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Abstract

A main goal of this thesis is to propose and study novel flexible Bayesian models for setups that entail

families of random densities. Two specific contexts will be examined: one involves phase-varying point

processes, whereas the other involves functional principal component analysis. The common denominator

underlying these contexts is the need to model families of random measures to each of which corresponds a

different data generating process. On both contexts, prior processes will be used so to devise priors on the

target objects of interest.

In more detail, one context entails separating amplitude variation from phase variation in a multiple

point process setting. In this framework, I pioneer the development of priors on spaces of warping maps by

proposing a novel Bayesian semiparametric approach for modeling registration of multiple point processes.

Specifically, I develop induced priors for warp maps via a Bernstein polynomial prior so to learn about the

structural measure of the point process and about the phase variation in the process. Theoretical properties

of the induced prior, including support and posterior consistency, are established under a fairly mild proviso.

Also, numerical experiments are conducted to assess the performance of this new approach; finally, a real

data application in climatology illustrates the proposed methodology.

The other context that will be considered in this thesis involves modeling families of random densities

using functional principal component analysis through the so-called Karhunen–Loève decomposition. For

this, I develop a data-driven prior based on the Karhunen–Loève decomposition which can be used to

borrowing strength across samples. The proposed approach defines a prior on the space of families of

densities. Theoretical properties are developed to ensure that the trajectories from an infinite mixture

belong to L2 which is a necessary condition for the Karhunen–Loève decomposition to hold. Numerical

experiments are conducted to assess the performance of the proposed approach against competing methods,

and we offer an illustration by revisiting Galton’s height parents dataset.

iii
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CHAPTER1
Introduction and Background

This introductory chapter offers preparations and sketches the prob-

lems to be addressed over this thesis. Particularly, this chapter pro-

vides an introduction to semiparametric and nonparametric Bayesian

inference via prior processes and it reviews key concepts, methods, and

ideas related with functional data analysis, decomposition of random

functions, and with phase variation.
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1.1 Introduction

This thesis develops novel Bayesian models for two specific contexts that will require mod-

eling families of random densities. Prior to giving details on the problems to be addressed,

I start with background and preparations.

A main goal of Statistical Science is to learn about random phenomena from data. In this

context, parsimonious simplifications of reality are often made to achieve a desirable degree of

mathematical tractability, but that aim to preserve intact key aspects of the scientific problem

of interest. Of course, in this process not only data plays a primary role but also background

knowledge on the scientific problem of interest is of the utmost importance. Formally, we

refer data to as a collection X1, . . . , Xn, where Xi is a random vector corresponding to the

ith experimental unit from a sample of size n from a joint probability distribution F .

In the classical frequentist parametric setting, we assume that F belongs to some known

class of distribution functions F = {Fθ : θ ∈ Θ}, where Θ is a finite-dimensional parameter

space. The set F is known as a statistical model and the main goal of the statistician is to

learn about θ, such that F = Fθ, from data. In this framework, θ is assumed to be fixed but

unknown, and therefore we need to learn about a plausible value of θ from data, which is

the so-called problem of point estimation.

The Bayesian take on the setting above, relies on considering the parameter θ as random,

and it aims to learn about the (posterior) distribution of θ from data. There are two inputs in

a Bayesian analysis: Likelihood and prior. The prior distribution can be specified according

to the prior knowledge of the problem and then it is updated using the data, yielding another

distribution (posterior) via Bayes theorem.

Both approaches described above require a finite-dimensional parameter space. Fur-

ther flexibility can be achieve by working with richer parameter spaces, such as spaces of

functions. In the latter setting, the class of distribution functions F = {Fθ : θ ∈ F},

2



where F is an infinite-dimensional space, is called a nonparametric statistical model. The

infinite-dimensional space F is usually a space of functions and a common class of inter-

est is that of probability distributions. Of course, it is not the only class of functions of

interest, in some context we can have interest in other types of functions, such as, for in-

stance, the conditional mean function in a nonparametric regression. Also, there exists an

intermediate class of models between the parametric and nonparametric models, which are

called semiparametric; semiparametric models factorize the parameter space into a part be-

longing to a finite-dimensional space and another in an infinite-dimensional space, formally

F = {(Fθ, F ) : θ ∈ Θ, F ∈ F}. Therefore, under the Bayesian (semi and nonparamet-

ric) paradigm we need to set a prior distribution over F , i.e., a probability measure over

probability measures, which can be made precise using the concept of random probability

measure; see Kallenberg (1983) for an introduction to random probability measures.

A key goal of this thesis is to propose novel flexible Bayesian models for setups that

involve families of random densities in two specific contexts to be discussed below. In both

contexts the setup relies on a K-sample setting where the interest is on learning about a

family of continuous distributions {F1, . . . , FK}. Therefore, for the latter setting we assume

that we observe {Xi,k} with

X1,k, . . . , Xni,k | Fk ∼ Fk, k = 1, . . . , K;

if the Fk are absolutely continuous their corresponding density is denoted by fk.

3



1.2 Prior Distributions on Probability Measures

The Dirichlet Process

Since the proposed inferences on this thesis are based on prior processes, we start by offering

some preparations on these. Below, a prior process is to be understood as a prior over a space

of functions. Such processes are the bread and butter of Bayesian semi and nonparametric

inferences (see for example Ghosal (2010), Phadia (2015), Ghosal and Van der Vaart (2015),

Müller et al. (2015), among others).

Ferguson (1973) states the following two desirable properties that random probability

measures should possess so to define a prior process:

(i) Their support should be large.

(ii) Posterior inference should be analytically manageable.

In this line, the Dirichlet process was introduced by Ferguson (1973) as a random probability

measure motivated by these two properties. The formal definition is as follows.

Definition 1 (Dirichlet Process). Let α be a positive real number and let H∗ be a prob-

ability measure on a given Polish space X . A random measure H on X is called a

Dirichlet process if for every finite measurable partition {A1, . . . , Ak} of X , the joint dis-

tribution of (H(A1), . . . , H(Ak)) is a k-dimensional Dirichlet distribution with parameters

(αH∗(A1), . . . , αH∗(Ak)).

In Definition 1, α is the precision parameter, the measure H∗ is the centering measure,

and the notation for this type of process is DP(α,H∗). The parameters in the Dirichlet

process receive their names because it can be shown that if H ∼ DP(α,H∗), then

E{H(·)} = H∗(·), Var{H(·)} =
H∗(·)(1−H∗(·))

1 + α
. (1.2.1)

4



Therefore, H(·) is a random probability measure whose realizations are centered around the

measure H∗(·), whereas α controls the spread around H∗(·). Figure 1.1 shows realizations

of H ∼ DP(α,H∗) for different values of α and H∗(·) = Φ(·), where Φ(·) stands for the

standard normal distribution function. Below the centering distribution will be considered

to be a distribution function. Yet it should be mentioned that extensions of the Dirichlet

process have been devised where the centering distribution is itself a random probability

measure. Particularly, Teh et al. (2006) and Teh and Jordan (2010) propose the so-called

hierarchical Dirichlet process, which consists of a family of DPs whose centering distribution

follows a common DP.

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

α = 1

 

D
is

tr
ib

u
ti
o
n
 f
u
n
c
ti
o
n

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

α = 20

x

 

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

α = 200

 

 

Figure 1.1: Trajectories of realizations of Dirichlet processes; the solid black line represents

the centering distribution functions (standard normal)

A fundamental motivation for the Dirichlet process was the simplicity to obtain a pos-

terior update. In fact, if we assume that X1, . . . , Xn | H
iid∼ H where H ∼ DP(α,H∗),

then the posterior distribution of H given X1, . . . , Xn is again a Dirichlet process; that is,

5



H | X1, . . . , Xn ∼ DP(n+ α,H∗∗) with

E{H | X1, . . . , Xn} =
α

α + n
H∗(·) +

n

α + n
Fn(·),

where Fn(·) denotes the empirical distribution function of X1, . . . , Xn. This follows from the

Multinomial-Dirichlet conjugacy along with an argument based on the martingale conver-

gence theorem (Ghosal 2010, Section 2.2.3).

A key property of the Dirichlet process is its discrete nature. This is a corollary to

Sethuraman (1994) stick-breaking representation according to which any H ∼ DP(α,H∗)

can be represented in the following form

H(·) =
∞∑
h=1

ωhδθh(·), (1.2.2)

where

θh
iid∼ H∗, ωh = vh

∏
1≤j<h

(1− vj), vj
iid∼ Beta(1, α). (1.2.3)

The stick-breaking weight construction mechanism described in (1.2.3) mimics the phys-

ical process of sequentially breaking a unit stick in a random way. We start with a unit stick

at period h = 0 and at period h = 1 we break a portion of length ω1 = v1, so that we are

left with 1− v1. At period h = 2 we break a piece of what was left, ω2 = v2(1− v1) and so

that there remains (1− v2)(1− v1) left to break; and so on.

There is another representation of the Dirichlet process that is based on the marginal

distributions, and which is known as Polya urn representation of Blackwell and MacQueen

(1973). The Polya urn scheme can be described as follows. Let X = {1, . . . , k}, and

suppose that we have an urn with k different colors; each color has αi balls with that color,

for i = 1, . . . , k. Let Xj be the color of the jth ball; we first take the first ball, whose
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probability of being of color i is

P [X1 = i] =
αi∑
i αi

.

After that, we return into the urn another ball of the same color, and then we draw another

ball from the urn—say, X2. The probability of the event {X2 = j} depends on the value of

X1, and thus we can compute the conditional probability as

P [X2 = j | X1 = i] =
αj + δj

1 +
∑

i αi
, δj = 1 if j = i.

The process can be repeated so as to obtain a sequence of exchangeable random variables

X1, X2, . . ., and using the de Finetti’s theorem, we can obtain a prior distribution over the

law of the Xi. Blackwell and MacQueen (1973) generalize this scheme for a continuum of

colors, and showed that the Dirichlet process can also be defined in this way which provides

convenient form to obtain random samples from DP.

Finally, another interesting aspect of the Dirichlet process is the behavior of its tail.

Indeed, if H ∼ DP(α,H∗) then we know that E{H(·)} = H∗(·) and thus we might think

that the tails of H∗ and H are equal ‘on average’. Yet, this is false as the tails of H are much

thinner almost surely. The complete proof of this can be seen in Doss and Selke (1982) but

a sketch of the argument is as follows. From Fristedt (1967) we know that if h is a strictly

increasing and convex function on (0, ε), for some sufficiently small ε > 0, then

lim sup
x→∞

1−H(x)

h(1−H∗(x))
= 0 a.s. or lim sup

x→−∞

H(x)

h(H∗(x))
= 0 a.s.,

if and only if ∫ ε

0

log h(x)dx > −∞.
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A particular choice of h will yield, for example, that for almost every distribution function

H, for all sufficiently large x,

1−H(x) ≤ exp

(
− 1

(1−H∗(x))[log(1−H∗(x))]2

)
< 1−H∗(x),

This last expression is a direct consequence of Fristedt (1967, Th. 1), using the definition

of limit for x large enough, and the fact that x3 < exp{x} for any x. So, taking x =

− log(1−H∗(x)) we have the result, and thus we can conclude that the tail of H is almost

surely thinner than the centering measure H∗.

Further properties on the Dirichlet process are discussed by Ferguson (1973), Korwar and

Hollander (1973), Antoniak (1974), Diaconis and Kemperman (1996), Cifarelli and Melilli

(2000), Ghosal (2010), among others.

Dirichlet Process Mixtures and Extensions

Since the Dirichlet process generates discrete probability measures almost surely, it cannot

be directly used for density estimation. This can be fixed by convolving its trajectories

with a continuous kernel; in other words, in practice the Dirichlet process is often used as

a mixing measure. This approach was introduced by Ferguson (1983), Lo (1984), Escobar

(1988, 1994), and Escobar and West (1995).

In a formal specification, let Θ be a finite-dimensional parameter space and let K(x | θ)

be a continuous probability density function for θ ∈ Θ. Given a probability distribution

function H defined on Θ, a mixture of K(x | θ) with respect to the mixing measure H has

the probability density function

f(x) =

∫
Θ

K(x | θ)dH(θ). (1.2.4)
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This type of mixture forms a very rich family and a prior on densities may be induced by

putting a Dirichlet process prior on the mixing measure H; this model is known as Dirichlet

process mixture (DPM). The model in (1.2.4) with a Dirichlet process prior on the mixture

measure can be formulated in an equivalent way as a hierarchical model as

Xi | θi
ind∼ K(x | θi),

θi | H
iid∼ H,

H ∼ DP(α,H∗).

In the hierarchical model representation of Dirichlet process mixture we introduce new latent

variables θi, which can be used to induce a probability model on clusters. The discrete nature

of the Dirichlet process, implies that ties among the latent variables θi will occur with positive

probability. If we set θ∗j , j = 1, . . . , k ≤ n to be the unique values of the latent variables and

Sj = {i : θi = θ∗j}, then, ρn = {S1, . . . , Sk} is a random partition of {1, . . . , n}. The model

p(ρn) is known as the Polya urn.

I close this section with some remarks on extensions. Using Eq. (1.2.4) we can construct

different kinds of prior on densities by changing the law of the mixing measure. Formally,

f(x) =

∫
Θ

K(x | θ)dP (θ), P ∼ RPM(Φ),

where RPM is a random probability measure over Θ with hyperparameters Φ. Some exam-

ples of random probability measures that can be used as mixing measures include: gener-

alized gamma NRMI (normalized random measure with independent increments) (Barrios

et al. 2013), normalized inverse Gaussian (Lijoi et al. 2007), N-stable process (Kingman

1975), stick-breaking priors (Ishwaran and James 2001), and probit stick-breaking priors

(Rodríguez and Dunson 2011).
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Random Bernstein Polynomials

When we need to put a prior measure over all densities which are defined on a closed bounded

interval, [0, 1] say, we can use the Dirichlet process mixture as in Eq. (1.2.4) with a kernel,

K(x | θ), defined on the mentioned compact set. While natural, the latter approach is far

from elegant from a computational viewpoint. The developments to be presented in Chapter

2 will require priors on spaces of densities supported on bounded intervals, and thus we offer

below some preparations on prior processes that achieve this. A more elegant approach has

been proposed by Petrone (1999a,b), by resorting to a class of functions known as Bernstein

polynomials.

To define this type of prior, we will start by defining Bernstein polynomials.

Definition 2 (Bernstein Polynomial). Let G be a bounded function on [0, 1] and let k be a

positive integer. The Bernstein polynomial is defined as

B(x | k,G) =
k∑
i=0

G

(
i

k

)(
k

i

)
xi(1− x)k−i. (1.2.5)

Some comments on the parameters k and G are in order. The parameter k is tantamount

to the number of components in a mixture model, when G is a distribution function. The

next theorem shows that B approximates G as k →∞.

Theorem 1. For a function G bounded on [0, 1], the relation

lim
k→∞

B(x | k,G) = G(x),

holds at each point of continuity x of G. Moreover, this relation holds uniformly on [0, 1] if

G is continuous on this interval.

It can be shown that the Bernstein polynomial described in Eq. (1.2.5) is a distribution

function, provided G is also a distribution function. Moreover, if G(0) = 0 then we can
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obtain the derivative of Eq. (1.2.5), which corresponds to the density

b(x | k,G) =
k∑
i=1

wi,kβ(x | i, k − i+ 1), (1.2.6)

where wi,k = G(i/k)−G((i−1)/k) and β(x | a, b) is a beta density function with parameters

a, b > 0. Also, if G(1) = 1 it follows that (w1,k, . . . , wk,k) is in the unit simplex

Sk =

{
(w1, . . . , wk) ∈ [0, 1]k :

k∑
i=1

wi = 1

}
. (1.2.7)

Now, if we take G and k as random (distribution and positive integer, respectively), then

B(x | k,G) is called random Bernstein polynomial and the probability measure induced by

B is called Bernstein prior.

The parameters in the Bernstein prior are the distribution function G and the positive

integer k, and thus in principle we would need to specify a joint distribution for (k,G).

As claimed by Petrone (1999a), it is sufficient to specify a probability function p(k) for

the hyperparameter k and a conditional finite-dimensional distribution of G, given k, at

the points (0, 1/k, . . . , (k − 1)/k), since B(x | k,G) depends on G only through the values

(G(0), G(1/k), . . . , G((k − 1)/k)). For instance, we can define a Bernstein prior as follows

F (x) = B(x | k,G),

G | k ∼ DP(αk, G
∗
k),

k ∼ p(k),

which is known as Bernstein–Dirichlet prior. Figure 1.2 depicts trajectories of random den-

sities simulated using this prior.
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Figure 1.2: Trajectories of random densities sampled from a Bernstein–Dirichlet prior. Here

k ∼ Unif{1, . . . , 1000} and G∗(·) = Beta(· | 1, 1)

Selected Comments on Regression

A natural extension of the Dirichlet process for a regression context was introduced by MacEach-

ern (2000); the said extension consists in a predictor-dependent version of the Dirichlet

process, and it is obtained as a generalization of (1.2.2) by considering

Hx(·) =
∞∑
h=1

ωh(x)δθh(x)(·). (1.2.8)

Here, x is a covariate and the θh(x) are independent stochastic processes indexed over the

covariate space X ⊂ Rp; for the weights we use the same construction as Eq. (1.2.3) but

instead of vh ∼ Beta(1, α) now we use vh(x) ∼ Beta(1, αx), for all x.

When we refer to dependent Dirichlet process (DDP) it means that both the atoms and

weights are indexed by X , i.e. as in Eq. (1.2.8), but other versions of the DDP can be
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devised. If only the atoms are indexed by X then we refer to the process as a single weights

DDP, and if only the weights are index by X , then we refer to the process as a single atoms

DDP.

Using the support properties in Theorem 4 of Barrientos et al. (2012), we consider a

single weights mixing of the type

Hx(·) =
∞∑
h=1

ωhδθh(x)(·). (1.2.9)

In words, the latter theorem ensures that under some mild assumptions on the kernel, mixture

models obtained from (1.2.8) have the same support as those obtained from (1.2.9). The

weights {ωh} in (1.2.9) match those from a standard DP.

Replacing the DP by the (single weights) DDP in (1.2.4) we can obtain a predictor-

dependent Dirichlet process mixture that can be regarded as an infinite mixture of regression

models as,

f(y | x) =

∫
Θ

K(y | θ)dHx(θ) =
∞∑
h=1

ωhK(y | θh(x)). (1.2.10)

For recent applications of (1.2.10) see for instance Inacio de Carvalho et al. (2016) and de

Carvalho et al. (2019a). Other contributions in the regression context can be found in Müller

et al. (1996), Poynor and Kottas (2019), to name a few.

I now switch gears and move towards preparations on functional data analysis.
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1.3 Preparations on Functional Data Analysis

Context

The main contributions from Chapter 2 and 3 will require methods and concepts from

functional data analysis (including amplitude and phase variation, and Karhunen–Loève

decomposition), and thus I will review in this section background on these methods.

Functional data analysis (FDA) deals with the analysis and theory of data that are in

the form of a function, that is, data that can be seen as a random sample of functions

X1(t), . . . , Xn(t) for t in some interval I (see, for example, Fig. 1.3). This kind of objects can

be viewed as realizations of a one-dimensional stochastic process, which typically belongs to

the Hilbert space L2 and are intrinsically infinite-dimensional, so more flexibility is needed

for modeling this type of objects.

Is is important to stress that in some contexts (such as in Chapter 3) the random functions

of interest may not be “data” themselves but rather a functional parameter.
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Figure 1.3: Levels of arterial oxygen saturation for women with metabolic syndrome, see In-

ácio de Carvalho et al. (2016)

The foundations on FDA can be traced back to Grenander (1950) and Rao (1958), but

the term functional data analysis originates from Ramsay (1982) and Ramsay and Dalzell

(1991). A general introduction to main results in this field can be found in the monographs

of Ramsay and Silverman (2002a), Ramsay (2006) or Horváth and Kokoszka (2012).

FPCA and Karhunen–Loève Decomposition

The concepts to be introduced next are key for laying the groundwork of Chapter 3. I will

mostly follow Horváth and Kokoszka (2012) over this section.

Principal component analysis is a widely applied dimension-reduction tool for multivari-

ate data; the method has been extended for functional data and termed functional principal

component analysis (FPCA). The roots of the idea were given by Grenander (1950), but a

more comprehensive framework for statistical inference for FPCA was developed by Dauxois

et al. (1982).
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First, we introduce the general concept of covariance operator, its relationship with func-

tional principal components, and some decompositions that are derived from those.

Remark 1. All concepts in this section will be introduced assuming that X(t) is a random

function on L2(I) equipped with the Borel σ-algebra, E[X] = 0 and satisfy that

E[‖X‖2] = E
[∫

I

X2(t)dt

]
<∞. (1.3.1)

Definition 3 (Covariance Operator). Let X(t) be a random function obeying the conditions

in Remark 1. The covariance operator of X is defined as

C(Y )(t) = E [〈X, Y 〉, X] =

∫
I

E[X(t)X(s)]Y (s)ds, (1.3.2)

for any Y ∈ L2(I).

If E[X(t)] = µ(t) 6= 0, then the definition of covariance operator in (1.3.2) can be

modified as

C(Y )(t) = E [〈X − µ, Y 〉(X − µ)] =

∫
I

E[(X(t)− µ(t))(X(s)− µ(s))]Y (s)ds, (1.3.3)

for Y ∈ L2(I).

The covariance operator allows to us introduce the concept of eigenfunction and eigen-

values as follows.

Definition 4 (Eigenvalues and Eigenfunctions). Let X(t) be a random function obeying the

conditions in Remark 1, and let C(·)(t) be its covariance operator. A function h ∈ L2(I) is

the eigenfunction of X(t), with an associated eigenvalue λ, if the following equation holds

C(h)(t) = λh(t), (1.3.4)
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for all t ∈ I.

It can be shown that the covariance operator is symmetric and non-negative definite, and

so their eigenvalues must be non-negative. Thus, we can construct the spectral decomposition

of C as

C(h)(t) =
∞∑
k=1

λk

(∫
I

gk(s)h(s)ds

)
gk(t), (1.3.5)

where λk are the real-valued nonnegative eigenvalues in descending order and gk(t) are a

basis or orthogonal eigenfunctions.

Using (1.3.5), Karhunen and Loève (Karhunen 1946; Loève 1946) independently discov-

ered the functional principal component analysis (FPCA) expansion.

Definition 5 (Karhunen–Loève Decomposition). Let X(t) be a stochastic process in L2(I)

and let gk(t) be orthogonal eigenfunctions. The Karhunen–Loève decomposition is defined as

X(t) = µ(t) +
∞∑
k=1

θkgk(t), (1.3.6)

where

θk = 〈X(t)− µ(t), gk(t)〉 =

∫
I

{X(t)− µ(t)}gk(t)dt. (1.3.7)

If we truncate the series in right-hand-side of the (1.3.6) we have that

sup
t∈I

E

[
X(t)− µ(t)−

K∑
k=1

θkgk(t)

]
→ 0, as K →∞.

Hence, when K is large enough the truncated version of (1.3.6) provides a good approxima-

tion, and thus we can work with

X(t) ≈ µ(t) +
K∑
k=1

θkgk(t). (1.3.8)
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The expansion in (1.3.8) can be constructed using another type of bases, such as splines,

Fourier bases or wavelets, but what distinguishes the FPCA from other types of basis-

expansions, is that FPCA explains most of the variation in X in the L2 sense.

Now, we discuss the results described above but in the setting when we have a finite

sample; specifically, consider X1(t), . . . , Xn(t) a sample of random functions identically dis-

tributed with X. In this case, we can define the sample covariance operator as

C̃(Y )(t) =
1

n

n∑
i=1

〈Xi(t)− µ(t), Y (t)〉(Xi(t)− µ(t)), (1.3.9)

where µ(t) = n−1
∑n

i=1Xi(t) and Y ∈ L2(I). Using this we can obtain the Karhunen–Loève

decomposition as

Xi(t) = µ(t) +
J∑
k=1

θi,kgk(t), (1.3.10)

where J ≤ n, nC̃(gk)(t) = λkgk(t) and θi,k = 〈Xi(t)− µ(t), gk(t)〉.

The θi,k in (1.3.10) are called scores, and the gk functions are the principal components

of X. The θi,k are independent across i for a sample of independent trajectories and are

uncorrelated across k. Moreover, the scores {θi,k} obey the following conditions

∑
i

θi,k = 0,
∑
i

θi,kθi,s if k 6= s,
∑
i

θ2
i,k = λk. (1.3.11)

Karhunen–Loève Decomposition Estimation

In this section, I describe a method to learn about the functional components {gk} and the

scores {θi,k} which involves a n× n matrix instead the sample covariance operator C̃.

Let X1(t), . . . , Xn(t) be a random sample; our objective here is to find an estimator for

the functional components {gk} and scores {θi,k} as described in (1.3.10). To achieve this,
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we can construct the n× n matrix M = (Ms,k) with entries

Ms,k = 〈Xs(t)− µ(t), Xk(t)− µ(t)〉.

This matrix has the same nonzero eigenvalues as the sample covariance operator C̃ (Good

1969); and also its eigenvectors have a close relationship with the scores {θi,k}. Indeed, if we

consider the eigenvector pk = (p1k, . . . , pnk) associated to the nonzero eigenvalue λk we have

that

θi,k =
√
λkpik.

Since nC̃(gk)(t) = λkgk(t), then

gk(t) =
1√
λk

n∑
i=1

pik(Xi(t)− µ(t)) =

∑n
i=1 θi,kXi(t)∑n

i=1 θ
2
i,k

.

Therefore, we can be able to obtain estimators for {gk(t)} and {θi,k} only using the eigen-

values and eigenvector of matrix M .

Amplitude and Phase Variation in FDA

Chapter 2 will be focus on ideas, concepts, and methods from amplitude and phase variation,

and thus I will offer below some background on the subject.

In the context of random functions over some compact domain, the analysis of variation

of this function may entail two sources of variation: the first one is about fluctuations around

the mean level, that is, the variation in the y-axis direction; this type of variation is known

as amplitude variation. This variation is commonly found in multivariate analysis, so it is

more natural to understand and therefore, deal with it.

The second source refers to variations in the domain of the random function, that is,

continuous deformations or changes in the x-axis direction; this is known as phase variation
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and the continuous deformation is known as warp function. Phase variation can be seen as a

composition of the stochastic process with a random transformation which is defined in the

domain of the process.

In Fig. 1.4 we depict an example of amplitude or/and phase variation for one particular

function.
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Figure 1.4: Amplitude and phase variation. The blue line corresponds to the original function
and the gray lines correspond to functions with phase variation (left), amplitude variation
(center) and both types of variation (right).

Definition 6 (Warp Map). Let T be a function from a compact interval on itself. We say

that T is a warp map if it is a strictly increasing homeomorphism.

Different types of warp maps can be defined (Marron et al. 2015a) but here we will focus

on the case where the warp maps correspond to a homeomorphism from a compact interval

on itself. Some examples of warp maps obeying Definition 6 can be seen in Fig. 1.5; similar

warp maps will be generated in Chapter 2 and thus I will skip here the details on the exact

setup used for simulating these. With this concept of warp function, we can define the

warped process and thus formalize the concept of phase variation in a random function.
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Figure 1.5: Trajectories of two different types of warp maps as in Definition 6.

Definition 7 (Warped Stochastic Processes). Let X(t) be a random function defined on I

and let T be a strictly increasing random homeomorphism from I. The warped stochastic

process X̃(t) is defined as

X̃(t) = X ◦ T (t) = X(T (t)). (1.3.12)

Notice that the fact that T is a strictly increasing function means that it generates a

distortion of time but preserves its order.

And how do these concepts relate with the Karhunen–Loève decomposition in (1.3.6)?

To see the connection, consider a sample of independent realization of the process X(t), say

X1(t), . . . , Xn(t). A Karhunen–Loève decomposition of each random function yields

Xi(t) = µ(t) +
∞∑
k=1

θi,kgk(t). (1.3.13)

Eq. (1.3.13) leads to a better understanding of the concept of amplitude variation, as it im-

plies that the Xi are varying around the mean µ(t) by amplitude oscillations of the functions
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gk(t).

Of course, that is true if we do not have any phase variation present in the Xi(t); if we

have, then we need first remove it and this can be achieved as follows. Suppose that every

Xi(t) was been warped by an homeomorphism Ti(t); then the unwarped process is

X̃i(t) = Xi(T
−1
i (t)) = µ(T−1

i (t)) +
∞∑
k=1

θi,kgk(T
−1
i (t)), (1.3.14)

which has the same interpretation as above in the sense of amplitude variation but note

that Eq. (1.3.14) is a no longer Karhunen–Loève decomposition of Xi(t), as the functions

gk(T
−1
i (t)) are no longer eigenfunctions of Xi.

1.4 Selected Comments on Point Processes

I close the preparations for this thesis by recalling basics on point processes, and on how

the concept of phase variation can be adapted for point processes, so to facilitate reading

Chapter 2. The goal is not provide an encyclopedic account of the topic, but rather to

review concepts required for Chapter 2. The theory has its roots in Poisson (1837) where

the Poisson process was introduced. Since then a lot of developments have been made, which

are revised in the monographs by Daley and Vere-Jones (2003/2008). The definition of point

process is as follows.

Definition 8 (Point Process). Let S ⊂ Rk and suppose that for any A ⊂ S, N(A) is a

non negative integer-valued random variable. Then N(·) is called a point process (on S) if

N(φ) = 0 and N(A ∪B) = N(A) +N(B) for any pair of disjoint sets A and B.

A celebrated type of point process is the so-called Poisson point process. Formally, a

point process Π(·) defined on S ⊂ Rk is called a homogeneous Poisson process if
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(a) For any A = [a1, b1]× . . .× [ak, bk] ⊂ S, then

Π(A) ∼ Poisson

(
λ

k∏
i=1

(bi − ai)

)
, (1.4.1)

for some λ > 0.

(b) For any two disjoint sets A and B, then Π(A) ⊥ Π(B).

The parameter λ in (1.4.1) is called intensity parameter of the Poisson process. It is clear

that

λ
k∏
i=1

(bi − ai) =

∫
A

λdt.

When the intensity parameter becomes a function, say λ(t), then the process is called non-

homogeneous Poisson process. Therefore

Π(A) ∼ Poisson (Λ(A)) , Λ(A) =

∫
A

λ(t)dt. (1.4.2)

Let’s now introduce the idea of amplitude and phase variation in a point process context.

Amplitude variation, as we mentioned in Section 1.3, refers to fluctuations around the mean

level; in a point process setting, this can be understood through the covariance operator

C(A×B) = E[Π(A)Π(B)] − Λ(A)Λ(B). (1.4.3)

This covariance operator keeps track of the second order fluctuations of Π(A) around its

mean Λ(A), and also their dependence on the corresponding fluctuations Π(B) over Λ(B).

In this line, we can obtain this Karhunen–Loève decomposition as in (1.3.6) as follows

Π([0, t]) = Λ([0, t]) +
∞∑
n=1

ηnψn(t).
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This expression—as in Section 1.3—can be used for appreciating that phase variation in a

point process also involves assessing its variations around a mean level. Thus, phase-variation

on a point process is equivalent to phase-variation—in the sense described in Section 1.3—

over the mean measure Λ(·) = E[Π(·)]. To see this we will need to introduce some notation.

Let Π be a random point process over [0, 1] and let T be a random homeomorphism in the

same interval; then we define the warped version of Π, given T , as Π̃, where

E[Π̃(·) | T ] = Λ[T−1(·)].

Fig. 1.6 depicts an example with realizations of a phase-varying point process along with

their corresponding warp maps; similar processes will be generated in Chapter 2 and thus I

will skip here details on the exact setup used for simulating these data. This figure depicts

realizations of the original point process, their corresponding phase-varying point process

along with their corresponding registered versions as obtained using the method proposed

in the manuscript; details on the underlying processes can be found in Section 2.3.
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Figure 1.6: Realizations of the original point process (left, gray), this corresponding varying

point process (left, colored), along with their corresponding warp maps (right), plotted in

the same color palette

The framework of interest in Chapter 2 will require phase-variation over several realization

of the point process, which are warped versions of the original one, so we now make that

setup precise. The following definition follows from Panaretos and Zemel (2016).

Definition 9 (Phase-Variation on i.i.d. Copies of a Point Process). Let Π be a random

point process with E[Π(·)] = Λ(·). Let Π1, . . . ,Πn be n realizations of Π and let T1, . . . , Tn

be strictly increasing random homeomorphisms satisfying E[Ti(t)] = t. Then we define the

warped version of {Π1, . . . ,Πn} by {Π̃1, . . . , Π̃n}, where

Π̃i(·) = Ti #Πi(·) = Πi(T
−1
i (·)).

All primitive concepts for understanding the following chapters of this dissertation have

now been introduced. To complete this introductory chapter, we now to move on to the
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main contributions and the structure of this dissertation.

1.5 Main Contributions of this Thesis

This dissertation will propose and study novel flexible Bayesian models for setups that entail

families of random densities. Two specific contexts will be examined here: one involves phase-

varying point processes—in the sense introduced in Section 1.4; the other involves functional

principal component analysis—as introduced in Section 1.3. The common denominator

underlying these contexts is the need to model families of random measures to each of

which corresponds a different data generating process. On both contexts, prior processes

(Section 1.2) will be used so to devise priors on the target objects of interest. The main

contribution of this thesis is documented in Chapters 2 and 3, which aim to deliver the

following work packages:

Package 1: Aligning Multiple Phase-Varying Point Processes

In the framework of functional data analysis, several developments have been made on am-

plitude and phase variation (see for instance Srivastava et al. (2011), Marron et al. (2015a)),

but in a point processes framework the field is still in its infancy (Panaretos and Zemel

2016; Xu et al. 2017). Package 1 will focus on modeling phase variation in a multiple point

process setting by resorting to the setup in Panaretos and Zemel (2016); see Definition 9.

Specifically, I develop induced priors for warp maps via a Bernstein polynomial prior so to

learn about the structural measure of the point process and about the phase variation in

the process. In this framework, Package 1 pioneers the development of priors on spaces of

warping maps by proposing a novel Bayesian approach for modeling registration of multiple

point processes. Theoretical properties of the induced prior for the warp maps, including

support and posterior consistency, are established under a fairly mild proviso.
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Package 2: Borrowing Strength over a Family of Random Densities

Package 2 is instigated by the following question: “How to convert a prior on a space of den-

sities (e.g. DPM) into a prior on a family of densities—that could borrow strength across

samples?” Our starting point to answer this question stems from the setup of Kneip and

Utikal (2001). Specifically, Package 2 will aim to model families of random densities using

functional principal component analysis through the so-called Karhunen–Loève decomposi-

tion; see Section 1.3.6. The proposed approach defines a prior on the space of families of

densities. Theoretical properties are developed to ensure that the trajectories from an infinite

mixture belong to L2 which is a necessary condition for the Karhunen–Loève decomposition

to hold, and also to guarantee the full L1 support of the proposed prior.

1.6 Structure and Organization

The master-plan for this thesis is as follows. Chapters 2 and 3 contain the proposed solutions

for problems described in Packages 1 and 2, respectively. These chapters are self-contained

in terms of notations, definitions, and results. For the convenience of the reader, some parts

mentioned in the Introduction may be repeated on later chapters. In detail:

• Chapter 2 develops a novel semiparametric model over the space of warp functions and,

therefore, registration (aligning) of the multiple warped point processes. The main

contribution of this chapter relies on the construction of prior over a space of random

warp functions, obtain some key theoretical results such as full support and posterior

consistency and a real data application of our model in climatology. Also, numerical

experiments and simulation studies were conducted to assess the performance of our

method.

• Chapter 3 develops a novel data-driven prior to modeling and borrowing strength across
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an entire family of random densities. The main contribution of this chapter is to con-

struct a data-driven prior which satisfies some desirable properties and performs better

than other alternatives for families of random densities such as the dependent Dirichlet

mixtures. Indeed, simulation studies were conducted to assess the performance and

compare with competitors such as DPM and DDPM. Finally, the chapter ends with

an illustration using Galton’s parents height dataset.

Chapter 4, offers details about computing and implementations as the structure of sim-

ulations studies and sampling methods. Also, we comment on the implementations and

technical specifications of the instance used in the Google Cloud Platform to achieve the

results. We close the thesis in Chapter 5, by putting the main developments in perspective

and by discussing directions for future research.
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CHAPTER2
Bayesian Semiparametric Modeling of

Phase-Varying Point Processes†

We propose a Bayesian semiparametric approach for modeling registration of mul-

tiple point processes. Our approach entails modeling the mean measures of the

phase-varying point processes with a Bernstein–Dirichlet prior, which induces a

prior on the space of all warp functions. Theoretical results on the support of

the induced priors are derived, and posterior consistency is obtained under mild

conditions. Numerical experiments suggest a good performance of the proposed

methods, and a climatology real-data example is used to showcase how the method

can be employed in practice. Appendix A includes supplementary materials

† Joint work with Y. Zemel and M. de Carvalho.
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2.1 Introduction

A prototypical characteristic in the analysis of a random function X(t)—that distinguishes

it from classical multivariate analysis—is that it potentially exhibits two distinct layers of

stochastic variability. Amplitude variation is encapsulated in the fluctuations of X ≡ X(t)

around its mean function µ(t), and can be probed by linear tools, perhaps most prominently

the covariance operator of X and the subsequent Karhunen–Loève expansion. Phase varia-

tion amounts to variability in the argument t, usually modeled by a random warp function T

defined on the domain of definition of X, so that one observes realizations (discretized over

some grid) from the random function X̃(t) = X(T−1(t)) instead of X(t). In short, phase

variation is randomness in the t-axis, whereas amplitude variation pertains to stochasticity

in the X-axis.

Typically, one is interested in inferring properties of the original function X, rather than

those of X̃. In such situations phase variation can be thought of as a nuisance parameter,

and failing to account for it may result in a severely distorted statistical analysis: the mean

function and Karhunen–Loève expansion of X̃ are smeared and less informative than those of

X. Consequently, one needs to undo the warping effect of the phase variation by constructing

estimators T̂ for the warp functions, and composing them with the observed realizations

from X̃, a procedure known as registration, or alignment, of the functions. The registered

functions X̃i ◦ T̂i = Xi ◦T−1
i ◦ T̂i are then treated as distributed approximately as X, allowing

for their use in probing the law of X. For a textbook treatment on phase variation, we

refer to the books by Ramsay and Silverman (2002b, 2005); one may also consult the review

articles Marron et al. (2015b) and Wang et al. (2016).

In this chapter, we propose a Bayesian method for registering phase-varying point pro-

cesses. Our work is aligned with recent developments focused on modeling phase and ampli-

tude variation of complex objects that are not functional data per se, yet still carry infinite-
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dimensional traits. An intriguing example is indeed that of point processes, appearing as

spike trains in neural activity (e.g. Wu and Srivastava 2014), where phase variation can be

viewed as smearing locations of peaks of activity. See Fig. 2.1 for an example of such phase-

varying point processes (and Section 2.3 for more details on the underlying processes). Such

data can be transformed into functional data by smoothing and considering density functions

(Wu et al. 2013), but can be also be dealt with directly, replacing the ambient space L2 used

for functional data by a space of measures. Indeed, Panaretos and Zemel (2016) formalize

the problem and show how the Wasserstein metric of optimal transport arises canonically in

the point process version of the problem. Here we aim to devise a Bayesian model that is

both flexible and adapted to the warping problem in a point process setting in the sense our

priors for the warp functions obey the same classical phase variation assumptions of FDA

(functional data analysis). From a conceptual viewpoint, our model can be regarded as a

semiparametric Bayesian version of Panaretos and Zemel (2016), but by putting directly a

prior on the space of all random measures on the unit interval it allows for straightforward

inference from posterior outputs—both in terms of credible bands for warp functions, and

credible intervals for registered points. By modeling the mean measure of each phase-varying

point process with a random Bernstein polynomial (Petrone 1999a,b), we are able to show

that the support of the induced priors for the warping functions and collections of registered

points is ‘large’ in the sense made precise in Section 3.2.4–2.2.4. Posterior consistency is

established under a proviso that is asymptotically equivalent to that of Panaretos and Zemel

(2016), but our large sample results only require the number of points in each process to

increase.
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Figure 2.1: Realizations of the original point process (Left), their corresponding phase-

varying point process (Middle) along with their corresponding registered versions as obtained

using the method proposed in the manuscript (Right); details on the underlying processes

can be found in Section 2.3. Appendix A includes supplementary materials.

Section 2.2 develops details of our approach, in Section 2.3 we report numerical exper-

iments, and Section 2.4 includes a climatology real-data example. Concluding remarks are

given in Section 2.5. Proofs of results characterizing the prior and limiting posterior can be

found in the Section 2.6.

2.2 Random Bernstein Polynomial-Based Registration of

Multiple Point Processes

2.2.1 Random Bernstein Polynomials

Random Bernstein polynomials were introduced by Petrone (1999a,b) and are defined as

B(t | k,G) =
k∑
i=0

G

(
i

k

)(
k

i

)
ti(1− t)k−i, (2.2.1)
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where G is a random function on [0, 1] and k is a (positive) integer-valued random variable.

It is clear that when G is a distribution function, so is B(t | k,G), and if in addition G(0) = 0

then B(t | k,G) has a density given by

b(t | k,G) =
k∑
i=1

wi,kβ(t | i, k − i+ 1), (2.2.2)

where wi,k = G(i/k) − G((i − 1)/k) and β(t | a, b) is a beta density function with pa-

rameters a, b > 0. Since G(1) = 1 it follows that (w1,k, . . . , wk,k) is in the unit simplex

Sk = {(w1, . . . , wk) ∈ [0, 1]k :
∑k

i=1wi = 1}; if G has a continuous density g, then b(t | k,G)

approximates g uniformly as k → ∞ (see Lemma 3). Following Petrone (1999a,b) we have

the next definition.

Definition 10. The probability measure π induced by B in (2.2.1), on the set ∆ of all

continuous distribution functions defined on [0, 1], is called Bernstein prior with parameters

(k,G). In symbols, π ≡ π(k,G).

Further details on random Bernstein polynomials can be found in Ghosal and Van der

Vaart (2015, Section 5.5). To avoid unnecessarily burdening notation, measure-theoretical

considerations will be kept to a minimum (including the measures with respect to which

expected values are defined).

2.2.2 Bayesian Semiparametric Inference for Phase-varying Point

Processes

Let Π be a point process in [0, 1], with finite second moment: E{(Π[0, 1])2} <∞ and denote

its (finite) mean measure by λ(·) = E{Π(·)}. Estimation of λ (say λ̂) is straightforward

when one has access to multiple realizations {Π1, . . . ,Πn} from Π, with λ̂ asymptotically

normal (Karr 1991, Proposition 4.8). Suppose, however, that one instead observes a sample
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{Π̃1, . . . , Π̃n} with

Π̃i = Ti#Πi,

where Ti#Πi(·) = Πi{T−1
i (·)} denotes the push-forward of Πi through Ti, for all i. In other

words, if a given realization of Πi is the collection of points {xi,j}mi
j=1, then one observes the

deformed collection {x̃i,j}mi
j=1 ≡ {Ti(xi,j)}

mi
j=1 , for all i. Here, {T1, . . . , Tn} is a sequence of

random warp functions, that is, increasing homeomorphisms on [0, 1]. A target of interest

will be on learning about the warp functions, so to register the point processes. To achieve

this goal we model the (conditional) mean measures of the phase-varying point processes with

a Bernstein–Dirichlet prior, which induces a prior on the space of all warp functions. The

conditional mean measure of the warped version Π̃i given Ti is Λi(·) = E{Π̃i(·) | Ti}, for all

i. We impose the rather standard assumptions that E{Ti(t)} = t (unbiasedness) for all t ∈

[0, 1], and that the collection {T1, . . . , Tn} is independent of {Π1, . . . ,Πn}; the assumptions of

unbiasedness and monotonicity of warp functions are sine qua non in the classical FDA phase

variation literature, often accompanied with additional conditions (e.g. Tang and Müller

2008; Wang et al. 2016). In words, the assumption is tantamount to requiring that the

average time change E[T (x)] to be the identity: on average, the “objective” time-scale should

be maintained, so that time is not sped up or slowed down. The assumptions of unbiasedness

and monotonicity are key for identifiability. Finally, it follows that the conditional mean

measure of the warped version Π̃i given Ti is Λi(·) = E{Π̃i(·) | Ti}, for i = 1, . . . , n.

To learn about Fi(t) =
∫ t

0
Λi(dx), for t ∈ [0, 1], we set the prior

Fi(t) = B(t | ki, Gi), t ∈ [0, 1], (2.2.3)

where {k1, . . . , kn} is a sequence of independent integer-valued random variables and {G1, . . . , Gn}

is a sequence of independent random measures. In a more concrete specification of (2.2.3),

we proceed as follows. Let {x̃i,j}mi
j=1 be the points corresponding to Π̃i, and for i = 1, . . . , n
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we set

x̃i,j | Fi ∼ Fi, j = 1, . . . ,mi, Fi(t) = B(t | ki, Gi),

Gi | α ∼ DP(α,G∗), ki ∼ ρ(k),

(2.2.4)

where ρ is a probability function over N. Here ‘DP’ stands for Dirichlet process (Ferguson

1973), with precision parameter α > 0 and centering distribution G∗ = E(Gi). To complete

the model specification we set G∗ = Beta(a0, b0) and α ∼ Gamma(a0, b0), for i = 1, . . . , n.

More sophisticated versions of (2.2.4) would entail specifying a different precision and cen-

tering for the DP per each point process; for simplicity, we will focus on (2.2.4). Below, we

assume that the {Gi} and {ki} are independent.

Now, {F1, . . . , Fn}, specified as in (2.2.3), can be used to induce a prior F on the mean

measure λ of the random point process Π and on the warp maps Ti. The prior F will be

centered around the structural mean λ in the Fréchet mean sense that λ is the closest to

F in expectation, that is, Eλ{d2(λ, F )} ≤ Eλ{d2(γ, F )}, for all diffuse measures γ on [0, 1].

An obvious question that arises is what metric d should one use, but Wasserstein distance

(Santambrogio 2015; Panaretos and Zemel 2019) has been shown to be the canonical metric

for phase-varying point processes by Panaretos and Zemel (2016, Section 3):

d(µ, ν) = inf
Q∈Γ(µ,ν)

√∫ 1

0

{Q(x)− x}2µ(dx). (2.2.5)

By abuse notation below we identify a measure µ with its distribution function Fµ(t) =

µ{[−∞, t]}. Here Γ(µ, ν) is the collection of functions Q : [0, 1]→ [0, 1] such that Q#µ = ν.

(If µ is not diffuse, then Γ(µ, ν) may be empty and the definition of d needs to be modified,

but we will only have to deal with diffuse measures in the sequel.) Since Fréchet averaging

with respect to Wasserstein distance amounts to averaging of quantile functions (Agueh and

Carlier 2011), the prior on F is induced from the prior on {F1, . . . , Fn} as the probability
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law of

F (t) =

(
1

n

n∑
i=1

F−1
i

)−1

(t), t ∈ [0, 1]. (2.2.6)

The random Bernstein polynomial-induced prior on each Ti defines the optimal transport

map of F onto Fi (Santambrogio 2015):

Ti = F−1
i ◦ F. (2.2.7)

Since F1, . . . , Fn are independent, identically distributed and increasing distribution func-

tions, it follows that the Ti are homeomorphisms with E{Ti(t)} = t. Indeed, by construction

it can be shown that T1(t)+ · · ·+Tn(t) = nt for every t, T1, . . . , Tn are identically distributed

given F and so, E(Ti | F ) = E(Ti′ | F ) for every i 6= i′, and taking expectation in both sides,

we have that E(Ti) = E(Ti′); therefore,

nE{Ti(t)} = E{T1(t)}+ · · ·+ E{Tn(t)} = E{T1(t) + · · ·+ Tn(t)} = nt, (2.2.8)

and thus it follows that E{Ti(t)} = t, for i = 1, . . . , n.

The random Bernstein polynomial-induced priors on the registered point processes is

constructed by pushing them forward through the registration maps

Πi = T−1
i# Π̃i, i = 1, . . . , n. (2.2.9)

The posterior sampling for the warping maps and registered points is then conducted

as follows. Let Fi,[1], . . . , Fi,[M ] be posterior samples from Fi, for i = 1, . . . , n, which can

be obtained by Gibbs sampling as described in Ghosal and Van der Vaart (2015, Section

5.5); then, for each j = 1, . . . ,M we get F[j] = (
∑n

i=1 F
−1
i,[j]/n)−1 and so, Ti,[j] = F−1

i,[j] ◦ F[j]

and Π[j] = T−1
i,[j] #Π̃i. Finally, pointwise estimation for mean measure, warp functions, and
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registered points are given by the posterior means,

F̂ =
1

M

M∑
j=1

F[j], T̂i =
1

M

M∑
j=1

Ti,[j], Π̂i =
1

M

M∑
i=1

Πi,[j]. (2.2.10)

Credible intervals or pointwise credible bands can be also directly obtained from the relevant

quantiles of the corresponding posterior outputs.

2.2.3 Kolmogorov–Smirnov, Wasserstein, and Kullback–Leibler sup-

ports of induced priors

As it will be shown below, full support of the relevant parameters in our setup holds, under

conditions on the support of the law of the ki and on that of w1,ki , . . . , wki,ki | ki. Extending

the assumptions in Petrone (1999a), we assume that the prior probability function of ki

is positive, that is pi(k) > 0 for i = 1, . . . , n, and that w1,ki , . . . , wki,ki | ki has a family

of conditional densities li(w1,ki , . . . , wki,ki | ki) > 0, for every (w1,ki , . . . , wki,ki) ∈ Ski and

for every sequence of independent integer valued random variables {k1, . . . , kn}. Define the

supremum norm

‖F −H‖∞ = sup
t∈[0,1]

|F (t)−H(t)|.

Below, F ≡ (F1, . . . , Fn) denotes the joint Bernstein prior and Ni ≡ Πi([0, 1]) > 0 is the

total number of points in the ith point process, for i = 1, . . . , n.

Theorem 2. Let F1, . . . , Fn
iid∼ π with Fréchet–Wasserstein mean F , and with induced pri-

ors Ti and Πi as defined in (2.2.7) and (2.2.9). For any continuous strictly increasing

F1, . . . ,Fn ∈ ∆, with Fréchet–Wasserstein mean F, transport maps Ti = F−1
i ◦ F, and reg-

istered discrete measures Pi = T−1
i# Π̃i, and for any ε > 0 the following events occur with
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positive probability:

(a) {F : ‖Fj − Fj‖∞ < ε, j = 1, . . . , n}, (b) {F : ‖F − F‖∞ < ε},

(c) {F : ‖Ti − Ti‖∞ < ε}, (d) {F : d(Πi/Ni, Pi/Ni) < ε},

for i = 1, . . . , n.

Claims (a), (b), and (c) in the Theorem 2 respectively state that the joint Bernstein prior,

the Fréchet–Wasserstein mean, and the warp functions have large Kolmogorov–Smirnov sup-

port. Claim (d) states that the registered point processes have large Wasserstein support.

The proof actually shows that the intersection of these four events (a)–(d) has positive prob-

ability. While the latter properties may not look surprising ex-post, as their proofs show,

they are not straightforward facts.

The characterization of the Kullback–Leibler (KL) support is more challenging. By

definition, a density f is said to possess the Kullback–Leibler (KL) property relatively to a

prior π if for any ε > 0 one has that π{H : KL(F,H) < ε} > 0, where

KL(F,H) =

∫ 1

0

h(t) log
h(t)

f(t)
dt,

with F and H denoting the distribution functions respectively corresponding to f and h.

Random Bernstein polynomials satisfy the Kullback–Leibler property (Petrone andWasser-

man 2002, Theorem 2). The following theorem inspects the permanence of the Kullback–

Leibler property on the functionals of interest, and it shows that the property is preserved

for Fréchet–Wasserstein mean and the warping functions.

Theorem 3. Let F1, . . . , Fn
iid∼ π with Fréchet–Wasserstein mean F and with transport maps

Ti = F−1
i ◦F as defined in (2.2.7). For any ε > 0 and strictly increasing F1, . . . ,Fn ∈ ∆ with

densities fi that are continuous on (0, 1), Fréchet–Wasserstein mean F and transport maps

Ti = F−1
i ◦ F, F also has a density f and:
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(a) If
∫ 1

0
f(x) log f(x)dx <∞ then KL(F,F) < ε with positive probability.

(b) If each fi is strictly positive on (0, 1), then with positive probability KL(Ti,Ti) < ε for

all i = 1, . . . , n.

Remark 2. The densities fi can be unbounded or approach zero near 0 or 1. The condition∫ 1

0
f(x) log f(x)dx < ∞ in (a) is very weak and is satisfied when f is a beta density with

arbitrary (positive) parameters. This condition is, in fact, necessary; if it fails to hold, then

KL(F,F) = ∞ almost surely. The assumptions on the densities can be further relaxed to fi

having finitely many discontinuity points on [0, 1], and for part (b) fi may vanish on finitely

many points on [0, 1]. We refrained from this level of generality for the purpose of clarity

and because the current version includes the most important case of beta distributions.

Theorem 3 shows that under mild conditions, the Fréchet–Wasserstein mean and the

warping functions possess the Kullback–Leibler property with respect to the prior on F

induced from F1, . . . , Fn via (2.2.6). We now study the large-sample behavior of the posterior.

2.2.4 Posterior consistency

Contrarily to Panaretos and Zemel (2016, Theorem 1), our asymptotic theory does not

require n→∞; indeed we only require that as mi →∞, with i = 1, . . . , n, for any finite n.

Yet note that the consequence is that under this assumption one is only able to approximate

warping functions of the type Ti = F−1
i ◦F, for all i, where F is the Fréchet–Wasserstein mean

of F1, . . . ,Fn. This proviso is less and less restrictive as n increases, and it is asymptotically

compatible with that of Panaretos and Zemel (2016), as indeed if the Ti are independent and

identically distributed—rather than fixed as assumed in Theorem 3—then it follows that as

n→∞,
1

n

n∑
i=1

Ti(t)→
p
E{T1(t)} = t.
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The following result holds.

Theorem 4. Under the same conditions as in Theorem 3, if mi →∞ for i = 1, . . . , n, then

the posteriors from the priors induced by (2.2.6) and (2.2.7) are respectively Kolmogorov

consistent at F and Ti, for all i.

This result closes the large sample properties of our methods; we next focus on assessing

their finite-sample properties.

2.3 Numerical Experiments and Computing

2.3.1 Small n, Large m

As our asymptotic theory does not require n→∞, we start by assessing performance of the

proposed methods in a small n, large m setting. We generate random samples xi,1, . . . , xi,mi
|

mi, from

λ(t) = Φ(t | 0.5, (0.15)2), mi ∼ Poisson(L),

for i = 1, 2, 3, with L = 150 and Φ(t | µ, σ2) denoting the normal distribution function. Then

the warped data x̃i,j = Ti(xi,j) are obtained using


Ti(t) = t+

(
ai − 1

2

)
sin(bitπ)(biπ)−1, i = 1, 2,

T3(t) = 3t− T1(t)− T2(t),

where a1, a2
iid∼ Unif([0, 1/4]∪ [3/4, 1]) and b1, b2

iid∼ Unif{1, 2}. We clearly have that E(Ti) = t

since E(aj − 1/2) = 0, for each i = 1, 2, 3 and therefore these warp maps are in line with the

model assumptions.

A version of the proposed semiparametric approach in Section 2.2 can be implemented
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Figure 2.2: True (dashed red) and estimated (solid black) warp functions along with credible
bands. The estimators are constructed as the posterior mean of the induced prior as (2.2.7).

with the aid of the R package Rmpp, which implements a version of the algorithm in Petrone

(1999a, p. 383). Fig. 2.2 shows the estimators of each of the three warp maps through the

posterior mean of the induced prior defined in (2.2.7), along with their credible bands and

the true warp maps. From Fig. 2.2 it can be observed that our estimators are reasonably

in line with the true warp functions. As a consequence, the method recovers quite well the

original point processes, as can be seen when comparing the left and right panels of Fig. 2.3.
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Figure 2.3: Left: Realizations of the original point process from the setup of Section 2.3.1

in the small n, large m regime. Middle: Their corresponding phase-varying point process.

Right: Their corresponding registered versions.

A Monte Carlo study was conducted in this setting based on B = 50 simulated datasets.

We apply our method to each, and then calculate the Monte Carlo L2-Wasserstein distance
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mean (WDM) by

ŴDM =
1

B

B∑
b=1

n∑
i=1

d(Π̂
[b]
i ,Π

[b]
i ), (2.3.1)

where the superscript [b] denotes the corresponding object computed from the bth simulated

dataset, in order to give a performance of our methods when n is small (n = 3) and the

mi’s are large. We obtained a value of 0.01274. When taking L = 75 instead of 150

the obtained value of ŴDM was 0.01697, in accordance with the intuition that this value

decreases with L. Boxplots of d(Π̂
[b]
i ,Π

[b]
i ) are given in the Appendix A.2.1, for all i. In

the Appendix A.2.2 we also include an additional simulation study suggesting satisfactory

performance of the methods under misspecification, with data being warped via biased warp

maps (i.e. E(T ) 6= t).

2.3.2 Large n, Small m

For comparison with Panaretos and Zemel (2016) we now assess performance over a large n

setup. We generate random samples xi,1, . . . , xi,mi
| mi, from

λ(t) = 0.2φ(t | 0.25, 0.022) + 0.8φ(t | 0.75, 0.032), mi ∼ Poisson(L), i = 1, . . . , n = 30,

with φ(t | µ, σ2) denoting the normal density function and L = 50. The warped data

x̃i,j = Ti(xi,j) are obtained using

Ti(t)
D
= U ζK1(t) + (1− U) ζK2(t), ζk(t) =


t, k = 0,

t− sin(πtk)

|k|π
, otherwise,

where U ∼ Unif(0, 1), Kj
D
= V1V2 with V1 ∼ Poisson(3) and P (V2 = −1) = P (V2 = 1) = 1/2.

We start by illustrating our method on this setup on a single run-experiment; a Monte
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Carlo study was also conducted this setting along the same lines as in Section 2.3.1 and it will

also be reported below. A realization of the original point process can be found in Fig. 2.1.

After estimating F1, . . . , Fn using random Bernstein polynomials we obtain the posterior

Fréchet mean depicted in Fig. 2.4. The posterior mean is quite similar to the kernel-based

estimator of Panaretos and Zemel (2016), and both are similar to the true Fréchet mean.

Fig. 2.4 also includes posterior inference for the warp functions. To examine the inference

for warp functions in a greater level of detail Fig. 2.5 presents the posterior mean Bernstein

polynomial warp function along with credible bands for i = 5. As it can be observed from

the latter figure, our estimator follows closely that of Panaretos and Zemel (2016), and is

reasonably in line with the original warp function; similar evidence holds for the remainder

values of i (see Appendix A.2.1). As expected, both estimators have however more difficulty

in recovering the true value in the center of unit interval as there tends to be much less

data on that region, as can also be seen from Fig. 2.5; it may seem surprising that credible

bands are smaller on the center of unit interval, but this is due to an extrapolation issue:

Since very few warped points are observed on that region, posterior simulated trajectories

overconfidently consider the warp function to be constant there.

While the theoretical claims in Section 2.3.2 extend those of Panaretos and Zemel (2016)—

in the sense that under extra conditions they support the use of the methods even under a

small n large m setting—numerical experiments in the Appendix A suggest that the point-

wise performance of our methods may not dominate that of Panaretos and Zemel (2016).

Fig. 2.5 presents additionally credible intervals for randomly selected registered points for

each registered point process. Observe that wider intervals are associated to points falling

on the interval separating the two ‘clusters’ of points.
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Figure 2.4: Left: Posterior Bernstein polynomial Fréchet mean (solid black), kernel smooth-
ing Fréchet mean (solid red) and original Fréchet mean (grey dashed line). Right: Poste-
rior mean Bernstein polynomial warp functions colored according to the same palette as in
Fig. 2.1.
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registered points for each registered point process.
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2.4 Application: Tracking Phase Variation of Annual Peak

Temperatures

We now showcase how our method can be used for tracking the phase variation of annual

peak temperatures, that is, temperatures above or below a threshold. Peaks of temperature

are related with a variety of hazardous events—including heat-related mortality, destruction

of crops, wildfires—and have a direct impact on a wealth of economic decisions—such as

demand for fuel and electricity. A better understanding of the variation of the regularity of

these peaks is thus of the utmost importance from an applied perspective. A main target of

our analysis will be on assessing the variation of the onset of temperature peaks, as well as

quantifying how atypical is a certain year’s pattern of such peaks. Our analysis has points

of contact with the subject of shifts in seasonal cycles (e.g. late start of spring, or growing

seasons), which is of wide interest in biology and climatology (e.g. Menzel and Fabian 1999;

Schwartz et al. 2006). To illustrate how the method can be used for such purpose we

gathered data from “National Centers for Environmental Information of National Oceanic

and Atmospheric Administration (NOAA)” (https://www.ncdc.noaa.gov/), that consist of

average daily air temperatures (in ◦F, rounded to the nearest integer) of Santiago (Chile) from

April, 1990 to March, 2017. Let x̃i,j be the temperature on day i, year j. Below, we focus

on the point processes of annual peaks over threshold, {x̃+
i,j ≥ u+

j }, and annual peaks below

threshold, {x̃−i,j ≤ u−j }; in practice we set the thresholds u+
j and u−j using the 95% and 5%

quantiles of temperature over year j, and this results inm+
1 , . . . ,m

+
n andm−1 , . . . ,m−n ranging

from 19 to 32. The supplementary material includes a sensitivity analysis based on the 97.5%

and 2.5% quantiles; the main empirical findings are tantamount to the ones presented here.

In Fig. A.6 we present the point processes of interest along with the corresponding warping

functions for peaks above the threshold (T+
j ) and peaks below the threshold (T−j ). For the

analysis of annual peaks over threshold, we fully support the warping functions between the
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minimum and maximum times corresponding to the pooled exceedances above the threshold;

we proceed analogously for the analysis of annual peaks below the threshold.

To interpret Fig. A.6 we first focus on annual peaks below the threshold, for which there

are at least two patterns of points that readily look unusual to the naked eye: 1991, for

which there was an atypical cold weather event almost taking place in the summer; 2010,

given that lower temperatures peaked later on a concentrated period. The fact that these

patterns of points look unusual agrees with what can be observed from the corresponding

warping functions, that are among the ones that further deviate from the identity; cf Fig. 6

and 7 from the supplementary material. In terms of peaks above the threshold, note how the

antepenultimate pattern of points started much later than all the remainder, thus meaning

that higher temperatures peaked much later than expected.

To assess how atypical is the climatological pattern of onset of peaks, we define the

following measures to which we refer as scores of peak irregularity (spi), and for temperatures

above and below a threshold are respectively defined as

spi+ =

∫ 1

0

|T+
j (t)− t| dt, spi− =

∫ 1

0

|T−j (t)− t| dt; (2.4.1)

to combine peaks over and below a threshold, we also define a global spi = (spi+ + spi−)/2.

Fig. A.7 depicts the scores of peak irregularity over time for peaks above and below a thresh-

old. Fig. A.7 is coherent with what was expected given the comments above surrounding

Fig. A.6 on the patterns of points that looked immediately atypical, and on the shape of the

corresponding warping functions.
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Figure 2.6: Left: Point processes of annual peaks for peaks above (red) and below (blue) the
thresholds. Middle and Right: Corresponding posterior mean warp functions in the same
palette of colors.

1990 2000 2010

0
.0

0
0
.0

4
0
.0

8
0
.1

2

 

Time (in years)

S
P

I−

1990 2000 2010

0
.0

0
0
.0

4
0
.0

8
0
.1

2

 

Time (in years)

S
P

I+

1990 2000 2010

0
.0

0
0
.0

4
0
.0

8
0
.1

2

 

Time (in years)

S
P

I
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47



2.5 Closing Remarks

We propose a semiparametric Bayesian approach for the purpose of separating amplitude

and phase variation in point process data. This paradigm has the advantage of providing a

straightforward construction of credible sets via the posterior distribution, and in particular,

we are able to quantify the uncertainty in learning not only the structural mean measure λ,

but also the warping functions Ti and the latent point processes Πi. The Bernstein–Dirichlet

prior interweaves elegantly with the Wasserstein geometry of optimal transport. Indeed, its

favorable support properties (as established by Petrone and Wasserman 2002) carry over to

the induced priors on the structural mean measure λ and all sufficiently regular warping

functions, allowing to obtain Bayesian consistency in a genuinely infinite-dimensional setup.

A natural question would be extending this work to the case of spatial point process

supported on e.g., [0, 1]D with D > 1, as explored by Boissard et al. (2015) and Zemel

and Panaretos (2017); a natural extension of our work to this setup would entail modeling

the mean measures of the corresponding spatial point processes via multivariate Bernstein

polynomials (Zheng et al. 2009). The computation of the empirical Fréchet–Wassertein mean

can no longer however be done in closed form, requiring numerical schemes (Peyré and Cuturi

2018). From a statistical viewpoint, another natural avenue for future research would be on

modeling the phase variation of point processes conditionally on a covariate, by resorting to

predictor-dependent versions of the Bernstein–Dirichlet prior (Barrientos et al. 2017).

2.6 Technical Details

2.6.1 Auxiliary Lemmas

We begin by stating a number of auxiliary lemmas that will be useful to deriving our main

results. Lemma 1 is often known as Pólya’s theorem (Lehmann and Romano 2006, The-
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orem 11.2.9). Lemma 2 states that inversion is continuous in supremum norm (Lehmann

and Romano 2006, Lemma 11.2.1). Lemma 3 discusses sufficient conditions for (local) uni-

form convergence of the Bernstein polynomial density; see Ghosal and Van der Vaart (2015,

Lemma E.3) for a related result under further smoothness assumptions on f. Proofs of

Lemmas 1–3 are available from Appendix A.1.

Lemma 1. Let F be a continuous distribution function and let Fn be a sequence of distribu-

tion functions that converge weakly to F. Then ‖Fn − F‖∞ → 0.

Lemma 2. Let F : [0, 1] → [0, 1] be continuous, strictly increasing and with F (0) = 0,

F (1) = 1. Then F−1 is also continuous and strictly increasing, and for any ε > 0 there

exists δ > 0 such that for any continuous strictly increasing H : [0, 1]→ [0, 1]:

(a) If ‖F−H‖∞ < δ, then ‖F−1 −H−1‖∞ < ε.

(b) If ‖F−1 −H−1‖∞ < δ, then ‖F−H‖∞ < ε.

Lemma 3. Let F : [0, 1]→ R be differentiable with derivative f that is continuous on (0, 1).

Then for any a > 0, b(x | k,F) as defined in (2.2.2) converges to f uniformly on [a, 1 − a].

If f is continuous on [0, 1], then b(x | k,F)→ f uniformly on [0, 1].

As the proof shows, the uniform converges holds on any set bounded away from the

discontinuity points of f.

2.6.2 Proofs of Main Results

Proof of Theorem 1.

(a) The proof follows from Theorem 3 in Petrone (1999b), combined with the fact that by

assumption F1, . . . , Fn
iid∼ π. Indeed,

π(n){F : ‖Fj − Fj‖∞ < ε, j = 1, . . . , n} =
n∏
j=1

π{Fj : ‖Fj − Fj‖∞ < ε} > 0.
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(b) From Theorem 2(a) and Lemma 2 it follows that

π(n){F : ‖F−1
i − F−1‖∞ < η, i = 1, . . . , n} > 0, η > 0. (2.6.1)

Also, note that

‖F−1 − F−1‖∞ =

∥∥∥∥ 1

n

n∑
i=1

F−1
i − F−1

∥∥∥∥
∞
≤ 1

n

n∑
i=1

‖F−1
i − F−1‖∞. (2.6.2)

From (2.6.2) and Lemma 2, it follows that to have ‖F − F‖∞ < ε it would suffice

having ‖F−1
i − F−1‖∞ < δ for all i, thus implying that

π(n){F : ‖F − F‖∞ < ε} ≥ π(n){F : ‖F−1
i − F−1‖∞ < δ} > 0.

(c) Lemma 1 and the assumption that the Fj are (uniformly) continuous on [0, 1] imply

that the F−1
i are also uniformly continuous, for i = 1, . . . , n. Given η > 0, let δ > 0

such that |t − s| ≤ δ ⇒ |F−1
i (t) − F−1

i (s)| ≤ η, for i = 1, . . . , n. From Theorem 1 (a)

and (b) it respectively follows

π(n){F : ‖Fi − Fi‖∞ ≤ η, i = 1, . . . , n} > 0, π(n){F : ‖F − F‖∞ ≤ δ} > 0.

Thus, π(n){F : |F (t)− F(t)| < δ, t ∈ [0, 1]} > 0, and this implies that the event


F−1
i (F (t)) ≤ F−1

i (F(t) + δ) ≤ F−1
i (F(t) + δ) + η ≤ Ti(t) + 2η,

F−1
i (F (t)) ≥ F−1

i (F(t)− δ) ≥ F−1
i (F(t)− δ)− η ≥ Ti(t)− 2η,

(2.6.3)

occurs with positive probability, for i = 1, . . . , n. This thus yields that

π(n){F : ‖Ti − Ti‖∞ ≤ 2η} > 0, i = 1, . . . , n.
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(d) The strategy of the proof is similar to that Panaretos and Zemel (2016, p. 798). We

start by noting that (T−1
i ◦ Ti) ∈ Γ(Πi/Ni, Pi/Ni) as a consequence of

Πi = T−1
i #Π̃i = (T−1

i ◦ Ti)#Pi, i = 1, . . . , n.

It thus follows that

d2(Πi/Ni, Pi/Ni) ≤
∫ 1

0

{(T−1
i ◦ Ti)(x)− x}2 Πi(dx)

Ni

≤ ‖{T−1
i ◦ Ti − x}2‖∞.

To complete the proof just note that Theorem 2(c) implies that for all i

π(n){F : ‖T−1
i ◦ Ti − x‖∞ < ε} = π(n){F : ‖T−1

i − Ti‖∞ < ε} > 0,

from where the final result follows.

Proof of Theorem 3. The derivatives of the induced priors (2.2.6) and (2.2.7) will be re-

quired for the proofs, and are respectively

f(x) = n

(
n∑
i=1

1

fi(Ti(x))

)−1

, T ′i (x) =
f(t)

fi(Ti(x))
, i = 1, . . . , n, fi = F ′i .

(a) Let fi be the density corresponding to Fi and f that corresponding of F. Then

|f(x)− f(x)| = n

∣∣∣∣∣∣
(

n∑
i=1

1

fi(Ti(x))

)−1

−

(
n∑
i=1

1

fi(Ti(x))

)−1
∣∣∣∣∣∣ . (2.6.4)

We first assume that inf fi ≥ 2l > 0 for all i, and consequently inf f > 2l as well. For

g : [0, 1]→ R and 1/2 > a > 0 denote ‖g‖∞,a = supx∈[a,1−a] |g(x)|. We shall show that
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the event

Ωa,ρ = {fi ≥ l & ‖fi − fi‖∞,a < ρ, i = 1, . . . , n}, a, ρ > 0

has positive probability for all a, ρ > 0. Let ki be large so that ‖b(x | ki, fi)− fi‖∞,a <

ρ/2 (using Lemma 3), set k = maxi ki and denote b(x | k, fi) =
∑k

j=1wi,jβ(x | j, k −

j + 1). The set of polynomials with slightly perturbed coefficients

Pi,δ =

{
p =

k∑
j=1

w′i,jβ(x | j, k − j + 1) : (w′i,1, . . . , w
′
i,k) ∈ Sk with |w′i,j − wi,j| < δ, for all j

}

has positive probability under the Bernstein polynomial prior, for all δ > 0, as a

consequence of Petrone and Wasserman (2002, p. 84) as the corresponding set where

(w′i,1, . . . , w
′
i,k) lies is open in the unit simplex; in addition, each p ∈ Pi,δ satisfies

‖p− b(x | k, fi)‖∞ ≤ δk max
1≤j≤k

sup
x
β(x | j, k − j + 1) <∞

because 1 ≤ j ≤ k. Thus for small enough δ, ‖p−b(x | k,Fi)‖∞,a < ρ/2. Since the Fi’s

are independent, there is a positive probability that fi ∈ Pi,δ for all i, which implies

that ‖fi − fi‖∞,a < ρ for all i. Moreover, as fi ≥ 2l, wi,j ≥ 2l/k and if δ < l/k this

yields w′i,j ≥ l/k and thus b(x | k,Fi) ≥ l. Hence Ωa,ρ has positive probability.

Fix ε > 0; we wish to show that ‖Fi−Fi‖∞ ≤ ε holds on Ωa,ρ for appropriate a, ρ > 0.

Let 1/2 > a > 0 such that Fi(a) < ε/3 and Fi(1− a) > 1− ε/3, and let ρ < ε/3. When

Ωa,ρ holds, we have

1 ≥ Fi(1− a) = Fi(a) +

∫ 1−a

a

fi(x)dx ≥ Fi(a) +

∫ 1−a

a

fi(x)dx− ρ(1− 2a)

= Fi(a) + Fi(1− a)− Fi(a)− ρ(1− 2a).
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Thus

−ε ≤ Fi(a)− Fi(a) ≤ 1− Fi(1− a) + ρ(1− 2a) < 2ε/3.

For x ≤ a we have

−ε ≤ Fi(x)− Fi(x) ≤ Fi(a)− Fi(x) ≤ 1− Fi(1− a) + ρ(1− 2a) + Fi(a)− Fi(x) ≤ ε.

Thus |Fi−Fi| ≤ ε on [0, a] and by a similar argument the same holds on [1− a, 1]. For

x ∈ [a, 1− a] observe that

|Fi(x)− Fi(x)| ≤ |Fi(a)− Fi(a)|+
∫ x

a

|fi(y)− fi(y)|dy ≤ |Fi(a)− Fi(a)|+ ρ < ε.

Conclude that ‖Fi−Fi‖∞ ≤ ε. As in the proof of Theorem 2 we have as a consequence

that for sufficiently small a and ρ, on Ωa,ρ ‖F−1
i ◦F−F−1

i ◦F‖∞ < ε. Fix a, ρ2 ∈ (0, 1/2).

Let ci = min(F−1
i (F(a)), 1 − F−1

i (F(1 − a))) and a1 = mini ci/2. Since fi is uniformly

continuous on [a1, 1 − a1], there exists δ2 > 0 such that |fi(x) − fi(y)| ≤ ρ2 for all

x, y ∈ [a1, 1 − a1] such that |x − y| ≤ δ2; without loss of generality δ2 ≤ a1. Choose

small a1 > a2, ρ > 0 such that on Ωa2,ρ, ‖F−1
i ◦ F − F−1

i ◦ F‖∞ < δ2. Then on Ωa2,ρ

‖fi ◦ F−1
i ◦ F − fi ◦ F−1

i ◦ F‖∞,a ≤ ‖fi − fi‖∞,a1 ≤ ρ

and

‖fi ◦ F−1
i ◦ F − fi ◦ F−1

i ◦ F‖∞,a ≤ sup
x,y∈[a1,1−a1],|x−y|≤δ2

|fi(x)− fi(y)| ≤ ρ2.

This means that for any ρ, ρ2, a > 0 there is positive probability that for all i = 1, . . . , n

‖fi ◦ F−1
i ◦ F − fi ◦ F−1

i ◦ F‖∞,a ≤ ρ+ ρ2,
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and since Ωa2,ρ implies also that fi, fi ≥ l, it follows that for all a, ε > 0 there is positive

probability that ‖f − f‖∞,a < ε. Now write

KL(F,F) =

∫
x∈[a,1−a]

f(x) log
f(x)

f(x)
dx+

∫
x/∈[a,1−a]

f(x) log
f(x)

f(x)
dx = KL1 + KL2.

The definition of Ωa,ρ implies that on this event f ≥ l. Hence

KL2 =

∫
x/∈[a,1−a]

f(x) log f(x)dx−
∫
x/∈[a,1−a]

f(x) log f(x)dx

≤
∫
x/∈[a,1−a]

f(x) log f(x)dx− [1− F (1− a) + F (a)] log l→ 0, a→ 0

since
∫
f(x) log f(x)dx < ∞. Hence we can pick a > 0 such that KL2 < ε. To bound

KL1 notice that when ε < l = inf f, the maximal value | log f

f
| can attain is log l

l−ε .

Thus, for all ε > 0 we have with positive probability

KL(F,F) ≤ ε+ log
l

l − ε
.

As this vanishes when ε→ 0, the proof is complete under the assumption that inf fi > 0

for all i. This assumption can be relaxed as in Petrone and Wasserman (2002, p. 85)1:

define fa(x) = max(f(x), a)/A, where A =
∫ 1

0
max(f(x), a)dx ∈ [1, 1 + a]. Applying

the theorem to f1 = · · · = fn = f
a we deduce the KL property for fa. Now, as f ≤ Afa

we have (Ghosal et al. 1999, Lemma 5.1)

KL
(∫

h(x)dx,

∫
f(x)dx

)
≤ (A+ 1) logA+ A

[
KL
(∫

h(x)dx,

∫
f
a(x)dx

)

+

√
KL
(∫

h(x)dx,

∫
fa(x)dx

)
.

1beware that they denote KL(F,F) by KL(F, F )
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As a ↘ 0, A ↘ 1. If we choose a > 0 such that A < 2 and (A + 1) logA < ε/3, and

then δ > 0 such that δ +
√
δ < ε/3 then

{
h : KL

(∫
h(x)dx,

∫
f(x)dx

)
≤ ε

}
⊇
{
h : KL

(∫
h(x)dx,

∫
f
a(x)dx

)
≤ δ

}
,

and the latter has positive prior probability. This completes the proof.

(b) Again begin with the assumption that inf fi > 0 for all i. Let T ′i (x) = f(x)/fi(Ti(x))

and T′i(x) = f(x)/fi(Ti(x)), and note that

|T ′i (x)− T′i(x)| ≤ |f(x)− f(x)|
fi(Ti(x))

+ f(x)

∣∣∣∣ 1

fi(Ti(x))
− 1

fi(Ti(x))

∣∣∣∣ .
For all a, ε > 0, since f is bounded on [a, 1 − a], the same idea as in part (a) shows

that with positive probability ‖T ′i − T′i‖∞,a < ε. Write again

KL(Ti,Ti) =

∫
x∈[a,1−a]

T
′
i(x) log

T
′
i(x)

T ′i (x)
dx+

∫
x/∈[a,1−a]

T
′
i(x) log

T
′
i(x)

T ′i (x)
dx = KL1 + KL2.

These two terms can be made small as in part (a) because T′i ≤ n.

To relax the condition inf fi > 0 we use a similar idea as for part (a) but the argument

is more subtle. Fix a > 0 and define

Ai =

∫ 1

0

max(T′i(x), a) dx, hai (x) = max(T′i(x), a)/Ai, Ha
i (x) =

∫ x

0

hai (t) dt.

For brevity we omit the dependence of hi, Hi and Ai on a. Clearly Hi is strictly

increasing, differentiable almost surely with derivative bounded below by a/Ai, Hi(0) =

0 and Hi(1) = 1. Moreover hi is continuous and strictly positive on (0, 1) because so is

T
′
i. We shall viewHi as transport maps from a Fréchet mean to well-behaved measures;

first we need to fix the issue that they do not necessarily average to the identity by
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adding another transport map that corrects the discrepancy.

By assumption

Ai ≤
∫ 1

0

(T′i(x) + a)dx = Ti(1)−Ti(0) + a = 1 + a

and similarly Ai ≥ 1. Thus we can choose a > 0 small such that (1+a)/Ai ≤ 1+1/(2n)

for all i = 1, . . . , n. Define the correction function

Hn+1(x) = (n+ 1)x−
n∑
i=1

Hi(x).

Then Hi, i = 1, . . . , n+ 1 average to the identity. Since Ti, i = 1, . . . , n average to the

identity, whenever they are differentiable (that it, Lebesgue almost everywhere since

they are nondecreasing) we have
∑n

i=1T
′
i(x) = n. Hence Hn+1 is differentiable almost

surely with derivative

n+ 1−
n∑
i=1

hi(x) ≥ n+ 1−
n∑
i=1

T ′i (x)

Ai
− na
Ai
≥ n+ 1−n1 + a

Ai
≥ n+ 1−n(1 +

1

2n
) =

1

2
.

Now consider the distribution functions Gi = H−1
i , i = 1, . . . , n+1 and let G denote the

identity. Then Gi have Fréchet mean G with densities bounded above by max(2, Ai/a)

and below by 1/(n+ 1). Therefore, by the previous part of the proof Ha
i = G−1

i ◦G is

in the KL support of the induced Bernstein polynomial prior. Since T′i ≤ Aih
a
i almost

surely we have (Ghosal et al. 1999, Lemma 5.1)

KL(S,Ti) ≤ (Ai + 1) logAi + Ai[KL(S,Ha
i ) +

√
KL(S,Ha

i )]

≤ (a+ 2) log(a+ 1) + (a+ 1)[KL(S,Ha
i ) +

√
KL(S,Ha

i )].

As (Ha
i )′ is continuous and strictly positive, KL(S,Hi

a) can be made as small as we
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wish with positive probability. The fact that a > 0 is arbitrary completes the proof.

Proof of Theorem 4. Under the given assumptions the prior on Fi satisfies the Kullback–

Leibler property (Petrone and Wasserman 2002, Theorem 2) at Fi and consequently the

sequence of posteriors are weakly consistent for each Fi. The operations

(F1, . . . , Fn) 7→ (F−1
1 , . . . , F−1

n ) 7→

[
F−1 =

1

n

n∑
i=1

F−1
i

]
7→ F,

are continuous in the supremum norm around (F1, . . . ,Fn) by Lemma 2, (2.6.2) and again

Lemma 2. Taking into account the equivalence of the supremum norm with weak convergence

(Lemma 1), conclude that the operation (F1, . . . , Fn) 7→ F is weakly continuous around

(F1, . . . ,Fn). Since each Fi is weakly consistent for Fi, this yields that F is weakly (in fact,

Kolmogorov) consistent for F.

Weak (and Kolmogorov) consistency of Ti to Ti follows in the same way, since in Equa-

tion (2.6.3) it has been established that

(F−1
i , F ) 7→ F−1

i ◦ F

is continuous in supremum norm around (Fi,F).

57



CHAPTER3
Karhunen–Loève Priors for Families of

Random Densities†

In this chapter we propose a data-driven prior on the space of families of den-

sity functions. The starting point for constructing our prior is to treat density

functions as functional data, and to resort to tools and methods from functional

data analysis to link all elements in a family densities. The proposed prior re-

sorts to a Karhunen–Loève decomposition so to borrow strength across samples,

by suitably distorting a baseline density. Theoretical properties of the proposed

prior are discussed, along with conditions for enforcing that each element of the

family is in L2. Computationally, our method can be regarded as a post-processing

procedure that could be used as a companion to models such as Dirichlet process

mixtures. The simulation studies suggest that our method is competitive against

other Bayesian nonparametric approaches. An illustration is given by revisiting

Galton’s dataset. Appendix B includes supplementary materials.

† Joint work with M. de Carvalho.
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3.1 Introduction

Families of random densities are a natural model for a variety of contexts of applied interest,

such as the K-sample setting and repeated-cross sectional surveys. In this chapter, we

propose a prior for inference for families of random densities by combining ideas from two

fast-evolving fields, namely: nonparametric Bayes and functional data analysis. One of

the goals of the chapter is on proposing Bayesian inference for families of random densities

using a post-processing procedure through infinite mixture models and functional principal

component analysis. To further be able to describe the contributions of the chapter, we will

briefly discuss what these fields are all about.

A key ingredient to the increasing popularity of Bayesian nonparametrics is the fact

that it offers modeling flexibility and safeguard against misspecification (Müller et al. 2015).

Bayesian nonparametric methods rely on parametric approaches as baseline models, while

allowing for deviations from these when data provide evidence for it. Some Bayesian non-

parametric approaches—such as Polya trees (e.g. Hanson 2006) and Dirichlet processes (e.g.

Ghosal 2010)—can be understood as extensions of standard parametric methods in the sense

that they are centered a priori around a parametric model, but assign positive mass to a

variety of alternatives. Thus, a recurring theme in much of the Bayesian nonparametric

literature is to regard a parametric approach as a reference, while allowing for other alter-

native models to ‘take over’ when data suggests that the parametric model is inappropriate.

To do Bayesian nonparametrics—in the sense described above—we need prior probability

models for probability distributions, and for this the natural probabilistic concept is that of

a random probability measure. Other Bayesian nonparametric approaches—such as Gaus-

sian process priors—consist of probability models over spaces of functions, and for these the

natural probabilistic concept is that of a random function. The latter priors are particularly

tailored for modeling, for example, mean functions (e.g. Rodriguez and Martinez 2014) and
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even densities (e.g. Adams et al. 2009). See Hjort et al. (2010), Phadia (2015), Müller et al.

(2015) for some recent surveys of prior processes, along with the review articles by Hjort

(2003), Quintana and Müller (2004), and Müller and Mitra (2013).

In functional data analysis, data are random curves (stochastic processes). For example,

due to recent advances in technology, medical diagnosis data are becoming increasingly

complex and, nowadays, applications where measurements are curves are ubiquitous (Inácio

de Carvalho et al. 2016). For an introduction to functional data analysis see, for instance,

the monographs of Ferraty and Vieu (2006), Ramsay (2006), and Horváth and Kokoszka

(2012); for a recent review of functional data analysis see Wang et al. (2015).

The starting point for our prior is the functional principal component analysis model

of Kneip and Utikal (2001). A particularly interesting aspect of the Kneip–Utikal model is

that the curves of interest are themselves densities, and a Karhunen–Loève decomposition

is used to link all members of a family of densities {fk}Kk=1 through principal components.

Such principal components, along with their corresponding ‘scores’ (dynamic strength com-

ponents), can be used to assess how a baseline density (fµ = K−1
∑K

k=1 fk) would need to

be ‘tilted’ so that each element of {fk}Kk=1 could be obtained; for recent applications of the

Kneip–Utikal setup see Huynh et al. (2011) and references therein.

The proposed prior uses the Kneip–Utikal setup so to link all elements in a family of

densities via a Karhunen–Loève decomposition. Different specifications of our prior can

be constructed by setting up different models for each fk individually. The scores of the

decomposition then act tilting the baseline density so to link it with the fk. Computationally,

the proposed method can be understood as a post-processing procedure that could be used

as a companion to model such as Dirichlet process mixtures.

In the next section we discuss the proposed method, in Section 3.3 we report numerical

experiments, and in Section 3.4 we offer an illustration. Concluding remarks are given in

Section 3.5.
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3.2 The Karhunen–Loève Prior

3.2.1 Definition and Properties

The data configuration of interest is essentially a K-sample setting, which we denote by

x = {xi,k}. Specifically, we assume that the data consist of random samples from K random

distributions,

xi,k | Fk
iid∼Fk, i = 1, . . . , nk, k = 1, . . . , K, (3.2.1)

where Fk(x) = P (xi,k < x) denotes the random distribution function of the kth population

throughout, we assume that each Fk is absolutely continuous, a.s., and define its corre-

sponding density as fk = dFk/dx. Let L2
1 denote the space of square integrable random

densities, i.e. f ∈ L2
1 if and only if,

∫
f(x) dx = 1 and

∫
{f(x)}2 dx < ∞, a.s, with inner

product 〈f, g〉 =
∫
f(x)g(x) dx, for f, g ∈ L2

1. Throughout, we assume that fk ∈ L2
1, for

k = 1, . . . , K.

The setting above assumes an underlying family of random densities {f ∗k}Kk=1 and the

purpose of the following construction is to link-up all elements via a common link (to be

termed below, baseline density). To do that, given a family of random densities we can

define the common mean fµ = K−1
∑K

k=1 f
∗
k , and then the question would be how to distort

fµ so to recover the remainder elements in the family. The Karhunen–Loève decomposition

offers a natural way to conduct such inquiry. In this setting, it would be given by

f ∗k = fµ +
J∑
j=1

θk,jgj, k = 1, . . . , K, (3.2.2)

where J ≤ K, and {θk,j} and {gj(x)} obey the following equations

νgj = λjgi and θk,j = 〈f ∗j − fµ, gj〉, (3.2.3)
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where ν denote the empirical covariance operator. Then we can write any member of the

family f ∗j as a distortion of the common mean, which can be conducted using the Karhunen–

Loève decomposition as we define in (3.2.2). Therefore, putting this together we can intro-

duce the data-driven Karhunen–Loève prior—which we call the KL prior—as the probability

measure associated to the random density.

Definition 11 (Karhunen–Loève prior). A family of random density functions {fk}Kk=1 is

said to follow a Karhunen–Loève prior with hyperparameters {f ∗k}Kk=1, with f ∗k ∈ L2
1, if

fk = fµ +
J∑
j=1

E[θk,j | x]E[gj | x]. (3.2.4)

Here, fµ = K−1
∑K

k=1 f
∗
k , whereas θk,j and gj respectively denote the scores and principal

components of {f ∗k}Kk=1 resulting from the Karhunen–Loève decomposition (3.2.2).

Remark 3. Note that the expectations E[θk,j | x] and E[gj | x] can be calculate using the

induce measure by {f ∗k}, which follows from the Eq. (3.2.3).

Remark 4. Note that the expectations used in the definition of our prior are of the type

E[ · | x] ≡ E[ · |X = x] rather than E[ · |X].

As it can be seen from (3.2.4) the Karhunen–Loève (KL) prior takes the baseline density

fµ as a starting point, but it allows the data x to take over and to tilt the baseline in a way

that borrows strength across samples. It is evident from Definition 11 that KL prior is a data-

driven prior; data-driven priors are common in Bayesian statistics including, for example,

empirical Bayes (Lehmann and Casella 1998, Section 4.6), Hartigan’s maximum likelihood

prior (Hartigan 1998), and max-compatible priors (de Carvalho et al. 2019b). Below we use

the notation {fk} ∼ KL{f ∗k} to denote that the family {fk} follows a Karhunen–Loève prior

with hyperparameters {f ∗k}; natural specifications for the hyperparameters are discussed in

Section 3.2.2.
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The following proposition summarizes some properties of the KL prior:

Proposition 1. Suppose {fk} ∼ KL{f ∗k} with f ∗i being independent of f ∗j , for i 6= j. Then:

1)
∑K

k=1 var[fk] ≤
∑K

k=1 var[f
∗
k ],

2) cov(fi, fj) = K−2
∑K

k=1 var[f
∗
k ] > 0, for i 6= j,

a priori.

Proof. See Appendix.

This proposition warrants some remarks. We refer to 1) and 2) as the variance-reducing

and generating-dependence properties of the KL prior. The variance reducing property im-

plies that the total variance of the prior (i.e.,
∑K

k=1 var[fk]) is smaller than of the correspond-

ing hyperparamters. From the generating-dependence property is follows that, although the

hyperparameters are a priori independent, the random density functions {fk} are a priori de-

pendent; a consequence of the generating-dependence property is thus that the KL prior can

be seen as a device to build dependent family {fk} from standard nonparametric Bayesian

(hyper)priors for {f ∗k}, such as Dirichlet process mixtures; we explore this aspect of KL

priors in further details in Section 3.2.2.

Similarly to Kneip and Utikal (2001) our prior will put positive mass on possibly negative

fk. While this may seem to be a shortcoming, our numerical experiments in Section 3.3 show

that in line with Kneip and Utikal (2001) this is not as problematic as it may look ex-ante.

The possibility for negative fk comes from the fact that E[θk,j | x] and E[gj | x] can be

negative for some x ∈ X , and therefore so can the fk be. We note below that all members

in the family {fk} will integrate to one.

Proposition 2. The family {fk} defined in Definition 11 obeys

∫
X

fk(x)dx = 1, k = 1, . . . , K.
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Proof. See Appendix.

The next section explores a specific version of the setup above, where the hyperparameters

consist of an infinite mixture model.

3.2.2 Karhunen–Loève–Dirichlet Prior

The construction of KL prior depends on the choice of the hyperparameters {f ∗k}. Since

our data configuration of interest is a K-sample setting as defined in (3.2.1), we suggest

considering infinite mixture models of the type

f ∗k (x) =

∫
Θ

K(x | θ) dHk(θ), (3.2.5)

where K is a kernel and Hk is a random mixing measure. A popular approach is to consider

Hk as a Dirichlet process (Ferguson 1973) (i.e., Hk ∼ DP(αk, Hk,0)), and a normal kernel

in (3.2.5), K(x | θ) = φ(x | µ, σ), in which case one obtains the so-called Dirichlet process

mixtures (DPM) of normal kernels, and denote by {f ∗k} ∼ DPM(K, {αk}, {Hk,0}); here and

below, the f ∗k are assumed to be independent of f ∗k′ , for k 6= k′. The instance of a KL prior

with DPM hyperparameters will be of particular interest, and thus it will deserve a name of

its own.

Definition 12 (Karhunen–Loève–Dirichlet prior). A family of random densities {fk}Kk=1 is

said to follow a Karhunen–Loève–Dirichlet prior (to be denote as {fk} ∼ KLD{f ∗k}) if

1) {fk} ∼ KL{f ∗k},

2) {f ∗k} ∼ DPM(K, {αk}, {Hk,0}).

Different specifications of the Karhunen–Loève prior can be obtained by replacing H

with some random distributions. For example, Barrios et al. (2013) consider infinite mixture
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models of the type (3.2.5), but where the mixing distribution H is a generalized gamma

NRMI (normalized random measure with independent increments), to be denoted by H ∼

NGG(α, κ, γ,H∗). The parameters α > 0 and H∗ play analogous roles as in the DP, and

the parameters κ ≥ 0 and γ ∈ [0, 1) can be used to specify members of this class, including

the DP (κ = 1, γ = 0), the normalized inverse Gaussian (Lijoi et al. 2007) (γ = 1/2),

and the N-stable process (α = 1, κ = 0) (Kingman 1975). Still, other natural candidates for

modeling H have been proposed, including stick-breaking priors (Ishwaran and James 2001),

and probit stick-breaking priors (Rodríguez and Dunson 2011).

3.2.3 Computing and Implementation

Some comments in terms of fitting our model are in order. There exist quite a few algorithms

for fitting (3.2.5) (e.g. Neal 2000; Ishwaran and James 2002). In the case of Dirichlet process

mixtures in (3.2.5), posterior sampling can be conducted through a blocked–Gibbs sampler

(Ishwaran and James 2001), which relies on a truncated DP prior; this is our choice in practice

as it is a manageable approximation to the DP prior, and a major difference in comparison

to standard parametric mixture models is that here we fix a maximum on the number of

clusters, and not the number of clusters itself (Dunson 2010, pp. 232–233). There exist

algorithms which do not rely on truncated versions of the DP, such as the collapsed Gibbs

sampler (MacEachern 1994), and reversible jump Markov chain Monte Carlo approaches

(Jain and Neal 2004). Futher details on computing and implementations will be given in the

Section 4.1 and 4.2.

As mentioned above the proposed method can be regarded as a post-processing method.

Given f
∗[1]
k , . . . , f

∗[T ]
k posterior samples from f ∗k we can get posterior samples for fk just

plugging-in the f ∗[b]k in fk for each k. Also, we can estimate the conditional expectations

of θk,j and gj using the posterior sample scores, θ[t]
k,j, and posterior sample components, g[t]

j ,

which are computed from the matrix M = (Mk,k′) where M [t]
k,k′ = 〈f [t]

k − f
[t]
µ , f

[t]
k′ − f

[t]
µ 〉. The
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last statement is based in the relationship between eigenvalues of the empirical covariance

operator and the matrix M defined as before (see Good 1969). The implementation of the

proposed methods is available from the function dKLD of our R package, ROCstudio (see

Appendix C).

3.2.4 Theoretical Properties

Let P(Θ,BΘ) be the space of all probability measures that can be defined on (Θ,BΘ), with BΘ

denoting the Borel sigma algebra over Θ. Also, let X = {x ∈ R : K(x | θ) > 0}. To ensure

that each fk—as defined in (3.2.5)—is a random element of the space of square integrable

random densities L2
1, we assume the following conditions:

(A1)
∫

X
K(x | θ) dx = 1, for θ ∈ Θ.

(A2) θ 7→ K(x | θ) is uniformly bounded, and BΘ-measurable for x ∈X .

Indeed, under such regularity conditions on the kernel, the following result holds.

Proposition 3. Under A1 and A2, each fk as defined in (3.2.5) belongs to L2
1.

Proof. See Appendix.

To connect theory with practice, let’s consider (3.2.5) in which case the kernel corresponds

to the normal density function, that is, K(x | θ) = φ(x | µ, σ2), with θ = (µ, σ2). Thus, if

we suppose that σ ∈ [σ,∞) for some fixed σ > 0, then it holds that

φ(x | µ, σ2) =
1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}
≤ 1

σ
√

2π
.

Therefore, in theory—provided we support the prior of σ away from 0—the normal kernel

satisfies that regularity condition A1 and A2, and thus Proposition 3 implies that a density

constructed via (3.2.5) corresponds to a random element of L2
1. In practice, in our numerical
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experiments we found no need to support the prior of σ away from 0 as a plain vanilla DPM

yielded satisfactory results overall.

3.3 Simulation Study

3.3.1 Simulation Scenarios and One-Shot Experiments

Below we compare the performance of our KLD prior against the DPM model and the B-

splines DDP mixture model. A simulation study will be reported in Section 3.3.2; for now

we concentrate on illustrating the methods on a single-run experiment, and on describing

the design underlying the numerical study. We consider three scenarios. For Scenario I we

sample from yik | fk
iid∼ fk for i = 1, . . . , n, with

fk(y) = ω1,kφ(y | −2, 1) + ω2,kφ(y | 0, 0.252) + ω3,kφ(y | 4, 1), k = 1, . . . , 10,

where ω1,k = 0.32 + 0.02× (k− 1), ω2,k = 0.2 + 0.01× (k− 1) and ω3,k = 1−ω1,k −ω2,k. For

scenario II we sample from yik | fk
iid∼ fk for i = 1, . . . , n, with

fk(y) = ωkφ(y | −2, k−
1
2 ) + (1− ωk)φ(y | 2, k

1
4 ), k = 1, . . . , 10,

with y > 0 and weights ωk = 0.5 + 0.01(k − 1), for k = 1, . . . , 10. And for scenario III–the

most complex one–we sample from yik | fk
iid∼ fk for i = 1, . . . , n, with

fk(y) = ω1,kφ(y | k/10, 1) + ω2,kφ(y | −1, 0.25) + ω3,kφ(y | 4, 1/ log(k + 1)), k = 1, . . . , 10,

where

ω1,k =

 0.52 + 0.02× (k − 1) if k ∈ {1, . . . , 5}

0.52 + 0.02× (k − 1) if k ∈ {6, . . . , 10}
,
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ω2,k = 0.22 + 0.02× (k − 1) and ω3,k = 1− ω1,k − ω2,k. In all cases, φ(· | µ, σ2) stands for a

normal density with mean µ and variance σ2.

Above we set n = 500; the Appendix B.2 contain the outcomes with for n = 1000.
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Figure 3.1: Single-run experiment illustrating KLD against DPM and DDP over three scenarios (n = 500).

The true densities underlying all scenarios are depicted in the first row.

The single-run experiment in Figure 3.1 allows us to anticipate strengths and limitations

with the methods under discussion. As it can be seen from Figure 3.1, KLD-based density
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estimates tend to look closer to the real densities than the corresponding estimates by DPM

and DDP models. For now, these conclusions should be regarded as tentative—since they

summarize the outcome of a single run-experiment—and the goal of the next section is to

assess how robust these conclusions are over other runs of simulated data. For each model,

we generate 5 000 trajectories using a blocked Gibbs sampler (Ishwaran and James 2001),

where we set a truncation value—for DPM and DDP models—equal to 20, and burn the

first 500. Also we standardize the data prior to fitting the DPM model and set αk = 1

for both, DPM and DDP. In terms of prior information and kernel: For all the scenarios,

we use µk,h
iid∼N(0, 100) and σ2

k,h
iid∼ IG(0.1, 0.1) as hyper-priors of DPM model with normal

kernel; In the DDP, we fit a B-splines DDP mixture with Q = 4, for normal-gamma we set

µ = 0Q,S = 100IQ, ν = Q+ 2,ψ−1 = IQ, a = b = 0.1 and normal kernel.

3.3.2 Monte Carlo Study

A Monte Carlo study was performed by simulating B = 1000 datasets for Scenarios I, II and

III, as described in Section 3.3.1. We compare the performance of competing approaches

using MISE (Mean Integrated Squared Error),

MISEk = E

[∫
Y

{f̂k(y)− fk(y)}2dy
]
≈ 1

B

B∑
b=1

∫
Y

{f̂ (b)
k (y)− fk(y)}2 dy, (3.3.1)

where f̂ (b)
k is the estimate underlying the bth simulated data set.The MISE resulting from

this Monte Carlo study is summarized in Figure 3.2.
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Figure 3.2: Boxplot of MISE for KLD, DPM and DDP estimates resulting from Monte Carlo

study, for each density. The plots are Scenario I–III from top to bottom.
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Figure 3.2 suggests that the KLD estimator tends to achieve a lower or competitive MISE

over the corresponding DPM and DDP estimates, for different scenarios.

While the MISE in (3.3.1) provides us with a score for each element in the family, it

is also natural wondering how one can obtain a score which ranks the performance of an

estimation method for an entire family. With the latter purpose in mind, we propose using

the global MISE,

GMISE =
1

K

K∑
k=1

MISEk ≈
1

KB

K∑
k=1

B∑
b=1

∫
Y

{f̂ (b)
k (y)− fk(y)}2 dy.

The global MISE from this Monte Carlo study is reported in Figure 3.3
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Figure 3.3: Boxplot of global MISE for KLD, DPM and DDP estimates resulting from Monte

Carlo study for Scenario I–III.
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As it can be noticed from Figure 3.3, the KLD estimator seems had the lower global

MISE in each scenario but clearly it is the best in Scenario II, and and very competitive

with DDP (Scenario I) and DPM (Scenario III).

To wrap up, the findings above show that KLD presents a competitive performance

against popular models as DPM and DDP, and in some cases will actually outperform the

latter models.

3.4 Revisiting Galton’s Data

To illustrate the methods, we revisit Galton’s dataset on the heights of parents and their

children (Galton 1886). This data set is quite popular as it played a key role on the early

developments of regression methods (Stigler 1986, Chapter 8), and it is readily available

from R in the HistData package. In Galton’s own words: “When Mid-Parents are taller

than mediocrity, their Children tend to be shorter than they” (cf Galton 1886). These data

have been examined widely (see Wachsmuth et al. 2003; Hanley 2004, and references therein)

and in many analysis a small amount of jittering is typically introduced.

Score Principal components
for Parents Height PC 1 PC 2 PC 3 PC 4

64.0 (f1) 0.1488 0.1014 0.0336 0.0164
64.5 (f2) 0.1878 0.0815 -0.0135 -0.0148
65.5 (f3) 0.0946 -0.0219 -0.0054 -0.0011
66.5 (f4) 0.0959 -0.0566 -0.0151 0.0005
67.5 (f5) 0.0403 -0.0732 -0.0056 0.0015
68.5 (f6) 0.0020 -0.0717 0.0003 0.0008
69.5 (f7) -0.0495 -0.0410 0.0030 -0.0005
70.5 (f8) -0.1257 -0.0400 0.0087 -0.0005
71.5 (f9) -0.1756 -0.0195 0.0147 -0.0019
72.5 (f10) -0.2187 0.1411 -0.0207 -0.0004

Table 3.1: Scores (θk,j) associated to K = 10 levels of parents height [in inches (in)], corre-
sponding to {fk}10

k=1, for the first four principal components (gj) for Galton’s data.

In Figure 3.5(a), we plot the version of the data to be used; a light amount of jittering

was added to artificially smooth the child’s height. A height-adjusted palette is used to aid
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in the interpretation of the results below. KLD density estimates for child height are shown

in Figure 3.4; the same prior information as in Section 3.3 was used here.

To facilitate interpretations we set the baseline (f1) as the density of child heights for

which parents height equals the sample minimum, i.e., 64in; the corresponding data from

which the baseline is estimated are represented in black in Figure 3.5(a). To put it differently,

the black line in Figure 3.5(b) represents the baseline KLD estimate which corresponds

to parents whose height equals 64in, and thus coincides with one of density estimates in

Figure 3.4.

The first principal component explains around 71.12% of the variance, with a 95% credible

interval of (59.85%, 81.96%) whereas the first two components are responsible for about

96.79% of the variance; see Table 3.2.

Principal components

PC 1 PC 2 PC 3 PC 4

Explained variability 71.12% 25.67% 2.55% 0.55%

(59.85%,81.96%) (16.09%,35.69%) (0.74%,5.11%) (0.09%,1.61%)

Table 3.2: Explained variability and their 95% credible intervals (in parenthesis) for the first

four principal components for Galton’s data.

A natural question from an applied viewpoint is now the following: “What is the role

played by the first principal component in terms of tilting the baseline density?” To answer

this question, in Figure 3.5(b) we plot the data along with the first principal component

deformations of f1, i.e. (θk,1 − θ1,1)g1. To aid the interpretation, we color the first principal

component deformations of f1 using the same palette as the one used to represent the data

as in 3.5(a); the scores associated to the first four principal components can be found in

Table 3.1. The first principal component deformations in Figure 3.5(b) have a straightforward

interpretation: more mass is increasingly assigned to higher child heights, for parents whose

height is also higher.
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Figure 3.4: KLD density estimates (solid black line) for child height [in inches (in)], corre-
sponding credible bands (grey), and histograms, with parents height ranging from 64in to
72.5in.
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Figure 3.5: (a) Galton’s regression towards mediocrity data; (b) The solid black represents
the baseline density estimate (f1) through from a Karhunen–Loève–Dirichlet model; the
remainder curves represent first component deformations of f1, i.e., (θk,1−θ1,1)g1, represented
with the same palette as in (a). All heights are in inches.

Indeed, as it can be observed from Figure 3.5(b) the higher the parents height the further

the need of transferring mass from the bulk of the baseline into the right tail.

3.5 Closing Remarks

We propose a data-driven Bayesian prior approach for modeling families of random densities,

based in the Karhunen–Loève decomposition. This decomposition allowed us to induce

dependence a priori between the members of the family, writing each one as a tilted version

of the common mean fµ. To satisfy the assumptions of Karhunen–Loève decomposition,

theoretical properties are discussed to ensure that every member of the family belongs to L2.

Numerical experiment and simulation studies were conducted to assess the performance of

our model against other Bayesian nonparametric models; such simulations suggest that the

proposed method may overperform these competitors in three different simulation scenarios

and different sample sizes. Finally, we illustrated our method using Galton’s dataset on the
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heights of parents.

3.6 Technical Details

3.6.1 Proofs of Main Results

Proof of Proposition 1. From Definition 11, if {fk} ∼ KL{f ∗k} then

fk =
1

K

K∑
k=1

f ∗k +
J∑
j=1

E[θj,k | x]E[gj | x],

and thus

var[fk] = var

[
1

K

K∑
k=1

f ∗k +
J∑
j=1

E[θj,k | x]E[gj | x]

]

= var

[
1

K

K∑
k=1

f ∗k

]
ind
=

1

K2

K∑
k=1

var[f ∗k ].

Therefore,
K∑
k=1

var[fk] =
1

K

K∑
k=1

var[f ∗k ] <
K∑
k=1

var[f ∗k ],

which completes the proof of part 1). The part 2) is based on the covariance properties,

which implies that

cov(fi, fj) = cov(fµ, fµ) = var[fµ] =
1

K2

K∑
k=1

var[f ∗k ] > 0,

which completes the proof of proposition.
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Proof of Proposition 2. Remember that

E[gj | x] =
K∑
k=1

ωk,j E[f ∗k | x],

and thus, ∫
X

E[gj | x]dx =
K∑
k=1

ωk,j

{∫
X

E[f ∗k | x]dx

}
=

K∑
k=1

ωk,j.

But
K∑
k=1

ωk,j =
1∑K

k=1 θ
2
k,j

K∑
k=1

θk,j = 0,

by definition. Therefore,

∫
X

fk(x)dx =

∫
X

{
1

K

K∑
j=1

f ∗j (x) +
J∑
j=1

E[θk,j | x] · E[gj | x]

}
dx

=
1

K

K∑
j=1

{∫
X

f ∗j (x)dx

}
︸ ︷︷ ︸

=1

+
J∑
j=1

E[θk,j | x]

{∫
X

E[gj | x]dx

}
︸ ︷︷ ︸

=0

= 1,

for each k = 1, . . . , K, then the result is follows.

Proof of Proposition 3. Let X = {x ∈ R : K(x | θ) > 0}. Note that

f 2
k (x) =

{∫
Θ

K(x | θ)H(dθ)

}2

≤
∫

Θ

K2(x | θ)H(dθ), (3.6.1)

by Jensen’s inequality, thus

∫
X

f 2
k (x)dx ≤

∫
X

∫
Θ

K2(x | θ)H(dθ) dx. (3.6.2)

As K2(x | θ) is non–negative, Fubini’s theorem (Durrett 2010, Theorem 1.7.2) can be applied
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to the right hand-side expression on (3.6.2), yielding

∫
X

f 2
k (x)dx ≤

∫
Θ

∫
X

K2(x | θ)dxH(dθ), (3.6.3)

but, by A2, K(x | θ) ≤M for all (x,θ) in X ×Θ, and by A1,

∫
X

K2(x | θ)dx ≤M

∫
X

K(x | θ)dx = M. (3.6.4)

Combining (3.6.3) and (3.6.4) yields

∫
X

f 2
k (x)dx ≤M

∫
Θ

H(dθ) = M,

and thus fk ∈ L2
1.
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CHAPTER4
Computing and Implementations

This chapter offers some details about computational aspects, includ-

ing posterior sampling algorithms, selected comments on implemen-

tations, and specifications of the virtual machine instance from the

Google Cloud Platform used to run the Monte Carlo simulations. Ap-

pendix C includes supplementary materials.
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4.1 Selected Comments on Posterior Sampling

Fitting Phase-Varying Point Processes

For fitting the Bernstein–Dirichlet model from Chapter 2, we use the hybrid Gibbs sampler

by Petrone (1999b), which is implemented in the R package DPpackage (Jara et al. 2011).

In Algorithm 1 we present the Gibbs sampler used to conduct posterior sampling for each

conditional mean measure Λi; the algorithm is based in the following hierarchical structure

• k ∼ p(k),

• G ∼ DP(α,G0),

• z1, . . . , zn | k,G
i.i.d.∼ F ,

• x1, . . . , xn | k,G, z1, . . . , zn
i.i.d.∼

∏n
i=1

∑k
j=1 β(xi | j, k − j + 1)1((j−1)/k,j/k)(zi).

Algorithm 1: Gibbs sampler

1. sampling k:

k(s) | else ∼ p(k)
n∏
i=1

β(xi | η(z(s−1)
i , k(s−1)), k(s−1) − η(z(s−1)

i , k(s−1)) + 1),

where η(z, k) = i if (i− 1)/k < z ≤ i/k, for i = 1, . . . , n.

2. sampling Z: We use b(x | k,G) as defined in (1.2.6).

• z
(s)
i | else ∼ g0(z

(s−1)
i )β(xi | η(z(s−1)

i , k(s−1)), k(s−1) − η(z(s−1)
i , k(s−1)) + 1), with

probability
qi,0 ∝ α b(xi | k,G0),

• z
(s)
i | else = z

(s−1)
j , with probability

qi,j ∝ β(xi | η(z(s−1)
i , k(s−1)), k(s−1) − η(z(s−1)

i , k(s−1)) + 1).
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Fitting Karhunen–Loève Prior-Based Model

For fitting densities through the DPM model from Chapter 3, we use a finite approximation

of the Dirichlet process as the mixing measure. This allows us to use the blocked Gibbs

sampling method proposed by Ishwaran and James (2002), which is implemented in the R

package ROCstudio. In Algorithm 2 we present the blocked Gibbs sampler used to conduct

posterior sampling; in the algorithm, N denotes the truncation level and Si is the cluster

indicator.

Algorithm 2: Blocked–Gibbs sampler

1. Multinomial sampling : Allocate observations to component mixtures with

P (Si = h | else) =
πh exp{−1/2(Yi,k − µh)2/σ2

h}∑N
j=1 πj exp{exp{−1/2(Yi,k − µh)2/σ2

h}
,

and compute

nh =

nk∑
i=1

I(Si = h), n+
h =

nk∑
i=1

I(Si > h).

2. Beta sampling : Update stick-breaking weights

Vh | else
ind∼ Beta(1 + nh, α+ n+

h ).

3. Update parameters of component mixtures:

µh | else
ind∼ N

 nh
(nhσ2

h + σ−1)

m
s

+
∑

{i:Si=h}

Yi
σ2
h

 ,
1

nh/σ2
h + σ−1

 ,

σ−1
h | else

ind∼ Gamma

a+ nh
2
, b+

1

2

∑
{i:Si=h}

(Yi,k − µh)2
 ,

where m, s, a and b are hyperparameters.
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4.2 Selected Comments on Implementations

Fitting Phase-Varying Point Processes

Now, we show how to implement in R the methodology proposed in Chapter 2. I have wrote

the package Rmpp to implement the proposed methods; part of the code uses a function

earlier available from the R package DPpackage (namely, BDPdensity).

We start with the code for simulating a phase-varying process, following the scenario

described in Section 2.3.1:

## Generating raw data

require(Rmpp)

set.seed(6789)

N <- 3 ; points <- 150 ; lgrid <- 2^8

grid <- seq(0,1,length.out = 2^8)

PARALLEL <- TRUE ; CORES <- parallel::detectCores() - 1

Npoints <- rpois(N,points); Y <- matrix(NA,nrow=max(Npoints),ncol=N)

for(i in 1:N)

Y[1:Npoints[i],i] <- rnorm(Npoints[i],mean = 1/2,sd = .15)

Then, we can sample random warping functions Ti described in Section 2.3.1, and thus

we can obtain the warped point processes with the following code:

## Generating warps maps and warped data

ar <- c(); part <- sample(c(1,2),2,replace = T)

for(k in 1:2){

if(part[k] == 1)

ar[k] <- runif(1,3/4,1)

else

ar[k] <- runif(1,0,1/4)
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}

br <- sample(c(1,2),2,replace = TRUE)

warping <- function(x,k){

if(k < N)

a <- x - (ar[k]-1/2)*sin(x*pi*br[k])/(pi*br[k])

else

a <- x + (ar[1]-1/2)*sin(x*pi*br[1])/(pi*br[1]) +

(ar[2]-1/2)*sin(x*pi*br[2])/(pi*br[2])

return(a)

}

functions <- matrix(NA,nrow=lgrid,ncol=N); data <- matrix(NA,nrow=max(Npoints),ncol=N)

for(k in 1:N){

data[1:Npoints[k],k] <- warping(na.omit(Y[,k]),k)

functions[,k] <- warping(xx,k)

}

The code above generates simulated warped data. We now fit the proposed method by

using the function BAlignment in Rmpp package as follows:

## Fitting Phase-Vaying Point Processes

mcmc <- list(nburn=500,nsave=4500,nskip=0,ndisplay=100)

prior <- list(aa0=2,ab0=2,kmax=1000,a0=1,b0=1)

fit <- BAlignment(data,prior = prior,mcmc = mcmc,grid = seq(0,1, length = 2^8),

parallel = TRUE, objective = 1)

Our package uses a modification of the BDPdensity function from the R package DPpackage,

which allow us to extract the posterior trajectories rather than only the posterior mean.

The output of this function depends on the arguments (see Appendix C), but in the case

that we show above the result is a 3D-array containing posterior simulated trajectories of the

registered point process. Taking other values for arguments, we can recover the trajectories
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of the warp maps or the Frechét mean.

A charts similar to Figure 2.1 can now reproduced using the following code:

plot(Y,fit, objective = 1, k = 0)

Fitting Karhunen–Loève Prior-Based Model

In this section we explain how to fit in R the model proposed in Chapter 3. The example

replicates the fit from Section 3.3.1. I have produced a function which will be available from

the R package ROCstudio. Prior to fitting the model I start by loading packages and by

defining the simulation scenario.

The data generating mechanism is described in detail in Section 3.3.1, so we shown our

code to implement that mechanism.

## Generating raw data

require(ROCstudio)

Ndata <- 500; Nfun <- 10; Nmix <- 3

w_1 <- seq(0.32,0.5,.02); w_2 <- seq(.2,.29,.01)

W <- cbind(w_1,w_2,1-w_1-w_2)

mu <- c(-2,0,4); sigma <- sqrt(c(1,.25,1))

lgrid <- 2^8; grid <- seq(-6,8,length.out = lgrid)

T <- 4500

set.seed(8)

Y=matrix(NA,nrow=Ndata,ncol=Nfun)

for(i in 1:Nfun){

Sam <- sample(Nmix,Ndata,replace = TRUE,prob = c(W[i,]))

Y[,i] <- rnorm(Ndata,mu[Sam],sigma[Sam])

}
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Now we present the fit of proposed model in Chapter 3. The implementation requires the

algorithm presented in Section 3.2.3, which combined with the Karhunen–Loève decompo-

sition allows us to sample from our prior. To fit the model from Chapter 3, I have designed

the dKLD function which is available from ROCstudio.

### Fitting KLD model

prior <- list(alpha = 1,mu = 0,sigma = 100,a = .1,b = .1)

fit <- dKLD(y = Y,prior = prior,kernel = 'gaussian',N = 20,T = 5000,

burn = 500,grid = grid)

The outputs of our function are documented in Appendix C, and include for example

the posterior trajectories and posterior mean for: density estimation, scores, and functional

principal components. Also we can recover the posterior trajectories and posterior mean for

DPM model.

A chart similar to Figure 3.1 can be produced using the following code:

plot(fit)

Details on Monte Carlo Studies

The examples from previous sections correspond to one shot experiments. Although such

experiments do not require a high-performing machine, when we repeat this process several

times, we need more computing power. The simulation studies conducted in Chapters 2

and 3 were executed using the Google Cloud Platform (GCP). Google Cloud Platform is a

cloud service provided by Google LLC which has a lot of services such as storage, virtual

machine instances, AI tools, big data tools, and so on. GCP is one of the big three cloud

platforms in the industry (AWS and Azure, the other two) and provide a limited one-year

free subscription (limited by US$300 in the year). For our purposes, we use the virtual

machine (VM) instance service to conduct the simulation studies simultaneously to reduce

the execution time. We used two setups of instances:
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• In Chapter 2, we used three VM instances with Linux SO, 30 Gb SSD, 4 vCPU and

16 Gb RAM each.

• In Chapter 3, we used four VM instances with Linux SO, 25 Gb SSD, 8 vCPU and 32

Gb RAM each.

The simulation studies were conducted using these setups and running the corresponding

code through the Linux shell, meanwhile the one-shot experiment was conducted using the

(web) Rstudio server installed in the VM instances mentioned above. For more information

about GCP, see https://cloud.Google.com.
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CHAPTER5
Discussion

This chapter puts the main contributions into perspective, it discusses the impli-

cations of this research, and it formulates new questions to be addressed in future

work.
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5.1 Final Comments

This dissertation addresses problems that involve inferences for families of random densities.

In this line, in Chapter 2 we propose a Bayesian semiparametric approach for modeling

registration of multiple point processes, where we use the Bernstein–Dirichlet prior to induce

a prior over the space of all warp maps. For this induced prior we derived theoretical

properties on the support and (weak) posterior consistency under mild conditions. Also,

numerical experiments and simulation studies was conducted to assess the performance of

our model and comparing with the kernel-based approach by Panaretos and Zemel (2016).

Finally, a real data application in climatology showcased our model in practice.

For Chapter 3, we propose a data-driven prior based in the Karhunen–Loève decompo-

sition for modeling a family of random densities. Our approach uses the Karhunen–Loève

decomposition to induce dependence between members of the family. Our prior borrows

strength across the elements of the family, as every member of the family can be regarded

as a tilted version of the mean (fµ). In order to satisfy the Karhunen–Loève decomposition

assumptions, we discuss some theoretical properties to ensure that each element in the family

belongs to L2; other theoretical properties of the proposed prior–such as a priori variance–

are discussed. Numerical experiments and simulation studies were conducted to assess the

performance of the proposed method against other Bayesian nonparametric options, such

as the Dirichlet process mixture model and the dependent Dirichlet process mixture model;

such simulation studies suggest that our model may overperform these competitors. Finally,

we offer an illustration of the proposed prior using Galton’s dataset on the heights of parents

and their children.
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5.2 Directions for Future Research

Package 1: Aligning Multiple Phase-Varying Point Processes

A natural question would be extending the research from Chapter 2 to the case of spa-

tial point process supported on e.g., [0, 1]D with D > 1, as explored by Boissard et al.

(2015) and Zemel and Panaretos (2017); a natural extension of our paper to this setup

would entail modeling the mean measures of the corresponding spatial point processes via

multivariate Bernstein polynomials (Zheng et al. 2009). The computation of the empirical

Fréchet–Wasserstein mean can no longer however be done in closed form, requiring numerical

schemes (Peyré and Cuturi 2018). From a statistical viewpoint, another natural avenue for

future research would be on modeling the phase-variation of point processes conditionally

on a covariate, by resorting to predictor-dependent versions of the Bernstein–Dirichlet prior

(Barrientos et al. 2017).

Package 2: Borrowing Strength over a Family of Random Densities

Future extensions of the methods developed here, could take advantage of the square-root

representation of Bhattacharyya (1946),
√
fk, as this would lead to densities on the so-called

Hilbert unit sphere, i.e. ‖
√
fk‖ =

∫
Y
fk(y) dy = 1, for k = 1, . . . , K. The corresponding

Karhunen–Loève decomposition in this case would be

√
fk(y) =

√
fµ(y) +

J∑
j=1

ϑk,jgj(y), (5.2.1)

with ϑk,j and gj representing the scores and principal components underlying (5.2.1). While

(5.2.1) is not confined to densities in L2
1, the corresponding principal component, {ϑk,jgj(y)}Kk=1,

are operated on the space of square-root of densities, and thus their interpretation is not as

straightforward as that of {θk,jgj(y)}Kk=1.
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In addition, the proposed approach extends naturally to a regression setting. Indeed,

for contexts where the interest is on a family of conditional densities, say {fk(y | x)}Kk=1, a

conditional version of (3.2.4) could be written as

fk(y | x) = fµ(y | x) +
J∑
j=1

θk,j(x)gj(y | x),

with the obvious notation. A Karhunen–Loève prior for the regression context could then

be constructed by resorting to dependent Dirichlet process MacEachern (2000), rather than

via Dirichlet process mixtures as in Chapter 3.
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APPENDIXA
Supplementary Material for Chapter 2

A.1 Proofs of Auxiliary lemmas

Proof of Lemma 1. Since F is continuous Fn → F pointwise. Let ε > 0 and let x < y such

that F(x) ≤ ε and F(y) ≥ 1 − ε. Since F is uniformly continuous on [x, y] there exists a

finite grid x = x1 < · · · < xk = y with F(xi) ≥ F(xi+1) − ε for all i ≤ k − 1. For n large

|Fn(xi)− F(xi)| ≤ ε for all i so that

sup
z∈[xi,xi+1]

Fn(z)− F(z) ≤ Fn(xi+1)− F(xi) ≤ |Fn(xi+1)− F(xi+1)|+ |F(xi+1)− F(xi)| ≤ 2ε.

In the same way

sup
z /∈[x,y]

|Fn(z)− F(z)| ≤ 2ε, sup
z∈[xi,xi+1]

F(z)− Fn(z) ≤ F(xi+1)− Fn(xi) ≤ 2ε,

and we conclude that ‖Fn − F‖∞ ≤ 2ε for n sufficiently large.

Proof of Lemma 2. Since F is bijective, it has an inverse F−1. The latter is nondecreasing

and, being a bijection, must also be continuous and with F−1(0) = 0, F−1(1) = 1. Let

p ∈ (0, 1), and let x ∈ (0, 1) such that F(x) = p. For ε ∈ (0, 1 − p) we have Fn(x + ε) →
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F(x+ ε) > p, which means that x+ ε ≥ F−1
n (p) for n large. Similarly, x− ε ≤ F−1

n (p) for any

ε ∈ (0, p) and all n large. This implies that F−1
n (p)→ x = F−1(p) for all p ∈ (0, 1). Since

0 ≤ F−1
n (0) ≤ F−1

n (p)
n→∞→ F−1(p)

p→0→ F−1(0) = 0,

it also follows that F−1
n (0) → F−1(0). Similarly F−1

n (1) → F−1(1) and we conclude that

F−1
n → F−1 pointwise on [0, 1]. By Lemma 1 the convergence is uniform. Convergence of

sequences is equivalent to the statement of the lemma because the supremum norm defines

a metric space.

Part b) is shown in the same way, since (F−1)−1 = F. There is a slight complication

though because F−1
n is only defined on [Fn(0), Fn(1)] which may be a strict subinterval of

[0, 1]. Let x = F−1(p) for x, p ∈ (0, 1). Then F−1
n (p − ε) → F−1(p − ε) > x for ε > 0

small, which means in particular that Fn(0) ≤ p− ε and F−1
n (p− ε) is defined, and also that

Fn(x) ≤ p − ε for n large. The inequality Fn(x) ≥ p + ε is shown in the same way and we

conclude that Fn → F pointwise, and hence uniformly on [0, 1] by Lemma 1.

Proof of Lemma 3. Since F is differentiable, there exists x∗j ∈ [j, j + 1]/k such that

b(x | k,F) = B(x | k − 1, f) +
k−1∑
j=0

[
f
(
x∗j
)
− f

(
j

k − 1

)](
k − 1

j

)
xj(1− x)k−1−j.

Notice that |x∗j − j/(k − 1)| ≤ j/(k − 1) − j/k ≤ 1/(k − 1) → 0 uniformly in j and as f is

uniformly continuous on [a−1/k, 1−a+ 1/k] for all k > 1/a, the sum at the right-hand side

vanishes uniformly in x ∈ [a, 1−a] as k →∞. If f is continuous on [0, 1] then it is uniformly

continuous there and the sum at the right-hand side vanishes uniformly in x ∈ [0, 1]. Since

B(x | k − 1, f) converge to f uniformly, this completes the proof.
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A.2 Further Numerical Experiments

A.2.1 Supporting Outputs

In this section we present some figures which are derived from the simulation studies con-

ducted in Section 3 in the paper. In details, Fig. A.1 refers to results in the simulation study

in Section 3.1 (paper), Fig. A.2 refers to the comparison conducted in Section 3.2 (paper)

and Fig. A.3 correspond to Fig. 5 (paper, left) but for all warp maps.
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Figure A.1: Boxplots of the L2-Wasserstein distance between the original processes Π
[b]
i and

the registered ones Π̂
[b]
i . Here b ranges from 1 to B = 50 and i = 1, 2, 3 correspond to the

three panels.
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Figure A.2: Comparison of our Bayesian registration with the kernel-based reg-

istration of Panaretos and Zemel (2016). Each boxplot contains the ratio

d(Π̂
[b,Bayes]
i ,Π

[b]
i )/d(Π̂

[b,Kernel]
i ,Π

[b]
i ) for all i ∈ {1, . . . , 30}.
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Figure A.3: 30 posterior mean Bernstein polynomial warp functions (solid black) and cor-

responding credible bands, with their kernel-based counterparts (solid red) and the original

warp functions (dashed grey). Warp and original data are in the bottom and top, respec-

tively.
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A.2.2 Simulation Study under Misspecification

In this section, we analyze a simulation scenario similar to that we shown in Section 3.1

(paper) but this time using warp maps Ti which not satisfy E[Ti(t)] = t, i.e., we try to assess

the performance of our method under misspecification.

For this scenario, we generate random samples xi,1, . . . , xi,mi
| mi, from

f(t) = 0.45 {φ(t | 0.25, 0.022)+φ(t | 0.75, 0.032)}+0.1 β(t | 1.5, 1.5), mi ∼ Poisson(L), i = 1, 2, 3,

with L = 150, φ(t | µ, σ2) denoting the normal density function and β(t | a, b) denoting the

beta density. Then the warped data x̃i,j = Ti(xi,j) are obtained using

Ti(t) =

∫ t

0

β(y | a, b) dy, i = 1, 2, T3(t) = 3t− T1(t)− T2(t), a, b
iid∼ Unif[1, 3].

Here, it is direct that E[Ti(t)] 6= t for each i = 1, 2, 3. Fig. A.4 shows the estimators

of each of the three warp maps through the posterior mean of the induced prior defined in

Section 2.2 (paper), along with their credible bands and the true warp maps.
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Figure A.4: True (dashed red) and estimated (solid black) warp functions along with credible

bands. The estimators are constructed as the posterior mean of the induced prior.

From Fig. A.4 it can be observed that our estimators are reasonably in line with the true
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warp functions even under misspecification, and as a consequence, the method recovers quite

well the original point processes, as can be seen when comparing the left and right panels of

Fig. A.5.
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Figure A.5: Left: Realizations of the original point process from the setup of Section 1

(paper) in the small n, large m regime. Middle: Their corresponding phase-varying point

process. Right: Their corresponding registered versions.

Also, a Monte Carlo study was conducted in this setting based on B = 50 simulated

datasets, and we calculate the L2-Wasserstein distance defined in Eq. 11 (paper) where we

obtain that where the superscript [b] denotes the corresponding object computed from the

ŴDM ≈ 0.041677 which is close to 0 and close to the value obtain in Section 3.1 (paper) in

the well specify setting.

A.3 Additional outputs from Application

As in §4, we analyze the annual peaks over threshold, {x̃+
i,j ≥ u+

j }, and annual peaks below

threshold, {x̃−i,j ≤ u−j }; we set the thresholds u+
j and u−j using the 97.5% and 2.5% quantiles

of temperature over year j, and this results in m+
1 , . . . ,m

+
n ranging from 10 to 18 and

m−1 , . . . ,m
−
n ranging from 10 to 20.
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Figure A.6: Left: Point processes of annual peaks for peaks above (red) and below (blue) the

thresholds. Middle and Right: Corresponding posterior mean warp functions in the same

palette of colors for the 2.5% and 97.5% quantiles data.
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Figure A.7: Posterior mean spi (scores of peak irregularity), as defined in (11), along with

credible intervals, for below threshold (Left), above threshold (Middle), and global (Right),

for the 2.5% and 97.5% quantiles data.
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Figure A.8: Yearly posterior mean Bernstein polynomial warp functions of low-temperatures

in the same color palette as data, plotted with raw data (bottom), registered points (top)

and the identity function (dashed black).
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Figure A.9: Yearly posterior mean Bernstein polynomial warp functions of high-temperatures

in the same color palette as data, plotted with raw data (bottom), registered points (top),

and the identity function (dashed black). Here the year refers to that of onset of summer.
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The Fig. A.6 and A.7 are the corresponding to the Fig. 6 and 7 in the paper, respectively;

and Fig. A.8 and A.9 are the fit of each warp maps for the setting in the paper.
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APPENDIXB
Supplementary Material for Chapter 3

B.1 Supporting Outputs

The following figures are analogous to Fig. 3.3 and 3.2 but considering n = 1000 instead

n = 500.
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Figure B.1: Boxplot of global MISE for KLD, DPM and DDP estimates resulting from Monte
Carlo study for Scenario I–III and n = 1000.
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Figure B.2: Boxplot of MISE for KLD, DPM and DDP estimates resulting from Monte Carlo

study, for each density. The plots are Scenario I–III from top to bottom with n = 1000.
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B.2 Additional of Numerical Experiments
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Figure B.3: First four principal components with their corresponding credible bands, for
Scenario II as defined in Section 3.1 of the paper.
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Supplementary material for Chapter 4
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BAlignment {Rmpp} R Documentation

Bayesian phase variation alignment process

Description

Bayesian semi-parametric method for align several point processes with phase-variation.

Usage

## Default S3 method:
BAlignment(y, prior, mcmc, grid = seq(0,1, length = 2^8),
           parallel = TRUE, objective = 1)

Arguments

y A matrix with data from which the alignment is to be computed. Different realizations in each
column.

prior a list with prior information for the Dirichlet-Bernstein polynomial prior. The list includes the
following parameter: aa0 and ab0 giving the hyperparameters for prior distribution of the
precision parameter of the Dirichlet process prior, alpha giving the value of the precision
parameter (it must be specified if aa0 is missing, see details below), a0 and b0 giving the
parameters of the beta centering distribution of the DP prior, and kmax giving the maximum
value of the discrete uniform prior for the degree of the Bernstein polynomial.

mcmc a list giving the MCMC parameters. The list must include the following integers: nburn giving
the number of burn-in scans, nskip giving the thinning interval, nsave giving the total number of
scans to be saved, and ndisplay giving the number of saved scans to be displayed on screen (the
function reports on the screen when every ndisplay iterations have been carried out).

grid grid on which the posterior object of interest is to be evaluated; by default grid = seq(0, 1,
length = 2^8).

parallel logical; if TRUE, the alignment process will be conducted using n - 1 cores, where n is the total
number of (virtual) cores.

objective a number indicating the process to be conducted. If objective = 1 then alignment of point
process will be conducted, if objective = 2 then warp maps will be obtained and if objective
= 3 then Frechet mean will be obtained.

Details

This function fits a model for alignment point processes with phase variation, as described in Galasso, Zemel
and de Carvalho (2019). The Balignment function use a fit of Dirichlet-Bernstein polynomial prior created by
A. Jara (Jara et al, 2011)).
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Value

Align.traj 3D-array containing posterior simulated trajectories of the registered point process (for
objective = 1).

Warp.traj 3D-array containing posterior simulated trajectories of the warp maps (for objective = 2).
Frechet.traj 3D-array containing posterior simulated trajectories of the Frechet mean (for objective =

3).

Author(s)

Bastian Galasso-Diaz, Yoav Zemel and Miguel de Carvalho

References

Galasso, B., Zemel, Y. and de Carvalho, M. (2019). Bayesian semiparametric modelling of phase-varying
point processes. Work in progress

Jara, A., Hanson, T., Quintana, F., Muller, P. and Rosner, G. (2011) DPpackage: Bayesian Semi- and
Nonparametric Modeling in R. Journal of Statistical Software, 40.

Examples

## Example 1: experiments on simulated data
# Initial values

[Package Rmpp version 1.0 ]
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KLD {ROCstudio} R Documentation

KLD-Based Inference

Description

Karhunen–Loeve–Dirichlet-based inference for a family of density functions.

Usage

## dKLD(y, prior, ...)

## Default S3 method: 
dKLD(y, prior, kernel = "gaussian", N = 20, T = 5000, burn = 500,
     grid = seq(min(y), max(y), length = 2^8))

pKLD(y, prior, kernel = "gaussian", N = 20, T = 5000, burn = 500,
     grid = seq(min(y), max(y), length = 2^8))

Arguments

y
A matrix with data from which the estimate is to be computed. Different densities for each column.

prior
prior information: (alpha, mu, sigma, a, b); see details.

kernel
character string giving the smoothing kernel to be used; this must be one of "gaussian" or "log-
gaussian"; by default kernel = "gaussian".

N
truncation value for the maximum number of mixture components (Ishwaran and James, 2001,
2002); by default, N = 20.

T
number of MCMC iterations; by default: T = 5000.

burn
number of burn in iterations; by default: burn = 500.

grid
grid on which the posterior object of interest is to be evaluated; by default grid = seq(min(y),
max(y), length = 2^8).
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Details

This function fits a model based on the Karhunen–Loeve–Dirichlet (KLD) prior as described in de Carvalho
and Galasso (2019). The KLD model requires fitting a density for each level of a factor (here fitted using a
DPM model with a blocked Gibbs sampler (Ishwaran and James, 2001, 2002)).

Value

traj
3D-array containing posterior simulated trajectories of densities or distribution function (dKLD)
computed over grid.

trajhat
matrix containing the mean trajectory of the estimated object of interest evaluated at grid.

trajDPM
3D-array containing posterior simulated trajectories of the density and distribution function
computed over grid, for the DPM model.

DPMhat
matrix containing the mean trajectory of the estimated object of interest evaluated at grid, for the
DPM model.

grid
grid on which the posterior object of interest has been evaluated.

scores
matrix containing the estimated scores for the K-L decomposition.

vartraj
matrix with the trajectories of the percentage of variability explained for each principal component.

PC
matrix containing the estimated functional principal component for the K-L decomposition.

The plot method depicts the estimated objects [densities (dKLD) or distribution functions (pKLD) all in the
same plot. If k = j then the method depicts the estimated densities along with its 95% credible bands. If def
= TRUE then the method depicts a side-by-side plot with the data on the left and the baseline density (k=1)
and all corresponding (1st) deformations on the right. The summary method depicts the variability explained
for each one of the first j components along with their 95% credible intervals.

Author(s)

Miguel de Carvalho and Bastian Galasso-Diaz
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References

de Carvalho, M. and Galasso, B. (2019). Karhunen–Loeve Priors for families of random densities. Work in
progress

Ishwaran, H. and James, L. F. (2001) Gibbs sampling methods for stick-breaking priors. Journal of the
American Statistical Association, 96, 161–173.

Ishwaran, H. and James, L. F. (2002) Approximate Dirichlet process computing in finite normal mixtures.
Journal of Computational and Graphical Statistics, 11, 508–532.

Examples

## Example 1: experiments on simulated data
# Initial values
n <- 500 
Nf = 10 
N <- 3
w_1 <-seq(0.32,0.5,.02)
w_2 <- seq(.2,.29,.01)
W=cbind(w_1,w_2,1-w_1-w_2)
mu <- c(-2,0,4)
sigma <- sqrt(c(1,.25,1))
lgrid = 2^8
T <- 4500
grid = seq(-6,8,length.out = lgrid)
# Simulating data
Y=matrix(NA,nrow=n,ncol=Nf)
  for(i in 1:Nf){
    Sam <- sample(N, n, replace = TRUE, prob = c(W[i,]))
    Y[,i] <- rnorm(n, mu[Sam], sigma[Sam])
  }
# prior specification and fir the KLD-model
prior <- list(alpha = 1, mu = 0, sigma = 100, a = .1, b = .1)
fit <- dKLD(y = Y, prior = prior, 
            kernel = 'gaussian',
            N = 20, T = 5000, 
            burn = 500, 
            grid = grid)
# Plot of complete family
plot(fit)
# One element of the family along its 95% credible bands
plot(fit,k=1)
# Variability explained for the first four principal components
summary(fit,k=4)

## Example 2: Illustration with Galton's data
data(Galton)
attach(Galton)
lgrid <- 2^8
K <- nrow(table(Galton)) - 1
nk <- rowSums(table(Galton))
fit <- y <- y.grid <- list()
grid = seq(min(Galton$child) - 5, max(Galton$child) + 5,length=lgrid)
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x <- c(64, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5)
set.seed(1)
for (k in 1:K)
  y[[k]] <- child[which(parent == x[k])] + rnorm(sum(parent == x[k]))

L <- unlist(lapply(y,FUN = length))
N <- max(L)
G <- matrix(NA,nrow = N,ncol=K)
for(k in 1:K)
  G[1:L[k],k] <- y[[k]]

prior <- list(alpha = 1, mu = 0, sigma = 100, a = .1, b = .1)
fit <- dKLD(y = G, prior = prior, 
            kernel = 'gaussian',
            N = 20, T = 5000, 
            burn = 500, 
            grid = grid)
plot(fit)
plot(x = fit,y = G, cnames = x, def = TRUE,
  labs = c("Child Height","Parents Height",
    "Deformation","Parents Height"))

[Package ROCstudio version 1.0 Index]
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