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Abstract 

We show that when the Abelian Chem-Simons theory coupled to matter fields is quantized in a vacuum with nonvanishing 

magnetic flux (or electric charge), the requirement of gauge invariance at finite temperature leads to the quantization of the 
Chern-Simons coefficient and its quantum corrections, in a manner similar to the non-Abelian case. 

Chern-Simons gauge theories have been the sub- 
ject of great attention during the past decade [ 1,2]. 
In the non-Abelian case, the interest in pure Chern- 

Simons theories stems from their topological charac- 

ter, whereas the Abelian Chern-Simons gauge field is 

responsible for inducing generalized statistics on mat- 

ter fields, a phenomenon intrinsic to three-dimensions. 
A distinctive feature of Chern-Simons theories is 

that the requirement of gauge invariance leads to non 

perturbative effects prior to quantization. In the non- 
Abelian case, gauge transformations fall into topolog- 

ical classes labeled by 773 (G) = Z, corresponding to 
the mapping of S3 (compactified three-dimensional 
space) to the group manifold G. Under gauge trans- 
formations with non-vanishing winding, the Chern- 

Simons action &s is not invariant, and requiring the 

invariance of exp(iScs) leads to the quantization of 
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the non-Abelian Chern-Simons coefficient [ 21. In the 

Abelian case there is no such topological structure, so 
the Abelian Chern-Simons coefficient remains arbi- 

trary, and free to induce any desired generalized statis- 

tic on the matter fields. 

When the theory is formulated at finite temperature, 

the time direction is effectively compactiiied into a cir- 
cle. Since the Abelian group manifold is also a circle, it 

is tempting to ask whether the Abelian Chern-Simons 
coefficient remains arbitrary at finite temperature. In 

this letter we analyze that question, and show that 
under certain general conditions the Abelian Chern- 
Simons coefficient is indeed quantized at any finite 
temperature. However, this quantization turns out to be 
of a different origin and character as compared to the 

non-Abelian case. It requires the coupling with matter 
fields, and results from the interplay of the winding of 
gauge transformations around the compactified time 
axis, and the winding of the (pure gauge) potential 
at spatial infinity. The latter determines the total flux 
of the magnetic field, and in the presence of matter 
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fields specifies the vacuum of the theory. Our result 
states that when the theory is defined in a vacuum with 

nonvanishing magnetic flux (or electric charge), the 

requirement of gauge invariance leads at finite tem- 

perature to the quantization of the Chern-Simons co- 

efficient and its quantum corrections. Indeed, the sit- 
uation is similar to that encountered at zero tempera- 
ture when the theory is formulated in an appropriately 
compactified spacetime manifold [ 10,121. 

Our starting point is the action for massive Dirac 

fermions coupled to an Abelian Chern-Simons field at 

finite temperature 

Be’ 
(1) 

where X-s is the Chern-Simons action 

R 
r 

Scs = dr d=.x E~,,.~A&,A/\, 
JS 
0 

(2) 

and SF is the fermion action 

SF = J d’x$(j + ieb + m)$. (3) 

Finite temperature calculations are done as usual, 

compactifying the (Euclidean) time variable 7 into the 

rangeO~~<p=l/T(inourunits,fi=c=k=l). 

Then, the partition function is defined as 

2 = N(P) J DjD+VA, exp (-S) , (4) 

where the functional integral must be computed using 
periodic (antiperiodic) boundary conditions in time 

for bosons ( fermions) . It is important to stress that the 
integration over gauge fields ranges over all periodic 

configurations compatible with the boundary condi- 
tions at spatial infinity to be discussed below. Using 
the standard Fadeev-Popov procedure, one gets 

2 = U/(P) 
I 

D$WDApnx6[F[A] IAFPLAI 

x exp (-S[$,@, AX]). (5) 

Here AFP is the Fadeev-Popov determinant associated 
with the gauge-fixing condition F[ A ] = 0, and Dx 
is the integration over the group of gauge transforma- 
tions. The action of these gauge transformations on 
the fields is given by 

Ap,(7.x) + A;(T,s) = A,(T,x) +d,,y(~,x). 

@((7,x) iexp[-iex(7,.~)](Cr(7,x), 

$(7,x) ~exp[+iex(7,x)l~(7,x). (6) 

In order to preserve the temporal boundary conditions 
for both bosonic and fermionic fields, the function x 
must satisfy 

8,x(/% n) - &/y(O, x) = 0, (7) 

exp[-ieX(P,x)] -exp[-iex(O,x)] =O. (8) 

Let us write the partition function as 

2 =N(p) 

x J DApa[FIAl IAFPIAI exp (-S,dAl) , (9) 

where we have defined the effective action &f [ A] by 

exp( -S&Al ) 

= J V$V+Vxexp (-S[$,(cl, AX]), (10) 
or, after integration over the fermion fields, 

exp(-S,ff[A]) = JVxexp (igScs[ax]) 

x det( 4 + ie&’ + m). (11) 

The fermion determinant has been profusely analyzed, 

both at zero and at finite temperature [ 3,4]. Various 
perturbative treatments coincide in showing that the 
determinant has a parity-violatingpart, to be discussed 
below, and a parity-conserving piece which contains 

the Maxwell action. The presence of the latter is im- 
portant here, since it fixes the boundary conditions for 

the gauge fields at spatial infinity. In order for a field 

configuration to have finite energy, the field strength 
must vanish at infinity, and therefore the gauge poten- 

tials must tend to pure gauges. 
Evidently, the effective action &f[ A] defined by 

Eq. (11) is gauge invariant: Seff[ Aq] = &f[ A] for 
any 17 satisfying the appropriate boundary conditions. 
Moreover, if the Chern-Simons action and the fermion 
determinant were gauge invariant, the integration over 
the gauge group would factor out, and this effective 
action would reduce to the usual one obtained after 
integrating over the fermion fields. Here, however, we 
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shall see that, even in this Abelian theory, there is 

a gauge dependence due to “large” gauge transfor- 

mations. Thus, S,rr will receive a nontrivial contribu- 

tion from the integration over gauge transformations, 

which precisely restores gauge invariance, even under 

large gauge transformations. 
The set G of all gauge transformations is partitioned 

into topological classes G,,, classified by an integer II 
denoting how many times they wind around the time 
coordinate, according to 

/$“‘(p,x) - x”l’(o,X) = 2°K 
e 

(12) 

A representative of G,, may be taken as a gauge trans- 

formation defined by a function x(8) of the form 

/y”“(7,x) = F; f/y’O’(7,X), (13) 

where x ‘O’(P,x) = x (‘) 0, x). Such elements ob- ( 
viously satisfy (8) and ( 12). These transformations 

have been considered in the case of non-compact 
QED3 in Ref. [5]. where their relevance to the study 
of confinement was discussed. 

The integration over gauge transformations in 
Eq. (11) can be written as a sum over integrations 

within each topological sector, to get 

w-&[A]) 

Be2 
= 2)~“” exp iGScs [AX”” ] 

x det(d + ieq4X’“’ + ml. ( 14) 

To proceed further we must determine the way in 
which the integrand in this expression transforms un- 

der “large” (II # 0) gauge transformations. Concern- 

ing the Chern-Simons action, from Eq. (2) one easily 
verifies that 

Scs[AX”“] = &[A] +8,,n&[A], (15) 

where 

= J d3x a,( E~,,~,~““&A~) = JJ dr d2x M 0 

X [a~ ( E,jkX (“)LIiAk) + d.j(EjkXcn)F!&)] . (16) 

The second integral in this expression vanishes due to 
the boundary condition at infinity discussed earlier for 

the field strength. For the first term, we have 

P 

JJ 
dT d2X d,‘(E,jkX(n’8,iAk) 

0 

= d’x[X”“(ptx> c,jkaiAk(PtX) I 
- ~‘“‘(0, X) EjkdjAk(OtX) I 

= 
J 

d*X[X’“)(PtX) -~'")(O,X)IE,~~~~A~(O,X) 

= T J d*XEjkdjAk(O,x) = F@(O), (17) 

where the boundary condition ( 12) and the periodicity 

of the gauge fields have been used. Here, 0 (7) denotes 
the magnetic flux through the spatial plane at “time” 7: 

Q(7) = J d*x E,ikd,jAk( 7, X) . (18) 

which can be written in terms of the gauge potential 

at spatial infinity as 

a(r) = {dx’A;(qx). (19) 

As discussed earlier, the gauge potential in the inte- 

grand of this expression must be a pure gauge. Thus, 
taking into account the transformation law of the 

fermion fields in Eq. (6), we see that the flux @ must 
be of the form 

a(7) = Fq, (20) 

where, in general, ~7 is an integer-valued function of 

r. However, field configurations with different fluxes 
at different “times” 7, will be separated by barriers of 
infinite energy. Since the Abelian theory has no in- 

stantons [6] that may connect those configurations, 
we must conclude that the value of @ in Eq. (20) is 

r-independent, and consequently, q is a fixed integer, 
which labels the vacuum of the theory and determines 
the boundary conditions for the functional integral 
defining the partition function. In other words, each 
value of q defines a different theory, in a way anal- 
ogous to the different vacua of theories with sponta- 
neous symmetry breaking. The partition function cor- 
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responding to each of these theories will be denoted 

by 2, and, from Eq. (9)) is given by 

2, =N(p) J DAF’6[F[A’4’]] AFP[A(~‘] 

x exp (--4~~[A’~‘l), (21) 

where DA(q) denotes the functional integral mea- 

sure subjec? to the boundary condition specified in 

Eq. (20). 

where the subindex PV denotes the parity-violating 
contributionConcerning the known parity-conserving 
terms, they are gauge invariant even under large gauge 

transformations, and will play no role in the analysis 
that follows. Then, assuming that Eq. (25) holds, we 

get 
The condition on the total flux in the functional 

integral (21) can be converted into a condition on the 

total charge Q = e s d*x cC/ya@, due to the constraint 

Q(r) = -g@(r), (22) 

exp( -Seff[A(“)]) = c J 2)X(n) 
n 

e* 
x exp i-(O+F(T))Scs[A 

47r 

which follows from ( 1). Thus, condition (20) implies Then, using Eqs. ( 15) and (24), we have 

Q = --Beg (23) 

i.e., 2, in (21) can be equivalently regarded as a 
partition function in a fixed-charge ensemble, Such 
partition functions, where conserved internal quantum 

numbers are given prescribed values, have been con- 

sidered previously in the literature [ 7,8]. The applica- 

tion of this idea to the present case amounts to Fourier 

transforming the partition function with an imaginary 
chemical potential (see [ 81 for details). This may turn 

out to be a practical procedure to enforce the condi- 
tion (20) in the functional integral for 2,. 

i?(6’+ F(T))&s[Acq’] 
4?r 

X c exp (i2dB + F(T) )qn) , (27) 
n 

where we have omitted an infinite normalization con- 

stant arising from the volume of integration over the 

gauge group. Thus, we have 

exp(-&r]A(“)l) 

Coming back to the gauge dependence of the Chern- 

Simons action, we must note that when the theory 
is quantized with q # 0, the simple discussion of 

6,,.,Scs in Eqs. ( 16), (17) is not quite correct. In- 

deed, in that case the gauge potential A(q) cannot be 
defined globally without introducing singularities or, 

alternatively, one must define A(q) resorting to sev- 

eral coordinate patches. As shown in Refs. [ 9, lo], 
that leads to an extra factor of two in Eq. ( 17), which 

together with Eqs. ( 15) and (20) lead to 

e* 
i-(0 + F(T))&[Acq’] 
47r 

X c S((8 + FV))q- k). (28) 

k 

Hence, the partition function vanishes, unless 

(e+F(T))9=P, (29) 

where p is an integer-valued function of T. 
For the theory in a 4 # 0 sector, this relation yields 

a novel quantization rule. Since it must hold even if 
we start with 0 = 0, this result states that F(T), the 
coefficient of the Chern-Simons term induced by the 
fermionic quantum fluctuations at finite temperature, 
must be a rational-valued function of the temperature. 
This, in turn, implies that in the theory at finite tem- 
perature, 19 itself must be a rational number. (Actu- 
ally, the denominators in these rationals is q, which 

6 S [A(q)] = - *“‘I cs 
(277)*2nq 

e* 
. 

We now discuss the way in which the fermion de- 

terminant changes under large gauge transformations. 
An exact expression for the determinant is unknown, 
but perturbative analysis [4] suggest that its parity- 
violating part is proportional to the Chern-Simons ac- 
tion, with a temperature dependent coefficient: 

. 

(25) 

(26) 
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is fixed.) Notice that our argument does not exclude coefficient will provide a non-perturbative basis for its 

a possible temperature-dependence of F(T): it only non-renormalization to higher orders [ 151. This, in 

states that at most it can be a rational-valued function turn, is important for the applications of the theory to 

of T. the Fractional Quantum Hall effect [ 161. 

Perturbative analysis leading to a temperature 

dependence for the fermion determinant of the 
form (25)) make at some point in the calculation a 

1 /VI expansion, and produce a function F(T) of the 

form 

As opposed to the non-Abelian case, in the Abelian 

theory the presence of fermions (or scalars, for that 
matter) is essential for the argument leading to the 
quantization of the Chern-Simons coefficient at finite 

temperature. Indeed, it is the presence of matter fields 

that forces conditions (8) and (12) on the allowed 

gauge transformations, and determine the behavior of 

the gauge fields at spatial infinity, leading to the quanti- 

zation of the magnetic flux by the integer q in Eq. (20). 
As discussed above, different values of q label theories 

built over different classical vacua, there being no tun- 
neling between the different q-sectors. We have shown 

that in each q-theory the Abelian Chern-Simons coef- 
ficient is quantized at finite temperature in multiples 

of I/q, except for q = 0 where our analysis imposes 

no conditions on B or F(T). 

F(T) = i tanh $ . 
( 1 

(30) 

Those perturbative calculations have been performed 

only in what we have denoted here as the q = 0 sector, 
where we obtain no conditions for 0 or F(T). Yet, it 

is interesting to note that in the limit m + 03, where 
the I/m expansion could be expected to be exact, this 

expression tends to a step function, up to exponen- 
tially small corrections, thus satisfying the quantiza- 

tion condition (29). 
It is interesting at this point to compare the situa- 

tion in the Abelian and the non-Abelian models. For 

the latter, it is well known that the Chern-Simons co- 

efficient has to be quantized already at zero tempera- 
ture if exp( i&s) is to be invariant under large gauge 

transformations [ 21. In contrast, no quantization con- 
dition arises at T = 0 for the Abelian theory (unless 
the spatial dimensions are compactified [ 10,121). For 
the non-Abelian theory, it was argued in Ref. ] 131 

that the Chern-Simons coefficient must remain an in- 
teger at any finite temperature. Thus, any temperature- 

dependent renormalization of the non-Abelian Chern- 
Simons coefficient must reduce to an integer shift. 

Here we have seen that an analogous result holds 

also in the Abelian theory: in any q # 0 sector, a 

temperature-dependent renormalization of the Chern- 

Simons coefficient must satisfy condition (29), so it 
cannot be a smooth function of the temperature. This 
will be of importance for the applications of the the- 
ory to anyonic superconductivity, where the cancel- 

lation of the bare Chern-Simons coefficient against 
its quantum corrections plays a crucial role [ 141. A 
quantization condition like Eq. (29) guarantees that 
that cancellation will hold at least up to some finite 
non-zero temperature, thus surviving to low tempera- 
ture effects. Also, one may expect that as in the non- 
Abelian case, the quantization of the Chern-Simons 

In topological terms, what we have shown is that the 
quantization of the abelian Chern-Simons coefficient 
at finite temperature, results from the interplay of two 

different n-1 (c’( 1) ) = Z. First, there is the n-1 (U( 1) ) 

whose elements q label the different classical vacua, 

and determine the boundary conditions at spatial in- 

finity defining the partiton function 2, in Eq. (21). 

Then, to enforce the invariance of 2, under “large” 
gauge transformations, we summed over the integers 

in the n-1 (U( 1) ) which classify the gauge transfor- 
mations allowed at finite temperature, as specified in 

Eq. ( 12). As a result, for T > 0, the coefficient of the 
Chern-Simons term is quantized according to Eq. (29) 
in each q # 0 sector. It is interesting to note that these 

conclusions hold for nrlv T > 0, and therefore will 

hold also in the T ---f O+ limit. 
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