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MATÍAS COURDURIER B.

IGNACIO CASAS R.

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, August 2011
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ABSTRACT

Chemical species separation techniques in image space are prone to incorporate sev-

eral distortions. Some of these are signal accentuation in borders and geometrical warping

from field inhomogeneity. These errors come from neglecting intra-echo time variations.

In this work we present a new approach for chemical species separation in MRI with si-

multaneous estimation of field map and T ∗

2 decay, formulated entirely in k–space. In this

approach, the time map is used to model the phase accrual from off-resonance precession,

and also the amplitude decay due to T ∗

2 . Our technique fits the signal model directly in

k–space with the acquired data minimizing the l2-norm with an interior-point algorithm.

Standard 2D gradient echo sequences in the thighs and head were used for demonstrat-

ing the technique. With this approach we were able to obtain excellent estimation for the

species, the field inhomogeneity and T ∗

2 decay images. The results do not suffer from geo-

metric distortions derived from the chemical shift or the field inhomogeneity. Importantly,

since the T ∗

2 map is well positioned, the species signal in borders is correctly estimated.

Considering intra-echo time variations in a complete signal model in k–space for sepa-

rating species yields superior estimation of the variables of interest when compared to

existing methods.

Keywords: Magnetic Resonance Imaging, Chemical Species Separation, Fat and

Water, Field Inhomogeneities, Off–Resonance Correction, R∗

2 map.
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RESUMEN

Separar diferentes especies quı́micas en imágenes de resonancia magnética (MRI)

es relevante en el diagnóstico de pacientes, ya que permite identificar estructuras que

tı́picamente resultan opacadas en imágenes comunes. Se han logrado buenos resultados

con algoritmos en el espacio de la imagen, incluyendo en el modelo de señal parámetros

de decaimiento transversal (R∗

2) y modelo multipico del espectro de la grasa. Sin embargo,

separar especies en el espacio de la imagen, es decir, asumiendo un tiempo de adquisición

instantáneo, causa artefactos en las imágenes resultantes. Algunos esfuerzos se han hecho

para separar considerando un tiempo de adquisición no instantáneo, pero la corrección del

mapa de campo y de R∗

2 aún se realiza en el espacio de la imagen, donde el objeto no se

encuentra en las posiciones correctas. En este trabajo presentamos un nuevo método para

separar especies quı́micas en MRI. Ajustando los datos adquiridos a un modelo de señal

que considera un tiempo de adquisición no instantáneo, el método propuesto es capaz de

obtener de manera simultánea las especies quı́micas, la inhomogeneidad de campo y el

mapa R∗

2. De esta forma se corrigen los artefactos causados por inhomogeneidades de

campo y por desplazamiento quı́mico en todas las variables estimadas. Imágenes 2D-

GRE con diferentes tiempos de eco fueron adquiridas en la cabeza y el muslo. El ajuste

de datos se realizó minimizando la norma l2 entre la señal adquirida y modelada con

un algoritmo de punto interior. Los resultados para los exámenes realizados muestran

una excelente separación de agua y grasa con corrección R∗

2. Una mejor estimación en

regiones donde existe sobreposición entre agua y grasa y buen desempeño en imágenes

con bajo SNR sin aumentar el número de adquisiciones necesarias hacen de este método

una buena alternativa a las técnicas comunes de separación de especies quı́micas.

Palabras Claves: MRI, Separación de especies quı́micas, Agua y Grasa, Inhomo-

geneidades de Campo, Mapa R∗

2.
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1. INTRODUCTION

Separation of chemical species from magnetic resonance images is useful for assis-

tance in patient diagnosis (Hussain et al., 2005). For example, discrimination of fat from

water in the liver allows non-invasive fat quantification and fat fraction determination. The

prominent signal brightness and spatial displacement of fat in some imaging studies can

interfere with the diagnosis of pathologies, where reliable fat suppression proves to be dif-

ficult (Bley et al., 2010). Most fat-water separation techniques take advantage of the chem-

ical shift between these species, which makes fat spins precess slower than water spins.

This causes a displacement of the fat signal in the readout direction, and signal cancella-

tion in out of phase images. Since the original two-point Dixon approach (Dixon, 1984),

fat-water separation techniques have been considerably improved with new methods, such

as three-point (Glover & Schneider, 1991) and multi-point Dixon (Glover, 1991), extended

two-point Dixon (Skinner & Glover, 1997; Coombs et al., 1997; Hernando et al., 2008)

and Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares es-

timation (IDEAL) (Reeder et al., 2004, 2007), all of them successfully used for fat quan-

tification (Kim et al., 2008). Multi-species separation is also possible with some of these

approaches. Extended two-point Dixon and IDEAL incorporate the field inhomogeneity

in their signal models, obtaining superior results compared to other techniques, which

usually neglect this variable. Strong field inhomogeneities can distort species separation,

so several phase unwrapping algorithms have been proposed to correct these distortions

(Jenkinson, 2003; Hernando, Kellman, et al., 2010).

In order to obtain a better estimation of fat and water, the MR signal model should

also take into account the effective transverse relaxation time (T ∗

2 ) or rate (R∗

2 = 1/T ∗

2 ) of

the species and the multi-peak spectrum model of fat. If the R∗

2 for water and fat are not

included in the reconstructed images, an erroneous estimation of the fat fraction can occur

(Guiu & Aho, 2009; Hamilton et al., 2009; Bydder et al., 2008; Chebrolu et al., 2010). The

R∗

2 parameter can be incorporated in the signal model, yielding a more accurate calculation

of the fat fraction (Hussain et al., 2005; Wood et al., 2005; Yu et al., 2007; Wang et al.,

1



2010; Chebrolu et al., 2010). Considering different decay rates for fat and water also

improves the quantification of both species (Chebrolu et al., 2010). Additionally, the MR

spectrum of fat ussually presents inter-subject variability (Hamilton et al., 2009; Machann

et al., 2006). For example, the hepatic lipid concentration in the liver of different patients

diagnosed with steatosis may differ significantly from that of healthy subjects (Machann et

al., 2006). Traditionally, fat has been represented as a single peak 3.5 ppm away from the

water peak. This allows a simple formulation of the signal, enabling an easily tractable

framework for the theories used in fat suppression and saturation methods and Dixon-

like methods. However, representing fat as a sum of several peaks located at different

positions of the spectrum, weighed by the corresponding fraction of each peak, leads to

a more accurate estimation of the fat fraction. It also allows the visualization of certain

structures than can remain hidden when using a single peak approach (Hernando, Liang,

& Kellman, 2010; Brodsky et al., 2010).

All the previous methods separate the species in image space, after the application of

an inverse Fourier transform of k-space data. These schemes assume that the acquisition

happens instantaneously at the echo time. This assumption produces some image distor-

tions due to phase accumulation from off-resonance frequencies during the readout. This

off-resonance deviation is caused by the combination of the species resonance frequency

and the local field inhomogeneity. In some approaches, field inhomogeneity is corrected

a posteriori (Eggers et al., 2011). Using a model based in a k-space formulation of the ac-

quired signal that acknowledges the phase accumulation of off-resonance spins during the

readout process leads to improvements, such as correction of chemical shift displacements

or blurring. Brodsky et al. (Brodsky et al., 2008) used a variable time map, which success-

fully corrects chemical shift-related artifacts. A more complete signal model is presented

in (Wang et al., 2010), where each pixel is modeled with a single R∗

2 rate, generating

a R∗

2 map for the entire object. In both k-space decomposition methods the field and

R∗

2 maps are obtained in the image domain and then demodulated from the acquisitions.

Unfortunately, image-space displacement caused by field inhomogeneity are difficult to

correct using this approach. Additionally, when using low bandwidth acquisitions with

2



cartesian k-space trajectories where fat-water overlap may occur, a displaced estimation

of the R∗

2 decay is obtained, leading to an erroneous estimation of the species intensity.

In this work we propose a new method for Field Inhomogeneity, R∗

2 and Species es-

timation using a variable Time map (FIRST). Unlike current methods, FIRST accounts

for the phase accumulation due to field inhomogeneity and for the signal decay during the

readout. Thus, it is able to correct the artifacts caused by chemical shift and field inhomo-

geneity. Moreover, the R∗

2 map is calculated in the undisplaced positions. The estimation

is achieved by minimizing the difference between the acquired signal and an accurate sig-

nal model of each k-space position. An interior-point algorithm was used to solve the

minimization problem. Estimates for the unknowns are generated directly in image space.

Similar to previous methods, it does not need specific echo time combinations, allowing

the use of short echo time sequences, and a multi-peak signal model can be introduced for

superior fat estimation.

3



2. THEORY

2.1. Review of IDEAL-like techniques

The IDEAL algorithm (Reeder et al., 2004, 2007) is an iterative method for achiev-

ing accurate separation of chemical species. As an extension of the multi-point Dixon

technique, IDEAL can obtain separate images for M species with the acquisition of at

least M + 1 images at different echo times. The image quality will depend on the cho-

sen echo times (Pineda et al., 2005), which are not restricted to specific phase shifts as in

Dixon-like methods. Therefore, IDEAL is very useful for combining water-fat separation

capabilities with short echo time (TE ) and pulse repetition time (TR ). The signal model

used in IDEAL for one pixel at location r containing M species with chemical shifts ∆fm

[Hz] (m = 1, . . . ,M ) acquired during echo n at a discrete echo time tn is the following,

sn(r) =

(

M
∑

m=1

ρm(r)e
i2π∆fmtn

)

ei2πψ(r)tn

with ρm(r) the complex intensity of themth species and ψ(r) the local magnetic resonance

offset (Hz). If san(r) represents the acquired signal for all species in location r, then the

minimization functional of IDEAL for a set of pixels in position r is as follows,

min

ρm(r) ∈ C

ψ(r) ∈ R

∥

∥

∥

∥

∥

san(r)−
M
∑

m=1

ρm(r)e
i2π(∆fm+ψ(r))·tn

∥

∥

∥

∥

∥

2

.

This minimization is performed separately for each pixel and is implemented such that

the current estimated field map is used to demodulate the acquired values. The resultant

signal after demodulation is therefore

ŝn(r) = sn(r) e
−i2πψ(r)tn =

M
∑

m=1

ρm(r) e
i2π∆fmtn .

After a linearization of the exponential term, a new estimate for the field map and species

can be obtained with least squares, until the field map converges.

4



In the work of Brodsky et al. (Brodsky et al., 2008), the true time of the acquisition

is given for each echo, allowing the correction of chemical shift-based displacement of

species. If the time map is considered in the signal model, the inverse Fourier transform

of ŝn(r) is Ŝn(k) described by

Ŝn(k) =
M
∑

m=1

Rm(k) e
i2π∆fm(tn+τk,n)

where Rm(k) are the Fourier transform of the species, tn is the nominal echo time and

τk,n is the relative time between the acquisition of sample point k and the center of k-

space. The comparison of the assumed trajectories for fixed and variable time maps in

cartesian acquisitions is shown in figure 2.1. Using a similar decomposition method as

in conventional IDEAL, the Fourier values for each species are obtained, leading to non-

shifted estimates of fat and water. Nevertheless, the field map is demodulated in image

space, as if it were acquired with a fixed time map. For this reason, displacements caused

by field inhomogeneity are not corrected, whose implications are described later. All these

methods are denoted as image-space decomposition algorithms, since they demodulate

the field map in image-space. Image-space methods consider a fixed time map as an

approximation to the true time map, which is not constant.

kx

k f = t

fixed time map

k-space traj.

FIGURE 2.1. Comparison between the actual k-space trajectory and the assumed

trajectory for fixed time map (image space) methods when using a cartesian ac-

quisition. The solid line shows the kx-kf trajectory, and the dashed line is the

approximation for image space methods. The kf value at kx = 0 is the echo time

of the acquisition. As the acquisition bandwidth increases, the slope of the solid

line decreases. The horizontal line corresponds to an infinite bandwidth acquisi-

tion.
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2.2. FIRST signal model

Considering a k-space trajectory given by k(t), the estimated MR signal for an object

containing M different species is given by

Se(t) =
M
∑

m=1

∫

ρm(r)e
−i2π[r·k(t)+(∆fm+ψ(r))·t] dr .

This signal model takes into account a variable time map for the chemical shift of each

species and the field map intensities for each position. For a single species m, the discrete

version of the estimated signal Sem(t) is given by

Semq =
∑

r

ρm,re
−i2π(∆fm+ψr)·q e−i2πr kq

where r is the discrete position of spin densities and q is the time at which sample kq was

acquired. The purpose is to adjust the unknown variables of the estimated model (ρm and

ψ) to the values of the acquired signal. If Saq is the acquired signal for all species at a

specific time q, the reconstruction functional is

min

ρm ∈ C
N

ψ ∈ R
N

∥

∥

∥

∥

∥

Saq −

M
∑

m=1

∑

r

ρm,re
−i2π(∆fm+ψr)·q e−i2πr kq

∥

∥

∥

∥

∥

2

. (2.1)

In this minimization there are 2M +1 unknowns of length N (M is the number of species

and N the number of acquired points). Each acquisition adds 2N equations to the system.

It is necessary to acquire M + 1 times to have a complete set of equations and unknowns.

Therefore, our method does not increase the amount of data needed for species separation

when compared to similar decomposition methods. The objective function is similar to the

one in (Hernando, Kellman, et al., 2010), with the difference that in this model a variable

time map is introduced. In the following section, we will describe a more complete signal

model that takes into account the T ∗

2 decay of the signal. In the discussion we will refer

to multi-peak fat spectrum. The extension for 2D cartesian acquisitions can be found in

6



appendix A.

2.3. T ∗

2
decay

The previous formulations do not consider the T ∗

2 decay of the MR signal. Correct-

ing the species intensities from their T ∗

2 decay produces better results, specially for those

species with short T ∗

2 times (Chebrolu et al., 2010). In (Yu et al., 2007), the signal model

assumes the same T ∗

2 value for every species if they coexist in a single voxel. For that

approach, they introduced a new notation where the field map is complex and denoted by

ψ̃(r) = ψ(r)+ i R∗

2(r)/2π. For image-space decomposition algorithms, the complex field

map is demodulated from the acquired signal in image space. Considering a fixed time

map for the complex field map may lead to some distortions. For example, if cartesian

imaging is used, species estimates are erroneously R∗

2-rectified in fat-water overlapping

regions. This case can be typically found in low-bandwidth acquisitions. Similar ex-

amples can be encountered for other trajectories. Moreover, acquisitions with different

bandwidths (and different off-resonance artifacts) would produce severely erroneous field

and R∗

2 maps, that will affect the separation of species when demodulating the maps in

image space before the separation process.

When considering a variable time map, the signal decay at each sampling time can

be corrected, which is not possible to do if a fixed time map for the complex field map is

considered. In our model we will consider a single R∗

2 parameter for all species within a

pixel. It is important to note that the MR signal depends on the acquisition time, so the

exponential decay must depend on the time map t rather than TE only. Then the discrete

minimization functional is

min

ρm ∈ C
N

ψ̃ ∈ C
N

∥

∥

∥

∥

∥

Saq −

M
∑

m=1

∑

r

ρm,r · e
−i2π(∆fm+ψ̃r)·q · e−i2πr kr

∥

∥

∥

∥

∥

2

.
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The minimization of this functional yields ρm(x), ψ(x) and R∗

2(x) in their non-displaced

positions. In this case, 2M + 2 acquisitions are needed to obtain the estimates. In our

formulation, the ψ̃ term is multiplied by the time map of the acquisition, so the signal

decay during the readout is considered.
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3. METHODS

3.1. MRI Acquisitions

A conventional 2D gradient echo sequence with cartesian trajectories was performed

in the thigh and brain of two healthy subjects. Institutional Review Board approval and in-

formed consent were obtained from volunteers prior to imaging. All images were obtained

using a Philips Intera 1.5T scanner (Philips Healthcare, Best, The Netherlands). For thigh

imaging, a four element body coil was used, and four acquisitions were obtained with

the following parameters: matrix size 256 × 256, TE = 4.6, 4.8, 6.2, 7.5 ms, Flip Angle

(FA) = 25◦, slice thickness = 10 mm, TR = 150 ms, Field Of View (FOV) = 18 cm with

sampling bandwidth of ± 13.8 kHz (217 Hz/pixel), scan time = 152 seconds. For brain

imaging, a quadrature head coil was used, with the same sequence parameters expect for

FOV = 25.6 cm. TR and TE were arbitrarily chosen to achieve similar signal intensities

from fat and water, while maintaining a short scan time. Automatic shimming procedures

were not performed in any of the scans. No windowing or other filtering approaches were

applied to the acquired data in order to achieve maximal resolution. For each data set,

complex echo images were processed to obtain estimates of fat and water with FIRST and

IDEAL algorithms. The water-fat frequency shift was assumed to be -3.5 ppm, or -217.1

Hz at 1.5T. Magnitude images for fat, water and in-phase combination (water plus fat)

were generated in addition to field and R∗

2 maps.

3.2. IDEAL algorithm

An implementation of the T ∗

2 -IDEAL algorithm (Yu et al., 2007) was written in

MATLAB 7.4 (The MathWorks Inc., Natick, MA, USA). We first performed a standard

IDEAL decomposition (Reeder et al., 2004). The resulting species and field map were

used as a starting point for calculating the complex field map and the corrected species

for T ∗

2 -IDEAL, as suggested in (Yu et al., 2007). The ranges for field inhomogeneity and

R∗

2 were set to -150 to 150 Hz and 0 to 350 s−1 respectively. Even though field inhomo-

geneity is usually set in the range [−∆ffat/2, ∆ffat/2] (Hernando, Kellman, et al., 2010),

9



we decided to broaden these limits to avoid phase wraps. For each pixel, an update of less

than 10−2 Hz for the field map and 10−4 s−1 for R∗

2 were used as the stopping condition.

A maximum of 200 iterations were executed for both IDEAL and T ∗

2 -IDEAL if these tol-

erances were not reached. Before calculating the final estimate of species, the field map

was filtered with a gaussian filter of size 3 × 3 and σ = 1.5 in order to achieve better

water-fat separation. The processing time for a set of four acquisitions of size 256 × 256

pixels was 9 minutes. From now on, we will refer to T ∗

2 -IDEAL simply as IDEAL.

3.3. FIRST algorithm

Our proposed technique requires an optimization algorithm suitable for a non-linear

objective function with linear constraints. We used the interior-point algorithm (Kar-

markar, 1984; Byrd et al., 1999) available in the fmincon function of MATLAB’s Opti-

mization Toolbox. The interior-point method was chosen for being stable and faster than

other available options, such as trust-region reflective, active set and SQP. Upper and lower

bounds are provided for all variables. For each pixel of the species, a maximum absolute

value is defined as 1.5 times the maximum absolute value available in all acquisitions.

This maximum value is used as the upper bound for the real and imaginary parts of every

species. The negative of the maximum value is used for the lower bound. The ranges

for field inhomogeneity and R∗

2 were the same as in IDEAL. There are no additional con-

strains for the variables, although they could be used to assure certain smoothness of the

field and R∗

2 map.

Our final implementation consisted of two steps. The first step consists in estimat-

ing the species and the field map without considering R∗

2 decay. In the second step we

re-estimate the species and the field map but now calculating a R∗

2 map (with a single

R∗

2 value per pixel). The estimates for the species and field map are used as the starting

point of the second step. A flowchart of the optimization process is shown in figure 3.1.

Our minimization problem is a non-linear and non-convex problem, with multiple local

minima. The global minimum can be reached through multiple solutions, due to the com-

plex exponential terms of the MR signal model described in the objective function. We

10



will discuss this later. Bounds for all variables were provided, creating a convex feasible

set. Even for this complicated objective function, the algorithm proved to be useful at

estimating the unknown variables. Explicitly calculated gradients were supplied for speed

improvements, which can be found in Appendix B. The objective value and the gradi-

ents of the objective function were calculated with an auxiliary function written in C and

compiled with Microsoft Visual C++ 2010. Three different stopping criteria were used

for each step of the algorithm: a step size norm lower than 10−9 or a maximum of 280

iterations or an objective function lower than 10−7, whichever was reached first. These

values were chosen experimentally and applied for both steps of the estimation process.

The processing time for a set of four acquisitions of size 256×256 pixels was 71 minutes.

To speed up the convergence of IDEAL and FIRST, an initial estimate for the R∗

2 map

was generated. The initial value of R∗

2 for each pixel was calculated by fitting a single

exponential function to the absolute values of each acquisition. Values outside the 0 to

350 s−1 range were saturated. These are within the normal range even for subjects with

very high iron deposition (Gatehouse & Bydder, 2003; Wood et al., 2005; Wang et al.,

2010). After calculating the value for each pixel in the image, a mask was applied in order

to eliminate the values outside the object. Finally, the result was smoothed with a gaussian

filter of size 5 × 5 and σ = 1. This procedure only adds 34.4 seconds. All computations

were performed in a computer with an Intel i7 processor (4 cores, 3.4 GHz, 64-bit) with 8

GB of RAM.
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FIGURE 3.1. Flowchart of our implementation for solving the optimization prob-

lem. It considers a two-step minimization. The first step consists of estimating

the complex value of the chemical species (ρwater, ρfat) and field map (ψ). When

these variables are calculated, they are used as an input for the second step, which

calculates theR∗

2 and field maps and re-estimates species. We used a starting point

for R∗

2 based on an exponential fitting of the signal decay.
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4. RESULTS

The results for FIRST and IDEAL when processing gradient echo images of the thigh

are shown in Figs. 4.1 to 4.3. Images for absolute values of water, fat, water plus fat,

field inhomogeneity and R∗

2 are presented. Water plus fat images were obtained by adding

the complex values of water and fat, followed by taking the absolute value of the result.

FIRST provides better results for the species in regions with water-fat overlap, mainly

because the R∗

2 decay is well positioned compared to the map generated with IDEAL.

The voxel size for this acquisition was 4.94 mm3, which notably increases the noise level

of the input images. This makes exponential fitting for R∗

2 estimation specially difficult.

Although a smoothing for R∗

2 is not specified in the original literature of IDEAL, this

step is included to address the high variance present in the R∗

2 map, which leads to noisy

species estimates. Brain images can be found in Figs. 4.4 to 4.6. Brain acquisitions at

the orbits level are particularly difficult in water-fat separation procedures due to the high

field inhomogeneities caused by the air present in the sinus, as Fig. 4.5 shows. High field

inhomogeneities could cause high frequency fat-water swapping, degrading the quality

of the species estimates. Nevertheless, high frequency field variations were not observed

throughout the image when using both methods. These variations are attenuated in IDEAL

because the field map is smoothed in the final step, which yields a less defined field map.

It is important to note that the field inhomogeneity andR∗

2 estimates of FIRST remain very

close to the starting point in areas where the object is close to zero. In practice, estimates

of these variables with low noise backgrounds improve the visualization of the generated

maps. Low changes in the maps can be understood by looking at the gradients of the

objective function (Appendix B), where the change of the estimates of field inhomogeneity

and R∗

2 are directly weighed by the object intensities. Image indicators for a selected

region in each set are shown in Table 4.1. An approximation of the SNR (apparent SNR)

was calculated as the quotient between the mean of the absolute value of the region of

interest and the standard deviation of the background. Good estimates for R∗

2 maps were

obtained with FIRST and IDEAL considering only four echoes.
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FIGURE 4.1. Absolute values of imaging estimates of water, fat and sum of both

components for the thigh. The upper and lower rows show the results for IDEAL

and FIRST, respectively. The arrows show areas where notable differences are ob-

served, like signal accentuation in borders. For example, in the water component

estimated with IDEAL, an intensified signal band can be observed. Also, due to

the lower noise of FIRST estimates, more details can be appreciated in fat images

(lower arrow). The region in the white rectangle was used to obtain the image

indicators shown in Table 4.1. All images are shown with the same intensity scale.
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FIGURE 4.2. For the thigh, left and right images show the calculated field inho-

mogeneity map with IDEAL and FIRST, respectively. The field map calculated

with IDEAL was smoothed with a 5×5 and σ = 1.5 gaussian filter. Similar inten-

sities are observed for both methods, validating our technique for the measurement

of the field map, although our method provides a more detailed field map. A small

advantage FIRST is given by the small changes of the complex field map where

the signal level is low. This results in reduced background noise, improving the

visibility of the results.

FIGURE 4.3. For the thigh, left and right columns show the calculated R∗

2 with

IDEAL and FIRST, respectively. The R∗

2 map of IDEAL was smoothed with a

5×5 and σ = 0.5 gaussian filter, as explained in section 3.3. The shown T ∗

2 values

were calculated as the mean of a 22×22 rectangle. In this case we can see a lower

value of T ∗

2 with IDEAL, yielding higher signal intensities when compared to

FIRST. A smoother map is obtained with FIRST, avoiding peak values which may

lead to incorrect estimation of R∗

2.
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FIGURE 4.4. Absolute values of imaging estimates of water, fat and sum of both

components for the brain. The upper and lower rows show the results for IDEAL

and FIRST, respectively. Lower noise is observed for both separations methods,

due to the larger voxel size of the input images. Higher signal intensities are

observed for the water and fat estimates of IDEAL, shown by the arrows. The

rectangle shows the area used for obtaining the image indicators of Table 4.1. All

images are shown with the same intensity scale.
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FIGURE 4.5. For brain imaging, calculated field inhomogeneity map with IDEAL

and FIRST. The field map calculated with IDEAL was smoothed with a 5× 5 and

σ = 1.5 gaussian filter. Moderate phase wrap occurs for both algorithms near the

sinus, although high field inhomogeneities are present.

FIGURE 4.6. For brain imaging, calculated R∗

2 with IDEAL and FIRST. The

R∗

2 maps were not smoothed except for the starting point, as explained in sec-

tion 3.3. The shown T ∗

2 values were calculated as the mean of a 22×22 rectangle.

Similar to thigh imaging, IDEAL estimates a shorter T ∗

2 time when compared to

FIRST, which yields higher intensity values. This can cause over-estimation of

the fat fraction.

17



IDEAL FIRST

Thigh

µwater 0.35 0.34

µfat 0.033 0.033

ASNRw+f 11.6 21.8

T ∗

2 [ms] 17.58 18.05

B0 [Hz] 9.82 9.05

Brain

µwater 1.93 1.94

µfat 0.07 0.07

ASNRw+f 51.0 134.0

T ∗

2 [ms] 23.02 23.84

B0 [Hz] 6.96 6.91

TABLE 4.1. Image indicators for different sets and processing algorithms. The

selected signal regions are shown in Figs. 4.1 and 4.4 for thigh and brain. The

apparent signal-to-noise ratio (ASNR) was calculated as the fraction between the

mean value of the selected region and the standard deviation of the background

signal. Similar values for the mean intensities of water (µwater), fat (µfat), field

map (B0) and R∗

2with FIRST and IDEAL were found in both sets, validating our

method for species separation. For both sets there is an over-estimation of the

R∗

2 map for IDEAL, which might result in higher intensity values. Because the

selected rectangle contains mostly water, there is no significant difference in the

intensity values of the species for both methods. Better noise performance (higher

ASNR) is observed for FIRST, making it a good alternative for low SNR input

images.
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5. DISCUSSION

Our frequency space-based approach calculates simultaneously estimates of species,

field inhomogeneity andR∗

2 maps. By calculating the field andR∗

2 maps concurrently with

the species, we obtain non-shifted estimates of the first two. Additionally, the proposed

method corrects image-space displacement of species due to chemical shift and field in-

homogeneity (Figs. 4.1 to 4.6). As shown in the results, this technique achieves accurate

and reliable water-fat separation. Estimates with less noise are obtained with FIRST, pro-

viding better visualization of the images. Structures that may remain hidden are easily

distinguished with our method. Besides, a smoother R∗

2 map is generated with FIRST,

avoiding peak intensities which may lead to erroneous calculation of this parameter.

We have shown that the water signal calculated with image space-based algorithms

is erroneously intensified in areas where there is water-fat overlap due to chemical shift

artifacts. Techniques using variable time maps with pre-separationR∗

2-correction also suf-

fer from this problem, because the R∗

2 map is estimated before off-resonance correction,

obtaining a shifted estimate of the R∗

2 map. This artifact is repaired when adopting a

simultaneous estimation scheme like the one we have presented. In the case where dif-

ferent bandwidths are needed for each echo, each acquisition will suffer from different

off-resonance artifacts in image space, leading to erroneous estimation of the field inho-

mogeneity andR∗

2 maps if these are calculated from the input images. Although it was not

evaluated, our method would allow different bandwidth acquisitions, without sacrificing

accuracy in the estimation of the field and R∗

2 maps.

As has been already noted, the water-fat separation problem has multiple solutions

if the field inhomogeneity is not bounded to an adequate range. This range depends on

the resonant frequencies of the species (Dixon, 1984; Skinner & Glover, 1997; Reeder

et al., 2004; Hernando, Liang, & Kellman, 2010). Therefore, the optimization problem

proposed in Eq. 2.1 is non-convex. A priori, interior-point algorithms are not well-suited

for non-convex problems, where several local minima coexist (Karmarkar, 1984; Byrd et

al., 1999), and the global minima can be obtained with multiple solutions. In our case,
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the algorithm is capable of generating a reasonable solution due to the chosen starting

points and the boundaries for the unknown variables. In fact, using only bounds and no

other type of restrictions simplify significantly the calculation of the logarithmic barrier

of the interior-point method. For FIRST, the starting point of species and field map is

chosen to be zero. For the R∗

2 map, an exponential fitting of the magnitude values of

the acquired images is used as initial value, which results in faster convergence to the

solution. Because of the characteristics of the chosen algorithm, it is important to broaden

the bounds of the variables, because interior-point method solutions never lie totally in the

specified boundaries (Nocedal & Wright, 1999).

Our final implementation for solving the minimization problem consisted of two

steps. Empirically, we found that separating into two steps was faster than solving the

whole problem at once. The objective function value obtained when solving the mini-

mization problem in a single step was 10% higher than the value obtained with two steps

for equal processing time.

An important problem in species separation techniques is water-fat swap. Different

heuristics can be included to avoid rapidly changing field map estimates. Given our the-

oretical framework, it is convenient to include field map smoothness restrictions in the

optimization problem. Several smoothness conditions have been proposed to address this

issue (Hernando, Liang, & Kellman, 2010; Samsonov et al., 2008; Funai et al., 2008). On

the other hand, some image-space techniques have been proposed for species separation

in the presence of high field inhomogeneities, such as region growing methods for field

map estimation (Yu et al., 2005).

FIRST was demonstrated with data sets with traditional cartesian spin warp, but our

theoretical framework allows any k-space trajectory, and even different trajectories for

each echo. A specific implementation that takes advantage of the time map characteristics

of cartesian spin warp was implemented, and a more general computational solver for any

2D sequence is being explored as future work. With a general 2D solver, radial, spiral and

other trajectories can be used in combination with our method.
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Multi-peak fat spectrum modeling has proved to be useful for fat separation tech-

niques. A multi-peak model can be easily incorporated to our approach. The amplitude

coefficients and peak frequencies of the fat spectrum can be calculated on a patient-specific

basis through spectroscopy or other method.

The main limitations of this work can be summarized in two. The first one is com-

putational time for separation. For data sets of the same size, FIRST takes 71 minutes,

much longer than the 9 minutes of T ∗

2 -IDEAL. Choosing a more suitable optimization

algorithm for this kind of non-linear problem is being studied as an option. The Variable

Projection (VARPRO) method (Golub & Pereyra, 1972, 2003) has been previously used in

MRI and MR spectroscopy for species separation purposes with promising results (Veen

et al., 1988; Hernando et al., 2008). This approach will be studied for the application to

the proposed theory. The second limitation is that a single R∗

2 value is assumed for both

species, which leads to sub-optimal fat quantification (Chebrolu et al., 2010). Anyhow,

this issue can be addressed with our proposed scheme, without increasing the number of

variables required for solving the fat-water separation problem. We have adopted a so-

lution that in a first step the field map is calculated along with the species, leaving a set

of N redundant equations. If in the second step the field map from the previous step is

considered correct, therefore calculating only theR∗

2 map and the species, we leaveN free

equations. This set of free equations can be used for calculating independentR∗

2 values for

fat and water. An approach for calculating two different R∗

2 values with IDEAL has been

presented recently in (Janiczek et al., 2011). This feature is being considered for future

implementations.
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6. CONCLUSION

A method for simultaneously estimating chemical species, field inhomogeneity and

R∗

2 maps without off-resonance displacements was presented, obtaining excellent results

for different examinations. This method is specially well suited for low bandwidth ac-

quisitions. Although we implemented the method only for traditional cartesian spin warp

acquisitions, the theoretical framework permits the usage of any trajectory.
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7. FUTURE WORK

The main contribution of the presented work consists in proposing a complete sig-

nal model for the species separation problem in MRI. For an object containing differ-

ent species, the acquired signal is modeled entirely in k-space. This allows to take into

account the phase accumulation of spins due to chemical shift and field inhomogeneity

during the readout. In addition, the signal decay during the readout due to the R∗

2 param-

eter is also considered. The benefits of this consideration are not very clear, and could

be reflected more clearly when using other types of k-space trajectories. Considering the

readout time for field inhomogeneity and R∗

2 have not been introduced in previous species

separation approaches.

The next step for improving this technique is to develop a 2D solver, in order to use

any kind of k-space trajectories. Most probably, a MATLAB implementation for a com-

plete 2D reconstruction is not going to sufficiently fast, so lower level languages such

as C or C++ should be considered. The gradients of the objective function have already

been programmed in C, decreasing the processing time notably. Alongside, restrictions

for smoothness of the field or R∗

2 maps can be included in the optimization problem for-

mulation. Different references for this subject have been outlined in the previous chapter

of this document. One possibility for reducing the processing time can be derived from

the signal model itself. The complexity of the optimization lies in the non-linearity of

the exponential term. If the complex field map (field inhomogeneity and R∗

2) is known,

then the species variables can be estimated by least-squares calculation. Given the species

estimates, the complex field map can be re-calculated. Separating the optimization in this

two-step loop yields a non-linear optimization problem of only 2N variables, instead of

the 2N ∗ (M +1) variables of the straightforward approach. The remaining 2NM species

variables are calculated almost instantly with least-squares, reducing the complexity of

the optimization problem. The two steps can be repeated until convergence is reached.
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In summary, the main focus for future work should be put in lowering the processing

time and developing a true 2D solver for more general acquisitions. These are the main

constraints for a wider adoption of this technique.
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Appendix



APPENDIX A. FORMULATION FOR 2D CARTESIAN ACQUISITIONS

Extending the formulation of section 2.2 to a 2D acquisition, the signal for one spe-

cific echo time can be described as

S(kx, ky) =
M
∑

m=1

∫∫

ρm(x, y)e
−i2π(x kx+y ky+(∆fm+ψ(x,y))·kf)dx dy

=
M
∑

m=1

∫
(
∫

ρm(x, y)e
−i2π(x kx+(∆fm+ψ(x,y))·kf)dx

)

e−i2πy ky dy (A.1)

where kf for an echo n can be described as kf = TEn + τn = TEn + αnkx, with τn

the time between each sampling time and the echo time of the acquisition. Assuming the

same time map for each k-space line (such as in cartesian acquisitions) and applying an

inverse Fourier transform in the “y” direction to A.1,

g(kx, y
′) = F−1

y {S(kx, ky)} =

∫

S(kx, ky)e
i2πkyy′ dky

=
M
∑

m=1

∫∫∫

ρm(x, y)e
−i2π(x kx+(∆fm+ψ(x,y))·(TE+αkx))e−i2πy kyei2πkyy

′

dx dy dky

=
M
∑

m=1

∫∫

ρm(x, y)e
−i2π(x kx+(∆fm+ψ(x,y))·(TE+αkx))

(
∫

e−i2π(y−y
′) ky dky

)

dx dy

=
M
∑

m=1

∫∫

ρm(x, y)e
−i2π(x kx+(∆fm+ψ(x,y))·(TE+αkx)) δ(y − y′) dx dy

=
M
∑

m=1

∫

ρm(x, y
′)e−i2π(x kx+(∆fm+ψ(x,y′))·(TE+αkx))dx

which leads to a much simpler 1D optimization in a row by row basis. The objective func-

tion described in Eq. 2.1 can be used for every row.
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APPENDIX B. GRADIENTS OF THE OBJECTIVE FUNCTION

For each optimization variable, the gradient function was explicitly calculated. If Sa

and Se correspond to the acquired and estimated signals, respectively, the gradient of the

objective function f towards a certain variable v is the following:

∂f

∂v
=

∂

∂v
‖Sa − Se‖2

= 2 ·
∂

∂v
(Sa − Se) · (Sa − Se)∗

= −2 ·

(

(Sa − Se) ·
∂Se∗

∂v
+ (Sa − Se)∗ ·

∂Se

∂v

)

.

The partial derivates for each variable are

∂Se

∂ρm,r
= e−i2π((∆fm+ψ̃r)·q+r kq)

∂Se

∂ψr

= −i2π q
M
∑

m=1

ρm,r e
−i2π((∆fm+ψ̃r)·q+r kq)

∂Se

∂R2,r

= −q ·

M
∑

m=1

ρm,r e
−i2π((∆fm+ψ̃r)·q+r kq) .

All these results are within a single acquisition.
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APPENDIX C. GLOSSARY OF TERMS AND ABBREVIATIONS

Artifacts Error in the representation of the image due to reasons apart from noise.

Chemical Shift Deviation of a given chemical species from the nominal frequency due

to magnetic shielding of the orbiting electrons. This value depends on

the main magnetic field strength. In gradient echo images, it produces

a displacement in the spatial domain. It is usually denoted as ∆fm for a

species m.

Field inhomogeneity The local deviation from the nominal resonance frequency, typi-

cally given by the resonance frequency of water or tetramethylsilane

Si(CH3)4 . It is usually denoted with the letter ψ.

FIRST Field Inhomogeneity, R∗

2 and Species estimation using a variable Time

map.

Flip Angle Change in the direction of the net magnetization vector with respect to

the direction of the net magnetic field produced by a radiofrequency

pulse.

FOV Field of View.

FT Fourier transform. A fast algorithm for calculating a discrete fourier

transform is called FFT.

Gradient May refer to two concepts: the rate of change of a certain quantity

or function, or the magnetic field gradient, applied to encode the k-

spacedata in a certain way.

GRE Gradient Echo.

IDEAL Iterative Decomposition of water and fat with Echo Assymetry and

Least squares estimation.

k-space Mathematical space in which the MR signal is sampled and represented.

In perfect conditions, it represents the Fourier transform of the image.

MR Magnetic Resonance.
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MRI Magnetic Resonance Imaging.

RF Radiofrequency.

Resonance frequency Also known as the Larmor frequency, it is the frequency measured

in Hertz at which the spins precess given a certain magnetic field

strength. The frequency and field strength are related by the equation

f = γ/2πB, with γ the gyromagnetic ratio and B the field strength.

For hydrogen atoms, the Larmor frequency has a value of 42.57 MHz.

R∗

2 Single effective transverse relaxation rate, defined as the reciprocal of

the effective transverse relaxation time, T ∗

2 .

SNR Signal to Noise Ratio.

TE Echo time. Time between the excitation phase and the middle of the

acquisition time.

Time map Times where the data is sampled. Also referred as acquisition time or

kf .

TR Repetition time. Time required to perform an entire pulse sequence,

usually given by the time between two excitation pulses.

Trajectory The path taken in the k-space domain to acquire data. It is determined

by the applied gradients during the acquisition.

1D One-dimensional.

2D Two-dimensional.
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