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ABSTRACT

In this work, we study two simple yet general complexity classes, based on logspace

Turing machines, which provide a unifying framework for efficient query evaluation in areas

like information extraction and graph databases, among others. We investigate the complex-

ity of three fundamental algorithmic problems for these classes: enumeration, counting and

uniform generation of solutions, and show that they have several desirable properties in this

respect.

Both complexity classes are defined in terms of non-deterministic logspace transducers

(NL-transducers). For the first class, we consider the case of unambiguous NL-transducers,

and we prove constant delay enumeration, and both counting and uniform generation of so-

lutions in polynomial time. For the second class, we consider unrestricted NL-transducers,

and we obtain polynomial delay enumeration, approximate counting in polynomial time,

and polynomial-time randomized algorithms for uniform generation. More specifically, we

show that each problem in this second class admits a fully polynomial-time randomized

approximation scheme (FPRAS) and a polynomial-time Las Vegas algorithm for uniform

generation. Interestingly, the key idea to prove these results is to show that the fundamental

problem #NFA admits an FPRAS, where #NFA is the problem of counting the number of

strings of length n accepted by a non-deterministic finite automaton (NFA). While this prob-

lem is known to be #P-complete and, more precisely, SPANL-complete, it was open whether

this problem admits an FPRAS. In this work, we solve this open problem, and obtain as a

welcome corollary that every function in SPANL admits an FPRAS.

Keywords: logspace transducers, constant delay enumeration, approximate counting, uni-

form generation, finite automaton, complexity classes.
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RESUMEN

En este trabajo, se estudian dos clases de complejidad simples pero generales, basadas

en máquinas de Turing de espacio logarı́tmico, que proveen un marco unificador para la

evaluación eficiente de consultas en áreas como extracción de información y bases de datos

orientadas a grafos, entre otras. Se investiga la complejidad de tres problemas algorı́tmicos

fundamentales para estas clases: enumeración, conteo y generación uniforme de soluciones,

y se muestra que estas clases tienen varias propiedades deseables al respecto.

Ambas clases de complejidad son definidas en términos de transductores no determin-

istas de espacio logarı́tmico (transductores NL). Para la primera clase, se considera el caso de

transductores NL no ambiguos, y se prueba enumeración con retardo constante, y tanto con-

teo como generación uniforme de soluciones en tiempo polinomial. Para la segunda clase,

se consideran transductores NL sin restricciones, y se obtienen enumeración con retardo

polinomial, conteo aproximado en tiempo polinomial, y algoritmos aleatorizados de tiempo

polinomial para generación uniforme. Más especı́ficamente, se muestra que cada problema

en esta segunda clase admite un esquema de aproximación aleatorizado en tiempo polino-

mial (FPRAS) y un algoritmo de Las Vegas de tiempo polinomial para generación uniforme.

La idea clave para probar estos resultados es mostrar que el problema fundamental #NFA

admite un FPRAS, donde #NFA es el problema de contar la cantidad de palabras de largo

n aceptadas por un autómata finito no determinista (NFA). Aunque se sabı́a que este prob-

lema era #P-completo y, más precisamente, SPANL-completo, no se sabı́a si este problema

admitı́a un FPRAS. En este trabajo, se resuelve este problema abierto, y se obtiene como

corolario que cada función en la clase SPANL admite un FPRAS.

Keywords: transductores de espacio logarı́tmico, enumeración con retardo constante, conteo

aproximado, generación uniforme, autómatas finitos, clases de complejidad.
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1. INTRODUCTION

Arguably, query answering is the most fundamental problem in databases. In this re-

spect, developing efficient query answering algorithms, as well as understanding when this

cannot be done, is of paramount importance in the area. In the most classical view of this

problem, one is interested in computing all the answers, or solutions, to a query. However,

as the quantity of data becomes enormously large, the number of solutions to a query could

also be enormous, so computing the complete set of solutions can be prohibitively expensive.

In order to overcome this limitation, the idea of enumerating the answers to a query with a

small delay has been recently studied in the database area (Segoufin, 2013). More specifi-

cally, the idea is to divide the computation of the answers to a query into two phases. In a

preprocessing phase, some data structures are constructed to accelerate the process of com-

puting answers. Then in an enumeration phase, the answers are enumerated with a small

delay between them. In particular, in the case of constant delay enumeration algorithms,

the preprocessing phase should take polynomial time, while the time between consecutive

answers should be constant.

Constant delay enumeration algorithms allow users to retrieve a fixed number of answers

very efficiently, which can give them a lot of information about the solutions to a query. In

fact, the same holds if users need a linear or a polynomial number of answers. However, be-

cause of the data structures used in the preprocessing phase, these algorithms usually return

answers that are very similar to each other (Bagan, Durand, & Grandjean, 2007; Segoufin,

2013; Florenzano, Riveros, Ugarte, Vansummeren, & Vrgoc, 2018); for example, tuples with

n elements where only the first few coordinates are changed in the first answers that are re-

turned. In this respect, other approaches can be used to return some solutions efficiently but

improving the variety. Most notably, the possibility of generating an answer uniformly, at

random, is a desirable condition if it can be done efficiently. Notice that returning varied

solutions has been identified as an important property not only in databases, but also for

algorithms that retrieve information in a broader sense (Abiteboul, Miklau, Stoyanovich, &

Weikum, 2016).
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Efficient algorithms for either enumerating or uniformly generating the answers to a

query are powerful tools to help in the process of understanding the answers to a query. But

how can we know how long these algorithms should run, and how complete the set of com-

puted answers is? A third tool that is needed then is an efficient algorithm for computing, or

estimating, the number of solutions to a query. Then, taken together, enumeration, counting

and uniform generation techniques form a powerful attacking trident when confronting to

the problem of answering a query.

In this paper, we follow a more principled approach to study the problems of enumerat-

ing, counting and uniformly generating the answers to a query. More specifically, we begin

by following the guidance of (Jerrum, Valiant, & Vazirani, 1986), which urges the use of

relations to formalize the notion of solution to a given input of a problem (for instance,

to formalize the notion of answer to an input query over an input database). While there

are many ways of formalizing this notion, most such formalizations only make sense for a

specific kind of queries, e.g. a subset of the integers is well-suited as the solution set for

counting problems, but not for sampling problems. Thus, if Σ denotes a finite alphabet, then

by following (Jerrum et al., 1986) we represent a problem as a relation R ⊆ Σ∗ × Σ∗, and

we say that y is a solution for an input x if (x, y) ∈ R. Note that the problem of enumerating

the solutions to a given input x corresponds to the problem of enumerating the elements of

the set {y ∈ Σ∗ | (x, y) ∈ R}, while the counting and uniform generation problems corre-

spond to the problems of computing the cardinality of {y ∈ Σ∗ | (x, y) ∈ R} and uniformly

generating, at random, a string in this set, respectively.

Second, we study two simple yet general complexity classes for relations, based on non-

deterministic logspace transducers (NL-transducers), which provide a unifying framework

for studying enumeration, counting and uniform generation. More specifically, given a finite

alphabet Σ, an NL-transducer M is a non-deterministic Turing Machine with input and

output alphabet Σ, a read-only input tape, a write-only output tape and a work-tape of which,

on input x ∈ Σ∗, only the first O(log(|x|)) cells can be used. Moreover, a string y ∈ Σ∗ is

said to be an output of M on input x, if there exists a run of M on input x that halts in an

2



accepting state with y as the string in the output tape. Finally, assuming that the set of all

outputs ofM on input x is denoted byM(x), a relation ofR ⊆ Σ∗×Σ∗ is said to be accepted

by M if for every input x, it holds that M(x) = {y ∈ Σ∗ | (x, y) ∈ R}.

The first complexity class of relations studied in this paper consists of the relations ac-

cepted by unambiguous NL-transducers. More precisely, an NL-transducer M is said to be

unambiguous if for every input x and y ∈ M(x), there exists exactly one run of M on input

x that halts in an accepting state with y as the string in the output tape. For this class, we are

able to achieve constant delay enumeration, and both counting and uniform generation of so-

lutions in polynomial time. For the second class, we consider (unrestricted) NL-transducers,

and we obtain polynomial delay enumeration, approximate counting in polynomial time,

and polynomial-time randomized algorithms for uniform generation. More specifically, we

show that each problem in this second class admits a fully polynomial-time randomized

approximation scheme (FPRAS) (Jerrum et al., 1986) and a polynomial-time Las Vegas al-

gorithm for uniform generation. It is important to mention that the key idea to prove these

results is to show that the fundamental problem #NFA admits an FPRAS, where #NFA is the

problem of counting the number of strings of length n (given in unary) accepted by a non-

deterministic finite automaton (NFA). While this problem is known to be #P-complete and,

more precisely, SPANL-complete (Álvarez & Jenner, 1993), it was open whether it admits an

FPRAS, and only quasi-polynomial time randomized approximation schemata were known

for it (Kannan, Sweedyk, & Mahaney, 1995; Gore, Jerrum, Kannan, Sweedyk, & Mahaney,

1997). In this work, we solve this open problem, and obtain as a welcome corollary that

every function in SPANL admits an FPRAS. Thus, to the best of our knowledge, we obtain

the first complexity class with a simple and robust definition based on Turing Machines, and

where each problem admits an FPRAS.

Proviso. The main results of the thesis are given in Chapter 3, while the sketches of the

proofs of these results are presented in Chapters 5 and 6. Due to the lack of space, the

complete proofs of these results are given in the Appendix.
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2. PRELIMINARIES

Relations and problems. Let Σ be a finite alphabet with at least two symbols. As usual,

we represent inputs as words x ∈ Σ∗ and the length of x is denoted by |x|. A problem is

represented as a relation R ⊆ Σ∗×Σ∗. For every pair (x, y) ∈ R, we interpret x as being the

encoding of an input to some problem, and y as being the encoding of a solution or witness

to that input. For each x ∈ Σ∗, we define the set WR(x) = {y ∈ Σ∗ | (x, y) ∈ R}, and call

it the witness set for x. Also, if y ∈ WR(x), we call y a witness or a solution to x.

This is a very general framework, so mostly we work with relations that meet two addi-

tional properties. First, we only work with relations where both the input and the witnesses

have a finite encoding. Second, we work with p-relations (Jerrum et al., 1986), namely, R

satisfies that (1) there exists a polynomial q such that (x, y) ∈ R implies that |y| ≤ q(|x|) and

(2) there exists a deterministic Turing Machine that receives as input (x, y) ∈ Σ∗ ×Σ∗, runs

in polynomial time and accepts if, and only if, (x, y) ∈ R. Without loss of generality, from

now on we assume that for a p-relation R, there exists a polynomial q such that |y| = q(|x|)

for every (x, y) ∈ R. This is not a strong requirement, since all witnesses can be made to

have the same length through padding.

Enumeration, counting and uniform generation. Given a p-relation R, we are interested

in the following problems:

Problem: ENUM(R)

Input: A word x ∈ Σ∗

Output: Enumerate all y ∈ WR(x) without

repetitions

Problem: COUNT(R)

Input: A word x ∈ Σ∗

Output: The size |WR(x)|

4



Problem: GEN(R)

Input: A word x ∈ Σ∗

Output: Generate uniformly, at random, a

word in WR(x)

Given that |y| = q(|x|) for every (x, y) ∈ R, we have that WR(x) is finite and these three

problems are well defined. Notice that in the case of ENUM(R), we do not assume a specific

order on words, so that the elementos of WR(x) can be enumerated in any order (but without

repetitions). Moreover, in the case of COUNT(R), we assume that |WR(x)| is encoded in

binary and, therefore, the size of the output is logarithmic in the size of WR(x). Finally,

in the case of GEN(R), we generate a word y ∈ WR(x) with probability 1
|WR(x)| if the set

WR(x) is not empty; otherwise, we return a special symbol ⊥ to indicate that WR(x) = ∅.

Enumeration with polynomial and constant delay. An enumeration algorithm for

ENUM(R) is a procedure that receives an input x ∈ Σ∗ and, during the computation, it

outputs each word in WR(x), one by one and without repetitions. The time between two

consecutive outputs is called the delay of the enumeration. In this paper, we consider two re-

strictions on the delay: polynomial-delay and constant delay. Polynomial-delay enumeration

is the standard notion of polynomial time efficiency in enumeration algorithms (Johnson,

Yannakakis, & Papadimitriou, 1988) and is defined as follows. An enumeration algorithm is

of polynomial delay if there exists a polynomial p such that for every input x ∈ Σ∗, the time

between the beginning of the algorithm and the initial output, between any two consecutive

outputs, and between the last output and the end of the algorithm, is bounded by p(|x|).

Constant delay enumeration is another notion of efficiency for enumeration algorithms

that has attracted a lot attention in the last years (Bagan, 2006; Courcelle, 2009; Segoufin,

2013). This notion has stronger guarantees compared to polynomial delay: the enumeration

is done in a second phase after the processing of the input and taking constant time between

two consecutive outputs in a very precise sense. Several notions of constant delay enumer-

ation have been given, most of them in database theory where it is important to divide the
5



analysis between query and data. In this paper, we want a definition of constant delay that is

agnostic of the distinction between query and data (i.e. combined complexity) and, for this

reason, we use a more general notion of constant delay enumeration than the one in (Bagan,

2006; Courcelle, 2009; Segoufin, 2013).

As it is standard in the literature (Segoufin, 2013), for the notion of constant delay enu-

meration we consider enumeration algorithms on Random Access Machines (RAM) with

addition and uniform cost measure (Aho & Hopcroft, 1974). Given a relation R ⊆ Σ∗×Σ∗,

an enumeration algorithm E for R has constant delay if E runs in two phases over the input

x.

(i) The first phase (preprocessing or precomputation), which does not produce output.

(ii) The second phase (enumeration), which occurs immediately after the precompu-

tation phase, where all words in WR(x) are enumerated without repetitions and

satisfying the following conditions, for a fixed constant c:

(a) the time it takes to generate the first output y is bounded by c · |y|;

(b) the time between two consecutive outputs y and y′ is bounded by c · |y′| and

does not depend on y; and

(c) the time between the final element y that is returned and the end of the enu-

meration phase is bounded by c · |y|,

We say that E is a constant delay algorithm for R with precomputation phase f , if E has

constant delay and the precomputation phase takes time O(f(|x|)). Moreover, we say that

ENUM(R) can be solved with constant delay if there exists a constant delay algorithm for R

with precomputation phase p for some polynomial p.

Our notion of constant delay algorithm differs from the definitions in (Segoufin, 2013) in

two aspects. First, as it was previously mentioned we relax the distinction between query and

data in the preprocessing phase, allowing our algorithm to take polynomial time in the input

(i.e. combined complexity). Second, our definition of constant delay is what in (Courcelle,

2009; Bagan, 2006) is called linear delay in the size of the output, namely, writing the next

6



output is linear in its size and not depending on the size of the input. This is a natural as-

sumption, since each output must at least be written down to return it to the user. Notice that,

given an input x and an output y, the notion of polynomial-delay above means polynomial

in |x| and, instead, the notion of linear delay from (Courcelle, 2009; Bagan, 2006) means

linear in |y|, i.e., constant in the size of |x|. Thus, we have decided to call the two-phase

enumeration from above “constant delay”, as it does not depend on the size of the input x,

and the delay is just what is needed to write the output (which is the minimum requirement

for such an enumeration algorithm).

Approximate counting. Given a relation R ⊆ Σ∗ × Σ∗, the problem COUNT(R) can be

solved efficiently if there exists a polynomial-time algorithm that, given x ∈ Σ∗, computes

|WR(x)|. In other words, if we think of COUNT(R) as a function that maps x to the value

|WR(x)|, then COUNT(R) can be computed efficiently if COUNT(R) ∈ FP, the class of

functions that can be computed in polynomial time. As such a condition does not hold for

many fundamental problems, we also consider the possibility of efficiently approximating

the value of the function COUNT(R). More precisely, COUNT(R) is said to admit a fully

polynomial-time randomized approximation scheme (FPRAS) (Jerrum et al., 1986) if there

exists a randomized algorithm A : Σ∗ × (0, 1) → N and a polynomial q(u, v) such that for

every x ∈ Σ∗ and δ ∈ (0, 1), it holds that:

Pr(|A(x, δ)− |WR(x)|| ≤ δ · |WR(x)|) ≥ 3

4

and the number of steps needed to compute A(x, δ) is at most q(|x|, 1
δ
). Thus, with high

probability A(x, δ) approximates the value |WR(x)| with a relative error of δ, and it can be

computed in polynomial time in the size of x and the value 1
δ
.

Las Vegas uniform generation. The problem GEN(R) can be solved efficiently if there

exists a polynomial-time randomized algorithm that, given x ∈ Σ∗, generates an element

of WR(x) with uniform probability distribution (if WR(x) = ∅, then it returns ⊥). How-

ever, as in the case of COUNT(R), the existence of such a generator is not guaranteed for

many fundamental problems, so we also consider a relaxed notion of generation that has a
7



probability of failing in returning a solution. More precisely, GEN(R) is said to admit a

polynomial-time Las Vegas uniform generator (PLVUG) if there exists a randomized algo-

rithm G : Σ∗ → Σ∗ ∪ {⊥, fail}, a polynomial q(u) and a function ϕ : Σ∗ → (0, 1) such that

for every x ∈ Σ∗:

(i) Pr(G(x) 6= fail) ≥ 1
2
;

(ii) if WR(x) 6= ∅, then Pr(G(x) = ⊥) = 0;

(iii) for every (x, y) ∈ Σ∗ × Σ∗:

(a) if (x, y) 6∈ R, then Pr(G(x) = y) = 0;

(b) if (x, y) ∈ R, then Pr(G(x) = y) = ϕ(x);

(iv) the number of steps needed to compute G(x) is at most q(|x|).

The invocation G(x) can fail in generating an element of WR(x), in which case it returns

fail. By condition (i), we know that this probability of failing is smaller than 1
2
, so that

by invoking G(x) several times we can make this probability arbitrarily small (for example,

the probability that G(x) returns fail in 100 consecutive independent invocations is at most

(1
2
)100). Assume that the invocation G(x) does not fail. If WR(x) = ∅, then we have by

condition (iii) (a) that G(x) = ⊥, so the randomized algorithm indicates that there is no

witness for x in this case. If WR(x) 6= ∅, then we have by conditions (ii) and (iii) that G(x)

returns an element y ∈ WR(x). Moreover, we know by condition (iii) (b) that the probability

of returning such an element y is ϕ(x). Thus, we have a uniform generator in this case, as

the probability of returning each element y ∈ WR(x) is the same. Finally, we have that G(x)

can be computed in polynomial time in the size of x.

It is important to notice that the notion of polynomial-time Las Vegas uniform generator

corresponds to the notion of uniform generator used in (Jerrum et al., 1986). However, we

have decided to use the term “Las Vegas” to emphasize the fact that there is a probability of

failing in returning a solution. Moreover, the notion of polynomial-time Las Vegas uniform

generator imposes stronger requirements than the notion of fully polynomial-time almost

uniform generator introduced in (Jerrum et al., 1986). In particular, the latter not only has

a probability of failing, but also considers the possibility of generating a solution with a

8



probability distribution that is almost uniform, that is, an algorithm that generates an string

y ∈ WR(x) with a probability in an interval [ϕ(x)− δ, ϕ(x) + δ] for a given error δ ∈ (0, 1),

where ϕ is defined as in the notion of PLVUG.

9



3. NLOGSPACE TRANSDUCERS: DEFINITIONS AND OUR MAIN RESULTS

The goal of this Chapter is to provide simple yet general definitions of classes of rela-

tions with good properties in terms of enumeration, counting and uniform generation. More

precisely, we are first aiming at providing a class C of relations that has a simple definition

in terms of Turing Machines and such that for every relation R ∈ C, it holds that ENUM(R)

can be solved with constant delay, and both COUNT(R) and GEN(R) can be solved in poly-

nomial time. Moreover, as it is well known that such good conditions cannot always be

achieved, we are then aiming at extending the definition of C to obtain a simple class, also

defined in terms of Turing Machines and with good approximation properties. It is important

to mention that we are not looking for an exact characterization in terms of Turing Machines

of the class of relations that admit constant delay enumeration algorithms, as this may result

in an overly complicated model. Instead, we are looking for simple yet general classes of

relations with good properties in terms of enumeration, counting and uniform generation,

and which can serve as a starting point for the systematic study of these three fundamental

properties.

A key notion that is used in our definitions of classes of relations is that of transducer.

Given a finite alphabet Σ, an NL-transducer M is a nondeterministic Turing Machine with

input and output alphabet Σ, a read-only input tape, a write-only output tape where the head

is always moved to the right once a symbol is written in it (so that the output cannot be

read by M ), and a work-tape of which, on input x, only the first f(|x|) cells can be used,

where f(n) ∈ O(log(n)). A string y ∈ Σ∗ is said to be an output of M on input x, if

there exists a run of M on input x that halts in an accepting state with y as the string in

the output tape. The set of all outputs of M on input x is denoted by M(x) (notice that

M(x) can be empty). Finally, the relation accepted by M , denoted by R(M), is defined as

{(x, y) ∈ Σ∗ × Σ∗ | y ∈M(x)}.

Definition 3.1. A relation R is in RELATIONNL if, and only if, there exists an NL-

transducer M such thatR(M) = R.
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The class RELATIONNL should be general enough to contain some natural and well-

studied problems. A first such a problem is the satisfiability of a propositional formula in

DNF. As a relation, this problem can be represented as follows:

SAT-DNF = {(ϕ, σ) | ϕ is a proposional formula in DNF,

σ is a truth assignment and σ(ϕ) = 1}.

Thus, we have that ENUM(SAT-DNF) corresponds to the problem of enumerating the truth

assignments satisfying a propositional formula ϕ in DNF, while COUNT(SAT-DNF) and

GEN(SAT-DNF) correspond to the problems of counting and uniformly generating such

truth assignments, respectively. It is not difficult to see that SAT-DNF ∈

RELATIONNL. Hence, given that COUNT(SAT-DNF) is a #P-complete problem, we cannot

expect COUNT(R) to be solvable in polynomial time for every R ∈ RELATIONNL. How-

ever, COUNT(SAT-DNF) admits an FPRAS (Karp & Luby, 1983), so we can still hope for

COUNT(R) to admit an FPRAS for everyR ∈ RELATIONNL. It turns out that proving such

a result involves providing an FPRAS for another natural and fundamental problem: #NFA.

More specifically, #NFA is the problem of counting the number of words of length k accepted

by a non-deterministic finite automaton without epsilon transitions (NFA), where k is given

in unary (that is, k is given as a string 0k). It is known that #NFA is #P-complete (Álvarez

& Jenner, 1993), but it is open whether it admits an FPRAS; in fact, the best randomized

approximation scheme known for #NFA runs in time nO(log(n)) (Kannan et al., 1995). In our

notation, this problem is represented by the following relation:

MEM-NFA = {((N, 0k), w) | N is an NFA with alphabet Σ,

w ∈ Σ∗, |w| = k and w is accepted by N},

that is, we have that #NFA = COUNT(MEM-NFA). It is easy to see that MEM-NFA ∈

RELATIONNL. Hence, we give a positive answer to the open question of whether #NFA

admits an FPRAS by proving the following general result about RELATIONNL.
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Theorem 3.1. If R ∈ RELATIONNL, then ENUM(R) can be solved with polynomial

delay, COUNT(R) admits an FPRAS, and GEN(R) admits a PLVUG.

It is worth mentioning a fundamental consequence of this result in computational com-

plexity. The class of function SPANL was introduced in (Álvarez & Jenner, 1993) to provide

a characterization of some functions that are hard to compute. More specifically, given a fi-

nite alphabet Σ, a function f : Σ∗ → N is in SPANL if there exists an NL-transducer M with

input alphabet Σ such that f(x) = |M(x)| for every x ∈ Σ∗. The class SPANL is contained

in #P, and it has been instrumental in proving that some functions are difficult to compute

(Álvarez & Jenner, 1993; Hemaspaandra & Vollmer, 1995; Arenas, Conca, & Pérez, 2012;

Losemann & Martens, 2013), as if a function f is complete for SPANL and f ∈ FP, then

P = NP (Álvarez & Jenner, 1993). Given that #NFA is SPANL-complete under parsimonious

reductions (Álvarez & Jenner, 1993), and parsimonious reductions preserve the existence of

an FPRAS, we obtain the following corollary from Theorem 3.1.

Corollary 3.1. Every function in SPANL admits an FPRAS.

Although some classes of functions C for which every f ∈ C admits an FPRAS have

been identified before (Saluja, Subrahmanyam, & Thakur, 1995; Arenas, Muñoz, & Riveros,

2017), to the best of our knowledge this is the first such a class with a simple and robust

definition based on Turing Machines.

A tight relationship between the existence of an FPRAS and the existence of a schema for

almost uniform generation was proved in (Jerrum et al., 1986), for the class of relations that

are self-reducible. Thus, one might wonder whether the existence of a PLVUG for GEN(R)

in Theorem 3.1 is a corollary of the result in (Jerrum et al., 1986), as in this theorem we prove

the existence of an FPRAS for COUNT(R). Interestingly, the answer to this question is no,

as the notion of PLVUG ask for a uniform generator without an error δ, whose existence

cannot be inferred from the results in (Jerrum et al., 1986). Thus, we prove in Chapter

6 that COUNT(R) admits an FPRAS and GEN(R) admits a PLVUG, for a relation R ∈

RELATIONNL, without relaying in the aforementioned result from (Jerrum et al., 1986).
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A natural question at this point is whether a simple syntactic restriction on the definition

of RELATIONNL gives rise to a class of relations with better properties in terms of enu-

meration, counting and uniform generation. Fortunately, the answer to this question comes

by imposing a natural and well-studied restriction on Turing Machines, which allows us to

define a class that contains many natural problems. More precisely, we consider the notion

of UL-transducer, where the letter “U” stands for “unambiguous”. Formally, M is a UL-

transducer if M is an NL-transducer such that for every input x and y ∈ M(x), there exists

exactly one run of M on input x that halts in an accepting state with y as the string in the

output tape. Notice that this notion of transducer is based on well-known classes of decision

problems (e.g. UP (Valiant, 1976) and UL (Reinhardt & Allender, 2000)) and adapted for

our case, namely, problems defined as relations.

Definition 3.2. A relation R is in RELATIONUL if, and only if, there exists a UL-

transducer M such thatR(M) = R.

For the class RELATIONUL, we obtain the following result.

Theorem 3.2. IfR ∈ RELATIONUL, then ENUM(R) can be solved with constant delay,

there exists a polynomial-time algorithm for COUNT(R), and there exists a polynomial-time

randomized algorithm for GEN(R).

In particular, it should be noticed that given R ∈ RELATIONUL and an input x, the

solutions for x can be enumerated, counted and uniformly generated efficiently.

Classes of problems definable by machine models and that can be enumerated with con-

stant delay have been proposed before. In (Amarilli, Bourhis, Jachiet, & Mengel, 2017), it is

shown that if a problem is definable by a d-DNNF circuit, then the solutions of an instance

can be listed with linear preprocessing and constant delay enumeration. Still, to the best

of our knowledge, this is the first class with a simple and robust definition based on Turing

Machines.

13



4. APPLICATIONS OF THE MAIN RESULTS

Before providing proof sketches of Theorems 3.1 and 3.2, we give some implications

of these results. In particular, we show how NL and UL-transducers can be used to obtain

positive results on query evaluation in areas like information extraction, graph databases, and

binary decision diagrams.

4.1. Information extraction

In (Fagin, Kimelfeld, Reiss, & Vansummeren, 2015), the framework of document span-

ners was proposed as a formalization of ruled-based information extraction. In this frame-

work, the main data objects are documents and spans. Formally, given a finite alphabet Σ, a

document is a string d = a1 . . . an and a span is a pair s = [i, j〉 with 1 ≤ i ≤ j ≤ n + 1. A

span represents a continuous region of the document d, whose content is the substring of d

from positions i to j − 1. Given a finite set of variables X, a mapping µ is a function from X

to the spans of d.

Variable set automata (VA) are one of the main formalisms to specify sets of mappings

over a document. Here, we use the notion of extended VA (eVA) from (Florenzano et al.,

2018) to state our main results. Given the lack of space, we only recall the main definitions

(see (Florenzano et al., 2018; Fagin et al., 2015) for more intuition and further details). An

eVA is a tuple A = (Q, q0, F, δ) such that Q is a finite set of states, q0 is the initial state,

and F is the final set of states. Furthermore, δ is the transition relation consisting of letter

transitions (q, a, q′), or variable-set transitions (q, S, q′), where S ⊆ {x`,ax | x ∈ X} and

S 6= ∅. The symbols x̀ and ax are called markers, and they are used to denote that variable x

is opened or closed byA, respectively. A run ρ over a document d = a1 · · · an is a sequence

of the form: q0
X1−→ p0

a1−→ q1
X2−→ p1

a2−→ . . . an−→ qn
Xn+1−→ pn where each Xi is a (possibly

empty) set of markers, (pi, ai+1, qi+1) ∈ δ, and (qi, Xi+1, pi) ∈ δ whenever Xi+1 6= ∅, and

qi = pi otherwise (that is, when Xi+1 = ∅). We say that a run ρ is valid if for every x ∈ X

there exists exactly one pair [i, j〉 such that x`∈ Xi and ax ∈ Xj . A valid run ρ naturally
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defines a mapping µρ that maps x to the only span [i, j〉 such that x̀ ∈ Xi and ax ∈ Xj . We

say that ρ is accepting if pn ∈ F . Finally, the semantics JAK(d) of A over d is defined as the

set of all mappings µρ where ρ is a valid and accepting run of A over d.

In (Freydenberger, 2017; Maturana, Riveros, & Vrgoc, 2018), it was shown that the

decision problem related to query evaluation, namely, given an eVA A and a document d

deciding whether JAK(d) 6= ∅, is NP-hard. For this reason, in (Florenzano et al., 2018) a

subclass of eVA is considered in order to recover polynomial-time evaluation. A eVA A is

called functional if every accepting run is valid. Intuitively, a functional eVA does not need

to check validity of the run given that it is already known that every run that reaches a final

state will be valid.

For the query evaluation problem of functional eVA (i.e. to compute JAK(d)), one can

naturally associate the following relation:

EVAL-eVA = {((A, d), µ) | A is a functional eVA,

d is a document, and µ ∈ JAK(d)}.

It is not difficult to show that EVAL-eVA is in RELATIONNL. Hence, by Theorem 3.1 we

get the following results.

Corollary 4.1. ENUM(EVAL-eVA) can be enumerated with polynomial delay,

COUNT(EVAL-eVA) admits an FPRAS, and GEN(EVAL-eVA) admits a PLVUG.

In (Florenzano et al., 2018), it was shown that every functional RGX or functional VA

(not necessarily extended) can be converted in polynomial time into a functional eVA. There-

fore, Corollary 4.1 also holds for these more general classes. Notice that in (Freydenberger,

Kimelfeld, & Peterfreund, 2018), it was given a polynomial-delay enumeration algorithm

for JAK(d). Thus, only the results about COUNT(EVAL-eVA) and GEN(EVAL-eVA) are

new.
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Regarding efficient enumeration and exact counting, a constant delay algorithm with

polynomial preprocessing was given in (Florenzano et al., 2018) for the class of deterministic

functional eVA. Here, we can easily extend these results for a more general class, that we

called unambiguous functional eVA. Formally, we say that an eVA is unambiguous if for

every two valid and accepting runs ρ1 and ρ2, it holds that µρ1 6= µρ2 . In other words,

each output of an unambiguous eVA is witnessed by exactly one run. As in the case of

EVAL-eVA, we can define the relation EVAL-UeVA, by restricting the input to unambiguous

functional eVA. By using UL-transducers and Theorem 3.2, we can then extend the results

in (Florenzano et al., 2018) for the unambiguous case.

Corollary 4.2. ENUM(EVAL-UeVA) can be solved with constant delay, there exists a

polynomial-time algorithm for COUNT(EVAL-UeVA), and there exists a polynomial-time

randomized algorithm for GEN(EVAL-UeVA).

Notice that this result gives a constant delay algorithm with polynomial preprocessing

for the class of unambiguous functional eVA. Instead, the algorithm in (Florenzano et al.,

2018) has linear preprocessing over documents, restricted to the case of deterministic eVA.

This leaves open whether there exists a constant delay algorithm with linear preprocessing

over documents for the unambiguous case.

4.2. Query evaluation in graph databases

Enumerating, counting, and generating paths are relevant tasks for query evaluation in

graph databases (Angles et al., 2017). Given a finite set Σ of labels, a graph database G

is a pair (V,E) where V is a finite set of vertices and E ⊆ V × Σ × V is a finite set of

labeled edges. Here, nodes represent pieces of data and edges specify relations between

them (Angles et al., 2017). One of the core query languages for posing queries on graph

databases are regular path queries (RPQ). An RPQ is a triple (x,R, y) where x, y are vari-

ables and R is a regular expression over Σ. As usual, we denote by L(R) all the strings over

Σ that conform to R. Given an RPQ Q = (x,R, y), a graph database G = (V,E), and nodes
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u, v ∈ V , one would like to retrieve, count, or uniformly generate all paths1 in G going from

u to v that satisfies Q. Formally, a path from u to v in G is a sequence of vertices and labels

of the form π = v0, p1, v1, p2, . . . , pn, vn, such that (vi, pi+1, vi+1) ∈ E, u = v0, and v = vn.

A path π is said to satisfy Q = (x,R, y) if the string p1p2 · · · pn ∈ L(R). The length of

π is defined as |π| = n. Clearly, between u and v there can be an infinite number of paths

that satisfies Q. For this reason, one usually wants to retrieve all paths between u and v of

at most certain length n, namely, one usually considers the set JQKn(G, u, v) of all paths π

from u to v in G such that π satisfies Q and |π| = n. This naturally defines the following

relation representing the problem of evaluating an RQP over a graph database:

EVAL-RPQ = {((Q, 0n, G, u, v), π) | π ∈ JQKn(G, u, v)}.

Using this relation, fundamental problems for RPQs such as enumerating, counting, or uni-

form generating paths can be naturally represented. It is not difficult to show that EVAL-RPQ

is in RELATIONNL, from which the following corollary can be obtained by using The-

orem 3.1. Notice that giving a polynomial-delay enumeration algorithm for EVAL-RPQ

is straightforward, but the existence of an FPRAS and a PLVUG for EVAL-RPQ was not

known before when queries are part of the input (that is, in combined complexity).

Corollary 4.3. COUNT(EVAL-RPQ) admits an FPRAS, and GEN(EVAL-RPQ) admits

a PLVUG.

4.3. Binary decision diagrams

Binary decision diagrams (OBDDs) are an abstract representation of boolean functions

which are widely used in computer science and have found many applications in areas like

formal verification (Bryant, 1992). A binary decision diagram (BDD) is a directed acyclic

graph D = (V,E) where each node v is labeled with a variable var(v) and has at most

two edges going to children lo(v) and hi(v). Intuitively, lo(v) and hi(v) represent the next

1Notice that the standard semantics for RPQs is to retrieve pair of nodes. Here we consider a less standard
semantics based on paths which is also relevant for graph databases (Arenas et al., 2012; Losemann & Martens,
2013; Angles et al., 2017).
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nodes when var(v) takes values 0 and 1, respectively. D contains only two terminals, or

sink nodes, labeled by 0 or 1, and one initial node called v0. We assume that every path

from v0 to a terminal node does not repeat variables. Then, given an assignment σ from

the variables in D to {0, 1}, we have that σ naturally defines a path from v0 to a terminal

node 0 or 1. In this way, D defines a boolean function that gives a value in {0, 1} to each

assignment σ; in particular, D(σ) ∈ {0, 1} corresponds to the sink node reached by starting

from v0 and following the values in σ. For Ordered BDDs, we also have a linear order <

over the variables in D such that, for every v1, v2 ∈ V with v2 a child of v1, it holds that

var(v1) < var(v2). Notice that not necessarily all variables appear in a path from the initial

node v0 to a terminal node 0 or 1. Nevertheless, the promise in an OBDD is that variables

will appear following the order <.

An OBDD D defines the set of assignments σ such that D(σ) = 1. Then D can be

considered as a succinct representation of the set {σ | D(σ) = 1}, and one would like to

enumerate, count and uniformly generate assignments given D. This motivates the relation:

EVAL-OBDD = {(D, σ) | D(σ) = 1}.

Given (D, σ) in EVAL-OBDD, there is exactly one path in D that witnesses D(σ) = 1.

Therefore, one can easily show that EVAL-OBDD is in RELATIONUL, from which we ob-

tain that:

Corollary 4.4. ENUM(EVAL-OBDD) can be enumerated with constant delay, there ex-

ists a polynomial-time algorithm for COUNT(EVAL-OBDD), and there exists a polynomial-

time randomized algorithm for GEN(EVAL-OBDD).

The above results are well known. Nevertheless, they show how easy and direct is to use

UL-transducers to realize the good algorithmic properties that a data structure like OBDD

has.

Some non-deterministic variants of BDDs have been studied in the literature (Amarilli,

Capelli, Monet, & Senellart, 2018). In particular, an nOBDD extends an OBDD with vertices
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u without variables (i.e. var(u) = ⊥) and without labels on its children. Thus, an nOBDD

is non-deterministic in the sense that given an assignment σ, there can be several paths that

bring σ from the initial node v0 to a terminal node with labeled 0 or 1. Without lost of

generality, nOBDDs are assumed to be consistent in the sense that, for each σ, all paths of σ

in D can reach either 0 or 1, but not both.

As in the case of OBDDs, we can define a relation EVAL-nOBDD that pairs an nOBDD

D with an assignment σ that evaluates D to 1 (i.e. D(σ) = 1). Contrary to OBDDs, an

nOBDD looses the single-witness property, and now an assignment σ can have several paths

from the initial node to the 1 terminal node. Thus, it is not clear whether EVAL-nOBDD

is in RELATIONUL. Still one can easily show that EVAL-nOBDD ∈ RELATIONNL, from

which the following results follow.

Corollary 4.5. ENUM(EVAL-nOBDD) can be solved with polynomial delay,

COUNT(EVAL-nOBDD) admits an FPRAS, and GEN(EVAL-nOBDD) admits a PLVUG.

It is important to stress that the existence of an FPRAS and a PLVUG for

EVAL-nOBDD was not known before.
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5. A SIMPLE NOTION OF COMPLETENESS, AND ITS APPLICATION TO UL-

TRANSDUCERS

The goal of this Chapter is to define a simple notion of reduction for the classes RELATIONNL

and RELATIONUL, and then to show how it can be used to prove Theorem 3.2. In Chapter

6, we use this notion again when proving Theorem 3.1.

A natural question to ask is which notions of ”completeness” and ”reduction” are appro-

priate for our framework. Notions of reductions for relations have been proposed before, in

particular in the context of search problems (Daskalakis, Goldberg, & Papadimitriou, 2009).

However, we do not intent to discuss them here; instead, we use an idea of completeness

that is very restricted, but that turns out to be useful for the classes we defined. Let C be

a complexity class of relations, and let R, S ∈ C. We say R is reducible to S if there ex-

ists a function f : Σ∗ → Σ∗, computable in polynomial time, such that for every x ∈ Σ∗:

WR(x) = WS(f(x)). Also, if T is reducible to S for every T ∈ C, we say S is complete

for C. Notice that this definition is very restricted, since the notion of reduction requires

the witness set to be exactly the same for both relations (is not sufficient that they have the

same size, for example). The benefit behind this kind of reduction is that it preserves all the

properties of efficient enumeration, counting and uniform generation that we introduced in

Chapters 2 and 3, as stated in the following result.

PROPOSITION 5.1. If a relation R can be reduced to a relation S, then:

• If ENUM(S) can be solved with constant (resp. polynomial) delay, then

ENUM(R) can be solved with constant (resp. polynomial) delay.

• If there exists a polynomial-time algorithm (resp. an FPRAS) for COUNT(S), then

there exists a polynomial-time algorithm (resp. an FPRAS) for COUNT(R).

• If there exists a polynomial-time randomized algorithm (resp. a PLVUG) for GEN(S),

then there exists a polynomial-time randomized algorithm (resp. a PLVUG) for

GEN(R).
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Therefore, by finding a complete relation S for a class C, we can just study the aforemen-

tioned problems for S, and we know that the obtained results will extend to every relation in

the class C.

5.1. Complete problems for RELATIONNL and RELATIONUL

The notion of reduction just defined is useful for us as RELATIONNL and RELATIONUL

admit complete problems under this notion. These complete relations are defined in terms

of NFAs, and the idea behind them is the following. Take a relation R in RELATIONNL

(the case for RELATIONUL is very similar). We know there is an NL-transducer M that

characterizes it. Consider now some input x. Since M is a non-deterministic logspace

Turing Machine, there is only a polynomial number of different configurations that M can

be in (polynomial on |x|). So we can consider the set of possible configurations as the states

of an NFA Nx, which has polynomial size, and whose transitions are determined by the

transitions between the configurations of M . Moreover, whenever a symbol is output by the

transducer M , that symbol is read by the automaton Nx. In this way, Nx accepts exactly the

language WR(x). We formalize this idea in the following result, where

MEM-UFA = {((N, 0k), w) | N is an unambiguous NFA

with alphabet Σ, w ∈ Σ∗, |w| = k and w is accepted by N},

and an NFA is said to be unambiguous if there exists exactly one accepting run for every

string accepted by it.

PROPOSITION 5.2. MEM-NFA is complete for RELATIONNL and

MEM-UFA is complete for RELATIONUL.

5.2. Establishing the good algorithmic properties of RELATIONUL

Theorem 3.2 is a consequence of Propositions 5.1 and 5.2, and the following result.
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PROPOSITION 5.3. ENUM(MEM-UFA) can be solved with constant delay, there exists

a polynomial-time algorithm for COUNT(MEM-UFA), and there exists a polynomial-time

randomized algorithm for GEN(MEM-UFA).

The result for COUNT(MEM-UFA) is a corollary of the fact that there exists a poly-

nomial time algorithm that, given an input string x, returns the number of accepting

runs of a non-deterministic logspace Turing Machine with input x (Álvarez & Jenner,

1993). Moreover, the result for GEN(MEM-UFA) can be obtained by considering that

COUNT(MEM-UFA) can be solved in polynomial time and MEM-UFA is a self-reducible

relation (Jerrum et al., 1986), and then using a strategy similar to the one described in (Jerrum

et al., 1986). On the other hand, the result for ENUM(MEM-UFA) does require a more elab-

orated proof that we outline here.

Let (N, 0k) be an input of ENUM(MEM-UFA). In the preprocessing phase of the con-

stant delay enumeration algorithm for this problem, the NFA N is unrolled to get rid of any

cycles it might have, and keep only the accepted words of length exactly k, which are the

ones we want to enumerate. For the unrolling, we create k + 1 layers of nodes, being each

layer a copy of the set of states of N . And for each transition in N , we connect each layer

with the next one, by joining the corresponding nodes with a directed edge, and labeling the

edge according to the symbol in the transition. Given that N is an unambiguous NFA, this

gives us a directed acyclic graph G, where each word w of length k accepted by N has a

unique corresponding path between a fixed start node and a fixed end node in G, such that

the labels read along the way form the string w. From that, it is not difficult to see how to

enumerate with constant delay. We just have to go through G, beginning in the ”start node”,

and traversing it in a depth-first search manner. During this process, we store the symbols

read, and output them any time we reach the end node of G.
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6. NL-TRANSDUCERS: APPROXIMATE COUNTING AND UNIFORM GENERA-

TION

The goal of this Chapter is to provide a proof of Theorem 3.1, which considers the class

RELATIONNL defined in terms of NL-transducers. Given that we show in Proposition 5.2

that MEM-NFA is complete for RELATIONNL, we have by Proposition 5.1 that Theorem

3.1 is a consequence of the following result.

Theorem 6.1. ENUM(MEM-NFA) can be solved with polynomial delay,

COUNT(MEM-NFA) admits an FPRAS, and GEN(MEM-NFA) admits a PLVUG

As mentioned in Chapter 5.2, we have that MEM-NFA is a self-reducible relation (Jerrum

et al., 1986). Besides, the existence problem for MEM-NFA (that is, for a given input

(N, 0k), decide whether there are any witnesses) can be solved in polynomial time. With all

that, we can derive the existence of a polynomial delay algorithm for ENUM(MEM-NFA)

as a direct application of Theorem 4.9 from (Schmidt, 2009). In this Chapter, we focus

on the remaining part of the proof of Theorem 6.1. More specifically, we provide an algo-

rithm that approximately counts the number of words of a given length accepted by an NFA,

where this length is given in unary. This constitutes an FPRAS for COUNT(MEM-NFA),

as formally stated in Theorem 6.2. As this algorithm works by simultaneously counting

and doing uniform generation of witnesses, its existence not only gives us an FPRAS for

COUNT(MEM-NFA), but also a PLVUG for GEN(MEM-NFA), as formally stated in Corol-

lary 6.1.

6.1. The Algorithm Template

As mentioned in Chapter 3, we consider the following approximation problem. The input

of the problem is an NFAN on the alphabet {0, 1}withm states (and no epsilon transitions),

a string 0n that represents an integer n ≥ 1 given in unary, and an error δ ∈ (0, 1). The

problem then is to return R such that R is a (1 ± δ)-approximation of |Ln(N)|, that is,

(1− δ)|Ln(N)| ≤ R ≤ (1 + δ)|Ln(N)|, where L(N) is the set of strings accepted by N and
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Ln(N) = {w ∈ {0, 1}∗ | w ∈ L(N) and |w| = n}. Besides, such an approximation should

be returned in time polynomial in m, n and 1
δ

(notice that the size of NFA N is O(m2), so

being polynomial in m means being polynomial in the size of N ).

Our algorithm for approximating Ln(N) will involve the construction of a directed

acyclic graph from the NFAN . We call this directed acyclic graphNunroll, as it is obtained by

unrolling n times the NFA N . Formally, assume that N = {s1, . . . , sm} and s1 is the initial

state ofN . Then for every state si ∈ N create n states s1
i , . . . , s

n
i inNunroll, and for every tran-

sition si
b−→ sj in N and b ∈ {0, 1}, create the transition sti

b−→ st+1
j for all t = 1, 2, . . . , n− 1

in Nunroll. Moreover, include a vertex sstart in Nunroll with transitions sstart
b−→ s1

i if there is

a transition s1
b−→ si in N (recall that s1 is the initial state of N ). Finally, create a unique

final state sfinal for Nunroll, and for every accepting state sj of N , add to Nunroll the transition

snj
1−→ sfinal. We will use the terms vertex and state interchangeably to refer to the vertices

of Nunroll. We refer to the set {st1, st2, . . . , stm} as the t-th layer of Nunroll. The vertex set of

Nunroll is precisely {sstart, sfinal} ∪ (
⋃n
t=1{st1, st2, . . . , stm}).

REMARK 6.1. Notice that sfinal is included in Nunroll to have a unique final state. Besides,

notice that for each final state sj of N , the last occurrence of such a state when processing

a string of length n is connected with sfinal via the same symbol 1, that is, the transition

snj
1−→ sfinal is included in Nunroll. Hence, the size of the accepted language is not changed,

as the number of distinct strings which give a path from sstart to sfinal in Nunroll is precisely

|Ln(N)|.

We say that a string w is member of a vertex s ∈ Nunroll if there is a path from sstart to

s in Nunroll where the string of ordered labels of the edges is precisely w. We write U(s) to

denote the set of strings which are members of a state s. Note that |U(sfinal)| = |Ln(N)|,

and U(sstart) = ∅. Thus, our goal is to produce a good estimate of the value |U(sfinal)|.

For a string w, let w[t] denote the t-th bit (1-indexed) in w. Thus if w = 100101, we have

w[1] = 1, w[2] = 0, w[3] = 0, and so on. For stringsw, v, letw◦v denote their concatenation.
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The components of the main algorithm are as follows. We set k = (nm
δ

)c for some

sufficiently large constant c (to be defined later). Then for each vertex s ∈ Nunroll (where

s = stj for some j ∈ {1, . . . ,m} and t ∈ {1, . . . , n}), we store k strings x1, . . . , xk, such that

each xi ∈ U(s). Specifically, the xi’s are uniform samples of the set U(s). We denote this set

of k samples for the vertex s by X(s) ⊆ U(s) (if |U(s)| ≤ k, we set X(s) = U(s)). Since

the samples will be uniform and independent, it is possible that we will obtain duplicates

samples of a given x ∈ U(s). Therefore, we allow X(s) to be a multi-set (meaning that

X(s) = {x1, . . . , xk}, and the strings xi are not necessarily distinct). Second, we store

a value R(s) which is a (1 ± δ)-approximation of |U(s)|. The algorithm proceeds like

a dynamic programming algorithm, computing R(s) and X(s) for every state s in Nunroll

in a breadth-first search ordering. We first compute R(s), X(s) for all states s in layer 1,

meaning {s1
1, s

1
2, . . . , s

1
m}. Then for any layer i, given the values

⋃i−1
t=1

⋃m
j=1{R(stj), X(stj)},

we compute the corresponding values R(sij), X(sij) for each vertex sij in layer i. So the

values R(s), X(s) are computed layer by layer. The final estimate for |L(N)| is R(sfinal).

We summarize this algorithmic template in Algorithm 1.

Algorithm 1: Algorithmic Template for our FPRAS

(i) Construct the directed acyclic graph Nunroll from the NFA N .

(ii) For layers i = 1, 2, . . . , n and j = 1, 2, . . . ,m:

(a) ComputeR(sij) given
⋃i−1
t=1

⋃m
j=1{R(stj), X(stj)}. For i = 1, we have that

R(sij) is computed without any additional information.

(b) Call a subroutine to sample k uniform elements of U(sij) using the value

R(sij) and
⋃i−1
t=1

⋃m
j=1{R(stj), X(stj)}.

(c) Let X(sij) ⊆ U(sij) be the multi-set of the k uniform samples obtained.

(iii) Return R(sfinal).
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6.2. The Sampling Template

To carry out our main approximation algorithm, we must implement the algorithmic

template given in Algorithm 1. In particular, we must implement the sampling subroutine in

step (ii) (b). We begin by describing a generic sampling template for this step, which will

be used by our main algorithm as a subroutine. The procedure is essentially that of (Jerrum

et al., 1986), but modified to suit our setting. The procedure to sample a uniform element

of a set U(sαj ) is as follows. We initialize a string wα to be the empty string, we construct a

sequence of strings wα, wα−1, . . ., w1, w0, where each string wt is of the form bt ◦wt+1 with

bt ∈ {0, 1}, and we define the result of the sample procedure to be w0. To ensure that w0 is

an element of U(sαj ) chosen with uniform distribution, we also consider a sequence of sets of

strings Wα, Wα−1, . . ., W 1, W 0 constructed as follows. We have that Wα = U(sαj ). Then

we partition Wα into two sets of strings: those with last bit equal to 0 and with last bit equal

to 1, which are called Wα
0 and Wα

1 , respectively. We estimate the size of each partition, and

choose one of them with probability proportional to its size, say Wα
b . We then append the bit

b the prefix of wα to obtain wα−1 = b◦wα, we defineWα−1 as {x | x◦b ∈ Wα and |x| ≥ 1},

and we recurse on wα−1 and Wα−1. Thus, in general, we have that W t is the set of strings x

such that x ◦ wt ∈ U(sαj ), and we also have that W 0 = ∅.

Since there could be an error in estimating the sizes of the partitions, it may be the case

that some items were chosen with slightly larger probability than others. To remedy this and

obtain a perfectly uniform sampler, at every step of the algorithm we store the probability

with which we chose a partition. Thus at the end, we have computed exactly the probability

ϕ with which we sampled the string w. We can then reject this sample with probability

proportional to ϕ, which gives a perfect sampler. As long as no string is too much more

likely than another to be sampled, the probability of rejection will be a constant, and we can

simply run our sampler O(log( 1
µ
))-times to get a sample with probability 1 − µ for every

µ > 0. For the sake of simplicity, we first assume that we have perfect estimates of the sizes

of the partitions in question. This procedure is given below in Algorithm 2. We call it with the

initial parameters SampleTemplate(Wα, ε, ϕ0), where ε is the empty string, corresponding
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to the goal of sampling a uniform element of Wα = U(sαj ). Here, ϕ0 is a value that we will

later choose. Specifically, ϕ0 will be a constant times a (1± δ)-approximation of |U(sαj )|.

Algorithm 2: SampleTemplate(W j, wj, ϕ)

(i) If W j = ∅, then with probability ϕ return wj , otherwise return fail.

(ii) Else, partition W j into two sets, those with last bit equal to 0, call this W j
0 ,

and those with last bit equal to 1, call this W j
1 .

(iii) Then choose partition b ∈ {0, 1} with probability pb =
|W j

b |
|W j | , and set W j−1 =

{x | x ◦ b ∈ W j and |x| ≥ 1}, and wj−1 = b ◦ wj .

(iv) Return SampleTemplate(W j−1, wj−1, ϕ
pb

).

At every step j of Algorithm 2, we have that |W j| is precisely the number of strings in

Wα which have the suffix wj , as W j is the set of strings x such that x ◦wj ∈ Wα. Note then

that the set W j depends on the random string wj , so in fact we could write W j
wj

instead of

W j , but for notational simplicity we omit the subscript, and it is then understand that W j is

a function of wj .

Now the probability of choosing a given element x ∈ Wα can be computed as follows.

Ignoring for a moment the possibility of returning fail, we have that w0 is the string returned

by SampleTemplate(Wα, ε, ϕ0) since W 0 = ∅. Thus, we probability we chose x is:

Pr(w0 = x) =
|Wα−1|
|Wα|

· |W
α−2|

|Wα−1|
· |W

α−3|
|Wα−2|

· · · · · |W
1|

|W 2|
· 1

|W 1|
=

1

|Wα|
.

Now at the point of return, we also have that ϕ = ϕ0/Pr(w0 = x). Thus, if ϕ0/Pr(w0 =

x) ≤ 1, then the probability that x is output is simply ϕ0. The following is then easily seen:

FACT 1. If 0 < ϕ0 ≤ 1
|Wα| and w0 6= fail is the output of Algorithm 2, then for every

x ∈ Wα, it holds that Pr(w0 = x) = ϕ0. Moreover, the algorithm outputs w0 = fail with

probability 1− |Wα|ϕ0.
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This shows that, conditioned on not failing, the above is a uniform sampler. Repeating

the procedure ` · (|Wα|ϕ0)−1 times, we get a sample with probability 1− e−` since:

(1− |Wα|ϕ0)`·(|W
α|ϕ0)−1 ≤ (e−|W

α|ϕ0)`·(|W
α|ϕ0)−1

= e−|W
α|ϕ0·`·(|Wα|ϕ0)−1

= e−`.

6.3. The Main Algorithm

We now describe our main algorithm formally. As previously mentioned, the algorithm

computes the values of R(s), X(s) in a breadth-first search order on the graph Nunroll. Thus

we first computeR(s),X(s) for all s in layer i, and then move on to layer i+1. Our algorithm

for computing the samples needed in X(sαi ) for a fixed state sαi is given in Algorithm 3, and

our full FPRAS is given in Algorithm 4.

Base Case: For every state sαi such that |U(sαi )| ≤ k, compute and store R(s) = |U(s)|

exactly, and store the entire set U(s) = X(s). We call these states exactly handled. To do

this, we perform a breadth-first search from sstart. At every new state swe see, we check if all

the states in the prior layer with edges into s are exactly handled (if not, then s is not exactly

handled). If so, then we compute |U(s)| by computing the union Y0 of all X(s′), where s′

ranges over all states with edges into s labeled with a 0, and then computing the union Y1 of

all X(s′′), where s′′ ranges over all states with edges into s labeled with a 1. If |Y0| + |Y1|

is at most k, then we set X(s) to be the {x ◦ 0 | x ∈ Y0} ∪ {x ◦ 1 | x ∈ Y1}, and we set

R(s) = |X(s)|. Otherwise, we conclude that |U(s)| > k, and thus s is not exactly handled.

Inductive Case: Suppose we have a state sαi that is not exactly handled, and for which

we have not computed X(sαi ), R(sαi ), but such that we have computed X(stj), R(stj) for

j = 1, 2, . . . ,m and t = 1, 2, . . . , α − 1. To build the set of samples X(sαi ), we call the

procedure Sample(T,w, ϕ) a total of k times, where T is some subset of states (all in the

same layer), w is a string suffix, and ϕ > 0 is some small value (T , w and ϕ will be specified

later). Notice that Sample is the instantiation of the procedure SampleTemplate described

in the previous Chapter to the specific requirements of our main algorithm. Given any fixed
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arbitrary linear ordering≺ on the states of Nunroll, the procedure Sample is defined as shown

in Algorithm 3.

Algorithm 3: Sample(T,w, ϕ)

(i) If ϕ /∈ (0, 1) return fail.

(ii) If T = {sstart}, then with probability ϕ return w as the sample. Else, with

probability 1− ϕ, return fail.

(iii) Else, set T0 = {sr−1
j ∈ Nunroll | sr−1

j
0−→ sri for some sri ∈ T}, and T1 =

{sr−1
j ∈ Nunroll | sr−1

j
1−→ sri for some sri ∈ T} (note T0 ∩ T1 may be non-

empty). Then

(a) For q ∈ {0, 1}, compute

W̃q =
∑
s∈Tq

R(s) ·

∣∣X(s) \
(⋃

s′∈Tq : s′≺s U(s′)
)∣∣

|X(s)|

(b) For q ∈ {0, 1}, set pq = (W̃q)/(W̃0 + W̃1), and then choose b ∈ {0, 1}

with probability pb.

(iv) Return Sample(Tb, b ◦ w, ϕpb )

It is important to note that X(s) \ (
⋃
s′∈Tq ,s′≺s U(s′)) in step (iii) (a) can be computed in

polynomial time by simply iterating through each x ∈ X(s), and checking whether there is

a path from sstart to some s′ ∈ Tq, with s′ ≺ s, where the string of ordered labels of the edges

is precisely x, which can be done by a breadth-first search.

Algorithm 4: FPRAS to estimate |Ln(N)| for a NFA N with m ≥ 1 states, integer

n ≥ 1 given in unary and error δ ∈ (0, 1)

(i) If n ≤ 12, then return |{x ∈ {0, 1}n | x ∈ L(N)}| (notice that this can be

done in polynomial time by an exhaustive search).

(ii) Construct the directed acyclic graph Nunroll from N , and set k = d(nm
δ

)64e.
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(iii) For each vertex s ∈ Nunroll, if there is not a path from the starting vertex sstart

to s, remove s from Nunroll.

(iv) For layers α = 1, 2, . . . , n and for i = 1, 2, . . . ,m:

(a) For b ∈ {0, 1}, let Tb(sαi ) = {s ∈ Nunroll | there is an edge s b−→ sαi in

Nunroll}. Let T (sαi ) = T0(sαi ) ∪ T1(sαi ), and for b ∈ {0, 1}, assume that

Tb(s
α
i ) = {vb1, . . . , vbrb} where rb = |Tb(sαi )|.

(b) If T (sαi ) = {sstart} (meaning if α = 1), set X(sαi ) = {b ∈ {0, 1} |

sstart
b−→ sαi is an edge in Nunroll}. Moreover, set R(sαi ) = |X(sαi )|, and

declare the state sαi to be exactly handled.

(c) Else, if s is exactly-handled for all s ∈ T (sαi ), set

R(sαi ) =

( r0∑
j=1

∣∣X(v0
j ) \

j−1⋃
t=1

X(v0
t )
∣∣)+

( r1∑
j=1

∣∣X(v1
j ) \

j−1⋃
t=1

X(v1
t )
∣∣),

and then if R(sαi ) ≤ k, declare sαi to be exactly handled, and set

X(sαi ) =

( r0⋃
t=1

{
x ◦ 0 | x ∈ X(v0

t )
})⋃( r1⋃

t=1

{
x ◦ 1 | x ∈ X(v1

t )
})

.

Otherwise, (that is, if R(sαi ) > k), do nothing.

(d) Else (that is, if s is not exactly handled for at least one state s ∈ T (sαi ))

do nothing.

(v) For layers α = 1, 2, . . . , n and for i = 1, 2, . . . ,m:

(a) If sαi is exactly handled, then R(sαi ) and X(sαi ) are already computed.

Otherwise, for b ∈ {0, 1} set

W̃b(s
α
i ) =

∑
s∈Tb(sαi )

R(s) ·

∣∣X(s) \
(⋃

s′∈Tb(sαi ) : s′≺s U(s′)
)∣∣

|X(s)|

and R(sαi ) = W̃0(sαi ) + W̃1(sαi ).

(b) IfR(sαi ) = 0, terminate the algorithm and output 0 as the estimate (failure

event).

(c) Else, set X(sαi ) = ∅. Then while |X(sαi )| < k
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(i) Set w = fail

(ii) Run Sample({sαi }, ε, e−4

R(sαi )
) until it returns a string w 6= fail, and

at most d(nm
δ

)4e times

(iii) If w = fail (that is, none of the d(nm
δ

)4e calls returned a string

w 6= fail), then terminate the algorithm and output 0 as the estimate

(failure event).

(iv) Otherwise, a sample w ∈ {0, 1}∗ was returned, and set X(sαi ) as

X(sαi ) ∪ {w} (recall we allow X(sαi ) to contain duplicates).

(vi) Return R(sfinal) as an estimate for |Ln(N)|.

By invoking the recursive procedure Sample on ({sαi }, ε, ϕ0) until it returns k samples

(where ε is the empty string, and ϕ0 is a value we will later choose) we obtain the samples

for X(sαi ). Note that it is possible that duplicate samples will be returned by the Sample

procedure. This will not be an issue for us, and we can instead assume that X(sαi ) is a

multi-set (thus, X(sαi ) can have more than one copy of the same element in U(sαi )). The

value of ϕ0 that we choose will depend on our estimate R(sαi ), so before invoking the above

recursive procedure to obtain X(sαi ), we first show how to compute R(sαi ). To do so, set

T0(sαi ) = {sα−1
q ∈ Nunroll | sα−1

q
0−→ sαi }, and T1(sαi ) = {sα−1

q ∈ Nunroll | sα−1
q

1−→ sαi }, and

define the linear ordering ≺ as above. Then for b ∈ {0, 1}, compute

W̃b =
∑

s∈Tb(sαi )

R(s) ·

∣∣X(s) \
(⋃

s′∈Tb(sαi ) : s′≺s U(s′)
)
|

|X(s)|
,

and define R(sαi ) = W̃0 + W̃1. We then set the parameter ϕ0 = e−4

R(sαi )
, which we use in

our calls to Sample. This completes the procedure to obtain the desired X(sαi ), R(sαi ) pair.

After computing X(sαi ), R(sαi ) for all states, the final output of the algorithm is R(sfinal) as

the approximation to |Ln(N)|.

Summary: To summarize out algorithm, we compute the sample set and estimate pair

X(stj), R(stj) for all states sj in layers t = 1, 2, . . . , α − 1. For each state sαi such that

|U(sαi )| ≤ k, we declare sαi to be exactly handled. For such exactly handled states, we store
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X(sαi ) = U(sαi ) and R(sαi ) = |U(sαi )| exactly. Otherwise, we compute R(sαi ) from the

samples and estimates in the prior layers t < α. Finally, using R(sαi ) and X(sti), R(sti) for

all t < α, we invoke Sample({sαi }, ε, e−4

R(sαi )
) repeatedly to obtain all k samples needed for

X(sαi ). Once this has been completed for all states in Nunroll, we output R(sfinal) as our final

estimate. Our full algorithm is given formally in Algorithm 4.

6.4. The Analysis of the Algotihm

We start by showing that our sampling algorithm Sample of Algorithm 3 performs nearly

the same procedure as the one described in the template Algorithm 2. Consider the notation

used in these algorithms, and fix a state sαi in layer α. Let T t, T t0 and T t1 be the set T ,

T0 and T1, respectively, in the (α − t)-th recursive call to Sample, where the original call

to Sample({sαi }, ε, e−4

R(sαi )
) is counted as the first, that is, t = 0. Moreover, let wt be the

(possibly empty) string in this call, and let W̃ t
q for q ∈ {0, 1} be the value of W̃q in this

call. Thus, we have that wα = ε, and Tα = {sαi }. We define the index t in this way so

that T t is a subset of states in the t-th layer (i.e. T t is a set of states of the form stj for some

j ∈ {1, . . . ,m}). Notice that the sets T t0 and T t1 will be in layers t − 1 by definition, and

R(sαi ) = W̃α
0 + W̃α

1 . By construction, for t < α, we have the property that T t is the set of

states s in layer t such that there is an edge labeled with the bit wα−t[1] to some state s′ ∈

T t+1. Given this, the only difference , between our sampling algorithm of Algorithm 3 and

the template Algorithm 2 is that the sizes of the sets |W t| are replaced with approximations

W̃ t, since we no longer know |W t| exactly. We now demonstrate that the procedure of

Algorithm 3 does in fact follow the template of Algorithm 2, up to the fact that it uses

approximations W̃ t of |W t|.

PROPOSITION 6.1. For every t, it holds that (
⋃
s∈T t U(s)) = W t, where W t is defined

as in Algorithm 2 as the set of strings x such that x ◦ wt ∈ U(sαj ).

Recall that for q ∈ {0, 1}, we defined W t
q as the set of strings in W t with last bit equal to

q, and that W t is the set of strings x such that x ◦wt ∈ U(sαi ). Also recall that we initialized
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wα = ε, so in general wα−i is a string of length i for every i = 0, 1, 2, . . . , α. As noted,

the only difference between our algorithm Sample and the template SampleTemplate is

that at any layer t, instead of choosing wt−1 to be q ◦ wt and recursing into the set W t
q with

probability |W
t
q |

|W t| exactly, we choose q with the approximation probability W̃ t
q

W̃ t
0+W̃ t

1

(since we do

not know the exact value of |W
t
q |

|W t| =
|W t

q |
|W t

0+W t
1 |

). Recall that the approximation W̃ t
q of |W t

q | is the

value of W̃q in the t-th call to Sample as in Algorithm 3. The following result can be found

in (Jerrum et al., 1986), however we provide a proof here to consider the specificities of our

setting. The result says that at the point where we attempt to compute uniform samples of

the set U(sαi ), in order to build the sample set X(sαi ), assuming that we have a good estimate

R(sαi ) of |U(sαi )| and good estimates W̃ t
q of the sizes of the partitions |W t

q |, our sampling

procedure will in fact output a uniformly random sample of U(sαi ) (and only output fail with

at most 1−O(1) probability).

PROPOSITION 6.2. Set k = d(mn
δ

)64e, where n ≥ 2, and suppose that we have estimates

W̃ t
q = (1 ± k−1/4)t|W t

q | for all t = 1, 2, . . . , α and q ∈ {0, 1}, and an estimate R(sαi ) =

(1 ± k−1/4)α|U(sαi )|. If w 6= fail is the output of Sample({sαi }, ε, e−4

R(sαi )
), then for every

x ∈ U(sαi ):

Pr(w = x) =
e−4

R(sαi )
.

Moreover, the algorithm outputs fail with probability at most 1− e−5. Thus, conditioned on

not failing, Sample({sαi }, ε, e−4

R(sαi )
) returns a uniform element x ∈ U(sαi ).

Proposition 6.2 demonstrates that our sampler is indeed uniform, provided our estimates

R(sαi ) and W̃ t
q satisfy the stated assumptions. Our next goal is to show that, when tasked

with computing samples for the set X(sαi ), the conditions of Proposition 6.2 will indeed

hold. Note that while our sampler only returns a sample with probability e−5, by repeating

the procedure some τ times, at least one sample will be returned with probability 1− e−c·τ ,

where c > 0 is a fixed constant. Since our algorithm needs only nmk samples, we can union

bound and condition on getting at least one sample out of every τ attempts. This blows up
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the complexity of our algorithm by a τ factor only, preserving the polynomial time if τ is

polynomial in nm
δ

.

To facilitate our analysis, we introduce two properties. On termination of our algorithm,

we define the following properties for each state sαi :

Property 1:: R(sαi ) = (1± k−1/4)α|U(sαi )|,

Property 2:: for every subset L ⊆ {1, . . . ,m}, it holds:∣∣∣∣
∣∣X(sαi ) \

(⋃
j∈L U(sαj )

)∣∣
|X(sαi )|

−
|U(sαi ) \

(⋃
j∈L U(sαj )

)
|

|U(sαi )|

∣∣∣∣ < k−1/3

In other words, Property 1 means that our estimate R(sαi ) for the size of the set U(sαi ) is

within our desired error bounds. Property 2 asserts that the sampled subset X(sαi ) ⊆ U(sαi )

is a good approximation of the set U(sαi ) in the following sense: for every set of the form

U(sαi ) \
(⋃

j∈L U(sαj )
)

such that our algorithm may at some point attempt to estimate the

ratio |U(sαi ) \
(⋃

j∈L U(sαj )
)
|/|U(sαi )| as in step (iii) (a) of Algorithm 3, we will get a good

approximation of this ratio by using
∣∣X(sαi ) \

(⋃
j∈L U(sαj )

)∣∣/|X(sαi )| instead. We now

consider a fixed point in the execution of the algorithm, and show that if Properties 1 and 2

hold for all nodes in Nunroll at depth t = 1, 2, . . . , α − 1, then on a call to sample a string

from U(sαi ) for a fixed sαi , the assumptions of Proposition 6.2 will be satisfied.

PROPOSITION 6.3. Fix a state sαi for i ∈ {1, . . . ,m} and α ∈ {1, . . . , n}, and set

k = d(mm
δ

)64e. Suppose that for every t ∈ {1, . . . , α − 1} and j ∈ {1, . . . , ,m}, the

states stj satisfy both Properties 1 and 2. Then on query to Sample({sαi }, ε, e−4

R(sαi )
) for each

i ∈ {1, . . . ,m}, the conditions of Proposition 6.2 hold: namely that W̃ t
q = (1± k−1/4)t|W t

q |

for every t ∈ {1, . . . , α} and q ∈ {0, 1}, and R(sαi ) = (1 ± k−1/4)α|U(sαi )|. In particular,

this implies that sαi satisfies Property 1 for all i ∈ {1, . . . ,m}.

Let Er be the event that Properties 1 and 2 hold for srj for all j ∈ {1, . . . ,m}. Note for

every layer r where srj is exactly handled for all j ∈ {1, . . . ,m}, the event Er holds with

probability 1. Call a layer exactly handled if all the states in it are exactly handled. Note that
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since k = nc, and since |U(sr)| ≤ 2r just by the bound on the number of bit-strings of length

r, it follows that all layers r up to r = c log(n) will be exactly handled. We will now need

the well-known Hoeffding inequality:

PROPOSITION 6.4 (Hoeffding inequality (Hoeffding, 1963)). Let X1, . . . , Xn be inde-

pendent random variables supported on [0, 1]. Let S = 1
n

∑n
i=1Xn. Then for every t > 0,

we have that Pr(|S − E[S]| ≥ t) ≤ 2e−2nt2 .

The following Lemma demonstrates that if Properties 1 and 2 hold for all states stj in

layers t = 1, 2, . . . , α− 1, then after completion of the sampling procedure which constructs

X(sαi ) and the estimate R(sαi ) for a fixed state sαi , we will have that sαi satisfies both Proper-

ties 1 and 2. This result will allow us to inductively show that all vertices in the graph Nunroll

satisfy Properties 1 and 2. In particular, this means that Property 1 will hold for the final

state sfinal, which implies that R(sfinal) = (1 ± k−1/4)n|U(sfinal)| = (1 ± δ)Ln(N), which is

our desired approximation.

Lemma 6.1. Conditioned on E1 ∧ · · · ∧ Eα−1, for every i ∈ {1, . . . ,m}, state sαi will

satisfy Properties 1 and 2 with probability at least 1 − 2e−k
1/3

. In other words, Pr(Eα |

E1 ∧ · · · ∧ Eα−1) ≥ 1− 2e−k
1/3

.

Putting together all the previous results, we obtain the main result of this Chapter.

Theorem 6.2. Given an NFA N with m ≥ 1 states over the alphabet {0, 1}, an integer

n ≥ 1 given in unary and δ ∈ (0, 1), there exists a randomized algorithm that receives as

input N , n and δ, and returns a value R such that:

Pr
(∣∣R− |Ln(N)|

∣∣ ≤ δ|Ln(N)|) ≥ 1− e−τnm,

where τ > 0 is a fixed constant. Moreover, the algorithm runs in time O((nm
δ

)c), where c is

a fixed constant. Thus, we have that #NFA admits an FPRAS.
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From the existence of Algorithm 4 and the form it is defined, and from the proof of The-

orem 6.2, it is possible to conclude that GEN(MEM-NFA) admits a PLVUG. More precisely,

we have the following result.

Corollary 6.1. Given an NFA N with m ≥ 1 states over the alphabet {0, 1} and an

integer n ≥ 1 given in unary, there exists a polynomial q(u, v) and a randomized algorithm

G that receives as input N and n, and satisfies the following conditions.

(i) If WMEM-NFA((N, 0n)) = ∅, then G(N, n) returns ⊥.

(ii) If WMEM-NFA((N, 0n)) 6= ∅, then

(a) G(N, n) returns fail with a probability pN,n < 1
2
.

(b) G(N, n) returns w ∈ WMEM-NFA((N, 0n)) with a probability

(1− pN,n)/|WMEM-NFA((N, 0n))|.

(iii) The number of steps needed to compute G(N, n) is at most q(m,n).
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7. CONCLUDING REMARKS

We consider this work as a first step towards the definition of classes of problems with

good properties in terms of enumeration, counting and uniform generation of solutions. In

this sense, there is plenty of room for extensions and improvements. In particular, the differ-

ent components of the FPRAS for #NFA were designed to facilitate its proof of correctness.

As such, we already know of some optimizations that significantly reduce its runtime, and

we also plan on developing more such optimizations so to make this FPRAS usable in prac-

tice. Also, there are natural ways in which to extend the Turing machine models we used

(NL and UL-transducers), so as to capture a larger set of problems, and it is likely that some

of those extended models retain the good properties of RELATIONNL and RELATIONUL

regarding enumeration, counting, and uniform generation of solutions.
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A. PROOFS FROM CHAPTER 5

A.1. Proof of Proposition 5.1

Since R can be reduced to S, there exist a polynomial p(u) and a function f such that

WS(f(x)) = WR(x) for every input string x, and f(x) can be computed in time p(|x|).

First, suppose ENUM(S) can be solved with constant (resp. polynomial) delay, so there

is an algorithm E that enumeratesWS(f(x)) with constant (resp. polynomial) delay and with

precomputation phase of time q(|f(x)|) for some polynomial q. Now, consider the following

procedure for ENUM(R) on input x. First, we compute f(x) in time p(|x|). Then, we run

E(f(x)), which enumerates all witnesses in WS(f(x)), that is, it enumerates all witnesses

in WR(x). So, the precomputation time of the procedure takes time p(|x|) + q(|f(x)|) ≤

p(|x|) + q(p(|x|)), which is polynomial on |x|. The enumeration phase is the same as for

E(f(x)), so it has constant (resp. polynomial) delay. We conclude that ENUM(R) can be

solved with constant (resp. polynomial) delay.

Now, suppose there exists a polynomial-time algorithm A for COUNT(S), and let q be

the polynomial that characterizes its complexity. Now, consider the following procedure for

COUNT(R) on input x. First, we construct f(x) in time p(|x|). Next, we run A(f(x)),

which computes |WS(f(x))|, that is, it computes |WR(x)|. So, the procedure calculates

|WR(x)| and takes time p(|x|) + q(|f(x)|) ≤ p(|x|) + q(p(|x|)), which is polynomial on |x|.

We conclude that COUNT(R) has a polynomial-time algorithm. The proof for the case of

an FPRAS is completely analogous.

Finally, suppose there exists a polynomial-time randomized algorithm G for GEN(S),

and let q be the polynomial that characterizes its complexity. Now, consider the following

procedure for GEN(R) on input x. First, we construct f(x) in time p(|x|). Next, we run

G(f(x)), which outputs a witness from WS(f(x)), that is, a witness from WR(x), uniformly

at random. So, the procedure generates an element from WR(x) uniformly at random and

takes time p(|x|) + q(|f(x)|) ≤ p(|x|) + q(p(|x|)), which is polynomial on |x|. We conclude
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that GEN(R) has a polynomial-time randomized algorithm. The proof for the case of an

PLVUG is completely analogous.

A.2. Proof of Proposition 5.2

We will prove the result for the case of RELATIONUL and MEM-UFA. The other case

is completely analogous. The main content of the proof is given by the following Lemma.

Lemma 0.1. Let R be a relation in RELATIONUL defined on alphabet Σ and x ∈ Σ∗.

Then there exists an unambiguous NFA Nx such that WR(x) = L(Nx). Also, Nx can be

constructed in poly(|x|) time.

PROOF. SinceR is in RELATIONUL, we know there exists a UL-transducerM such that

WR(x) = M(x). Without loss of generality, we can suppose that M has only one accepting

state, so it can be written as a tuple M = (Q,Γ, b,Σ, δ, q0, {qF}). If it has more than one

accepting state, say a set F of accepting states, we can define a new transducer M ′ that is

identical to M with one difference. It has only one final state qF and whenever it reaches a

state in F , it makes one last transition to qF and stops. It is clear that M(x) = M ′(x) so we

do not lose any generality with this assumption.

Let n = |x| and let f(n) = O(log(n)) be the function that bounds the amount of work

tape that can be used. Consider now an execution ofM on input x. Since the input tape never

changes (its content is always x), we can completely characterize the configuration of the

machine at any given moment as a tuple (q, i, j, w) ∈ Q×{1, . . . , n}×{1, . . . , f(n)}×Γf(n)

where

• q stores the state the machine is in.

• i indicates the position of the head on the input tape.

• j indicates the position of the head on the work tape.

• w stores the contents of the work tape.
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With the previous notation, the initial configuration of M on input x is represented by

cI = (q0, 1, 1, ε), that is, M is in its initial state, the heads are at the first position of their

respective tapes, and the work tape is empty. The accepting configuration is represented by

a tuple of the form cF = (qF , iF , jF , wF ). Notice that without loss of generality, we can

suppose the accepting configuration to be unique, by changing M so that it runs for a little

longer in order to reach it. If Cx is the set of possible configuration tuples then we have that

|Cx| ≤ |Q| · n · f(n) · |Γ|f(n)

= |Q| · n · f(n) · |Γ|O(log(n))

= |Q| · n · f(n) ·O(n)

= O(n2 log(n)),

which is polynomial in |x|. We now define the NFA Nx = (Cx,Σ,∆x, cI , {cF}) where Cx,

cI and cF are defined as above and the transition relation ∆x is constructed in the following

way:

• Let c, d ∈ Cx. Consider any possible run of M on input x. Suppose there is a valid

transition, during that run, that goes from c to d while outputting symbol γ ∈ Γ.

Then, (c, γ, d) is in ∆x.

• Let c, d ∈ Cx. Consider any possible run of M on input x. Suppose there is a valid

transition, during that run, that goes from c to d while making no output. Then,

(c, ε, d) is in ∆x.

We already showed that Cx has polynomial size in |x|, and it clearly can be constructed

explicitly in polynomial time. The same is true for ∆x. Given a pair of configurations

c, d ∈ Cx it is quick to check whether there is a possible transition from c to d during an

execution of M on input x (it suffices to check δ, the transition relation for M ). And there

are just |Cx|2 such pairs of configurations that we need to check, so the whole construction
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of Nx can be done in polynomial time. It only rests to show that WR(x) = L(Nx) and that

Nx is unambiguous.

Let y ∈ WR(x). That means there is an accepting execution of M on input x that yields

y as output. Equivalently, there is a sequence of configurations {ck}mk=0 and a sequence

{wk}mk=0 such that:

• c0 = cI .

• cm = cF .

• For each k ∈ {0, . . . ,m − 1}, the transition from ck to ck+1 is valid on input x

given the transition relation δ of M .

• For each k ∈ {0, . . . ,m− 1}, we have that wk is equal to the symbol output when

going from configuration ck to ck+1 if a symbol was output. Otherwise, wk = ε.

• y = w0 ◦ w1 ◦ . . . ◦ wm.

By definition, that means that y is accepted by Nx. That is, y ∈ L(Nx) and so we can

conclude thatWR(x) ⊆ L(Nx). Since all the previous implications are clearly equivalencies,

we can also conclude that L(Nx) ⊆ WR(x). Hence WR(x) = L(Nx) as we wanted. What

the previous argument is saying is that every accepting run of M that outputs a string y has a

unique corresponding accepting run of Nx on input y. That implies that Nx is unambiguous.

Otherwise, there would be some y ∈ L(Nx) such that two different runs of Nx accept y.

But that would mean that there are two different runs of M on input x that output y, which

cannot occur, since M is a UL-transducer.

Finally, notice that Nx is actually not an NFA (under the definition given in Chapter 2),

since we explicitly allowed for the possibility of ε-transitions in Nx. But recall that the ε-

transitions of any NFA can be removed in polynomial time without changing the accepted

language, which is a standard result from automata theory. That ends the proof. �

So, let R be any relation in RELATIONUL and x some input. We know by Lemma 0.1

that we can construct an unambiguous Nx in polynomial time such that WR(x) = L(Nx).
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Now, since R is a p-relation, there exists a polynomial q such that |y| = q(|x|) for all

y ∈ WR(x) = L(Nx). That means that all words accepted by Nx have the same length

p(|x|). We can conclude that WR(x) = WMEM-UFA
((
Nx, 0

p(|x|))). Since this works for any

R ∈ RELATIONUL and any input x, we have that MEM-UFA is complete for RELATIONUL.

A.3. Proof of Proposition 5.3

A.3.1. Proof that ENUM(MEM-UFA) can be solved with constant delay

Our aim here is to prove the first of the three results included in Proposition 5.3. Let

(N, 0k) be an input. Without loss of generality, we can assume that N has a unique final

state. If it had more than one, say a set F of final states, we can create a new state qF , set it

as the unique final state, and add ε-transitions from all states in F to qF . Afterwards, we can

get rid of he ε-transitions in the standard way. All of this can be done in polynomial time

and preserves L(N) so it causes no problems. In the end, N has a very well defined form, a

simple example of which is presented in Figure A.1.

q0

q1

q2

q3

q4

qF

q5

a

a a, b

b

a

b

ab

Figure A.1. Unambiguous NFA N .

Notice that an NFA of this kind basically constitutes a directed acyclic graph (DAG). And

we can indeed define a DAG from N and k, making explicit for each vertex the length of

the words accepted until that vertex and where the edges of the graph are labeled. By doing

that, for each w in L(N), there is a path from a “start node” of the graph to an “end node”,

such that the labels read along the way form w. This notions are encapsulated in Lemma 0.2.
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For our example, the corresponding DAG is presented in Figure A.2, where the start node

is (q0, 0) and the end node is (qF , 3). Notice that we have omitted many nodes from it, like

(qF , 0). We can do that since we only want this graph to enumerate the words accepted by

N , that is, we need to enumerate all labeled paths from (q0, 0) to (qF , 3), so any vertex that

does not fall in one of those paths, we do not need for the enumeration. Now, starting from

(N, 0k), we can construct the DAG G in polynomial time. This is the pre-processing phase

of the algorithm. Once we have G, we can start the enumeration phase.

q0, 0

q1, 1

q2, 1

q3, 2

q4, 2

qF , 3

b

b

b

b

a

a

a
a

Figure A.2. Graph G obtained from N .

Lemma 0.2. LetN be an unambiguous NFA with set of statesQ and a unique final state,

and k a natural number in unary. Then in poly(|N |, k) time we can construct a directed

acyclic graph G = (V,E) such that all of its edges have non empty labels codified by a

function λ : E → Σ, and such that G has the following properties. First, the set of vertices

is V = Q×{0, . . . , n}. Second, there are two nodes s0, sF ∈ V such that for allw ∈ Lk(N),

there exists a unique path (v0, v1, . . . , vk−1, vk) in G where:

• v0 = s0.

• vk = sF .

• For all i ∈ {1, . . . , k}, we have that wi = λ((vi−1, vi)).

And finally, if e ∈ E, then e is part of a path from s0 to sF .
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PROOF. Let N = (Q,Σ,∆, q0, {qF}). We start by defining a directed graph G = (V,E)

where V = Q× {0, 1, . . . , n} and the set of labeled edges E is defined as

E = {((q, i), a, (q′, i+ 1)) | i ∈ {0, . . . , n− 1} and (q, a, q′) ∈ ∆}.

Which induces the definition λ(((q, i), a, (q′, i+1))) = a for each ((q, i), a, (q′, i+1)) ∈

E. We also denote the labeled edges in E like (q, i)
a−→ (q′, i + 1). Notice that G can be

constructed in time O(k2|N |2). Set now s0 = (q0, 0) and sF = (qF , k) and consider the set

P of labeled paths from s0 to sF in G. We claim that Lk(N) = P . To see that, consider the

function g : Lk(N) → P defined in the following way. Let y = y1 . . . yn ∈ Lk(N). Then,

since N is unambiguous, there exists a unique accepting run of N on input k given by

p0
y1−→ p1

y1−→ p2
y2−→ . . .

yk−→ pk

where p0 = q0, pk = qF and (pi−1, yi, pi) ∈ ∆ for all i ∈ {1, . . . , k}. So, we define g(y)

as the path s0 = (p0, 0)
y1−→ (p1, 1)

y2−→ . . .
yk−→ (qF , k) = sF . By definition of E, it is easy

to see that g is a bijective function, since the accepting run of y is unique, which proves that

Lk(N) = P . Now, notice that G is a directed acyclic graph. Indeed, suppose it had a cycle

v0 → v1 → . . .→ vm → vm+1 with vm+1 = v0. By definition ofE, that would imply that for

some number i and states pk in Q we would have vk = (pk, i+k) for all k ∈ {0, . . . ,m+1}.

But that would mean that v0 = (p0, 0) and also v0 = vm+1 = (pm+1,m + 1) which cannot

be true.

All requirements of the lemma are fulfilled, save for the last one. The only thing left to

do then, is to remove fromG all edges that are not in some path from s0 to sF . We can do that

by going through all edges, and for each one verifying whether it is part of some path from

s0 to sF . If it is not, we remove it. That verification is easy to do in polynomial time, and the

number of edges is polynomial, so the total time of the algorithm is still poly(|N |, k). �
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The idea for the constant delay algorithm is the following. Consider our example. If a

vertex has two outgoing edges, then we can specify some order between them (for example,

the order could be inherited from an order on the labels, so that the edge labeled by an a

comes before the edge labeled by a b). Now, we start from (q0, 0) and choose the first of its

outgoing edges, so we read an a and move to (q1, 1). Once there, we do the same (there is

only one edge this time), so we read an a and move to (q3, 2). We once again do the same,

and choose the first outgoing edge, so we read an a and move to (qF , 3). Since we are now

at the end node, we output the concatenation of the labels read along the path, that is aaa.

That clearly took only linear time, but now comes the question of how to output the next

word, since we want to keep the delay linear and we do not want any words repeated. In

order to do this in an orderly fashion, we store all the points where we made a decision

about which edge to take. In this case, we would store the transitions (q0, 0)
a−→ (q1, 1) and

(q3, 2)
a−→ (qF , 3). It is not necessary to store the transition (q1, 1)

a−→ (q3, 2), since it was

an only choice when we were in (q1, 1). Now, we can use this information. We start from

(q0, 0) and use the stored transitions to recreate the same path as before, until we come to

the last one, (q3, 2)
a−→ (qF , 3) in this case, where we change our choice to the other edge

(q3, 2)
b−→ (qF , 3).

Since we have arrived at the end node, we output aab which is the concatenation of the

labels read along the way. Notice that it again took linear time to output the word. And

also, since we have now used all edges from (q3, 2), we remove that last transition, leaving

only (q0, 0)
a−→ (q1, 1) stored. And now, to proceed with the next word, we once again

start from (q0, 0) and use the stored transitions to recreate our path, until we come to the

last one. In this case, the last stored transition comes right away, so we change our choice

to (q0, 0)
b−→ (q2, 1), and from that moment on we proceed by choosing at each step the

edge that comes first, and storing our decisions for later. This process of storing decisions,

outputting words, and using stored transitions to recreate the previous path up until some

point, goes on until the moment when, after outputting some word, we remove the decision
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(q0, 0)
b−→ (q2, 1) from our storage. This idea is formalized below, but before, we introduce

some notation.

Let G = (V,E) be a DAG with the properties stated in Lemma 0.2. For some q ∈ V we

define the set V (q) = {(a, q′) | (q, a, q′) ∈ E} and we fix some total order on that set. Based

on that, we define min(V (q)) as the minimum element of V (q) according to that order, and

analogously for max(V (q)). Also, we define a function succ that returns the successor of

an element in V (q), according to the total order defined. We also use a list structure where

we store elements of the form (q, (a, q′)) where (a, q′) ∈ V (q). That structure supports the

following operations.

• append((q, (a, q′))): it adds element (q, (a, q′)) at the end of the list.

• pop(): it removes the last element of the list.

• next(q): if there is an element (q, (a, q′)) on the list, it returns (a, q′). Otherwise,

it returns (⊥,⊥).

• last(): it returns the last element of the list, and (⊥,⊥) if the list is empty.

With that notation, we describe the enumeration procedure in Algorithm 5.

Algorithm 5 : Enumerate(N, 0k):

(i) Construct G = (V,E) using Lemma 0.2.

(ii) Initialize an empty list list.

(iii) Initialize an empty word w = ε.

(iv) Initialize a node variable n = (q0, 0).

(v) Initialize an integer j = 0.

(vi) While j < k:

(a) Get (a, s′) = list.next(n)

(b) If s′ 6= ⊥:
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• Update n = s′.

• Update w = w ◦ a.

(c) Else:

• Get (a, s′) = min(V (s)).

• Update n = s′.

• Update w = w ◦ a.

• If |V (n)| > 1 do list.append(s, (a, s′)).

(d) Update j = j + 1.

(vii) Output: w

(viii) Get (s, (a, s′)) = list.last().

(ix) If s = ⊥, STOP.

(x) While (a, s′) = max(V (s)):

(a) Do list.pop()

(b) Get (s, (a, s′)) = list.last().

(c) If s = ⊥, STOP.

(xi) Do list.append(s,succ((a, s′))).

(xii) Go to Step (iii).

Algorithm 5 works because, as we explained before, it makes sure to never repeat the

same path while traversing G. And since each path in the DAG is associated to a different

word (because the NFA was unambiguous), no word will be repeated. Also, the algorithm

makes sure to go through all possible paths from s0 to sF . And since we removed from G all

edges that are not part of such paths, we know the algorithm will not spend time traversing

some part of the graph that will not yield an output (which would ruin the constant delay).

Notice that the precomputation phase (which basically amounts to constructingG and setting

up the data structures) is polynomial in time. And notice that the enumeration phase works
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with constant delay. Between one output and the next, we have to go through step (vi).

That means k iterations, which is no problem since the outputs are of size k. And each

iteration can be done in constant time, since the functions min,max,succ and all of the

list operations can be implemented in constant time using a RAM model. The same goes

for step (x). Since the list at most keeps k elements (it uses the elements to recreate the last

path it made up until the point where it has to change it, so it does not need to store more

than k elements), that Step takes at most c · k time where c is a constant. That means that the

delay is constant, under the definition of Chapter 2. We conclude that ENUM(MEM-UFA)

can be solved with constant delay.

A.3.2. Proof that there exists a polynomial-time algorithm for COUNT(MEM-UFA)

Our aim here is to prove the second of the three results included in Proposition 5.3.

Take an input (N, 0k) where N is an unambiguous NFA. Consider now a nondeterminis-

tic logspace Turing machine A that takes (N, 0k) as an input and executes the following

procedure.

(i) On input (N, 0k).

(ii) Nondeterministically, generate a word w ∈ Σ∗ such that |w| = k.

(iii) Verify whether N accepts w.

(iv) If it does, stop in an accepting state.

(v) Otherwise, stop in a non accepting state.

Written like that, it cannot be implemented by A, since generating and storing the whole

of w in the work tape would require linear space. But the same idea can be implemented

using only logarithmic space, by generating w and simulating the execution of A on the

fly. That is, at each moment we store just one symbol from w, and the current state of

N . Using the stored information, nondeterministically we simulate a valid transition of N ,

and store the new state in place of the old one. We also replace the old symbol from w by

nondeterministically choosing the next one. In addition to this, we need to store a counter,

that is increased by one each time we simulate a transition of the NFA. When the counter
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reaches k, if the current stored state is a final state of N , then A stops in an accepting state.

Otherwise, it stops in a non accepting state. Notice that since k is given in unary, the counter

only uses logarithmic space on the input (the counter uses a binary representation to store

numbers).

On input (N, 0k), how many accepting runs does A have? There are a total of |Σ|k

possible w that can be nondeterministically generated by A. But when we simulate N , only

the ones in Lk(N) will be accepted. That means that there are only |Lk(N)| possible w that

A can generate so that the execution will end in an accepting state. Now, when A generates

a word w, it then simulates a run of N on input w. But since N is unambiguous, there is

only one accepting run for each w ∈ Lk(N). We conclude that all different accepting runs

of A correspond to different w generated. In other words, when running A on input (N, 0k)

there will be exactly |Lk(N)| accepting runs. Since A is a nondeterministic logspace Turing

machine, and this works for any input (N, 0k), this means that the function f : (N, 0k) 7→

|Lk(N)| belongs to the class #L, defined in (Álvarez & Jenner, 1993). As shown in (Álvarez

& Jenner, 1993), that means that f can be computed in polynomial time. That is, the quantity∣∣WMEM-UFA((N, 0k))
∣∣ can be computed in polynomial time. We conclude that there exists a

polynomial-time algorithm for COUNT(MEM-UFA).

A.3.3. Proof that GEN(MEM-UFA) has a polynomial-time randomized algorithm

Our aim here is to prove the third of the three results included in Proposition 5.3. Take

an input (N, 0k) where N is an unambiguous NFA. The idea is basically the same as the one

in (Jerrum et al., 1986), that is, we use the fact that the relation is self-reducible and its asso-

ciated counting problem can be solved efficiently. Let A be the polynomial-time algorithm

for COUNT(MEM-UFA), and let ψ be the function from the definition of self-reducibility

(recall that MEM-UFA is a self-reducible problem, see Appendix B for more details). Now,

consider the following procedure for generating an witness of (N, 0k) uniformly at random.

For simplicity’s sake, we will make the assumption that Σ = {0, 1}, but it is easy to general-

ize it to the case of bigger alphabets. Also, to simplify, we represent A((N, 0k) by A(N, k).

53



(i) On input (N, 0k).

(ii) Assign variables N ′ ← N, k′ ← k, w ← ε.

(iii) While k′ > 0, do:

(a) Construct (N0, 0
k−1) = ψ((N ′, 0k

′
), 0) and (N1, 0

k−1) = ψ((N ′, 0k
′
), 1).

(b) Calculate p0 = A(N0,k−1)
A(N0,k−1)+A(N1,k−1)

whereA(Ni, k−1) = |WMEM-UFA((Ni, 0
k−1))|.

(c) With probability p0, assign N ′ ← N0, w ← w ◦ 0. Otherwise, assign N ′ ←

N1, w ← w ◦ 1.

(d) Assign k′ ← k′ − 1.

(iv) Output w.

First, notice the running time of the previous algorithm. It will execute exactly k itera-

tions. Also, A is a polynomial-time algorithm and ψ can be computed in polynomial time (a

fact that comes from the definition of self-reducibility). So the procedure above, as a whole,

runs in polynomial time on the input (N, 0k). Now, let w = w1w2 . . . wk be the output of the

algorithm, and let a = a1a2 . . . ak be any element in WMEM-UFA((N, 0k)). In order to show

that the procedure above is a uniform generator, we will now calculate the probability that

the output is equal to a. We use the following notation. For b ∈ {0, 1}, b denotes 1 − b.

Also, consider step (iii) (c), where both N ′ and w are updated. If w is updated to some word

y, then we denote by Ny the value of N ′ assigned at that step. Now, using that notation, we

have that
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Pr(w = a) = Pr(w1 = a1 ∧ · · · ∧ wk = ak)

= Pr(wk = ak | w1 = a1 ∧ · · · ∧ wk−1 = ak−1) · Pr(w1 = a1 ∧ · · · ∧ wk−1 = ak−1)

=
A(Na1...ak , 0)

A(Na1...ak , 0) + A(Na1...ak , 0)
· Pr(w1 = a1 ∧ · · · ∧ wk−1 = ak−1)

=
A(Na1...ak , 0)

A(Na1...ak−1
, 1)
· Pr(w1 = a1 ∧ · · · ∧ wk−1 = ak−1)

=
A(Na1...ak , 0)

A(Na1...ak−1
, 1)
· Pr(wk−1 = ak−1 | w1 = a1 ∧ · · · ∧ wk−2 = ak−2)

· Pr(w1 = a1 ∧ · · · ∧ wk−2 = ak−2)

=
A(Na1...ak , 0)

A(Na1...ak−1
, 1)
·
A(Na1...ak−1

, 1)

A(Na1...ak−2
, 2)
· Pr(w1 = a1 ∧ · · · ∧ wk−2 = ak−2)

...

=
A(Na1...ak , 0)

A(Na1...ak−1
, 1)
·
A(Na1...ak−1

, 1)

A(Na1...ak−2
, 2)
· · · · · A(Na1a2 , k − 2)

A(Na1 , k − 1)
· A(Na1 , k − 1)

A(N, k)

=
A(Na1...ak , 0)

A(N, k)
.

Since a is in WMEM-UFA((N, 0k)), by self-reducibility we know that A(Na1...ak , 0) = 1.

Otherwise, we would have A(Na1...ak , 0) = 0. So in the end, we get

Pr(w = a) =



1

|WMEM-UFA((N, 0k))|
if a ∈ WMEM-UFA((N, 0k)),

0 otherwise.

That is, the procedure is a uniform generator. We conclude that there exists a polynomial-

time randomized algorithm for GEN(MEM-UFA).
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B. A PROOF THAT MEM-NFA AND MEM-UFA ARE SELF-REDUCIBLE

We will focus on the case of MEM-NFA (it extends easily to MEM-UFA). To show this

result, we need to include a little more detail in our definition of MEM-NFA, to consider

some fringe cases. First, of all, we have to consider the cases where the string in unary is

empty. That is, the case where k = 0 in input (N, 0k). This just amounts to the following:

if the starting state is a final state, we consider that the automaton does accept the empty

string. So, if k = 0, and N is an NFA that has all the properties stated in the definition

of MEM-NFA, plus its starting state is the accepting state, then ((N, 0k), ε) ∈ MEM-NFA.

Also, we need to consider the cases where N does not have all the properties stated in the

definition of MEM-NFA (for example, when it has more than one final state). In those cases,

we consider that (N, 0k), for any k, does not have any witnesses. Also, and this gets more

technical, we consider that any input that has an invalid encoding does not have any witnesses

either. We will not be completely precise about which encoding should be used (although

during the proof we will mention some important points regarding that). But we will ask

that the correction of the encoding can be checked in polynomial time (this is not a strong

requirement as any reasonable encoding will allow for it). And it is important to have in

mind that for some technical concepts like self-reduciblity, the encoding of the problem is

critical.

We use the notion of self-reducibility stated in (Schmidt, 2009), because we want to

utilize a result from that article which is proved under that specific notion of self-reducibility.

We include the definition here, adapted to our situation, since (Schmidt, 2009) uses a slightly

different framework to define an enumeration problem. We say a relation R ⊆ Σ∗ × Σ∗ is

self reducible if there exist polynomial-time computable functions ψ : Σ∗ × Σ∗ → Σ∗,

σ : Σ∗ → N and ` : Σ∗ → N such that for every x, y, w ∈ Σ∗:

(i) if (x, y) ∈ R, then |y| = `(x),

(ii) if `(x) = 0, it can be tested in polynomial time in |x|, whether the empty string is

a witness for x.
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(iii) σ(x) ∈ O(log |x|),

(iv) `(x) > 0 if and only if σ(x) > 0,

(v) |ψ(x,w)| ≤ |x|,

(vi) `(ψ(x,w)) = max{`(x)− |w|, 0}, and

(vii) WR(x) =
⋃

w∈Σσ(x)

{w ◦ y | y ∈ WR(ψ(x,w))}.

The last condition can be equivalently stated in the following way, which is how

we will use it:

(vii) if y = y1y2 . . . ym, it holds that

(x, y) ∈ R if and only if (ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . ym) ∈ R

.

As we already stated, the empty string is a witness only when the input is correctly en-

coded and the initial and final states of the automaton coincide. So condition (ii) from above

is satisfied regardless of our definition of `. We will focus now on the other six conditions.

Let N = {N | N is an NFA with a unique final state and no ε-transitions}. Following the

previous notation, we define the functions `, σ and ψ that characterize self-reducibility. The

only interesting cases, of course, are those where the automaton in the input is inN (and the

input is correctly encoded). In all others, the input is not correct, so the witness set is empty,

and we do not need to worry about self-reducibility. That said, we define

`((N, 0k)) =

k if the input is correctly encoded and N ∈ N

0 in any other case

σ((N, 0k)) =

1 if the input is correctly encoded, k > 0 and N ∈ N

0 in any other case

57



Both functions are clearly computable in polynomial time. The definition of ` is just

saying that on input (N, 0k), any witness will have length k, which comes directly from the

definition of MEM-NFA. The definition of σ indicates that, for any input, as long as its

witnesses have positive length, we can create another input that has the same witnesses, but

with the first character removed. Notice that with these definitions, conditions (iii) and (iv)

for self-reducibility are trivially met. Condition (i) is also met, which is easy to see from the

definitions of MEM-NFA and `. The only task left is to define ψ and prove conditions (v),

(vi) and (vii). We now proceed in that direction.

LetN = (Q,Σ, δ, q0, {qF}) be an automaton inN . Notice we are making the assumption

that N has a unique final state, since it makes the idea clearer and the proof only has to be

modified slightly for the general case. We will mention some points about the exact encoding

soon (which is key for condition (v) to hold). But first, consider an input x = (N, 0k) which

is incorrectly encoded or where N is not in N . Then, it has no witnesses and it is enough to

set ψ(x,w) = x for all w ∈ Σ∗ (which is clearly computable in polynomial time). In that

case, notice that condition (v) is trivially true. Also, notice that since N is not in N (or is

encoded in an incorrect format), we have `(x) = σ(x) = 0, so for any w it holds that

`(ψ(x,w)) = `(x) = 0 = max{−|w|, 0} = max{`(x)− |w|, 0}

so condition (vi) is also true. And given that `(x) = σ(x) = 0, condition (vii) amounts to

∀y ∈ Σ∗ : (x, y) ∈ MEM-NFA ⇐⇒ (x, y) ∈ MEM-NFA, which is obviously true. Now,

consider the case of an input x = (N, 0k) that is correctly encoded and where N is in N .

There are two main cases to consider.

First, the case where k = 0. This case is also simple, because we can set ψ(x,w) = x for

all w ∈ Σ∗ (which is computable in polynomial time and means that condition (v) is trivially

true), and since `(x) = σ(x) = 0, same as before, condition (vi) is true and condition (vii)

again amounts to ∀y ∈ Σ∗ : (x, y) ∈ MEM-NFA ⇐⇒ (x, y) ∈ MEM-NFA, which is

obviously met. Second, we need to consider the case where k > 0. Then we have σ(x) = 1,

so ψ(x,w) only needs to be defined when w is a single symbol. Then, for any w ∈ Σ we set
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ψ((N, 0k), w) = (N ′, 0k−1) where N ′ is defined as follows. Let Qw be the set

Qw = {q ∈ Q | (q0, w, q) ∈ δ}.

Basically, Qw is the set of states that can be reached (with one transition) from the initial

state, by reading the symbol w. Now, we define N ′ = (Q′,Σ, δ, q′0, {q′F}) where q′0 is a new

state not contained in Q, and:

Q′ = Q \Qw ∪ {q′0}

δ′ = {(q, a, p) | (q, a, p) ∈ δ and q, p ∈ Q′}

∪ {(q, a, q′0) | (q, a, p) ∈ δ and q ∈ Q′, p ∈ Qw}

∪ {(q′0, a, p) | (q, a, p) ∈ δ and q ∈ Qw, p ∈ Q′}

∪ {(q′0, a, q′0) | (q, a, p) ∈ δ and q, p ∈ Qw}

q′F =

qF if qF ∈ Q′

q′0 if qF 6∈ Q′

Notice that this construction takes only polynomial time. What we are doing, basically,

is the following. Imagine Qw as a first ”layer” of states reachable from q0 in one step. We

want to merge all of Qw in a single new initial state q′0, while ensuring that from q′0 we can

reach the same states as were previously reachable from Qw. The definitions are a little

complicated because we have to account for some special cases. For example, we would

maybe want to remove q0 (since now we have a new initial state) but there is the possibility

that q0 is part of the acceptance runs of some strings, and not only as an initial state. The

same goes for the states in Qw, and that is why we have so many different cases to consider

in the definition of δ′. We have to make sure not to lose any accepting runs with the removal

of Qw.

Notice something about N ′. To construct Q′, we are removing at least one state from

Q. But we are adding at most one new state, q′0. That means that |Q′| ≤ |Q| (notation here
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indicates set cardinality). Similarly for the construction of δ′. Notice that each transition we

add to construct δ′ (besides the ones that come directly from δ) corresponds to a transition

that already existed, that involved at least one state from Qw. So, all in all, we have not

added any new transitions, just simulated the ones were states in Qw appeared. That means

that |δ′| ≤ |δ|. So, as a whole, N ′ contains at most as many states and transitions as N , and

maybe less. Does that mean that (notation here indicates encoding sizes) |ψ((N, 0k), w)| ≤

|(N, 0k)|? It will depend on the type of encoding used, of course. So we will consider that

the NFA in the input is encoded in the following (very natural) way. First, a list of all states,

followed by the list of all tuples in the transition relation, and at the end the initial and final

states. Also, we assume that all states have an encoding of the same size (which is easy

to achieve through padding). And the same for all transitions. With that encoding, since

N ′ has less (or equal) number of states and transitions than N , it is clear that |N ′| ≤ |N |.

Of course, it is also true that |0k−1| ≤ |0k|. We can then conclude that |ψ((N, 0k), w)| =

|(N ′, 0k−1)| ≤ |(N, 0k)|, that is, condition (v) is satisfied. We also have (by definition of `)

that `((N, 0k)) = k and `((N ′, 0k−1)) = k − 1. Since |w| = 1, condition (vi) is also true:

`(ψ((N, 0k), w)) = `((N ′, 0k−1))

= k − 1

= `((N, 0k))− 1

= `((N, 0k))− |w|

= max{`((N, 0k))− |w|, 0}.

Finally, we turn to condition (vii). Let y = y1y2 . . . ym ∈ Σ∗. Since σ(x) = 1, condition

(vii) amounts to

((N, 0k), y) ∈ MEM-NFA if and only if ((N ′, 0k−1), y2 . . . ym) ∈ MEM-NFA,

whereN ′ is constructed by takingw = y1, that is,N ′ = ψ((N, 0k), y1). Notice that ifm 6= k,

then both sides of the equivalency above are immediately false (and thus the equivalency is
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true), so we need only consider the case where m = k. We will now prove both directions

of the equivalency. First, suppose ((N, 0k), y) ∈ MEM-NFA. Then, by definition, we know

there is an accepting run ρ of N on input y such that

ρ : p0
y1−→ p1

y2−→ p2
y3−→ . . .

yk−1−−→ pk−1
yk−→ pk

where p0 = q0, pk = qF and (pi−1, yi, pi) ∈ δ for all i ∈ {1, . . . , k}. Now, we will show that

((N ′, 0k−1), y2 . . . ym) ∈ MEM-NFA, that is, y2 . . . yk is accepted by N ′. To do that, we will

first show by induction the following property: for all i ∈ {2, . . . , k} there is a valid run of

N ′ on input y2 . . . yi (although the run is not necessarily accepting) that looks like this:

ρi : s1
y2−→ s2

y3−→ s3
y4−→ . . .

yi−1−−→ si−1
yi−→ si

where s1 = q′0 and for all j ∈ {2, . . . , i}, we have that (sj−1, yj, sj) ∈ δ′ and

sj =

pj if pj 6∈ Qy1

q′0 if pj ∈ Qy1 .

To prove this fact by induction, consider first the case of i = 2. By definition, we know that

p1 ∈ Qy1 and (p1, y1, p2) ∈ δ. There are now two different possibilities. First, if p2 6∈ Qy1 ,

then by definition of δ′, we know that (q′0, y2, p2) ∈ δ′. Second, if p2 ∈ Qy1 , then by definition

of δ′, we know that (q′0, y2, q
′
0) ∈ δ′. So the property is true when i = 2.

Now, suppose the property holds for some i < m, and consider the case for i+ 1. By the

induction hypothesis, we know there is a valid run ρi such that

ρi : s1
y2−→ s2

y3−→ s3
y4−→ . . .

yi−1−−→ si−1
yi−→ si

where s1 = q′0 and (sj−1, yj, sj) ∈ δ′ for all j ∈ {2, . . . , i}. Now, by the induction hypothe-

sis, there are four possibilities (where each possibility is represented in one of the four sets

that form the definition of δ′):

• si = pi and pi+1 6∈ Qy1 . In that case, if we set si+1 = pi+1, by definition we know

that (si, yi+1, si+1) ∈ δ′.
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• si = pi and pi+1 ∈ Qy1 . In that case, if we set si+1 = q′0, by definition we know

that (si, yi+1, si+1) ∈ δ′.

• si = q′0 and pi+1 6∈ Qy1 . In that case, if we set si+1 = pi+1, by definition we know

that (si, yi+1, si+1) ∈ δ′.

• si = q′0 and pi+1 ∈ Qy1 . In that case, if we set si+1 = q′0, by definition we know

that (si, yi+1, si+1) ∈ δ′.

All that means that we can add one more transition to ρi to form a valid run ρi+1 given by

ρi+1 : s1
y2−→ s2

y3−→ s3
y4−→ . . .

yi−→ si
yi+1−−→ si+1

where s1 = q′0 and for all j ∈ {2, . . . , i+ 1}, we have that (sj−1, yj, sj) ∈ δ′ and

sj =

pj if pj 6∈ Qy1

q′0 if pj ∈ Qy1 .

The property is thus proved. Now, consider a valid run of that type for i = k that looks like

ρ′ : s1
y2−→ s2

y3−→ s3
y4−→ . . .

yk−1−−→ sk−1
yk−→ sk

where s1 = q′0 and for all j ∈ {2, . . . , k}, we have that (sj−1, yj, sj) ∈ δ′. Now, by the

property just proved, we know there are two possibilities. First, if pk 6∈ Qy1 , we know

sk = pk = qF . Since qF = pk 6∈ Qy1 , we have that q′F = qF and thus ρ′ is an accepting run,

which means that y2 . . . yk is accepted by N ′. Second, if pk ∈ Qy1 , we know sk = q′0. And

since qF = pk ∈ Qy1 , we have that q′F = q′0 and thus ρ′ is again an accepting run, which

means that y2 . . . yk is accepted by N ′. All this proves that ((N, 0k), y) ∈ MEM-NFA =⇒

((N ′, 0k−1), y2 . . . ym) ∈ MEM-NFA. The proof for the other direction is analogous.

The case for MEM-UFA is actually the same proof. That is, the same definitions of `, σ

and ψ work for MEM-UFA. The only difference is that we also need to show that ψ produces

a valid automaton for the relation, that is, an unambiguous NFA. But that is not hard to show

from the previous proof. Making similar use of the notation of valid runs, it can be shown

62



that if ψ((N, 0k), w) had two different accepting runs for some word y, then N would have

two different accepting runs for w ◦ y, and so it would not be unambiguous.
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C. PROOFS FROM CHAPTER 6

C.1. Proof of Proposition 6.1

First note that U(s) = ∅ for a state s if and only if there is no path from the start vertex

sstart ∈ Nunroll to s. Note that we remove all such unreachable states in Algorithm 4 prior

to runnin our sampler, which has no effect on the claim of the proposition since for such a

s we have U(s) = ∅ anyway. Now for the base case t = α, this states that U(sαj ) = Wα

since Tα = {sαi }, which is true since wα = ε. In addition, we use the induction invariant

that for every t, any path from sstart to sαi labeled by a string x ∈ U(sαi ) with suffix wt must

go through a state in T t. For t = α, the invariant holds because every path from sstart to sαi
must clearly go through Tα = {sαi }.

Now assume for t ≤ α that (
⋃
s∈T t U(s)) = W t, that is, that (

⋃
s∈T t U(s)) is the set of

strings x such that x ◦ wt ∈ U(sαj ), and assume the invariant holds for this t. We show the

result for t− 1. Let x ∈ U(sαi ) be a string with suffix wt−1 = wt−1[1] ◦ wt, and let π be any

path from sstart to sαi labeled by x. Since x has the suffix wt, by induction hypothesis, π must

go through some s ∈ T t. In order for π to get to s, it must go through some state s′ in layer

(t − 1) via the transition s′
wt−1[1]−−−−→ s. Then by construction, s′ in included in T t−1, which

proves the induction invariant for t− 1.

Now let x ∈ W t−1. By definition of W t−1, we know that x ◦ wt−1 ∈ U(sαj ). Then by

the invariant, any path labelled by x ◦ wt−1 from sstart to sαi must go through some state s

of T t−1. Therefore, we conclude that x ∈ (
⋃
s∈T t−1 U(s)). Conversely, assume that x ∈

(
⋃
s∈T t−1 U(s)), and let s ∈ T t−1 be such that x ∈ U(s). Then let π be any path from

sstart to s labeled by x. By definition, there is a transition s
wt−1[1]−−−−→ s′ for some s′ ∈ T t, so

x ◦wt−1[1] ∈ (
⋃
s∈T t U(s)). Then by induction hypothesis, it holds that (x ◦wt−1[1]) ◦wt ∈

U(sαj ). Hence, given that wt−1 = wt−1[1] ◦ wt, we conclude that x ◦ wt−1 ∈ U(sαj ) and,

therefore, x ∈ W t−1, which completes the proof.
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C.2. Proof of Proposition 6.2

First we show that every recursive call to Sample is such that ϕ ∈ (0, 1). Since ϕ0 =

e−4

R(sαi )
> 0 and with each call ϕ increases (because it is divided by a probability), we know

that ϕ > 0 at each subsequent call. It remains to show that ϕ < 1 for every recursive call to

the Sample procedure. Since ϕ is increasing after each recursive call, it suffices to show this

for the final value of ϕ. Notice that at the (α − j)-th call, for all 1 ≤ j ≤ α, we have that ϕ

is divided by a factor of
W̃α−j
w[α−j]

W̃α−j
0 +W̃α−j

1

(recall that w[i] is the i-th bit of w). So in the final call,

ϕ has the value:

ϕ =

( α−1∏
j=0

W̃α−j
w[α−j]

W̃α−j
0 + W̃α−j

1

)−1

· ϕ0

=

( α−1∏
j=0

W̃α−j
w[α−j]

W̃α−j
0 + W̃α−j

1

)−1

·
(

e−4

R(sαi )

)
Thus, to show that ϕ < 1 at the end of the algorithm, it suffices to show that on any run of

the algorithm, we have that( α−1∏
j=0

W̃α−j
w[α−j]

W̃α−j
0 + W̃α−j

1

)−1

·
(

e−4

R(sαi )

)
< 1.

Now since W̃ t
q = (1 ± k−1/4)t|W t

q | for all q ∈ {0, 1} and t ∈ {1, . . . , α}, it follows that at

the final recursive call to Sample, we have that:

ϕ =( α−1∏
j=0

W̃α−j
w[α−j]

W̃α−j
0 + W̃α−j

1

)−1

·
(

e−4

R(sαi )

)
≤

( α−1∏
j=0

(1− k−1/4)α−j|Wα−j
w[α−j]|

(1 + k−1/4)α−j(|Wα−j
0 |+ |Wα−j

1 |)

)−1

·
(

e−4

R(sαi )

)
=

( α−1∏
j=0

(1− k−1/4)α−j

(1 + k−1/4)α−j

)−1

·
( α−1∏

j=0

|Wα−j
w[α−j]|

|Wα−j
0 |+ |Wα−j

1 |

)−1

·
(

e−4

R(sαi )

)
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Recall that by definition, we have that |Wα−j
w[α−j]| = |Wα−(j+1)

1 | + |Wα−(j+1)
0 | for every j =

0, 1, 2, . . . , α − 1. Also note that |W 1
w[1]| = 1, since W 1 is the set of strings x ∈ {0, 1} such

that x ◦ w1 ∈ U(sαi ), and W 1
w[1] is the subset of W 1 with the last bit equal to w[1] (of which

there is just one). Thus, given that |Wα| = |Wα
0 |+ |Wα

1 |, we have that:( α−1∏
j=0

|Wα−j
w[α−j]|

|Wα−j
0 |+ |Wα−j

1 |

)−1

= |Wα| = |U(sαi )|,

and so

ϕ ≤
( α−1∏

j=0

(1− k−1/4)α−j

(1 + k−1/4)α−j

)−1

· |U(sαi )| ·
(

e−4

R(sαi )

)

=

( α−1∏
j=0

(1 + k−1/4)α−j

(1− k−1/4)α−j

)
· |U(sαi )| ·

(
e−4

R(sαi )

)

=

(
1 + k−1/4

1− k−1/4

)α(α+1)
2

· |U(sαi )| ·
(

e−4

R(sαi )

)
≤

(
1 + k−1/4

1− k−1/4

)α2

· |U(sαi )| ·
(

e−4

R(sαi )

)
≤

(
1 + k−1/8

(1 + k−1/8)(1− k−1/8)

)α2

· |U(sαi )| ·
(

e−4

R(sαi )

)
=

(
1

1− k−1/8

)α2

· |U(sαi )| ·
(

e−4

R(sαi )

)
≤

(
1

1− 1/n8

)n2

· |U(sαi )| ·
(

e−4

R(sαi )

)
≤

(
1 + 1/n4

)n2

· |U(sαi )| ·
(

e−4

R(sαi )

)
≤ e1/n2 · |U(sαi )| ·

(
e−4

R(sαi )

)
≤ 1

1− 1/n2
· |U(sαi )| ·

(
e−4

R(sαi )

)
≤ (1 + 1/n) · |U(sαi )| ·

(
e−4

R(sαi )

)
.
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Where the inequality
(

1
1−k−1/8

)α2

≤
(

1
1−1/n8

)n2

holds because α ≤ n, n ≥ 2 and k >

(nm)64, so k−1/8 < ( 1
nm

)8 ≤ 1
n8 . Furthermore, since we haveR(sαi ) = (1±k−1/4)|U(sαi )| by

assumption, and we know that k−1/4 < ( 1
nm

)16 ≤ 1
n16 , we conclude that (1− 1

n16 )|U(sαi )| <

(1− k−1/4)|U(sαi )| ≤ |R(sαi )|. Therefore,

ϕ ≤ (1 + 1/n) · |U(sαi )| ·
(

e−4

R(sαi )

)
≤ (1 + 1/n) · |R(sαi )|

(1− 1/n16)
·
(

e−4

R(sαi )

)
=

(
n15 · (n+ 1)

(n16 − 1)

)
· e−4

< 2 · e−4 < e−3 < 1,

since n ≥ 2. Hence, we know that under the assumptions stated for this Proposition, for each

call, and in particular on the last call we have ϕ ∈ (0, 1). The probability that the procedure

outputs fail is then only due to step (ii) in Algorithm 3. That is, the probability we output fail

is (1 − ϕ) where ϕ is as computed above. So to show that the failure probability is at most
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1− e−5, we compute a lower bound for ϕ similarly as we computed an upper bound for it:

ϕ ≥
( α−1∏

j=0

(1 + k−1/4)α−j

(1− k−1/4)α−j

)−1

· |U(sαi )| ·
(

e−4

R(sαi )

)

=

(
1− k−1/4

1 + k−1/4

)α(α+1)
2

· |U(sαi )| ·
(

e−4

R(sαi )

)

≥
(

(1− k−1/8)(1 + k−1/8)

1 + k−1/8

)α(α+1)
2

· |U(sαi )| ·
(

e−4

R(sαi )

)
= (1− k−1/8)

α(α+1)
2 · |U(sαi )| ·

(
e−4

R(sαi )

)
≥ (1− k−1/8)α

2 · |U(sαi )| ·
(

e−4

R(sαi )

)
≥ (1− 1/n8)α

2 · |U(sαi )| ·
(

e−4

R(sαi )

)
≥ (1− 1/n8)n

2 · |U(sαi )| ·
(

e−4

R(sαi )

)
≥ e−2/n6 · |U(sαi )| ·

(
e−4

R(sαi )

)
≥ (1− 2/n6) · |U(sαi )| ·

(
e−4

R(sαi )

)
≥ (1− 2/n6) · R(sαi )

(1 + 1/n16)
·
(

e−4

R(sαi )

)
=

(
n10(n6 − 2)

n16 + 1

)
· e−4

≥ e−1 · e−4 = e−5

Notice that to infer that (1 − 1/n8)n
2 ≥ e−2/n6 , we use the fact that (1 − x) ≥ e−2x for

x ∈ [0, 1
2
] and the hypothesis n ≥ 2. Now, the probability of the output w being a particular
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x ∈ U(sαi ) is given by the following expression:

Pr(w = x)

= Pr(w0 = x ∧ the last call to Sample does not fail)

= Pr(last call to Sample does not fail | w0 = x) · Pr(w0 = x)

=

( α−1∏
j=0

W̃α−j
x[α−j]

W̃α−j
0 + W̃α−j

1

)−1

·
(

e−4

R(sαi )

)
·
( α−1∏

j=0

W̃α−j
x[α−j]

W̃α−j
0 + W̃α−j

1

)

=
e−4

R(sαi )
,

as desired. Therefore, conditioned on not outputting fail, our sampler returns w ∈ U(Sαi )

uniformly at random, which is the desired result.

C.3. Proof of Proposition 6.3

Within a call to Sample({sαi }, ε, e−4

R(sαi )
) , note that each W̃ t

q is of the form

W̃ t
q =

∑
s∈T tq

R(s) ·

∣∣X(s) \
(⋃

s′∈T tq : s′≺s U(s′)
)∣∣

|X(s)|
.

Now by the assumption that Property 2 holds, we know that for each s ∈ T tq :∣∣U(s) \
(⋃

s′∈T tq : s′≺s U(s′)
)∣∣

|U(s)|
− k−1/3 <∣∣X(s) \

(⋃
s′∈T tq : s′≺s U(s′)

)∣∣
|X(s)|

<∣∣U(s) \
(⋃

s′∈T tq : s′≺s U(s′)
)∣∣

|U(s)|
+ k−1/3

Moreover, given that T tq is a subset of states in layer t − 1, by assumption that Property 1

holds for the nodes in these layers, we have that:

(1− k−1/4)t−1|U(s)| ≤ R(s) ≤ (1 + k−1/4)t−1|U(s)|.
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Putting these two bounds together, it follows that

(1− k−1/4)t−1
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣− k−1/3|U(s)| < W̃ t

q <

(1 + k−1/4)t−1
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣+ k−1/3|U(s)|.

Notice that ∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣ =

∣∣∣ ⋃
s∈T tq

U(s)
∣∣∣ = |W t

q |

is the true value that we are trying to estimate. Let s∗ ∈ T tq be such that |U(s∗)| ≥ |U(s)| for

all other s ∈ T tq . To show W̃ t
q = (1± k−1/4)t|W t

q |, we first show the upper bound. We have

that:

W̃ t
q <(

(1 + k−1/4)t−1
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣) +

mk−1/3(1 + k−1/4)t−1|U(s∗)| <(
(1 + k−1/4)t−1

∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣) +

k−1/4(1 + k−1/4)t−1

(∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣) =

(1 + k−1/4)t
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq , s′≺s

U(s′)
)∣∣∣.

Notice that the second inequality holds because k−1/12 < (nm)−4 < 1/m and

|U(s∗)| ≤
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣,
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since U(s∗) ⊆
⋃
s∈T tq

U(s). For the lower bound, we consider again s∗ and obtain the

following:

W̃ t
q >(

(1− k−1/4)t−1
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣) −

mk−1/3(1− k−1/4)t−1|U(s∗)| >(
(1− k−1/4)t−1

∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣) −

k−1/4(1− k−1/4)t−1

(∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq : s′≺s

U(s′)
)∣∣∣) =

(1− k−1/4)t
∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq , s′≺s

U(s′)
)∣∣∣.

Therefore, we obtain that:

W̃ t
q = (1± k−1/4)t

∑
s∈T tq

∣∣∣U(s) \
( ⋃
s′∈T tq , s′≺s

U(s′)
)∣∣∣

= (1± k−1/4)t|W t
q |.

Note sinceR(sαi ) is the sum of two such quantities of the above form, we also obtainR(sαi ) =

W̃α
0 + W̃α

1 = (1± k−1/4)α(|W t
0|+ |W t

1|) = (1± k−1/4)α|U(sαi )|, which concludes the proof

of the proposition.

C.4. Proof of Lemma 6.1

Fix a state sαi . If sαi is exactly handled, then we have X(sαi ) = U(sαi ), so Properties

1 and 2 hold trivially for state sαi (with probability 1). So we can assume that sαi is not

exactly handled, which implies |X(sαi )| = k. Now Property 1 for sαi follows directly from

Proposition 6.3 (with probability 1). Thus, R(sαi ) = (1 ± k−1/4)α|U(sαi )|. Now given that

R(sαi ) = (1 ± k−1/4)α|U(sαi )| and that the event E1 ∧ · · · ∧ Eα−1 holds, the conditions for

Proposition 6.2 are satisfied by Proposition 6.3 when the queries to Sample({sαi }, ε, e−4

R(sαi )
)
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are made for the vertex sαi . Thus each sample stored in the set X(sαi ) which is returned from

Sample({sαi }, ε, e−4

Rsα
i

) is a truly uniform independent and identically distributed sample of

U(sαi ). So fix any set L ⊆ {1, . . . ,m}. By Hoeffding’s inequality:

Pr
(∣∣∣∣
∣∣X(sαi ) \

(⋃
j∈L U(sαj )

)∣∣
|X(sαi )|

−
|U(sαi ) \

(⋃
j∈L U(sαj )

)
|

|U(sαi )|

∣∣∣∣ ≥ k−1/3

)
≤ 2e−2k(k−1/3)2

= 2e−2k1/3 .

Here, we have defined the `-th independent random variables used in Hoeffding’s inequality

to be the indicator variable of the event that the `-th sample in X(sαi ) is contained in X(sαi )\(⋃
j∈L U(sαj )

)
. Note that because the samples in X(sαi ) are uniform, the expectation of this

random variable is precisely ∣∣U(sαi ) \
(⋃

j∈L U(sαj )
)∣∣

|U(sαi )|

for every ` ∈ {1, . . . , k}. Therefore, we can use Hoeffding’s inequality considering that

|X(sαi )| = k. Now there are at most m2m of such indexes i ∈ {1, . . . ,m} and subsets L of

{1, . . . ,m}. Given that (nm)64 < k, we have that log2(m) + m ≤ m21 ≤ (nm)21 < k1/3,

from which we conclude that m2m < ek
1/3 . Hence, we conclude that:

Pr
( ∨
i∈{1,...,m}

∨
L⊆{1,...,m}

(∣∣∣∣
∣∣X(sαi ) \

(⋃
j∈L U(sαj )

)∣∣
|X(sαi )|

−

|U(sαi ) \
(⋃

j∈L U(sαj )
)
|

|U(sαi )|

∣∣∣∣ ≥ k−1/3

))
≤

∑
i∈{1,...,m}

∑
L⊆{1,...,m}

Pr
(∣∣∣∣
∣∣X(sαi ) \

(⋃
j∈L U(sαj )

)∣∣
|X(sαi )|

−

|U(sαi ) \
(⋃

j∈L U(sαj )
)
|

|U(sαi )|

∣∣∣∣ ≥ k−1/3

)
≤∑

i∈{1,...,m}

∑
L⊆{1,...,m}

2e−2k1/3 ≤

m2m2e−2k1/3 < ek
1/3

2e−2k1/3 = 2e−k
1/3

.
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Thus, by definition of Property 2, we deduce that Pr(Eα | E1 ∧ · · · ∧ Eα−1) ≥ 1 − 2e−k
1/3 ,

which was to be shown.

C.5. Proof of Theorem 6.2

The full algorithm is given in Algorithm 4. We first consider its correctness. By definition

of step (i) of this algorithm, we know that it returns the exact value |Ln(N)| when n ≤ 12.

Thus, we assume in the rest of the proof that n ≥ 13. By Lemma 6.1, we have that:

Pr(E1 ∧ · · · ∧ En) =
n∏
i=1

Pr(E i | E1 ∧ · · · ∧ E i−1)

≥
n∏
i=1

(1− 2e−k
1/3

) = (1− 2e−k
1/3

)n.

Moreover, we have that:

(1− 2e−k
1/3

)n = 1 +
n∑
j=1

(
n

j

)
(−1)j2je−jk

1/3

≥ 1 +
n∑
j=1

(
n

j

)
(−1)2je−jk

1/3

= 1−
n∑
j=1

(
n

j

)
2je−jk

1/3

≥ 1− 2ne−k
1/3

n∑
j=1

(
n

j

)
≥ 1− 2ne−k

1/3

2n

≥ 1− ene−k1/3en

= 1− e2n−k1/3

≥ 1− e2n−(nm)21

≥ 1− e−nm
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Therefore, we conclude that Pr(E1 ∧ · · · ∧ En) ≥ 1 − e−nm. If (E1 ∧ · · · ∧ En) holds,

then we know by Proposition 6.3 that the conditions of Proposition 6.2 hold. Thus, we

conclude that by running each Sample procedure at most d(nm
δ

)4e times, we obtain at least

one sample with probability at least 1 − (1 − e−5)d(
nm
δ

)4e ≥ 1 − e−c1·(
nm
δ

)4 , where c1 =

| ln(1 − e−5)| > 0. In other words, the algorithm does not fail in step (v) (c) (iii) with

probability at least 1− e−c1·(nmδ )4 . Since we require at most nmk samples over the course of

the entire algorithm, where k = d(mn
δ

)64e, by a union bound we obtain all desired samples

with probability at least 1− nmd(mn
δ

)64ee−c1(nm
δ

)4 ≥ 1− e−c2·(nmδ )4 , where c2 > 0 is a fixed

constant (notice that such a constant exists since n ≥ 13). Moreover, given that En holds,

we know that R(sfinal) = (1± k−1/4)n|Ln(N)|, that is,

(1− k−1/4)n|Ln(N)| ≤ R(sfinal) ≤ (1 + k−1/4)n|Ln(N)|. (C.1)

But we have that:

(1 + k−1/4)n ≤
(

1 +

(
δ

mn

)16)n
=

[(
1 +

(
1

(nm
δ

)16

))(nm
δ

)16] δ16

n15m16

≤ e
δ16

n15m16

≤ 1 + 2
δ16

n15m16
since ex ≤ (1 + 2x) for x ∈ [0, 1]

= 1 + δ · 2δ15

n15m16

≤ 1 + δ · 1

214m16

≤ 1 + δ,
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and we also have that:

(1k−1/4)n ≥
(

1−
(

δ

mn

)16)n
=

[(
1−

(
1

(nm
δ

)16

))(nm
δ

)16] δ16

n15m16

≥ (e−2)
δ16

n15m16 since
(

1− 1

x

)x
≥ e−2 for x ≥ 2

= e−
2δ16

n15m16

≥ 1− 2δ16

n15m16

= 1− δ · 2δ15

n15m16

≥ 1− δ · 1

214m16

≥ 1− δ.

Thus, we conclude from (C.1) that:

(1− δ)|Ln(N)| ≤ R(sfinal) ≤ (1 + δ)|Ln(N)|. (C.2)

Summing up, our algorithm returns a value R = R(sfinal) such that
∣∣R − |Ln(N)|

∣∣ ≤
δ|Ln(N)| with probability at least

(1− e−nm)(1− e−c2·(
mn
δ

)4) > 1− e−nm − e−c2·(
mn
δ

)4

≥ 1− e−nm − e−c2nm

≥ 1− 2e−min{1,c2}nm

= 1− 2e−τnm,

where τ = min{1, c2} > 0 is the fixed constant mention in the statement of the theorem.

Now notice that in the previous analysis, we neglected the potential for failure based on

the event that R(sαi ) = 0 at some point in step (v) (b) of Algorithm 4. We now address this

issue. Observe that conditioned on (E1∧· · ·∧En), we have for every state sαi thatR(sαi ) = 0
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if and only if U(sαi ) = 0. Moreover, since U(sαi ) = 0 if and only if there is no path from the

start state sstart to sαi in the graph Nunroll, and since we remove all such unreachable states in

the third step of Algorithm 4, it follows that conditioned on (E1 ∧ · · · ∧ En), we will never

have in the algorithm that R(sαi ) = 0 for a state sαi . Thus, the event that R(sαi ) = 0 and we

fail (outputting 0) in step (v) (b) in Algorithm 4 cannot occur conditioned on (E1∧· · ·∧En).

Since there are no other opportunities for failure of the algorithm, this completes the proof

of correctness.

It remains now to analyze the runtime. By a simple inspection of the steps of the algo-

rithm, it is easy to see that it runs in polynomial time in mn
δ

. Thus, in what follows we just

made some comments about the complexity of the key steps of the algorithms.

We first consider the portion of Algorithm 4 which computes X(s), R(s) for the exactly

handled states s. For each such state, one can determine if it is exactly handled by looking

at the values of X(s′) for all exactly handled states s′ with an edge into s. By looking at the

union of all such sets, we can determine the exact value of U(s), and in particular determine

if s is exactly handled. Since each X(s′) has at most k elements, the total time is O(mk) to

take the union (one can add a factor ofmk to this complexity for inserting into a linked list to

construct this union if one desired, or use another data-structure such as Union-Find). Thus

the total time to compute X(s), R(s) for all exactly handled states, and determine which

states are exactly handled, is polynomial in nmk and, thus, polynomial in nm
δ

as needed.

Second, we notice that the procedure Sample runs in polynomial time, and it is called

at most nmkd(nm
δ

)4e times, which is a polynomial number of times in mn
δ

. Finally, we also

notice that each value W̃q with q ∈ {0, 1} can be computed in polynomial time, since for

each query to compute ∣∣X(s) \
(⋃

s′∈Tb(sαi ) : s′≺s U(s′)
)∣∣

|X(s)|

for some pair of states sαi and s ∈ Tb(s
α
i ), we check for each of the samples x ∈ X(s)

whether there is a path from sstart to s′ for some s′ ∈ Tb(sαi ) such that s′ ≺ s, which can be
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done in time O(nm) by a breadth first search. Thus, the total time for this step is polynomial

as |X(s)| ≤ k and |Tb(sαi )| ≤ m. This concludes the proof of the theorem.
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