the spectral function is well justified a

posteriori from the resulting value of the continuum threshold s0, well below the Roper

resonance.
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