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INTRODUCTION

Biological invasions, defined as the arrival, establish-
ment and subsequent spread of species beyond their
historical range, have emerged as a major topic in ecol-
ogy. Non-indigenous species (NIS) have significant
effects on native biota, natural patterns and ecological
processes through a variety of direct and indirect
mechanisms occurring at genetic, individual, popula-
tion, community and ecosystem scales (Griffiths et al.

1992, Lambert et al. 1992, Ruiz et al. 1997, 2000,
Crooks 2002, Grosholz 2002, Olyarnik et al. 2009, Rilov
& Crooks 2009). NIS can produce significant effects on
local communities including changes in the species
richness and local diversity (Fridley et al. 2007), the
strength and direction of interspecific interactions
(Holway et al. 2002, Eastwood et al. 2007) and the use
of resources (Bubb et al. 2006). In many ecosystems,
the success of NIS is facilitated by the absence of nat-
ural predators in the locality invaded, making the
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unchecked growth of the invasive population possible
(Kolar & Lodge 2001, 2002, Keane & Crawley 2002).
Alternatively, successful invasion might also be regu-
lated by the competitive ability of NIS. In general,
invasive success may be explained by ‘the enemy
release hypothesis’ (Colautti et al. 2004) and by high
competitive ability. NIS are characterised by their abil-
ity to adapt establish themselves in new environments
and become successful competitors against native
 species. For example, between 1970 and 2000, the
competitive dominant mussel, Mytilus galloprovin-
cialis, aggressively invaded the rocky intertidal shore
of South Africa. The species has spread rapidly, over
thousands of kilometres, along sheltered and exposed
rocky west and east shores of South Africa, displacing
the mussels, Aulacomya ater and Choromytilus merid-
ionalis (Griffiths et al. 1992, Collins et al. 1996, Robin-
son et al. 2007), and outcompeting the mid-intertidal
limpet, Scutellastra argenvillei (Steffani & Branch
2003a,b, 2005, Branch & Steffani 2004).

Perumytilus purpuratus (Lamarck 1918) is a native
mussel of South American rocky coasts and is distrib-
uted in coastal waters of the southeastern Pacific
Ocean from Ecuador to the Strait of Magellan, and
around Cape Horn into the South Atlantic as far
north as La Lobería, Argentina (Bertness et al. 2006,
Prado & Castilla 2006). This species forms extensive
and dense tridimensional beds in the mid-intertidal
zone and is an important bioengineer species (Prado
& Castilla 2006). P. purpuratus is the dominant com-
petitor for primary substrate in the mid-intertidal
fringe of the rocky shores of north-central Chile, out-
competing other sessile species such as barnacles,
algae and other mussel species (Castilla & Durán
1985, Paine et al. 1985, Durán & Castilla 1989,
Guiñez & Castilla 1999, Navarrete et al. 2005, Prado
& Castilla 2006).

Pyura praeputialis (Heller 1878) is a solitary tunicate
that inhabits intertidal and shallow subtidal habitats,
showing a conspicuous, disjointed geographical distri-
bution (Castilla & Guiñez 2000, Castilla et al. 2002).
This tunicate inhabits wave-swept headlands on the
southeastern shores of Australia, from where it
appears to have originated (Fairweather 1991, Mon-
teiro et al. 2002). This species is also found in northern
Chile (Castilla et al. 2002), where it lives exclusively
along approximately 70 km of rocky coast inside the
Bay of Antofagasta (23° 38’ S, 70° 23’ W, Fig. 1) (Guiller
1959, Paine & Suchanek 1983, Underwood & Fair-
weather 1986, Castilla 2008). Molecular evidence has
demonstrated that P. praeputialis is a recent NIS
invader to this bay, probably having arrived a few hun-
dred years ago from Australia (Astorga et al. 2002,
Castilla et al. 2002). In the rocky shore of the Bay of
Antofagasta, P. praeputialis generates dense collective

unities (pseudo-coloniality) forming extensive aggre-
gations in the mid- and low-intertidal zones (Paine &
Suchanek 1983, Castilla et al. 2004, 2007).

In a previous study Castilla et al. (2004) showed that
Pyura praeputialis is an aggressive interspecific com-
petitor for primary space at the mid-low rocky inter-
tidal fringe inside the Bay of Antofagasta. At this inter-
tidal fringe the species appears to have the ability to
overgrow the native mussel Perumytilus purpuratus.
However, to date there are no experimental studies
evaluating the strength of mussel–tunicate competi-
tion, thereby assessing the competitive performance of
mussels and tunicates in the presence and absence of
their competitors in the mid-low and mid-upper inter-
tidal fringes. In this study, we use field experimental
approaches to assess the interspecific competitive
strength and physiological restrictions of both species
at the mid-intertidal fringe. Hence, we attempt to
deepen the understanding of the ecological processes
determining the unique intertidal zonation pattern
observed in the rocky shore of the Bay of Antofagasta.
The aim of this work is to quantify growth, survival
rates and the strength of competition between the
native mussel P. purpuratus and the non-indigenous
tunicate P. praeputialis, based on cross-transplants
(alone and mixed treatments), at 4 different sites inside
the Bay of Antofagasta within 2 intertidal subfringes:
the mid-low intertidal fringe (M-LIF) where P.
praeputialis dominates, and the mid-upper intertidal
fringe (M-UIF) where P. purpuratus dominates. We
hypothesized that at the M-UIF the mussel P. purpura-
tus is a stronger competitor than the tunicate P. prae -
putialis, while at the M-LIF P. praeputialis is a stronger
competitor than P. purpuratus.
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Fig. 1. Experimental sites (d) in the Bay of Antofagasta. Inset: 
study area in northern Chile
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MATERIALS AND METHODS

To evaluate the competitive interaction between the
NIS tunicate Pyura praeputialis and the native mussel
Perumytilus purpuratus in the Bay of Antofagasta, we
transplanted juveniles of both species, using PVC
cages installed at 2 tidal heights: the mid-low intertidal
fringe and the mid-upper intertidal fringe (Castilla
1981, Castilla et al. 2004), where P. praeputialis and P.
purpuratus, respectively, have higher densities
(Castilla & Camaño 2001). The experiments were car-
ried out at 4 sites inside the Bay of Antofagasta: (1) La
Mina (LM; 23° 48’ S, 70° 30’ W), (2) Punta Coloso (PC;
23° 45’ S, 70° 27’ W), (3) La Rinconada (LR; 23° 27’ S,
70° 30’ W) and (4) Las Conchitas (LC; 23° 31’ S,
70° 32’ W) (Fig. 1).

Juveniles of Pyura praeputialis between 13 to 17 mm
in diameter and 19 to 24 mm maximum height were
collected from El Way (23° 44’ S, 70° 26’ W) (Fig. 1). In
the laboratory, total wet mass, maximum height and
maximum dorsal diameter were recorded for each
tunicate. Perumytilus purpuratus juveniles of maxi-
mum length between 5 to 10 mm were collected from
mussel beds at El Way. Before experiments began, to
quantify shell growth, the left shell of each mussel was
marked at the posterior growth border by means of a
dentist drill (Guiñez & Castilla 1999). Mussels and
tunicates were maintained in running seawater 24 h
before being transplanted to the field.

Cages were made from open PVC cylinders 10.7 cm
in diameter and 4 cm high (surface area: ~90 cm2; vol-
ume: ~360 cm3). Cylinders were  covered with 2 types
of plastic nets: (1) a fine net (20 × 20 cm, mesh aper-
ture: 2 mm) and (2) a coarse net (20 × 20 cm, mesh
aperture: 6 mm) (Fig. 2). At the beginning of the
experiment, animals were placed loosely in the cages

covered with both nets. After ~1 mo individuals had
attached to the substrate either through byssus
threads (Perumytilus purpuratus) or tunic production
(Pyura praeputialis). The fine net facilitated the
adhering processes, reducing hydrodynamic forces
within the cages and was removed in the second
month. The coarse net prevented predators from
entering the cages and was maintained throughout
the experiment. Since P. prae putialis and P. purpura-
tus juveniles have different sizes and forms, to stan-
dardize the intra- and interspecific competition to the
same biomass by unit surface area, we kept a con-
stant biomass (20 ± 2 g) by cage area. Three competi-
tion treatments were carried out: (1) Treatment A: 10
P. praeputialis (10 g) were randomly mixed with 20 P.
purpuratus individuals (10 g), (2) Treatment B: 10 P.
praeputialis (10 g) were randomly placed alone,
(3) Treatment C: 20 P. purpuratus (10 g) were ran-
domly placed alone. In Treatment A, the full cage vol-
ume was used; while, in Treatments B and C, the
experimental cage was divided in 2 halves (surface
area: ~45 cm2; volume: ~180 cm3; Fig. 2) by means of
a PVC plate. In the latter treatments, 1 of the halves,
determined at random, was used for experimentation
and the other remained empty. A set of 3 cages (1 per
treatment) was arranged as a plot, and cages were
attached to the intertidal rocks with stainless steel
screws (Fig. 2). For each combination of site and tidal
heights 5 replicate plots were randomly assigned.
Experiments ran from 11–15 July to 19–21 December
1999. The nets covering the cages were cleaned of
epibionts at least once a month and predator presence
or absence on the experimental units was verified.

At the end of the experiment we determined (1) the
number of individual Pyura praeputialis and Perumy -
tilus purpuratus alive, and (2) P. praeputialis and
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Fig. 2. (A) Frontal and (B) lateral views of cages used for tunicate–mussel competition experiments
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P. purpuratus growth. For P. praeputialis, the initial dry
viscera mass for each individual was estimated by
means of a nonlinear equation: dry viscera mass = 6.7 ×
10–5 × (diameter)2.448, (see Eq. 2 in Castilla et al. 2004).
The initial total dry mass was estimated with the linear
equation: total dry mass = 0.160 + 0.286 × wet mass
(see Eq. 1 in Castilla et al. 2004). The initial tunic dry
mass was estimated as the difference of initial total dry
mass minus initial visceral dry mass. Final dry masses
were determined in grams with a digital balance
(accuracy: ±0.001 g,) after drying the respective tissues
in an oven at 70°C for 72 h. The growth rate of P. pur-
puratus was determined as the increment in shell size
and was quantified as the distance between the initial
drill mark and the new border of the shell. After the
experimental units were removed from the field and
brought to the laboratory, we used digital photography
to determine the degree to which P. praeputialis had
encroached (i.e. overgrown) P. purpuratus inside the
cylinders. This procedure was applied only to those
experimental units containing both species. The crite-
ria to estimate P. praeputialis encroachment was the
percentage of mussel shells covered by the tunicates
(from a frontal view of the experimental unit) accord-
ing to the following scale: (1) total encroachment:
>80%; (2) partial encroachment: ≤80% and ≥20%;
(3) no encroachment: <20% of shells covered.

For each species we performed a 3-way mixed
analysis of covariance (ANCOVA) with ‘Site’ as a ran-
dom factor and ‘Treatment’ and ‘Tidal height’ as fixed
effects. For both species we used survival as the
dependent variable and initial dry biomass as a covari-
ate. For Perumytilus purpuratus, we used differential
shell growth (final length minus initial shell maximum
length) as the dependent variable. For Pyura prae -
putialis, we used differential mean tunic mass and vis-
ceral dry tissue growth as dependent variables, and
survival number as a covariate. We also conducted a
3-way blocked ANOVA (factors were: Site, Tidal
height, Degree of encroachment) for mussel growth,
with Site as a random blocking factor. For statistical
analyses we used PROC GLM (SAS 2002). When inter-
action terms in factorial designs were significant we
compared cell means using the SLICE option in PROC
GLM (SAS 2002). We estimated the intensity of inter-
specific competition (Lotka & Volterra competitive
coefficients) separately at both intertidal heights, esti-
mated as the per capita effect on ratio between the ini-
tial and final survival during the 5 mo of the experi-
ment. To estimate this coefficient, we fitted linear
regressions of the ratios be tween the initial and final
survival of the focal species (in logarithmic scale) ver-
sus time. The slope of this regression is an estimator of
the interspecific competition coefficient among trans-
planted individuals at each site.

RESULTS

Pyura praeputialis survival varied with competition
treatment and tidal height (Treatment × Tidal height
interaction, p = 0.050; Table 1A, Fig. 3A,B), but did not
vary with Site and other Site interactions (Table 1). In
the M-LIF P. praeputialis survival was not affected by
the presence of Perumytilus purpuratus (p = 0.432;
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A) 3-way ANCOVA
Source of variation df MS F P

Site 3 0.0028 1.09 0.452
Tidal height 1 0.0111 17.16 0.014
Treatment 1 0.0048 2.26 0.219
Site × Tidal height 3 0.0007 1.38 0.265
Site × Treatment 3 0.0028 5.62 0.003
Treatment × Tidal height 1 0.0005 0.92 0.344
Error 37 0.0005

B) Site × Treatment effect sliced by Site 
Site df SS MS F p

La Mina 1 0.0017 0.0017 3.34 0.076
Punta Coloso 1 0.0032 0.0032 6.43 0.016
La Rinconada 1 0.0012 0.0012 2.42 0.129
Las Conchitas 1 0.0055 0.0055 11.00 0.002

Table 2. Pyura praeputialis. (A) Three-way (Site, Tidal
height and Treatment) mixed ANCOVA for growth: dry vis-
cera mass (final minus initial). The Site × Tidal height ×
Treatment interaction was used as an error term. Survival as
a covariate was not significant (F1, 36 = 0.62, p = 0.43). (B) Site
× Treatment effect sliced by Site (see ‘Materials and meth-
ods’; SAS 2002). p-values in bold text are significant (p < 

0.05)

A) 3-way ANCOVA
Source of variation df MS F p

Covariate 1 5.8378 1.38 0.244
Site 3 11.0009 0.58 0.655
Tidal height 1 386.8427 32.54 0.010
Treatment 1 8.0207 0.88 0.419
Site × Tidal height 3 11.9952 4.73 0.097
Site × Treatment 3  9.0791 3.72 0.158
Treatment × Tidal height 1 22.3499 8.86 0.050
Treat × Site × Tidal height 3 2.4535 0.58 0.629
Error 63 4.2184

B) Treatment × Tidal height effect sliced by Tidal height
Tidal height df SS MS F p

M-LIF 1 2.0119 2.0119 0.82 0.432
M-UIF 1 28.8933 28.8933 11.78 0.042

Table 1. Pyura praeputialis. (A) Three-way (Site, Tidal
height and Treatment) mixed ANCOVA for survival. The co -
variate was the initial biomass. (B) Treatment × Tidal height
effect sliced by Tidal height (see ‘Materials and methods’; 

SAS 2002). p-values in bold text are significant (p < 0.05)
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Table 1B, Fig. 3A), but in the M-UIF its
survival was lower in the presence
than in the absence of P. purpuratus
(p = 0.042; Table 1B, Fig. 3B). At this
tidal height, P. praeputialis survival in
Treatment A (both species mixed) de -
creased by about 75% compared with
Treatment B (P. prae putialis alone;
Fig. 3B).

Pyura praeputialis tunic dry mass
(ANCOVA: F1, 3 = 19.82, p = 0.001;
Fig. 3C,D) and viscera dry mass tis-
sues (p = 0.014; Table 2A, Fig. 3E,F),
grew more slowly at the M-UIF than
at the M-LIF. At both tidal heights,
tunic growth was faster in the P. prae -
putialis alone treatment than in the
competition treatment (Treatment A),
but this effect was not significant
(ANCOVA: F1, 3 = 1.98, p = 0.214;
Fig. 3C,D). Visceral tissue growth var-
ied with site and competition (p =
0.003; Table 2A, Fig. 3E,F). This inter-
action reflects the negative effect of
Peru mytilus purpuratus on P. prae -
putialis visceral tissue growth at Punta
Coloso and Las Conchitas (p = 0.016
and p = 0.002, respectively; Table 2B,
Fig. 3E,F). Only marginal effects were
ob served at La Mina (p = 0.076;
Table 2B, Fig. 3E,F) and no effect was
ob served at La Rinconada (p = 0.129;
Table 2B, Fig. 3E,F).

Survival of the mussel Perumytilus
purpuratus was not affected by the
presence of Pyura praeputialis indi-
viduals (ANOVA: F1, 3 = 0.52, p =
0.522; Fig. 4A,B). Mussel growth,
however, varied with both tidal height
and the presence of the tunicate. P.
purpuratus grew faster at the M-LIF
(i.e. in the centre of the P. praeputialis
belt, p = 0.006; Table 3, Fig. 4C,D)
than at the M-UIF (i.e. in the centre of
P. purpuratus belt), and even faster in
the mixed treatment with P. prae -
putialis, than alone (p = 0.025; Table 3,
Fig. 4C,D). Nevertheless, when the competition treat-
ment was analyzed according to the degree of
encroachment of P. praeputialis on P. purpuratus, as
encroachment in creased the growth of P. purpuratus
decreased (p < 0.001; Table 4A, Fig. 5). The encroach-
ing effect of P. praeputialis on P. purpuratus was more
important at the M-LIF than at the M-UIF (F2, 95 =
239.80 and F2, 95 = 50.15, respectively; Table 4B, Fig. 5).

The interspecific competition coefficients of Pyura
praeputialis on Perumytilus purpuratus differed be -
tween tidal heights (p = 0.03; Fig. 6). P. praeputialis
had a higher competitive performance in the mid-low
intertidal fringe (Fig. 6), while in the mid-upper inter-
tidal fringe its competitive performance decreased.
P. purpuratus had a low competitive intensity at both
intertidal heights (Fig. 6).
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Fig. 3. Pyura praeputialis. Survival and growth under 2 competition treat-
ments. Tunicates treatment (black bars) and Mixture treatment (grey bars) at
4 sites and 2 intertidal fringes: mid-low intertidal fringe (M-LIF: A,C,E) and
mid-upper intertidal fringe (M-UIF: B,D,F). (A,B) Survival, (C,D) dry tunic
mass, (E,F) dry visceral mass. Means +1 SE for 4 independent experimental
units. LM: La Mina; PC: Punta Coloso; LR: La Rinconada; LC: Las Conchitas 

(for locations see Fig. 1)
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DISCUSSION

Our experiment demonstrated that at the M-LIF
the non-indigenous tunicate Pyura praeputialis was a
stronger competitor than the native mussel Peru -
mytilus purpuratus. However, at the M-UIF the com-
petitive ability of the tunicate was reduced. The sur-
vival of P. praeputialis at the M-LIF was not reduced by
the presence of P. purpuratus (Fig. 3A). Nevertheless,
tunicate survival was reduced in the mixed treatment
at the M-UIF (where P. purpuratus dominates; Fig. 3B),
while P. purpuratus survival was not affected by com-
petition with P. praeputialis (Fig. 4A,B). Overall, the
mussels grew faster when mixed with P. praeputialis
than when grown alone (Table 3, Fig. 4C,D). This may
be due to greater moisture retention in mixed than in
non-mixed units, thereby reducing physiological stress
for P. purpuratus. Nevertheless, at both tidal heights, P.
purpuratus individuals that were totally or partially
encroached by P. praeputialis inside the cages, grew
less than the non-encroached ones (Table 4, Fig. 5).
These results differ from those reported by Dalby &

Young (1992) on the suspected compe-
tition between the ascidian Eudistoma
capsulatum and the oyster Ostrea
equestris where ascidians overgrow-
ing oysters had no effect on the final
oyster size, but in 2 ascidia–oyster
matrix experiments the final oyster
size was enhanced. A previous study
(Castilla et al. 2004) performed on the
P. praeputialis–P. purpuratus interac-
tion showed that P. purpuratus matri-
ces transplanted to the M-LIF and in
contact with natural beds of P. prae -
putialis, were systematically over-
grown (en croached) by the tunicates.
Those previous findings and our pre-
sent results, based on experimental
transplants of P. praeputialis juveniles,
reinforce the hy pothesis that since its
arrival to the Bay of Antofagasta P.
praeputialis have outcompeted P. pur-
puratus at the M-LIF.

Further, the present results show
that Pyura prae putialis grew faster
(tunic and viscera) at the M-LIF than
at the M-UIF (Fig. 3C–F), suggesting
that environmental conditions are
more favorable for the tunicate at the
M-LIF, but worse at the M-IUF. There-
fore, our results are consistent with
the suggestions made by Paine &
Suchanek (1983) that the abrupt upper
intertidal limit of this tunicate would

be related to physiological stress and would not be the
result of biological interactions. On the other hand,
the mussel Perumy tilus purpuratus grew faster at the
M-LIF than at the M-UIF. Increased growth rates for
the mussel in low intertidal and even shallow subtidal
habitats, compared with those in mid-intertidal habi-
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Fig. 4. Perumytilus purpuratus. Survival and shell growth under 2 competition
treatments. Mussels treatment (black bars) and Mixture treatment (grey bars),
at 4 sites and 2 intertidal fringes (M-LIF: A,C; M-UIF: B,D): (A,B) survival,
(C,D) shell growth. Means +1 SE for 4 independent experimental units. 

Abbreviations as in Fig. 3

Source of variation df MS F p

Covariate 1 3.2984 5.77 0.019
Site 3 1.5454 0.92 0.558
Tidal height 1 87.2487 50.51 0.006
Treatment 1 13.6821 17.49 0.025
Site × Tidal height 3 1.6895 2.10 0.274
Site × Treatment 3 0.7819 0.96 0.512
Treatment × Tidal height 1 1.4728 1.82 0.270
Treat × Site × Tide height 3 0.8110 1.42 0.246
Error 61 0.5719

Table 3. Perumytilus purpuratus. Three-way (Site, Tidal height
and Treatment) mixed ANCOVA for differential shell growth
(final minus initial). The covariate was survival number. 

p-values in bold text are significant (p < 0.05)
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tats (where they normally live), have been
also reported in central Chile (Cancino &
Rojas 1986). Hence, our results suggest
that environmental conditions are gener-
ally better for both species at the M-LIF
than the M-UIF, but also that the tunicate
is the competitive dominant species lower
on the shore and, via competitive effects,
restricts the mussel beds to the upper
shore where the tunicate can not tolerate
the environmental conditions. This sup-
ports the hypothesis that in the Bay of
Antofagasta the invasive tunicate P.
praeputialis has had a major ecological
impact, outcompeting the native mussel P.
purpuratus from the M-LIF. The estimated
competition coefficients show that P.
praeputialis gains in competition to P. pur-
puratus at the M-LIF and dominates this
intertidal fringe (Fig. 6). The experimental
and analytical procedures used in this
study allow us to compare the intensity of
interspecific competition with other com-
petitive interactions in nature.

So far, the experimental ecology of
marine, non-indigenous, competitively
do minant invertebrate species, which can
potentially cause major ecological modifi-
cations to inshore systems, has received
little attention in the literature (but see
Crooks 2002, Rilov & Crooks 2009). This
may be due to a number of reasons.

(1) Many of such cases may not exist. It is
possible, for example, that ecologically
drastic alterations, such as modifications in
intertidal zonation, may be rare owing to
negative biotic interactions with native
species and/or to abiotic factors preventing
rocky shore invasive species from becoming
established (Reusch & Williams 1999). (2)
Major inshore ecological modifications exist
but have not been  properly documented
(but see Crooks & Khim 1999, Steffani &
Branch 2005). (3) There is a lack of experi-
mental ap proaches (but see Troost 2010)
since most reported studies are descriptive
(for example see Griffiths et al. 1992, Ver-
meij 1996, Orensanz et al. 2002). Undoubt-
edly, more field experimental approaches
and manipulations, such as that presented
here, are needed to fully understand the
consequences of interactions between native
and invasive species in coastal marine envi-
ronments.

A) 3-way ANOVA
Source of variation df MS F p

Site 3 0.4644 1.64 0.185
Tidal height 1 260.9348 921.24 <0.001
Scale of encroaching 2 71.0068 250.69 <0.001
Site × Tidal Height 3 1.4237 5.03 0.003
Site × Scale of encroaching 6 0.2872 1.01 0.421

Tidal height × Scale of  2 11.8192 41.73 <0.001
encroaching

Site × Tidal height × Scale  6 0.1497 0.53 0.785
of encroaching

Error 95.0 0.2832

B) Tidal height × Scale of encroaching effect sliced by Tidal height
Tidal height df SS MS F p

M-LIF 2 135.8612 67.9306 239.80 <0.001
M-UIF 2 28.4094 14.2047 50.15 <0.001

Table 4. Perumytilus purpuratus. (A) Three-way (Site, Tidal height and
Scale of encroaching) mixed ANOVA for differential shell growth (final
minus initial). (B) Tidal height × Scale of encroaching effect sliced by 

Tidal height. p-values in bold text are significant (p < 0.05)

Fig. 5. Perumytilus purpuratus. Shell growth under 3 degrees of Pyura
praeputialis encroachment at 4 sites and 2 intertidal fringes: M-LIF and
M-UIF. The following degree of encroachment was used, according to the
percentage of individual mussel shells covered by P. praeputialis: >80% =
total encroachment (h); ≤80% to ≥20% = partial encroachment ( ); 

<20% = no encroachment ( ). For abbreviations see Fig. 3
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