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Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced

electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a

magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular

dependence, when immersed in a quasistatic, constant external electric field. The calculation of this

effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the

weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron

might be a good candidate to probe this signal of nonlinearity in QED.
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It has been known since the pioneering work of Euler
and Heisenberg [1,2] that quantum fluctuations in the QED
vacuum induce nonlinearity. This happens in spite of QED
being a linear theory at the Lagrangian level. Given the
extreme smallness of these induced nonlinear effects, this
subject has remained in relative obscurity for many years.
Recent renewed interest in this field has been motivated in
part by the steady increase in the intensity of modern lasers
[3] with associated peak electric fields reaching 1014 V=m,
and envisaged fields of 1015–1016 V=m in the near future.
Such intense fields are approaching the critical value Ec ’
1018 V=m beyond which unusual properties of the QED
vacuum are expected to manifest themselves. Among these
properties one has vacuum birefringence, and nonlinear
Compton scattering [4]. In addition to such time-dependent
nonlinear phenomena, classical charge/current sources im-
mersed in external quasistatic fields also generate unex-
pected electromagnetic field configurations induced by
QED vacuum fluctuations. In fact, we have shown recently
[5] (see also [6]) that an electrically charged (nonmagnetic)
particle immersed in a constant external magnetic field
generates several electric and magnetic multipoles with
unusual angular dependences. Among these there is an
electric multipole term, independent of the external mag-
netic field, which corresponds to the correction to the
Coulomb field due to quantum fluctuations in the QED
vacuum. More importantly, though, the leading term of the
induced magnetic field is due to an induced magnetic
dipole moment. For accessible values of the relevant pa-
rameters, this induced effect is comparable to the magnetic
dipole moment of the nucleon.

Given the intrinsic relationship between electric and
magnetic phenomena in electrodynamics, the reciprocal
effect is to be expected, i.e. that a magnetic dipole im-
mersed in a constant electric field might generate an elec-
tric dipole moment. In this paper we show that this is in fact

the case, and argue that the neutron might serve as a probe
of this induced nonlinear effect in QED. While, in princi-
ple, these nonlinear effects could be studied within the full
QED theory, their complexity calls for a simplifying ap-
proach such as that of a corresponding effective theory. For
instance, looking at photon-photon scattering mediated by
fermionic loops, and in the kinematical regime where the
photon momenta are much smaller than the fermion rest
masses, there follows an effective QED action. In the case
of quasistatic electromagnetic fields, the first nonlinear
term in the weak field expansion is the Euler-Heisenberg
Lagrangian [1,2]

L ð1Þ ¼ �ð4F 2 þ 7G2Þ þ . . . (1)

where the omitted terms are of higher order in the expan-
sion parameter � , which in SI units is given by

� ¼ 2�2"20@
3

45m4
ec

5
’ 1:3� 10�52 Jm

V4
; (2)

with � ¼ e2=ð4�"0@cÞ the electromagnetic fine structure
constant, and c the speed of light. The invariants F and G
are defined as

F ¼ 1
2ðE2 � c2B2Þ ¼ �1

4F��F
��; (3)

G ¼ cE �B ¼ �1
4F��

~F��; (4)

with F�� ¼ @�A� � @�A� and ~F�� ¼ 1
2 �

����F��.

Clearly, it is possible to use a different, dimensionless
expansion parameter of the QED effective action in terms
of e.g. a critical electric or magnetic field for the onset of
nonlinearity. This critical field is roughly given by that
needed to produce an electron-positron pair from the vac-
uum in a length scale of a Compton wavelength, i.e. Ec ¼
m2

ec
3=@e ’ 1:3� 1018 Volt=m, where me and e are the

mass and charge of the electron, respectively. In this
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case, � ¼ 	ðme=EcÞ4, where 	 � 2�2�20c
7=ð45e4@Þ, or us-

ing natural units (@ ¼ c ¼ 1) one has 	 ¼ 1=ð360�2Þ.
However, in the sequel we use � as the expansion parame-
ter. The constitutive equations which follow in the non-
linear effective theory are very different from the standard
ones: D ¼ "0Eþ P, and H ¼ B

�0
�M, where P ¼ M �

0, if quantum vacuum fluctuations are ignored. In fact,
from the full Lagrangian, Eq. (1), it follows that

D ¼ @L
@E

¼
�
@L
@F

�
Eþ

�
@L
@G

�
cB; (5)

H ¼ �@L
@B

¼
�
@L
@F

�
c2B�

�
@L
@G

�
cE: (6)

These equations imply the well-known nonlinear relations
P ¼ 2�ð4FEþ 7cGBÞ, and M ¼ 2�ð�4c2FBþ
7cGEÞ. In terms of the fields D and H the Euler-
Lagrange equations of motion reduce to the linear
Maxwell equations with all the effects of nonlinearity
contained in the constitutive equations, Eqs. (5) and (6).
Therefore, the equations for D and H can be solved as in
the usual linear theory, i.e. r �D ¼ j0, �@D=@tþr�
H ¼ j, r � B ¼ 0, r�Eþ @B=@t ¼ 0. The relations
between the fields D and H and the electromagnetic in-
tensitiesE andB, Eqs. (5) and (6), can be easily inverted to
leading order in � (see [5]). As shown in [5] it is possible to
obtain a general analytical solution to the inhomogeneous
equations for DðxÞ and HðxÞ in terms of the gradient of a
scalar function 
ðxÞ, and the curl of a vector function
KðxÞ, both of order Oð�Þ, and calculable in terms of the
external electric or magnetic sources. One first writes [7]

D ðxÞ ¼ DðxÞM þr�KðxÞ; (7)

H ðxÞ ¼ HðxÞM þr
ðxÞ; (8)

where DðxÞM and HðxÞM are the solutions in the linear
theory which satisfy r�DM ¼ 0 and r �HM ¼ 0. The
vectors r�KðxÞ and r
ðxÞ can be obtained using the
remaining homogeneous equations with the result

r
ðxÞ ¼ �c

2�"0
rx

Z d3y

jx� yj ry �
�
7GD� 4

c
FH

�
; (9)

r�KðxÞ ¼ �

2�"0
rx �

Z d3y

jx� yj ry

�
�
4FDþ 7

c
GH

�
: (10)

To isolate the induced (nonlinear) effects we define new
electric and magnetic fields with respect to the (linear)
Maxwell theory as

E ðxÞ ¼ EðxÞ � 1

"0
DMðxÞ; (11)

B ðxÞ ¼ BðxÞ ��0HMðxÞ; (12)

with r� EðxÞ ¼ 0 and r �BðxÞ ¼ 0. Using in Eqs. (11)
and (12) the expressions forEðxÞ andBðxÞ that result from
inverting Eqs. (5) and (6), together with Eqs. (7)–(10), it
follows to leading order in �

E ðxÞ ¼ �

2�"20
rx

Z d3y

jx� yj ry �
�
4FMDM þ 7

c
GMHM

�
;

(13)

BðxÞ ¼ �

2�"20c
2
rx �

Z d3y

jx� yj ry

� ½�4FMHM þ 7cGMDM�: (14)

The two equations above provide general analytical ex-
pressions to compute the induced fields in terms of the
Maxwell fields. The latter can be obtained as usual, once
the external classical charge and current distributions are
specified.
We now consider as a source an electrically neutral

particle of radius a, possessing a magnetic dipole moment,
in the presence of an external, quasistatic, constant electric
fieldE0. The details of how this magnetic dipole moment is
produced will play no role in the sequel. In fact, the final
result for the induced electric dipole moment, generated by
nonlinearity in the presence of E0, depends only on a and
m (and obviously on E0). Hence, for simplicity, we con-
sider a current density uniformly distributed on the surface
of a sphere of radius a

j ¼ 3jmj
4�a3

�ðr� aÞê
: (15)

This current distribution gives rise to a magnetic dipole-
type field

B d ¼ �0

4�

�½3ðm � êrÞêr �m�
r3

�ðr� aÞ þ 2m

a3
�ða� rÞ

�
;

(16)

where m is identified with the magnetic dipole moment of
the source. A similar result is obtained for a uniformly
magnetized sphere of the same radius a. Since the central
expressions, Eqs. (13) and (14), were derived assuming
E � cB < Ec, the following constraint follows

jmj
r3c

<
2�m2

ec
2

@e�0

; (17)

where rc stands for a critical (minimum) radial distance
from the source, e.g. if jmj ’ 10�26 Am2, then it follows
that rc > 10 fm. We shall return to this bound later on in
the conclusions. With DM ¼ �0E0; and HM ¼ 1

�0
Bd; the

densities FM and GM become
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FM ¼ 1

2
E2

0 �
1

2

�
c�0

4�

�
2
�½3ðm � êrÞ2 þm2�

r6
�ðr� aÞ

þ 4m2

a6
�ða� rÞ

�
; (18)

GM ¼ c�0

4�

�½3ðm � êrÞðE0 � êrÞ � ðm � E0Þ�
r3

�ðr� aÞ

þ 2ðm �E0Þ
a3

�ða� rÞ
�
: (19)

Choosing the magnetic dipole moment along the z axis,
m ¼ jmjêz, and the external electric field E0 in the

x–z-plane, forming an angle c with the z axis,

E 0 ¼ E0ðsinc êx þ cosc êzÞ: (20)

it follows that

ðE0 � êrÞ ¼ E0ðcosc cos�þ sinc sin� cos
Þ; (21)

where the angular function in parenthesis is cos
, where 

is the angle between the external electric field and the
radial direction. Concentrating on the induced electric
field, the integrand in Eq. (13) is given by

r �
�
4FMDM þ 7

c
GMHM

�
¼ �0jmj2jE0j

ð4�Þ2
�
6

a6
½cos
ð1þ 6ðcos�Þ2Þ � 7 cosc cos���ðr� aÞ

� 9

r7
½cos
ð1þ 4ðcos�Þ2Þ � cosc cos���ðr� aÞ

�
: (22)

Substituting this expression in Eq. (13), expanding the inverse distance in terms of spherical harmonics, using their
orthogonality properties, and performing the three-dimensional integration, the final result for the induced electric field is

EðxÞ ¼ � ��0jmj2jE0j
8�2�0

2
rx

�
1

jxj2a3
�
24

5

ffiffiffiffiffiffiffi
3�

p
coscY10ð�;
Þ þ 13

5

ffiffiffiffiffiffiffi
2�

3

s
sinc fY11ð�;
Þ � Y1�1ð�;
Þg

�

þ 1

jxj5
�
cosc

�
� 4

5

ffiffiffiffiffiffiffi
3�

p
Y10ð�;
Þ � 18

5

ffiffiffiffi
�

7

r
Y30ð�;
Þ

�

þ sinc

�
3

5

ffiffiffiffiffiffiffi
3�

2

s
fY11ð�;
Þ � Y1�1ð�;
Þg þ 6

5

ffiffiffiffiffiffiffi
3�

7

s
fY31ð�;
Þ � Y3�1ð�;
Þg

���
; (23)

where jxj ¼ r. The first term in brackets above, with the
1=jxj2 behavior, corresponds to the induced electric dipole
moment. For the case in which the external electric fieldE0

is parallel to the magnetic dipole moment along the z axis,
i.e. for c ¼ 0, the induced electric dipole field is given by

E ðxÞ ¼ �rx

�
1

4��0

�
18��0jmj2jE0j

5�a3�0

�
êz � êr
jxj2

�
: (24)

The induced electric dipole moment, located at the origin,
is then given by

p IND ¼
�
18��0jmj2jE0j

5�a3�0

�
êz: (25)

When m and E0 are not parallel, the term proportional to
sinc in Eq. (23) leads to an explicit dependence on the
azimuthal angle 
, viz.

E ðxÞ ¼ �rx

�
1

4��0

pðc ÞjIND � êr
jxj2

�
; (26)

where the induced electric dipole moment is now

pðc ÞjIND ¼
�
��0jmj2jE0j
10��0a

3

��
36

E0

jE0j � 49

�
E0

jE0j � êx
�
êx

�
;

(27)

which reduces to Eq. (25) when c ¼ 0. This induced
electric field is of the electric dipole-type in its radial
1=jxj3 dependence, but it has a manifestly peculiar angular
dependence. For instance, along the z axis, and unlike a
standard electric dipole field, it has a nonzero component
along e� that depends on the azimuthal angle
. It also has
a nonzero component along the direction of e
, as may be
appreciated by writing the induced electric field in spheri-
cal coordinates, i.e.

EðxÞ ¼ ��0jmj2jE0j
40�2�20a

3jxj3
� f2½36 cos� cosc � 13 sin� cos
 sinc �êr
þ ½13 cos� cos
 sinc þ 36 sin� cosc �ê�
� 13 sin
 sinc ê
g: (28)

This feature should help to differentiate this induced effect
from other predictions of an intrinsic electric dipole mo-
ment of the neutron in extensions of the standard model

QED VACUUM FLUCTUATIONS AND INDUCED ELECTRIC . . . PHYSICAL REVIEW D 80, 033008 (2009)

033008-3



[8]. To arrive at an estimate of the size of the induced
electric dipole moment of the neutron, we consider first the
case c ¼ 0, i.e. the external electric fieldE0 parallel to the
z axis, so that the induced electric dipole field has the usual
angular dependence. Expressing jE0j in V/m, and the
radius a in Fermi, Eq. (25) gives

jpjIND ’ 10�33jej cm
�jE0j ðV=mÞ

a ðfmÞ3
�
: (29)

A reasonable estimate of the neutron radius can be ob-
tained from its mean squared radius [9] in which case a ’
0:35 fm. Current experimental sensitivity [10] is at the
level of 10�26jej cm, which could improve by 2 orders of
magnitude in the SNS experiment at Los Alamos [11], in
the CryoEDM experiment at the Institut Laue-Langevin
[12], or in the nEDM experiment at the Paul Scherer
Institute [13]. However, current experimental setups in-
volve an external magnetic field, around which the neutron
spin precesses, and an external electric field to probe the
electric dipole moment. This external electric field, though,
is at present well below the one required to bring jpjIND to
an observable level. In fact, one would need fields as high
as jE0j ’ 107–108 ðV=mÞ. Such intense fields are indeed
present in some crystals at the level of jE0j ’ 1010 V=m,
but would require a completely different setup [14]. In this
case, with a ’ 1 fm, the order of magnitude of the induced
electric dipole moment would be jpjIND ’ 10�23jej cm.
While this range is within current sensitivity, it is crucial

to change the experimental setup so that the external
electric field is as high as indicated above. Turning to the
more general case c � 0, the order of magnitude of pjIND
does not change much, but the peculiar angular depen-
dence of the electric field offers some hope of improving
the chance of observability. To aid in the design of the
experiment we point out that, from Eq. (27), the induced
electric dipole moment has a component along the direc-
tion of E0, and a component along the x axis. Hence it will
interact with E0 and change the Larmor frequency of the
neutron magnetic moment around the external magnetic
field. In connection with the bound, Eq. (17), which fol-
lows from the weak field approximation, it would be
satisfied quite easily for the neutron if the experiment is
performed using a crystal, since in this case rc � 10 fm.
We mention in closing that we have computed the induced
magnetic field from Eq. (14). The leading term in this field
is of the magnetic dipole type, and thus it is a correction to
the field produced by the source (neutron). However, its
magnitude is many orders of magnitude smaller than the
latter, so that it can safely be ignored.
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