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A rather strong concept of symmetry is introduced in classical mechanics, in the 
sense that some mechanical systems can be completely characterized by the sym- 
metry laws they obey. Accordingly, a “complete symmetry group” realization in 
mechanics must be endowed with the following two features: (1) the group acts 
freely and transitively on the manifold of all allowed motions of the system; (2) the 
given equations of motion are the only ordinary differential equations that remain 
invariant under the specified action of the group. This program is applied success- 
fully to the classical Kepler problem, since the complete symmetry group for this 
particular system is here obtained. The importance of this result for the quantum 
kinematic theory of the Kepler system is emphasized. 

I. INTRODUCTION 

In this paper, we introduce an extended notion of symmetry in mechanics, which is somehow 
stronger than the concept of symmetry that has been used hitherto. As we shall see, this new idea 
of symmetry demands the fulfilment of more tightened conditions than those required by the 
traditional Noether and Lie theories of symmetries in classical mechanics.’ The main feature 
underlying our approach cherishes the idea of characterizing a classical system by the symmetry 
laws it obeys, in a strictly specified manner. As a matter of principle, this means that different 
mechanical systems cannot have exactly the same symmetry properties, and if they do, then the 
systems must have essentially the same mechanical nature. In this sense, the group of symmetries 
characterizing a given system would be complete, 

This is not the place to dwell on the most general (i.e., philosophical) aspects of this idea. 
Here, will work out in full detail, a physically relevant model fulfilling this program. It seems 
interesting to see how a complete symmetry group shows up in the case of the classical Kepler 
problem, and study both the geometric and mechanical properties of such a complete group. This 
interest settles the contents of this paper. 

Let us then precisely state our program. Given the equation of motion of the Kepler system in 
ordinary space E,, 

ii+ Krm3x=Q, (1) 

where K is a constant and r= 1x1, we here search for a group G, of transformations of the variables 
I and x meeting the following conditions: 
Kl. The mappings t-+t ’ and x+x’ have well defined geometric structures corresponding to 
faithful realizations of some overlapping subgroups whose union forms a finite dimensional Lie 
grow GK; 
K2. These transformations leave invariant the equation of motion (l), and therefore the subgroups 
of G, act on the manifold of solutions W, , changing one solution to another; 
K3. The action of GK (through its covering subgroups) on the whole manifold W,, however, is 
free and transitive, so that WK is a homogeneous space of GK ; and furthermore, 
K4. the desired realizations of G, are speczjic to the equation of motion (l), in the sense that no 
other equation of motion, say 
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%=F(t,x,ri), (2) 

remains invariant under the specified action of the considered covering subgroups of GK , unless 
the force is given by F=Cre3x, where C is an arbitrary constant. 

As we shall see in this paper, the endeavour of finding such a complete symmetry group can 
be achieved for EZq. (1). We call G, the Kepler group, even when K<O. Note that conditions Kl 
and K2 are those considered in the current approach leading to point symmetries in mechanics. 
They afford the basic definitions of symmetry in configuration space-time,* on which the standard 
Lie method is founded, for in such case one usually finds a group of transformations formed by 
just one covering subgroup (i.e., the group itself). However, in general, such group realizations in 
mechanics fail to be complete, because conditions K3 or K4 (or both) are not satisfied.3 

Whether such a specific realization of a complete symmetry group exists for any given New- 
tonian system, is not known. This question is left here as an open problem. In the special case of 
all one-dimensional linear Newtonian systems, it is well known that there always exists a specific 
realization of the projective group SL(3,R) in the plane (t,x) that meets all four conditions stated 
above.4 For nonlinear one-dimensional systems,5 however, the problem remains as yet unsolved.6 

II. POINT SYMMETRY GROUP OF THE KEPLER PROBLEM 

So the question arises as to the general fitness of the standard Lie method of point symmetries 
of ordinary differential equations in order to solve this problem. As is well known, in the case of 
Eq. (1) this m e o yields the following global change of variables:7 th d 

c=p3’*t+q0, x’j=pRjkxk, (3) 

where p is an isotropic dilation, O<p<m, 4’ corresponds to time translation, --co<q’<+w, and 
the coefficients Rjk denote the entries of a 3X3 proper orthogonal matrix. In fact, these are the 
most general space-time point transformations that keep invariant Eq. (1). They form a realiza- 
tion of a five-dimensional noncompact, connected and simply connected, Lie group; henceforth 
denoted by GL .* The group law for the parameters {q’,P,Rjk} of GL is as follows: 

4 ~O=~rO+~r3/2~0, 
(44 

pn=p’p, Ryk = R;,Rlk . WI 

In particular, note the semidirect product combination of the isotropic space dilation with time 
translation. The subgroup defined by q”=O [i.e., obeying Eqs. (4b)] shall be denoted by G@). 

The exhaustive analysis of the point symmetries of the Kepler problem is rather successful 
because two vector constants of motion are obtained from that study.7 These are quite familiar; one 
usually takes: the angular momentum, 

J=xxli= &&xii, (5) 

and the Runge-Lenz vector, 

M=j,xJ-Kr-‘r=K&, (6) 

where L and E denote the semilatus rectum and the eccentricity, respectively, of the conic trajec- 
tory in the fixed plane (I%,$, with 1%.6=0. In this fashion, the geometric and dynamical charac- 
teristics of the Kepler motion become related in a rather simple way. Note that the other constants 
of motion (like the energy and the Hamilton vector’) do not appear here as independent quantities. 

Nonetheless, from the point of view of our program, G, is very distressing for it fails to meet 
conditions K3 and K4. First, it can be proven that under transformations (3) one has 
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L’=pL, E’=E, (7) 

quite generally.7 All the other features characterizing a given Kepler motion can be changed by 
transformations (3), but the eccentricity of the orbits remains the same. This means that the action 
of G, on W, is not transitive. Furthermore, if one assumes that an equation of motion of the 
general form (2) is invariant under (3), one easily obtains 

C3Fj 
x=0, (8) 

2xk $X’$+4F’(x,i)=O. (9) 

These are necessary and sufficient conditions to that end; besides the obvious provision that under 
pure rotations (i.e., t’ = t, x’j- - RjkXk) the components of the force behave as a Cartesian vector, 
wherefrom it follows: 

aFj c3Fj 
Xm z +X” z f SmjF’ (10) 

It can be shown that there are infinitely many forces F(x,i) satisfying Eqs. (9) and (1O).7 Hence 
GL as realized in Eq. (3) is not a specijc group of symmetries characterizing the Kepler system in 
a unique manner. 

So we epitomize: since GL is the muximd group of space-time point symmetries of Eq. (l), 
the usual Lie method, by itself, is unable to discover the group G, . Different tools are needed to 
this end. As we hope to show through this particular example, these tools may throw new light into 
the role played by group theory in classical mechanics. 

Ill. THE COMPLETE KEPLER GROUP 

According to the outlined program, let us then consider the following active infinitesimal 
transformation of world-lines in Newtonian space-time:” 

I t t’[x]=t+ Sq d7 ~~,X(~)l, to (114 

x’(t’)=x(t)+ 8qdt,x(t)-j, (lib) 

where x(t) denotes an arbitrary curve in E,, parametrized by t, and x(r) is the same curve for 
to< r<t. Here, Sq denotes an arbitrary parameter of smallness (i.e., O<Sqel), and to is also 
arbitrary. By definition, under transformations (11) one considers x’(t’) as the image-curve pa- 
rametrized by t’. Thus, one sets an infinitesimal mapping of “motions into motions” for a one- 
particle system in E3 , for the scheme defined in Eqs. (11) is invertible. To be sure, these equations 
do not define point transformations in space-time; they entail infinitesimal functional trunsforma- 
tions of world-lines. 

However, from these equations it follows: 

dt’ 
dt= 1+ SqS(t,x), x’=x+ 6qdt,x), (12) 

which cast them into a more useful form. Here, one has well-defined transformations in every 
space-time point, since all world-curves intersecting at the event (t,x> yield the same values for 

J. Math. Phys., Vol. 35, No. 11, November 1994 



J. Krause: Complete symmetry group of the Kepler problem 5737 

dr ‘ldt and x’j, j = 1,2,3. Hence we can handle Eqs. (12) in the usual manner, notwithstanding the 
fact that dr’ldt is not a total time derivative (unless 6 does not depend on x). Indeed, one may 
interpret dt’ldt as a relative-rate of ticking of two local clocks in a small neighborhood of the 
event (t,x). 

Hence the laws of transformation for the velocity (k=dx/dt+i’=dx’/dt’) and the accelera- 
tion (ji=dk/dt-+i’=di’/dt’), induced by transformations (12), read: 

2=i+ Sq( Tj-cfi), 03) 

;;‘=ii+Gq(ij-&25ii). 04) 

In the same way, for T=IxI+T’=Ix’I, one has 

r’=r( 1+ Csqr-27j.x). 05) 

So there is no hindrance to a straightforward examination for new symmetries of the equations of 
motion from this perspective. 

Let us then demand that, in particular, transformations (12) are such that they map Kepler 
motions into Kepler motions. After a few typical steps, substituting from Eqs. (12)-(15) into (1) 
one obtains the following necessary and sufficient condition to this end: 

a2 rJ a2 ?jJ 
T+2Xk =+iki’ ~1-x~ X+X 2 +Kr a2rJ’ ..( ag .k ae) -3( zxjemxk !$+ .#-3r-2xjx*,f) 

= 0. (16) 

Therefore, equating to zero the coefficients of the different powers of Xj, one obtains a system of 
linear homogeneous partial differential equations for the determination of the generating functions 
tand rj: 

2 a2rJ- &%+p o 
axk ax1 ( kz? lyg=’ 1 

a24 ag 
2m-$;j;=o9 

a2 7J j 
St2 +Kre3 2xj.g-xk $+ rJ’--3rv2xixk7jk 

(174 

OW 

Let me remark that these equations exhibit some notable differences with the equivalent equations 
one obtains for the generating functions of the point symmetries (3) of Eq. (1). (Especially, we 
note that the second order partial derivatives of C$ are missing here.) 

To proceed further, we have to integrate these equations. This can be done rather easily. (We 
present some details of the integration procedure in Appendix A.) The general solution to Eqs. (17) 
reads: 

cj( x) = $A - 2 Ckxk, (184 

?jJ( x) = Axj - B1eUpk - ckXkXj, tl8b) 

where A,Bj,Cj are constants of integration. So, defining the parameters: &=A Sq, kj&#=BjSq, 
and 6qi= CjSq, we have found: 
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5738 J. Krause: Complete symmetry group of the Kepler problem 

dt’ 
,=1+$!+-2&.x, 

x’=x+ apx+ SqGxx-(&px)x. 09b) 
One interesting feature of these equations is that they are a generalization of the Lie method’s 
result for the same problem, owing to the presence of the terms containing Sqex. If one sets Sq=O 
in Eqs. (19) and integrates (19a), one recovers exactly the well-known infinitesimal point sym- 
metry result corresponding to Gt. The reader can prove in a few lines that Eq. (1) remains 
invariant under the new transformations (19). 

Of course, under a wide variety of circumstances Eqs. (19) can be integrated to yield well- 
defined transformations of any given world-curve x(t) in space-time: 

tyx1=t+; &t+Sq0-2Sq. 
I 

t 
dr ~(4, 

to 
(204 

x’(t’)=x(t)+Spx(t)+Gq&xx(t)-[Sq.x(t)]x(t). (2Ob) 
In particular, under these infinitesimal world-line transformations one has: 
x(t) E Wk*x’(t’) E Wk. However, these are not point transformations and one does not obtain 
from them a set of differential operators satisfying a Lie algebra, as in the standard manner. This 
is not to say that they are useless. 

The finite transformations are obtained by exponentiation of the corresponding infinitesimal 
ones, as usual. The exponentiations for getting S$+p and &5--++ are immediate, because the 
respective infinitesimal transformations in Eqs. (19) are linear in xi. In fact, we get Eqs. (4b) for 
the realization of CL” in the present Context, where Rjk= Rjk(~,ti;) has an obvious meaning. Thus 
one recovers Gfp’ as a subgroup of the complete group GK we are looking for. 

The exponentiation for obtaining Gqk-+qk . 1s a little more elaborate, owing to the presence of 
the term (&.x)x in Bq. (19b) which is bilinear in xj. (We briefly solve this problem in Appendix 
B.) The finite transformations generated by q are given by 

dt’ 1 X 

dt=(1+q.x)2’ x’=- 1 +q.x. (21) 

These transformations constitute a realization of a Lie group Gp’ acting on E?. The parameters 
q=(q1,q2,q3) are canonical, and the group law of Gp) is simply given by: q”/=q’j+qj, ei=O, 
ii= - qj. Gp) is isomorp hit to the group T3 of rigid translations of a Cartesian scaffolding in E, 
(i.e., x-+x’=x+q), although the realization x+x)=(1 +q.x)-‘x defined in Eqs. (21) has a com- 
pletely different geometric meaning. We further discuss this subject in Appendix C. 

It can be proved easily that Eq. (1) is indeed invariant under (2 1). However, under transfor- 
mations (3) one preserves the eccentricity of the orbits, E’=E [cf. Bq. (6)], while under (21) the 
eccentricity changes E’#E (cf. Appendix C). Let us then consider the semidirect product 
G,=G@‘XGfP), which becomes realized as the following point transformations in E,: 

dt’ p3” 
dr= (l+q.x)“’ 

xrj- pRMk -- 
1 +q*x’ (22) 

The group law obeyed in Gr’{Rjk,p,q’} reads as in Eqs. (4b), but one also has to add the 
following combination law 

4~~i=pRkj4’k+qj. (23) 
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Gr is indeed the group of homofocal tonics reviewed in Appendix C. The local relative rate of 
ticking dt’ldt assures that if a particle performs a Kepler motion x(t) along a given conic, in 
terms of time t, then the image particle performs a motion x’(t’), in terms of time f’, along the 
image conic, which is also a Kepler motion, and vice versa. Furthermore, it can be proven that if 
one performs two successive tKmfOrIWitiOnS (22), with parameters (Rjk ,p,& and 
(RI, ,p’,q’j), one gets 

dt” dt” dt’ -=-- 
dt dt’ dt ’ (24) 

as it must be. 
The transformation laws for the velocity, x-+x’, and the acceleration, j;+g’, induced by Eqs. 

(22), are given by 

iti= p- 1’2Rjk[ik+CJE(X’ik-i’Xk)], (25) 

i’jzp-2( 1 +q.X)2Rjk[Xk+ql(x~~k-~~xk)]. (26) 

Clearly, for r=IxI +r’=Ix’I one has 

Pr r’= - 
l+q*x’ (27) 

In this fashion, whenever ii+ KrW3xj=0, it follows: 

,‘j= -Kp-2( 1 +q.X)2r-3Rjflk= -Kr’-3x’.i, (2% 

as it was already remarked. This is of course one of our main results. 
Hence, let us consider the following eight-dimensional Lie group 

(29) 

with the group law given by 

4 
nO=q!O+pf3/2q0, (304 

pn= P’P, t3Ob) 

and 

The group manifold is MK={ --03<q”< + @~,O<p<co, Rjk E G+(3), --co-+<+~} and the identity 
is at the point e = (O,l,sik ,O) EM,. The reader can check Eqs. (30) against the group property. All 
the properties of G, follow from this law. GL={qO,p,Rjk} and Gr={p,Rjk ,qi} are two inter- 
secting subgroups of GK, whose union covers GK completely (by definition). They are both 
noncompact, connected and simply connected, non-Abelian Lie groups. G, acts as a group of 
point transformations in Newtonian space-time, as defined in Eqs. (3); Gr is a group of point 
transformations in ordinary Euclidean space, whose action is defined in Eqs. (C8), enhanced with 
the point transformation providing for the local rate dt’ldt in E, as shown in Eqs. (22). In this 
way, both subgroups keep invariant Eq. (1). It will be shown further that, given these point 
symmetry realizations of the two covering subgroups, G, is indeed the Kepler group. 
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One can formally integrate Eqs. (22) along a given curve x(r), to read: 

I t c’[x]=p3’2 
dr 

to [1+v40-’ 

x’j(tf) = PRjkXk(t) 
1 +q*x(t). 

(314 

@lb) 

These formulas entail transformations of worldlines in Newtonian space-time, in general. They 
are endowed with the following special properties: (a) x(t) E W+x’(t’) E W, ; moreover, (b) 
given x(t), x’(t’) E WK, there always exist a transformation (31) such that x(t)-+x’(t’), and also 
an “inverse” one such that x’(t ‘)--+x( t) ; furthermore (c) if one sets x(t) -+x’(f ‘)+x”(t”) under two 
successive transformations (3 l), starting with x(t) E W, , there always exists a transformation (3 1) 
that yields x( t)--+x”(t”) directly. So these transformations afford a functional realization of GK 
acting freely and transitively on the manifold WK of all solutions to Eq. (1). However, to handle 
the group property of GK directly in terms of this functional realization [in particular, to study the 
Lie algebra (cf. below)] becomes rather cumbersome; for these matters, we prefer to use the 
nonintegrated point symmetries shown in Eqs. (22). 

Nevertheless, from the point of view of the Kepler kinematics, Eqs. (31) are interesting. For 
instance, starting with a Kepler uniform circular motion, of radius L and angular frequency w 
= JKL’3 [see Eq. (C5), with a=ot], one can evaluate the integral 

I t tt=P3’2 
dr 

0 (lfqz, cos or)* (324 

(here we take q=q&), in order to obtain the resulting motion 

x’(t’)= 
pL(ti cos wt+h sin wl) 

1 +qL cos or Wb) 

(let us omit the rotation), which turns out to be a Kepler motion in terms of t’, with an elliptic, 
parabolic, or hyperbolic orbit (with l =qL).” We left this problem as an exercise to the interested 
reader. The transformations into rectilinear Kepler motions (J=O) are much more difficult to 
analyze, because one must use limiting processes which force the group to its most extreme 
singular elements. 

We now come to the heart of the matter (i.e., condition K4). Let us look for the most general 
equation of motion 

$=p(x,i) (33) 

[cf. Eq. (8)] that remains invariant under both covering subgroups G, and Gr , acting according to 
their special realizations defined in Eqs. (3) and (22), respectively. To begin with, since 
G,~I GrCGr , we need to discuss the invariance of Eq. (33) under Gp’ [i.e., Eq. (21)]. Thus we 
set: 

(34) 

(35) 

and we require 

(36) 
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In this way, taking li~,a(dld& and assuming (33), one obtains: 

JFj 
XkX’ -$ + Ekl,,$ 

C?Fj 
p + 3xkFi-xjFk=O. (37) 

This means that the necessary and sufficient conditions for Eq. (33) to be invariant under GL and 
Gr is that the force F(x,jr) must satisfy Eqs. (9), (lo), and (37) simultaneously. We solve these 
equations in Appendix D. The final solution is given in Eqs. (D2), (D9), and (D14). This finishes 
our task, for we have proven that GK is indeed the desired complete Kepler group. 

Finally, some few comments on the Lie algebra g, of G, briefly follow. According to Eqs. (3) 
and (C8), we introduce the operators generating the respective point transformations. These are 
Lie’s vector fields given by 

T-&, ,2t&+xk4. 
dX 

(38) 
a 

Lj= ejklXk 2, 

Thus, one obtains: 

IIT,Dl=~Tv [T,Lj]=O [T,rj]=O, 

[D9Lj]=0, [D,rj]= -rj, (39) 

[Lj TLkl= EjklLlv [Lj ?rki= ejklrl, [rj ,rk]=o. 

This closed algebra seems interesting, owing to the following feature. The operator 

r2’rkrk (40) 

yields 

[DJ2]= -2r2, (41) 

and commutes with all the other operators of the algebra. If one then defines the operators 

Aj' EjklLkr[-rj 

the following closed commutation relations can be proved by means of Eq. (39): 

(42) 

(43) 

where 

This result is very reassuring in the present context, because in any irreducible representation of 
the Lie algebra [I?+. (43)], r2 becomes a multiple ofthe identity and Eqs. (43) become essentially 
into the Lie algebra of the four-dimensional rotation group O+(4).12 These and other interesting 
details of the Lie algebra g, (as well as the invariants and conservation laws) associated with the 
complete Kepler group GK shall be discussed elsewhere. 
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IV. CONCLUDING REMARKS 

Perhaps the main interest of this paper lies on the method introduced to obtain the complete 
symmetry group of a system. One complements the familiar Lie method (for obtaining the point 
symmetries of the equations of motion) with a local “dt’ldt transformation” that is manifestly not 
a total time derivative,13 and which can be integrated only along given world curves. By the same 
reason, it seems rather natural to conjecture that the method (as it stands) does not work for 
nonconservative systems acted on by time-dependent applied forces. However, conservative sys- 
tems seem worthwhile to be analyzed by this approach in order to find their complete symmetry 
groups (if any). For instance, it would be interesting to see how a complete symmetry group shows 
up in the case of the three-dimensional harmonic oscillator (both, isotropic and anisotropic), in the 
case of the classical Helium-atom system, or even in other more complicated physically relevant 
conservative mechanical systems. 

To finish this work, I would like to remark that my own interest in complete symmetry groups 
stems from quantum kinematics.14 Non-Abelian quantum kinematics is a “group-theoretic quan- 
tization” program in which one builds a quantum model of a system directly by means of its 
characteristic symmetries, without recourse to any thought out prequantized classical analog.15 
Thus, the familiar Schriidinger equation, as well as the respective propagator kernel, have been 
deduced in this way from the complete symmetry group of the simple harmonic oscillator,16 and 
also from the Galilei symmetry of a Newtonian free particle.17 In the present example, it is rather 
clear that if one quantizes the group G, by no means would one produce a quantum model of the 
Kepler system, because G, as defined in Eqs. (3) is not complete. On the other hand, the quantum 
kinematic theory of the complete group G, of the Kepler system will certainly produce a quantum 
model of that system, and of nothing else. This seems to be an intriguing endeavour worthy to be 
done. Work is in progress concerning this issue. We expect to tackle the problem set by G, 
quantum kinematics in a forthcoming paper. 
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APPENDIX A: SOLVING FOR THE INFINITESIMAL SYMMETRY TRANSFORMATIONS 

Although the task is not difficult, for the sake of completeness we here append the integration 
of Eqs. (17). 

Equations (17a) can be easily cast in the form 

2 Ejlm ??l,mk= ejk16,1 T 

which yields 

C-41) 

wherefrom one obtains 

L43) 

Substituting back from (A3) into (A2), it follows: 

2Ejlm~i,m(nk)= Ejk16,1n= -6j[kn]6,11E0. 

ThUS we get .$k=o, and we write 

@4) 
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(-45) 

But then Eq. (17a) becomes 

Vj,kl+ Vj,lk= ajkCl(t) + 8jlCk(t)9 

which one readily integrates, to read 

r?i(t,X)=~Ck(t)XkX'+bjk(t)Xk+dj(t). 

Thus far, all functions of t remain arbitrary. This finishes the integration of Eq. (17a). 
Next, substitution from (A5) and (A7) into Eq. (17b) yields 

Xj~k(t)+2djk(t)--jkCi(t)=O; 

namely: Cj= - 2Cj and bjk( t) = faj,a( t) + Bj, . SO, UP to here, the solution reads: 

5(t,x)=a(t)-2C~k, 

(-46) 

(A7) 

648) 

(‘49) 

(AlO) 

The capital letters denote constants of integration. 
Finally, one brings (A9) and (AlO) into Eq. (17~). As the reader can verify, all terms contain- 

ing Csk cancel out, and one obtains 

r42i-2r31ijFi=Kr(6Bjk-aGjk);j;kt-4Kdi~ji, (Al 1) 

where we have written xi= r8. Hence, it follows: a = :A (for future convenience), BcikJ = iA 8jk, 
Btjk] - = - EjklB’ (say), and dj=O. After substituting these constants in (A9) and (AlO) one gets 
Eqs. (18). 

APPENDIX B: EXPONENTIATION OF THE INFINITESIMAL TRANSFORMATIONS 

Here we prove that Eqs. (21) are in fact the finite transformations generated by 

dt’ 
dr=1-26q.x, x’=x-(&*x)x, 031) 

cf. Eqs. (19). We discuss this subject in a rather sketchy way. 
Let N be a very large positive integer (N+l), so that ]q.x]4N. We write p=q+x, and we 

consider a sequence of N infinitesimal transformations generated by SQ=N-‘q: 

x(2)=( 1- +x(t,=( W(t)- 5 w;,,)x-w,,,x, 

032) 

. . . 
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( 
P x(N)= W(N-I)-- jij w:N-l) i X’W(N)X. 

We take the limit N+m and define 

X’= lim x N-m w=IjFm W(N)X’W(~u)X. 033) 

In order to find w(p), let us set 

P 
Aw~~)=w~~)-w~~-~)=-~w:N-~)-‘dw=-d~ w2. 

We then integrate this equation, from the identity [qal=O up to Iqj>O. At the identity one has h=O 
and wo= 1, hence 

follows. 
We next consider dt’ldt by the same token. We set: 

d*(l) P 
--l-2 ;=u(‘), dt 

036) 

where (obviously) we have used dt,,,ldt= (dt,,,ldt,,- I,)(dr,,- ,,ldt). Hence, for the limit 

dt’ 
dt= lim dtW) 

N-em dt 
-=jTm u(N)=u(p), @7) 

using (B5), one easily obtains 

1 
U(P)’ u+i# 

(W 

This finishes the proof. 

APPENDIX C: THE GROUP OF HOMOFOCAL CONIC23 IN Es 

In order to get a better understanding on how transformations (22) act freely and transitively 
on the Kepler manifold WK , we here present a geometric interpretation of the diffeomorphism 
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X 
x’= - 

1 +q*x 

of the group Gp) acting on E, [cf. Eqs. (21)]. With this aim, we need to distinguish two cases. 
(I) When l+q.xZO, Eq. (Cl) yields 

r 
“= 1 +qr cos fx’ (C2) 

where q=lq[, r=IxI, r’=Ix’I, and qr cos a=q.x. For a fixed value of r, this is the profile 
r ’ = r ’ (cu) of a conic with semilatus rectum L = r and eccentricity e=qr. This means that when- 
ever 1 +q-1-30 (Cl) maps spherical sur&ces of radius r, concentric at the origin, into: (a) ellip- 
soids (if O<qr<l), (b) paraboloids (if qr=l), or (c) hyperboloids (if qr>l); all with one focus 
at the origin, having q as symmetry axis of revolution pointing towards the pericenter. For the 
hyperboloids, the maximum value of a compatible with l+q.x>O is given by 
cos amax =-(qr)-‘, which are precisely the directions of the asymptotes to the branch-sheet of the 
hyperboloid of revolution in this case. In the same manner, for the paraboloids one has 
cos a;, = - 1. (One gets r’ =w when a= am, in these instances, as it must be.) For the ellipsoids, 
r’ remains finite for all LY. 
(II) When l+q.x<O, Eq. (Cl) yields an inversion through the origin i’= -f (with ?=r’?), and 
also 

r 
r’=- 1 fqr cos (Y’ (C3) 

This case arises only when rq> 1 and the object-vector x in (Cl) sweeps a spherical cap with LY in 
the range ~,<cuSrr, with cos amax=-(qr It is thus clear that r’ = r’(a) in (C3) describes 
the profile of the second branch-sheet of the hyperboloid (with e=qr>l) whose first branch we 
have seen in case I. 

We note that this interpretation of (Cl) has the advantage that nothing really undesirable is 
happening at the plane l+q.x=O. It is clear that in the applications of Gp’ to the complete 
symmetry problem of Eq. (l), case I is of interest when K>O, while case II must be considered if 
KC0 (which requires a special treatment not considered in this paper). 

Now, let us consider a given conic in E,, with a focus at 0: 

x(cY)= 
L(cos atifsin aii) 

1+ecoscz ’ (C4) 

which meaning is clear. Using the vector q’= -(dL)& in (Cl), we obtain a circumference: 

&l(a)= x(ff) 
l+q’.x(Ly) 

=L(cos cu&+sin a;), 

on the fixed plane (&fi), with radius L and center at 0. Let then 

x’(a)= 
L( cos ah+ sin ofi) 

1 + E’ cos Ly 05) 

be another conic with the specified features (d#e). One transforms xc(a) into x’(a) using 
q”=(e’/l)& in (Cl). Hence, a transformation (Cl), with q given by 
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d---E n 
q=Lm, 

changes x((u) into x’(a). 
Therefore we conclude that the diffeomorphisms 

xtj-PRjgk -- 
1+q*x 

(C7) 

(W 

[cf. Eqs. (22)] constitute a group Gr that acts freely and transitively on the manifold r of all 
homofocal conks in E,. The group law is given by Eqs. (4b) and (23). Gr is the semidirect 
product G,=Gh’)XG I”’ It is a seven-dimensional proper subgroups of the 15-fold projective . 
group in E3. 

APPENDIX D: UNIQUENESS OF THE INVERSE-SQUARE FORCE UNDER GK 

Let us here solve Eqs. (9), (IO), and (37) with the aim of finding the most general force F(x,i) 
that is consistent with G, . 

First we note that, since xkJk=O, Eq. (37) yields 

JkFk=O. (Dl) 

[Interesting enough, this result does not follow from Eqs. (9) and (lo).] Hence we write 

Fj(x,k)=xjA(r,u,w)+ijB(r,u,w) 09 

without loss of generality, where w=x.k=ru cos 19, and A and B are scalar functions under 
rotations. (Recall that r2u2- w2= J2). These are the most general solutions to Eqs. (Dl) and (10). 
Substitution of (D2) into Eqs. (9) and (37) then yields 

(D3) xj 
8A dA dB C9B 

6A+2r -g-u ay 2r z+3B-u ay =0, 

dA dA 
r--u -++A 

dr du 
dB dB dA dB 

r z--u z+2B +xiikx’ z+XiXkxi z=O, (D4) 

wherefrom, after some manipulations, one gets: 

dA 
dv- -0, 

(ri+l)B=O, (u$-l)B=O, 

and 

Xk 
dA dB 
-Q=O, xk z=o. 

Note however that, since A =A (r, u , w), here one has 

(D5) 

035) 

(D7) 

$=A,+~A,=-?A, 
r (D84 
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:=A,+ ;AW=O, 

x 
kdA w 

T= -AA,+r2A,=0, 
ax u 

which one readily integrates, to read: 

A = Clr3, 

where C is a constant of integration. In the same manner, for B = B( r, u , w), we write 

$=B,+; B,= -; B, 

~=B,+~B~,~B, 
U U 

x 
kdB w 

T= - B,+r2B,=O; 
ax u 

i.e., 

rB,+uB,+2wB,=O, 

wB,+r2uB,=0. 

Using the “method of characteristics” in (Dlla), namely, 

dr du dw -=-2w=&., 
r U 

one obtains three solutions: 

(DW 

(DW 

(D9) 

(DlOb) 

(DlOc) 

(Dlla) 

(Dllb) 

CD121 

B,(r,u)= i=c,, B2(r,w)= L=c2, 
& 

B3(u,w)= v=c3. 
JI;; 

(D13) 

(Note that BIB,= B,.) However, none of these does satisfy (Dllb), neither do they satisfy Eqs. 
(DlO). This means that the only solution to these equations is given by 

B=O. (D14) 
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