

APPLICATIONS OF BOUNDARY INTEGRAL EQUATIONS AND HOMOGENIZATION FOR THE NUMERICAL SIMULATION OF LIVING TISSUES

ISABEL ALEJANDRA MARTÍNEZ ÁVILA

Thesis submitted to the Office of Graduate Studies in partial fulfillment of the requirements for the Degree of Doctor in Engineering Sciences

Advisor:
CARLOS JEREZ-HANCKES
CARLOS SING-LONG

Santiago de Chile, May 2023
© MMXXII, Isabel Alejandra Martínez Ávila

APPLICATIONS OF BOUNDARY INTEGRAL EQUATIONS AND HOMOGENIZATION FOR THE NUMERICAL SIMULATION OF LIVING TISSUES

ISABEL ALEJANDRA MARTÍNEZ ÁVILA

Members of the Committee:
CARLOS SING-LONG
CARLOS JEREZ
ELWIN VAN'T OUT
DANIEL HURTADO
CHRISTOPHER COOPER

Thesis submitted to the Office of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor in Engineering Sciences

Santiago de Chile, May 2023
© MMXXII, ISABEL ALEJANDRA MARTINEZ ÁVILA

A la familia

ACKNOWLEDGEMENTS

First of all, my words are not enough to express my thanks to who have been here supporting me along this years, but I hope that at least something is reflected in the following paragraphs.

Many thanks to my main advisor, Professor Carlos Jerez-Hanckes, for introducing me into the research world, to the modeling and numeric simulation of problems by means of PDEs and boundary integral methods. I am deeply grateful for his patience, guidance, and for believing in me along these years.

I want to thank to Professor Irina Pettersson for introducing me to the homogenization methods, for her guidance and support during my travels to Sweden and after my return to Chile.

I want to thanks to my advisor Carlos Sing-Long for his attention and support in the last years of the PhD .

I want to thank to the members of the committee, president Juan de Dios Ortúzar, Professor Daniel Hurtado, Professor Elwin van't Wout, and Professor Christopher Cooper.

My thanks to the Pontificia Universidad Católica de Chile, for the opportunity and education given along the PhD .

Thanks to the Electrical Engineering Department and its people for creating an inspiring atmosphere for all the students, including me. Your help and kindness cannot be overestimated.

Thanks to the people of the Graduate School at the Engineering School, specially to Nicole Betti, Subdirectora de Asuntos Estudiantiles, for her orientation.

Special thanks to José Pinto and Rubén with whom I shared this path. I appreciate great time we were having during the lunch breaks, and all our mathematical discussions
during these years. Thanks to Fernando, for his time and patience discussing with me time schemes and electrophysiological concepts.

I want to thank my family, my mother María Isabel, my grandmother María Aurelia, my aunts Apsara, María Cecilia, María Aurelia Valentina, my uncles José María, José Leonardo and José Rodrigo, my dear Blanquita, Victoria, Paloma and Edito. Thank you for all your love, for listening to me, for being with me and for praying for me. Special thanks to my mom, who is always with me, and to my uncle José María for his time and wisdom.

I would like to express my gratitude to the funding agencies behind my research. In particular, to Agencia Nacional de Investigación y Desarrollo (ANID), through the doctoral fellowship program Conicyt-PFCHA/Doctorado Nacional/2018-21181809 and Fondecyt Regular 1171491, as well as by the Swedish Foundation for International Cooperation in Research and Higher education (STINT) through project CS2018-7908 (El Nervio - Modeling of Ephaptic Coupling of Myelinated Neurons).

Thanks to all friends and people that gave me their support during this time.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
LIST OF TABLES vii
LIST OF FIGURES ix
ABSTRACT xiv
RESUMEN xv

1. INTRODUCTION 1
1.1. Peripheral axon modeling 2
1.1.1. Single axon modeling 4
1.1.2. Axon bundles modeling 6
1.2. Cell electropermeabilization modeling 8
2. THEORY AND METHODS 10
2.1. Homogenization theory 10
2.2. Monotonicity method 20
3. MULTISCALE MODELING OF MYELINATED AXONS 23
3.1. Introduction 23
3.2. Problem setup 25
3.2.1. Geometry 25
3.2.2. Governing equations 27
3.2.3. Main result 30
3.3. A priori estimates 31
3.4. Justification of macroscopic model 38
3.5. Numerical example 40
Acknowledgements 42
4. BIDOMAIN MODEL FOR BUNDLES OF AXONS 44
4.1. Introduction 44
4.2. Microscopic model 47
4.3. Problem setup 47
4.3.1. Main result 50
4.3.2. Well-posedness 53
4.4. Proof of Theorem 4.1 59
4.4.1. A priori estimates 59
4.4.2. Derivation of the macroscopic model 63
4.5. Well-posedness of the macroscopic problem 76
4.6. Formal asymptotic expansions 79
Acknowledgments 83
5. CELL ELECTROPERMEABILIZATION MODELING VIA MULTIPLE TRACES FORMULATION AND TIME SEMI-IMPLICIT COUPLING 84
5.1. Introduction 84
5.2. Functional spaces 86
5.3. Problem Statement and Boundary Integral Formulation 89
5.3.1. Cell Electropermeabilization Model 89
5.3.2. Boundary integral formulation 94
5.4. Numerical Approximation 102
5.4.1. Semi-implicit time stepping scheme 102
5.4.2. Spatial discretization 104
5.4.3. Fully discrete scheme. 111
5.5. Numerical Results 113
5.5.1. Hardware and Code Implementation 113
5.5.2. Code validation 114
5.5.3. Numerical Results for a Single Cell with Nonlinear Dynamics 127
5.5.4. Results with multiple cells 133
5.6. Conclusions and future work 141
5.7. Acknowledgements 142
6. CONCLUSIONS 143
References 144

LIST OF TABLES

3.1 Geometric parameters in $\mu \mathrm{m}$.
3.2 Results of the effective coefficient $a^{\text {eff }}$ for different values of l, the length of the Ranvier node. l is in $\mu \mathrm{m}$. 41
3.3 Results of the effective coefficient $a^{\text {eff }}$ for different values of the angle. The angles are in degrees and the results presented with six significant digits.
5.1 Parameters used in Section 5.5.2.1 for studying the convergence of the spherical harmonics approximation of $\phi_{e_{3}}(5.33 \mathrm{c})$. Values for σ_{0} comes from (Kavian, Leguèbe, Poignard, \& Weynans, 2014, Table 1) and for R_{1} from (Mistani, Guittet, Poignard, \& Gibou, 2019, Table 1).
5.2 Parameters used in Section 5.5.2.2 for Examples 1 and 2 for the MTF validation. The point source potential $\phi_{e_{3}}$ is found in (5.33c). Conductivity values are from (Kavian et al., 2014, Table 1), cell radius from (Mistani et al., 2019, Table 1).
5.3 Discrete Calderón errors and jump errors for Examples 1-4 from Section 5.5.2.2. The first two Examaples cosider a only one sphere, Example 3 three spheres and 27 spheres for Example 4. The values are approximated to three significant digits.
5.4 Parameters used for the MTF verification with $\phi_{e_{3}}=1 /\left(4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\|_{2}\right)$ in Example 3, Section 5.5.2.2. Conductivities are given in (Kavian et al., 2014, Table 1) and radii are in (Mistani et al., 2019, Table 1).
5.5 Parameters used for the MTF verification with $\phi_{e_{3}}=1 /\left(4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\|_{2}\right)$ with 27 spheres in Example 4, Section 5.5.2.2. Parameters for the conductivities are given in (Kavian et al., 2014, Table 1) and radii are in (Mistani et al., 2019, Table 1).
5.6 Parameters used for the time scheme validation in Section 5.5.2.3 where linear dynamics are assumed. The external potential is $\phi_{e}=I(t) /\left(4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\|_{2}\right)$
and only one cell is considered. Conductivity values are given in (Kavian et al., 2014, Table 1), the cell radius and the specific membrane capacitance are given in (Mistani et al., 2019, Table 1), and the specific membrane resistance is from (Henríquez, Jerez-Hanckes, \& Altermatt, 2017, Table 1).
5.7 Parameters used for the simulation of a single cell with non-linear dynamics (5.3e) in Section 5.5.3.1 when studying the time convergence with fixed L. Parameters used are found in (Kavian et al., 2014, Table 1).128
5.8 Error convergence of solutions obtained for the nonlinear problem with one cell from Section 5.5.3.1 for fixed L. Computed norms are the difference between two successive solutions. Parameters used are in Table 5.7. 129
5.9 Parameters used in the numerical simulations with one cell to study the convergence in space in Section 5.5.3.2, with the non-linar dynamics of the electropermeabilization model. The specific choice of extra- and intracellular conductivities, different from the previous simulations, allow us to obtain a response of the impulse sooner in time. The rest of the parameters are from (Kavian et al., 2014, Table 1). The external applied potential used is equal to zero after $t=5$.
5.10 Parameters used in Examples 5-9 (multiple cells, nonlinear dynamics) from Section 5.5.4. Parameters for the radii are from (Mistani et al., 2019, Table 1), the electrical parameters are from (Kavian et al., 2014, Table 1), except for extraand intracellular conductivities that were changed to obtain a response of the impulse sooner.
5.11 Center positions for Examples 5-8 from Section 5.5.4, where nonlinear dynamics with three cells are simulated.
5.12 Cells' position in Examples 9 from Section 5.5.4, where nonlinear dynamics with eight cells are simulated.

LIST OF FIGURES

1-1 Typical structure of a single myelinated neuron and a nerve. Sources: "Anatomy and Physiology" by the US National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program; www.tabers.com 4
2-1 Resistors in series and effective conductance 13
2-2 1D-heterogeneous material with periodic conductivity $a(x / \varepsilon)$ 13
3-1 Simplified geometry of the cross-section of a myelinated axon and the periodicity cell Y. 26
3-2 Overlapping cells $\varepsilon \tilde{Y}_{k}$ and $\varepsilon \tilde{Y}_{k+1}$ 35
3-3 The cross section of half of the periodic cell, where $Y=\left(-\frac{1}{2}, \frac{1}{2}\right) \times D_{R_{0}}$ and $Y_{i}=\left(-\frac{1}{2}, \frac{1}{2}\right) \times D_{r_{0}}$, with $D_{R_{0}}$ and $D_{r_{0}}$ being the open disks in \mathbb{R}^{2} of radius R_{0} and r_{0}, respectively. 40
3-4 Effective coefficient $a^{\text {eff }}$ for different values of l, the length of the Ranvier node. l is in $\mu \mathrm{m}$. 42
3-5 Effective coefficient $a^{\text {eff }}$ for different values of the angle. The angles are in ${ }^{\circ}$. 43
4-1 A fascicle of myelinated axons and the periodicity cell Y. 47
5-1 A system of three cells $\mathcal{N}=3$. 90
5-2 Values of $\beta_{j}\left(v_{j}\right)$ for two pairs of parameters. The parameters used in (a) are from (Kavian et al., 2014, Table 1), while the parameters used in (b) are chosen to show what happens with a smaller value of $k_{e p, j}$. 93
5-3 Illustration of spherical coordinates. Adapted from (Siriudie, n.d.). 105
5-4 Illustration of the reference systems 1 and 2 , for \mathcal{N} spheres. 1075-5 Relative errors (5.30) computed in Section 5.5.2.1, between ϕ_{e} (5.33) and itsapproximations in spherical harmonics ϕ_{e}^{L} in a sphere of radius $10 \mu \mathrm{~m}$.116

5-6 Electric field plots in Example 1 of Section 5.5.2.2. Parameters used are in Table 5.2. .

5-7 External field u_{0}^{50} in Example 1, Section 5.5.2.2. Notice that the values are of order 10^{-20}, which we consider to be approximately zero. This is showed for later comparison with Example 2, Figure 5-9. Parameters used are in Table 5.2. 120

5-8 Error convergence for the traces in Example 2 (Section 5.5.2.2). The relative error $L^{2}\left(\Gamma_{1}\right)(5.30)$ is computed against the analytic solution, with exponential convergence as L increases. Parameter values are given in Table 5.2.

5-9 Field u_{0}^{50} in Example 2, Section 5.5.2.2 with parameters in Table 5.2. Here, u_{0}^{50} is much larger compared with Example 1 (see Figure 5-7) and cannot be considered to be zero. Note that in Example 3, with two phantom spheres, u_{0}^{50} in Figure 5-10 in similar to the present case.

5-10 Field u_{0}^{50} of Example 3, Section 5.5.2.2 with parameters from Table 5.4. The resulting field is approximately the same as the one in Example 2, as it can be seen

5-11 Field u_{0}^{23} in Example 3, Section 5.5.2.2 with parameters in Table 5.5. The only sphere showing a response is the one with different conductivity, which is the expected result.

5-12 Evolution of \bar{v}_{1}^{25} (discrete approximation with $\tau=0.025 \mu \mathrm{~s}$) and v_{1} (analytic solution) at the north pole of the cell $(\theta=0)$ for the validation of the time scheme in Section 5.5.2.3 for linear dynamics. Parameters employed are given in Table 5.6.

5-13 Absolute error in $L^{2}\left(\Gamma_{1}\right)$ between \bar{v}_{1}^{25} (discrete approximation) and v_{1} (analytic solution), as well as $\frac{\tau^{2}}{4}\left\|\partial_{t}^{2} v_{1}\left(t_{s}\right)\right\|_{L^{2}\left(\Gamma_{j}\right)}$, plotted to verify the bound given by Theorem 5.6 for the time scheme from Section 5.5.2.3 where linear dynamics are assumed. Note that the plot of $\frac{\tau^{2}}{4}\left\|\partial_{t}^{2} v_{1}\left(t_{s}\right)\right\|_{L^{2}\left(\Gamma_{j}\right)}$ is above the absolute error. The length of the time step τ is $0.025 \mu \mathrm{~s}$, the rest of the parameters used are in Table 5.6.

5-14 Error convergence for diminishing time steps τ for the time scheme in Section 5.5.2.3 where linear dynamics are assumed. The slope of the errors on the log\log plot is approximately equal to two, i.e. error converges as τ^{2}. Relative errors $r e_{\infty, 2}\left(v_{1}, v_{1}^{25}\right)_{1}$ and $r e_{2,2}\left(v_{1}, v_{1}^{25}\right)_{1}$ are given in (5.31) and (5.32), respectively. Simulation parameters can be found in Table 5.6.

5-15 Evolution of v_{1}^{1} at the north pole of the cell $(\theta=0)$ for different lengths of time step τ illustrating the time convergence for fixed L, Section 5.5.3.1. The image at the right is zoomed near to the maximum value of v_{1}^{1}. Parameters employed are given in Table 5.7.

5-16 For a fixed l, the relative error in $L^{2}(0, T)$ between coefficients $v_{1}^{l, 0}$ of v_{1}^{L} and v_{1}^{51} is plotted. The time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$. The x-axis indicates the maximum degree used for the discretization of v_{1}^{L}, and the y-axis indicates the error. After $L=11$ the coefficients start to converge. Parameters used are in Table 5.9.

5-17 For a fixed l, the relative error in $\max _{(0, T)}$ between coefficients $v_{1}^{l, 0}$ of v_{1}^{L} and v_{1}^{51} is plotted. The x-axis indicates the maximum degree used for the discretization of v_{1}^{L}, and the y-axis indicates the error. After $L=11$ the ccoefficients start to converge. Parameters used are in Table 5.9.

5-18 For a fixed l, the relative error in $L^{2}((0, T))$ between the coefficients $Z_{1}^{l, 0}$ of Z_{1}^{L} and Z_{1}^{51} is plotted. The length of the time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$. The x-axis indicates the maximum degree used for the discretization o Z_{1}^{L}, and the y-axis indicates the error. The results show convergence. Parameters used are in Table 5.9.

5-19 Spatial convergence in the case of nonlinear dynamics in Section 5.5.3.2: for a fixed l, the relative error in $C(0, T)$ norm between the coefficients $Z_{1}^{l, 0}$ of Z_{1}^{L} and Z_{1}^{51} is plotted. The length of the time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$. The x-axis indicates the maximum degree used for the discretization o Z_{1}^{L}, and the y-axis indicates the error. Parameters used are in Table 5.9.

5-20 Spatial convergence for the nonlinear dynamics, Section 5.5.3.2. Relative norms in space and time of computed solutions against an overkill of $L=51$. On the left, results for v_{1}^{L}, while on the right Z_{1}^{L} is displayed with time step $\tau \approx 0.0024 \mu \mathrm{~s}$. The relative error $r e_{\infty, 2}\left(v_{1}, v_{1}^{51}\right)_{1}(5.31)$ is computed in the $C^{0}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$-norm, and the error for $r e_{2,2}\left(v_{1}, v_{1}^{51}\right)_{1}$ (5.32) is computed in the $L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$-norm. The x-axis indicates the maximum degree used for the discretization of the solution, and the y-axis indicates the error. Convergence starts from $L=11$. Plots are in log-linear scale, and error tends to form a straight line with slope of approximately -10^{-2}, i.e. exponential rate of convergence. Parameters used are in Table 5.9.

5-21 Evolution of the transmembrane potentials $v_{1}^{17}, v_{1}^{24}, v_{1}^{35}$ and v_{1}^{51} at the north pole of the cell $(\theta=0)$ obtained in Section 5.5.3.2 where the spatial convergence for one cell in the nonlinear case is studied. The picture on the right is a zoomed image of the transmembrane potential peak. The time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$, with parameters given in Table 5.9

5-22 Illustration for Examples 5-8 in Section 5.5.4. 136
5-23 Example 5 in Section 5.5.4. Since cells are far from each other, they interact weakly among them, and thus the perceived excitation for each of them is the same. Consequently, the transmembrane potentials v_{j}^{35} and Z_{j}^{35} are practically equal for all cells. The time step is $\tau \approx 6.1 \cdot 10^{-4}$. Parameters employed are found in Tables 5.10 and 5.11.

5-24 Example 6 from Section 5.5.4. Cells are near each other and the interaction among them influences the transmbembrane potential v_{j}^{35} and Z_{j}^{35} (cf. Example 5 in contrast). Notice that the only difference between Example 5 and 6 is the distance between successive cells. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11

5-25 Example 7 from Section 5.5.4. Cell centers are along the z axis and far from each other while the external applied potential is perceived differently by each cells.

The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11.

5-26 Example 8 from Section 5.5.4. Cell centers are along the z axis and close to each other, and thus the external applied potential is varies over each cell. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11. 138

5-27 Example 9 from Section 5.5.4. The first four cells are in the plane $z=0$, while the others are in the plane $z=25$. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11

5-28 Transmembrane voltages v_{j}^{25} obtained in Example 9 of Section 5.5.4 at different times. The length of the time step is $\tau \approx 6.1 \cdot 10^{-4}$. Parameters employed are given in Tables 5.10 and 5.11.

Abstract

During the last decades, enormous progress has been achieved in biomedical applications thanks to the ability to model and computationally simulate complex underlying phenomena. Indeed, the derivation and analysis of ever more realistic physiological models as well as suitable numerical methods to solve them has allowed the identification of relevant variables and behavior patterns with immediate use for clinical practitioners and biomedical specialists.

The present thesis proposes mathematical and computational models to study complex electrophysiological phenomena at the cellular scale using integral boundary equations and homogenization techniques. Specific applications considered are peripheral neural stimulation and cell electropermeabilization.

We employ multiscale analysis and homogenization methods to obtain two reducedorder models: (a) a non-linear cable equation for one myelinated axon that considers the microstructure of it in three dimensions; and, (b) a non-linear bidomain model in three dimensions, which describes the macroscopic behaviour of the electric potential in a bundle of myelinated axons.

For the cell electropermeabilization process, we apply and develop a mathematical theoretical framework for the resolution of the phenomena at the cell scale in three dimensions using the multiple traces boundary integral formulation with a semi-implicit time scheme. We also present a numerical algorithm to simulate the process.

Keywords: multiscale analysis, asymptotic homogenization, boundary integral formulations, myelinated axons, electropermeabilization, cell modeling, spectral methods, numerical simulations, non-linear partial differential equations.

RESUMEN

Durante las últimas décadas se ha logrado un enorme progreso en las aplicaciones biomédicas gracias a la capacidad de modelar y simular computacionalmente fenómenos complejos. De hecho, la derivación y análisis de modelos fisiológicos cada vez más realistas, así como métodos numéricos adecuados para resolverlos, ha permitido la identificación de variables relevantes y patrones de comportamiento con uso inmediato para médicos y especialistas biomédicos.

La presente tesis propone modelos matemáticos y computacionales para estudiar fenómenos electrofisiológicos complejos a escala celular utilizando técnicas de ecuaciones integrales de frontera y homogeneización. Las aplicaciones específicas consideradas son la estimulación neural periférica y la electropermeabilización celular.

Los métodos de homogeneización y análisis multi-escala se utilizarán para obtener dos modelos de orden reducido: (a) una ecuación de cable no lineal para un axón mielinizado que considera la microestructura del mismo en tres dimensiones; y, (b) un modelo de bidominio no lineal en tres dimensiones, que describe el comportamiento macroscópico del potencial eléctrico en un manojo de axones mielinados.

Para el proceso de electropermeabilización, aplicamos y desarrollamos un marco teórico para la resolución del fenómeno a escala celular en tres dimensiones usando la formulación integral de múltiples trazas junto a un esquema temporal semi-implícito. También presentamos un algoritmo numérico para simular el proceso.

Palabras Claves: análisis multiescala, homogenización asintótica, formulaciones integrales de frontera, axones mielinados, electropermeabilización, electorporación, modelamiento celular, métodos espectrales, simulaciones numéricas, ecuaciones diferenciales parciales no lineales.

1. INTRODUCTION

During the last decades, enormous progress has been achieved in biomedical applications thanks to the ability to model and computationally simulate complex underlying phenomena (Maini, 2002; Mackey \& Maini, 2015; Winslow, Trayanova, Geman, \& Miller, 2012). Indeed, the derivation and analysis of ever more realistic physiological models, as well as suitable numerical methods to solve them, has allowed the identification of relevant variables and behavior patterns with immediate use for clinical practitioners and biomedical specialists.

The present doctoral thesis aims to study such mathematical models and numerical methods for specific applications in electrophysiology. This branch of physiology studies the electrical properties of biological cells and tissues. It involves measurements of voltage changes or electric current or manipulations on a wide variety of scales from single ion channel proteins to whole organs, like the heart. In neuroscience, it includes measurements of the electrical activity of neurons, and, in particular, action potential activity. However, there are other complex processes, such as electropermeabilization, that are less obvious and showcase non-trivial cell reactions to electrical stimuli.

In particular, this work tackles two electrophysiological phenomena: (i) the transmission of electrical impulses along peripheral axons and the interaction in axon bundles; and, (ii) electropermeabilization and electroporation in cells. These processes follow nonlinear dynamics, the geometries are complex and involve several scales, which lead to a high computational costs when trying to model and simulate them numerically. Then, is it possible to derived simplified models? How to reduce the computational complexity? In both cases, rigorous mathematical models are derived along with the development of suitable numerical methods to solve the corresponding problems.

Multiple applications of these processes can be found in the literature, as it will be discussed below, but it helps to have in mind for (i) peripheral nerve stimulation used in regional anesthesia, while for (ii) drug absorption in cancer treatment.

The thesis is structured in the following way. First, basic electrophysiology elements as well as a discussion on the state-of-the-art of the phenomena under study are given. Then, key ideas of the homogenization theory and asymptotic analysis are introduced to be later employed in two of the three main contributions of this manuscript. These are presented as follows:

- Chapter 3, entitled Multiscale analysis of myelinated axons, published in Emerging Problems in the Homogenization of Partial Differential Equations, SEMA SIMAI Springer Series, 10 (2021). Here, a nonlinear cable equation for periodically myelinated and unmyelinated segments is derived by asymptotic homogenization takes into account the microstructure of the axon.
- Chapter 4, entitled Derivation of a Bidomain model for bundles of myelinated axons, published in Nonlinear Analysis: Real World Applications, 70 (2023), 4:103789. The main result consists of a bidomain model describing macroscopic behavior of the electric potential in a bundle of myelinated axons.
- Chapter 5, entitled Cell Electropermeabilization Modeling via Multiple Traces Formulation and Time Semi-Implicit Coupling (submitted to SISC). In this chapter, we apply and develop a mathematical theoretical framework for the resolution of cellular electro-permeabilization models in three dimensions using the formulation of multiple traces together with a temporal scheme. A numerical algorithm based on integral equations for a set of electrically stimulated cells is proposed.

Finally, concluding remarks as well as future research directions are provided, as well as bibliographic references for further reading.

1.1. Peripheral axon modeling

As stated, one of the main interests in electrophysiology is to better understand and describe the transmission of electrical stimuli through nerves and other biological cells making up tissues. This allows to more accurately model, for instance, nerve stimulation,
which is nowadays a commonly used method for localizing nerves for regional anesthesia, the treatment of chronic pain, and reducing symptoms in many neurological disorders, like eliminating involuntary muscle activity in multiple sclerosis.

Nerve impulses can be seen as the transmission of information along nerve fibers, which may trigger events to communicate with a different cell via chemical (synapse) or electrical (gap junction) signals. It is the way a nerve cell communicates with another cell and makes it act. For example, a signal from the nerve cell might make a muscle cell to contract. Any disorder in the nervous system can result in a range of symptoms, which include chronic pain, poor coordination, and loss of sensation. Electrical stimulation, applied using implanted or surface electrodes, sometimes can avoke neuron activity, which may restore the lost functions of the patients or relieve certain symptoms (Wahls, Reese, Kaplan, \& Darling, 2010).

Neurological diseases might be caused by various factors, as genetic factors, nerve injuries, environmental issues, or even malnutrition, but many of them have common featuresthey are often difficult to identify and treat, and there is a clear need of new non-invasive diagnose techniques as well as alternative treatment methods. For example, in multiple sclerosis the immune system attacks the myelin sheath covering nerve fibers and causes communication problems between the brain and the rest of the body. Though there is no cure for multiple sclerosis and the cause is not known, it has been documented that electrical stimulation leads to the augmentation of myelin development (Li \& Li, 2017), and helps also, for example, people with foot drop walk more normally (Wahls et al., 2010).

To be able to simulate nerve electrical stimulation, one needs a suitable model. The process of excitability of nerve fibers and a mathematical model for the electrical currents across the axon membrane was first properly studied in the famous work of Alan Lloyd Hodgkin and Andrew Fielding Huxley (Hodgkin \& Huxley, 1952), later on to be rewarded the Nobel Prize in Physiology or Medicine jointly with Sir John Carew Eccles.

FIgURE 1-1. Typical structure of a single myelinated neuron and a nerve. Sources:
"Anatomy and Physiology" by the US National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program; www.tabers.com

1.1.1. Single axon modeling

A typical nerve contains several grouped fascicles, each of them containing many axons (see Figure 1-1). The jump of the potential across the membrane, i.e. the transmembrane potential or nerve impulse, of each individual axon can be modeled in the framework of the Hodgkin-Huxley model, but the complex microstructure of the tissue as a whole presents an obvious problem for those attempting to describe its macroscopic response to the electrical stimulation. In order to model and simulate the nerve fiber response to electrical stimulation, one needs to know both how signals propagate along single neurons and how they influence each other in a bundle of axons.

When it comes to individual axons, a commonly adopted model for signal propagation is the so-called cable equation:

$$
\begin{equation*}
\frac{\partial V}{\partial t}=D \frac{\partial^{2} V}{\partial x^{2}}+f(t, V) \tag{1.1}
\end{equation*}
$$

where $V(t, x)$ is the membrane potential, D is the diffusion coefficient, and f is a continuous function representing the reaction term, depending on both membrane potential and time. Note that it is a one-dimensional-in space variable-partial differential equation, which is much easier to solve and analyze than a corresponding 3D model.

A classical cable equation is derived by modeling dendrites and axons as cylinders composed of segments with capacitances and resistances combined in parallel (Rattay, 1990; P. Basser, 1993; Meffin et al., 2014). The resistances of the cable equation can be modeled as nonlinear resistors using the Hodgkin-Huxley mathematical formulation, and the coefficients in equation (1.1) depend on the membrane resistances and capacitance of Ranvier nodes and internodes-myelinated parts-, as well as on the length of nodes and internodes. In (McIntyre, Richardson, \& Grill, 2002), the authors present a computer-based model for myelinated axons reproducing a wide range of experimental data. The models developed in this study use an explicit representation of the Ranvier nodes, paranodal, and internodal sections of the axon- 21 nodes of Ranvier separated by 20 internodes— as well as a finite impedance myelin sheath. The result is the accurate adjustment of the HodgkinHuxley model to the experimental data.

Since classical continuum cable models are derived modeling neurons as electrical circuits, the one-dimensional cable equation does not contain any information about the geometry of the myelin sheath, of the axon itself, and, consequently is not able to predict the effect of myelin defects on the impulse propagation. In the recent work (Jerez-Hanckes, Pettersson, \& Rybalko, 2020), the authors derived a one-dimensional nonlinear cable equation describing one single axon in the absence of external stimulation. In order to trace the dependence of the time and space constants on the microstructure of neurons, a finite resistivity of the myelin was assumed. In contrast to the case when myelin is assumed to be a perfect insulator, the non-zero conductivity of the myelin sheath leads to the appearance of an additional potential in the effective cable equation. This potential depends on the geometry of the myelin sheath and on the conductivities of intra- and extracellular space.

The main contribution of Chapter 3 is the derivation of a one-dimensional nonlinear cable equation for a single myelinated axon in the case of a varying cross-section and infinite resistivity of the myelin. Assuming the homogeneous Neumann boundary conditions on the myelin surface, we show that the geometrical assumptions on the myelin sheath such as radial symmetry assumption and specific geometry near the points where myelin meets
the intracellular domain, can be suppressed. We perform also numerical computations illustrating the solution of the auxiliary cell problems, as well as analysing how the effective coefficients vary with respect to the area of the Ranvier nodes.

1.1.2. Axon bundles modeling

Modeling a bundle of axons is more complicated. Traditionally, it was assumed that interactions between neurons (ephaptic interactions) are negligible and neighboring axons do not affect each other by current spread through the extracellular space (Barr \& Plonsey, 1992). However, it is now commonly accepted that ephaptic interactions play an important role, for example, in the electrical conductance of the heart (Lin \& Keener, 2010) and in the mammalian olfactory system (Bokil, Laaris, Blinder, Ennis, \& Keller, 2001). Recently, there has been a revival of interest in ephaptic interactions as they appear to impact brain function at different scales from the synapse to cell networks (Anastassiou, Perin, Markram, \& Koch, 2011; Anastassiou \& Koch, 2015). Although axon-to-axon effects in myelinated fibers have not been clearly demonstrated, conduction velocity and perhaps other physiological functions may be affected by axon-to-axon impulse coupling, despite the insulating properties of myelin (Binczak, Eilbeck, \& Scott, 2001; Henríquez \& Jerez-Hanckes, 2018). Further, in tightly packed bundles of unmyelinated fibers, an action potential from one axon may evoke an action potential in a different axon by means of ephaptic coupling, which can play a role in, for example, the olfactory code as the mammalian olfactory nerve presents such anatomical structure (Bokil et al., 2001).

Ephaptic interactions might be modelled by coupling systems of large numbers of cable equations (Bokil et al., 2001; Binczak et al., 2001), but a continuous mathematical model would facilitate the numerical simulations.

The main contribution of Chapter 4 is a rigorous derivation of a continuum model for signal propagation in bundles of myelinated neurons. Namely, we present a rigorous derivation of a macroscopic bidomain model describing the behavior of the electric potential in the fascicle based on the FitzHugh-Nagumo membrane dynamics. The technique used combines the two-scale convergence machinery and the method of monotone operators.

In order to derive continuous models for signal propagation in individual axons and axon bundles, the homogenization methods is used. Let us shortly explain the homogenization method in the situation when we have just one single axon. A more detailed introduction to the homogenization theory is presented in Chapter 3.

Modeling of a myelinated neuron as a thin cylinder with alternating nodes and internodes of small length leads us to an asymptotic analysis problem. Indeed, the thickness of an axon and the distance between two neighboring nodes are of the same order and is very small compared with the length of the axon. That is why it is natural to introduce a small parameter $\varepsilon>0$, the characteristic size of the microstructure (for example, the relation between the thickness and the length of the axon). The unknown potential solving a coupled system of nonlinear partial differential equations will then depend on ε, and to derive a simplified equation, one asks what happens with the domain and with the equations when the domain shrinks into a segment and, at the same time, the microstructure (alternating nodes and internodes) becomes finer and finer. Since the distance between the Ranvier nodes is approximately the same, one can assume that the microstructure is periodic, and try to look for the unknown functions (extra- and intracellular potentials, the potential in the myelin, and the transmembrane potential) in the form of the ansatz

$$
u_{\varepsilon}=u_{0}\left(x_{1}\right)+\varepsilon u_{1}\left(x_{1}, \frac{x}{\varepsilon}\right)+\varepsilon^{2} u_{2}\left(x_{1}, \frac{x}{\varepsilon}\right)+\ldots,
$$

where the functions u_{k} depend periodically on the second variable (much "easier" dependence on ε). The fact that the domain is thin and shrinks to a segment yields the dependence on x_{1} only in the first (slow) variable. Substituting this ansatz into the three-dimensional problem describing the potential distribution for an axon placed in an extracellular space, and equating coefficients in front of different powers of ε one gets a cascade of equations for the unknown functions u_{k}. The equation satisfied by the leading term of the asymptotics u_{0} is called the effective (homogenized) equation. The form of the effective equation as well as the domain where it is stated is different from the original ones. What is, however, important is that a certain (finite) number of terms in the ansatz is close in some norm to the original solution. To make the whole procedure rigorous, one should prove the
well-posedness of both original and effective problems, as well as the convergence of the solutions of the original problem to the solution of the effective problem. This constitutes the asymptotic analysis (or homogenization) of the problem; see, e.g. (V. Marchenko \& Khruslov, 2006; Bensoussan, Lions, \& Papanicolaou, 2011; Allaire, 1992).

1.2. Cell electropermeabilization modeling

Electropermeabilization designates the use of short high-voltage or electric field pulses to overcome the barrier of the cell membrane to increase its permeability (Kotnik, Rems, Tarek, \& Miklavčič, 2019; Rols, 2006). This process is used to deliver therapeutic molecules, such as drugs and genes, into cells to treat cancer, perform genetic engineering, screen drugs, among others applications; see (Kim \& Lee, 2017) or (Choi, Khoo, \& Hur, 2022, Section 4), among other references.

Theoretically, several models having proposed to explain the reversible membrane electropermeabilization mechanism and its potentiality to allow the access of non-permeant molecules into the cell. However, no model has yet been rigorously proven to explain the phenomenon. For instance, during electropermeabilization it is thought that aqueous pores are formed along the membrane cell-a process known as electroporation-thereby increasing the permeability of the membrane. Yet, this has not been experimentally observed to occur for the voltage values commonly employed. The pores are too small to be observed by optical microscopy and too fragile for electron microscopy. Only molecular dynamics simulations have been able to provide a corroboration of the pore formation (Kotnik et al., 2019, Section 3), (Choi et al., 2022, Section 2.1). Moreover, the application of external electric pulses triggers other physical and chemical cell mechanisms, many of them not fully understood, with complex interactions at multiple length scales, from nanometers at the cell membrane to centimeters in tissues (Kotnik et al., 2019). "Therefore, while the term electroporation is commonly used among biologists, the term electropermeabilization should be preferred in order to prevent any molecular description of the phenomenon" (Rols, 2006).

Still, mathematical models and numerical methods have been used to gain a better understanding of the different underlying phenomena. For instance, Neu and Krassowska (J. C. Neu \& Krassowska, 1999) consider a electroporation process by modeling the nanoscale phenomena involved in the creation and resealing of the cell membrane pores, and applying homogenization theory leading to nonlinear time dynamics occurring at the membrane. Well-posedness of the Neu-Krassowska model and a new model including anisotropies are derived in (Ammari, Widlak, \& Zhang, 2016). Alternatively, in (Kavian et al., 2014) the authors propose a phenomenological model that forgoes the ab initio understanding of the mechanisms involved, leading to a dynamical model with parameters inferred experimentally. A more complete phenomenological model considers two different stages in the electroporation process, conducting and permeable (Leguèbe, Silve, Mir, \& Poignard, 2014). This model also takes into account the diffusion and electric transport of non-permeable molecules. In (Guittet, Poignard, \& Gibou, 2017; Mistani et al., 2019), the authors discard particle diffusion and transport in (Leguèbe et al., 2014) to then apply the Voronoi Interface Method (Guittet, Lepilliez, Tanguy, \& Gibou, 2015) for its computational approximation. Specifically, they construct a Voronoi mesh of the volume which when coupled to a ghost fluid method (Liu, Fedkiw, \& Kang, 2000) is able to capture discontinuous boundary conditions. Further enhancements via parallelization are given in (Mistani et al., 2019).

In Chapter 5, we apply the local Multiple Traces Formulation (MTF) (Hiptmair \& Jerez-Hanckes, 2012) to reduce the problem to boundary integral equations on cell membranes. We simulate the electric potential response of a fixed number of disjoint cells in three dimensions when they are subject to electric pulses. Spatially, the boundary unknowns are approximated by spherical harmonics, thereby allowing for spectral convergence rates. The nonlinear dynamics of the cell membrane follow (Kavian et al., 2014).

2. THEORY AND METHODS

2.1. Homogenization theory

In this section, we describe briefly the history and the main concepts of the homogenization theory, which is used in Papers A and B for multiscale modeling of myelinated axons.

The mathematical theory of homogenization is a rigorous version of what is known in mechanics as averaging. The main goal is to describe macroscopic (or effective) properties of heterogeneous media. In a classical setting, one deals with some physical processes in media with periodic microstructure. If the period of the microstructure is much smaller than the size of a sample of the heterogeneous material, one can introduce a small parameter $\varepsilon>0$ as the ratio of these two scales. After that, the asymptotic analysis, as $\varepsilon \rightarrow 0$, is used in order to derive the limit problem. The last, so-called homogenized problem, is stated in a domain without microstructure, and, thus, is often easier to analyze numerically. In other words, instead of analyzing one problem with a fixed ratio between the microstructure period and the sample size, one considers a sequence of problems, parametrized by ε, and pass to the limit as $\varepsilon \rightarrow 0$ to derive a suitable approximation for the solutions in the heterogeneous medium. One should ensure that a solution of the original problem is close in some sense to a solution of the effective problem.

Interesting enough, in 1826, Poisson (Poisson, 1821) derived the effective conductivity for a non-conductive matrix with conductive spherical inclusions. Also Maxwell (Maxwell, 1873) studied the effective conductivity of an array of spherical inclusions with different conductivity i a matrix. The homogenization theory in the form it exists now started in the 60s. Marchenko and Khruslov (V. A. Marchenko \& Khruslov, 1964) studied a Dirichlet problem in domains with fine grained boundary. Their technique is based on the notion of capacity and convergence of functionals. The effective conductivity of the checkerboard was proved to be the geometric mean of the two conductivities by Keller in (Keller, 1964). Time dependent problems were first considered by Freidlin in (Freidlin, 1964), where the
author used probabilistic techniques. After these works the homogenization theory developed very rapidly, and it was applied to both stationary and time-dependent problems, systems of equations, higher-order differential operators, in periodic, non-periodic, and stochastic setting. We refer to (Bakhvalov \& Panasenko, 1989), (Bensoussan et al., 2011), (Jikov, Kozlov, \& Oleinik, 2012). The Γ-convergence technique efficiently used to treat nonlinear problems was introduced by De Giorgi (De Giorgi \& Spagnolo, 1979). In Papers A and B we use the two-scale convergence technique introduced by Nguetseng (Nguetseng, 1989) and developed by Allaire (Allaire, 1992).

One important contribution of the homogenization theory is a rigorous derivation of the effective coefficients reflecting the macroscopic properties of the heterogeneous media. Let us consider a one-dimensional example where the effective coefficients can be computed explicitly as the geometric average of the original coefficient.

Given $f \in L^{2}(\Omega)$, let u_{ε} be a unique solution of

$$
\begin{align*}
& \frac{d}{d x}\left(a\left(\frac{x}{\varepsilon}\right) \frac{d u_{\varepsilon}}{d x}\right)=f(x) \text { in }(0,1) \tag{2.1}\\
& u_{\varepsilon}(0)=u_{\varepsilon}(1)=0
\end{align*}
$$

where $0<\alpha \leq a(y) \leq C$ is 1-periodic. Next proposition provides the homogenization result for this problem. The proof is classical, and can be found, for example, in (Jikov et al., 2012).

PROPOSITION 2.1. Let u_{ε} be a unique solution of (2.1). Then u_{ε} converges weakly to u_{0} in $H_{0}^{1}(0,1)$ where u_{0} is a unique solution to the following homogenized (effective) problem:

$$
\begin{align*}
& \frac{d}{d x}\left(a_{0} \frac{d u_{0}}{d x}\right)=f(x) \text { in }(0,1) \tag{2.2}\\
& u_{0}(0)=u_{0}(1)=0
\end{align*}
$$

with $a_{0}=\left\langle a^{-1}\right\rangle^{-1}=\left(\int_{0}^{1} a(y)^{-1} d y\right)^{-1}$.

Proof. The first step is to derive a priori estimates. To this end, we multiply (2.1) by u_{ε} and integrate by parts. By the positivity of the coefficient $a(y) \geq \alpha>0$ and the Schwartz inequality, we have

$$
\begin{aligned}
& \alpha\left\|\frac{d u_{\varepsilon}}{d x}\right\|_{L^{2}(0,1)}^{2} \leq \int_{0}^{1} a\left(\frac{x}{\varepsilon}\right)\left|\frac{d u_{\varepsilon}}{d x}\right|^{2} d x \leq\|f\|_{L^{2}(0,1)}\left\|u_{\varepsilon}\right\|_{L^{2}(0,1)} \leq C\left\|\frac{d u_{\varepsilon}}{d x}\right\|_{L^{2}(0,1)}, \\
& \left\|\frac{d u_{\varepsilon}}{d x}\right\|_{L^{2}(0,1)} \leq C
\end{aligned}
$$

Note that, since u_{ε} satisfies the homogeneous Dirichlet condition on the boundary of Ω, by the Friedrichs inequality $\left\|u_{\varepsilon}\right\|_{L^{2}(0,1)} \leq\left\|\frac{d u_{\varepsilon}}{d x}\right\|, u_{\varepsilon}$ is uniformly bounded in $H_{0}^{1}(0,1)$ and thus, up to a subsequence, has a weak limit $u_{0} \in H_{0}^{1}(0,1)$.

In the next step we identify the limit u_{0}. Integrate (2.1) from 0 to x :

$$
\begin{aligned}
& a\left(\frac{x}{\varepsilon}\right) \frac{d u_{\varepsilon}}{d x}=\int_{0}^{x} f(\xi) d \xi+c_{\varepsilon}=F(x)+c_{\varepsilon}, \\
& \frac{d u_{\varepsilon}}{d x}=a\left(\frac{x}{\varepsilon}\right)^{-1}\left(F(x)+c_{\varepsilon}\right) .
\end{aligned}
$$

Both $a(y)$ and $a(y)^{-1}$ are periodic, so $a(x / \varepsilon)^{-1}$ converges to its mean value $\int_{0}^{1} a(y)^{-1} d y$, as $\varepsilon \rightarrow 0$. Since $u_{\varepsilon}(0)=u_{\varepsilon}(1)=0$, we have

$$
0=\int_{0}^{1} \frac{d u_{\varepsilon}}{d x} d x=\int_{0}^{1} a\left(\frac{x}{\varepsilon}\right)^{-1}\left(F(x)+c_{\varepsilon}\right) d x \underset{\varepsilon \rightarrow 0}{\longrightarrow} \quad\left\langle a^{-1}\right\rangle \int_{0}^{1} F(x) d x+\left\langle a^{-1}\right\rangle \lim _{\varepsilon \rightarrow 0} c_{\varepsilon} .
$$

Therefore

$$
\lim _{\varepsilon \rightarrow 0} c_{\varepsilon}=-\int_{0}^{1} F(x) d x
$$

In this way, we have the following weak limits in $L^{2}(\Omega)$:

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} a\left(\frac{x}{\varepsilon}\right) \frac{d u_{\varepsilon}}{d x} & =F(x)-\int_{0}^{1} F(x) d x \\
\lim _{\varepsilon \rightarrow 0} \frac{d u_{\varepsilon}}{d x} & =\left\langle a^{-1}\right\rangle\left(F(x)-\int_{0}^{1} F(x) d x\right) \equiv \frac{d u_{0}}{d x}
\end{aligned}
$$

Multiplying by $\left\langle a^{-1}\right\rangle^{-1}$ and differentiating both sides of the equality, we obtain

$$
\left\langle a^{-1}\right\rangle^{-1} \frac{d u_{0}}{d x}=F(x)-\int_{0}^{1} F(x) d x \quad \Rightarrow \quad \frac{d}{d x}\left(\left\langle a^{-1}\right\rangle^{-1} \frac{d u_{0}}{d x}\right)=f(x) .
$$

Proposition 2.1 is proved.

The formula $a_{0}=\left\langle a^{-1}\right\rangle^{-1}$ for the effective conductivity can be understood intuitively in terms of electrostatics. Indeed, given two resistors connected in series, the effective conductance is known to be the geometric average $C^{\text {eff }}=\left(C_{1}^{-1}+C_{2}^{-1}\right)^{-1}$ (see Figure 2-1). At the same time, the formula for the effective conductivity in a one-dimensional heterogeneous material with a piecewise constant conductivity $a(x / \varepsilon)$, as illustrated in Figure 2-2, gives $a_{0}=2\left(a_{1}^{-1}+a_{2}^{-1}\right)^{-1}$.

$$
C^{e f f}=\left(C_{1}^{-1}+C_{2}^{-1}\right)^{-1}
$$

Figure 2-1. Resistors in series and effective conductance

FIGURE 2-2. 1D-heterogeneous material with periodic conductivity $a(x / \varepsilon)$

The next step is to formulate a similar problem in higher dimensions, to derive the effective coefficients and the macroscopic problem.

Let us consider a model problem of finding the effective conductivity of a composite material consisting of two different homogeneous materials, where the matrix (background material) has a large number of periodically distributed inclusions.

Given a bounded domain $\Omega \subset \mathbb{R}^{n}$ with a smooth boundary $\partial \Omega$, consider the following Dirichlet problem for a stationary heat equation in the domain with inclusions:

$$
\begin{align*}
-\operatorname{div}\left(\sigma\left(\frac{\mathrm{x}}{\varepsilon}\right) \nabla \mathrm{u}_{\varepsilon}\right) & =f(x) & \text { in } \Omega, \tag{2.3}\\
u_{\varepsilon} & =0 & \text { on } \partial \Omega .
\end{align*}
$$

We assume that the conductivity $\sigma(y)>\sigma_{0}>0$ is a \square-periodic function, where $\square=[0,1)^{n}$ is the periodicity cell. The positive parameter ε represents the size of the microstructure, that is the scale on which the properties of the medium change. One can think about a perforated domain or a domain with inclusions.

We want to understand how u_{ε} behaves for small ε, i.e. for ε much smaller than the size of the domain.

The first method used for such kind of problems, used long before the rigorous homogenization techniques had been designed, is the method of formal asymptotic expansions. We postulate the following two-scale asymptotic ansatz:

$$
\begin{equation*}
u_{\varepsilon}(x) \sim u_{0}\left(x, \frac{x}{\varepsilon}\right)+\varepsilon u_{1}\left(x, \frac{x}{\varepsilon}\right)+\varepsilon u_{2}\left(x, \frac{x}{\varepsilon}\right)+\ldots \tag{2.4}
\end{equation*}
$$

Each term $u_{i}(x, y)$ is assumed to be \square-periodic function in y. The chain rule yields

$$
\nabla u_{i}\left(x, \frac{x}{\varepsilon}\right)=\left.\left(\nabla_{x} u_{i}(x, y)++\varepsilon^{-1} \nabla_{y} u(x, y)\right)\right|_{y=\frac{x}{\varepsilon}}
$$

Now we substitute (2.4) into (2.3) and equate the coefficients in front of different powers of ε :

$$
\begin{array}{lr}
\varepsilon^{-2}: & -\operatorname{div}_{y}\left(\sigma \nabla_{y} u_{0}\right)=0 \\
\varepsilon^{-1}: & -\operatorname{div}_{y}\left(\sigma \nabla_{y} u_{1}\right)=\operatorname{div}_{y}\left(\sigma \nabla_{x} u_{0}\right)+\operatorname{div}_{x}\left(\sigma \nabla_{y} u_{0}\right) \\
\varepsilon^{0}: & -\operatorname{div}_{y}\left(\sigma \nabla_{y} u_{2}\right)=\operatorname{div}_{y}\left(\sigma \nabla_{x} u_{1}\right)+\operatorname{div}_{x}\left(\sigma \nabla_{y} u_{1}\right)+\operatorname{div}_{x}\left(\sigma \nabla_{x} u_{0}\right)+f(x)
\end{array}
$$

All the problems are stated on the periodicity cell, and the Fredholm alternative holds. The first problem is well-posed, and it has a unique, up to an additive constant, solution which is constant in y, so $u_{0}(x, y)=u_{0}(x)$. The second problem is obviously solvable since the right-hand side is orthogonal to the kernel of the formally adjoint operator (consisting of constants):

$$
\int_{\Omega} \operatorname{div}_{y}\left(\sigma(y) \nabla_{x} u_{0}\right) d y=0
$$

Applying the Fredholm alternative to the last problem for u_{2}, we conclude that there exists a periodic in y, defined up to an additive constant, function $u_{2} \in H_{p e r}^{1}(\square)$ if and only if

$$
-\operatorname{div}\left(\int_{\square} \sigma(y)\left(\nabla_{y} u_{1}+\nabla_{x} u_{0}\right) d y\right)=f(x), \quad x \in \Omega .
$$

In this way, we get a coupled system

$$
\begin{align*}
& -\operatorname{div}_{y}\left(\sigma \nabla_{y} u_{1}\right)=\operatorname{div}_{y}\left(\sigma \nabla_{x} u_{0}\right), \quad y \in \square, x \in \Omega, \tag{2.5}\\
& -\operatorname{div}\left(\int_{\square} \sigma(y)\left(\nabla_{y} u_{1}+\nabla_{x} u_{0}\right) d y\right)=f(x), \quad x \in \Omega . \tag{2.6}
\end{align*}
$$

Looking for a solution of (2.5) in the form of the right-hand side, we set

$$
u_{1}(x, y)=N(y) \cdot \nabla u_{0}(x)+v_{1}(x)
$$

where $N(y)$ is \square-periodic vector valued function. The problems for N_{i} are called cell problems:

$$
\begin{align*}
& -\operatorname{div} \sigma(y)\left(e_{i}+\nabla_{y} N_{i}(y)\right)=0 \quad \text { in } \square, \tag{2.7}\\
& \quad N_{i} \text { is } \square \text {-periodic. }
\end{align*}
$$

From (2.6) we obtain the homogenized equation:

$$
\begin{align*}
& -\operatorname{div}\left(\sigma^{\text {eff }} \nabla u_{0}\right)=f(x) \quad \text { in } \Omega, \tag{2.8}\\
& u_{0}=0 \quad \text { on } \partial \Omega
\end{align*}
$$

where, due to (2.7), the effective conductivity $\sigma^{\text {eff }}$ is defined by

$$
\begin{equation*}
\sigma_{i j}^{\mathrm{eff}}=\int_{\square} \sigma(y)\left(e_{j}+\nabla N_{j}\right) \cdot\left(e_{i}+\nabla N_{i}\right) d y \tag{2.9}
\end{equation*}
$$

In this way, we have reduced a problem stated in a complex heterogeneous media to two simpler ones: one problem with constant coefficients $\sigma^{\text {eff }}$ stated in Ω, and a cell problem on the periodicity cell \square. The solution u_{ε} is then approximated by $U_{\varepsilon}(x)=$ $u_{0}(x)+\varepsilon N\left(\frac{x}{\varepsilon}\right) \cdot \nabla u_{0}(x)$.

These computations are, however, formal, and one needs to prove the convergence of the solutions u_{ε} to u_{0}. One way is to insert the difference $u_{\varepsilon}-U_{\varepsilon}$ into the original problem, estimate the right-hand side (will be small, as $\varepsilon \rightarrow 0$), and finally use the a priori estimates to obtain an estimate for the norm of the difference $u_{\varepsilon}-U_{\varepsilon}$. This method requires, however, high regularity of the data, and is therefore not appropriate for problems with discontinuous data.

Let us illustrate how the two-scale convergence technique (Nguetseng, 1989), (Allaire, 1992) works in our example (2.3). The weak formulation for problem (2.3) reads: Find $u(x) \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \sigma\left(\frac{x}{\varepsilon}\right) \nabla u_{\varepsilon} \cdot \nabla \varphi(x) d x=\int_{\Omega} f(x) \varphi(x) d x, \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

To approximate u_{ε} for small ε, we pass to the limit, as $\varepsilon \rightarrow 0$.
The first step, as in the one-dimensional case, is to obtain a priori estimates. We multiply (2.3) by u_{ε}, integrate by parts, and use the positiveness of σ :

$$
\alpha\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega} \sigma\left(\frac{x}{\varepsilon}\right)\left|\nabla u_{\varepsilon}\right|^{2} d x=\int_{\Omega} f(x) u_{\varepsilon}(x) d x
$$

$$
\begin{aligned}
& \leq\|f\|_{L^{2}(\Omega)}\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)} \quad \text { (Cauchy-Schwartz inequality) } \\
& \leq C\|f\|_{L^{2}(\Omega)}\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(\Omega)} \quad \text { (Poincaré inequality) }
\end{aligned}
$$

Now we divide both sides by $\alpha\left\|\nabla u_{\varepsilon}\right\|$ and obtain a uniform in ε estimate $\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(\Omega)} \leq$ C. Due to the Poincaré inequality, u_{ε} is uniformly bounded in $H_{0}^{1}(\Omega)$, and thus, u_{ε}, up to a subsequence, has a weak limit $u_{0} \in H_{0}^{1}(\Omega)$.

Next step is to pass to the limit in the weak formulation. To this end, we prove the socalled averaging lemma, that gives the convergence of a periodically oscillating function to its average.

Lemma 2.1 (Averaging Lemma). Let $\Omega \subset \mathbf{R}^{d}$ be bounded, and $g \in L_{l o c}^{2}\left(\mathbf{R}^{d}\right)$ be \square-periodic, then

$$
\begin{equation*}
g\left(\frac{x}{\varepsilon}\right) \rightharpoonup\langle g\rangle=\frac{1}{|\square|} \int_{\square} g(y) d y \quad \text { weakly in } L^{2}(\Omega) \text { as } \varepsilon \rightarrow 0 . \tag{2.10}
\end{equation*}
$$

Proof.

We start by proving that $g(x / \varepsilon)$ is uniformly bounded in $L^{2}(\Omega)$. Let us divide Ω into (small) cells $\square_{i}^{\varepsilon}=\varepsilon \square+x_{i}^{\varepsilon}$, translations of the rescaled cells $\varepsilon \square$ to points $x_{i}^{\varepsilon} \in \varepsilon \mathbf{Z}^{d} \cap \Omega$. Then,

$$
\int_{\Omega}\left|g\left(\frac{x}{\varepsilon}\right)\right|^{2} d x=\sum_{i} \int_{\square_{i}^{\varepsilon} \cap \Omega}\left|g\left(\frac{x}{\varepsilon}\right)\right|^{2} d x \leq \frac{C}{\varepsilon^{d}} \int_{\square}|g(y)|^{2} d y=C\|g\|_{L^{2}(\square)}^{2}
$$

Thus, $g(x / \varepsilon)$ converges weakly in $L^{2}(\Omega)$ to some limit, as $\varepsilon \rightarrow 0$.
The next step is to identify the limit of $g(x / \varepsilon)$. For $\varphi \in C_{0}^{\infty}(\Omega)$, consider piecewise constant interpolation $\varphi_{\varepsilon}(x)=\varphi\left(x_{i}^{\varepsilon}\right), \quad x \in \square_{i}^{\varepsilon}$. One can show that $\left\|\varphi-\varphi_{\varepsilon}\right\|_{L^{2}(\Omega)} \rightarrow$ $0, \quad \varepsilon \rightarrow 0$. For piecewise constant functions we have

$$
\int_{\Omega} g\left(\frac{x}{\varepsilon}\right) \varphi_{\varepsilon}(x) d x=\sum_{i} \int_{\square_{i}^{\varepsilon}} g\left(\frac{x}{\varepsilon}\right) \varphi_{i}^{\varepsilon}(x) d x=\langle g\rangle \int_{\Omega} \varphi_{\varepsilon}(x) d x .
$$

For arbitrary $\varphi \in C_{0}^{\infty}(\Omega)$ we add and subtract its piecewise constant approximation and obtain

$$
\begin{aligned}
\int_{\Omega} g\left(\frac{x}{\varepsilon}\right) \varphi(x) d x & =\int_{\Omega} g\left(\frac{x}{\varepsilon}\right)\left(\varphi-\varphi_{\varepsilon}\right) d x+\int_{\Omega} g\left(\frac{x}{\varepsilon}\right) \varphi_{\varepsilon}(x) d x \\
& \rightarrow\langle g\rangle \int_{\Omega} \varphi(x) d x, \quad \varepsilon \rightarrow 0
\end{aligned}
$$

since

$$
\begin{aligned}
& \int_{\Omega}\left|g\left(\frac{x}{\varepsilon}\right)\left(\varphi-\varphi_{\varepsilon}\right)\right| d x \leq C\|g\|_{L^{2}(\square)}\left\|\varphi-\varphi_{\varepsilon}\right\|_{L^{2}(\Omega)} \rightarrow 0 \\
& \langle g\rangle \int_{\Omega} \varphi_{\varepsilon}(x) d x \rightarrow\langle g\rangle \int_{\Omega} \varphi(x) d x, \quad \varepsilon \rightarrow 0 .
\end{aligned}
$$

The proof of the averaging lemma is complete.
We turn back to the weak formulation of (2.3):

$$
\int_{\Omega} \sigma\left(\frac{x}{\varepsilon}\right) \nabla u_{\varepsilon} \cdot \nabla \varphi(x) d x=\int_{\Omega} f(x) \varphi(x) d x, \quad \varphi \in H_{0}^{1}(\Omega)
$$

Thanks to the averaging lemma, $\sigma\left(\frac{x}{\varepsilon}\right) \rightharpoonup\langle\sigma\rangle$ in $L^{2}(\Omega)$. Due to the a priori estimates, $\nabla u_{\varepsilon} \rightharpoonup \nabla u_{0}$ in $L^{2}(\Omega)$. However, we will see

$$
\sigma\left(\frac{x}{\varepsilon}\right) \nabla u_{\varepsilon} \quad \text { does not converge to } \quad\langle\sigma\rangle \nabla u_{0} \quad \text { in } L^{2}(\Omega)^{d} .
$$

The main obstacle in passage to the limit is the lack of strong convergence for oscillating functions. Two-scale convergence, in contrast to weak convergence, takes into account oscillations of the function. The definition is given below.

Definition 2.1. $u_{\varepsilon} \in L^{2}(\Omega)$ is said to two-scale converge $u_{0}(x, y) \in L^{2}(\Omega \times \square)$ if $\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)}<C$, and, for any $\varphi(x, y) \in C_{0}^{\infty}\left(\Omega ; C_{p e r}^{\infty}(\square)\right)$, it satisfies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} u_{\varepsilon}(x) \varphi\left(x, \frac{x}{\varepsilon}\right) d x=\frac{1}{|\square|} \int_{\Omega} \int_{\square} u_{0}(x, y) \varphi(x, y) d y d x \tag{2.11}
\end{equation*}
$$

The proof of the next lemma can be found in (Allaire, 1992).

Lemma 2.2. Compactness theorem If $\left\|u_{\varepsilon}\right\|_{L^{2}(\Omega)}<C$, then it contains a subsequence that two-scale converges to some $u_{0}(x, y) \in L^{2}(\Omega \times \square)$, as $\varepsilon \rightarrow 0$.

Moreover, it can be proved (see (Allaire, 1992)) that
(i) For any smooth $u(x, y)$ periodic in y we have $u\left(x, \frac{x}{\varepsilon}\right) \stackrel{2}{\rightharpoonup} u(x, y)$.
(ii) If $u_{\varepsilon} \rightarrow u(x)$ strongly in $L^{2}(\Omega)$, then $u_{\varepsilon}(x) \stackrel{2}{\rightharpoonup} u(x)$.
(iii) If $u_{\varepsilon}(x) \stackrel{2}{\rightharpoonup} u_{0}(x, y)$, then $u_{\varepsilon} \rightharpoonup \frac{1}{|\square|} \int_{\square} u_{0}(x, y) d y$.

The above formulated properties are used when passing to the limit in integral equalities.

The example below illustrates the relations between the strong, weak, and two-scale convergence.

Example 2.1. Consider a rapidly oscillating function $\sin (x / \varepsilon)$. It is $2 \pi \varepsilon$-periodic and converges weakly to its average $\sin \left(\frac{x}{\varepsilon}\right) \rightharpoonup\langle\sin (y)\rangle=0$. On the other hand, by the properties of the two-scale convergence, $\sin \left(\frac{x}{\varepsilon}\right) \stackrel{2}{\longrightarrow} \sin (y)$. Thus, the two-scale convergence captures the oscillations which are averaged out when passing to the weak limit.

Consider now another sequence $(-1)^{n} \sin (n x)$ with $n=1 / \varepsilon$. It converges weakly to $\langle\sin (y)\rangle=0$, but $u_{2 k} \xrightarrow{2} \sin (y)$ and $u_{2 k+1} \xrightarrow{2}-\sin (y)$, so the two-scale limit does not exist.

Applying the two-scale convergence technique to problem (2.3), we obtain the effective problem (2.8). The passage to the limit relies on a clever choice of test functions. In Chapter 4 and (5) we will apply this technique to a time-dependent nonlinear problem. The method of formal asymptotic expansions serves often as a practical tool to make a right choice of test functions, which is illustrated in the appendix in Chapter 4.

2.2. Monotonicity method

The passage to the limit in the nonlinear microscopic problem requires us to adapt the method of monotone operators due to G. Minty (Minty, 1962). The monotonicity method is applied for passing to the limit in the microscopic problem in Chapter 4. The construction of test functions and the proof itself is quite technical, and in order to extract the main idea of the method we provide its brief description for a model case when the monotone operator is independent of ε. In (Allaire, 1992), it is shown how to combine the method of monotone operators and the two-scale convergence for a toy stationary problem.

Let A be a nonlinear continuous monotone operator in a Hilbert space H. The scalar product in H will be denoted by (u, v). We consider a parabolic problem

$$
\begin{array}{r}
\partial_{t} u_{\varepsilon}+A\left(u_{\varepsilon}\right)=f_{\varepsilon}, \tag{2.12}\\
\left.u_{\varepsilon}\right|_{t=0}=V_{\varepsilon}^{0} .
\end{array}
$$

Assume that we know that u_{ε} converges weakly to $u_{0}, \partial_{t} u_{\varepsilon}$ converges weakly to $\partial_{t} u_{0}$, and $f_{\varepsilon}, V_{\varepsilon}^{0}$ converge strongly in H to f and V^{0}, respectively, as $\varepsilon \rightarrow 0$. We aim to show that u_{0} satisfies the limit equation $\partial_{t} u_{0}+A\left(u_{0}\right)=f$. Note that, because of the weak convergence, we cannot pass to the limit in the nonlinear term $A\left(u_{\varepsilon}\right)$ directly.

By monotonicity, for any $w_{1}, w_{2} \in D(A)$, one has

$$
\left(A\left(w_{1}\right)-A\left(w_{2}\right), w_{1}-w_{2}\right) \geq 0
$$

Taking $w_{1}=u_{\varepsilon}, w_{2}=u_{0}+\delta \varphi$, with $\delta \in \mathbb{R}$ and $\varphi \in C^{1}([0, T] ; D(A))$, and using (2.12), we get

$$
\begin{align*}
0 & \leq \int_{0}^{t}\left(A\left(u_{\varepsilon}\right)-A\left(u_{0}+\delta \varphi\right), u_{\varepsilon}-\left(u_{0}+\delta \varphi\right)\right) d \tau \\
& =\int_{0}^{t}\left(f_{\varepsilon}, u_{\varepsilon}-\left(u_{0}+\delta \varphi\right)\right) d \tau-\int_{0}^{t}\left(\partial_{\tau} u_{\varepsilon}, u_{\varepsilon}\right) d \tau+\int_{0}^{t}\left(\partial_{\tau} u_{\varepsilon},\left(u_{0}+\delta \varphi\right)\right) d \tau \tag{2.13}\\
& -\int_{0}^{t}\left(A\left(u_{0}+\delta \varphi\right), u_{\varepsilon}-\left(u_{0}+\delta \varphi\right)\right) d \tau
\end{align*}
$$

Integrating by parts, we get

$$
\int_{0}^{t}\left(\partial_{\tau} u_{\varepsilon}, u_{\varepsilon}\right) d \tau=\frac{1}{2} \int_{0}^{t} \frac{d}{d \tau}\left\|u_{\varepsilon}\right\|_{H}^{2} d \tau=\frac{1}{2}\left\|u_{\varepsilon}(t, \cdot)\right\|_{H}^{2}-\frac{1}{2}\left\|V_{\varepsilon}^{0}\right\|_{H}^{2}
$$

Then inequality (2.13) transforms into

$$
\begin{align*}
& \frac{1}{2}\left\|u_{\varepsilon}(t, \cdot)\right\|_{H}^{2}-\frac{1}{2}\left\|u_{0}(t, \cdot)\right\|_{H}^{2}-\frac{1}{2}\left\|V_{\varepsilon}^{0}\right\|_{H}^{2}+\frac{1}{2}\left\|V^{0}\right\|_{H}^{2} \\
& \leq \int_{0}^{t}\left(f_{\varepsilon}, u_{\varepsilon}-\left(u_{0}+\delta \varphi\right)\right) d \tau-\int_{0}^{t}\left(\partial_{\tau} u_{0}, u_{0}\right) d \tau \tag{2.14}\\
& +\int_{0}^{t}\left(\partial_{\tau} u_{\varepsilon},\left(u_{0}+\delta \varphi\right)\right) d \tau-\int_{0}^{t}\left(A\left(u_{0}+\delta \varphi\right), u_{\varepsilon}-\left(u_{0}+\delta \varphi\right)\right) d \tau
\end{align*}
$$

Passage to the limit, as $\varepsilon \rightarrow 0$, in (2.14) yields

$$
\begin{aligned}
0 & \leq \frac{1}{2} \limsup _{\varepsilon \rightarrow 0}\left(\left\|u_{\varepsilon}(t, \cdot)\right\|_{H}^{2}-\left\|u_{0}(t, \cdot)\right\|_{H}^{2}\right) \\
& \leq \delta \int_{0}^{t}\left(-f+\partial_{\tau} u_{0}+A\left(u_{0}+\delta \varphi\right), \varphi\right) d \tau
\end{aligned}
$$

Since the left-hand side is positive and δ is arbitrary, that delivers the strong convergence of u_{ε}

$$
\limsup _{\varepsilon \rightarrow 0}\left(\left\|u_{\varepsilon}(t, \cdot)\right\|_{H}^{2}-\left\|u_{0}(t, \cdot)\right\|_{H}^{2}\right)=0
$$

Furthermore,

$$
\begin{equation*}
\int_{0}^{t}\left(\partial_{\tau} u_{0}+A\left(u_{0}+\delta \varphi\right)-f, \delta \varphi\right) d \tau \geq 0 \tag{2.15}
\end{equation*}
$$

Dividing (2.15) first by $\delta>0$ and passing to the limit, as $\delta \rightarrow 0$, we obtain

$$
\int_{0}^{t}\left(\partial_{\tau} u_{0}+A\left(u_{0}\right)-f, \varphi\right) d \tau \geq 0
$$

Then, dividing (2.15) by $\delta<0$ and passing to the limit, as $\delta \rightarrow 0$, we have the opposite inequality

$$
\int_{0}^{t}\left(\partial_{\tau} u_{0}+A\left(u_{0}\right)-f, \varphi\right) d \tau \leq 0
$$

Thus,

$$
\int_{0}^{t}\left(\partial_{\tau} u_{0}+A\left(u_{0}\right)-f, \varphi\right) d \tau=0
$$

The last equality holds for an arbitrary $\varphi \in C^{1}(0, T ; D(A))$, so $\partial_{t} u_{0}+A\left(u_{0}\right)=f$.
This method is used for passing to the limit in the microscopic problem in Chapter 4, where both the domain and the operator A depend on ε, and the test functions have a more complicated two-scale structure.

3. MULTISCALE MODELING OF MYELINATED AXONS

We start from a three-dimensional model for a myelinated neuron suspended in an extracellular medium which includes Hodgkin-Huxley ordinary differential equations to represent the membrane at the Ranvier nodes. Assuming periodic microstructure with alternating myelinated parts and Ranvier nodes, we use homogenization methods to derive a one-dimensional nonlinear cable equation describing the potential propagation along the neuron. Since the resistivity of the intracellular and extracellular domains is much smaller than the resistivity of the myelin, we assume that the myelin is a perfect insulator and impose homogeneous Neumann boundary conditions on the boundary of the myelin. In contrast to the case when the conductivity of the myelin is non-zero, no additional terms appear in the one-dimensional limit equation, and the geometry of the model affects the limit solution implicitly through an auxiliary cell problem used to compute the effective coefficient.

The chapter is based on the paper: Jerez-Hanckes, C., Martínez, I. A., Pettersson, I., \& Rybalko, V. (2021). Multiscale analysis of myelinated axons. In Emerging Problems in the Homogenization of Partial Differential Equations (pp. 17-35). Springer, Cham.

3.1. Introduction

A nerve impulse is the movement of the so-called action potential along a nerve fiber in response to a stimulus such as touch, pain, heat or cold. It is the way nerve cells communicates with another cell so as to generate an adequate response. In their work (Hodgkin \& Huxley, 1952), Hodgkin and Huxley gave a plausible explanation of the physiological process behind the excitability of nerve fibers, and provided a phenomenological mathematical model describing electric currents across axon membranes in terms of ions fluxes. The model describes how ionic currents nonlinear dynamic behavior depends on the potential difference across neurons' membranes and so-called gating variables, i.e. the probability for different ionic channels to be open or closed. The jump of the potential across the membrane of each individual axon can be modeled in the framework of the

Hodgkin-Huxley (HH) model, but the alternating myelinated and unmyelinated parts of the membrane present an obvious problem for those attempting to describe its macroscopic response to the electrical stimulation. In order to model and simulate the response of biological tissues to electrical stimulation, one needs to know how signals propagate along single neurons and, as the next step, how they influence each other in a bundle of axons.

Signal propagation along a neuron is portrayed by a cable equation usually derived by modeling axons as cylinders composed of segments with capacitances and resistances combined in parallel (Hodgkin \& Huxley, 1952; Rall, 1969; Rattay, 1990; P. Basser, 1993; Meffin et al., 2014). The coefficients in such equation depend on the resistances and capacitances of Ranvier nodes and myelinated parts, as well as some geometric parameters of the neuron such as the diameter, nodal and inter-nodal lengths. In (P. Basser, 1993; Meunier \& d'Incamps, 2008), the authors apply a formal two-scale expansion to a onedimensional model in order to show that a myelinated neuron can be approximated by a homogeneous cable equation. However, these works do not consider the derivation of the one-dimensional equation nor they provide any justification of the formal approximations.

We derive a nonlinear cable equation for signal propagation along a myelinated axon under the classical assumption that the conductivity of the myelin is zero, i.e. the myelin is a perfect insulator. This assumption is justified by the fact that the resistivity of the myelin is much larger than the resistivity of intracellular and extracellular domains. This assumption does not lead to the appearance of a potential in the limit equation as in (JerezHanckes et al., 2020). Consequently, in this classical case, we can suppress the geometrical assumptions on the myelin sheath such as radial symmetry assumption and specific features at the points where myelin meets intracellular domain. Our proof is in some sense simpler than the one in (Jerez-Hanckes et al., 2020), but since the intracellular domain is not a straight cylinder any more, an additional cell problem appears (3.13). When the intracellular domain is a straight cylinder -the first component of the normal vector is zero-, the cell problem (3.13) has a trivial constant solution and the effective coefficient coincides with one in (Jerez-Hanckes et al., 2020).

The paper is organized as follows. In Section 3.2, we formulate our model problem and present the main result in Theorem 3.1, with the rest of the paper devoted to its proof. Section 3.3 presents a priori estimates for the potential u_{ε} and its jump across Ranvier nodes, to then finally derive the one-dimensional effective problem in Section 3.4. Numerical solutions of the auxiliary cell problem and effective coefficient $a^{\text {eff }}$ (see (3.11)) are provided in Section 3.5. We also present computational results showing the dependence of the effective coefficient on the length of the Ranvier node and on the angle at which the myelin is attached to the intracellular domain.

3.2. Problem setup

Let us consider a myelinated axon sparsely suspended in an extracellular medium. We assume that the axon has a periodic structure, containing myelinated and unmyelinated parts (nodes of Ranvier) as illustrated on Figure 3-3.

3.2.1. Geometry

Given a bounded Lipschitz domain $\omega \subset \mathbb{R}^{2}$, we denote by Y (see Figure 3-3) a periodicity cell:

$$
Y:=\left\{y=\left(y_{1}, y^{\prime}\right) \in \mathbb{R}^{3}: \quad y_{1} \in \mathbf{T}^{1}, y^{\prime} \in \phi\left(y_{1}\right) \omega\right\}
$$

Here, \mathbf{T}^{1} is the one-dimensional torus and $\phi \in C\left(\mathbf{T}^{1}\right)$. Let also ω_{0} be a compact subset of ω in \mathbb{R}^{2}. The intracellular medium is defined as

$$
Y_{i}:=\left\{y=\left(y_{1}, y^{\prime}\right) \in \mathbb{R}^{3}: \quad y_{1} \in \mathbf{T}^{1}, y^{\prime} \in \phi_{0}\left(y_{1}\right) \omega_{0}\right\}
$$

where $\phi_{0} \in C\left(\mathbf{T}^{1}\right)$. We assume that the cell Y is decomposed into two disjoint nonempty subdomains: an intracellular part Y_{i} and an extracellular medium Y_{e} as shown in the lefthand side of Figure 3-3. The myelin sheath Y_{m} - depicted as white areas - is supposed to be perfectly insulating and modelled as voids. The extracellular part of the periodicity cell $Y_{e}:=Y \backslash\left(Y_{i} \cup Y_{m}\right)$. The functions ϕ_{0} and ϕ are supposed to be such that the boundary of Y_{i} does not touch the boundary of Y.

In case when $\phi\left(y_{1}\right)$ and $\phi_{0}\left(y_{1}\right)$ are constant, both the intracellular medium Y_{i} and the periodicity cell have constant cross-sections, while the factors $\phi\left(y_{1}\right), \phi_{0}\left(y_{1}\right)$ allow the cross-sections to vary.

Figure 3-1. Simplified geometry of the cross-section of a myelinated axon and the periodicity cell Y.

We denote by Γ_{m} the boundary of the myelin sheath, and by Γ the Ranvier node - the unmyelinated part of the interface between Y_{i} and Y_{e}. The lateral boundary of Y is denoted by Σ. We assume that the boundary of the myelin part Γ_{m} is Lipschitz continuous.

We rescale the periodicity cell by a small parameter $\varepsilon>0$ and translate it along the x_{1} axis to form a thin periodic cylinder of thickness of order ε suspended in the thin extracellular medium with alternating myelinated and unmyelinated parts on the lateral boundary ($c f$. Figure 3-3).

For simplicity, let us denote by $L \in \mathbb{N}$ an integer number of periods. The whole domain

$$
\Omega_{\varepsilon}:=\left\{\left(x_{1}, x^{\prime}\right): x_{1} \in(0, L), x^{\prime} \in \varepsilon \phi\left(\frac{x_{1}}{\varepsilon}\right) \omega, \varepsilon>0\right\}
$$

is the union of the disjoint extracellular, intracellular domains, and Ranvier nodes: $\Omega_{\varepsilon}=$ $\Omega_{i, \varepsilon} \cup \Omega_{e, \varepsilon} \cup \Gamma_{\varepsilon}$, wherein

$$
\Omega_{i, \varepsilon}=\left\{\left(x_{1}, x^{\prime}\right): x_{1} \in(0, L), x^{\prime} \in \varepsilon \phi_{0}\left(\frac{x_{1}}{\varepsilon}\right) \omega_{0}\right\} .
$$

The lateral part of Ω_{ε} is denoted by Σ_{ε}. Let Γ_{ε} and $\Gamma_{m, \varepsilon}$ denote the Ranvier nodes and the boundary of the myelin respectively. Note that we plot a cross section of the domain
Ω_{ε}. In $\mathbb{R}^{3}, \Omega_{e, \varepsilon}$ is connected, while Γ_{ε} and $\Omega_{m, \varepsilon}$ consist of a finite number of connected components.

Since the resistivity of intracellular and extracellular domains (e.g. 5.47×10^{-2} $\mathrm{kOhm} \cdot \mathrm{cm}$) is much smaller than the resistivity of the myelin sheath (e.g. $7.4 \times 10^{5} \mathrm{kOhm} \cdot \mathrm{cm}$), a classical simplification is to assume that myelin is a perfect insulator. This implies that the areas Y_{m} constitute voids in our domain Y.

3.2.2. Governing equations

Let $u_{\varepsilon}^{i}, u_{\varepsilon}^{e}$ denote the electric potential in the intracellular and extracellular domains, respectively. We assume that the electric potential satisfies homogeneous Neumann boundary conditions on the lateral boundary Σ_{ε} and homogeneous Dirichlet ones at the bases $\Gamma_{0}^{\varepsilon}=\left\{x \in \Omega_{\varepsilon}: x_{1}=0\right\}$ and $\Gamma_{L}^{\varepsilon}=\left\{x \in \Omega_{\varepsilon}: x_{1}=L\right\}$. Since we assume that the myelin acts as a perfect insulator, we impose homogeneous Neumann boundary conditions on its boundary.

The transmembrane potential is the potential jump across the axon membrane and will be denoted by $\left[u_{\varepsilon}\right]=u_{\varepsilon}^{i}-u_{\varepsilon}^{e}$, and u_{ε} denotes the potential $u_{\varepsilon}=u_{\varepsilon}^{l}$ in $\Omega_{i, \varepsilon}, l=i, e$. We assume conductivity to be a piecewise constant function $\sigma_{\varepsilon}=\sigma_{l}$ in $\Omega_{l, \varepsilon}, l=e, i$.

On Ranvier nodes, we assume continuity of currents (3.2) and HH dynamics for the transmembrane potential (3.3). Thus, the current through the membrane is a sum of the capacitive current $c_{m} \partial_{t}\left[u_{\varepsilon}\right]$, where c_{m} is the membrane capacitance per unit area, and the ionic current $I_{\text {ion }}\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right)$ through the ion channels. The vector-function g_{ε} is a vector of the so-called gating variables describing the probability of each particular ionic channel to be open or closed. Due to this, the gating variables have nonegative components $0 \leq$ $\left(g_{\varepsilon}\right)_{j} \leq 1$. The vector of gating variables satisfies an ordinary differential equation (ODE) $\partial_{t} g_{\varepsilon}=H H\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right)$. In the classical HH model (Hodgkin \& Huxley, 1952) there are three types of channels: a sodium (Na), a potassium (K), and a leakage channels, and, consequently, three gating variables (see Section 3.5 for explicit expressions). We assume that
(H1) The function $I_{i o n}(v, g)$ is linear w.r.t v and has the following form:

$$
I_{i o n}(v, g)=\sum_{j=1}^{m} H_{j}\left(g_{j}\right)\left(v-v_{r, j}\right),
$$

where $g_{, j}$ is the j th component of $g, v_{r, j}$ is the j the component of the resting potential v_{r}, and H_{j} is positive, bounded, and Lipschitz continuous, i.e.

$$
\left|H_{j}\left(g_{1}\right)-H_{j}\left(g_{2}\right)\right| \leq L_{1}\left|g_{1}-g_{2}\right|
$$

The constant v_{r} is the reference constant voltage, and g_{ε} is a gate variable vector with nonnegative components $0 \leq\left(g_{\varepsilon}\right)_{j} \leq 1, j=\overline{1, m}$.
(H2) The vector function $H H(g, v)=F(v)-\alpha g$, where F is a vector function with positive Lipschitz continuous components, and α is a diagonal $m \times m$ matrix with positive Lipschitz continuous entries.
(H3) $G_{0} \in C(0, L)^{m}$ with components taking values between zero and one (as the corresponding g_{ε}).

We assume the homogeneous Dirichlet boundary condition for u_{ε}^{e} and for u_{ε}^{i} on the bases of the domain, i.e. when $x_{1}=0$ and $x_{1}=L$. On the lateral boundary of Ω_{ε} we assume the homogeneous Neumann boundary condition, with ν the unit normal exterior to $\Omega_{e, \varepsilon}$ on Σ and exterior to $\Omega_{i, \varepsilon}$ on Γ_{ε}.

The dynamics of the electric potential and the gating variables is then described by the following system of equations:

$$
\begin{array}{lr}
-\operatorname{div}\left(\sigma_{\varepsilon} \Delta u_{\varepsilon}\right)=0, & (t, x) \in(0, T) \times \Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}, \\
\sigma_{e} \nabla u_{\varepsilon}^{e} \cdot \nu=\sigma_{i} \nabla u_{\varepsilon}^{i} \cdot \nu, & (t, x) \in(0, T) \times \Gamma_{\varepsilon}, \\
\varepsilon\left(c_{m} \partial_{t}\left[u_{\varepsilon}\right]+I_{i o n}\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right)\right)=-\sigma_{i} \nabla u_{\varepsilon}^{i} \cdot \nu, & (t, x) \in(0, T) \times \Gamma_{\varepsilon}, \\
\partial_{t} g_{\varepsilon}=H H\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right), & (t, x) \in(0, T) \times \Gamma_{\varepsilon}, \\
{\left[u_{\varepsilon}\right](x, 0)=0, g_{\varepsilon}(x, 0)=G_{0}\left(x_{1}\right),} & x \in \Gamma_{\varepsilon}, \\
\nabla u_{\varepsilon}^{e} \cdot \nu=0, & (t, x) \in(0, T) \times\left(\Gamma_{m, \varepsilon} \cup \Sigma_{\varepsilon}\right), \tag{3.6}
\end{array}
$$

$$
\begin{equation*}
u_{\varepsilon}=0, \quad(t, x) \in(0, T) \times\left(\Gamma_{0}^{\varepsilon} \cup \Gamma_{L}^{\varepsilon}\right) \tag{3.7}
\end{equation*}
$$

We will study the asymptotic behavior of u_{ε}, as $\varepsilon \rightarrow 0$, and derive a one-dimensional nonlinear cable equation describing the potential propagation along the axon.

To define a weak solution of (3.1)-(3.7), we will use test function $\phi \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{\varepsilon} \backslash\right.\right.$ $\left.\Gamma_{\varepsilon}\right)$), $\partial_{t}[\phi] \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$ such that $\phi=0$ for $x_{1}=0$ and $x_{1}=L$. The jump of ϕ across the Ranvier nodes is denoted by $[\phi],[\phi]=\left.\left(\phi^{i}-\phi^{e}\right)\right|_{\Gamma_{\varepsilon}}$. Then, the weak formulation corresponding to (3.1)-(3.7) reads: find

$$
u_{\varepsilon} \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}\right)\right), \quad \partial_{t}\left[u_{\varepsilon}\right] \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)
$$

satisfying $u_{\varepsilon}=0$ for $x_{1}=0$ and $x_{1}=L$ and the initial condition $\left[u_{\varepsilon}\right](0, x)=0$, such that, for any test functions $\phi \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}\right)\right), \phi=0$ for $x_{1}=0$ and $x_{1}=L$, and for almost all $t \in(0, T)$, it holds

$$
\begin{equation*}
\varepsilon \int_{\Gamma_{\varepsilon}} c_{m} \partial_{t}\left[u_{\varepsilon}\right][\phi] d s+\int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \phi d x+\varepsilon \int_{\Gamma_{\varepsilon}} I_{i o n}\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right)[\phi] d s=0 . \tag{3.8}
\end{equation*}
$$

The vector of gating variables g_{ε} solves the following ODE:

$$
\partial_{t} g_{\varepsilon}=H H\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right), g_{\varepsilon}(0, x)=G_{0}\left(x_{1}\right)
$$

Since $H H$ is linear with respect to g_{ε}, we can solve the last ODE and obtain g_{ε} as a function - integral functional - of the jump $\left[u_{\varepsilon}\right]$:

$$
\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle=e^{-\int_{0}^{t} \alpha\left(v_{\varepsilon}(\zeta, x)\right) d \zeta}\left(G_{0}(x)+\int_{0}^{t} F\left(v_{\varepsilon}(\tau, x)\right) e^{\int_{0}^{\tau} \alpha\left(v_{\varepsilon}(\zeta, x)\right) d \zeta} d \tau\right)
$$

Substituting this expression into (3.8) we obtain the weak formulation of (3.1)-(3.7) in terms of the potential u_{ε} and its jump $v_{\varepsilon}=\left[u_{\varepsilon}\right]$ across Γ_{ε} :

$$
\begin{equation*}
\varepsilon \int_{\Gamma_{\varepsilon}} c_{m} \partial_{t} v_{\varepsilon}[\phi] d s+\int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \phi d x+\varepsilon \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right)[\phi] d s=0 . \tag{3.9}
\end{equation*}
$$

3.2.3. Main result

The main result of the paper is given by Theorem 3.1 describing the convergence of the transmembrane potential $\left[u_{\varepsilon}\right]$ and the gating variables g_{ε} to the unique solution of the following one-dimensional effective problem:

$$
\begin{array}{lr}
c_{m} \partial_{t} v_{0}+I_{i o n}\left(v_{0}, g_{0}\right)=a^{\mathrm{eff}} \partial_{x_{1} x_{1}}^{2} v_{0}, & \left(t, x_{1}\right) \in(0, T) \times(0, L), \\
\partial_{t} g_{0}=H H\left(v_{0}, g_{0}\right), & \left(t, x_{1}\right) \in(0, T) \times(0, L), \tag{3.10}\\
v_{0}(t, 0)=v_{0}(t, L)=0, & t \in(0, T), \\
v_{0}\left(0, x_{1}\right)=0, g_{0}\left(0, x_{1}\right)=G_{0}\left(x_{1}\right), & x_{1} \in(0, L)
\end{array}
$$

The effective coefficient $a^{\text {eff }}$ is given by

$$
\begin{equation*}
a^{\mathrm{eff}}=\frac{1}{|\Gamma|}\left(\left(\sigma_{e} \int_{Y_{e}}\left(\partial_{y_{1}} N_{e}+1\right) d y\right)^{-1}+\left(\sigma_{i} \int_{Y_{i}}\left(\partial_{y_{1}} N_{i}+1\right) d y\right)^{-1}\right)^{-1} \tag{3.11}
\end{equation*}
$$

where the 1-periodic in y_{1} functions, N_{e} and N_{i} solve the auxiliary cell problems:

$$
\begin{array}{cl}
-\Delta N_{e}(y)=0, & y \in Y_{e}, \\
\nabla N_{e} \cdot \nu=-\nu_{1}, & y \in \Gamma \cup \Gamma_{m} \cup \Sigma, \\
N_{e}\left(y_{1}, y^{\prime}\right) \text { is periodic in } y_{1} ; &
\end{array}
$$

and

$$
\begin{align*}
& -\Delta N_{i}(y)=0, \quad y \in Y_{i}, \\
& \nabla N_{i} \cdot \nu=-\nu_{1}, \quad y \in \Gamma \cup \Gamma_{m}, \tag{3.13}
\end{align*}
$$

$N_{i}\left(y_{1}, y^{\prime}\right)$ is periodic in y_{1}.
Theorem 3.1. The solutions $\left[u_{\varepsilon}\right]$ and g_{ε} of problem (3.1)-(3.7) converge to the solutions v_{0} and g_{0} of (3.10) in the following sense:

$$
\sup _{t \in(0, T)} \varepsilon^{-1} \int_{\Gamma_{\varepsilon}}\left|\left[u_{\varepsilon}\right]-v_{0}\right|^{2} d s \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

$$
\sup _{t \in(0, T)} \varepsilon^{-1} \int_{\Gamma_{\varepsilon}}\left|g_{\varepsilon}-g_{0}\right|^{2} d s \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

To prove Theorem 3.1 we first derive a priori estimates in Section 3.3 (Lemma 3.2), then we prove the two-scale convergence of u_{ε} and its gradient (Lemma 3.3) and the convergence of $\left[u_{\varepsilon}\right]$ in appropriate spaces (Lemma 3.4). Finally, in Section 3.4 we pass to the limit in the weak formulation and derive the limit problem (3.10).

3.3. A priori estimates

The existence and uniqueness of a solution of (3.1)-(3.7) follows from the classical semigroup theory (see, for example, (Pazy, 2012)). Its regularity is addressed in (Matano \& Mori, 2011; Henríquez et al., 2017; Henríquez \& Jerez-Hanckes, 2018). The proof of Lemma 3.1 follows the lines of that in (Jerez-Hanckes et al., 2020) (see Lemma 3.1).

Lemma 3.1 (Existence result). There exists a unique

$$
u_{\varepsilon} \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}\right)\right), \quad \partial_{t} v_{\varepsilon}=\partial_{t}\left[u_{\varepsilon}\right] \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)
$$

such that $u_{\varepsilon}=0$ for $x_{1}=0$ and $x_{1}=L$, for any test functions $\phi \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}\right)\right)$, $\phi=0$ for $x_{1}=0$ and $x_{1}=L$, and for almost all $t \in(0, T)$

$$
\begin{equation*}
\varepsilon \int_{\Gamma_{\varepsilon}} c_{m} \partial_{t} v_{\varepsilon}[\phi] d s+\int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \phi d x+\varepsilon \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right)[\phi] d s=0 . \tag{3.14}
\end{equation*}
$$

In order to pass to the limit in the weak formulation, we need first to obtain a priori estimates which will guarantee the compactness of the solution in appropriate spaces.

Lemma 3.2 (A priori estimates). Let $\left(u_{\varepsilon}, g_{\varepsilon}\right)$ be a solution of (3.1)-(3.7). Denote $v_{\varepsilon}=\left[u_{\varepsilon}\right]$. Then, the following estimates hold:
(i) $\varepsilon^{-1} \int_{\Gamma_{\varepsilon}}\left|v_{\varepsilon}\right|^{2} d s \leq C, \quad t \in(0, T)$.
(ii) $\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} v_{\varepsilon}\right|^{2} d s d \tau \leq C, \quad t \in(0, T)$.
(iii) $\varepsilon^{-2} \int_{\Omega_{i, \varepsilon} \cup \Omega_{e, \varepsilon}}\left(\left|u_{\varepsilon}\right|^{2}+\left|\nabla u_{\varepsilon}\right|^{2}\right) d x \leq C, \quad t \in(0, T)$.

Proof. We multiply (3.1) by u_{ε} and integrate by parts over $\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}$:

$$
\frac{\varepsilon}{2} \frac{d}{d t} \int_{\Gamma_{\varepsilon}} c_{m} v_{\varepsilon}^{2} d s+\varepsilon \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right) v_{\varepsilon} d s+\int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} d x=0
$$

Integrating the last equality with respect to t and using (3.5) we get

$$
\begin{equation*}
\frac{\varepsilon}{2} \int_{\Gamma_{\varepsilon}} c_{m} v_{\varepsilon}^{2} d s+\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right) v_{\varepsilon} d s d \tau+\int_{0}^{t} \int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} d x d \tau=0 \tag{3.15}
\end{equation*}
$$

Dividing the resulting identity by ε^{2} (the scaling factor of the order $\left|\Omega_{\varepsilon}\right|$) and recalling the the positivity of H we get

$$
\begin{aligned}
& \frac{\varepsilon^{-1}}{2} \int_{\Gamma_{\varepsilon}} c_{m} v_{\varepsilon}^{2} d s+\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \sum_{j} H\left(\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle_{j}\right)\left(v_{\varepsilon}-v_{r, j}\right) v_{\varepsilon} d s d \tau \leq 0 \\
& \frac{\varepsilon^{-1}}{2} \int_{\Gamma_{\varepsilon}} c_{m} v_{\varepsilon}^{2} d s \leq \frac{\varepsilon^{-1}}{2} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \sum_{j} H\left(\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle_{j}\right)\left(v_{r, j}\right)^{2} d s d \tau \leq C
\end{aligned}
$$

In this way estimate (i) is proved. Next, we derive an integral estimate for ∇u_{ε} from (3.15) and (i):

$$
\varepsilon^{-2} \int_{0}^{t} \int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} d x d \tau \leq C
$$

Let us now multiply (3.1) by $\partial_{t} u_{\varepsilon}$ and integrate by parts over $\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}$:

$$
\begin{aligned}
\varepsilon^{-1} \int_{\Gamma_{\varepsilon}} c_{m}\left|\partial_{t} v_{\varepsilon}\right|^{2} d s & +\varepsilon^{-1} \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right) \partial_{t} v_{\varepsilon} d s \\
& +\frac{\varepsilon^{-2}}{2} \frac{d}{d t} \int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} d x=0 .
\end{aligned}
$$

Integrating with respect to t gives

$$
\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} c_{m}\left|\partial_{\tau} v_{\varepsilon}\right|^{2} d s d \tau+\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right) \partial_{\tau} v_{\varepsilon} d s d \tau
$$

$$
\begin{equation*}
+\frac{\varepsilon^{-2}}{2} \int_{\Omega_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} d x=\left.\frac{\varepsilon^{-2}}{2} \int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2}\right|_{t=0} d x . \tag{3.16}
\end{equation*}
$$

Since v_{ε} is a strict solution, we can choose $\phi=u_{\varepsilon}$ and set $t=0$ in (3.8). Then, $\left.\nabla u_{\varepsilon}\right|_{t=0}=0$. By (H1), the boundedness of H and the estimate (i), we derive

$$
\begin{array}{r}
\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} c_{m}\left|\partial_{\tau} v_{\varepsilon}\right|^{2} d s d \tau+\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \sum_{j} H\left(\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle_{j}\right)\left(v_{\varepsilon}-v_{r, j}\right) \partial_{\tau} v_{\varepsilon} d s d \tau \leq 0 \\
\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} c_{m}\left|\partial_{\tau} v_{\varepsilon}\right|^{2} d s d \tau \leq C \varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left(v_{\varepsilon}-v_{r, j}\right) \partial_{\tau} v_{\varepsilon} d s d \tau \\
\varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} v_{\varepsilon}\right|^{2} d s d \tau \leq C \varepsilon^{-1} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left(v_{\varepsilon}-v_{r, j}\right)^{2} d s d \tau \leq C
\end{array}
$$

Estimate (ii) is proved. Estimates (3.16) and (ii) imply that

$$
\begin{equation*}
\varepsilon^{-2} \int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq C, \quad t \in(0, T) \tag{3.17}
\end{equation*}
$$

Since u_{ε} satisfies the homogeneous Dirichlet boundary condition for $x_{1}=0$, the Friedrichs inequality is valid for u_{ε} in Ω_{ε}^{i} and Ω_{ε}^{e} leading to (iii).

When passing to the limit, as $\varepsilon \rightarrow 0$, we will use the notion of the two-scale convergence. Let us recall the definition.

Definition 3.1. We say that $u_{\varepsilon}(t, x)$ converges two-scale to $u_{0}\left(t, x_{1}, y\right)$ in $L^{2}\left(0, T ; L^{2}\left(\Omega_{l, \varepsilon}\right)\right)$, $l=i, e$, if
(i) $\varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{l, \varepsilon}}\left|u_{\varepsilon}\right|^{2} d x d t<\infty$.
(ii) For any $\phi\left(t, x_{1}\right) \in C\left(0, T ; L^{2}(0, L)\right), \psi(y) \in L^{2}\left(Y_{l}\right)$ we have

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{l, \varepsilon}} u_{\varepsilon}(x) \phi\left(t, x_{1}\right) \psi\left(\frac{x}{\varepsilon}\right) d x d t \\
= & \int_{0}^{T} \int_{0}^{L} \int_{Y_{l}} u_{0}\left(t, x_{1}, y\right) \phi\left(t, x_{1}\right) \psi(y) d y d x_{1} d t
\end{aligned}
$$

for some function $u_{0} \in L^{2}\left(0, T ; L^{2}((0, L) \times Y)\right)$.
Definition 3.2. We say that $v_{\varepsilon}(t, x)$ converges two-scale to $v_{0}\left(t, x_{1}, y\right)$ in $L^{2}(0, T$; $\left.L^{2}\left(\Gamma_{\varepsilon}\right)\right)$ if it holds that
(i) $\varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{\varepsilon}} v_{\varepsilon}^{2} d s d t<\infty$.
(ii) For any $\phi\left(t, x_{1}\right) \in L^{\infty}\left(0, T ; L^{2}(0, L)\right), \psi(y) \in L^{2}(\Gamma)$ we have

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{\varepsilon}} v_{\varepsilon}(x) \phi\left(t, x_{1}\right) \psi\left(\frac{x}{\varepsilon}\right) d s_{x} d t \\
= & \int_{0}^{T} \int_{0}^{L} \int_{\Gamma} v_{0}\left(t, x_{1}, y\right) \phi\left(t, x_{1}\right) \psi(y) d s_{y} d x_{1} d t
\end{aligned}
$$

for some function $v_{0} \in L^{2}\left(0, T ; L^{2}((0, L) \times \Gamma)\right)$.
Lemma 3.3. Let u_{ε} be a solution of (3.1)-(3.7). Denote by $\mathbf{I}_{\Omega_{l, \varepsilon}}$ the characteristic functions of $\Omega_{l, \varepsilon}, l=i, e$. Then, up to a subsequence,
(i) $\left[u_{\varepsilon}\right]$ converges two-scale to $v_{0}\left(t, x_{1}, y\right)$ in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$.
(ii) $\partial_{t}\left[u_{\varepsilon}\right]$ converges two-scale to $\partial_{t} v_{0}\left(t, x_{1}, y\right)$ in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$.
(iii) $\mathbf{I}_{\Omega_{l, \varepsilon}} u_{\varepsilon}$ converges two-scale to $\left|Y_{l}\right| u_{0}^{l}\left(t, x_{1}\right)$ in $L^{2}\left(0, T ; L^{2}\left(\Omega_{l, \varepsilon}\right)\right)$.
(iv) $\mathbf{I}_{\Omega_{l, \varepsilon}} \nabla u_{\varepsilon}$ converges two-scale to $\left(\partial_{x_{1}} u_{0}^{l}\left(t, x_{1}\right) \mathbf{e}_{\mathbf{1}}+\nabla_{y} w^{l}\left(t, x_{1}, y\right)\right.$
in $\left(L^{2}\left(0, T ; L^{2}\left(\Omega_{l, \varepsilon}\right)\right)\right)$. Here $\mathbf{e}_{\mathbf{1}}=(1,0,0) \in \mathbf{R}^{3}$, $w^{l} \in L^{2}\left(0, T ; L^{2}(0, L) \times H^{1}(Y)\right)$.

For the proof, we refer to (Allaire \& Damlamian, 1995) for two-scale convergence on periodic surfaces (on Γ_{ε}), to (Zhikov, 2000) and (Pettersson, 2017) for two-scale convergence in thin structures and dimension reduction.

One of the technical difficulties in the present paper is the passage to the limit in the integral over Γ_{ε} containing a nonlinear function since we need to ensure a strong convergence of v_{ε} in an appropriate sense. In the next lemma, we show that v_{ε} can be approximated by a piecewise constant function $\tilde{v}_{\varepsilon}\left(t, x_{1}\right)$ which in its turn converges, up to a subsequence, to a function $v_{0}\left(t, x_{1}\right) \in L^{\infty}\left(0, T ; H^{1}(0, L)\right)$ uniformly on $[0, T]$, as $\varepsilon \rightarrow 0$.

Lemma 3.4. Let u_{ε} be a solution of (3.1)-(3.7). Then, there exists a function

$$
\tilde{v}_{\varepsilon}\left(t, x_{1}\right) \in L^{\infty}\left(0, T ; H^{1}(0, L)\right) \cap H^{1}\left(0, T ; L^{2}(0, L)\right)
$$

such that, it holds
(i) For $t \in(0, T)$, the function \tilde{v}_{ε} approximates $\left[u_{\varepsilon}\right]$:

$$
\int_{\Gamma_{\varepsilon}}\left|\tilde{v}_{\varepsilon}-\left[u_{\varepsilon}\right]\right|^{2} d s \leq C \varepsilon \int_{\Omega_{i, \varepsilon} \cup \Omega_{e, \varepsilon}}\left|\nabla u_{\varepsilon}\right|^{2} d x .
$$

(ii) There exists $v_{0}\left(t, x_{1}\right) \in L^{\infty}\left(0, T ; L^{2}(0, L)\right)$ such that along a subsequence \tilde{v}_{ε} converges to $v_{0}\left(t, x_{1}\right)$ uniformly on $[0, T]$, as $\varepsilon \rightarrow 0$.

Proof. Let us cover Ω_{ε} by a union of overlapping cells $\varepsilon \tilde{Y}_{k}$ as shown in Figure 32 so that each cell contains two Ranvier nodes. The Ranvier node which belongs to the intersection $\varepsilon \tilde{Y}_{k} \cap \varepsilon \tilde{Y}_{k+1}$ is denoted by $\varepsilon \Gamma_{k}$. The intra- and extracellular parts of \tilde{Y}_{k} are referred to as $\tilde{Y}_{i, k}$ and $\tilde{Y}_{e, k}$, respectively.

Figure 3-2. Overlapping cells $\varepsilon \tilde{Y}_{k}$ and $\varepsilon \tilde{Y}_{k+1}$.

Let us show that the difference between the mean values of $\left[u_{\varepsilon}\right]$ over $\varepsilon \Gamma_{k}$ and $\varepsilon \Gamma_{k+1}$ is small. Let

$$
\bar{u}_{\varepsilon, k}^{l}=\frac{1}{|\varepsilon \Gamma|} \int_{\varepsilon \Gamma_{k}} u_{\varepsilon}^{l} d s, \quad l=i, e .
$$

For each $\varepsilon \tilde{Y}_{l, k}, l=i, e$, due to the Poincaré inequality, we have

$$
\int_{\varepsilon \tilde{Y}_{l, k}}\left|u_{\varepsilon}^{l}-\bar{u}_{\varepsilon, k}^{l}\right|^{2} d x \leq C \varepsilon^{2} \int_{\varepsilon \tilde{Y}_{l, k}}\left|\nabla u_{\varepsilon}^{l}\right|^{2} d x
$$

with C independent of ε. Considering traces on Γ_{k}, by a simple scaling argument one has

$$
\begin{align*}
\int_{\varepsilon \Gamma_{k}}\left|u_{\varepsilon}^{l}-\bar{u}_{\varepsilon, k}^{l}\right|^{2} d s & \leq C \varepsilon^{-1}\left(\int_{\varepsilon \tilde{Y}_{l, k}}\left|u_{\varepsilon}^{l}-\bar{u}_{\varepsilon, k}^{l}\right|^{2} d x+\varepsilon^{2} \int_{\varepsilon \tilde{Y}_{l, k}}\left|\nabla u_{\varepsilon}^{l}\right|^{2} d x\right) \tag{3.18}\\
& \leq C \varepsilon \int_{\varepsilon \tilde{Y}_{l, k}}\left|\nabla u_{\varepsilon}^{l}\right|^{2} d x, \quad l=i, e .
\end{align*}
$$

Then, the difference between $\bar{u}_{\varepsilon, k}$ and $\bar{u}_{\varepsilon, k+1}$ is estimated as follows

$$
\begin{aligned}
\left|\bar{u}_{\varepsilon, k}^{l}-\bar{u}_{\varepsilon, k+1}^{l}\right|^{2} & \leq \frac{2}{\left|\varepsilon \tilde{Y}_{l, k} \cap \varepsilon \tilde{Y}_{l, k+1}\right|} \int_{\varepsilon \tilde{Y}_{l, k} \cap \varepsilon \tilde{Y}_{l, k+1}}\left(\left|u_{\varepsilon}^{l}-\bar{u}_{\varepsilon, k}^{l}\right|^{2}+\left|u_{\varepsilon}^{l}-\bar{u}_{\varepsilon, k+1}^{l}\right|^{2}\right) d x \\
& \leq C \varepsilon^{-1} \int_{\varepsilon \tilde{Y}_{l, k} \cup \varepsilon \tilde{Y}_{l, k+1}}\left|\nabla u_{\varepsilon}^{l}\right|^{2} d x .
\end{aligned}
$$

Adding up in k the above estimates, we obtain an estimate in Ω_{ε}^{l} :

$$
\begin{equation*}
\sum_{k}\left|\bar{u}_{\varepsilon, k}^{l}-\bar{u}_{\varepsilon, k+1}^{l}\right|^{2} \leq C \varepsilon^{-1} \int_{\Omega_{\varepsilon}^{l}}\left|\nabla u_{\varepsilon}^{l}\right|^{2} d x . \tag{3.19}
\end{equation*}
$$

Let us denote by

$$
\bar{v}_{\varepsilon, k}=\bar{u}_{\varepsilon, k}^{i}-\bar{u}_{\varepsilon, k}^{e}=\frac{1}{|\varepsilon \Gamma|} \int_{\varepsilon \Gamma_{k}}\left[u_{\varepsilon}\right] d s
$$

the jump of the average across the membrane. Then, using (3.18) and (3.19) yields

$$
\begin{gather*}
\int_{\varepsilon \Gamma_{k}}\left|\left[u_{\varepsilon}\right]-\bar{v}_{\varepsilon, k}\right|^{2} d s \leq C \varepsilon \int_{\varepsilon \tilde{Y}_{i, k} \cup \varepsilon \tilde{Y}_{e, k}}\left|\nabla u_{\varepsilon}\right|^{2} d x \\
\sum_{k}\left|\bar{v}_{\varepsilon, k}-\bar{v}_{\varepsilon, k+1}\right|^{2} \leq C \varepsilon^{-1} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}}\left|\nabla u_{\varepsilon}\right|^{2} d x . \tag{3.20}
\end{gather*}
$$

Bounds (3.20) show that $\left[u_{\varepsilon}\right]$ in each cell $\varepsilon \tilde{Y}_{k}$ is close to a constant $\bar{v}_{\varepsilon, k}$, and the difference between $\bar{v}_{\varepsilon, k}$ and $\bar{v}_{\varepsilon, k+1}$ is small due to (iii) in Lemma 3.2.

Next, we construct a piecewise linear function $\tilde{v}_{\varepsilon}\left(t, x_{1}\right)$ interpolating values $\bar{v}_{\varepsilon, k}$ linearly and show that

$$
\begin{align*}
& \int_{0}^{L}\left|\tilde{v}_{\varepsilon}\right|^{2} d x_{1} \leq C, \quad t \in(0, T) \tag{3.21}\\
& \int_{0}^{L}\left|\partial_{x_{1}} \tilde{v}_{\varepsilon}\right|^{2} d x_{1} \leq C, \quad t \in(0, T) \tag{3.22}\\
& \int_{0}^{T} \int_{0}^{L}\left|\partial_{t} \tilde{v}_{\varepsilon}\right|^{2} d x_{1} d t \leq C \tag{3.23}
\end{align*}
$$

Indeed, (3.21) and (3.22) follow directly from (3.20) and (i), (ii) in Lemma 3.2:

$$
\begin{align*}
\int_{0}^{L}\left|\tilde{v}_{\varepsilon}\right|^{2} d x_{1} & =\sum_{k} \int_{-\varepsilon / 2}^{\varepsilon / 2}\left|\frac{\bar{v}_{\varepsilon, k}+\bar{v}_{\varepsilon, k+1}}{2}+x_{1} \frac{\bar{v}_{\varepsilon, k+1}-\bar{v}_{\varepsilon, k}}{\varepsilon}\right|^{2} d x_{1} \\
& \leq C \sum_{k} \varepsilon\left(\left|\bar{v}_{\varepsilon, k}\right|^{2}+\left|\bar{v}_{\varepsilon, k+1}\right|^{2}\right) \leq C \frac{1}{|\varepsilon \Gamma|} \int_{\Gamma_{\varepsilon}}\left[u_{\varepsilon}\right]^{2} d s \leq C . \tag{3.24}
\end{align*}
$$

Estimate (3.22) is proved in a similar way using (3.20):

$$
\begin{aligned}
\int_{0}^{L}\left|\partial_{x_{1}} \tilde{v}_{\varepsilon}\right|^{2} d x_{1} & \leq C \sum_{k} \int_{-\varepsilon / 2}^{\varepsilon / 2}\left|\frac{\bar{v}_{\varepsilon, k}-\bar{v}_{\varepsilon, k+1}}{\varepsilon}\right|^{2} d x_{1} \\
& \leq C \varepsilon^{-1} \sum_{k}\left|\bar{v}_{\varepsilon, k}-\bar{v}_{\varepsilon, k+1}\right|^{2} \\
& \leq C \varepsilon^{-2} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq C
\end{aligned}
$$

Let us prove (3.23). Differentiating $\bar{v}_{\varepsilon, k}$ with respect to t, using the Cauchy-Schwarz inequality yields

$$
\left|\partial_{t} \bar{v}_{\varepsilon, k}\right|^{2}=\left|\frac{1}{\left|\varepsilon \Gamma_{k}\right|} \int_{\varepsilon \Gamma_{k}} \partial_{t}\left[u_{\varepsilon}\right] d s\right|^{2} \leq \frac{1}{\left|\varepsilon \Gamma_{k}\right|} \int_{\varepsilon \Gamma_{k}}\left(\partial_{t}\left[u_{\varepsilon}\right]\right)^{2} d s
$$

Similarly to (3.24), estimate (3.23) follows from the last bound and (ii) in Lemma 3.2. Estimate (i) in the current lemma follows from (3.20).

The uniform convergence on $(0, T)$ of the constructed piecewise linear approximation is given by the Arzelà-Ascoli theorem. Indeed, the precompactness is guaranteed for \tilde{v}_{ε} by
(3.21) and (3.22), while the equicontinuity property follows from (3.23):

$$
\begin{array}{r}
\tilde{v}_{\varepsilon}(t+\Delta t)-\tilde{v}_{\varepsilon}(t)=\int_{t}^{t+\Delta t} \partial_{\tau} \tilde{v}_{\varepsilon}(\tau) d \tau \\
\varepsilon^{-1} \int_{0}^{L}\left|\tilde{v}_{\varepsilon}(t+\Delta t)-\tilde{v}_{\varepsilon}(t)\right|^{2} d x \leq \int_{0}^{L}\left(\int_{t}^{t+\Delta t} \partial_{\tau} \tilde{v}_{\varepsilon}(\tau) d \tau\right)^{2} d x_{1} \\
\leq \Delta t \int_{0}^{L} \int_{t}^{t+\Delta t}\left|\partial_{\tau} \tilde{v}_{\varepsilon}(\tau)\right|^{2} d \tau d x_{1} \leq \Delta t
\end{array}
$$

The proof is complete.

3.4. Justification of macroscopic model

Let us denote $v_{\varepsilon}=\left[u_{\varepsilon}\right]$. Using Lemmata 3.3 and 3.4, we will pass to the limit in the weak formulation of (3.1)-(3.7):

$$
\begin{array}{r}
\varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{\varepsilon}}\left(c_{m} \partial_{t} v_{\varepsilon}+I_{\text {ion }}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right)\right)[\phi] d x d t \\
\quad+\varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}} \sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \phi d x d t=0 \tag{3.25}
\end{array}
$$

where $\phi(t, x) \in L^{\infty}\left(0, T ; H^{1}\left(\Omega_{\varepsilon} \backslash \Gamma_{\varepsilon}\right)\right)$ such that $\phi=0$ for $x_{1}=0$ and $x_{1}=L$.
For the functions $U_{i}\left(t, x_{1}\right), U_{e}\left(t, x_{1}\right) \in C\left(0, T ; C_{0}^{\infty}(0, L)\right)$ and $V_{i}, V_{e}\left(t, x_{1}, y\right) \in C(0, T ;$ $\left.C_{0}^{\infty}(0, L) \times H^{1}(Y)\right)$ we construct the following test function:

$$
\phi_{\varepsilon}(t, x)=\left(U_{i}\left(t, x_{1}\right)+\varepsilon V_{i}\left(t, x_{1}, y\right)\right) \chi_{\Omega_{i, \varepsilon}}+\chi_{\Omega_{e, \varepsilon}}\left(U_{e}\left(t, x_{1}\right)+\varepsilon V_{e}\left(t, x_{1}, \frac{x}{\varepsilon}\right)\right)
$$

where $\chi_{\Omega_{l, \varepsilon}}$ is the characteristic function of $\Omega_{l, \varepsilon}, l=i, e$.
Note that the jump of ϕ_{ε} on Γ_{ε} converges strongly in $L^{2}\left(\Gamma_{\varepsilon}\right)$ to $U_{i}\left(t, x_{1}\right)-U_{e}\left(t, x_{1}\right)$. Substituting ϕ_{ε} into (3.25) we get

$$
\begin{align*}
& \varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{\varepsilon}}\left(c_{m} \partial_{t} v_{\varepsilon}+I_{\text {ion }}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right)\right)\left[\phi_{\varepsilon}\right] d s d t \tag{3.26}\\
+ & \varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{i, \varepsilon}} \sigma_{i} \nabla u_{\varepsilon}^{i} \cdot\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} U_{i}+\varepsilon \nabla V_{i}\left(x_{1}, \frac{x}{\varepsilon}\right)\right) d x d t \tag{3.27}
\end{align*}
$$

$$
\begin{gather*}
+\varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{e, \varepsilon}} \sigma_{e} \nabla u_{\varepsilon}^{e} \cdot\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} U_{e}+\varepsilon \nabla V_{e}\left(x_{1}, \frac{x}{\varepsilon}\right)\right) d x d t \tag{3.28}\\
\quad=I_{1 \varepsilon}+I_{2 \varepsilon}+I_{3 \varepsilon}=0
\end{gather*}
$$

We will pass to the limit, as $\varepsilon \rightarrow 0$, in each integral $I_{k \varepsilon}, k=1,2,3$ given by (3.26)(3.28).

Since $\left[\phi_{\varepsilon}\right]$ on Γ_{ε} converges strongly in $L^{2}\left(\Gamma_{\varepsilon}\right)$ to $U_{i}\left(t, x_{1}\right)-U_{e}\left(t, x_{1}\right)$ and $\partial_{t} v_{\varepsilon}$ converges two-scale (weakly) in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$ and uniformly on $(0, T)$ to $v_{0}\left(t, x_{1}\right)$, we can pass to the limit in (3.26) and obtain

$$
\begin{aligned}
I_{1 \varepsilon} & =\varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{\varepsilon}}\left(c_{m} \partial_{t} v_{\varepsilon}+I_{\text {ion }}\left(v_{\varepsilon},\left\langle g_{\varepsilon}, v_{\varepsilon}\right\rangle\right)\right)\left[\phi_{\varepsilon}\right] d s d t \\
& \xrightarrow[\varepsilon \rightarrow 0]{\longrightarrow}|\Gamma| \int_{0}^{T} \int_{0}^{L}\left(c_{m} \partial_{t} v_{0}+I_{\text {ion }}\left(v_{0},\left\langle g_{0}, v_{0}\right\rangle\right)\right)\left(U_{i}-U_{e}\right) d x_{1} d t
\end{aligned}
$$

To pass to the two-scale limit in (3.27)-(3.28), we use (iv) in Lemma 3.3 and get

$$
\begin{aligned}
& I_{2 \varepsilon}=\varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{i, \varepsilon}} \sigma_{i} \nabla u_{\varepsilon}^{i} \cdot\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} U_{i}+\nabla_{y} V_{i}\left(x_{1}, \frac{x}{\varepsilon}\right)+\varepsilon \partial_{x_{1}} V_{i}\left(x_{1}, \frac{x}{\varepsilon}\right)\right) d x d t \\
& \xrightarrow[\varepsilon \rightarrow 0]{\longrightarrow} \int_{0}^{T} \int_{0}^{L} \int_{Y_{i}} \sigma_{i}\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} u_{0}^{i}+\nabla_{y} w^{i}\right) \cdot\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} V_{i}\left(t, x_{1}\right)+\nabla_{y} V_{i}\left(t, x_{1}, y\right)\right) d y d x_{1} d t \\
& I_{3 \varepsilon}=\varepsilon^{-2} \int_{0}^{T} \int_{\Omega_{e, \varepsilon}} \sigma_{e} \nabla u_{\varepsilon}^{e} \cdot\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} U_{e}+\nabla_{y} V_{e}\left(x_{1}, \frac{x}{\varepsilon}\right)+\varepsilon \partial_{x_{1}} V_{e}\left(x_{1}, \frac{x}{\varepsilon}\right)\right) d x d t \\
& \xrightarrow[\varepsilon \rightarrow 0]{\longrightarrow} \int_{0}^{T} \int_{0}^{L} \int_{Y_{e}} \sigma_{e}\left(\mathbf{e}_{1} \partial_{x_{1}} u_{0}^{e}+\nabla_{y} w^{e}\right) \cdot\left(\mathbf{e}_{\mathbf{1}} \partial_{x_{1}} V_{e}\left(t, x_{1}\right)+\nabla_{y} V_{e}\left(t, x_{1}, y\right)\right) d y d x_{1} d t
\end{aligned}
$$

Thus, we obtain a weak formulation of the effective problem:

$$
\begin{aligned}
& |\Gamma| \int_{0}^{T} \int_{0}^{L}\left(c_{m} \partial_{t} v_{0}+I_{\text {ion }}\left(v_{0},\left\langle g_{0}, v_{0}\right\rangle\right)\right)\left(U_{i}-U_{e}\right) d x_{1} d t \\
+ & \int_{0}^{T} \int_{0}^{L} \int_{Y_{i}} \sigma_{i}\left(\mathbf{e}_{1} \partial_{x_{1}} u_{0}^{i}+\nabla_{y} w^{i}\right) \cdot\left(\mathbf{e}_{1} \partial_{x_{1}} U_{i}\left(t, x_{1}\right)+\nabla_{y} V_{i}\left(t, x_{1}, y\right)\right) d y d x_{1} d t \\
+ & \int_{0}^{T} \int_{0}^{L} \int_{Y_{e}} \sigma_{e}\left(\mathbf{e}_{1} \partial_{x_{1}} u_{0}^{e}+\nabla_{y} w^{e}\right) \cdot\left(\mathbf{e}_{1} \partial_{x_{1}} U_{e}\left(t, x_{1}\right)+\nabla_{y} V_{e}\left(t, x_{1}, y\right)\right) d y d x_{1} d t=0 .
\end{aligned}
$$

Figure 3-3. The cross section of half of the periodic cell, where $Y=\left(-\frac{1}{2}, \frac{1}{2}\right) \times$ $D_{R_{0}}$ and $Y_{i}=\left(-\frac{1}{2}, \frac{1}{2}\right) \times D_{r_{0}}$, with $D_{R_{0}}$ and $D_{r_{0}}$ being the open disks in \mathbb{R}^{2} of radius R_{0} and r_{0}, respectively.

Consequently, computing the variation of the left-hand side of the last equality with respect to V_{i}, V_{e}, U_{i} and U_{e} gives the representations $V_{i}\left(t, x_{1}, y\right)=N_{i}(y) \partial_{x_{1}} U_{i}\left(t, x_{1}\right)$, $V_{e}\left(t, x_{1}, y\right)=N_{e}(y) \partial_{x_{1}} U_{e}\left(t, x_{1}\right)$, the cell problems (3.12) and (3.13), and the two onedimensional equations

$$
\begin{align*}
& |\Gamma|\left(c_{m} \partial_{t} v_{0}+I_{i o n}\left(v_{0},\left\langle g_{0}, v_{0}\right\rangle\right)\right)=\int_{Y_{i}} \sigma_{e}\left|\mathbf{e}_{\mathbf{1}}+\nabla_{y} N_{i}\right|^{2} \partial_{x_{1} x_{1}}^{2} u_{0}^{i} d y \tag{3.29}\\
& |\Gamma|\left(c_{m} \partial_{t} v_{0}+I_{i o n}\left(v_{0},\left\langle g_{0}, v_{0}\right\rangle\right)\right)=-\int_{Y_{e}} \sigma_{e}\left|\mathbf{e}_{\mathbf{1}}+\nabla_{y} N_{e}\right|^{2} \partial_{x_{1} x_{1}}^{2} u_{0}^{e} d y \tag{3.30}
\end{align*}
$$

Introducing (3.11) and adding up (3.30) and (3.29) yield (3.10). The proof of Theorem 3.1 is complete.

3.5. Numerical example

The goal of this numerical example is to see how the effective coefficient defined by (3.11) varies with respect to the area of Γ. We consider a rotationally symmetric geometry as illustrated in Fig. 3-3. Since the first component of the normal to Y_{i} is zero in this case, the problem reduces to solving the auxiliary cell problem (3.12) in the extracellular domain Y_{e}. For this, we use a finite element approximation. Having N_{e}, we compute the effective
coefficient $a^{\text {eff }}$, whose formula in this cylindrical geometry becomes

$$
\begin{equation*}
a^{\mathrm{eff}}=\frac{1}{|\Gamma|}\left(\left(\sigma_{e} \int_{Y_{e}}\left(\partial_{y_{1}} N_{e}+1\right) d y\right)^{-1}+\left(\sigma_{i}\left|Y_{i}\right|\right)^{-1}\right)^{-1} \tag{3.31}
\end{equation*}
$$

as the cell problem (3.13) has a constant solution in this case and $\partial_{y_{1}} N_{i}=0$. The effective coefficient has units $S \cdot \mathrm{~cm}^{2}$, that is the units of the conductivity S / cm multiplied by cm^{3}. The conductivity of the extra- and intracellular domains are assumed to be $\sigma_{e}=20 \mathrm{mS} / \mathrm{cm}$ and $\sigma_{i}=5 \mathrm{mS} / \mathrm{cm}$. The node-node separation might vary between $500 \mu \mathrm{~m}$ and $1500 \mu \mathrm{~m}$ (see (McIntyre et al., 2002)), and we will take the period $L=1250 \mu \mathrm{~m}$. To make the period equal to one, we need to rescale the domain by L. For example, the radius of the node is $1.8 \mu \mathrm{~m}$, so $r_{0}=1.8 / 1250$.

Table 3.1 contains the geometric parameters of the domain.
Table 3.1. Geometric parameters in $\mu \mathrm{m}$.

$R_{0} L$	$\left(r_{0}+m\right) L$	$r_{0} L$	$l \cdot L$
9	5.75	1.8	1

The values for the effective coefficient $a^{\text {eff }}$ computed for angles $\alpha=\beta=\pi / 2$ (angles of the myelin attachment) and for different values of the length of the Ranvier node $l \cdot L$ are shown in Table 3.2 and Fig. 3-4. It can be observed that $a^{\text {eff }}$ decreases when l increases.

TABLE 3.2. Results of the effective coefficient $a^{\text {eff }}$ for different values of l, the length of the Ranvier node. l is in $\mu \mathrm{m}$.

$l \cdot L$	0.5	1	2	4	8	16
$a^{\text {eff }}$	1.1	$5.5 \cdot 10^{-1}$	$2.8 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$	$6.9 \cdot 10^{-2}$	$3.5 \cdot 10^{-2}$
$l \cdot L$	32	64	128	256	512	1024
$a^{\text {eff }}$	$1.7 \cdot 10^{-2}$	$8.6 \cdot 10^{-3}$	$4.3 \cdot 10^{-3}$	$2.2 \cdot 10^{-3}$	$1.1 \cdot 10^{-3}$	$5.4 \cdot 10^{-4}$

We also analyze how the effective coefficient depends on the angles of the myelin attachment. The results of the computations are presented in Table 3.3 and on Fig. 3-5.

Figure 3-4. Effective coefficient $a^{\text {eff }}$ for different values of l, the length of the Ranvier node. l is in $\mu \mathrm{m}$.

One can see that the variation of $a^{\text {eff }}$ is not significant, but the effective coefficient cleary decreases when the angles go to zero.

TABLE 3.3. Results of the effective coefficient $a^{\text {eff }}$ for different values of the angle. The angles are in degrees and the results presented with six significant digits.

α°	0.4	0.5	1	2	5
$a^{\text {eff }}$	0.555167	0.554720	0.553897	0.553516	0.553297
α°	10	20	46	95	
$a^{\text {eff }}$	0.553223	0.553187	0.553165	0.553153	

Acknowledgements

This research was funded by the Swedish Foundation for International Cooperation in Research and Higher Education STINT CS2018-7908, Fondecyt Regular 1171491 and Conicyt-PFCHA/Doctorado Nacional/2018- 21181809, whose support is warmly appreciated.

Figure 3-5. Effective coefficient $a^{\text {eff }}$ for different values of the angle. The angles are in ${ }^{\circ}$.

4. DERIVATION OF BIDOMAIN MODEL FOR BUNDLES OF AXONS

The chapter concerns the multiscale modeling of a nerve fascicle of myelinated axons. We present a rigorous derivation of a macroscopic bidomain model describing the behavior of the electric potential in the fascicle based on the FitzHugh-Nagumo membrane dynamics. The approach is based on the two-scale convergence machinery combined with the method of monotone operators.

The chapter is based on the paper: Jerez-Hanckes, C., Martínez, I. A., Pettersson, I., \& Rybalko, V.. Derivation of a bidomain model for bundles of myelinated axons (Nonlinear Analysis: Real World Applications, in press).

4.1. Introduction

Modeling the electrical stimulation of nerves requires biophysically consistent descriptions amenable also for computational purposes. A typical nerve in the peripheral nervous system contains several grouped fascicles, each of them comprising hundreds of axons (Standring, 2021). This complex microstructure of neural tissue presents an obvious problem for those attempting to desribe its macroscopic response to electrical excitation. Specifically, one needs to know both how signals propagate along a single axon and how axons influence each other in a bundle.

Electric currents along individual axons are usually modeled via cable theory, which dates back to works of W. Thomson (Lord Kelvin). Fundamental insights into nerve cell excitability were made by A. Hodgkin and A. Huxley, who proposed a model that describes ionic mechanisms underlying the initiation and propagation of action potentials in axons (Hodgkin \& Huxley, 1952). Later a more simple model for nonlinear dynamics in axons was introduced in (FitzHugh, 1955), known as the FitzHugh-Nagumo model.

Multiscale homogenization techniques were used in recent works (Jerez-Hanckes et al., 2020; Jerez-Hanckes, Martínez, Pettersson, \& Rybalko, 2021) to derive an effective
cable equation describing propagation of signals in myelinated axons. Ideas of homogenization theory can also be naturally applied to account for ephaptic coupling in bundles of axons, where neighboring axons can communicate via current flow through the extracellular space. In 1978, experiments on giant squid axons were conducted (Ramon \& Moore, 1978) revealing evidence of ephaptic events and their physiological importance. Ephaptic interactions might be modelled by coupled systems of a large number of cable equations (as, e.g., in (Bokil et al., 2001), (Binczak et al., 2001)), but a continuous mathematical model for a fascicle of myelinated axons, to our best knowledge, has not been rigorously derived. An analogous phenomenon of coupling is observed in the electrical conductance of cardiac tissues (Lin \& Keener, 2010), leading to the celebrated bidomain model. It was first derived by J. Neu and W. Krassowska (J. Neu \& Krassowska, 1993). In (Franzone \& Savaré, 2002) the authors study the well-posedness of the reaction-diffusion systems modeling cardiac electric activity at the micro- and macroscopic level. They focus on the FitzHugh-Nagumo model (with recovery variable), and present a formal derivation of the effective bidomain model. The homogenization procedure is justified in (Pennacchio, Savaré, \& Franzone, 2005) where Г-convergence is used for asymptotic analysis. Homogenization techniques based on two-scale convergence and unfolding are applied in, e.g., (Collin \& Imperiale, 2018), (Bendahmane, Mroue, Saad, \& Talhouk, 2019), (Grandelius \& Karlsen, 2019), (Amar, Andreucci, \& Timofte, 2021) for modeling of syncytial tissues.

The multiscale analysis of syncytial tissues includes the well-posedness of the microscopic problem, the homogenization procedure, and the well-posedness of the effective bidomain model. The latter question is interesting by itself, with solvability proven using different approaches depending on the nonlinearity. The solvability for a bidomain model in (Franzone \& Savaré, 2002) is based on a reformulation as a Cauchy problem for a variational evolution inequality in a properly chosen Sobolev space. This approach applies to the case of the FitzHugh-Nagumo equations. In (Veneroni, 2006) existence and uniqueness are given for solutions of a wide class of models, including the classical Hodgkin-Huxley model, the first membrane model for ionic currents in an axon, and the Phase-I Luo-Rudy (LR1) model. In (Bourgault, Coudiere, \& Pierre, 2009) the authors reformulate the coupled
parabolic and elliptic PDEs into a single parabolic PDE by the introduction of a bidomain operator, which is a non-differential and non-local operator. This approach applies to fairly general ionic models, such as the Aliev-Panfilov and MacCulloch models.

The asymptotic analysis of a nerve fascicle with a large number of axons also leads to a bidomain model. It was suggested in (P. J. Basser \& Roth, 2000) that bidomain models provides a unified framework for modeling electrical stimulation of both peripheral nerves, cortical neurons, and syncytical tissues. In (Mandonnet \& Pantz, 2011) a linear model is considered without recovery variables. Therein, it is hypothesized that the homogenization procedure in (Pennacchio et al., 2005) leading to a macroscopic bidomain model for syncytical tissues can also be carried out for a fascicle of unmyelinated axons. We extend this result to a nonlinear case and rigorously derive a bidomain model for a fascicle of myelinated axons. In particular, we consider the propagation of signals in a fascicle formed by a large number of axons. The microstructure of the fascicle is depicted as a set of closely packed thin cylinders (axons) with myelin sheaths arranged periodically in the surrounding extracellular matrix. The characteristic microscale of the structure is given by a small parameter $\varepsilon>0$. Distances between neighboring axons, their diameters and the spacing of unmyelinated parts of the axon's membrane-Ranvier nodes-are assumed to be of order ε. By means of two-scale analysis we derive a bidomain model that describes the asymptotic behavior of the transmembrane potential on Ranvier nodes when ε is sufficiently small. We adopt the FitzHugh-Nagumo dynamics on the unmyelinated membrane. Main technical difficulties come from the nonlinear dynamics and the lack of a priori estimates ensuring strong convergence of the membrane potential on the Ranvier nodes. This lack of compactness is caused by the fact that the axons form a disconnected microstructure inside the fascicle, which stands in the contrast with connected microstructure of syncytial tissues. In order to derive the homogenized problem we transform problem to a form allowing us to combine two-scale convergence machinery with the method of monotone operators. Well-posedness of the micro- and macroscopic problems are also shown via reduction to parabolic equations with monotone operators.

4.2. Microscopic model

4.3. Problem setup

A nerve fascicle is modeled by the cylinder $\Omega:=(0, L) \times \omega \subset \mathbb{R}^{3}$ with length $L>0$ and cross section $\omega \subset \mathbb{R}^{2}$, being a bounded domain in \mathbb{R}^{2} with a Lipschitz boundary $\partial \omega$ (see Figure 4-1). The lateral boundary of the cylinder is denoted by $\Sigma:=[0, L] \times \partial \omega$, with bases $S_{0}:=\{0\} \times \omega, S_{L}:=\{L\} \times \omega$. The bulk of the cylinder consists of an intracellular part formed by thin cylinders (axons), an extracellular part, and myelin sheaths. To describe the microstructure of the fascicle, we introduce a periodicity cell $Y:=\left[-\frac{1}{2}, \frac{1}{2}\right) \times\left[-R_{0}, R_{0}\right)^{2}$, consisting of three disjoint Lipschitz domains: (i) an intracellular part $Y_{i}:=\left[-\frac{1}{2}, \frac{1}{2}\right) \times D_{r_{0}}$, where $D_{r_{0}}$ is the disk with radius $0<r_{0}<\frac{1}{2}$; (ii) a myelin sheath Y_{m}; (iii) an extracellular domain Y_{e}. The real positive radii satisfy $r_{0}<R_{0}$. We denote by $\Gamma_{m i}:=\overline{Y_{i}} \cap \overline{Y_{m}}$ the interface between Y_{i} and Y_{m}. The interface between the extracellular domain Y_{e} and a myelin sheath Y_{m} is $\Gamma_{m e}:=\overline{Y_{e}} \cap \overline{Y_{m}}$. The unmyelinated part of the boundary of Y_{i} (the Ranvier node) will be denoted by $\Gamma=\overline{Y_{i}} \cap \overline{Y_{e}}$ (see Figure 4-1). We will assume that Γ does not degenerate, and, for simplicity, that Γ is connected.

The periodicity cell is translated by vertices of the lattice $\mathbb{Z} \times\left(2 R_{0} \mathbb{Z}\right)^{2}$ to form a Y periodic structure, and then scaled by a small parameter $\varepsilon>0$. We take only those axons that are entirely contained in Ω. As a result, the domain is the union of three disjoint parts $\Omega_{\varepsilon}^{i}, \Omega_{\varepsilon}^{e}, \Omega_{\varepsilon}^{m}$, and their boundaries (see Figure 4-1). The unmyelinated part of the boundary of Ω_{ε}^{i} is denoted by Γ_{ε}. The boundary of the myelin is denoted by Γ_{ε}^{m}. Let

Figure 4-1. A fascicle of myelinated axons and the periodicity cell Y.
u_{ε} denotes the electric potential $u_{\varepsilon}=u_{\varepsilon}^{l}$ in $\Omega_{\varepsilon}^{l}, l=i, e$. We assume that u_{ε} satisfies homogeneous Neumann boundary conditions on the boundary of the myelin sheath Γ_{ε}^{m}, i.e the myelin sheath is assumed to be a perfect insulator (see (Jerez-Hanckes et al., 2020) for other insulation assumptions). The transmembrane potential $v_{\varepsilon}=\left[u_{\varepsilon}\right]=u_{\varepsilon}^{i}-u_{\varepsilon}^{e}$ is the potential jump across the Ranvier nodes Γ_{ε}. We assume that the conductivity is a piecewise constant function:

$$
a_{\varepsilon}= \begin{cases}a_{e} & \text { in } \Omega_{\varepsilon}^{e} \\ a_{i} & \text { in } \Omega_{\varepsilon}^{i}\end{cases}
$$

On Γ_{ε} we further assume current continuity, and FitzHugh-Nagumo (FitzHugh, 1955; Nagumo, Arimoto, \& Yoshizawa, 1962) dynamics for the transmembrane potential. Namely, the ionic current is described as

$$
I_{i o n}\left(v_{\varepsilon}, g_{\varepsilon}\right)=\frac{v_{\varepsilon}^{3}}{3}-v_{\varepsilon}-g_{\varepsilon}
$$

where g_{ε} is the recovery variable whose evolution is governed by the ordinary differential equation

$$
\partial_{t} g_{\varepsilon}=\theta v_{\varepsilon}+a-b g_{\varepsilon}
$$

with constant coefficients $\theta, a, b>0$. The recovery variable is introduced to eliminate the excitability of the model after excitation has occurred (see (FitzHugh, 1955)).

We consider an arbitrary time interval $(0, T), T>0$. The electric activity in the bundle Ω is described by the following system of equations for the unknowns v_{ε} and g_{ε} :

$$
\begin{array}{ll}
-\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon}\right)=0, & (t, x) \in(0, T) \times\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right), \\
a_{e} \nabla u_{\varepsilon}^{e} \cdot \nu=a_{i} \nabla u_{\varepsilon}^{i} \cdot \nu, & (t, x) \in(0, T) \times \Gamma_{\varepsilon}, \\
\varepsilon\left(c_{m} \partial_{t}\left[u_{\varepsilon}\right]+I_{i o n}\left(\left[u_{\varepsilon}\right], g_{\varepsilon}\right)\right)=-a_{i} \nabla u_{\varepsilon}^{i} \cdot \nu, & (t, x) \in(0, T) \times \Gamma_{\varepsilon} \\
\partial_{t} g_{\varepsilon}=\theta\left[u_{\varepsilon}\right]+a-b g_{\varepsilon}, & (t, x) \in(0, T) \times \Gamma_{\varepsilon} \\
u_{\varepsilon}=0, & (t, x) \in(0, T) \times\left(S_{0} \cup S_{L}\right),
\end{array}
$$

$$
\begin{array}{lr}
a_{e} \nabla u_{\varepsilon}^{e} \cdot \nu=J_{\varepsilon}^{e}(t, x), & (t, x) \in(0, T) \times \Sigma, \\
\nabla u_{\varepsilon}^{e} \cdot \nu=0, & (t, x) \in(0, T) \times \Gamma_{\varepsilon}^{m}, \\
{\left[u_{\varepsilon}\right](0, x)=V_{\varepsilon}^{0}(x), g_{\varepsilon}(0, x)=G_{\varepsilon}^{0}(x),} & x \in \Gamma_{\varepsilon},
\end{array}
$$

where ν denotes the unit normal on $\Gamma_{\varepsilon}, \Gamma_{\varepsilon}^{m}$, and Σ, exterior to $\Omega_{\varepsilon}^{i}, \Omega_{\varepsilon}^{m}$, and Ω, respectively. The function $J_{\varepsilon}^{e}(t, x)$ models an external boundary excitation of the nerve fascicle. The membrane capacity per unit area c_{m} is assumed to be a positive constant. The myelin sheath is assumed to be a perfect insulator implying that the electrical field does not penetrate it, this leads to the homogeneous Neumann boundary condition on Γ_{ε}^{m}. That is why the equation in the bulk is posed for $x \in \Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}$.

System (4.1), modeling the electrical conduction in nerves, arises from the Maxwell equations in the quasi-stationary approximation. A derivation of (4.1) from the first principles is presented in (Jæger \& Tveito, 2021). See also (Tveito et al., 2017) for a numerical comparison of different models. On the membrane Γ_{ε} we assume the continuity of fluxes condition and the nonlinear FitzHugh dynamics for the potential jump (action potential) $\left[u_{\varepsilon}\right]$. A similar model has been used for modeling the electric conduction in the cardiac tissue (see e.g. (Franzone \& Savaré, 2002), (Pennacchio et al., 2005), (Amar et al., 2021), (Grandelius \& Karlsen, 2019)). While the cardiac tissue models assume that both intracellular and extracellular domains are connected, in the present model the intracellular domain is formed by non-intersecting individual axons.

We study the asymptotic behavior of u_{ε}, as $\varepsilon \rightarrow 0$, and derive a macroscopic model describing the potential u_{ε} in the fascicle, under the following conditions:
(H1) The initial data is such that ${ }^{1}\left\|V_{\varepsilon}^{0}\right\|_{L^{4}\left(\Gamma_{\varepsilon}\right)} \leq C$. Moreover, we assume that V_{ε}^{0} can be extended to the whole Ω such that, keeping the same notation for the extension, $\left\|V_{\varepsilon}^{0}\right\|_{H^{1}(\Omega)} \leq C$ and $V_{\varepsilon}^{0}=0$ on $S_{0} \cup S_{L}$. We also assume that there exists a weak limit $V_{\varepsilon}^{0} \rightharpoonup V^{0}$ in $H^{1}(\Omega)$.

[^0](H2) There exists $G^{0} \in L^{2}(\Omega)$, such that

- for any $\phi \in C(\bar{\Omega})$, it holds that

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}} G_{\varepsilon}^{0}(x) \phi(x) d \sigma=\frac{|\Gamma|}{|Y|} \int_{\Omega} G^{0}(x) \phi(x) d x \\
\cdot \varepsilon \int_{\Gamma_{\varepsilon}}\left|G_{\varepsilon}^{0}\right|^{2} d \sigma \rightarrow \frac{|\Gamma|}{|Y|} \int_{\Omega}\left|G^{0}\right|^{2} d x, \quad \varepsilon \rightarrow 0
\end{gathered}
$$

(H3) The external excitation $J_{\varepsilon}^{e} \in L^{2}((0, T) \times \Sigma)$ converges weakly to $J^{e}(t, x)$, as $\varepsilon \rightarrow 0$, and

$$
\int_{0}^{T} \int_{\Sigma}\left|\partial_{t} J_{\varepsilon}^{e}\right|^{2} d \sigma d \tau \leq C
$$

REMARK 4.1. Hypothesis (H2) actually assumes strong two-scale convergence (cf. Proposition 2.5 in (Allaire \& Damlamian, 1995)). Hypothesis (H2) is satisfied if G_{ε}^{0} is sufficiently regular, e.g. continuous, and independent of ε. Note that hypotheses (H1), (H2) are not satisfied for rapidly oscillating initial data.

REMARK 4.2. The scaling factor ε in the nonlinear equation for $\left[u_{\varepsilon}\right]$ on Γ_{ε} leads to a limit bidomain model and a nontrivial coupling of the potentials in the individual axons in the bundle through the extracellular currents. Different scaling factors in the equation on the Ranvier nodes Γ_{ε} might be considered. In (Amar, Andreucci, Bisegna, \& Gianni, 2006) and (Amar, Andreucci, Bisegna, \& Gianni, 2013), the authors address an hierarchy of models for the electrical conduction of biological tissue in linear and nonlinear cases. Namely, for $\varepsilon^{k}, k=-1,0,1$, the homogenization procedure yields different limit problems.

4.3.1. Main result

The main result of the paper (Theorem 4.1 below) shows that the asymptotic behavior of solutions of the boundary value problem (4.1) is described by the following effective bidomain model in Ω :

$$
\begin{array}{ll}
c_{m} \partial_{t} v_{0}+I_{\text {ion }}\left(v_{0}, g_{0}\right)=a_{i}^{\mathrm{eff}} \partial_{x_{1} x_{1}}^{2} u_{0}^{i}, & (t, x) \in(0, T) \times \Omega \\
c_{m} \partial_{t} v_{0}+I_{\text {ion }}\left(v_{0}, g_{0}\right)=-\operatorname{div}\left(a_{e}^{\mathrm{eff}} \nabla u_{0}^{e}\right), & (t, x) \in(0, T) \times \Omega
\end{array}
$$

$$
\begin{array}{ll}
\partial_{t} g_{0}=\theta v_{0}+a-b g_{0}, & (t, x) \in(0, T) \times \Omega, \tag{4.2}\\
u_{0}^{i, e}(t, x)=0, & (t, x) \in(0, T) \times\left(S_{0} \cup S_{L}\right), \\
a_{e}^{\mathrm{eff}} \nabla u_{0}^{e} \cdot \nu=J^{e}, & (t, x) \in(0, T) \times \Sigma, \\
v_{0}(0, x)=V^{0}(x), g_{0}(0, x)=G^{0}(x), & x \in \Omega,
\end{array}
$$

where $v_{0}=u_{0}^{i}-u_{0}^{e}$. The effective scalar coefficient $a_{i}^{\text {eff }}$ is

$$
\begin{equation*}
a_{i}^{\mathrm{eff}}:=\frac{\left|Y_{i}\right|}{|\Gamma|} a_{i} . \tag{4.3}
\end{equation*}
$$

The effective matrix $a_{e}^{\text {eff }} \in \mathbb{R}^{3 \times 3}$ is given by

$$
\begin{equation*}
\left(a_{e}^{\mathrm{eff}}\right)_{k l}:=\frac{1}{|\Gamma|} \int_{Y_{e}} a_{e}\left(\partial_{l} N_{k}^{e}(y)+\delta_{k l}\right) d y, \quad k, l=1,2,3 \tag{4.4}
\end{equation*}
$$

with the functions $N_{k}^{e}, k=1,2,3$, solving the following auxiliary cell problems in Y_{e}

$$
\begin{array}{cl}
-\Delta N_{k}^{e}=0, & y \in Y_{e}, \\
\nabla N_{k}^{e} \cdot \nu=-\nu_{k}, & y \in \Gamma \cup \Gamma_{m}, \\
N_{k}^{e}(y) \text { is } Y-\text { periodic. } &
\end{array}
$$

Theorem 4.1. Under the hypothesis (H1)-(H3), the solutions $v_{\varepsilon}=\left[u_{\varepsilon}\right], g_{\varepsilon}$ of the microscopic problem (4.1) converge to the solutions $v_{0}=u_{0}^{i}-u_{0}^{e}, g_{0}$ of the macroscopic one (4.2) in the following sense:
(i) For any $\phi(t, x) \in C([0, T] \times \bar{\Omega})$, it holds that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}} v_{\varepsilon}(t, x) \phi(t, x) d \sigma_{x} d t=\frac{|\Gamma|}{|Y|} \int_{0}^{T} \int_{\Omega} v_{0}(t, x) \phi(t, x) d x d t \\
& \text { and for any } t \in[0, T] \lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\underline{\varepsilon}}}\left|v_{\varepsilon}\right|^{2} d \sigma=\frac{|\Gamma|}{|Y|} \int_{\Omega}\left|v_{0}\right|^{2} d x
\end{aligned}
$$

(ii) For any $\phi(t, x) \in C([0, T] \times \bar{\Omega})$,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}} g_{\varepsilon}(t, x) \phi(t, x) d \sigma_{x} d t=\frac{|\Gamma|}{|Y|} \int_{0}^{T} \int_{\Omega} g_{0}(t, x) \phi(t, x) d x d t
$$

$$
\begin{aligned}
& \quad \text { and for any } t \in[0, T] \lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}}\left|g_{\varepsilon}\right|^{2} d \sigma=\frac{|\Gamma|}{|Y|} \int_{\Omega}\left|g_{0}\right|^{2} d x . \\
& \text { (iii) } \lim _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i, e}}\left|u_{\varepsilon}^{i, e}-u_{0}^{i, e}\right|^{2} d x d t=0 \text {. }
\end{aligned}
$$

REMARK 4.3. If v_{0} is continuous, the convergences (i), (ii) imply strong convergence of v_{ε}. Namely, for any $t \in[0, T]$, one obtains

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}}\left|v_{\varepsilon}-v_{0}\right|^{2} d \sigma=0
$$

In general, approximating v_{0} in $L^{2}(\Omega)$ by $v_{0 \delta} \in C(\Omega)$, we have

$$
\limsup _{\delta \rightarrow 0} \limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}}\left|v_{\varepsilon}-v_{0 \delta}\right|^{2} d \sigma=0
$$

REMARK 4.4. The result can be generalized to the case of a varying cross section, as in (Jerez-Hanckes et al., 2021). In such case, the solution N_{1}^{i} of the cell problem (4.40) is no longer constant, and the corresponding effective coefficient is given by

$$
a_{i}^{\mathrm{eff}}=\frac{1}{|\Gamma|} \int_{Y_{i}} a_{i}\left(\partial_{1} N_{1}^{i}+1\right) d y
$$

REMARK 4.5. Hypothesis (H2) can be generalized to the case of an oscillating initial function G_{ε}^{0}. Namely, assume that there exists $G^{0}(x, y) \in L^{2}(\Omega \times \Gamma)$, Y-periodic in y such that

- for any $\phi(x, y) \in C(\bar{\Omega} \times Y)$, Y-periodic in y,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}} G_{\varepsilon}^{0}(x) \phi\left(x, \frac{x}{\varepsilon}\right) d \sigma_{x}=\frac{1}{|Y|} \int_{\Omega} \int_{\Gamma} G^{0}(x, y) \phi(x, y) d \sigma_{y} d x \\
\bullet & \varepsilon \int_{\Gamma_{\varepsilon}}\left|G_{\varepsilon}^{0}\right|^{2} d \sigma \rightarrow \frac{1}{|Y|} \int_{\Omega} \int_{\Gamma}\left|G^{0}(x, y)\right|^{2} d \sigma_{y} d x, \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Then, the two-scale limit $\widetilde{g}_{0}(t, x, y)$ of g_{ε} does depend on the fast variable y, and denoting $g_{0}(t, x)=\frac{1}{|\Gamma|} \int_{\Gamma} \widetilde{g}_{0}(t, x, y) d \sigma_{y}$, the effective problem reads

$$
\begin{array}{ll}
c_{m} \partial_{t} v_{0}+I_{\text {ion }}\left(v_{0}, g_{0}\right)=a_{i}^{\text {eff }} \partial_{x_{1} x_{1}}^{2} u_{0}^{i}, & (t, x) \in(0, T) \times \Omega, \\
c_{m} \partial_{t} v_{0}+I_{\text {ion }}\left(v_{0}, g_{0}\right)=-\operatorname{div}\left(a_{e}^{\text {eff }} \nabla u_{0}^{e}\right), & (t, x) \in(0, T) \times \Omega,
\end{array}
$$

$$
\begin{array}{lrl}
\partial_{t} \widetilde{g}_{0}=\theta v_{0}+a-b \widetilde{g}_{0}, & (t, x, y) & \in(0, T) \times \Omega \times Y, \\
u_{0}^{i, e}(t, x)=0, & (t, x) & \in(0, T) \times\left(S_{0} \cup S_{L}\right), \\
a_{e}^{\mathrm{eff}} \nabla u_{0}^{e} \cdot \nu=J^{e}, & (t, x) & \in(0, T) \times \Sigma, \\
v_{0}(0, x)=V^{0}(x), \widetilde{g}_{0}(0, x)=G^{0}(x, y) & x & \in \Omega, y \in Y .
\end{array}
$$

Thanks to the linearity of the equation $\partial_{t} \widetilde{g}_{0}=\theta v_{0}+a-b \widetilde{g}_{0}$, averaging in y, yields (4.2) with the initial condition $g_{0}(0, x)=\frac{1}{|\Gamma|} \int_{\Gamma} G^{0}(x, y) d \sigma_{y}$.

4.3.2. Well-posedness

In order to show the well-posedness of the microscopic problem (4.1), we write it as a Cauchy problem for an abstract parabolic equation.

We multiply (4.1) by a smooth function $\phi=\left\{\begin{array}{l}\phi^{i} \text { in } \Omega_{\varepsilon}^{i} \\ \phi^{e} \text { in } \Omega_{\varepsilon}^{e}\end{array}, \phi^{i, e}=0\right.$ on $S_{0} \cup S_{L}$, and integrate by parts:

$$
\varepsilon \int_{\Gamma_{\varepsilon}} c_{m} \partial_{t} v_{\varepsilon}[\phi] d \sigma+\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla \phi d x+\varepsilon \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon}, g_{\varepsilon}\right)[\phi] d \sigma=\int_{\Sigma} J_{\varepsilon}^{e} \phi d \sigma .
$$

Let us introduce an auxiliary function q_{ε} solving the following problem:

$$
\begin{array}{cl}
-\operatorname{div}\left(a_{\varepsilon} \nabla q_{\varepsilon}\right)=0, & x \in \Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e} \cup \Gamma_{\varepsilon}, \\
\nabla q_{\varepsilon} \cdot \nu=0, & x \in \Gamma_{m, \varepsilon}, \tag{4.5}\\
a_{e} \nabla q_{\varepsilon} \cdot \nu=J_{\varepsilon}^{e}(t, x), & x \in \Sigma, \\
q_{\varepsilon}=0, & x \in\left(S_{0} \cup S_{L}\right) .
\end{array}
$$

Since the jump of q_{ε} through the Ranvier nodes Γ_{ε} is zero, the change of unknown

$$
\widetilde{u}_{\varepsilon}=u_{\varepsilon}-q_{\varepsilon}
$$

allows us to transfer the external excitation J_{ε}^{e} from the lateral boundary Σ to the membrane Γ_{ε}. Namely, we get the following weak formulation for the new unknown function $\widetilde{u}_{\varepsilon}$:

$$
\begin{aligned}
& \varepsilon \int_{\Gamma_{\varepsilon}} c_{m} \partial_{t} v_{\varepsilon}[\phi] d \sigma+\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon} \nabla \widetilde{u}_{\varepsilon} \cdot \nabla \phi d x+\varepsilon \int_{\Gamma_{\varepsilon}} I_{i o n}\left(v_{\varepsilon}, g_{\varepsilon}\right)[\phi] d \sigma \\
& +\int_{\Gamma_{\varepsilon}}\left(a_{i} \nabla q_{\varepsilon} \cdot \nu\right)[\phi] d \sigma=0 .
\end{aligned}
$$

Let us define the subspace

$$
H_{S_{0} \cup S_{L}}^{1}\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right):=\left\{\phi \in H^{1}\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right):\left.\phi\right|_{S_{0} \cap S_{L}}=0\right\}
$$

and introduce the operator $A_{\varepsilon}: D\left(A_{\varepsilon}\right) \subset H^{1 / 2}\left(\Gamma_{\varepsilon}\right) \rightarrow H^{-1 / 2}\left(\Gamma_{\varepsilon}\right)$ as follows

$$
\begin{equation*}
\left(A_{\varepsilon} v_{\varepsilon},[\phi]\right)_{L^{2}\left(\Gamma_{\varepsilon}\right)}:=\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon} \nabla \widetilde{u}_{\varepsilon} \cdot \nabla \phi d x, \quad \forall \phi \in H_{S_{0} \cup S_{L}}^{1}\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right) \tag{4.6}
\end{equation*}
$$

where $\widetilde{u}_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right)$, for a given jump $\left[\widetilde{u}_{\varepsilon}\right]=v_{\varepsilon}$, solves the following problem:

$$
\begin{array}{ll}
-\operatorname{div}\left(a_{\varepsilon} \nabla \widetilde{u}_{\varepsilon}\right)=0, & x \in \Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}, \\
a_{e} \nabla \widetilde{u}_{\varepsilon}^{e} \cdot \nu=a_{i} \nabla \widetilde{u}_{\varepsilon}^{i} \cdot \nu, & x \in \Gamma_{\varepsilon}, \\
\widetilde{u}_{\varepsilon}^{i}-\widetilde{u}_{\varepsilon}^{e}=v_{\varepsilon}, & x \in \Gamma_{\varepsilon}, \\
a_{\varepsilon} \nabla \widetilde{u}_{\varepsilon} \cdot \nu=0, & x \in \Gamma_{m, \varepsilon}, \tag{4.7}\\
a_{e} \nabla \widetilde{u}_{\varepsilon} \cdot \nu=0, & x \in \Sigma, \\
\widetilde{u}_{\varepsilon}=0, & x \in\left(S_{0} \cup S_{L}\right) .
\end{array}
$$

Thus, problem (4.1) can be rewritten in the following compact form:

$$
\begin{align*}
& \varepsilon c_{m} \partial_{t} v_{\varepsilon}+A_{\varepsilon} v_{\varepsilon}+\varepsilon I_{i o n}\left(v_{\varepsilon}, g_{\varepsilon}\right)=-a_{i} \nabla q_{\varepsilon} \cdot \nu \tag{4.8}\\
& \partial_{t} g_{\varepsilon}+b g_{\varepsilon}-\theta v_{\varepsilon}=a
\end{align*}
$$

on Γ_{ε}. In order to reduce the problem to a monotone one, we perform the following change of unknowns:

$$
\begin{equation*}
W_{\varepsilon}=\binom{w_{\varepsilon}}{h_{\varepsilon}}=e^{-\lambda t}\binom{v_{\varepsilon}}{g_{\varepsilon}}, \quad W_{\varepsilon}^{0}=\binom{V_{\varepsilon}^{0}}{G_{\varepsilon}^{0}} . \tag{4.9}
\end{equation*}
$$

with λ real positive. Substituting (4.9) into (4.8) yields

$$
\begin{aligned}
& \varepsilon \partial_{t}\binom{w_{\varepsilon}}{h_{\varepsilon}}+\binom{\frac{1}{c_{m}} A_{\varepsilon} w_{\varepsilon}+\frac{\varepsilon}{c_{m}}\left(\frac{e^{2 \lambda t}}{3} w_{\varepsilon}^{3}-w_{\varepsilon}-h_{\varepsilon}\right)+\varepsilon \lambda w_{\varepsilon}}{\varepsilon(b+\lambda) h_{\varepsilon}-\varepsilon \theta w_{\varepsilon}} \\
&=e^{-\lambda t}\binom{-\frac{a_{i}}{c_{m}} \nabla q_{\varepsilon} \cdot \nu}{\varepsilon a},
\end{aligned}
$$

which can be further rewritten as follows:

$$
\begin{gather*}
\varepsilon \partial_{t} W_{\varepsilon}+\mathbb{A}_{\varepsilon}\left(t, W_{\varepsilon}\right)=F_{\varepsilon}(t), \quad(t, x) \in(0, T) \times \Gamma_{\varepsilon}, \tag{4.10}\\
W_{\varepsilon}(0, x)=W_{\varepsilon}^{0}(x), \quad x \in \Gamma_{\varepsilon} . \\
\mathbb{A}_{\varepsilon}\left(t, W_{\varepsilon}\right):=B_{\varepsilon}^{(1)}\left(t, W_{\varepsilon}\right)+B_{\varepsilon}^{(2)}\left(t, W_{\varepsilon}\right), \tag{4.11}\\
B_{\varepsilon}^{(1)}\left(t, W_{\varepsilon}\right):=\binom{\frac{1}{c_{m}} A_{\varepsilon} w_{\varepsilon}+\varepsilon\left(\lambda-\frac{1}{c_{m}}\right) w_{\varepsilon}-\frac{\varepsilon}{c_{m}} h_{\varepsilon}}{\varepsilon(b+\lambda) h_{\varepsilon}-\varepsilon \theta w_{\varepsilon}}, \tag{4.12}\\
B_{\varepsilon}^{(2)}\left(t, W_{\varepsilon}\right):=\binom{\varepsilon \frac{e^{2 \lambda t}}{3 c_{m}} w_{\varepsilon}^{3}}{0}, \quad F_{\varepsilon}(t):=e^{-\lambda t}\binom{-\frac{a_{i}}{c_{m}} \nabla q_{\varepsilon} \cdot \nu}{\varepsilon a} . \tag{4.13}
\end{gather*}
$$

Here the operator A_{ε} is defined in (4.6).
The existence of a unique solution to problem (4.10) follows from Theorem 1.4 in (Lions, 1969) and Remark 1.8 in Chapter 2 (see also Theorem 4.1 in (Showalter, 2013)). For the reader's convenience, we formulate the corresponding result below.

Lemma 4.1. Let $V_{i}, i=1, \ldots, m$, be reflexive Banach spaces, and H be a real Hilbert space such that $V_{i} \subset H \subset V_{i}^{\prime}$. Let $A(t)=\sum_{i=1}^{m} A_{i}(t)$, and let $\left\{A_{i}(t) ; t \in[0, T]\right\}$, $i=1, \ldots, m$, be a family of nonlinear, monotone, and demi-continuous operators from V_{i} to V_{i}^{\prime} that satisfy the following conditions:
(i) The function $t \mapsto A_{i}(t) u(t) \in V_{i}^{\prime}$ is measurable for every measurable function $u:[0, T] \rightarrow V$.
(ii) There exists a seminorm [u] on V_{i} such that, for some constants $\alpha_{1}>0$ and $\alpha_{2}>0$, we have that

$$
[u]+\alpha_{1}\|u\|_{H} \geq \alpha_{2}\|u\|_{V_{i}},
$$

and for some $\bar{c}>0$ and $p_{i}>1$,

$$
\left(A_{i}(t) u, u\right) \geq \bar{c}[u]^{p_{i}}, \quad u \in V_{i}, t \in[0, T] .
$$

(iii) For some \underline{C} and the same $p_{i}>1$ as in (ii),

$$
\left\|A_{i}(t) u\right\|_{V_{i}^{\prime}} \leq \underline{C}\left(1+\|u\|_{V_{i}}^{p_{i}-1}\right), \quad u \in V_{i}, t \in[0, T]
$$

Then, for every $u_{0} \in H$ and $f \in \sum_{i=1}^{m} L^{q_{i}}\left(0, T ; V_{i}^{\prime}\right), 1 / p_{i}+1 / q_{i}=1$, there is a unique absolutely continuous function $u \in \cap_{i=1}^{m} W^{1, q_{i}}\left([0, T] ; V_{i}^{\prime}\right)$ that satisfies

$$
\begin{aligned}
& u \in L^{\infty}([0, T] ; H), u \in \cap_{i=1}^{m} L^{p_{i}}\left([0, T] ; V_{i}\right), \\
& \frac{d u}{d t}(t)+A(t) u(t)=f(t), \quad \text { a.e. } t \in(0, T), \\
& u(0)=u_{0} .
\end{aligned}
$$

In order to apply Lemma 4.1, we introduce the necessary functional spaces:

$$
\begin{aligned}
& H=L^{2}\left(\Gamma_{\varepsilon}\right) \times L^{2}\left(\Gamma_{\varepsilon}\right) \\
& \widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)=\left\{v=\left.\left(u^{i}-u^{e}\right)\right|_{\Gamma_{\varepsilon}}: u^{l} \in H^{1}\left(\Omega_{\varepsilon}^{l}\right), u^{l}=0 \text { on } S_{0} \cap S_{L}, l=i, e\right\}, \\
& V_{1}=\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right) \times L^{2}\left(\Gamma_{\varepsilon}\right), \quad V_{1}^{\prime}=H^{-1 / 2}\left(\Gamma_{\varepsilon}\right) \times L^{2}\left(\Gamma_{\varepsilon}\right),
\end{aligned}
$$

$$
V_{2}=L^{4}\left(\Gamma_{\varepsilon}\right) \times L^{2}\left(\Gamma_{\varepsilon}\right), \quad V_{2}^{\prime}=L^{4 / 3}\left(\Gamma_{\varepsilon}\right) \times L^{2}\left(\Gamma_{\varepsilon}\right)
$$

As the operator $A_{1}(t, \cdot): V_{1} \rightarrow V_{1}^{\prime}$ we take $B_{\varepsilon}^{(1)}(t, \cdot)$ given by (4.12); as the operator $A_{2}(t, \cdot): V_{2} \rightarrow V_{2}^{\prime}$ we take $B_{\varepsilon}^{(2)}(t, \cdot)$ given by (4.13). Let us check that the operator $\mathbb{A}_{\varepsilon}(t, \cdot)=B_{\varepsilon}^{(1)}+B_{\varepsilon}^{(2)}$ satisfies the assumptions of Lemma 4.1 with $p_{1}=2$ and $p_{2}=4$. The right-hand side F_{ε} satisfies clearly the assumptions of Lemma 4.1.

Lemma 4.2. For every $t \in[0, T]$, the linear operator $B_{\varepsilon}^{(1)}(t, \cdot): V_{1} \rightarrow V_{1}^{\prime}$ has the following properties:
(i) Monotonicity:

$$
\left(B_{\varepsilon}^{(1)}\left(t, W_{1}\right)-B_{\varepsilon}^{(1)}\left(t, W_{2}\right), W_{1}-W_{2}\right) \geq 0, \quad \forall W_{1}, W_{2} \in V_{1}
$$

(ii) Coercivity:

$$
\left(B_{\varepsilon}^{(1)}(t, W), W\right) \geq C_{1}\|W\|_{V_{1}}^{2}, \quad \forall W \in V_{1} .
$$

(iii) Boundedness:

$$
\left\|B_{\varepsilon}^{(1)}(t, W)\right\|_{V_{1}^{\prime}} \leq C_{2}\|W\|_{V_{1}}, \quad \forall W \in V_{1} .
$$

Proof. (i) The monotonicity of the operator $B_{\varepsilon}^{(1)}$ follows from its linearity and coercivity properties (as shown below).
(ii) By (4.12), for any $W_{\varepsilon} \in \widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right) \times L^{2}\left(\Gamma_{\varepsilon}\right)$, we have

$$
\begin{aligned}
\left(B_{\varepsilon}^{(1)}\left(t, W_{\varepsilon}\right), W_{\varepsilon}\right) & =\frac{1}{c_{m}} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon}\left|\nabla \widetilde{w}_{\varepsilon}\right|^{2} d x+\varepsilon\left(\lambda-\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma \\
& -\varepsilon\left(\theta+\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}} h_{\varepsilon} w_{\varepsilon} d \sigma+\varepsilon(b+\lambda) \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma .
\end{aligned}
$$

Here $\widetilde{w}_{\varepsilon}=e^{-\lambda t} u_{\varepsilon}$ solves (4.7) with the jump on Γ_{ε} that equals to $e^{-\lambda t} v_{\varepsilon}$. Using the trace inequality and choosing λ sufficiently large and independent of ε, we obtain

$$
\left(B_{\varepsilon}^{(1)}\left(t, W_{\varepsilon}\right), W_{\varepsilon}\right) \geq C_{1}^{\varepsilon}\left\|w_{\varepsilon}\right\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)}^{2}+C_{2}^{\varepsilon}\left\|h_{\varepsilon}\right\|_{L^{2}\left(\Gamma_{\varepsilon}\right)}^{2}=C^{\varepsilon}\left\|W_{\varepsilon}\right\|_{V_{1}}^{2} .
$$

Here $C_{1}^{\varepsilon}, C_{2}^{\varepsilon}$, and C^{ε} are positive constants.
(iii) Let us estimate the norm of $B_{\varepsilon}^{(1)}(t, W)$. For any $W_{\varepsilon} \in V_{1}$ and a test function $\Phi=$ $([\varphi], \psi)^{T} \in V_{1}$, by (4.11) we have

$$
\begin{aligned}
\left(B_{\varepsilon}^{(1)}\left(t, W_{\varepsilon}\right), \Phi\right)_{L^{2}\left(\Gamma_{\varepsilon}\right)^{2}} & =\frac{1}{c_{m}} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon} \nabla \widetilde{w}_{\varepsilon} \cdot \nabla \varphi d x+\varepsilon\left(\lambda-\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}} w_{\varepsilon}[\varphi] d \sigma \\
& -\frac{\varepsilon}{c_{m}} \int_{\Gamma_{\varepsilon}} h_{\varepsilon}[\varphi] d \sigma+\varepsilon(b+\lambda) \int_{\Gamma_{\varepsilon}} h_{\varepsilon} \psi d \sigma-\varepsilon \theta \int_{\Gamma_{\varepsilon}} w_{\varepsilon} \psi d \sigma .
\end{aligned}
$$

Here φ solves a stationary problem (4.7) with a given jump $[\varphi]$ on Γ_{ε}.
Clearly, $\left\|\nabla \widetilde{w}_{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right)} \leq C\left\|w_{\varepsilon}\right\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)}$. The test function φ is estimated in a standard way in terms of $\|[\varphi]\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)}$. Then, by the Cauchy-Schwartz inequality, one retrieves

$$
\begin{aligned}
\left(B_{\varepsilon}^{(1)}\left(t, W_{\varepsilon}\right), \Phi\right)_{L^{2}\left(\Gamma_{\varepsilon}\right)^{2}} & \leq C_{1}\left\|w_{\varepsilon}\right\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)}\|[\varphi]\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)} \\
& +C_{2}\left(\left\|w_{\varepsilon}\right\|_{\tilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)}+\left\|h_{\varepsilon}\right\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{\varepsilon}\right)}\right)\|[\Phi]\|_{V_{1}}
\end{aligned}
$$

which proves the estimate from above for $\left\|B_{\varepsilon}^{(1)}(t, W)\right\|_{V_{1}^{\prime}}$.

Lemma 4.3. For every $t \in[0, T]$, the operator $B_{\varepsilon}^{(2)}(t, \cdot): V_{2} \rightarrow V_{2}^{\prime}$ has the following properties:
(i) Monotonicity:

$$
\left(B_{\varepsilon}^{(2)}\left(t, W_{1}\right)-B_{\varepsilon}^{(2)}\left(t, W_{2}\right), W_{1}-W_{2}\right) \geq 0, \quad \forall W_{1}, W_{2} \in V_{2} .
$$

(ii) Coercivity: $\|\cdot\|_{L^{4}\left(\Gamma_{\varepsilon}\right)}$ defines a seminorm on V_{2} such that, for some constants $\alpha_{1}>0$ and $\alpha_{2}>0$, we have

$$
\|W\|_{L^{4}\left(\Gamma_{\varepsilon}\right)}+\alpha_{1}\|W\|_{H} \geq \alpha_{2}\|W\|_{V_{2}}
$$

and

$$
\left(B_{\varepsilon}^{(2)}(t, W), W\right) \geq C_{1}\|W\|_{V_{2}}^{4}, \quad \forall W \in V_{1} .
$$

(iii) Boundedness:

$$
\left\|B_{\varepsilon}^{(2)}(t, W)\right\|_{V_{2}^{\prime}} \leq C_{2}\|W\|_{L^{4}\left(\Gamma_{\varepsilon}\right)}^{3}, \quad \forall W \in V_{2}
$$

PROOF. (i) The monotonicity of $B_{\varepsilon}^{(2)}$ follows from the monotonicity of the cubic function $f(u)=u^{3}$.
(ii) By definition (4.13), it holds that

$$
\left(B_{\varepsilon}^{(2)}\left(t, W_{\varepsilon}\right), W_{\varepsilon}\right)=\frac{\varepsilon e^{2 \lambda t}}{3 c_{m}} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma,
$$

which proves (ii).
(iii) The boundedness follows from (4.13):

$$
\left\|B_{\varepsilon}^{(2)}\left(t, W_{\varepsilon}\right)\right\|_{V_{2}^{\prime}}=\varepsilon\left[\int_{\Gamma_{\varepsilon}}\left(\frac{e^{2 \lambda t}}{3 c_{m}}\left(w_{\varepsilon}\right)^{3}\right)^{\frac{4}{3}} d \sigma\right]^{\frac{3}{4}}=\frac{\varepsilon e^{2 \lambda t}}{3 c_{m}}\left\|w_{\varepsilon}\right\|_{L^{4}\left(\Gamma_{\varepsilon}\right)}^{3} \leq C^{\varepsilon}\left\|W_{\varepsilon}\right\|_{V_{2}}^{3}
$$

where C^{ε} is a positive constant.

Obviously, the function $t \mapsto \mathbb{A}_{\varepsilon}(t, W)$ satisfies the measurability assumption of Lemma 4.1, and the demi-continuity property follows from the estimates in Lemmas 4.2 and 4.3.

4.4. Proof of Theorem 4.1

4.4.1. A priori estimates

The next lemma provides the estimates for $\left(z_{\varepsilon}, h_{\varepsilon}\right)=e^{-\lambda t}\left(u_{\varepsilon}, g_{\varepsilon}\right)$, where $\left[z_{\varepsilon}\right]=w_{\varepsilon}$, at time $t=0$.

Lemma 4.4. Under hypotheses (H1)-(H3), at time $t=0$ the following estimates hold

$$
\begin{equation*}
\left.\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon}\left|\nabla z_{\varepsilon}\right|^{2} d x\right|_{t=0}+\left.\int_{\Sigma}\left|z_{\varepsilon}\right|^{2} d \sigma\right|_{t=0} \leq C . \tag{4.14}
\end{equation*}
$$

Proof. One can see that the operator A_{ε} given by (4.6) can be defined by means of the minimization problem

$$
\left(A_{\varepsilon} w_{\varepsilon}, w_{\varepsilon}\right)=\min _{\left[\phi_{\varepsilon}\right]=w_{\varepsilon}} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon}\left|\nabla \phi_{\varepsilon}\right|^{2} d x
$$

where the minimum is taken over the functions $\phi_{\varepsilon} \in H^{1}\left(\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}\right)$ with the given jump $\left[\phi_{\varepsilon}\right]=w_{\varepsilon}$ on Γ_{ε}. Consider the test function $\phi_{\varepsilon}=\left\{\begin{array}{l}V_{\varepsilon}^{0} \text { in } \Omega_{\varepsilon}^{i} \\ 0 \text { in } \Omega_{\varepsilon}^{e}\end{array}\right.$, then thanks to the assumption (H1) we have

$$
\left.\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon}\left|\nabla z_{\varepsilon}\right|^{2} d x\right|_{t=0}=\left.\left(A_{\varepsilon} w_{\varepsilon}, w_{\varepsilon}\right)\right|_{t=0}=\int_{\Omega_{\varepsilon}^{i}} a_{i}\left|\nabla V_{\varepsilon}^{0}\right|^{2} d x \leq C .
$$

The proof of the lemma is completed by using an extension operator from Ω_{ε}^{e} to Ω (see (4.17) below) together with the trace inequality.

Now we prove the a priori estimates for the solutions of (4.10).
Lemma 4.5 (A priori estimates). Let $W_{\varepsilon}=\left(w_{\varepsilon}, h_{\varepsilon}\right)$ be a solution of (4.10). Then, for $t \in[0, T]$, the following estimates hold:
(i) $\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma+\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} w_{\varepsilon}\right|^{2} d \sigma d \tau \leq C$.
(ii) $\varepsilon \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma+\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} h_{\varepsilon}\right|^{2} d \sigma d \tau \leq C$.
(iii) Let $z_{\varepsilon}=e^{-\lambda t} u_{\varepsilon}$ with the jump $\left[z_{\varepsilon}\right]=w_{\varepsilon}$ on Γ_{ε}. Then, one has that

$$
\int_{\Omega_{\varepsilon}^{i} \cup \Omega \Omega_{\varepsilon}^{e}}\left(\left|z_{\varepsilon}\right|^{2}+\left|\nabla z_{\varepsilon}\right|^{2}\right) d x \leq C
$$

for a constant C independent of ε and t, but depending on T and the norms of initial functions $\left\|G_{\varepsilon}^{0}\right\|_{L^{2}\left(\Gamma_{\varepsilon}\right)},\left\|V_{\varepsilon}^{0}\right\|_{L^{4}\left(\Gamma_{\varepsilon}\right)},\left\|V_{\varepsilon}^{l}\right\|_{H^{1}(\Omega)}$.

Proof. We will work with the equation in vector form (4.10) and derive the a priori estimates for the pair $\left(w_{\varepsilon}, h_{\varepsilon}\right)$. Let z_{ε} be the solution of the stationary problem with the jump w_{ε} :

$$
-\operatorname{div}\left(a_{\varepsilon} \nabla z_{\varepsilon}\right)=0, \quad x \in \Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}
$$

$$
\begin{array}{ll}
a_{e} \nabla z_{\varepsilon}^{e} \cdot \nu=a_{i} \nabla z_{\varepsilon}^{i} \cdot \nu, & x \in \Gamma_{\varepsilon}, \\
z_{\varepsilon}^{i}-z_{\varepsilon}^{e}=w_{\varepsilon}, & x \in \Gamma_{\varepsilon}, \tag{4.15}\\
a_{\varepsilon} \nabla z_{\varepsilon} \cdot \nu=0, & x \in \Gamma_{m, \varepsilon}, \\
a_{e} \nabla z_{\varepsilon} \cdot \nu=\frac{e^{-\lambda t}}{c_{m}} J_{\varepsilon}^{e}, & x \in \Sigma, \\
z_{\varepsilon}=0, & x \in\left(S_{0} \cup S_{L}\right) .
\end{array}
$$

We multiply (4.10) by W_{ε} and integrate over Γ_{ε} :

$$
\begin{align*}
& \frac{\varepsilon}{2} \partial_{t} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma+\frac{1}{c_{m}} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon} \nabla z_{\varepsilon} \cdot \nabla z_{\varepsilon} d x+\frac{\varepsilon}{c_{m}} \int_{\Gamma_{\varepsilon}} \frac{e^{2 \lambda t}}{3} w_{\varepsilon}^{4} d \sigma \\
& +\varepsilon\left(\lambda-\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma-\varepsilon\left(\theta+\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}} h_{\varepsilon} w_{\varepsilon} d \sigma+\frac{\varepsilon}{2} \partial_{t} \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma \tag{4.16}\\
& +\varepsilon(\lambda+b) \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma=\frac{e^{-\lambda t}}{c_{m}} \int_{\Sigma} J_{\varepsilon}^{e} z_{\varepsilon} d \sigma+\varepsilon a e^{-\lambda t} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} d \sigma .
\end{align*}
$$

It is known (Acerbi, ChiadoPiat, Dal Maso, \& Percivale, 1992) that there exists an extension operator P_{ε} from Ω_{ε}^{e} to Ω such that $\left\|\nabla P_{\varepsilon} z_{\varepsilon}^{e}\right\|_{L^{2}(\Omega)} \leq C\left\|\nabla z_{\varepsilon}^{e}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{e}\right)}$ with a constant C independent of ε. This result combined with the Friedrichs inequality ($z_{\varepsilon}=0$ on $S_{0} \cup S_{L}$) implies that

$$
\begin{equation*}
\left\|P_{\varepsilon} z_{\varepsilon}^{e}\right\|_{H^{1}(\Omega)} \leq C\left\|\nabla z_{\varepsilon}^{e}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{e}\right)} \tag{4.17}
\end{equation*}
$$

By the trace inequality, the $L^{2}(\Sigma)$-norm of z_{ε} is then bounded by $\left\|\nabla z_{\varepsilon}^{e}\right\|_{L^{2}\left(\Omega_{\varepsilon}^{e}\right)}$. Using the Young inequality with a parameter in (4.16) and (4.17), yields

$$
\begin{align*}
& \partial_{t}\left(\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma+\varepsilon \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma\right)+\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}}\left|\nabla z_{\varepsilon}\right|^{2} d x+\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma \\
& +\left(\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma+\varepsilon \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma\right) \leq C \int_{\Sigma}\left|J_{\varepsilon}^{e}\right|^{2} d \sigma . \tag{4.18}
\end{align*}
$$

Applying the Grönwall inequality in (4.18), we obtain the following estimate:

$$
\begin{equation*}
\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma+\varepsilon \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma \leq C . \tag{4.19}
\end{equation*}
$$

Integrating (4.18) with respect to t gives

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}}\left|\nabla z_{\varepsilon}\right|^{2} d x+\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma \tag{4.20}\\
& \leq C\left(\int_{0}^{t} \int_{\Sigma}\left|J_{\varepsilon}^{e}\right|^{2} d \sigma d \tau+\varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}\right|^{2} d \sigma+\varepsilon \int_{\Gamma_{\varepsilon}}\left|G_{\varepsilon}^{0}\right|^{2} d \sigma\right)
\end{align*}
$$

Next, we derive the estimates for $\partial_{t} W_{\varepsilon}$. To this end, we multiply (4.10) by $\partial_{t} W_{\varepsilon}$ and integrate over $(0, t) \times \Gamma_{\varepsilon}$:

$$
\begin{align*}
& \frac{\varepsilon}{2} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} w_{\varepsilon}\right|^{2} d \sigma d \tau+\frac{\varepsilon}{2} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} h_{\varepsilon}\right|^{2} d \sigma d \tau \\
& +\frac{1}{2 c_{m}} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon}\left|\nabla z_{\varepsilon}\right|^{2} d x-\left.\frac{1}{2 c_{m}} \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon}\left|\nabla z_{\varepsilon}\right|^{2} d x\right|_{t=0} \\
& +\frac{\varepsilon}{12 c_{m}} e^{2 \lambda t} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma-\frac{\varepsilon}{12 c_{m}} \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}\right|^{4} d \sigma \\
& +\frac{\varepsilon}{2}\left(\lambda-\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma-\frac{\varepsilon}{2}\left(\lambda-\frac{1}{c_{m}}\right) \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}\right|^{2} d \sigma \\
& +\frac{\varepsilon}{2}(\lambda+b) \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma-\frac{\varepsilon}{2}(\lambda+b) \int_{\Gamma_{\varepsilon}}\left|G_{\varepsilon}^{0}\right|^{2} d \sigma \tag{4.21}\\
& \leq 2 \lambda \varepsilon \int_{0}^{t} e^{2 \lambda \tau} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma d \tau \\
& +2 \theta^{2} \varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma d \tau+\frac{2 \varepsilon}{c_{m}^{2}} \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma d \tau \\
& +\frac{e^{-\lambda t}}{c_{m}} \int_{\Sigma} J_{\varepsilon}^{e} z_{\varepsilon} d \sigma-\left.\frac{1}{c_{m}} \int_{\Sigma} J_{\varepsilon}^{e} z_{\varepsilon} d \sigma\right|_{t=0} \\
& +\frac{\lambda}{c_{m}} \int_{0}^{t} e^{-\lambda \tau} \int_{\Sigma} J_{\varepsilon}^{e} z_{\varepsilon} d \sigma d \tau-\int_{0}^{t} \frac{e^{-\lambda \tau}}{c_{m}} \int_{\Sigma} \partial_{\tau} J_{\varepsilon}^{e} z_{\varepsilon} d \sigma d \tau \\
& +\varepsilon a e^{-\lambda t} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} d \sigma-\varepsilon a \int_{\Gamma_{\varepsilon}} G_{\varepsilon}^{0} d \sigma+\varepsilon a \lambda \int_{0}^{t} e^{-\lambda \tau} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} d \sigma d \tau .
\end{align*}
$$

Combining (4.19), (4.20), and (4.14) we get

$$
\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left|\partial_{\tau} w_{\varepsilon}\right|^{2} d \sigma d \tau+\int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}}\left|\nabla z_{\varepsilon}\right|^{2} d x+\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma \leq C .
$$

Thanks to the homogeneous Dirichlet boundary condition on the bases $S_{0} \cup S_{L}$, the L^{2}-norm of z_{ε} is estimated in terms on the ∇z_{ε}. Namely,

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}^{i}}\left|z_{\varepsilon}^{i}\right|^{2} d x \leq C \int_{\Omega_{\varepsilon}^{i}}\left|\partial_{x_{1}} z_{\varepsilon}^{i}\right|^{2} d x \\
& \int_{\Omega_{\varepsilon}^{e}}\left|z_{\varepsilon}^{e}\right|^{2} d x \leq C \int_{\Omega_{\varepsilon}^{e}}\left|\nabla z_{\varepsilon}^{e}\right|^{2} d x
\end{aligned}
$$

The proof of Lemma 4.5 is finally complete.

4.4.2. Derivation of the macroscopic model

Since the axons inside the bundle are disconnected, a priori estimates provided by Lemma 4.5 do not imply the strong convergence of the transmembrane potential v_{ε} on Γ_{ε}. In turn, this makes passing to the limit in the nonlinear term $I_{i o n}$ problematic. We choose to combine the two-scale convergence machinery with the method of monotone operators due to G. Minty (Minty, 1962). For reader's convenience we provide a brief description of the method for a simple case in Appendix A, while its adaptation for problem (4.1) is presented below. For passage to the limit, as $\varepsilon \rightarrow 0$, we will use the two-scale convergence (Allaire, 1992). We refer to (Allaire \& Damlamian, 1995) for two-scale convergence on periodic surfaces (namely, on Γ_{ε}).

Definition 4.1. We say that a sequence $\left\{u_{\varepsilon}^{l}(t, x)\right\}$ two-scale converges to the function $u_{0}^{l}(t, x, y)$ in $L^{2}\left(0, T ; L^{2}\left(\Omega_{\varepsilon}^{l}\right)\right), l=i, e$, as $\varepsilon \rightarrow 0$, and write

$$
u_{\varepsilon}^{l}(t, x) \stackrel{2}{\rightharpoonup} u_{0}^{l}(t, x, y)
$$

if
(i) $\int_{0}^{T} \int_{\Omega_{\varepsilon}^{l}}\left|u_{\varepsilon}\right|^{2} d x d t<C$.
(ii) For any $\phi(t, x) \in C\left(0, T ; L^{2}(\Omega)\right)$, $\psi(y) \in L^{2}\left(Y_{l}\right)$ we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{\Omega_{\varepsilon}^{l}} u_{\varepsilon}^{l}(t, x) \phi(t, x) \psi\left(\frac{x}{\varepsilon}\right) d x d t
$$

$$
=\frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{Y^{l}} u_{0}^{l}(t, x, y) \phi(t, x) \psi(y) d y d x d t
$$

for some function $u_{0}^{l} \in L^{2}\left(0, T ; L^{2}(\Omega \times Y)\right)$.

Definition 4.2. A sequence $\left\{v_{\varepsilon}(t, x)\right\}$ converges two-scale to the function $v_{0}(t, x, y)$ in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$, as $\varepsilon \rightarrow 0$, if
(i) $\varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}} v_{\varepsilon}^{2} d \sigma d t<C$.
(ii) For any $\phi(t, x) \in C([0, T] ; C(\bar{\Omega})), \psi(y) \in C(\Gamma)$ we have that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}} v_{\varepsilon}(t, x) \phi(t, x) \psi\left(\frac{x}{\varepsilon}\right) d \sigma_{x} d t \\
& =[(i)] \frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{\Gamma} v_{0}(t, x, y) \phi(t, x) \psi(y) d \sigma_{y} d x d t
\end{aligned}
$$

for some function $v_{0} \in L^{2}\left(0, T ; L^{2}(\Omega \times \Gamma)\right)$.
(iii) We say that $\left\{v_{\varepsilon}\right\}$ converges t-pointwise two-scale in $L^{2}\left(\Gamma_{\varepsilon}\right)$ if, for any $t \in[0, T]$, and for any $\phi(x) \in C(\bar{\Omega}), \psi(y) \in C(\Gamma)$ we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}} v_{\varepsilon}(t, x) \phi(x) \psi\left(\frac{x}{\varepsilon}\right) d \sigma_{x}=\frac{1}{|Y|} \int_{\Omega} \int_{\Gamma} v_{0}(t, x, y) \phi(x) \psi(y) d \sigma_{y} d x
$$ for some function $v_{0} \in L^{2}\left(0, T ; L^{2}(\Omega \times \Gamma)\right)$.

Lemma 4.6. Let W_{ε} be a solution of (4.10), and let z_{ε} be a solution of problem (4.15). Then there exist functions $z_{0}^{l} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), l=i, e$, such that $\partial_{x_{1}} z_{0}^{i}, \partial_{x_{j}} z_{0}^{e} \in$ $L^{2}\left(0, T ; L^{2}(\Omega)\right)(j=1,2,3), w_{0}=z_{0}^{i}-z_{0}^{e} \in L^{4}\left(0, T ; L^{4}(\Omega)\right)$, and up to a subsequence, as $\varepsilon \rightarrow 0$, the following two-scale convergence holds:
(i) $\chi^{l}\left(\frac{x}{\varepsilon}\right) z_{\varepsilon}^{l}(t, x) \quad \stackrel{2}{\square} \quad \chi^{l}(y) z_{0}^{l}(t, x)$ in $L^{2}\left(0, T ; L^{2}\left(\Omega_{\varepsilon}^{l}\right)\right), l=i, e$.
(ii) $\chi^{i}\left(\frac{x}{\varepsilon}\right) \nabla z_{\varepsilon}^{i}(t, x) \quad \stackrel{2}{\rightharpoonup} \quad \chi^{i}(y)\left[\mathbf{e}_{1} \partial_{x_{1}} z_{0}^{i}(t, x)+\nabla_{y} z_{1}^{i}(t, x, y)\right]$, where $z_{1}^{i}(t, x, y) \in$ $L^{2}\left((0, T) \times \Omega ; H^{1}\left(Y_{i}\right)\right)$ is 1-periodic in y_{1}.
(iii) $\chi^{e}\left(\frac{x}{\varepsilon}\right) \nabla z_{\varepsilon}^{e}(t, x) \quad \xrightarrow{2} \quad \chi^{e}(y)\left[\nabla z_{0}^{e}(t, x)+\nabla_{y} z_{1}^{e}(t, x, y)\right]$, where $z_{1}^{e}(t, x, y) \in$ $L^{2}\left((0, T) \times \Omega ; H^{1}\left(Y_{e}\right)\right)$ is Y-periodic in y.
(iv) $w_{\varepsilon} \stackrel{2}{\rightharpoonup} w_{0}(t, x) t$-pointwise in $L^{2}\left(\Gamma_{\varepsilon}\right)$, and $w_{0}=\left(z_{0}^{i}-z_{0}^{e}\right)$.

Moreover, $\partial_{t} w_{\varepsilon} \xrightarrow{2} \partial_{t} w_{0}$ in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$.
(v) $h_{\varepsilon} \stackrel{2}{\longrightarrow} \widetilde{h}_{0}(t, x, y) t$-pointwise in $L^{2}\left(\Gamma_{\varepsilon}\right)$, and $\partial_{t} h_{\varepsilon} \xrightarrow{2} \partial_{t} \widetilde{h}_{0}$ in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$.

Proof. From a priori estimates the two-scale convergence of z_{ε}^{e} and $\nabla z_{\varepsilon}^{e}$ is proved applying standard arguments (see (Allaire, 1992)). When it comes to z_{ε}^{i} and its gradient, the main difficulty stems from the fact that Ω_{ε}^{i} consists of many disconnected components.

Since z_{ε}^{i} is bounded uniformly in ε (cf. Lemma 4.5) in $L^{2}\left((0, T) \times \Omega_{\varepsilon}^{i}\right)$, there exists a subsequence—still denoted by $\left\{z_{\varepsilon}^{i}\right\}$ —such that $\chi^{i}\left(\frac{x}{\varepsilon}\right) z_{\varepsilon}^{i}(t, x)$ converging two-scale to some $\chi^{i}(y) z_{0}^{i}(t, x, y)$ in $L^{2}\left(0, T ; L^{2}(\Omega \times Y)\right)$. Similarly, due to (4.20), up to a subsequence, $\chi^{i}\left(\frac{x}{\varepsilon}\right) \nabla z_{\varepsilon}^{i}(t, x)$ converges two-scale to $\chi^{i}(y) p^{i}(t, x, y)$. Let us show that $z_{0}^{i}=z_{0}^{i}(t, x)$. Take a smooth test function $\Phi\left(t, x, \frac{x}{\varepsilon}\right)=\varphi(t, x) \psi\left(\frac{x}{\varepsilon}\right)$, where $\varphi \in C\left([0, T] ; C_{0}^{\infty}(\Omega)\right)$, and $\psi \in\left(C^{\infty}\left(Y_{i}\right)\right)^{3}$ is 1-periodic in y_{1} and such that $\psi=0$ on $\Gamma_{m i} \cup \Gamma$.

$$
\begin{aligned}
& \varepsilon \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} \nabla z_{\varepsilon}^{i}(t, x) \cdot \varphi(t, x) \psi\left(\frac{x}{\varepsilon}\right) d x d t \\
& =-\varepsilon \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} z_{\varepsilon}^{i}(t, x) \nabla \varphi(t, x) \cdot \psi\left(\frac{x}{\varepsilon}\right) d x d t \\
& -\int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} z_{\varepsilon}^{i}(t, x) \varphi(t, x) \operatorname{div}_{y} \psi\left(\frac{x}{\varepsilon}\right) d x d t
\end{aligned}
$$

Passing to the limit, we derive

$$
\frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{Y_{i}} z_{0}^{i}(t, x, y) \varphi(t, x) \operatorname{div}_{y} \psi(y) d y d x d t=0
$$

which implies that $\partial_{y_{i}} z_{0}^{i}(t, x, y)=0, i=1,2,3$. Thus, $z_{0}^{i}=z_{0}^{i}(t, x)$.

Next we prove that $\partial_{x_{1}} z_{0}^{i} \in L^{2}((0, T) \times \Omega)$. Let us take a test function $\Phi\left(t, x, \frac{x}{\varepsilon}\right)=$ $\varphi(t, x) \mathbf{e}_{1}+\varphi(t, x) \nabla_{y} N_{1}^{i}\left(\frac{x}{\varepsilon}\right)$ such that

$$
\begin{aligned}
& \Delta_{y} N_{1}^{i}=0, \quad Y_{i}, \\
& \nabla N_{1}^{i} \cdot \nu=-\nu_{1}, \quad \Gamma \cup \Gamma_{m i}, \\
& N_{1}^{i} \text { is 1-periodic in } y_{1} .
\end{aligned}
$$

Integrating by parts yields

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} \nabla z_{\varepsilon}^{i}(t, x) \cdot \Phi\left(t, x, \frac{x}{\varepsilon}\right) d x d t \\
& =-\int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} z_{\varepsilon}^{i}(t, x)\left(\mathbf{e}_{1}+\nabla_{y} N_{1}^{i}\left(\frac{x}{\varepsilon}\right)\right) \cdot \nabla \varphi(t, x) d x d t
\end{aligned}
$$

and passing to the limit, as $\varepsilon \rightarrow 0$, we obtain

$$
\begin{align*}
& \frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{Y_{i}} p^{i}(t, x, y) \cdot \varphi(t, x)\left(\mathbf{e}_{1}+\nabla_{y} N_{1}^{i}(y)\right) d y d x d t \tag{4.23}\\
& =-\frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{Y_{i}} z_{0}^{i}(t, x) \nabla \varphi(t, x) \cdot\left(\mathbf{e}_{1}+\nabla_{y} N_{1}^{i}(y)\right) d y d x d t
\end{align*}
$$

Let us observe that $\int_{Y_{i}} \partial_{y_{k}} N_{1}^{i}(y) d y=0$ for $k \neq 1$. Indeed, for $k \neq 1, y_{k}$ can be taken as a test function in (4.22):

$$
0=-\int_{Y_{i}} \Delta N_{1}^{i}(y) y_{k} d y=\int_{Y_{i}} \partial_{y_{k}} N_{1}^{i}(y) d y
$$

Furthermore, it holds that

$$
\int_{Y_{i}}\left(\delta_{1 k}+\partial_{y_{k}} N_{1}^{i}(y)\right) d y=\delta_{1 k}|\Gamma| \frac{a_{i}^{\mathrm{eff}}}{a_{i}}
$$

Consequently, it is straightforward to check that

$$
\begin{equation*}
a_{i}^{\mathrm{eff}}=\frac{1}{|\Gamma|} \int_{Y_{i}} a_{i}\left(1+\partial_{y_{1}} N_{1}^{i}(y)\right) d y=\frac{1}{|\Gamma|} \int_{Y_{i}} a_{i}\left(1+\partial_{y_{1}} N_{1}^{i}(y)\right)^{2} d y>0 \tag{4.24}
\end{equation*}
$$

We turn back to (4.23). Due to (4.24), we have the estimate

$$
\begin{aligned}
& \left|\int_{0}^{T} \int_{\Omega} z_{0}^{i}(t, x) \partial_{x_{1}} \varphi(t, x) d x d t\right| \\
& =\left|\frac{a_{i}}{\left(a_{i}^{\text {eff }}\right)_{11}} \int_{0}^{T} \int_{\Omega} \int_{Y_{i}} p^{i}(t, x, y) \cdot \varphi(t, x)\left(\mathbf{e}_{1}+\nabla_{y} N_{1}^{i}(y)\right) d y d x d t\right| \\
& \leq C\|\varphi\|_{L^{2}((0, T) \times \Omega)}
\end{aligned}
$$

Next, we show that $p^{i}(t, x, y)=\mathbf{e}_{1} \partial_{x_{1}} z_{0}^{i}(t, x)+\nabla_{y} z_{1}^{i}(t, x, y)$ for some z_{1}^{i} periodic in y_{1}. Take a smooth test function $\varphi(t, x) \psi(y)$ such that $\operatorname{div}_{y} \psi=0$ in $Y_{i}, \psi \cdot \nu=0$ on $\Gamma_{m i} \cup \Gamma$, and periodic in y_{1}.

$$
\int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} \nabla z_{\varepsilon}^{i} \cdot \varphi(t, x) \psi\left(\frac{x}{\varepsilon}\right) d x d t=-\int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} z_{\varepsilon}^{i} \nabla \varphi(t, x) \cdot \psi\left(\frac{x}{\varepsilon}\right) d x d t
$$

Passing to the limit, as $\varepsilon \rightarrow 0$ we obtain

$$
\frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{Y_{i}} p^{i} \cdot \varphi(t, x) \psi(y) d y d x d t=-\frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{Y_{i}} z_{0}^{i} \nabla \varphi(t, x) \cdot \psi(y) d y d x d t
$$

Since $\int_{Y_{i}} \psi_{k}(y) d y=0$ for $k \neq 1$,

$$
\int_{0}^{T} \int_{\Omega} \int_{Y_{i}} p^{i}(t, x, y) \cdot \varphi(t, x) \psi(y) d y d x d t=\int_{0}^{T} \int_{\Omega} \int_{Y_{i}} \partial_{x_{1}} z_{0}^{i}(t, x) \varphi(t, x) \psi_{1}(y) d y d x d t
$$

and thus

$$
\int_{0}^{T} \int_{\Omega} \int_{Y_{i}}\left(p^{i}(x, y)-\mathbf{e}_{1} \partial_{x_{1}} z_{0}^{i}(t, x)\right) \varphi(t, x) \cdot \psi(y) d y d x d t=0 .
$$

Since ψ is solenoidal, there exists $z_{1}^{i}(t, x, y) \in L^{2}\left((0, T) \times \Omega ; H^{1}\left(Y_{i}\right)\right)$, 1-periodic in y_{1}, such that

$$
p^{i}(t, x, y)=\mathbf{e}_{1} \partial_{x_{1}} z_{0}^{i}(t, x)+\nabla_{y} z_{1}^{i}(t, x, y) .
$$

Next we prove that the jump w_{ε} converges two-scale in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{\varepsilon}\right)\right)$ to $z_{0}^{i}-z_{0}^{e}$. To this end, for $\psi \in H^{1 / 2}(\Gamma)$, we consider test functions $\widetilde{\psi^{l}}, l=i, e$, solving

$$
\begin{aligned}
& \Delta \widetilde{\psi}^{l}=\frac{1}{\left|Y_{l}\right|} \int_{\Gamma} \psi d \sigma, \quad y \in Y_{l} \\
& \nabla \widetilde{\psi}^{l} \cdot \nu^{l}=\psi, \quad y \in \Gamma ; \quad \nabla \widetilde{\psi}^{l} \cdot \nu^{l}=0, \quad y \in \Gamma_{m l}, \\
& \widetilde{\psi}^{l} \text { is } Y-\text { periodic. }
\end{aligned}
$$

Integration by parts yields

$$
\begin{aligned}
& \varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}} w_{\varepsilon} \varphi(t, x) \psi\left(\frac{x}{\varepsilon}\right) d x d t \\
& =\varepsilon \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} \nabla z_{\varepsilon}^{i} \cdot \varphi(t, x) \nabla_{y} \widetilde{\psi}^{i}\left(\frac{x}{\varepsilon}\right) d x d t+\varepsilon \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} z_{\varepsilon}^{i} \nabla \varphi(t, x) \cdot \nabla_{y} \widetilde{\psi}^{i}\left(\frac{x}{\varepsilon}\right) d x d t \\
& +\frac{1}{\left|Y_{i}\right|} \int_{0}^{T} \int_{\Omega_{\varepsilon}^{i}} z_{\varepsilon}^{i} \varphi(t, x) \int_{\Gamma} \psi(y) d \sigma d x d t \\
& -\varepsilon \int_{0}^{T} \int_{\Omega_{\varepsilon}^{e}} \nabla z_{\varepsilon}^{e} \cdot \varphi(t, x) \nabla_{y} \widetilde{\psi}^{e}\left(\frac{x}{\varepsilon}\right) d x d t-\varepsilon \int_{0}^{T} \int_{\Omega_{\varepsilon}^{e}} z_{\varepsilon}^{e} \nabla \varphi(t, x) \cdot \nabla_{y} \widetilde{\psi}^{e}\left(\frac{x}{\varepsilon}\right) d x d t \\
& -\frac{1}{\left|Y_{e}\right|} \int_{0}^{T} \int_{\Omega_{\varepsilon}^{e}} z_{\varepsilon}^{e} \varphi(t, x) \int_{\Gamma} \psi(y) d \sigma d x d t .
\end{aligned}
$$

Passing to the limit, as $\varepsilon \rightarrow 0$, we get

$$
\begin{aligned}
& \frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{\Gamma} w_{0}(t, x, y) \varphi(t, x) \psi(y) d \sigma d x d t \\
& =\frac{1}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{\Gamma}\left(z_{0}^{i}-z_{0}^{e}\right) \varphi(t, x) \psi(y) d \sigma d x d t
\end{aligned}
$$

that proves the two-scale convergence of w_{ε} to the difference $w_{0}=z_{0}^{i}-z_{0}^{e}$.
Note that the uniform bound of w_{ε} in $L^{4}\left((0, T) \times \Gamma_{\varepsilon}\right)$ —by Lemma 4.5(i)—implies $w_{0} \in L^{4}((0, T) \times \Omega)$. Indeed, for smooth $\varphi(t, x)$, we have that

$$
|\Gamma| \int_{0}^{T} \int_{\Omega} w_{0}(t, x) \varphi(t, x) d x d t=\lim _{\varepsilon \rightarrow 0} \varepsilon|Y| \int_{0}^{T} \int_{\Gamma_{\varepsilon}} w_{\varepsilon}(t, x) \varphi(t, x) d \sigma d t
$$

$$
\begin{aligned}
& \leq|Y| \lim _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{4} d \sigma d t\right)^{\frac{1}{4}}\left(\varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}}|\varphi(t, x)|^{4 / 3} d \sigma d t\right)^{\frac{3}{4}} \\
& \leq C \lim _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{0}^{T} \int_{\Gamma_{\varepsilon}}|\varphi(t, x)|^{\frac{4}{3}} d \sigma_{x} d t\right)^{\frac{3}{4}} \\
& =C\left(\frac{|\Gamma|}{|Y|} \int_{0}^{T} \int_{\Omega} \int_{\Gamma}|\varphi(t, x)|^{\frac{4}{3}} d x d t\right)^{\frac{3}{4}} .
\end{aligned}
$$

By density of smooth functions in $L^{\frac{4}{3}}((0, T) \times \Omega),\left\|w_{0}\right\|_{L^{4}((0, T) \times \Omega)} \leq C$.

Thanks to the uniform in ε estimates (i), (ii) in Lemma 4.5, (iv) and (v) hold. Indeed, for any $t \in[0, T]$ and any $\varphi(t, x) \in C^{1}([0, T] \times \bar{\Omega}), \psi(y) \in C(\Gamma)$, such that $\varphi(0, x)=0$

$$
\begin{aligned}
& \varepsilon \int_{\Gamma_{\varepsilon}} w_{\varepsilon}(t, x) \varphi(t, x) \psi\left(\frac{x}{\varepsilon}\right) d \sigma \\
& =\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left(w_{\varepsilon}(\tau, x) \partial_{\tau} \varphi(\tau, x)+\partial_{\tau} w_{\varepsilon}(\tau, x) \varphi(\tau, x)\right) \psi\left(\frac{x}{\varepsilon}\right) d \sigma \\
& \rightarrow \frac{1}{|Y|} \int_{0}^{t} \int_{\Omega} \int_{\Gamma}\left(w_{0}(\tau, x) \partial_{\tau} \varphi(\tau, x)+\partial_{\tau} w_{0}(\tau, x) \varphi(\tau, x)\right) \psi(y) d \sigma_{y} d x d \tau \\
& =\frac{1}{|Y|} \int_{\Omega} \int_{\Gamma} w_{0}(t, x) \varphi(t, x) \psi(y) d \sigma_{y} d x, \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Lemma 4.7. Let the initial functions V_{ε}^{0} satisfy hypothesis (H1). Then $V_{\varepsilon}^{0} \stackrel{2}{\rightharpoonup} V^{0}$ in $L^{2}\left(\Gamma_{\varepsilon}\right)$, and

$$
\limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}\right|^{2} d \sigma=\frac{|\Gamma|}{|Y|} \int_{\Omega}\left|V^{0}\right|^{2} d x
$$

Proof. The weak two-scale convergence follows from Proposition 2.6 in (Allaire \& Damlamian, 1995). Approximating V^{0} by smooth functions V_{δ}^{0} in $H^{1}(\Omega)$, we find

$$
\begin{equation*}
\varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}\right|^{2} d \sigma=\varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}-V_{\delta}^{0}\right|^{2} d \sigma+2 \varepsilon \int_{\Gamma_{\varepsilon}}\left(V_{\varepsilon}^{0}-V_{\delta}^{0}\right) V_{\delta}^{0} d \sigma+\varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\delta}^{0}\right|^{2} d \sigma . \tag{4.25}
\end{equation*}
$$

Applying the trace inequality in the rescaled periodicity cell εY, adding up over all the cells in Ω, and using assumption (H1) leads to

$$
\begin{aligned}
& \varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}-V_{\delta}^{0}\right|^{2} d \sigma \leq C \varepsilon^{2} \int_{\Omega}\left|\nabla\left(V_{\varepsilon}^{0}-V_{\delta}^{0}\right)\right|^{2} d x+C \int_{\Omega}\left|V_{\varepsilon}^{0}-V_{\delta}^{0}\right|^{2} d x \\
& \leq C \varepsilon^{2} \int_{\Omega}\left|\nabla\left(V_{\varepsilon}^{0}-V_{\delta}^{0}\right)\right|^{2} d x+C \int_{\Omega}\left|V_{\varepsilon}^{0}-V^{0}\right|^{2} d x \\
& +C \int_{\Omega}\left|V_{\delta}^{0}-V^{0}\right|^{2} d x \rightarrow 0, \quad \varepsilon, \delta \rightarrow 0
\end{aligned}
$$

Then, since V_{δ}^{0} is smooth, it converges strongly two-scale, and passing to the limit as $\varepsilon \rightarrow 0$ in (4.25) we obtain

$$
\lim _{\delta \rightarrow 0} \limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}}\left|V_{\varepsilon}^{0}\right|^{2} d \sigma=\frac{|\Gamma|}{|Y|} \int_{\Omega}\left|V^{0}\right|^{2} d x
$$

as stated.

We proceed with the Minty method for passing to the limit in the microscopic problem. Consider arbitrary functions $\mu_{0}^{l}(t, x) \in C^{\infty}([0, T] \times \bar{\Omega})$ and $\mu_{1}^{l}(t, x, y) \in C^{\infty}([0, T] \times \bar{\Omega} \times$ Y), Y-periodic in y, and such that $\mu_{0}^{l}=\mu_{1}^{l}=0$ when $x \in S_{0} \cap S_{L}$. Take the test function

$$
\begin{gathered}
M_{\varepsilon}:=\binom{\left[\mu_{\varepsilon}\right]}{\rho}, \quad \text { where } \rho=\rho(t, x), \text { and } \\
\mu_{\varepsilon}(x): \\
:= \begin{cases}\mu_{0}^{e}(t, x)+\varepsilon \mu_{1}^{e}\left(t, x, \frac{x}{\varepsilon}\right), & x \in \Omega_{\varepsilon}^{e} \\
\mu_{0}^{i}(t, x)+\varepsilon \mu_{1}^{i}\left(t, x, \frac{x}{\varepsilon}\right), & x \in \Omega_{\varepsilon}^{i} .\end{cases}
\end{gathered}
$$

The monotonicity property of the operator $\mathbb{A}_{\varepsilon}(t, \cdot)$ entails

$$
\begin{equation*}
\int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left(\mathbb{A}_{\varepsilon}\left(\tau, W_{\varepsilon}\right)-\mathbb{A}_{\varepsilon}\left(\tau, M_{\varepsilon}\right)\right) \cdot\left(W_{\varepsilon}-M_{\varepsilon}\right) d \sigma d \tau \geq 0 \tag{4.26}
\end{equation*}
$$

By the definition of A_{ε} (4.6),

$$
\left(A_{\varepsilon}\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right),\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right)\right)_{L^{2}\left(\Gamma_{\varepsilon}\right)} \leq \int_{\Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}} a_{\varepsilon} \nabla\left(\mu_{\varepsilon}-z_{\varepsilon}\right) \cdot \nabla\left(\mu_{\varepsilon}-z_{\varepsilon}\right) d x
$$

where z_{ε} solves (4.15). It follows then from (4.26), (4.10), and the definition of the operator $\mathbb{A}_{\varepsilon}(t, \cdot)$ that

$$
\begin{align*}
& \varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \partial_{\tau} w_{\varepsilon}\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right) d \sigma d \tau+\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \partial_{\tau} h_{\varepsilon}\left(\rho-h_{\varepsilon}\right) d \sigma d \tau \\
& +\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega_{\varepsilon}^{e} \cup \Omega_{\varepsilon}^{i}} a_{\varepsilon} \nabla \mu_{\varepsilon} \cdot \nabla\left(\mu_{\varepsilon}-z_{\varepsilon}\right) d x d \tau+\varepsilon\left(\lambda-\frac{1}{c_{m}}\right) \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left[\mu_{\varepsilon}\right]\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right) d \sigma d \tau \\
& -\frac{\varepsilon}{c_{m}} \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \rho\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right) d \sigma d \tau+\varepsilon(b+\lambda) \int_{0}^{t} \int_{\Gamma_{\varepsilon}} \rho\left(\rho-h_{\varepsilon}\right) d \sigma d \tau \tag{4.27}\\
& -\varepsilon \theta \int_{0}^{t} \int_{\Gamma_{\varepsilon}}\left[\mu_{\varepsilon}\right]\left(\rho-h_{\varepsilon}\right) d \sigma d \tau+\varepsilon \frac{1}{3 c_{m}} \int_{0}^{t} e^{2 \lambda \tau} \int_{\Gamma_{\varepsilon}}\left[\mu_{\varepsilon}\right]^{3}\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right) d \sigma d \tau \\
& +\int_{0}^{t} \int_{\Gamma_{\varepsilon}} \frac{e^{-\lambda \tau}}{c_{m}}\left(a_{i} \nabla q_{\varepsilon} \cdot \nu\right)\left(\left[\mu_{\varepsilon}\right]-w_{\varepsilon}\right) d \sigma d \tau-\varepsilon a \int_{0}^{t} \int_{\Gamma_{\varepsilon}} e^{-\lambda \tau}\left(\rho-h_{\varepsilon}\right) d \sigma d \tau \geq 0
\end{align*}
$$

Consider the first two terms in (4.27), specifically integrals $\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} w_{\varepsilon} \partial_{\tau} w_{\varepsilon} d \sigma d \tau$ and $\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} \partial_{\tau} h_{\varepsilon} d \sigma d \tau$. Integrating by parts with respect to time, passing to the limit as $\varepsilon \rightarrow$ 0 , and using the lower semi-continuity of L^{2}-norm with respect to two-scale convergence (Proposition 2.5, (Allaire \& Damlamian, 1995)) and Lemma 4.7 renders

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} w_{\varepsilon} \partial_{\tau} w_{\varepsilon} d \sigma d \tau-\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} w_{0} \partial_{\tau} w_{0} d x d \tau\right] \\
& =\limsup _{\varepsilon \rightarrow 0}\left[\left.\frac{\varepsilon}{2} \int_{\Gamma_{\varepsilon}} w_{\varepsilon}^{2} d \sigma\right|_{\tau=t}-\frac{|\Gamma|}{2|Y|} \int_{\Omega} w_{0}^{2} d x\right] \\
& +\lim _{\varepsilon \rightarrow 0}\left[-\frac{\varepsilon}{2} \int_{\Gamma_{\varepsilon}}\left(V_{\varepsilon}^{0}\right)^{2} d \sigma+\frac{|\Gamma|}{2|Y|} \int_{\Omega}\left(V^{0}\right)^{2} d x\right] \geq 0 .
\end{aligned}
$$

Similarly, for the integral of $h_{\varepsilon} \partial_{\tau} h_{\varepsilon}$, denoting the mean value of the two-scale limit $\widetilde{h}_{0}(t, x, y)$ in y by $h_{0}(t, x)=\frac{1}{|\Gamma|} \int_{\Gamma} \widetilde{h}_{0}(t, x, y) d y$, we get

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} \partial_{\tau} h_{\varepsilon} d \sigma d \tau-\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} h_{0} \partial_{\tau} h_{0} d x d \tau\right] \\
& =\limsup _{\varepsilon \rightarrow 0}\left[\left.\frac{\varepsilon}{2} \int_{\Gamma_{\varepsilon}} h_{\varepsilon}^{2} d \sigma\right|_{\tau=t}-\left.\frac{|\Gamma|}{2|Y|} \int_{\Omega} h_{0}^{2} d x\right|_{\tau=t}\right] \\
& +\lim _{\varepsilon \rightarrow 0}\left[-\frac{\varepsilon}{2} \int_{\Gamma_{\varepsilon}}\left(G_{\varepsilon}^{0}\right)^{2} d \sigma+\frac{|\Gamma|}{2|Y|} \int_{\Omega}\left(G^{0}\right)^{2} d x\right] \geq 0 .
\end{aligned}
$$

For smooth $\mu_{0}^{l}(t, x)$ and $\mu_{1}^{l}(t, x, y), l=i, e$, we use Lemma 4.6 to pass to the limit in the third term:

$$
\begin{aligned}
& \frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega_{\varepsilon}^{e} \cup \Omega_{\varepsilon}^{i}} a_{\varepsilon} \nabla \mu_{\varepsilon} \cdot \nabla\left(\mu_{\varepsilon}-z_{\varepsilon}\right) d x d \tau \\
& \rightarrow \frac{1}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{i}} a_{i}\left(\nabla \mu_{0}^{i}+\nabla_{y} \mu_{1}^{i}\right) \cdot\left(\nabla \mu_{0}^{i}+\nabla_{y} \mu_{1}^{i}-\partial_{1} z_{0}^{i} \mathbf{e}_{1}-\nabla_{y} z_{1}^{i}\right) d x d y d \tau \\
& +\frac{1}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{e}} a_{e}\left(\nabla \mu_{0}^{e}+\nabla_{y} \mu_{1}^{e}\right) \cdot\left(\nabla \mu_{0}^{e}+\nabla_{y} \mu_{1}^{e}-\nabla z_{0}^{e}-\nabla_{y} z_{1}^{e}\right) d x d y d \tau .
\end{aligned}
$$

Taking the limit in (4.27) as $\varepsilon \rightarrow 0$ (along a subsequence) we obtain

$$
\begin{align*}
& \limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} w_{\varepsilon} \partial_{\tau} w_{\varepsilon} d \sigma d \tau-\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} w_{0} \partial_{\tau} w_{0} d x d \tau\right] \\
& +\limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} \partial_{\tau} h_{\varepsilon} d \sigma d \tau-\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} h_{0} \partial_{\tau} h_{0} d x d \tau\right] \\
& \leq \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \partial_{\tau} w_{0}\left(\left[\mu_{0}\right]-w_{0}\right) d x d \tau+\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \partial_{\tau} h_{0}\left(\rho-h_{0}\right) d x d \tau \\
& +\frac{1}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{i}} a_{i}\left(\nabla \mu_{0}^{i}+\nabla_{y} \mu_{1}^{i}\right) \cdot\left(\nabla \mu_{0}^{i}+\nabla_{y} \mu_{1}^{i}-\partial_{1} z_{0}^{i} \mathbf{e}_{1}-\nabla_{y} z_{1}^{i}\right) d x d y d \tau \\
& +\frac{1}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{e}} a_{e}\left(\nabla \mu_{0}^{e}+\nabla_{y} \mu_{1}^{e}\right) \cdot\left(\nabla \mu_{0}^{e}+\nabla_{y} \mu_{1}^{e}-\nabla z_{0}^{e}-\nabla_{y} z_{1}^{e}\right) d x d y d \tau \\
& +\left(\lambda-\frac{1}{c_{m}}\right) \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega}\left[\mu_{0}\right]\left(\left[\mu_{0}\right]-w_{0}\right) d x d \tau \tag{4.28}\\
& -\frac{|\Gamma|}{|Y| c_{m}} \int_{0}^{t} \int_{\Omega} \rho\left(\left[\mu_{0}\right]-w_{0}\right) d x d \tau+(b+\lambda) \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \rho\left(\rho-h_{0}\right) d x d \tau \\
& -\theta \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega}\left[\mu_{0}\right]\left(\rho-h_{0}\right) d x d \tau+\frac{1|\Gamma|}{3 c_{m}|Y|} \int_{0}^{t} \int_{\Omega}^{2 \lambda \tau}\left[\mu_{0}\right]^{3}\left(\left[\mu_{0}\right]-w_{0}\right) d x d \tau \\
& -\int_{0}^{t} \int_{\Sigma} \frac{e^{-\lambda \tau}}{c_{m}} J^{e}\left(\mu_{0}^{e}-z_{0}^{e}\right) d \sigma d \tau-a \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} e^{-\lambda \tau}\left(\rho-h_{0}\right) d \sigma d \tau
\end{align*}
$$

where $\left[\mu_{0}\right]=\mu_{0}^{i}-\mu_{0}^{e}$. Consider the spaces

$$
\begin{aligned}
& H_{i}=\left\{z^{i} \in L^{2}(\Omega): \partial_{x_{1}} z^{i} \in L^{2}(\Omega), z^{i}=0 \text { on } S_{0} \cup S_{L}\right\}, \\
& H_{e}=\left\{z^{e} \in L^{2}(\Omega): \nabla z^{e} \in L^{2}(\Omega)^{3}, z^{e}=0 \text { on } S_{0} \cup S_{L}\right\},
\end{aligned}
$$

with the standard H^{1}-norm in H_{e}, and

$$
\|z\|_{H_{i}}=\left(\int_{\Omega}|z|^{4} d x\right)^{\frac{1}{4}}+\left(\int_{\Omega}\left|\partial_{x_{1}} z\right|^{2} d x\right)^{\frac{1}{2}}
$$

By density of smooth functions, inequality (4.28) still holds for test functions $\mu_{1}^{l} \in$ $L^{2}\left((0, T) \times \Omega ; H^{1}\left(Y_{l}\right)\right)$, and $\mu_{0}^{l} \in L^{2}\left(0, T ; H_{l}\right)$ such that $\left[\mu_{0}\right] \in L^{4}((0, T) \times \Omega)$.

Modifying the test function μ_{1}^{i} by setting $\mu_{1}^{i}(x, y)=\widetilde{\mu}_{1}^{i}(x, y)-\nabla_{x^{\prime}} \mu_{0}^{i} \cdot y^{\prime}$ we transform the integrand in the fourth line of (4.28) to the form

$$
a_{i}\left(\partial_{x_{1}} \mu_{0}^{i} \mathbf{e}_{1}+\nabla_{y} \widetilde{\mu}_{1}^{i}\right) \cdot\left(\partial_{x_{1}} \mu_{0}^{i} \mathbf{e}_{1}+\nabla_{y} \widetilde{\mu}_{1}^{i}-\partial_{x_{1}} z_{0}^{i} \mathbf{e}_{1}-\nabla_{y} z_{1}^{i}\right)
$$

Then, for smooth test functions $\psi^{l}(t, x), \varphi(t, x)$ vanishing at $x=0, L$, and $\Psi^{l}(t, x, y)$ periodic in y and equal to zero when $x=0, L, l=i, e$, we can set

$$
\begin{aligned}
\mu_{0}^{l}(t, x) & =z_{0}^{l}(t, x)+\delta \psi^{l}(t, x), \quad l=i, e \\
\mu_{1}^{e}(t, x, y) & =z_{1}^{e}(t, x, y)+\delta \Psi^{e}(t, x, y) \\
\widetilde{\mu}_{1}^{i}(t, x, y) & =z_{1}^{i}(t, x, y)+\delta \Psi^{i}(t, x, y), \\
\rho(t, x) & =h_{0}(t, x)+\delta \varphi(t, x)
\end{aligned}
$$

where δ is a small auxiliary parameter. Setting $[\psi]=\psi^{i}-\psi^{e}$, we have that

$$
\begin{align*}
& \limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} w_{\varepsilon} \partial_{\tau} w_{\varepsilon} d \sigma d \tau-\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} w_{0} \partial_{\tau} w_{0} d x d \tau\right] \\
& +\limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{0}^{t} \int_{\Gamma_{\varepsilon}} h_{\varepsilon} \partial_{\tau} h_{\varepsilon} d \sigma d \tau-\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} h_{0} \partial_{\tau} h_{0} d x d \tau\right] \\
& \leq \frac{\delta|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \partial_{\tau} w_{0}[\psi] d x d \tau+\frac{\delta|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \partial_{\tau} h_{0} \varphi d x d \tau \\
& +\frac{\delta}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{i}} a_{i}\left(\partial_{x_{1}}\left(z_{0}^{i}+\delta \psi^{i}\right) \mathbf{e}_{1}+\nabla_{y}\left(z_{1}^{i}+\delta \Psi^{i}\right)\right) \cdot\left(\partial_{x_{1}} \psi^{i} \mathbf{e}_{1}+\nabla_{y} \Psi^{i}\right) d x d y d \tau \\
& +\frac{\delta}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{e}} a_{e}\left(\nabla\left(z_{0}^{e}+\delta \psi^{e}\right)+\nabla_{y}\left(z_{1}^{e}+\delta \Psi^{e}\right)\right) \cdot\left(\nabla \psi^{e}+\nabla_{y} \Psi^{e}\right) d x d y d \tau \\
& +\left(\lambda-\frac{1}{c_{m}}\right) \frac{\delta|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega}\left(w_{0}+\delta[\psi]\right)[\psi] d x d \tau \tag{4.29}
\end{align*}
$$

$$
\begin{aligned}
& -\frac{\delta|\Gamma|}{|Y| c_{m}} \int_{0}^{t} \int_{\Omega}\left(h_{0}+\delta \varphi\right)[\psi] d x d \tau+(b+\lambda) \frac{\delta|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega}\left(h_{0}+\delta \varphi\right) \varphi d x d \tau \\
& -\theta \frac{\delta|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega}\left(w_{0}+\delta[\psi]\right) \varphi d x d \tau+\frac{|\Gamma|}{3 c_{m}|Y|} \delta \int_{0}^{t} \int_{\Omega} e^{2 \lambda \tau}\left(w_{0}+\delta[\psi]\right)^{3}[\psi] d x d \tau \\
& -\frac{\delta}{c_{m}} \int_{0}^{t} \int_{\Sigma} e^{-\lambda \tau} J^{e} \psi^{e} d \sigma d \tau-a \frac{\delta|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} e^{-\lambda \tau} \varphi d \sigma d \tau
\end{aligned}
$$

Since the left-hand side of (4.29) is non-negative and δ is arbitrary, we obtain

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0}\left[\varepsilon \int_{\Gamma_{\varepsilon}}\left|w_{\varepsilon}\right|^{2} d \sigma-\frac{|\Gamma|}{|Y|} \int_{\Omega}\left|w_{0}\right|^{2} d x\right]=0 \\
& \underset{\varepsilon \rightarrow 0}{\limsup }\left[\varepsilon \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma-\frac{|\Gamma|}{|Y|} \int_{\Omega}\left|h_{0}\right|^{2} d x\right]=0
\end{aligned}
$$

Note that the last convergence implies that the two-scale limit \widetilde{h}_{0} does not depend on y. Indeed, by Proposition 2.5 in (Allaire \& Damlamian, 1995), one has the estimate

$$
\limsup _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma_{\varepsilon}}\left|h_{\varepsilon}\right|^{2} d \sigma \geq \frac{1}{|Y|} \int_{\Omega} \int_{\Gamma}\left|\widetilde{h}_{0}\right|^{2} d \sigma_{y} d x \geq \frac{|\Gamma|}{|Y|} \int_{\Omega}\left|h_{0}\right|^{2} d x
$$

Thus, one can see that

$$
\frac{1}{|\Gamma|} \int_{\Omega} \int_{\Gamma}\left|\widetilde{h}_{0}\right|^{2} d \sigma_{y} d x=\int_{\Omega}\left(\frac{1}{|\Gamma|} \int_{\Gamma} \widetilde{h}_{0} d \sigma_{y}\right)^{2} d x
$$

Moreover, it is clear that

$$
\begin{aligned}
\frac{1}{|\Gamma|} \int_{\Omega} \int_{\Gamma}\left|\widetilde{h}_{0}\right|^{2} d \sigma_{y} d x & =\frac{1}{|\Gamma|} \int_{\Omega} \int_{\Gamma}\left|\widetilde{h}_{0}-h_{0}\right|^{2} d \sigma_{y} d x \\
& +\frac{2}{|\Gamma|} \int_{\Omega} \int_{\Gamma}\left(\widetilde{h}_{0}-h_{0}\right) h_{0} d \sigma_{y} d x \\
& +\frac{1}{|\Gamma|} \int_{\Omega} \int_{\Gamma}\left|h_{0}\right|^{2} d \sigma_{y} d x=\int_{\Omega}\left|h_{0}\right|^{2} d x
\end{aligned}
$$

which yields

$$
\frac{1}{|\Gamma|} \int_{\Omega} \int_{\Gamma}\left|\widetilde{h}_{0}-h_{0}\right|^{2} d \sigma_{y} d x=0 \quad \Rightarrow \quad \widetilde{h}_{0}=h_{0}(t, x)
$$

Now, dividing (4.29) by $\delta \neq 0$ and passing to the limit as $\delta \rightarrow+0$ and $\delta \rightarrow-0$, we derive

$$
\begin{aligned}
& \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \partial_{\tau} w_{0}[\psi] d x d \tau+\frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} \partial_{\tau} h_{0} \varphi d x d \tau \\
& +\frac{1}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{i}} a_{i}\left(\partial_{x_{1}} z_{0}^{i} \mathbf{e}_{1}+\nabla_{y} z_{1}^{i}\right) \cdot\left(\partial_{x_{1}} \psi^{i} \mathbf{e}_{1}+\nabla_{y} \Psi^{i}\right) d y d x d \tau \\
& +\frac{1}{c_{m}|Y|} \int_{0}^{t} \int_{\Omega} \int_{Y_{e}} a_{e}\left(\nabla z_{0}^{e}+\nabla_{y} z_{1}^{e}\right) \cdot\left(\nabla \psi^{e}+\nabla_{y} \Psi^{e}\right) d y d x d \tau \\
& +\left(\lambda-\frac{1}{c_{m}}\right) \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} w_{0}[\psi] d x d \tau-\frac{|\Gamma|}{|Y| c_{m}} \int_{0}^{t} \int_{\Omega} h_{0}[\psi] d x d \tau \\
& +(b+\lambda) \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} h_{0} \varphi d x d \tau-\theta \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} w_{0} \varphi d x d \tau \\
& +\frac{|\Gamma|}{3 c_{m}|Y|} \int_{0}^{t} \int_{\Omega} e^{2 \lambda \tau} w_{0}^{3}[\psi] d x d \tau-\int_{0}^{t} \int_{\Sigma} \frac{e^{-\lambda \tau}}{c_{m}} J^{e} \psi^{e} d \sigma d \tau \\
& -a \frac{|\Gamma|}{|Y|} \int_{0}^{t} \int_{\Omega} e^{-\lambda \tau} \varphi d x d \tau=0 .
\end{aligned}
$$

Taking $\psi^{i}=\psi^{e}=\varphi=0$, we obtain $z_{1}^{e}(t, x, y)=N^{e}(y) \cdot \nabla z_{0}^{e}(t, x), z_{1}^{i}(t, x, y)=$ $N_{1}^{i}(y) \partial_{x_{1}} z_{0}^{i}(t, x)$, where N_{k}^{e}, N_{1}^{i} solve the cell problems (4.39) and (4.40), respectively. Note that in the case when Y_{i} is a cylinder-constant cross-section-, $N_{1}^{i}(y)$ is constant. Recalling the definition of the effective coefficients $\left(a_{e}^{\text {eff }}\right)_{k l}(4.4)$, and taking $\Psi^{l}=0$, we obtain

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} \partial_{\tau} w_{0}[\psi] d x d \tau+\int_{0}^{t} \int_{\Omega} \partial_{\tau} h_{0} \varphi d x d \tau \\
& +\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} a_{i}^{\text {eff }} \partial_{x_{1}} z_{0}^{i} \partial_{x_{1}} \psi^{i} d x d \tau+\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} a_{e}^{\mathrm{eff}} \nabla z_{0}^{e} \cdot \nabla \psi^{e} d x d \tau \\
& +\left(\lambda-\frac{1}{c_{m}}\right) \int_{0}^{t} \int_{\Omega} w_{0}[\psi] d x d \tau-\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} h_{0}[\psi] d x d \tau \tag{4.30}\\
& +(b+\lambda) \int_{0}^{t} \int_{\Omega} h_{0} \varphi d x d \tau-\theta \int_{0}^{t} \int_{\Omega} w_{0} \varphi d x d \tau \\
& +\frac{1}{3 c_{m}} \int_{0}^{t} \int_{\Omega} e^{2 \lambda \tau} w_{0}^{3}[\psi] d x d \tau
\end{align*}
$$

$$
=\frac{|Y|}{c_{m}|\Gamma|} \int_{0}^{t} \int_{\Sigma} e^{-\lambda \tau} J^{e} \psi^{e} d \sigma d \tau+a \int_{0}^{t} \int_{\Omega} e^{-\lambda \tau} \varphi d \sigma d \tau
$$

Performing the change of unknowns $u_{0}^{l}=e^{\lambda \tau} z_{0}^{l}, v_{0}=e^{\lambda \tau} w_{0}, g_{0}=e^{\lambda \tau} h_{0}$, and taking the test functions $e^{-\lambda \tau} \varphi$ and $e^{-\lambda \tau} \psi$ in place of φ and ψ in (4.30), we obtain a weak formulation of (4.2):

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} \partial_{\tau} v_{0}[\psi] d x d \tau \\
& +\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} a_{i}^{\mathrm{eff}} \partial_{x_{1}} u_{0}^{i} \partial_{x_{1}} \psi^{i} d x d \tau+\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} a_{e}^{\mathrm{eff}} \nabla u_{0}^{e} \cdot \nabla \psi^{e} d x d \tau \\
& +\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega}\left(\frac{1}{3} v_{0}^{3}-v_{0}-g_{0}\right)[\psi] d x d \tau \\
& +\int_{0}^{t} \int_{\Omega}\left(\partial_{\tau} g_{0}+b g_{0}-\theta v_{0}-a\right) \varphi d x d \tau \\
& =\frac{|Y|}{c_{m}|\Gamma|} \int_{0}^{t} \int_{\Sigma} J^{e} \psi^{e} d \sigma d \tau
\end{aligned}
$$

Note that in view of the well-posedness of the limit problem proved in the next section, the convergence takes place for the whole sequence. The proof of Theorem 4.1 is completed.

4.5. Well-posedness of the macroscopic problem

In order to prove the well-posedness of the homogenized problem given by its weak formulation (4.30), we rewrite it in matrix form as an abstract parabolic equation. We introduce q_{0} solving the auxiliary problem in Ω :

$$
\begin{align*}
-\operatorname{div}\left(a_{e}^{\mathrm{eff}} \nabla q_{0}\right) & -a_{i}^{\mathrm{eff}} \partial_{x_{1} x_{1}}^{2} q_{0}=0, & x \in \Omega, \\
a_{e}^{\mathrm{eff}} \nabla q_{0} \cdot \nu & =\frac{|Y|}{|\Gamma|} J^{e}, & x \in \Sigma, \tag{4.31}\\
q_{0} & =0, & x \in S_{0} \cup S_{L} .
\end{align*}
$$

Here, the effective coefficient $a_{i}^{\text {eff }}=\left|Y_{i}\right| a_{i} /|\Gamma|$. Multiplication (4.31) by a smooth test function ψ^{e} such that $\psi^{e}=0$ on $S_{0} \cup S_{L}$ leads to

$$
\begin{equation*}
\frac{|Y|}{|\Gamma|} \int_{\Sigma} J^{e} \psi^{e} d \sigma=\int_{\Omega} a_{e}^{\mathrm{eff}} \nabla q_{0} \cdot \nabla \psi^{e} d x+\int_{\Omega} a_{i}^{\mathrm{eff}} \partial_{x_{1}} q_{0} \partial_{x_{1}} \psi^{e} d x \tag{4.32}
\end{equation*}
$$

Substituting (4.32) into (4.30), and introducing $\widetilde{z}_{0}^{l}=z_{0}^{l}-q_{0} e^{-\lambda t}, l=i, e$, we have the following weak formulation:

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} \partial_{\tau} w_{0}[\psi] d x d \tau+\int_{0}^{t} \int_{\Omega} \partial_{\tau} h_{0} \varphi d x d \tau \\
& +\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} a_{i}^{\mathrm{eff}} \partial_{x_{1}} \widetilde{z}_{0}^{i} \partial_{x_{1}} \psi^{i} d x d \tau+\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} a_{e}^{\mathrm{eff}} \nabla \widetilde{z}_{0}^{e} \cdot \nabla \psi^{e} d x d \tau \\
& +\left(\lambda-\frac{1}{c_{m}}\right) \int_{0}^{t} \int_{\Omega} w_{0}[\psi] d x d \tau-\frac{1}{c_{m}} \int_{0}^{t} \int_{\Omega} h_{0}[\psi] d x d \tau \tag{4.33}\\
& +(b+\lambda) \int_{0}^{t} \int_{\Omega} h_{0} \varphi d x d \tau-\theta \int_{0}^{t} \int_{\Omega} w_{0} \varphi d x d \tau \\
& +\frac{1}{3 c_{m}} \int_{0}^{t} \int_{\Omega} e^{2 \lambda \tau} w_{0}^{3}[\psi] d x d \tau \\
& =a \int_{0}^{t} \int_{\Omega} e^{-\lambda \tau} \varphi d \sigma d \tau+\int_{0}^{t} \int_{\Omega} e^{-\lambda \tau} a_{i}^{\text {eff }} \partial_{x_{1} x_{1}}^{2} q_{0}[\psi] d x d \tau .
\end{align*}
$$

We seek to rewrite the weak formulation (4.33) in matrix form as an abstract parabolic equation. To this end, we first introduce the following functional spaces:

$$
\begin{aligned}
& H_{0}=L^{2}(\Omega) \times L^{2}(\Omega) \\
& H_{i}=\left\{z^{i} \in L^{2}(\Omega): \partial_{x_{1}} z^{i} \in L^{2}(\Omega), z^{i}=0 \text { on } S_{0} \cup S_{L}\right\}, \\
& H_{e}=\left\{z^{e} \in L^{2}(\Omega): \nabla z^{e} \in L^{2}(\Omega)^{3}, z^{e}=0 \text { on } S_{0} \cup S_{L}\right\}, \\
& X_{0}=\left\{w=z^{i}-z^{e}: z^{i} \in H_{i}, z^{e} \in H_{e}\right\} .
\end{aligned}
$$

The norm in H_{i} is given by

$$
\|z\|_{H_{i}}^{2}=\int_{\Omega}|z|^{2} d x+\int_{\Omega}\left|\partial_{x_{1}} z\right|^{2} d x
$$

For the one associated to H_{e}, we adopt the standard H^{1}-norm. For each element $w_{0} \in$ X_{0}, we associate a unique pair $\left(\widetilde{z}_{0}^{i}, \widetilde{z}_{0}^{e}\right) \in H_{i} \times H_{e}$ solving the following problem

$$
\begin{array}{rlrl}
-a_{i}^{\text {eff }} \partial_{x_{1} x_{1}}^{2} \widetilde{z}_{0}^{i} & =\operatorname{div}\left(a_{e}^{\mathrm{eff}} \nabla \widetilde{z}_{0}^{e}\right), & & x \in \Omega, \\
\widetilde{z}_{0}^{i}-\widetilde{z}_{0}^{e} & =w_{0}, & x \in \Omega, \tag{4.34}\\
a_{e}^{\text {eff }} \nabla \widetilde{z}_{0}^{e} \cdot \nu & =0, & x \in \Sigma, \\
\widetilde{z}_{0}^{i}=\widetilde{z}_{0}^{e} & =0, & x \in S_{0} \cup S_{L} .
\end{array}
$$

The pair $\left(\widetilde{z}_{0}^{i}, \widetilde{z}_{0}^{e}\right)$ can be determined by solving the minimization problem

$$
\left\|w_{0}\right\|_{W_{0}}^{2}:=\inf \left\{\int_{\Omega} a_{i}^{\mathrm{eff}}\left|\partial_{x_{1}} \widetilde{z}_{0}^{i}\right|^{2} d x+\int_{\Omega} a_{e}^{\mathrm{eff}} \nabla \widetilde{z}_{0}^{e} \cdot \nabla \widetilde{z}_{0}^{e} d x \mid \widetilde{z}_{0}^{i} \in W_{i}, \widetilde{z}_{0}^{e} \in W_{e}\right\}
$$

Note that W_{0} is a Hilbert space with a scalar product given by

$$
\left(w_{1}, w_{2}\right)_{W_{0}}=\int_{\Omega} a_{i}^{\mathrm{eff}} \partial_{x_{1}} z_{1}^{i} \partial_{x_{1}} z_{2}^{i} d x+\int_{\Omega} a_{e}^{\mathrm{eff}} \nabla z_{1}^{e} \cdot \nabla z_{2}^{e} d x
$$

where $\left(z_{1}^{i}, z_{1}^{e}\right)$ and $\left(z_{2}^{i}, z_{2}^{e}\right)$ solve (4.34) for w_{1}, w_{2} given. Now (4.33) is written in the form

$$
\partial_{t}\binom{w_{0}}{h_{0}}+\binom{\frac{1}{c_{m}} A_{\mathrm{eff}} w_{0}+\frac{1}{c_{m}}\left(\frac{e^{2 \lambda t}}{3} w_{0}^{3}-w_{0}-h_{0}\right)+\lambda w_{0}}{(b+\lambda) h_{0}-\theta w_{0}}=e^{-\lambda t}\binom{a_{i}^{\text {eff }} \partial_{x_{1} x_{1}}^{2} q_{0}}{a}
$$

where the operator $A_{\text {eff }}$ defined on smooth functions w_{0} by

$$
\left(A_{\mathrm{eff}} w_{0},[\psi]\right)_{L^{2}(\Omega)}:=\frac{1}{c_{m}} \int_{\Omega} a_{i}^{\mathrm{eff}} \partial_{x_{1}} \widetilde{z}_{0}^{i} \partial_{x_{1}} \psi^{i} d x+\frac{1}{c_{m}} \int_{\Omega} a_{e}^{\mathrm{eff}} \nabla \widetilde{z}_{0}^{e} \cdot \nabla \psi^{e} d x
$$

and $\left(\widetilde{z}_{0}^{i}, \widetilde{z}_{0}^{e}\right)$ solve (4.34). In operator form one writes

$$
\begin{align*}
& \partial_{t} W_{0}+\mathbb{A}_{0}\left(t, W_{0}\right)=F_{0}(t), \quad(t, x) \in(0, T) \times \Omega, \tag{4.35}\\
& W_{0}(0, x)=W_{0}^{0}(x), \quad x \in \Omega
\end{align*}
$$

Therein, we have the following operators

$$
\mathbb{A}_{0}\left(t, W_{0}\right):=B_{0}^{(1)}\left(t, W_{0}\right)+B_{0}^{(2)}\left(t, W_{0}\right)
$$

$$
\begin{aligned}
B_{0}^{(1)}\left(t, W_{0}\right) & :=\binom{\frac{1}{c_{m}} A_{\mathrm{eff}} w_{0}+\left(\lambda-\frac{1}{c_{m}}\right) w_{0}-\frac{1}{c_{m}} h_{0}}{(b+\lambda) h_{0}-\theta w_{0}} \\
B_{0}^{(2)}\left(t, W_{0}\right) & :=\binom{\frac{e^{2 \lambda t}}{3 c_{m}} w_{0}^{3}}{0} \\
F_{0}(t) & :=e^{-\lambda t}\binom{a_{i}^{\mathrm{eff}} \partial_{x_{1} x_{1}}^{2} q_{0}}{a}
\end{aligned}
$$

Introducing the spaces

$$
\begin{aligned}
& H_{0}=L^{2}(\Omega) \times L^{2}(\Omega) \\
& V_{1}=X_{0} \times L^{2}(\Omega), \quad V_{1}^{\prime}=X_{0}^{\prime} \times L^{2}(\Omega) \\
& V_{2}=L^{4}(\Omega) \times L^{2}(\Omega), \quad V_{2}^{\prime}=L^{4 / 3}(\Omega) \times L^{2}(\Omega)
\end{aligned}
$$

we can prove the existence of a unique solution $W_{0} \in L^{\infty}\left((0, T) ; H_{0}\right) \cap L^{2}\left((0, T) ; V_{1}\right) \cap$ $L^{4}\left((0, T) ; V_{2}\right)$ to problem (4.35). It follows, as in Section 4.3.2, from Theorem 1.4 in (Lions, 1969) and Remark 1.8 in Chapter 2.

4.6. Formal asymptotic expansions

So as to provide an insight on how the effective coefficients and the corresponding cell problems in (4.2) appear, we apply the formal asymptotic expansion method to the stationary problem $A_{\varepsilon} v_{\varepsilon}=\varepsilon f$ for some smooth function $f=f(x)$. Specifically, we write

$$
\begin{array}{ll}
-\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon}\right)=0, & x \in \Omega_{\varepsilon}^{i} \cup \Omega_{\varepsilon}^{e}, \\
a_{e} \nabla u_{\varepsilon}^{e} \cdot \nu=a_{i} \nabla u_{\varepsilon}^{i} \cdot \nu=\varepsilon f(x), & x \in \Gamma_{\varepsilon}, \\
u_{\varepsilon}^{i}-u_{\varepsilon}^{e}=v_{\varepsilon}, & x \in \Gamma_{\varepsilon}, \tag{4.36}\\
a_{e} \nabla u_{\varepsilon} \cdot \nu=0, & x \in \Gamma_{\varepsilon}^{m} \cup \Sigma, \\
u_{\varepsilon}=0, & x \in\left(S_{0} \cup S_{L}\right) .
\end{array}
$$

Take

$$
u_{\varepsilon}^{l}(x) \sim u_{0}^{l}(x, y)+\varepsilon u_{1}^{l}(x, y)+\varepsilon^{2} u_{2}^{l}(x, y)+\ldots, \quad y=\frac{x}{\varepsilon},
$$

where $x \in \Omega_{\varepsilon}^{l}$ and $y \in Y_{l}, l \in\{i, e\}$. Then we get

$$
\begin{aligned}
\operatorname{div}\left(a_{l} \nabla u_{\varepsilon}^{l}\right) & \sim \frac{1}{\varepsilon^{2}} \operatorname{div}_{y}\left(a_{l} \nabla_{y} u_{0}^{l}\right) \\
& +\frac{1}{\varepsilon}\left(\operatorname{div}_{y}\left(a_{l} \nabla_{x} u_{0}^{l}\right)+\operatorname{div}_{y}\left(a_{l} \nabla_{y} u_{1}^{l}\right)+\operatorname{div}_{x}\left(a_{l} \nabla_{y} u_{0}^{l}\right)\right) \\
& +\operatorname{div}_{x}\left(a_{l} \nabla_{x} u_{0}^{l}\right)+\operatorname{div}_{x}\left(a_{l} \nabla_{y} u_{1}^{l}\right)+\operatorname{div}_{y}\left(a_{l} \nabla_{x} u_{1}^{l}\right)+\operatorname{div}_{y}\left(a_{l} \nabla_{y} u_{2}^{l}\right) \\
& \left.\left.\left.+\varepsilon\left(\operatorname{div}_{x}\left(a_{l} \nabla_{x} u_{1}^{l}\right)\right)+\operatorname{div}_{x}\left(a_{l} \nabla_{y} u_{2}^{l}\right)\right)+\operatorname{div}_{y}\left(a_{l} \nabla_{x} u_{2}^{l}\right)\right)\right) \\
& +\varepsilon^{2} \operatorname{div}_{x}\left(a_{l} \nabla_{x} u_{2}^{l}\right) .
\end{aligned}
$$

Taking the terms of order ε^{-2} in the volume and the ones of order ε^{-1} on the boundary, we obtain the following problem for u_{0}^{l} :

$$
\begin{array}{ll}
-\operatorname{div}_{y}\left(a_{l} \nabla_{y} u_{0}^{l}\right)=0, & y \in Y_{l}, \\
a_{l} \nabla_{y} u_{0}^{l}=0 & y \in \Gamma \cup \Gamma^{m}, \\
u_{0}^{i} \text { is 1-periodic in } y_{1}, & \\
\text { and } u_{0}^{e} \text { is } Y \text {-periodic. } &
\end{array}
$$

The solution (defined up to an additive constant) does not depend on the fast variable $y:$

$$
\begin{equation*}
u_{0}^{l}(x, y)=u_{0}^{l}(x), \quad l=i, e . \tag{4.37}
\end{equation*}
$$

For the next step, we take the terms of order ε^{-1} in the volume and those of order 1 on the boundary:

$$
\begin{array}{cl}
-\operatorname{div}_{y}\left(a_{l} \nabla_{y} u_{1}^{l}\right)=0, & y \in Y_{l} \\
a_{l} \nabla_{y} u_{1}^{l} \cdot \nu=-a_{l} \nabla_{x} u_{0}^{l} \cdot \nu, & y \in \Gamma \cup \Gamma_{m}, \tag{4.38}
\end{array}
$$

$$
\begin{aligned}
& u_{1}^{i} \text { is 1-periodic in } y_{1} \\
& \text { and } u_{1}^{e} \text { is } Y \text {-periodic. }
\end{aligned}
$$

The solvability condition reads $-\int_{\Gamma} a_{l} \nabla_{x} u_{0}^{l} \cdot \nu=0$, which is fulfilled thanks to (4.37). By seeking a solution of (4.38) in the form $u_{1}^{l}(x, y)=\mathbf{N}^{l}(y) \cdot \nabla_{x} u_{0}^{l}(x)$, we obtain

$$
a^{l} \nabla_{y} u_{1}^{l}(x, y) \cdot \nu=a^{l} \partial_{y_{j}} N_{i}^{l}(y) \nu_{j} \partial_{x_{i}} u_{0}^{l}(x)
$$

where we assume summation over the repeated indexes. The boundary condition in (4.38) yields a boundary condition for N_{i} on $\Gamma \cup \Gamma_{m}$:

$$
\left(\partial_{y_{j}} N_{i}^{l}(y)+\delta_{i, j}\right) \nu_{j}=0
$$

Then, the functions $N_{k}^{e}, k=1,2,3$, solve the cell problems:

$$
\begin{array}{cl}
-\Delta N_{k}^{e}=0, & y \in Y_{e}, \\
\nabla N_{k}^{e} \cdot \nu=-\nu_{k}, & y \in \Gamma \cup \Gamma_{m}, \tag{4.39}\\
y \mapsto N_{k}^{e}(y) \text { is } Y-\text { periodic; } &
\end{array}
$$

For the functions N_{k}^{i}, due to the periodicity in only one variable y_{1}, one can see that $N_{k}^{i}(y)=-y_{k}$ for $k \neq 1$, that yields $\partial_{l \neq k} N_{k}^{i}=0$. The first component N_{1}^{i} solves the problem

$$
\begin{array}{cl}
-\Delta N_{1}^{i}=0, & y \in Y_{i}, \\
\nabla N_{1}^{i} \cdot \nu=-\nu_{1}, & y \in \Gamma \cup \Gamma_{m}, \tag{4.40}\\
y \mapsto N_{1}^{i}(y) \text { is } 1-\text { periodic; } &
\end{array}
$$

Finally, taking the terms of order 1 in the volume and the ones of order ϵ^{1} on the boundary, we obtain the following problem for u_{2}^{l} :

$$
-\operatorname{div}_{y}\left(a^{l} \nabla_{y} u_{2}^{l}\right)=\operatorname{div}_{x}\left(a^{l} \nabla_{x} u_{0}^{l}\right)+\operatorname{div}_{x}\left(a^{l} \nabla_{y} u_{1}^{l}\right)+\operatorname{div}_{y}\left(a^{l} \nabla_{x} u_{1}^{l}\right), \quad y \in Y_{l}
$$

$$
\begin{array}{ll}
a^{l} \nabla_{y} u_{2}^{l} \cdot \nu^{l}=-a^{l} \nabla_{x} u_{1}^{l} \cdot \nu^{l}+f(x), & y \in \Gamma, \\
a^{l} \nabla_{y} u_{2}^{l} \cdot \nu=0, & y \in \Gamma_{m}, \\
u_{2}^{i} \text { is 1-periodic in } y_{1} & \\
\text { and } u_{2}^{e} \text { is } Y \text {-periodic. } &
\end{array}
$$

Here ν^{l} is the exterior unit normal, and $\nu^{e}=-\nu^{i}$ on Γ. The solvability condition reads

$$
\int_{Y_{l}}\left(\operatorname{div}_{x}\left(a^{l} \nabla_{x} u_{0}^{l}\right)+\operatorname{div}_{x}\left(a^{l} \nabla_{y} u_{1}^{l}\right)+\operatorname{div}_{y}\left(a^{l} \nabla_{x} u_{1}^{l}\right)\right) d Y-\int_{\Gamma} a^{l} \nabla_{x} u_{2}^{l} \cdot \nu^{l} d \sigma=0 .
$$

Integrating by parts in the third term of the volume integral, substituting the expression $u_{1}^{l}(x, y)=N_{i}^{l}(y) \partial_{x_{i}} u_{0}^{l}(x)$, and taking into account that $N_{k}^{i}(y)=-y_{k}$ and $\int_{Y_{i}} \partial_{l \neq 1} N_{1}^{i} d y=$ 0 , we obtain

$$
\begin{aligned}
-\partial_{k j} u_{0}^{e}(x) \int_{Y_{e}} a^{e}\left(\partial_{j} N_{k}^{e}(y)+\delta_{k j}\right) d y & =|\Gamma| f(x) \\
\left|Y_{i}\right| a_{i} \partial_{11} u_{0}^{i}(x) & =|\Gamma| f(x)
\end{aligned}
$$

Introducing the effective coefficient

$$
\left(a_{e}^{\mathrm{eff}}\right)_{k l}=\frac{1}{|\Gamma|} \int_{Y_{e}} a_{e}\left(\partial_{l} N_{k}^{e}(y)+\delta_{k l}\right) d y, \quad k, l=1,2,3
$$

and adding the boundary conditions on $S_{0} \cup S_{L}$ and Σ, we arrive at

$$
\begin{array}{ll}
\frac{\left|Y_{i}\right|}{|\Gamma|} a_{i} \partial_{11} u_{0}^{i}=-a_{e}^{\mathrm{eff}} \Delta u_{0}^{e}=f(x), & x \in \Omega, \\
u_{0}^{i, e}=0, & x \in S_{0} \cup S_{L}, \\
a_{e}^{\mathrm{eff}} \nabla u^{e} \cdot \nu=0, & x \in \Sigma .
\end{array}
$$

Acknowledgments

This work is supported by Swedish Foundation for International Cooperation in Research and Higher education (STINT) with Agencia Nacional de Investigación y Desarrollo (ANID), Chile, through project CS2018-7908 (El Nervio - Modeling Of Ephaptic Coupling Of Myelinated Neurons) and Wenner-Gren Foundation.

5. CELL ELECTROPERMEABILIZATION MODELING VIA MULTIPLE TRACES FORMULATION AND TIME SEMI-IMPLICIT COUPLING

In the present chapter we simulate the response of biological cells to electrical stimulation in the electropermeabilization process.

The chapter is based on the submitted article: Martínez, I. A., Jerez-Hanckes, C. and Pettersson, I., Cell Electropermeabilization Modeling via Multiple Traces Formulation and Time Semi-Implicit Coupling.

5.1. Introduction

Electropermeabilization designates the use of short high-voltage or electric field pulses to increase the permeability of the cell membrane (Kotnik et al., 2019; Rols, 2006). This process is used to deliver therapeutic molecules, such as drugs and genes, into cells to treat cancer, perform genetic engineering, screen drugs, among others applications (Kim \& Lee, 2017), (Choi et al., 2022, Section 4).

Theoretically, several models have been proposed to explain the reversible membrane electropermeabilization mechanism and its potential to allow the access of non-permeant molecules into the cell. However, none of these models has rigorously proven the phenomenon. For instance, during electropermeabilization it is thought that aqueous pores are formed along the cell membrane-a process known as electroporation-thereby increasing the permeability of the membrane. Yet, this has not been experimentally observed to occur for the commonly employed voltages. The pores are either too small to be seen by optical microscopy and too fragile for electron imaging. Only molecular dynamics simulations have been able to provide a corroboration of pore formation (Kotnik et al., 2019, Section 3), (Choi et al., 2022, Section 2.1). Moreover, the application of external electric pulses triggers other physical and chemical cell mechanisms, many of them not fully understood, with complex interactions at multiple length scales, from nanometers at the cell membrane to centimeters in tissues (Kotnik et al., 2019). "Therefore, while the term electroporation
is commonly used among biologists, the term electropermeabilization should be preferred in order to prevent any molecular description of the phenomenon" (Rols, 2006).

Still, mathematical models and numerical methods have been used to gain a better understanding of the different underlying phenomena. For instance, Neu and Krassowska (J. C. Neu \& Krassowska, 1999) consider a pure electroporation process by modeling the nanoscale phenomena involved in the creation and resealing of the cell membrane pores, and apply homogenization theory to derive nonlinear time dynamics occurring at the membrane. Well-posedness of the Neu-Krassowska model and a new model including anisotropies are derived in (Ammari et al., 2016). Alternatively, in (Kavian et al., 2014) the authors propose a phenomenological model that forgoes the ab initio understanding of the mechanisms involved. A more complete phenomenological model considers two different stages in the electroporation process: conducting and permeable (Leguèbe et al., 2014). This model also takes into account the diffusion and electric transport of non-permeable molecules. In (Guittet et al., 2017; Mistani et al., 2019), the authors discard particle diffusion and transport in (Leguèbe et al., 2014) to then apply the Voronoi Interface Method (Guittet et al., 2015) for its numerical approximation. Specifically, they construct a Voronoi mesh of the volume which when coupled to a ghost fluid method (Liu et al., 2000) is able to capture discontinuous boundary conditions. Further computational enhancements via parallelization are given in (Mistani et al., 2019).

Instead of solving the volume boundary value problem, we reduce the problem to solving boundary integral equations onto cell membranes via the local Multiple Traces Formulation (MTF) (Hiptmair \& Jerez-Hanckes, 2012; Claeys, Hiptmair, \& Jerez-Hanckes, 2013; Hiptmair, Jerez-Hanckes, Lee, \& Peng, 2014; Claeys, Hiptmair, Jerez-Hanckes, \& Pintarelli, 2015; Jerez-Hanckes, Pinto, \& Tournier, 2015). Originally introduced to solve acoustic wave transmission problems in heterogeneous scatterers, the local MTF considers independent trace unknowns at either side of the subdomains' boundaries to then enforce continuity conditions weakly via Calderón identities. In (Henríquez et al., 2017; Henríquez \& Jerez-Hanckes, 2018) the method was successfully applied to model the electrical behavior of neurons by coupling the Laplace boundary integral operators with Hodgkin-Huxley
nonlinear dynamics. The volume Laplace equations in intra- and extracellular media arises when assuming a quasi-static electromagnetic regime and one can show that for 2D and 3D the model is well posed. Numerically, the authors prove stability and convergence of time semi-implicit discretizations with low- and high (spectral) order spatial boundary unknown representations. Furthermore, the numerical method proposed can be extended to model other nonlinear dynamics.

Following (Henríquez et al., 2017; Henríquez \& Jerez-Hanckes, 2018), we employ the MTF to simulate the electric potential response of a fixed number of disjoint cells in three dimensions when they are subject to electric pulses. Spatially, the boundary unknowns will be approximated by spherical harmonics, thereby allowing for spectral convergence rates. The nonlinear dynamics of the cell membrane follow (Kavian et al., 2014).

The rest of the paper is organized as follows. In Section 5.2 we introduce necessary functional spaces. In Section 5.3 we formulate the problem and the corresponding nonlinear dynamic model, and derive its boundary integral MTF. In Section 5.4, we present a numerical scheme for spatial and time-domain discretizations, as well as discuss advantages and limitations of the proposed method. Computational results are provided in Section 5.5. Code validation experiments with analytic and overkill solutions confirm our theoretical results and open new avenues of research.

5.2. Functional spaces

The scalar product of two vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}, d=2,3$, is denoted by $\mathbf{x} \cdot \mathbf{y}$, and $\|\cdot\|_{2}$ denotes the Euclidean norm. We denote also by \mathbf{x}^{t} the transpose of \mathbf{x}. We write $\delta_{m, l}$ for the Kronecker delta.

Let $\Omega \subset \mathbb{R}^{d}, d=1,2,3$, be an open non-empty domain with a Lipschitz boundary Γ. In general, we will consider real-valued functional spaces. $C^{0}(\Omega)$ is the space of continuous functions, and $C^{\infty}(\Omega)$ is its subspace of infinitely differentiable functions in Ω. The support of a function $u \in C(\Omega)^{0}$ is defined as $\operatorname{supp}(u):=\overline{\{\mathbf{x} \in \Omega: u(\mathbf{x}) \neq 0\}}$. Then, $C_{0}^{\infty}(\Omega):=\left\{u \in C^{\infty}(\Omega): \operatorname{supp}(u) \Subset \Omega\right\}$, and $C_{\text {comp }}^{\infty}(\Omega):=\left.C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\right|_{\Omega}$ (Sauter \& Schwab,

2010, Section 2.3). The dual of $C_{0}^{\infty}(\Omega)$ is the space of distributions or linear functionals on Ω, denoted $\mathcal{D}^{\prime}(\Omega)$.

Let $\varphi \in C_{0}^{\infty}(\Omega)$ and $\alpha=\left(\alpha_{1}, \alpha_{2} \ldots, \alpha_{d}\right)$ a multi-index with $\alpha_{i} \geq 0$ integer numbers, such that $|\alpha|=\sum_{i=1}^{d} \alpha_{i}$. With multi-index notation, we write the derivative as

$$
D^{\alpha} \varphi=\frac{\partial^{|\alpha|} \varphi}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}} .
$$

We denote by $L^{p}(\Omega)$ the class of measurable functions with a finite L^{p}-norm $\|u\|_{L^{p}(\Omega)}=$ $\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}}$. We say that $g_{\alpha} \in L^{p}(\Omega)$ is a generalized derivative of $u \in L^{p}(\Omega)$ if

$$
\int_{\Omega} u D^{\alpha} \varphi d \mathbf{x}=(-1)^{|\alpha|} \int_{\Omega} g_{\alpha} \varphi d \mathbf{x}, \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

and we write $D^{\alpha} u:=g_{\alpha}$. For $m \in \mathbb{Z}, m \geq 1$, and $1 \leq p<\infty$, the Sobolev spaces $W^{m, p}(\Omega)$ can be defined as (Brezis, 2011, Section 9.1)

$$
W^{m, p}(\Omega)=\left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega),|\alpha| \leq m\right\}
$$

The norm for $p=\infty$ is defined by

$$
\|f\|_{L^{\infty}(\Omega)}:=\inf \{M \geq 0:|f| \leq M \text { almost everywhere in } \Omega\} .
$$

Notice that $L^{2}(\Omega)$ corresponds to $W^{0,2}(\Omega)$. For $s \in \mathbb{R}$, we recall the standard Sobolev spaces $H^{s}(\Omega)$, with $H^{0}(\Omega)=L^{2}(\Omega)$ (Sauter \& Schwab, 2010, Section 2.3). For $s \geq 0$, the space $H_{l o c}^{s}(\Omega)$ consists of continuous linear functionals (distributions) on $C_{\text {comp }}^{\infty}(\Omega)$ whose restriction to every compact set $K \subset \Omega$ lies in $H^{s}(K)$ (Sauter \& Schwab, 2010, Section 2.6). Also, we recall the following space (Hiptmair \& Jerez-Hanckes, 2012, Section 2.2)

$$
H_{l o c}^{s}(\Delta, \Omega):=\left\{u \in H_{l o c}^{s}(\Omega): \Delta u \in L_{l o c}^{2}(\Omega)\right\} .
$$

The duality product between a Banach space X and its dual X^{\prime} is denoted by $\langle\cdot, \cdot\rangle_{X \times X^{\prime}}$. The inner product in a Hilbert space H is written $(\cdot, \cdot)_{H}$. We will also write I for the identity operator mapping.

For $T>0$ and a Hilbert space $H, C^{k}([0, T] ; H), k \in \mathbb{N}_{0}$, denotes the space of k times differentiable continuous functions in t with a bounded H-norm for all $t \in[0, T]$. $L^{p}([0, T] ; H)$ is the space of Lebesgue measurable functions with

$$
\|f\|_{L^{p}([0, T] ; H)}^{p}=\int_{0}^{T}\|f(t)\|_{H}^{p} d t<\infty, \quad p \in[1, \infty)
$$

These spaces are also referred to as a Bochner spaces.
For $u \in C^{\infty}(\bar{\Omega})$, Dirichlet and Neumann traces operators are defined as

$$
\gamma_{D} u:=\left.u\right|_{\Gamma}, \quad \gamma_{N} u:=\left.\nabla u\right|_{\Gamma} \cdot \widehat{\mathbf{n}},
$$

where $\widehat{\mathbf{n}}$ is the exterior unit normal. For a Lipschitz Γ, the Dirichlet trace has a unique extension to a linear and continuous operator $\gamma_{D}: H_{l o c}^{1}(\Omega) \rightarrow L^{2}(\Gamma)$. The image of this operator is dense and is denoted by $H^{\frac{1}{2}}(\Gamma)$. The norm is given by

$$
\|v\|_{H^{\frac{1}{2}}(\Gamma)}:=\left\{\|u\|_{H^{1}(\Omega)}: \gamma_{D} u=v\right\} .
$$

The space of bounded linear functionals on $H^{\frac{1}{2}}(\Gamma)$ is denoted by $H^{-\frac{1}{2}}(\Gamma)$. One can also show that the Neumann trace operator $\gamma_{N}: H_{l o c}^{1}(\Delta, \Omega) \rightarrow H^{-\frac{1}{2}}(\Gamma)$ is continuous (see (Sauter \& Schwab, 2010, Section 2.6 to 2.8)). $H^{\frac{1}{2}}(\Gamma)$ and $H^{-\frac{1}{2}}(\Gamma)$ are referred to as Dirichlet and Neumann trace spaces, respectively (Sauter \& Schwab, 2010, Sections 2.4, 2.6 and 2.7). The proof of the proposition below can be found in (Sauter \& Schwab, 2010, Proposition 2.5.2).

Proposition 5.1. The triple

$$
H^{\frac{1}{2}}(\Gamma) \subset L^{2}(\Gamma) \subset H^{-\frac{1}{2}}(\Gamma)
$$

is a Gelfand triple, i.e. the spaces are continuously and densely embedded. Therefore, the inner product $(\cdot, \cdot)_{L^{2}(\Gamma)}$ can be continuously extended to dual pairings on $H^{\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma)$ and $H^{-\frac{1}{2}}(\Gamma) \times H^{\frac{1}{2}}(\Gamma)$.

5.3. Problem Statement and Boundary Integral Formulation

We now present a continuous model used for the electropermeabilization process. The main reference for the nonlinear dynamics is (Kavian et al., 2014), while for the boundary integral formulation used we follow (Hiptmair \& Jerez-Hanckes, 2012; Henríquez \& JerezHanckes, 2018; Henríquez et al., 2017).

We consider the electric interaction of $\mathcal{N} \in \mathbb{N}$ disjoint spherical cells located at $\mathbf{p}_{\mathbf{j}} \in$ \mathbb{R}^{3} with radii $R_{j} \in \mathbb{R}^{+}, j \in\{1, \ldots, \mathcal{N}\}$. We define the interior space of the j th cell by $\Omega_{j}:=\left\{\mathbf{x} \in \mathbb{R}^{3}:\left\|\mathbf{x}-\mathbf{p}_{\mathbf{j}}\right\|_{2}<R_{j}\right\}$, with its membrane being the boundary $\Gamma_{j}:=\partial \Omega_{j}=$ $\left\{\mathrm{x} \in \mathbb{R}^{3}:\left\|\mathrm{x}-\mathbf{p}_{\mathbf{j}}\right\|_{2}=R_{j}\right\}$. The extracellular medium is defined as the complement to the intracellular domain:

$$
\Omega_{0}:=\mathbb{R}^{3} \backslash \bigcup_{j=1}^{\mathcal{N}} \bar{\Omega}_{j}
$$

An illustration of the geometry for three cells is presented in Figure 5-1.

5.3.1. Cell Electropermeabilization Model

We now describe a quasi-static electromagnetic problem in intra- and extracellular domains coupled with non-linear dynamics at the cells' membranes described below. This coupling relies on enforcing adequate transmission conditions for potentials and currents across the cells.

For $j \in\{0, \ldots, N\}$, each cell Ω_{j} is assumed to have constant conductivity $\sigma_{j} \in \mathbb{R}^{+}$. We consider a quasi-static electromagnetic regime, i.e. the frequency of the electric fields is low enough to discard any time delay in electromagnetic wave propagation (cf. (Plonsey \& Heppner, 1967) and references therein). Thus, the Maxwell equations can be simplified in the intra- and extracellular media, and the problem is reduced to a boundary-value problem for electric potentials.

For $T \in \mathbb{R}^{+}$, let $\phi_{e}:[0, T] \times \Omega_{0} \rightarrow \mathbb{R}$ be a given external potential, which represents an external electric stimulation. Let $u_{0}:[0, T] \times \Omega_{0} \rightarrow \mathbb{R}$ be the electric potential without excitation in the extracellular medium, so that total external potential is $u_{0}^{t o t}:=u_{0}+\phi_{e}$.

Figure 5-1. A system of three cells $\mathcal{N}=3$.

We denote $u_{j}:[0, T] \times \Omega_{j} \rightarrow \mathbb{R}, j \in\{1, \ldots, \mathcal{N}\}$, the electric potential inside the j :th cell, as illustrated in Figure 5-1. On the cell membranes Γ_{j}, the potential is discontinuous, and the difference $v_{j}:=u_{j}-u_{0}$ is called the membrane or transmembrane potential. At the same time, the flux is assumed to be continuous. These assumptions are well known in electrophysiological models (see (J. C. Neu \& Krassowska, 1999; Ammari et al., 2016; Henríquez \& Jerez-Hanckes, 2018; Henríquez et al., 2017; Guittet et al., 2017; Mistani et al., 2019; Leguèbe et al., 2014; Kavian et al., 2014). The assumption of the quasi-static regime and the aforementioned transmission conditions yield

$$
\begin{aligned}
\operatorname{div}\left(\sigma_{j} \nabla u_{j}\right) & =0, & & (t, \mathbf{x}) \in[0, T] \times \Omega_{j}, j \in\{0, \ldots, \mathcal{N}\}, \\
-\gamma_{D}^{0 j} u_{0}+\gamma_{D}^{j} u_{j} & =v_{j}+\gamma_{D}^{0 j} \phi_{e}, & & (t, \mathbf{x}) \in[0, T] \times \Gamma_{j}, j \in\{1, \ldots, \mathcal{N}\}, \\
\sigma_{0} \gamma_{N}^{0 j} u_{0}+\sigma_{j} \gamma_{N}^{j} u_{j} & =-\sigma_{0} \gamma_{N}^{0 j} \phi_{e}, & & (t, \mathbf{x}) \in[0, T] \times \Gamma_{j}, j \in\{1, \ldots, \mathcal{N}\} .
\end{aligned}
$$

The Dirichlet and Neumann operators used in the last two equations are defined in Section 5.2 for a general domain Ω with boundary Γ. One should keep in mind that they only act in the spatial variable x. For a collection of spheres, we have added super-indices to emphasize where the traces are taken from: $0 j$ for the trace arising from Ω_{0} to Γ_{j}, and j for the one from Ω_{j} to Γ_{j}.

As mentioned in the introduction, there are different models of the nonlinear dynamics for the electro-permeabilization process. We adopt the phenomenological model presented
in (Kavian et al., 2014) at each cell $j \in\{1, \ldots, \mathcal{N}\}$, which takes the form:

$$
\begin{aligned}
c_{m, j} \partial_{t} v_{j}+I_{j}^{e p}\left(v_{j}, Z_{j}\right) & =-\sigma_{j} \gamma_{N}^{j} u_{j} & & \text { on }[0, T] \times \Gamma_{j}, \\
I_{j}^{e p}\left(v_{j}, Z_{j}\right) & =v_{j}\left(S_{L, j}+Z_{j}\left(t, v_{j}(t, \mathbf{x})\right)\left(S_{i r, j}-S_{L, j}\right)\right) & & \text { on }[0, T] \times \Gamma_{j},
\end{aligned}
$$

with $c_{m, j}$ denoting the membrane capacitance per unit area, and $I_{j}^{e p}$ being the electropermeabilization current. This last quantity depends on the transmembrane potential v_{j} and a C^{1}-function $Z_{j}:[0, T] \times \Gamma_{j} \rightarrow[0,1]$ (cf. (Kavian et al., 2014, Lemma 7)). For brevity, and slightly abusing the notations, we write $Z_{j}(t, \mathbf{x})$ instead of $Z_{j}\left(t, v_{j}(t, \mathbf{x})\right)$. The variable $Z_{j}(t, \mathbf{x})$ "measures in some way the likelihood that a given infinitesimal portion of the membrane is going to be electropermeabilized" (Kavian et al., 2014, p 247). Specifically, Z_{j} enforces the surface membrane conductivity to take values between two parameters: the surface conductivity $S_{i r, j}$ for which the electropermeabilization process becomes irreversible, and the lipid surface conductivity $S_{L, j}$. Indeed, when $Z_{j}=0$, the membrane conductivity equals the lipid conductivity, and there is no electropermeabilization; if $Z_{j}=1$, the membrane conductivity takes the maximal value above which electropermeabilization is irreversible. Following (Kavian et al., 2014), Z_{j} satisfies the ordinary differential equation:

$$
\frac{\partial}{\partial t} Z_{j}(t, \lambda)=\max \left(\frac{\beta_{j}(\lambda)-Z_{j}(t, \lambda)}{\tau_{e p, j}}, \frac{\beta_{j}(\lambda)-Z_{j}(t, \lambda)}{\tau_{r e s, j}}\right) .
$$

Here, $\beta_{j} \in W^{1, \infty}(\mathbb{R} ;[0,1])$. If $\beta_{j}\left(v_{j}\right)-Z_{j}\left(t, v_{j}\right)$ is positive, the electric pulse is sufficiently high to enlarge the electropermeabilized region with a characteristic time $\tau_{e p, j}$. Contrarily, if $\beta_{j}\left(v_{j}\right)-Z_{j}\left(t, v_{j}\right)$ is negative, the pulse is not high enough to increase the electropermeabilization and the membrane tries to return to its resting state, with a characteristic resealing time $\tau_{\text {res }, j}$. Experimental observations suggest that $\tau_{\text {res }, j}>\tau_{\text {ep }, j}$.

REMARK 5.1. The model for the dynamics of Z_{j} is similar to a sliding door model as, instead of being either one or zero, the function can take any value in the interval $[0,1]$, as well as the function β_{j}.

The function β_{j} is defined by

$$
\begin{equation*}
\beta_{j}(v):=\frac{1+\tanh \left(k_{e p, j}\left(|v|-V_{r e v, j}\right)\right)}{2}, \tag{5.1}
\end{equation*}
$$

wherein two additional parameters are introduced: the electropermeabilization switch speed $k_{e p, j}$ between $S_{i r, j}$ and $S_{L, j}$, and $V_{r e v, j}$, the transmembrane potential threshold for electropermeabilization to occur. More generally, any function β_{j} satisfying the following conditions (Kavian et al., 2014) could be used in this model:

$$
\begin{align*}
& \beta_{j} \in W^{1, \infty}(\mathbb{R}) \tag{5.2a}\\
& v \beta_{j}^{\prime}(v) \in L^{\infty}(\mathbb{R}) \tag{5.2b}\\
& 0 \leq \beta_{j}(v) \leq 1 \tag{5.2c}\\
& \beta_{j} \text { is non decreasing in }(0, \infty), \tag{5.2d}\\
& \lim _{v \rightarrow \infty} \beta_{j}(v)=1 \tag{5.2e}
\end{align*}
$$

The chosen β_{j} (5.1) satisfies the above conditions. This can be checked by recalling the properties of the hyperbolic functions tanh : $\mathbb{R} \rightarrow[-1,1]$ and sech : $\mathbb{R} \rightarrow[0,1]$ (Olver, Lozier, Boisvert, Clark, \& National Institute of Standards and Technology (U.S.), 2010, Chapter 4):

$$
\begin{aligned}
& \tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \frac{d}{d x} \tanh (x)=\operatorname{sech}^{2}(x)=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}>0 \\
& \lim _{x \rightarrow \infty} \tanh (x)=1, \quad \lim _{x \rightarrow-\infty} \tanh (x)=-1
\end{aligned}
$$

In Figure 5-2, β_{j} is illustrated for two pairs of parameters.

REMARK 5.2. This model assumes that the threshold potential $V_{\text {rev }}$ is constant throughout the electropermeabilization process.

In summary, the electropermeabilization dynamic problem reads:

Figure 5-2. Values of $\beta_{j}\left(v_{j}\right)$ for two pairs of parameters. The parameters used in (a) are from (Kavian et al., 2014, Table 1), while the parameters used in (b) are chosen to show what happens with a smaller value of $k_{e p, j}$.

Problem 5.1. Given $T \in \mathbb{R}^{+}$, an external potential $\phi_{e} \in C\left([0, T], H_{l o c}^{1}\left(\Omega_{0}\right)\right)$, and the initial conditions $u_{j}^{0} \in H^{1}\left(\Omega_{j}\right)$, and $Z_{j}^{0} \in H^{\frac{1}{2}}\left(\Gamma_{j}\right)$, for $j=1, \ldots, \mathcal{N}$, we seek $u_{j} \in C\left([0, T], H^{1}\left(\Omega_{j}\right)\right), v_{j} \in C\left([0, T], H^{\frac{1}{2}}\left(\Gamma_{j}\right)\right)$, and $Z_{j} \in C\left([0, T], H^{\frac{1}{2}}\left(\Gamma_{j}\right)\right)$ for $j \in\{1, \ldots, \mathcal{N}\}$ such that for $t \in[0, T]$,

$$
\begin{array}{rlr}
\operatorname{div}\left(\sigma_{0} \nabla u_{0}\right)=0 & \text { in } \Omega_{0}, \\
\operatorname{div}\left(\sigma_{j} \nabla u_{j}\right)=0 & \text { in } \Omega_{j}, \\
-\gamma_{D}^{0 j} u_{0}+\gamma_{D}^{j} u_{j}=v_{j}+\gamma_{D}^{0 j} \phi_{e} & \text { on } \Gamma_{j}, \\
\sigma_{0} \gamma_{N}^{0 j} u_{0}+\sigma_{j} \gamma_{N}^{j} u_{j}=-\sigma_{0} \gamma_{N}^{0 j} \phi_{e} & \text { on } \Gamma_{j}, \\
c_{m, j} \partial_{t} v_{j}+I_{j}^{e p}\left(v_{j}, Z_{j}\right)=-\sigma_{j} \gamma_{N}^{j} u_{j} & \text { on } \Gamma_{j}, \\
u_{j}(0, \mathbf{x})=u_{j}^{0}, Z_{j}(0, \mathbf{x})=Z_{j}^{0} & \text { in } \Omega_{j} \\
u_{0}(0, \mathbf{x})=u_{0}^{0} & \text { in } \Omega_{0}, \\
u_{0} & \rightarrow \mathcal{O}\left(\|\mathbf{x}\|_{2}^{-1}\right) & \text { as }\|\mathbf{x}\|_{2} \rightarrow \infty, \tag{5.3h}
\end{array}
$$

with $I_{j}^{e p}$ defined as:

$$
\begin{equation*}
I_{j}^{e p}\left(v_{j}, Z_{j}\right)=v_{j}\left(S_{L, j}+Z_{j}\left(t, v_{j}\right)\left(S_{i r, j}-S_{L, j}\right)\right) \tag{5.4}
\end{equation*}
$$

where the $Z_{j}(t, \lambda)$ satisfy:

$$
\begin{equation*}
\frac{\partial}{\partial t} Z_{j}(t, \lambda)=\max \left(\frac{\beta_{j}(\lambda)-Z_{j}(t, \lambda)}{\tau_{e p, j}}, \frac{\beta_{j}(\lambda)-Z_{j}(t, \lambda)}{\tau_{r e s, j}}\right) \tag{5.5}
\end{equation*}
$$

with β_{j} given by (5.1), and parameters $\tau_{e p, j}, \tau_{\text {res }, j}$ described above.

As above, we write $Z_{j}(x, \mathbf{x})=Z_{j}\left(t, v_{j}(t, \mathbf{x})\right)$.
Observe that (5.3h) is the standard decay condition for the Laplace problem in three dimensions that guarantees that the problem is well posed.

REMARK 5.3. The parameters of each cell, $c_{m, j}, V_{e p, j}, \tau_{e p, j}$ and $\tau_{\text {res }, j}$ might differ from cell to cell. In practical applications, these parameters depend on the cell type, e.g., cancer cells possess material properties different from healthy cells in the same tissue (FernandezAranzamendi et al., 2022; Onemli et al., 2022).

5.3.2. Boundary integral formulation

Due to the unboundedness of the domain as well as the constant conductivity values inside intra- and extracellular domains, one can write Problem 5.1 using boundary integral operators, thereby reducing the volume problem to a boundary one as in (Hiptmair \& JerezHanckes, 2012; Henríquez et al., 2017; Henríquez \& Jerez-Hanckes, 2018). To accomplish this, we introduce boundary integral potentials and operators.

5.3.2.1. Boundary integral potential and operators

The free space fundamental solution of the Laplace equation for a source located at \mathbf{r}^{\prime} ((Jackson, 2013, Section 1.7)), satisfying the decay condition (5.3h) is

$$
g\left(\mathbf{r}, \mathbf{r}^{\prime}\right):=\frac{1}{4 \pi\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|_{2}}, \quad \mathbf{r} \neq \mathbf{r}^{\prime}
$$

We recall the standard single and double layer operators defined for smooth densities:

$$
\begin{aligned}
& D L_{0 j}(\psi)(\mathbf{r}):=\int_{\Gamma_{j}} \psi\left(\mathbf{r}^{\prime}\right) \nabla g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \cdot \widehat{\mathbf{n}}_{0 j} d S^{\prime}, \quad S L_{0 j}(\psi)(\mathbf{r}):=\int_{\Gamma_{j}} \psi\left(\mathbf{r}^{\prime}\right) g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d S^{\prime}, \\
& D L_{j}(\psi)(\mathbf{r}):=\int_{\Gamma_{j}} \psi\left(\mathbf{r}^{\prime}\right) \nabla g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \cdot \widehat{\mathbf{n}}_{j} d S^{\prime}, \quad S L_{j}(\psi)(\mathbf{r}):=\int_{\Gamma_{j}} \psi\left(\mathbf{r}^{\prime}\right) g\left(\mathbf{r}, \mathbf{r}^{\prime}\right) d S^{\prime},
\end{aligned}
$$

with the gradient being taken with respect to $\mathbf{r}^{\prime}, \widehat{\mathbf{n}}_{j}$ being the exterior normal vector of Ω_{j}, and $\widehat{\mathbf{n}}_{j}=-\widehat{\mathbf{n}}_{0 j}$. It can be shown that these operators are linear and continuous (cf. (Sauter \& Schwab, 2010, Section 3.1), (Henríquez \& Jerez-Hanckes, 2018, Section 3.1)), in the following Sobolev spaces:

$$
\begin{aligned}
D L_{0 j}: H^{\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H_{l o c}^{1}\left(\mathbb{R}^{3} \backslash \cup_{j=1}^{\mathcal{N}} \Gamma_{j}\right), & S L_{0 j}: H^{-\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H_{l o c}^{1}\left(\mathbb{R}^{3} \backslash \cup_{j=1}^{\mathcal{N}} \Gamma_{j}\right), \\
D L_{j}: H^{\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H_{l o c}^{1}\left(\mathbb{R}^{3} \backslash \cup_{j=1}^{\mathcal{N}} \Gamma_{j}\right), & S L_{j}: H^{-\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H_{l o c}^{1}\left(\mathbb{R}^{3} \backslash \cup_{j=1}^{\mathcal{N}} \Gamma_{j}\right) .
\end{aligned}
$$

We will write u_{j} in terms of these boundary potentials, and since we aim at rendering Problem 5.1 onto the cells' boundaries, we will take traces of these potentials. This leads to boundary integral operators (BIOs), which are defined by taking the following averages (Sauter \& Schwab, 2010, Section 3.1.2):

$$
\begin{align*}
V_{i, j}^{0} & :=\frac{1}{2}\left(\gamma_{D}^{i} S L_{0 j}+\gamma_{D}^{0 i} S L_{0 j}\right), & V_{j} & :=\frac{1}{2}\left(\gamma_{D}^{0 j} S L_{j}+\gamma_{D}^{j} S L_{j}\right), \\
K_{i, j}^{0} & :=\frac{1}{2}\left(\gamma_{D}^{i} D L_{0 j}+\gamma_{D}^{0 i} D L_{0 j}\right), & K_{j} & :=\frac{1}{2}\left(\gamma_{D}^{0 j} D L_{j}+\gamma_{D}^{j} D L_{j}\right), \tag{5.6}\\
K_{i, j}^{* 0} & :=\frac{1}{2}\left(-\gamma_{N}^{i} S L_{0 j}+\gamma_{N}^{0 i} S L_{0 j}\right), & K_{j}^{*} & :=\frac{1}{2}\left(-\gamma_{N}^{0 j} S L_{j}+\gamma_{N}^{j} S L_{j}\right), \\
W_{i, j}^{0} & :=-\frac{1}{2}\left(-\gamma_{N}^{i} D L_{0 j}+\gamma_{N}^{0 i} D L_{0 j}\right), & W_{j} & :=-\frac{1}{2}\left(-\gamma_{N}^{0 j} D L_{j}+\gamma_{N}^{j} D L_{j}\right) .
\end{align*}
$$

One can show that these operators are linear and continuous (Sauter \& Schwab, 2010, Theorem 3.1.16) in the following Sobolev spaces:

$$
\begin{array}{rr}
V_{i, j}^{0}: H^{-\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{\frac{1}{2}}\left(\Gamma_{i}\right), & V_{j}: H^{-\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{\frac{1}{2}}\left(\Gamma_{j}\right), \\
W_{i, j}^{0}: H^{\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{-\frac{1}{2}}\left(\Gamma_{i}\right), & W_{j}: H^{\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{-\frac{1}{2}}\left(\Gamma_{j}\right), \\
K_{i, j}^{0}: H^{\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{\frac{1}{2}}\left(\Gamma_{i}\right), & K_{j}: H^{\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{\frac{1}{2}}\left(\Gamma_{j}\right),
\end{array}
$$

$$
K_{i, j}^{* 0}: H^{-\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{-\frac{1}{2}}\left(\Gamma_{i}\right), \quad K_{j}^{*}: H^{-\frac{1}{2}}\left(\Gamma_{j}\right) \rightarrow H^{-\frac{1}{2}}\left(\Gamma_{j}\right)
$$

Since the domains are smooth, the jump relations for the potentials across a closed boundary (Sauter \& Schwab, 2010, Theorem 3.3.1) yield

$$
\begin{array}{ll}
V_{i, j}^{0}=\gamma_{D}^{0 i} S L_{0 j}, & V_{j}=\gamma_{D}^{j} S L_{j} \\
W_{i, j}^{0}=-\gamma_{N}^{0 i} D L_{0 j}, & W_{j}=-\gamma_{N}^{j} D L_{j}, \\
K_{i, j}^{0}=\gamma_{D}^{0 i} D L_{0 j} \text { with } i \neq j, & K_{i, j}^{* 0}=\gamma_{N}^{0 i} S L_{0 j} \text { with } i \neq j,
\end{array}
$$

and

$$
\begin{array}{ll}
K_{j, j}^{0}(\psi)=\frac{1}{2} \psi+\gamma_{D}^{0 j} D L_{0 j}(\psi), & K_{j}(\psi)=\frac{1}{2} \psi+\gamma_{D}^{j} D L_{j}(\psi) \\
K_{j, j}^{* 0}(\psi)=-\frac{1}{2} \psi+\gamma_{N}^{0 j} S L_{0 j}(\psi), & K_{j}^{*}(\psi)=-\frac{1}{2} \psi+\gamma_{N}^{j} S L_{j}(\psi)
\end{array}
$$

In the next theorem, we present the integral representation formulas for the electric potentials u_{j} and u_{0}.

Theorem 5.2. ((Sauter \& Schwab, 2010, Section 3)) The integral representation formulas for $u_{j} \in H^{1}\left(\Omega_{j}\right)$, $u_{0} \in H_{l o c}^{1}\left(\Omega_{0}\right)$ with the single and double layer operators read

$$
\begin{align*}
& u_{0}=-\sum_{i=1}^{\mathcal{N}} D L_{0 i}\left(\gamma_{D}^{0 i} u_{0}\right)+\sum_{i=1}^{\mathcal{N}} S L_{0 i}\left(\gamma_{N}^{0 i} u_{0}\right) \tag{5.7a}\\
& u_{j}=-D L_{j}\left(\gamma_{D}^{j} u_{j}\right)+S L_{j}\left(\gamma_{N}^{j} u_{j}\right), \quad \forall j \in\{1, \ldots, \mathcal{N}\} \tag{5.7b}
\end{align*}
$$

where we extend u_{j} by zero to the complement of Ω_{j}.

The next step is to use the operators introduced in this section and the integral representation formula to write the MTF of Problem 5.1 (cf. (Hiptmair \& Jerez-Hanckes, 2012) and later references).

5.3.2.2. Multiple traces formulation for Problem 5.1

For $j \in\{1, \ldots, \mathcal{N}\}$, we introduce the Cartesian product of Hilbert spaces $\boldsymbol{H}_{j}:=$ $H^{\frac{1}{2}}\left(\Gamma_{j}\right) \times H^{-\frac{1}{2}}\left(\Gamma_{j}\right)$, with norm

$$
\begin{equation*}
\|\cdot\|_{\boldsymbol{H}_{j}}=\|\cdot\|_{H^{\frac{1}{2}}\left(\Gamma_{j}\right)}+\|\cdot\|_{H^{-\frac{1}{2}}\left(\Gamma_{j}\right)} \tag{5.8}
\end{equation*}
$$

Let be $\boldsymbol{\phi}, \boldsymbol{\xi} \in \boldsymbol{H}_{j}$, such that $\boldsymbol{\phi}=\left(\phi_{D}, \phi_{N}\right)$ and $\boldsymbol{\xi}=\left(\xi_{D}, \xi_{N}\right)$. We introduce the cross-product over Γ_{j} (Hiptmair \& Jerez-Hanckes, 2012, Section 2.2.1) by

$$
\langle\boldsymbol{\phi}, \boldsymbol{\xi}\rangle_{\times, j}:=\left\langle\phi_{D}, \xi_{N}\right\rangle_{j}+\left\langle\xi_{D}, \phi_{N}\right\rangle_{j}
$$

where for brevity we denote $\left\langle\xi_{D}, \phi_{N}\right\rangle_{j}:=\left\langle\xi_{D}, \phi_{N}\right\rangle_{H^{\frac{1}{2}}\left(\Gamma_{j}\right) \times H^{-\frac{1}{2}}\left(\Gamma_{j}\right)}$.
We define also the flip-sign operator $\mathrm{X}_{j}: \boldsymbol{H}_{j} \rightarrow \boldsymbol{H}_{j}, \gamma^{0 j}: H_{l o c}^{1}\left(\Delta, \Omega_{0}\right) \rightarrow \boldsymbol{H}_{j}$ and $\gamma^{j}: H^{1}\left(\Delta, \Omega_{j}\right) \rightarrow \boldsymbol{H}_{j}$ as:

$$
\mathrm{X}_{j}:=\left[\begin{array}{cc}
I & 0 \tag{5.9}\\
0 & -\frac{\sigma_{0}}{\sigma_{j}} I
\end{array}\right], \quad \gamma^{0 j}:=\binom{\gamma_{D}^{0 j}}{\gamma_{N}^{0 j}} \quad \text { and } \quad \gamma^{j}:=\binom{\gamma_{D}^{j}}{\gamma_{N}^{j}}, \quad j \in\{1, \ldots, \mathcal{N}\}
$$

with I being the identity operator in the corresponding functional space, and for simplicity, we adopt the same notation for I in different spaces. Then, we write Dirichlet and Neumamn boundary conditions, (5.3c) and (5.3d), respectively, succinctly as

$$
\begin{align*}
-\mathrm{X}_{j} \gamma^{0 j} u_{0}+\gamma^{j} u_{j} & =\mathrm{X}_{j}\left(v_{j}, 0\right)^{t}+\mathrm{X}_{j} \gamma^{0 j} \phi_{e} \tag{5.10a}\\
\gamma^{0 j} u_{0}-\mathrm{X}_{j}^{-1} \gamma^{j} u_{j} & =-\left(v_{j}, 0\right)^{t}-\gamma^{0 j} \phi_{e} \tag{5.10b}
\end{align*}
$$

Note that the two equations are equivalent.
Taking Dirichlet and Neumann traces of both (5.7a) and (5.7b), and rewriting the resulting expressions in terms of BIOs, we obtain

$$
\gamma_{D}^{0 j} u_{0}=-\left(-\frac{1}{2} I\left(\gamma_{D}^{0 j} u_{0}\right)+\sum_{i=1}^{n} K_{j, i}^{0}\left(\gamma_{D}^{0 i} u_{0}\right)\right)+\sum_{i=1}^{n} V_{j, i}^{0}\left(\gamma_{N}^{0 i} u_{0}\right)
$$

$$
\begin{aligned}
\gamma_{N}^{0 j} u_{0} & =\sum_{i=1}^{n} W_{j, i}^{0}\left(\gamma_{D}^{0 i} u_{0}\right)+\left(\frac{1}{2} I\left(\gamma_{N}^{0 j} u_{0}\right)+\sum_{i=1}^{n} K_{j, i}^{* 0}\left(\gamma_{N}^{0 i} u_{0}\right)\right) \\
\gamma_{D}^{j} u_{j} & =-\left(-\frac{1}{2} I\left(\gamma_{D}^{j} u_{j}\right)+K_{j}\left(\gamma_{D}^{j} u_{j}\right)\right)+V_{j}\left(\gamma_{N}^{j} u_{j}\right) \\
\gamma_{N}^{j} u_{j} & =W_{j}\left(\gamma_{D}^{j} u_{j}\right)+\left(\frac{1}{2} I\left(\gamma_{N}^{j} u_{j}\right)+K_{j}^{*}\left(\gamma_{N}^{j} u_{j}\right)\right)
\end{aligned}
$$

After some algebra, one can write

$$
\begin{aligned}
\gamma_{D}^{0 j} u_{0} & =2\left(\sum_{i=1}^{n}-K_{j, i}^{0}\left(\gamma_{D}^{0 i} u_{0}\right)+\sum_{i=1}^{n} V_{j, i}^{0}\left(\gamma_{N}^{0 i} u_{0}\right)\right) \\
\gamma_{N}^{0 j} u_{0} & =2\left(\sum_{i=1}^{n} W_{j, i}^{0}\left(\gamma_{D}^{0 i} u_{0}\right)+\sum_{i=1}^{n} K_{j, i}^{* 0}\left(\gamma_{N}^{0 i} u_{0}\right)\right) \\
\gamma_{D}^{j} u_{j} & =2\left(-K_{j}\left(\gamma_{D}^{j} u_{j}\right)+V_{j}\left(\gamma_{N}^{j} u_{j}\right)\right) \\
\gamma_{N}^{j} u_{j} & =2\left(W_{j}\left(\gamma_{D}^{j} u_{j}\right)+K_{j}^{*}\left(\gamma_{N}^{j} u_{j}\right)\right) .
\end{aligned}
$$

These expressions can be written in a simpler form:

$$
\gamma^{0 j} u_{0}=2 \sum_{i=1}^{\mathcal{N}} \mathrm{A}_{j, i}^{0} \gamma^{0 i} u_{0}, \quad \gamma^{j} u_{j}=2 \mathrm{~A}_{j} \gamma^{j} u_{j}, \quad j \in\{1, \ldots, \mathcal{N}\}
$$

with

$$
\mathrm{A}_{j, i}^{0}:=\left[\begin{array}{cc}
-K_{j, i}^{0} & V_{j, i}^{0} \\
W_{j, i}^{0} & K_{j, i}^{* 0}
\end{array}\right], \quad \mathrm{A}_{j}:=\left[\begin{array}{cc}
-K_{j} & V_{j} \\
W_{j} & K_{j}^{*}
\end{array}\right]
$$

By replacing $\gamma^{0 j} u_{0}, \gamma^{j} u_{j}$ into (5.10b) and (5.10a), we obtain

$$
\begin{aligned}
2 \sum_{i=1}^{n} \mathrm{~A}_{j, i}^{0} \gamma^{0 i} u_{0}-\mathrm{X}_{j}^{-1} \gamma^{j} u_{j} & =-\left(v_{j}, 0\right)^{t}-\gamma^{0 j} \phi_{e}, \\
\quad-\mathrm{X}_{j} \gamma^{0 j} u_{0}+2 \mathrm{~A}_{j} \gamma^{j} u_{j} & =\mathrm{X}_{j}\left(v_{j}, 0\right)^{t}+\mathrm{X}_{j} \gamma^{0 j} \phi_{e} \quad \text { on } \Gamma_{j} .
\end{aligned}
$$

We introduce Cartesian product space of multiple traces $\mathbb{H}:=\Pi_{j=1}^{\mathcal{N}} \boldsymbol{H}_{j}$ and $\mathbb{H}^{(2)}:=$ $\mathbb{H} \times \mathbb{H}=\Pi_{j=1}^{\mathcal{N}} \boldsymbol{H}_{j} \times \Pi_{j=1}^{\mathcal{N}} \boldsymbol{H}_{j}$. For $\boldsymbol{\phi}, \boldsymbol{\xi} \in \mathbb{H}^{(2)}$, such that $\boldsymbol{\phi}=\left(\phi^{01}, \ldots, \phi^{0 \mathcal{N}}, \phi^{1}, \ldots, \phi^{\mathcal{N}}\right)$
and $\boldsymbol{\xi}=\left(\boldsymbol{\xi}^{01}, \ldots, \boldsymbol{\xi}^{0 \mathcal{N}}, \boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{\mathcal{N}}\right)$, we define the cross-product of $\mathbb{H}^{(2)}$ as

$$
\langle\boldsymbol{\phi}, \boldsymbol{\xi}\rangle_{\times}=\sum_{j=1}^{\mathcal{N}}\left\langle\phi^{0 j}, \boldsymbol{\xi}^{0 j}\right\rangle_{\times, j}+\sum_{j=1}^{\mathcal{N}}\left\langle\phi^{j}, \boldsymbol{\xi}^{j}\right\rangle_{\times, j} .
$$

We will also use the following multiple trace spaces reordering $\mathbb{H}_{D}:=\Pi_{j=1}^{\mathcal{N}} H^{\frac{1}{2}}\left(\Gamma_{j}\right)$, $\mathbb{H}_{N}:=\Pi_{j=1}^{\mathcal{N}} H^{-\frac{1}{2}}\left(\Gamma_{j}\right)$. Now, we can introduce the local Multiple Trace formulation (MTF) operator (Hiptmair \& Jerez-Hanckes, 2012, Section 3.2.3), $\mathbf{M}_{\mathcal{N}}: \mathbb{H}^{(2)} \rightarrow \mathbb{H}^{(2)}$, for the geometry presented in Section 5.3:

$$
\begin{gather*}
\mathbf{M}_{\mathcal{N}}:=\left[\begin{array}{cc}
2 \mathbf{A}_{0, \mathcal{N}} & -\mathbf{X}_{\mathcal{N}}^{-1} \\
-\mathbf{X}_{\mathcal{N}} & 2 \mathbf{A}_{1, \mathcal{N}}
\end{array}\right], \text { with } \mathbf{A}_{0, \mathcal{N}}:=\left[\begin{array}{cccc}
A_{1,1}^{0} & A_{1,2}^{0} & \ldots & A_{1, \mathcal{N}}^{0} \\
A_{2,1}^{0} & A_{2,2}^{0} & \ldots & A_{2, \mathcal{N}}^{0} \\
\vdots & & \ddots & \vdots \\
A_{\mathcal{N}, 1}^{0} & A_{\mathcal{N}, 2}^{0} & \ldots & A_{\mathcal{N}, \mathcal{N}}^{0}
\end{array}\right], \tag{5.11}\\
\mathbf{A}_{1, \mathcal{N}}:=\left[\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
0 & A_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & A_{\mathcal{N}}
\end{array}\right] \text { and } \mathbf{X}_{\mathcal{N}}:=\left[\begin{array}{cccc}
\mathrm{X}_{1} & 0 & \ldots & 0 \\
0 & X_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & X_{\mathcal{N}}
\end{array}\right] .
\end{gather*}
$$

With the MTF operator, the interface conditions (5.3b), (5.3c) and (5.3d) (Problem 5.1) can be written as:

$$
\begin{equation*}
\mathbf{M}_{\mathcal{N}}\binom{\gamma_{u}^{0}}{\gamma_{u}}=\binom{-\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}{\mathbf{X}_{\mathcal{N}} \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}+\binom{-\gamma_{\phi_{e}}^{0}}{\mathbf{X}_{\mathcal{N}} \gamma_{\phi_{e}}^{0}} \tag{5.12}
\end{equation*}
$$

where we use the notation:

$$
\begin{aligned}
\gamma_{u}^{0} & :=\left(\gamma^{01} u_{0}, \gamma^{02} u_{0}, \ldots, \gamma^{0 \mathcal{N}} u_{0}\right)^{t} \\
\gamma_{\phi_{e}}^{0} & :=\left(\gamma^{01} \phi_{e}, \gamma^{02} \phi_{e}, \ldots, \gamma^{0 \mathcal{N}} \phi_{e}\right)^{t} \\
\gamma_{u} & :=\left(\gamma^{1} u_{1}, \gamma^{2} u_{2}, \ldots, \gamma^{\mathcal{N}} u_{\mathcal{N}}\right)^{t}, \text { and }
\end{aligned}
$$

$$
\mathbf{v}:=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{\mathcal{N}}\right)^{t}
$$

with superscript t denoting the transposition, and the operator $\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}}: \mathbb{H}_{D} \rightarrow \mathbb{H}$ is defined as:

$$
\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}}:=\left(\begin{array}{cccc}
I & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & I & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & I \\
0 & 0 & \ldots & 0
\end{array}\right) .
$$

Notice that the identity operators act on the corresponding Dirichlet traces. The following result is a consequence of (Henríquez \& Jerez-Hanckes, 2018, Proposition 3.9, Proposition 3.10) along with the Fredholm alternative.

Theorem 5.3 (Existence, uniqueness and stability). The operator $\mathbf{M}_{\mathcal{N}}$ is a linear, injective and coercive operator in $\mathbb{H}^{(2)}$. For all $\boldsymbol{\xi} \in \mathbb{H}^{(2)}$, there exists a unique weak solution $\boldsymbol{\lambda} \in \mathbb{H}^{(2)}$ of

$$
\left(\mathbf{M}_{\mathcal{N}} \boldsymbol{\lambda}, \boldsymbol{\phi}\right)_{\times}=(\boldsymbol{\xi}, \boldsymbol{\phi})_{\times}, \quad \forall \boldsymbol{\phi} \in \mathbb{H}^{(2)}
$$

that satisfies the following stability estimate:

$$
\|\boldsymbol{\lambda}\|_{\mathbb{H}^{(2)}} \leq c\|\boldsymbol{\xi}\|_{\mathbb{H}^{(2)}}
$$

for a constant $c>0$.

5.3.2.3. Boundary integral formulation of Problem 5.1

Until this point, we have not introduced the membrane dynamics of Problem 5.1. In the following, we will use the theory presented in (Henríquez et al., 2017; Henríquez \& Jerez-Hanckes, 2018) to combine the MTF with the nonlinear dynamics.

Thanks to Theorem 5.3 we can take the inverse of the MTF operator, and (5.12) becomes

$$
\binom{\gamma_{u}^{0}}{\gamma_{u}}=\mathbf{M}_{\mathcal{N}}^{-1}\binom{-\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}{\mathbf{X}_{\mathcal{N}} \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}+\mathbf{M}_{\mathcal{N}}^{-1}\binom{-\gamma_{\phi_{e}}^{0}}{\mathbf{X}_{\mathcal{N}} \gamma_{\phi_{e}}^{0}} .
$$

The even components of the vector γ_{u} (the interior Neumann traces), related to the nonlinear dynamics of the problem by (5.3e), can be retrieved as follows:

$$
\left(\begin{array}{c}
\sigma_{1} \gamma_{N}^{1}\left(u_{1}\right) \\
\sigma_{2} \gamma_{N}^{2}\left(u_{2}\right) \\
\vdots \\
\sigma_{\mathcal{N}} \gamma_{N}^{\mathcal{N}}\left(u_{\mathcal{N}}\right)
\end{array}\right)=\boldsymbol{\sigma}_{\mathcal{N} \times 4 \mathcal{N}} \mathbf{M}_{\mathcal{N}}^{-1}\left(\binom{-\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}{\mathbf{X}_{\mathcal{N}} \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}+\binom{-\boldsymbol{\gamma}_{\phi_{e}}^{0}}{\mathbf{X}_{\mathcal{N}} \boldsymbol{\gamma}_{\phi_{e}}^{0}}\right)
$$

where the dimensions of $\sigma_{\mathcal{N} \times 4 \mathcal{N}}$ are $\mathcal{N} \times 4 \mathcal{N}$, the first half containing only zeros:

$$
\boldsymbol{\sigma}_{\mathcal{N} \times 4 \mathcal{N}}:=\left(\begin{array}{cccccccc}
0 & \ldots & 0 & \sigma_{1} I & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & 0 & \sigma_{2} I & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & \ldots & \sigma_{\mathcal{N}} I
\end{array}\right)
$$

Now, we define the Dirichlet-to-Neumann operators $\mathcal{J}_{\mathcal{N}}: \mathbb{H}_{D} \rightarrow \mathbb{H}_{N}$, and Φ : $H_{l o c}^{1}\left(\Omega_{0}\right) \rightarrow \mathbb{H}_{N}$ as

$$
\begin{equation*}
\mathcal{J}_{\mathcal{N}}(\mathbf{v}):=\boldsymbol{\sigma}_{\mathcal{N} \times 4 \mathcal{N}} \mathbf{M}_{\mathcal{N}}^{-1}\binom{-\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}{\mathbf{X}_{\mathcal{N}} \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}}, \text { and } \Phi\left(\phi_{e}\right):=\boldsymbol{\sigma}_{\mathcal{N} \times 4 \mathcal{N}} \mathbf{M}_{\mathcal{N}}\binom{-\boldsymbol{\gamma}_{\phi_{e}}^{0}}{\mathbf{X}_{\mathcal{N}} \gamma_{\phi_{e}}^{0}} \tag{5.13}
\end{equation*}
$$

Theorem 5.4. The operator $\mathcal{J}_{\mathcal{N}}: \mathbb{H}_{D} \rightarrow \mathbb{H}_{N}$ is continuous and coercive.

This theorem is proved as in (Henríquez \& Jerez-Hanckes, 2018, Lemma 4.3).

Remark 5.4. The MTF (5.11) is similar to one in (Henríquez \& Jerez-Hanckes, 2018) and (Henríquez et al., 2017). Specifically, (5.11) is multiplied by two, and the first row does not have a factor σ_{j} as in (Henríquez et al., 2017) and (Henríquez \& Jerez-Hanckes, 2018).

Now we can finally rewrite Problem 5.1 as an abstract parabolic equation on Γ_{j}.

Problem 5.5. Given a final time $T \in \mathbb{R}^{+}$, the external potential $\phi_{e} \in C\left([0, T], H_{l o c}^{1}\left(\Omega_{0}\right)\right)$ and the initial conditions $v_{j}(0)=v_{0} \in H^{\frac{1}{2}}\left(\Gamma_{j}\right), Z_{j}(0)=Z_{j}^{0} \in H^{\frac{1}{2}}\left(\Gamma_{j}\right)$, for $j \in$ $\{1, \ldots, \mathcal{N}\}$. We seek $\mathbf{v}=\left(v_{1}, \ldots, v_{\mathcal{N}}\right)^{t}$, with $v_{j} \in C\left([0, T], H^{\frac{1}{2}}\left(\Gamma_{j}\right)\right)$, and $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{\mathcal{N}}\right)^{t}$, $Z_{j} \in C\left([0, T], H^{\frac{1}{2}}\left(\Gamma_{j}\right)\right)$, for $j \in\{1, \ldots, \mathcal{N}\}$, such that

$$
\begin{equation*}
\mathbf{C}_{\mathbf{m}} \partial_{t} \mathbf{v}=-\mathbf{I}^{e p}(\mathbf{v}, \mathbf{Z})-\mathcal{J}_{\mathcal{N}}(\mathbf{v})-\Phi\left(\phi_{e}\right) \text { on }[0, T] \times \Gamma_{j}, \tag{5.14}
\end{equation*}
$$

where $\mathbf{C}_{\mathbf{m}}$ is a diagonal matrix $\operatorname{diag}\left(c_{m, 1}, \ldots, c_{m, \mathcal{N}}\right)$; the operators $\mathcal{J}_{\mathcal{N}}(\mathbf{v})$ and $\Phi\left(\phi_{e}\right)$ are defined in (5.13). The vector $\mathbf{I}^{e p}(\mathbf{v}, \mathbf{Z})=\left(I_{1}^{e p}\left(v_{1}, Z_{1}\right), \ldots, I_{\mathcal{N}}^{e p}\left(v_{\mathcal{N}}, Z_{\mathcal{N}}\right)\right)^{t}$ satisfy (5.4), (5.5) and (5.1).

5.4. Numerical Approximation

In this section we propose a numerical solution of Problem 5.5. We use a semi-implicit time stepping scheme, similar to one used in (Henríquez et al., 2017; Henríquez \& JerezHanckes, 2018) (see Section 5.4.1). For the space discretization, we follow an analogous approach in the two-dimensional case employed in (Henríquez \& Jerez-Hanckes, 2018), using spherical harmonics as a spacial basis. Since we consider a three-dimensional case, and do not work with complex valued functions, we employ real spherical harmonics to approximate boundary unknowns.

5.4.1. Semi-implicit time stepping scheme

Let $\mathcal{T}_{S}:=\left\{t_{s}\right\}_{s=0}^{S}$ denote the uniform partition of the time interval $[0, T]$, with $T \in \mathbb{R}^{+}$, and $S \in \mathbb{N}$, where the time step is $\tau=T / S$, and $t_{s}=s \tau$. Write

$$
t_{s+\frac{1}{2}}:=t_{s}+\frac{\tau}{2}, \quad s \in\{0, \ldots, S-1\}
$$

for the midstep between t_{s} and t_{s+1}. For a time dependent quantity $\phi(t)$, we write $\phi^{(s)}=$ $\phi\left(t_{s}\right)$, and we define the following quantities:

$$
\begin{array}{ll}
\phi^{\left(s+\frac{1}{2}\right)}:=\phi\left(t_{s+\frac{1}{2}}\right), & \bar{\phi}^{\left(s+\frac{1}{2}\right)}:=\frac{\phi^{(s+1)}+\phi^{(s)}}{2} \\
\hat{\phi}^{\left(s+\frac{1}{2}\right)}:=\frac{3 \phi^{(s)}-\phi^{(s-1)}}{2}, & \bar{\partial} \phi^{(s)}:=\frac{\phi^{(s+1)}-\phi^{(s)}}{\tau}
\end{array}
$$

With these, we approximate in time (5.5) and (5.5) as follows:

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{m}} \bar{\partial} \mathbf{v}^{(s)}=-\mathbf{I}^{e p}\left(\widehat{\mathbf{v}}^{\left(s+\frac{1}{2}\right)}, \widehat{\mathbf{Z}}^{\left(s+\frac{1}{2}\right)}\right)-\mathcal{J}_{\mathcal{N}}\left(\overline{\mathbf{v}}^{\left(s+\frac{1}{2}\right)}\right)-\Phi\left(\phi_{e}^{\left(s+\frac{1}{2}\right)}\right), \\
& \bar{\partial}^{(s)} Z_{j}=\max \left(\frac{\beta_{j}\left(\widehat{v}_{j}^{\left(s+\frac{1}{2}\right)}\right)-\widehat{Z}_{j}^{\left(s+\frac{1}{2}\right)}}{\tau_{e p, j}}, \frac{\beta_{j}\left(\widehat{v}_{j}^{\left(s+\frac{1}{2}\right)}\right)-\widehat{Z}_{j}^{\left(s+\frac{1}{2}\right)}}{\tau_{r e s, j}}\right) .
\end{aligned}
$$

From these expressions, we can notice that
(i) At each iteration, the approximation at t_{s+1} requires two previous steps, t_{s} and t_{s-1}, but we only have information about the time t_{0}. Thus, we will estimate the values for the time t_{1} with a predictor-corrector algorithm introduced later in this Section.
(ii) Provided with values for the two previous time steps, unknowns for the next time are obtained in terms of $\bar{\partial} \mathbf{v}^{(s)}, \overline{\mathbf{v}}^{\left(s+\frac{1}{2}\right)}$ and $\bar{\partial}^{(s)}$, which are linear. Nonlinear terms are evaluated with values already known, i.e. they are explicit terms, unlike the others. For this reason, the time scheme is called semi-implicit.
(iii) At each time step, the discrete problem to be solved is linear. One could choose time-domain schemes with implicit non-linear parts. Consequently, more information about $\mathbf{I}^{e p}$ may be needed. In contrast, our semi-implicit time only requires us to evaluate the function $\mathbf{I}^{e p}$.
(iv) The method is not fully implicit, and the time step τ needs to be small enough for the scheme to converge.

The predictor-corrector algorithm can be found in detail in (Thomée, 2006, Chapter 13), (Ganesh \& Mustapha, 2007), (Henríquez \& Jerez-Hanckes, 2018, Section 6.3) or
(Henríquez et al., 2017, Algorithm 1). Set $\mathbf{w}^{(0)}=\mathbf{v}^{(0)}$ and $\mathbf{Q}^{(0)}=\mathbf{Z}(0)$. Then, proceed as follows:
(I) Predictor. First, construct predictions $\mathbf{w}^{(1)}$ and $\mathbf{Q}^{(1)}$ by solving the linear system:

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{m}} \bar{\partial} \mathbf{w}^{(0)}=-\mathbf{I}^{e p}\left(\mathbf{w}^{(0)}, \mathbf{Q}^{(0)}\right)-\mathcal{J}_{\mathcal{N}}\left(\overline{\mathbf{w}}^{\left(\frac{1}{2}\right)}\right)-\Phi\left(\phi_{e^{\left(\frac{1}{2}\right)}}\right), \\
& \bar{\partial} Q_{j}^{(0)}=\max \left(\frac{\beta_{j}\left(w_{j}^{(0)}\right)-Q_{j}^{(0)}}{\tau_{e p, j}}, \frac{\beta_{j}\left(w_{j}^{(0)}\right)-Q_{j}^{(0)}}{\tau_{r e s, j}}\right) \quad \forall j \in\{1, \ldots, \mathcal{N}\} .
\end{aligned}
$$

(II) Corrector. Then, correct $\mathbf{w}^{(1)}$ and $\mathbf{Q}^{(1)}$ to obtain final values for $\mathbf{v}^{(1)}$ and $\mathbf{Z}^{(1)}$ through:

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{m}} \bar{\partial} \mathbf{v}^{(0)}=-\mathbf{I}^{e p}\left(\widehat{\mathbf{w}}^{\left(\frac{1}{2}\right)}, \widehat{\mathbf{Q}}^{\left(\frac{1}{2}\right)}\right)-\mathcal{J}_{\mathcal{N}}\left(\overline{\mathbf{v}}^{\left(\frac{1}{2}\right)}\right)-\Phi\left(\phi_{e}^{\left(\frac{1}{2}\right)}\right), \\
& \bar{\partial}^{(0)} Z_{j}=\max \left(\frac{\beta_{j}\left(\widehat{w}_{j}^{\left(\frac{1}{2}\right)}\right)-{\widehat{Q_{j}}}^{\left(\frac{1}{2}\right)}}{\tau_{e p, j}}, \frac{\beta_{j}\left(\widehat{w}_{j}^{\left(\frac{1}{2}\right)}\right)-{\widehat{Q_{j}}}^{\left(\frac{1}{2}\right)}}{\tau_{r e s, j}}\right) \quad \forall j \in\{1, \ldots, \mathcal{N}\} .
\end{aligned}
$$

From the corrector equations, $\mathbf{v}^{(1)}$ and $\mathbf{Z}^{(1)}$ are obtained implicitly. Finally, before going to the spatial discretization, we recall the following result:

Theorem 5.6. (Henríquez et al., 2017, Lemma 7). Let $\phi \in C^{2}\left([0, T] ; L^{2}\left(\Gamma_{j}\right)\right), j \in$ $\{1, \ldots, \mathcal{N}\}$ then it holds that

$$
\begin{aligned}
& \left\|\bar{\phi}^{\left(s+\frac{1}{2}\right)}-\phi^{\left(s+\frac{1}{2}\right)}\right\|_{L^{2}\left(\Gamma_{j}\right)} \leq \frac{\tau^{2}}{4} \max _{t \in\left[t_{s}, t_{s}+1\right]}\left\|\partial_{t}^{2} \phi(t)\right\|_{L^{2}\left(\Gamma_{j}\right)} \\
& \left\|\hat{\phi}^{\left(s+\frac{1}{2}\right)}-\phi^{\left(s+\frac{1}{2}\right)}\right\|_{L^{2}\left(\Gamma_{j}\right)} \leq \frac{5 \tau^{2}}{16} \max _{t \in\left[t_{s-1}, t_{s+1}\right]}\left\|\partial_{t}^{2} \phi(t)\right\|_{L^{2}\left(\Gamma_{j}\right)},
\end{aligned}
$$

furthermore, if $\phi \in C^{3}\left([0, T] ; L^{2}\left(\Gamma_{j}\right)\right)$,

$$
\left\|\bar{\partial} \phi^{(s)}-\partial_{t} \phi^{\left(s+\frac{1}{2}\right)}\right\|_{L^{2}\left(\Gamma_{j}\right)} \leq \frac{\tau^{2}}{48} \max _{t \in\left[t_{s}, t_{s+1}\right]}\left\|\partial_{t}^{3} \phi(t)\right\|_{L^{2}\left(\Gamma_{j}\right)}
$$

5.4.2. Spatial discretization

We now spatially discretize Problem 5.5. We start by introducing the real spherical harmonics used as spatial basis for the Dirichlet and Neumann traces (5.20). Then, we proceed with the BIOs discretization (see Theorem 5.10). Finally, the semi-explicit time

Figure 5-3. Illustration of spherical coordinates. Adapted from (Siriudie, n.d.).
method and the spatial discretization are combined into a fully discrete scheme (see Problem (5.11)).

5.4.2.1. Spherical coordinates and spherical harmonics

A vector is written as $\mathbf{r}=(r, \varphi, \theta)^{t}$, with $r \in[0, \infty), \varphi \in[0,2 \pi)$ and $\theta \in[0, \pi]$, which in Cartesian coordinates is equivalent to $\mathbf{r}=r(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{t}$ (Vollmer \& Yu, 2020, Appendix B). This is illustrated in Figure 5-3. Angles φ and θ are shown explicitly to avoid confusion, and the unitary vectors of the system are also sketched, which can be written in Cartesian coordinates as

$$
\begin{aligned}
& \widehat{\mathbf{e}}_{r}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{t}, \\
& \widehat{\mathbf{e}}_{\theta}=(\cos \theta \cos \varphi, \cos \theta \sin \varphi,-\sin \theta)^{t}, \\
& \widehat{\mathbf{e}}_{\varphi}=(-\sin \varphi, \cos \varphi, 0)^{t} .
\end{aligned}
$$

Lastly, we recall the form of the gradient operator in spherical coordinates:

$$
\begin{equation*}
\nabla f=\frac{\partial f}{\partial r} \widehat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \widehat{\mathbf{e}}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \widehat{\mathbf{e}}_{\varphi} \tag{5.15}
\end{equation*}
$$

Spherical harmonics of degree l and order m are defined using spherical coordinates as (Wieczorek \& Meschede, 2018, Section 2), (Freeden \& Gutting, 2013, Example 4.3.33):

$$
\begin{align*}
Y_{l, m}(\theta, \varphi) & :=\sqrt{\left(2-\delta_{m, 0}\right) \frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} P_{l}^{m}(\cos \theta) \cos m \varphi, \text { and } \tag{5.16a}\\
Y_{l,-m}(\theta, \varphi) & :=\sqrt{\left(2-\delta_{m, 0}\right) \frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} P_{l}^{m}(\cos \theta) \sin m \varphi, \tag{5.16b}
\end{align*}
$$

with $l \in \mathbb{N}_{0}, m \in \mathbb{Z}$ such that $0 \leq m \leq l$. If $m=0$, then $\delta_{m, 0}=1$, and it is zero otherwise. P_{l}^{m} are the associated Legendre functions of degree l and order m defined as:

$$
\begin{equation*}
P_{l}^{m}(x):=(-1)^{m}\left(1-x^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d x^{m}} P_{l}(x), \quad \text { with } \quad P_{l}(x):=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \tag{5.17}
\end{equation*}
$$

Here, the term $(-1)^{m}$ is the Condon-Shortley phase factor. The next result can be found proven in (Gallier \& Quaintance, 2020, Section 7.3 and 7.5), (Atkinson \& Han, 2012, Section 2.8), (Nédélec, 2001, Theorem 2.4.4), (Colton \& Kress, 2013, Section 2.3).

Theorem 5.7. Spherical harmonics are dense in $C\left(\mathbb{S}^{2}\right)$, with \mathbb{S}^{2} the surface of the unit sphere, and form a complete orthonormal system in $L^{2}\left(\mathbb{S}^{2}\right)$ with respect to the internal product defined by:

$$
\begin{equation*}
(\psi, \xi)_{L^{2}\left(\mathbb{S}^{2}\right)}=\int_{0}^{2 \pi} \int_{0}^{\pi} \psi(\theta, \varphi) \xi(\theta, \varphi) \sin (\theta) d \theta d \varphi \tag{5.18}
\end{equation*}
$$

They also are orthogonal in $H^{1}\left(\mathbb{S}^{2}\right)$.

Let be $j \in\{1, \ldots, \mathcal{N}\}$. We define the reference system j as the one centered at $\mathbf{p}_{\mathbf{j}}$ with the same orientation that the reference system centered in the origin (see Figure 5-4 for an example with two spheres). Furthermore, we denote by $Y_{l, m, j}$ the spherical harmonic $Y_{l, m}$ centered in the origin of the reference system j. Thus, if $\left(r_{j}, \varphi_{j}, \theta_{j}\right)$ are the vector spherical coordinates of $\mathbf{r}_{\mathbf{j}}$ in the reference system j, we have that $Y_{l, m, j}\left(\mathbf{r}_{j}\right)=Y_{l, m}\left(\theta_{j}, \varphi_{j}\right)$.

For $L \in \mathbb{N}_{0}$ and $j \in\{1, \ldots, \mathcal{N}\}$, we define subspaces

$$
\begin{equation*}
\mathcal{Y}_{L}\left(\Gamma_{j}\right):=\operatorname{span}\left\{Y_{l, m, j}: l \in \mathbb{N}_{0}, m \in \mathbb{Z}, l \leq L,|m| \leq l\right\} \tag{5.19}
\end{equation*}
$$

Figure 5-4. Illustration of the reference systems 1 and 2 , for \mathcal{N} spheres.
equipped with the $L^{2}\left(\Gamma_{j}\right)-$ norm. Notice that the dimension of each subspace is $(L+1)^{2}$.

Proposition 5.2 (Density). The sequence of subspaces $\left\{\mathcal{Y}_{L}\left(\Gamma_{j}\right)\right\}_{L \in \mathbb{N}_{0}}$ is dense in $H^{\frac{1}{2}}\left(\Gamma_{j}\right)$ and in $H^{-\frac{1}{2}}\left(\Gamma_{j}\right)$.

Proof. The result follows from the density of spherical harmonics in the spaces of continuous functions (Atkinson \& Han, 2012, Section 2.8) and Proposition 5.1.

This last result justifies the discretization of all boundary Dirichlet and Neumann unknowns with spherical harmonics. At a given time t, for $j \in\{1, \ldots, \mathcal{N}\}$, we write $u_{D, 0 j}^{L}$, $u_{N, 0 j}^{L}, u_{D, j}^{L}, u_{N, j}^{L}, v_{j}^{L}$ and z_{j}^{L} in $\mathcal{Y}_{L}\left(\Gamma_{j}\right)$ for the approximations of $\gamma_{D}^{0 j} u_{0}, \gamma_{N}^{0 j} u_{0}, \gamma_{D}^{j} u_{j}, \gamma_{N}^{j} u_{j}$, v_{j} and Z_{j}, respectively. They can be written as the following series expansions:

$$
\begin{align*}
u_{D, 0 j}^{L} & =\sum_{l=0}^{L} \sum_{m=-l}^{l} u_{D, 0 j}^{l, m} Y_{l, m, j}, & u_{N, 0 j}^{L} & =\sum_{l=0}^{L} \sum_{m=-l}^{l} u_{N, 0 j}^{l, m} Y_{l, m, j}, \tag{5.20a}\\
u_{D, j}^{L} & =\sum_{l=0}^{L} \sum_{m=-l}^{l} u_{D, j}^{l, m} Y_{l, m, j}, & u_{N, j}^{L} & =\sum_{l=0}^{L} \sum_{m=-l}^{l} u_{N, j}^{l, m} Y_{l, m, j}, \tag{5.20b}\\
v_{j}^{L} & =\sum_{l=0}^{L} \sum_{m=-l}^{l} v_{j}^{l, m} Y_{l, m, j}, & z_{j}^{L} & =\sum_{l=0}^{L} \sum_{m=-l}^{l} z_{j}^{l, m} Y_{l, m, j}, \tag{5.20c}
\end{align*}
$$

with $u_{D, 0 j}^{l, m}, u_{N, 0 j}^{l, m}, u_{D, j}^{l, m}, u_{N, j}^{l, m}, v_{j}^{l, m}$, and $z_{j}^{l, m}$ being constants in the space but varying in time. Notice that the norm in $\mathcal{Y}_{L}\left(\Gamma_{j}\right)$ of any of these functions is the square root of the sum of
squared coefficients times the radius of Γ_{j}, i.e.

$$
\begin{equation*}
\left\|v_{j}^{L}\right\|_{\mathcal{Y}_{L}\left(\Gamma_{j}\right)}=R_{j} \sqrt{\sum_{l=0}^{L} \sum_{m=-l}^{l}\left(v_{j}^{l, m}\right)^{2}} \tag{5.21}
\end{equation*}
$$

Finally, let $\mathbb{Y}_{L}:=\Pi_{j=1}^{\mathcal{N}} \mathcal{Y}_{\mathcal{L}}\left(\Gamma_{j}\right)$, and define the following vectors in \mathbb{Y}_{L} :

$$
\begin{array}{rlrl}
\mathbf{v}^{L} & :=\left(v_{1}^{L}, \ldots, v_{j}^{L}, \ldots, v_{\mathcal{N}}^{L}\right)^{t}, & \mathbf{Z}^{L}:=\left(z_{1}^{L}, \ldots, z_{j}^{L}, \ldots, z_{\mathcal{N}}^{L}\right)^{t}, \\
\mathbf{u}_{D, 0}^{L}:=\left(u_{D, 01}^{L}, \ldots, u_{D, 0 j}^{L}, \ldots, u_{D, 0 \mathcal{N}}^{L}\right)^{t}, & \mathbf{u}_{D}^{L}:=\left(u_{D, 1}^{L}, \ldots, u_{D, j}^{L}, \ldots, u_{D, \mathcal{N}}^{L}\right)^{t}, \\
\mathbf{u}_{N, 0}^{L}:=\left(u_{N, 01}^{L}, \ldots, u_{N, 0 j}^{L}, \ldots, u_{N, 0 \mathcal{N}}^{L}\right)^{t}, & \mathbf{u}_{D}^{L}:=\left(u_{N, 1}^{L}, \ldots, u_{N, j}^{L}, \ldots, u_{N, \mathcal{N}}^{L}\right)^{t} . \tag{5.22c}
\end{array}
$$

The norm for a function in \mathbb{Y}_{L}, for example, \mathbf{v}^{L}, is

$$
\left\|\mathbf{v}^{L}\right\|_{\mathbb{Y}_{L}}=\sqrt{\sum_{j=1}^{\mathcal{N}}\left\|v_{j}^{L}\right\|_{\mathcal{Y}_{L}\left(\Gamma_{j}\right)}^{2}}
$$

5.4.2.2. BIOs discretization

The fundamental solution can be expanded using spherical harmonics (Freeden \& Gutting, 2013, Theorem 4.3.29, Lemma 4.4.1 and Remark 4.4.2) as the following result shows.

Theorem 5.8. Let $\mathbf{r}, \mathbf{r}^{\prime}$ be vectors, whose spherical coordinates in the reference system j are $\left(r_{j}, \theta_{j}, \varphi_{j}\right)$ and $\left(r_{j}^{\prime}, \theta_{j}^{\prime}, \varphi_{j}^{\prime}\right)$, respectively. For $r_{j}>r_{j}^{\prime}$ we have that

$$
\begin{equation*}
g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{l=0}^{\infty} \frac{1}{2 l+1} \frac{r_{j}^{\prime}}{r_{j}^{l+1}} \sum_{m=-l}^{l} Y_{l, m, j}(\mathbf{r}) Y_{l, m, j}\left(\mathbf{r}^{\prime}\right) \tag{5.23}
\end{equation*}
$$

Moreover, the series (5.23) and its term by term first derivatives with respect to r_{j} or r_{j}^{\prime} are absolutely and uniformly convergent on compact subsets with $r_{j}>r_{j}^{\prime}$ (Colton \& Kress, 2013, Section 2.3, p. 23 and p.24).

Theorem 5.9. Let be $j \in\{1, \ldots, \mathcal{N}\}$, and R_{j} the radius of Ω_{j}.
(i) Let $\mathbf{r} \in \Omega_{0}$ and $\mathbf{r}=(r, \theta, \varphi)$ be expressed in the j th spherical coordinate system, then

$$
\begin{aligned}
D L_{0 j}\left(Y_{l, m, j}\right)(\mathbf{r}) & =-\frac{l}{2 l+1}\left(\frac{R_{j}}{r}\right)^{l+1} Y_{l, m}(\theta, \varphi) \\
S L_{0 j}\left(Y_{l, m, j}\right)(\mathbf{r}) & =\frac{R_{j}}{2 l+1}\left(\frac{R_{j}}{r}\right)^{l+1} Y_{l, m}(\theta, \varphi)
\end{aligned}
$$

(ii) Let $\mathbf{r} \in \Omega_{j}$ and $\mathbf{r}=(r, \theta, \varphi)$ expressed in the j th spherical coordinate system, then

$$
\begin{aligned}
D L_{j}\left(Y_{l, m, j}\right)(\mathbf{r}) & =-\frac{l+1}{2 l+1}\left(\frac{r}{R_{j}}\right)^{l} Y_{l, m}(\theta, \varphi), \\
S L_{j}\left(Y_{l, m, j}\right)(\mathbf{r}) & =\frac{R_{j}}{2 l+1}\left(\frac{r}{R_{j}}\right)^{l} Y_{l, m}(\theta, \varphi)
\end{aligned}
$$

Proof. The result follows from Theorem 5.8 and the orthonormality of spherical harmonics.

Theorem 5.10. The diagonal forms of the BIOs (5.6) are:

$$
\begin{aligned}
V_{j, j}^{0}\left(Y_{l, m, j}\right) & =\frac{1}{2 l+1} R_{j} Y_{l, m, j}, & V_{j}\left(Y_{l, m, j}\right) & =\frac{1}{2 l+1} R_{j} Y_{l, m, j}, \\
K_{j, j}^{0}\left(Y_{l, m, j}\right) & =\frac{1}{2(2 l+1)} Y_{l, m, j}, & K_{j}\left(Y_{l, m, j}\right) & =-\frac{1}{2(2 l+1)} Y_{l, m, j}, \\
K_{j, j}^{* 0}\left(Y_{l, m, j}\right) & =\frac{1}{2 l+1} Y_{l, m, j}, & K_{j}^{*}\left(Y_{l, m, j}\right) & =-\frac{1}{2(2 l+1)} Y_{l, m, j}, \\
W_{j, j}^{0}\left(Y_{l, m, j}\right) & =\frac{l(l+1)}{2 l+1} \frac{1}{R_{j}} Y_{l, m, j}, & W_{j}\left(Y_{l, m, j}\right) & =\frac{l(l+1)}{2 l+1} \frac{1}{R_{j}} Y_{l, m, j} .
\end{aligned}
$$

Proof. The result follows from Theorem 5.9 and the definitions of the BIOs presented in (5.6). Similar diagonal forms can also be found in (Vico, Greengard, \& Gimbutas, 2014, Section 3 and Table 2), where the result is stated for complex spherical harmonics on the unit sphere.

Corollary 5.1. The following holds

$$
\left(V_{j, j}^{0}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=\left(V_{j}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=\frac{R_{j}^{3}}{2 l+1} \delta_{l, p} \delta_{m, q}
$$

$$
\begin{aligned}
& \left(K_{j, j}^{0}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=-\left(K_{j}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=\frac{R_{j}^{2}}{2(2 l+1)} \delta_{l, p} \delta_{m, q}, \\
& \left(K_{j, j}^{* 0}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=-\left(K_{j}^{*}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=\frac{R_{j}^{2}}{2(2 l+1)} \delta_{l, p} \delta_{m, q}, \\
& \left(W_{j, j}^{0}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=\left(W_{j}\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{s}\right)}=\frac{l(l+1)}{2 l+1} R_{j} \delta_{l, p} \delta_{m, q},
\end{aligned}
$$

with $\delta_{l, p}, \delta_{m, q}$ denoting the standard Kronecker deltas. Also, for the scalar identity operators presented in Section 5.3.2, it holds that

$$
\left(I\left(Y_{l, m, j}\right), Y_{p, q, j}\right)_{L^{2}\left(\Gamma_{j}\right)}=R_{j}^{2} \delta_{l, p} \delta_{m, q} .
$$

Cross-interaction operators, e.g. $V_{i, j}^{0}$ for $i \neq j$, are non-singular and generally non diagonalizable. The double and single layer operators analytic expressions presented in Theorem 5.9 can be used to compute the non-singular integrals for $i \neq j$:

$$
\begin{align*}
\left(V_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =\int_{\Gamma_{i}} S L_{0 j}\left(Y_{l, m, j}\right) Y_{p, q, i} d \Gamma_{i}, \tag{5.24a}\\
\left(K_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =\int_{\Gamma_{i}} D L_{0 j}\left(Y_{l, m, j}\right) Y_{p, q, i} d \Gamma_{i}, \tag{5.24b}\\
\left(K_{i, j}^{* 0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =\int_{\Gamma_{i}} \widehat{\mathbf{n}}_{0 i} \cdot \nabla S L_{0 j}\left(Y_{l, m, j}\right) Y_{p, q, i} d \Gamma_{i}, \tag{5.24c}\\
\left(W_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =-\int_{\Gamma_{i}} \widehat{\mathbf{n}}_{0 i} \cdot \nabla D L_{0 j}\left(Y_{l, m, j}\right) Y_{p, q, i} d \Gamma_{i} . \tag{5.24d}
\end{align*}
$$

The gradients therein are expressed using (5.15). Approximations of the integrals (5.24) are provided via Gauss-Legendre quadratures. Specifically, along θ, we use the change of variable $u=\cos (\theta)$. Then, variable functions are sampled at the zeros of the Legendre Polynomial of degree $L_{c}+1$, whereas the trapezoidal rule is applied to equally spaced nodes in φ, with $2 L_{c}+1$ points. If the function being integrated has a spherical harmonic expansion with coefficients equal to zero for degrees higher than L_{c}, then the quadrature yields the exact result, assuming that there are not other sources of error (Wieczorek \& Meschede, 2018). Moreover, quadrature in φ can be computed using the Fast Fourier Transform.

REMARK 5.5. One would expect L_{c} to be greater than p and l in (5.24). Yet, without further analysis, it is not known if a polynomial of degree L_{c} is a good approximation for $S L_{0 j}\left(Y_{l, m, j}\right) Y_{p, q, i}, D L_{0 j}\left(Y_{l, m, j}\right) Y_{p, q, i}, \nabla S L_{0 j}\left(Y_{l, m, j}\right) \cdot \widehat{\mathbf{n}}_{0 i} Y_{p, q, i}$ and $\nabla S L_{0 j}\left(Y_{l, m, j}\right) \cdot \widehat{\mathbf{n}}_{0 i} Y_{p, q, i}$, since, as the translation theorems for spherical harmonics highlight, the translation of only one spherical harmonic is expressed as another infinite series of spherical harmonics.

REMARK 5.6. Notice that (5.24) can also be computed using a translation theorem for real spherical harmonics as in (Rico, López, Ema, \& Ramírez, 2013; Aganin \& Davletshin, 2018). In this case, the integral has an explicit expression and does not need to be computed numerically. Instead, the computing efforts focus on calculating the coefficients given by the translation theorem.

Corollary 5.2. The following holds

$$
\begin{aligned}
\left(V_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =\left(V_{j, i}^{0}\left(Y_{p, q, i}\right) ; Y_{l, m, j}\right)_{L^{2}\left(\Gamma_{j}\right)}, \\
\left(K_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =-\frac{l}{R_{j}}\left(V_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)}, \\
\left(K_{j, i}^{* 0}\left(Y_{p, q, i}\right) ; Y_{l, m, j}\right)_{L^{2}\left(\Gamma_{j}\right)} & =\left(K_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)}, \\
\left(W_{i, j}^{0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)} & =\frac{l}{R_{j}}\left(K_{i, j}^{* 0}\left(Y_{l, m, j}\right) ; Y_{p, q, i}\right)_{L^{2}\left(\Gamma_{i}\right)}
\end{aligned}
$$

Proof. The result follows from Theorem 5.9 along with the definition of the BIOs.

From this last corollary, it can be deduced that the integrals of all the cross-interactions of a couple of spheres i and j (5.24) can be derived having the results of the expression (5.24a) for all of the l, m, p and q needed, which avoids the need of computing numerically the other integral expressions.

5.4.3. Fully discrete scheme.

Following the conventions introduced in Section 5.4.1, we state the semi-implicit in time and space numerical discretization of Problem 5.5:

Problem 5.11. Let $\mathbf{v}^{L,(0)}$ and $\mathbf{Z}^{L,(0)}$ in \mathbb{Y}_{L} be given. Then, for $s \in\{2, \ldots, S-1\}$, we seek $\mathbf{v}^{L,(s)}, \mathbf{Z}^{L,(s)}$ in \mathbb{Y}_{L} solution of:

$$
\begin{equation*}
\left(\mathbf{C}_{\mathbf{m}} \overline{\bar{\partial}} \mathbf{v}^{L,(s)}+\mathcal{J}_{\mathcal{N}}\left(\overline{\mathbf{v}}^{L,\left(s+\frac{1}{2}\right)}\right)+\mathbf{I}^{e p}\left(\hat{\mathbf{v}}^{L,\left(s+\frac{1}{2}\right)}, \hat{\mathbf{Z}}^{L,\left(s+\frac{1}{2}\right)}\right)+\Phi\left(\phi_{e}^{\left(s+\frac{1}{2}\right)}\right), \mathbf{y}\right)_{\mathbb{Y}_{L}}=0 \tag{5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\partial}^{(s)} Z_{j}^{L}=\max \left(\frac{\beta_{j}\left(\widehat{v}_{j}^{L,\left(s+\frac{1}{2}\right)}\right)-\widehat{Z}_{j}^{L,\left(s+\frac{1}{2}\right)}}{\tau_{e p, j}}, \frac{\beta_{j}\left({\left(\widehat{v}_{j}^{L,\left(s+\frac{1}{2}\right)}\right)-\widehat{Z}_{j}^{L,\left(s+\frac{1}{2}\right)}}_{\tau_{r e s, j}}\right), ~, ~, ~}{\text {, }}\right. \tag{5.26}
\end{equation*}
$$

for all $\mathbf{y} \in \mathbb{Y}_{L}$. For $s=1$ we use the equivalent weak formulation of the corrector-predictor algorithm presented in 5.4.1.

In order to solve Problem 5.11, at each time step, with the exception of the predictorcorrector algorithm, we solve the weak linear system equivalent to

$$
\left[\begin{array}{ccc}
4 \mathbf{A}_{0, \mathcal{N}} & -2 \mathbf{X}_{\mathcal{N}}^{-1} & \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \tag{5.27}\\
-2 \mathbf{X}_{\mathcal{N}} & 4 \mathbf{A}_{1, \mathcal{N}} & -\mathbf{X}_{\mathcal{N}} \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \\
\boldsymbol{\sigma}_{\mathcal{N} \times 4 \mathcal{N}} & \frac{1}{\tau} \mathbf{C}_{\mathbf{m}}
\end{array}\right]\left(\begin{array}{c}
\overline{\mathbf{u}}_{D}^{L,(s+1 / 2)} \\
\overline{\mathbf{u}}_{N,(s+1 / 2)}^{L,(s+0} \\
\overline{\mathbf{u}}_{D}^{L,(s+1 / 2)} \\
\overline{\mathbf{u}}_{N,(s+1 / 2)}^{L,(s)} \\
\mathbf{v}^{L,(s+1)}
\end{array}\right)=\left(\begin{array}{c}
-\binom{2 \gamma^{0}{ }_{L,\left(s+\frac{1}{2}\right)}^{L, \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}^{L,(s)}}}{\phi_{e}} \\
\mathbf{X}_{\mathcal{N}}\binom{2 \gamma^{0}{ }_{{ }_{\mathrm{L}}^{L,\left(s+\frac{1}{2}\right)}}+\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}^{L,(s)}}{\phi_{e}} \\
\frac{1}{\tau} \mathbf{C}_{\mathbf{m}} \mathbf{v}^{L,(s)-\mathbf{I}^{e p}\left(\hat{\mathbf{v}}^{L,\left(s+\frac{1}{2}\right)}, \hat{\mathbf{Z}}^{L,\left(s+\frac{1}{2}\right)}\right)}
\end{array}\right)
$$

where the test function is in $\mathbb{Y}_{L} \times \mathbb{Y}_{L} \times \mathbb{Y}_{L} \times \mathbb{Y}_{L} \times \mathbb{Y}_{L}$. Notice that we obtain mid-steps ($s+1 / 2$) for traces of extra- and intracellular potentials, whereas only the transmembrane potential is obtained at time steps s.

To retrieve the values of $\mathbf{u}_{D, 0}^{L,(s)}, \mathbf{u}_{N, 0}^{L,(s)}, \mathbf{u}_{D}^{L,(s)}$ and $\mathbf{u}_{N}^{L,(s)}$ (5.22) at the time step s, the following weak system can be used:

$$
\left(\mathbf{M}_{\mathcal{N}}\left(\begin{array}{c}
\mathbf{u}_{D, 0}^{L,(s)} \\
\mathbf{u}_{N, 0}^{L,(s)} \\
\mathbf{u}_{D}^{L,(s)} \\
\mathbf{u}_{N}^{L,(s)}
\end{array}\right),\left(\begin{array}{c}
\mathbf{y}_{D, 0} \\
\mathbf{y}_{N, 0} \\
\mathbf{y}_{D} \\
\mathbf{y}_{N}
\end{array}\right)\right)_{\times}=\left(\binom{-\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}^{L,(s)}}{\mathbf{X}_{\mathcal{N}} \mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}^{L,(s)}}+\binom{-\gamma_{\phi_{e}^{(s)}}^{0}}{\mathbf{X}_{\mathcal{N}} \gamma_{\phi_{e}^{(s)}}^{0}},\left(\begin{array}{c}
\mathbf{y}_{D, 0} \\
\mathbf{y}_{N, 0} \\
\mathbf{y}_{D} \\
\mathbf{y}_{N}
\end{array}\right)\right)_{\times},
$$

for all $\mathbf{y}_{D, 0}, \mathbf{y}_{N, 0}, \mathbf{y}_{D}$ and \mathbf{y}_{N} in \mathbb{Y}_{L}.

REMARK 5.7. With the exception of the scalar operators inside of $\mathbf{A}_{0, \mathcal{N}}$ and $\mathbf{I}^{e p}$, which are computed numerically, all other matrices are diagonalizable and analytic for the geometry here considered (Theorem 5.1). Thus, the discrete matrix used to solve at each time step is almost entirely block diagonal.

REMARK 5.8. Note that if changing $\mathbf{I}^{\text {ep }}$ without modifying the dynamics for the transmembrane potentials, leads to a modified right-hand side in the linear system of equation (5.27).

5.5. Numerical Results

In this section, we verify and test the proposed computational scheme. To this end, we first check the MTF implementation for single and multiple cells to then combine it with the semi-implicit time-domain method. Next, we perform tests for linear and nonlinear dynamics. Physical parameters used thorough the Section are given in (Mistani et al., 2019, Table 1) and (Kavian et al., 2014, Table 1).

5.5.1. Hardware and Code Implementation

Numerical results were obtained in a machine with Quad Core Intel Core i7-4770 (-MT MCP-), $1498 \mathrm{MHz}, 31982.1 \mathrm{MiB}$ RAM (90% available for computations), with operating system Linux Mint 20.3 Una and Kernel: 5.4.0-131- generic x86_64. Simulation codes were programmed on Python 3.10. Its installation was via the open-source platform Anaconda ${ }^{1}$, Conda ${ }^{2}$ 4.13.0, and using the conda-forge repository (conda-forge community, 2015). ${ }^{3}$ With the numpy library, we take advantage of vectorized computations (Harris et al., 2020). Moreover, we only use direct solvers. The linear solvers and LU decomposition in numpy and scipy are routines from LAPACK (Anderson et al., 1999). The code is implemented sequentially, which gives space to parallelization and optimization. Lastly, in the following experiments we do not implement any form of matrix compression.

[^1]
5.5.2. Code validation

In order to validate our code, we recall the properties which should be satisfied by a solution at each time. Specifically, the numerical solution is required to fulfill discrete Calderón identities at the boundaries, as well as discrete jump conditions. As the computed results are per se approximations this properties do not hold exactly, thus we define the following errors:

- Discrete Calderón exterior and interior errors respectively:

$$
\begin{equation*}
\left\|\left(2 \mathbf{A}_{0, \mathcal{N}}-\mathbf{I}\right)\binom{\mathbf{u}_{D, 0}^{L,(s+1)}}{\mathbf{u}_{N, 0}^{L,(s+1)}}\right\|_{\mathbb{Y}_{L} \times \mathbb{Y}_{L}},\left\|\left(2 \mathbf{A}_{1, \mathcal{N}}-\mathbf{I}\right)\binom{\mathbf{u}_{D}^{L,(s+1)}}{\mathbf{u}_{N}^{L,(s+1)}}\right\|_{\mathbb{Y}_{L} \times \mathbb{Y}_{L}} . \tag{5.28}
\end{equation*}
$$

- Jump error:

$$
\begin{equation*}
\left\|\binom{\mathbf{u}_{D,}^{L,(s+1)}}{\mathbf{u}_{N, 0}^{L,(s+1)}}-\mathbf{X}_{\mathcal{N}}^{-1}\binom{\mathbf{u}_{D}^{L,(s+1)}}{\mathbf{u}_{N}^{L,(s+1)}}+\mathbf{I}_{2 \mathcal{N} \times \mathcal{N}} \mathbf{v}^{L}+\gamma^{0 j} \phi_{e}^{L}\right\|_{\mathbb{Y}_{L} \times \mathbb{Y}_{L}} \approx 0 . \tag{5.29}
\end{equation*}
$$

Here the norm $\|\cdot\|_{\mathbb{Y}_{L} \times \mathbb{Y}_{L}}$ is computed as

$$
\left\|\binom{\mathbf{u}_{D}^{L,(s+1)}}{\mathbf{u}_{N}^{L,(s+1)}}\right\|_{\mathbb{Y}_{L} \times \mathbb{Y}_{L}}^{2}=\left\|\mathbf{u}_{D}^{L,(s+1)}\right\|_{\mathbb{Y}_{L}}^{2}+\left\|\mathbf{u}_{N}^{L,(s+1)}\right\|_{\mathbb{Y}_{L}}^{2}
$$

In what follows, we will use the following notations:

- Relative error in $L^{2}\left(\Gamma_{j}\right)$:

$$
\begin{equation*}
r e_{2}\left(\phi_{1}, \phi_{2}\right)_{j}:=\frac{\left\|\phi_{1}-\phi_{2}\right\|_{L^{2}\left(\Gamma_{j}\right)}}{\left\|\phi_{1}\right\|_{L^{2}\left(\Gamma_{j}\right)}} \tag{5.30}
\end{equation*}
$$

This error is computed for spherical harmonics expansions when possible (5.21) or using the numerical quadrature presented at the end of Section 5.4.2.2.

- Relative error in $C^{0}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$:

$$
\begin{equation*}
r e_{\infty, 2}\left(\phi_{1}, \phi_{2}\right)_{j}:=\frac{\max _{t_{s} \in T_{s}}\left\|\phi_{1}\left(t_{s}+\tau / 2\right)-\phi_{2}\left(t_{s}+\tau / 2\right)\right\|_{L^{2}\left(\Gamma_{j}\right)}}{\max _{t_{s} \in T_{s}}\left\|\phi_{1}\left(t_{s}+\tau / 2\right)\right\|_{L^{2}\left(\Gamma_{j}\right)}} \tag{5.31}
\end{equation*}
$$

- Relative error in $L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$:

$$
\begin{equation*}
r e_{2,2}\left(\phi_{1}, \phi_{2}\right)_{j}:=\frac{\left\|\phi_{1}-\phi_{2}\right\|_{L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)}}{\left\|\phi_{1}\right\|_{L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)}} . \tag{5.32}
\end{equation*}
$$

The approximation of the time integral is done by a composite trapezoidal rule using the points of the computed time mid-steps.

5.5.2.1. Spectral Spatial Discretization

In what follows, we seek a minimum number of spherical harmonics (L) required to yield a good approximation of ϕ_{e} on the surface of each sphere. As we will show, this depends on ϕ_{e}, the geometric configuration, and in particular, on the distance between cells.

Let be ϕ_{e}^{L} the projection of ϕ_{e} onto $\mathcal{Y}_{L}\left(\Gamma_{1}\right)(5.19)$ at a given time. As a first approximation, we compute the relative error in $L^{2}\left(\Gamma_{1}\right)$ numerically, i.e. $r e_{2}\left(\phi_{e}, \phi_{e}^{L}\right)_{1}$ (5.30), where Ω_{1} is centered at the origin of the coordinate system. Both functions can not be evaluated exactly due to machine precision. Thus, the function ϕ_{e} used is the default approximation of the original and not its spherical harmonics approximation. The evaluation of ϕ_{e}^{L} also depends on the evaluation of the spherical harmonics, with an increasing error as a function of L (Wieczorek \& Meschede, 2018).

Approximation errors for the following three functions are computed

$$
\begin{align*}
& \phi_{e_{1}}(\mathbf{r}):=3.1 \tag{5.33a}\\
& \phi_{e_{2}}(x, y, z):=-3.1 z \tag{5.33b}\\
& \phi_{e_{3}}(\mathbf{r}):=\frac{a}{4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\|_{2}}, \tag{5.33c}
\end{align*}
$$

with parameters for $\phi_{e_{3}}$ in Table 5.1. The function $\phi_{e_{1}}$ is constant, $\phi_{e_{2}}$ is linear and $\phi_{e_{3}}$ is a point source at $\mathbf{p}_{\mathbf{0}}$. The results obtained are presented in Figure 5-5. For the constant $\phi_{e_{1}}$ and linear $\phi_{e_{2}}$ one requires spherical harmonics of degree $L=0$ or $L=1$, respectively. This is expected as any other coefficient is equal to zero.

For the point source $\phi_{e_{3}}$, the spherical harmonic expansion is known and has infinite number of non-zero terms (cf. Theorem 5.8). We perform computations for four different distances from the point source. One can observe that the values of L needed to obtain a small error depend on how close the source point p_{0} is to the surface of the sphere. This

Table 5.1. Parameters used in Section 5.5.2.1 for studying the convergence of the spherical harmonics approximation of $\phi_{e_{3}}(5.33 \mathrm{c})$. Values for σ_{0} comes from (Kavian et al., 2014, Table 1) and for R_{1} from (Mistani et al., 2019, Table 1).

Parameter	Symbol	Value	Unit		
Intensity	a	1	$\mu \mathrm{~A}$		
Source position	\mathbf{p}_{0}	$(0,0, \mathrm{~d})$	$\mu \mathrm{m}$		
Extracellular conductivity	σ_{0}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$		
Cell radius	R_{1}	10	$\mu \mathrm{~m}$		
External stimuli	$\phi_{e_{3}}$	$a /\left(4 \pi \sigma_{0}\left\\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\\|_{2}\right)$	V		

(A) Relative errors for constant $\phi_{e_{1}}$ and linear $\phi_{e_{2}} . L=0$ and $L=1$ are enough to obtain a good approximation of the functions.

(в) Relative errors for $\phi_{e_{3}}$ (5.33c) for four different distances, d, from the point source to the origin, the distance to the sphere is $d-R_{1}$. At close distance L needs to be high so as to maintain a given error. Parameter values are given in Table 5.1.

Figure 5-5. Relative errors (5.30) computed in Section 5.5.2.1, between ϕ_{e} (5.33) and its approximations in spherical harmonics ϕ_{e}^{L} in a sphere of radius $10 \mu \mathrm{~m}$.
is shown by decreasing the distance d-the distance to the sphere being $d-R_{1}$ from the point source to the origin-and computing the relative error.

In general, if the discretization does not lead to a finite expansion, with zero coefficients after from some index, ϕ_{e} is not represented exactly, and the accuracy might depend on the geometry, as it is the case for $\phi_{e_{3}}$.

5.5.2.2. MTF Validation

As mentioned above, we verify first the MTF method without time evolution, by solving Problem 5.12 for four different geometrical configurations and sources. In all four experiments, we set $\mathbf{v}=\mathbf{0}$ and use the point source $\phi_{e_{3}}$ given in (5.33c).

- Example 1: One sphere centered at the origin with intracellular conductivity $\sigma_{1}=\sigma_{0}$ (phantom sphere).
- Example 2: One sphere centered at the origin with intracellular conductivity σ_{1} different from σ_{0}.
- Example 3: Three (aligned) spheres. The first and the third one have conductivity σ_{0} (phantom sphere), while the one in the middle has a different conductivity σ_{1}.
- Example 4: 27 spheres arranged in a 3×3 lattice in three-dimensional space. One of the spheres, the cell attached to the origin, has conductivity σ_{1}, the rest of the spheres have conductivity σ_{0} (phantom spheres).

The parameters used for validation for Examples 1 and 2 for a single sphere are presented in Table 5.2, for Example 3 in Table 5.4, and for Example 4 in Table 5.5. Due to the results of the previous section (see Figure 5-5b), we choose $L=50$, which we consider sufficient for the case $d=20$ in the first three Examples, while in Example 4 we use $L=23$ as the point source is farther away. Discrete Calderón and jump errors (5.28), (5.29) are presented in Table 5.3 for these four Examples.

In Example 1, the sphere has the same properties as the exterior medium, and we expect the external traces to be zero, while the interior traces are equal to the traces of $\phi_{e_{3}}$. To check this, the following norms were computed:

$$
\left\|\binom{\mathbf{u}_{D, 01}^{50}}{\mathbf{u}_{N, 01}^{50}}\right\|_{\mathbb{Y}_{50} \times \mathbb{Y}_{50}}=3.30 \cdot 10^{-19} \text { and }\left\|\binom{\mathbf{u}_{D, 1}^{50}-\gamma_{D}^{01} \phi_{e}^{50}}{\mathbf{u}_{N, 1}^{50}+\gamma_{N}^{01} \phi_{e}^{50}}\right\|_{\mathbb{Y}_{50} \times \mathbb{Y}_{50}}=7.32 \cdot 10^{-20},
$$

where the quantities are approximated to three significant digits. The Calderón and jump errors (5.28), (5.29) are of order of 10^{-19}, and are presented in Table 5.3. We display four

Table 5.2. Parameters used in Section 5.5.2.2 for Examples 1 and 2 for the MTF validation. The point source potential $\phi_{e_{3}}$ is found in (5.33 c). Conductivity values are from (Kavian et al., 2014, Table 1), cell radius from (Mistani et al., 2019, Table $1)$.

Parameter	Symbol	Example 1	Example 2	Unit
Intensity	a	1	1	$\mu \mathrm{~A}$
Source position	$\mathbf{p}_{\mathbf{0}}$	$(0,0,20)$	$(0,0,20)$	$\mu \mathrm{m}$
Extracellular conductivity	σ_{0}	5	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Intracellular conductivity	σ_{1}	5	0.455	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell radius	R_{1}	10	10	$\mu \mathrm{~m}$
Maximum degree of spherical harmonics	L	50	50	

Table 5.3. Discrete Calderón errors and jump errors for Examples 1-4 from Section 5.5.2.2. The first two Examaples cosider a only one sphere, Example 3 three spheres and 27 spheres for Example 4. The values are approximated to three significant digits.

Error	Example 1	Example 2	Example 3	Example 4
Discrete Calderón exterior	$3.59 \cdot 10^{-19}$	$2.61 \cdot 10^{-17}$	$2.38 \cdot 10^{-16}$	$6.28 \cdot 10^{-17}$
Discrete Calderón interior	$1.06 \cdot 10^{-19}$	$2.61 \cdot 10^{-17}$	$2.31 \cdot 10^{-16}$	$6.41 \cdot 10^{-17}$
Jump error	$4.20 \cdot 10^{-19}$	$2.61 \cdot 10^{-17}$	$2.38 \cdot 10^{-16}$	$3.41 \cdot 10^{-17}$

plots of the volume potentials reconstructed from the traces (cf. Theorem 5.2) in Figures 5-6 and 5-7. For the field generated by $\phi_{e_{3}}$, the intra- and extracellular potentials are practically the same and cell the becomes invisible.

In Example 2, the sphere has a different conductivity than the extracellular space, and an analytic solution can be obtained. In Figure 5-8 the relative errors in $L^{2}\left(\Gamma_{1}\right)(5.30)$ of the computed solutions for different L against the analytic solution are presented. The image shows the expected exponential convergence with respect to the maximum degree of the spectral basis L. The discrete Calderón and jump errors are given in Table 5.3. The external field generated by the sphere is shown in Figure 5-9, where u_{0}^{50} is of order at most 10^{-4} near the sphere, which was not the case in Example 1 (see Figure 5-7).

Example 3 involves three spheres, two of those having the same properties as the external medium, while the one in the middle is different (see Figure 5-10). Therefore, the traces of the latter should be equal to the ones computed without the first two, i.e. the same

(A) Electric fields u_{0}^{50} and u_{1}^{50} plotted in the plane $y=0$. The field u_{1}^{50} is the same as $\phi_{e_{3}}$ in that domain. Recall that $\phi_{e_{3}}$ is only defined on the exterior of the sphere, so this is the expected behaviour.

(C) Electric fields u_{0}^{50} and u_{1}^{50} plotted in the plane $z=0$. Note that $\phi_{e_{3}}$ is only defined on the exterior of the sphere, so this is the expected behaviour.

(в) Electric fields u_{0}^{50} plus $\phi_{e_{3}}$ in the exterior of the sphere, and u_{1}^{50} in the interior plotted in the plane $y=0$. It can be observed that it is like there is no sphere, which is the expected behaviour.

(D) Electric fields u_{0}^{50} plus $\phi_{e_{3}}$ in the exterior of the sphere, and u_{1}^{50} in the interior, plotted in the plane $z=0$. It can be observed that it is like there is no sphere, which is the expected behaviour.

Figure 5-6. Electric field plots in Example 1 of Section 5.5.2.2. Parameters used are in Table 5.2.
as in Example 2. The relative $L^{2}\left(\Gamma_{1}\right)$ error of the difference between the analytic solution for the four traces and the numerical one corresponding to the sphere with different conductivity, is $6.06 \cdot 10^{-15}$. In Figure $5-10, u_{0}^{50}$ is plotted where the only sphere showing a response to $\phi_{e_{3}}$ is the sphere in the middle that has different properties compared to the

Figure 5-7. External field u_{0}^{50} in Example 1, Section 5.5.2.2. Notice that the values are of order 10^{-20}, which we consider to be approximately zero. This is showed for later comparison with Example 2, Figure 5-9. Parameters used are in Table 5.2.

Figure 5-8. Error convergence for the traces in Example 2 (Section 5.5.2.2). The relative error $L^{2}\left(\Gamma_{1}\right)(5.30)$ is computed against the analytic solution, with exponential convergence as L increases. Parameter values are given in Table 5.2.
external medium. Discrete Calderón and jump errors are given in Table 5.3, with errors of order 10^{-16}.

Lastly, we run Example 4, a simulation with 27 spheres with only one of them having a conductivity different from the external one σ_{0}. The cells are arranged in corners of a cubic

Figure 5-9. Field u_{0}^{50} in Example 2, Section 5.5.2.2 with parameters in Table 5.2. Here, u_{0}^{50} is much larger compared with Example 1 (see Figure 5-7) and cannot be considered to be zero. Note that in Example 3, with two phantom spheres, u_{0}^{50} in Figure 5-10 in similar to the present case.

Table 5.4. Parameters used for the MTF verification with $\phi_{e_{3}}=$ $1 /\left(4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{0}\right\|_{2}\right)$ in Example 3, Section 5.5.2.2. Conductivities are given in (Kavian et al., 2014, Table 1) and radii are in (Mistani et al., 2019, Table 1).

Parameter	Symbol	Value	Unit
Source position	\mathbf{p}_{0}	$(0,0,20)$	$\mu \mathrm{m}$
Extracellular conductivity	σ_{0}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell 1 intracellular conductivity	σ_{1}	0.455	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell 2 and 3 intracellular conductivity	σ_{2}, σ_{3}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell 1 radius	R_{1}	10	$\mu \mathrm{~m}$
Cell 2 radius	R_{2}	8	$\mu \mathrm{~m}$
Cell 3 radius	R_{3}	9	$\mu \mathrm{~m}$
Cell 1 center position	$\mathbf{p}_{\mathbf{1}}$	$(0,0,0)$	$\mu \mathrm{m}$
Cell 2 center position	$\mathbf{p}_{\mathbf{2}}$	$(25,0,0)$	$\mu \mathrm{m}$
Cell 3 center position	\mathbf{p}_{3}	$(-24,0,0)$	$\mu \mathrm{m}$
Maximum degree of spherical harmonics	L	50	
Quadrature degree	L_{c}	100	

lattice, with parameters presented in Table 5.5. This time, the source position is located at $(0,0,-50)$, and we choose $L=23$ which is lower than in the previous examples.

We expect a similar behaviour for the electric potential as in Example 3, though with a smaller response due the point source being further. Computed relative errors between

Figure 5-10. Field u_{0}^{50} of Example 3, Section 5.5.2.2 with parameters from Table 5.4. The resulting field is approximately the same as the one in Example 2, as it can be seen

Table 5.5. Parameters used for the MTF verification with $\phi_{e_{3}}=$ $1 /\left(4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\|_{2}\right)$ with 27 spheres in Example 4, Section 5.5.2.2. Parameters for the conductivities are given in (Kavian et al., 2014, Table 1) and radii are in (Mistani et al., 2019, Table 1).

Parameter	Symbol	Value	Unit
Source position	\mathbf{p}_{0}	$(0,0,-50)$	$\mu \mathrm{m}$
Extracellular conductivity	σ_{0}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell 1, intracellular conductivity	σ_{1}	0.455	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell $j(1<j \leq 27)$, intracellular conductivity	σ_{j}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell j, radius	R_{j}	10	$\mu \mathrm{~m}$
Cell 1, center position	\mathbf{p}_{1}	$(0,0,0)$	$\mu \mathrm{m}$
Minimum distance between spheres		5	$\mu \mathrm{~m}$
Maximum degree of spherical harmonics	L	23	
Quadrature degree	L_{c}	100	

the four traces obtained and their analytic counterparts in the $L^{2}\left(\Gamma_{1}\right)$-norm is $3.14 \cdot 10^{-15}$, which we consider to be zero. In Figure 5-11 u_{0}^{23} is plotted, where it can be observed that only the sphere in the down left corner is showing a response to $\phi_{e_{3}}$. Discrete Calderón and jump errors are of order 10^{-17} and presented in Table 5.3.

Figure 5-11. Field u_{0}^{23} in Example 3, Section 5.5.2.2 with parameters in Table 5.5. The only sphere showing a response is the one with different conductivity, which is the expected result.

5.5.2.3. Semi-implicit time approximation validation: linear case

To validate the proposed time discretization, we solve problem (5.25) for a linear current with only one cell:

$$
c_{m, 1} \partial_{t} v_{1}+\frac{1}{r_{m, 1}} v_{j}=-\sigma_{1} \gamma_{N}^{1} u_{1},
$$

where instead of $I_{1}^{e p}\left(v_{1}, Z_{1}\right)$ we use $\frac{1}{r_{m, 1}} v_{j}$. Additionally, we assume that ϕ_{e} can be factorized $\phi_{e}(t, \mathbf{r})=\phi_{\text {time }}(t) \phi_{\text {space }}(\mathbf{r})$. If $\phi_{\text {space }}$ is expanded in spherical harmonics, the coefficients for the equivalent expansion of $v_{1}, v_{1}^{l, m}$, can be obtained by solving

$$
\frac{\partial}{\partial_{t}} v_{1}^{l, m}+\alpha_{1}^{l, m} v_{1}^{l, m}=-\beta_{1}^{l, m} \phi_{\text {time }}(t),
$$

with

$$
\begin{aligned}
\alpha_{1}^{l, m} & :=\frac{1}{c_{m} R_{m}}+\frac{\sigma_{0} \sigma_{1} l(l+1)}{c_{m} R_{1}\left(\sigma_{0}(l+1)+\sigma_{1} l\right)}, \\
\beta_{1}^{l, m} & :=\frac{\sigma_{0} \sigma_{1} l\left(b_{d, l, m}(l+1)-b_{n, l, m} R_{1}\right)}{c_{m} R_{1}\left(\sigma_{0}(l+1)+\sigma_{1} l\right)},
\end{aligned}
$$

where $b_{d, l, m}$ and $b_{n, l, m}$ are the coefficient of degree l and order m of the Dirichlet and Neumann expansion of $\phi_{\text {space }}$ on the cell membrane, respectively. Then, the spherical
harmonic expansion coefficients of v_{1} are

$$
v_{1}^{l, m}(t)=-\beta_{1}^{l, m} e^{-\alpha_{1}^{l, m} t} \int_{0}^{t} \phi_{\text {time }}(s) e^{\alpha_{1}^{l, m} s} d s+v_{1}^{l, m}(0) e^{-\alpha_{1}^{l, m} t}
$$

For $\phi_{\text {time-exp }}(t):=e^{-t}$ and initial condition $v_{1}^{(0)}=0$, the solution is

$$
v_{1}^{l, m}(t)=-\frac{\beta_{1}^{l, m}}{\alpha_{1}^{l, m}-1}\left(e^{-t}-e^{-\alpha_{1}^{l, m} t}\right)
$$

and for $\phi_{\text {time-cte }}(t):=1$ and initial condition $v_{1}^{(0)}=0$, one has

$$
v_{1}^{l, m}(t)=-\frac{\beta_{1}^{l, m}}{\alpha_{1}^{l, m}}\left(1-e^{-\alpha_{1}^{l, m} t}\right) .
$$

To approximate the first bound in Theorem 5.6, we compute the second derivative in time of the analytic solution obtained. Specifically, for $\phi_{\text {time-exp }}$, the second derivative is

$$
\partial_{t}^{2} v_{1}^{l, m}(t)=-\frac{\beta_{1}^{l, m}}{\alpha_{1}^{l, m}-1}\left(e^{-t}-\left(\alpha_{1}^{l, m}\right)^{2} e^{-\alpha_{1}^{l, m} t}\right)
$$

whereas for $\phi_{\text {time-cte }}$, one has

$$
\partial_{t}^{2} v_{1}^{l, m}(t)=\beta_{1}^{l, m} \alpha_{1}^{l, m} e^{-\alpha_{1}^{l, m} t} .
$$

With these, we compare the approximated solution \bar{v}_{1}^{25} with its analytic expression v_{1} and check if the first bound of Theorem 5.6 holds. We present simulation results for the two different time parts of $\phi_{e}, \phi_{\text {time-exp }}$ and $\phi_{\text {time-cte }}$. We use a point source function for the spatial part of ϕ_{e}. Parameters are presented in Table 5.6.

Figure 5-12 showcases values of the transmembrane potentials $\bar{v}_{1}^{25}(\tau=0.025 \mu \mathrm{~s})$ and v_{1} at the north pole of the cell $(\theta=0)$. The approximated solutions are very close to the analytic one for the scale presented with errors in Figure 5-13. In Figure 5-13, the absolute error of the difference between $\bar{v}_{1}^{23}(\tau=0.025 \mu \mathrm{~s})$ and v_{1} in space is presented for each mid-time step. We compute also $\frac{\tau^{2}}{4}\left\|\partial_{t}^{2} v_{1}\right\|_{L^{2}\left(\Gamma_{j}\right)}$ to validate the first bound in Theorem 5.6. For $\phi_{\text {time-exp }}$, the absolute error satisfies the first bound in Theorem 5.6 everywhere except

Table 5.6. Parameters used for the time scheme validation in Section 5.5.2.3 where linear dynamics are assumed. The external potential is $\phi_{e}=$ $I(t) /\left(4 \pi \sigma_{0}\left\|\mathbf{r}-\mathbf{p}_{\mathbf{0}}\right\|_{2}\right)$ and only one cell is considered. Conductivity values are given in (Kavian et al., 2014, Table 1), the cell radius and the specific membrane capacitance are given in (Mistani et al., 2019, Table 1), and the specific membrane resistance is from (Henríquez et al., 2017, Table 1).

Parameter	Symbol	Values	Unit
Intensity	$I(t)$	e^{-t} and 1	$\mu \mathrm{~A}$
Source position	\mathbf{p}_{0}	$(0,0,50)$	$\mu \mathrm{m}$
Extracellular conductivity	σ_{0}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Intracellular conductivity	σ_{1}	0.455	$\mu \mathrm{~S} / \mu \mathrm{m}$
Specific membrane capacitance	$c_{m, 1}$	$9.5 \cdot 10^{-3}$	$\mathrm{pF} /(\mu \mathrm{m})^{2}\left(=\mathrm{F} / \mathrm{m}^{2}\right)$
Specific membrane resistance	$r_{m, 1}$	$1 \cdot 10^{5}$	$\mathrm{M} \Omega(\mu \mathrm{m})^{2}$
Cell Radius	R_{1}	7	$\mu \mathrm{~m}$
Length time step	τ	0.025	$\mu \mathrm{~s}$
Final time	T	2.5	$\mu \mathrm{~s}$
Maximum degree of spherical harmonics	L	25	

Figure 5-12. Evolution of \bar{v}_{1}^{25} (discrete approximation with $\tau=0.025 \mu \mathrm{~s}$) and v_{1} (analytic solution) at the north pole of the cell $(\theta=0)$ for the validation of the time scheme in Section 5.5.2.3 for linear dynamics. Parameters employed are given in Table 5.6.
for the range between $0.4 \mu \mathrm{~s}$ and $0.7 \mu \mathrm{~s}$, caused by a too large τ. For $\phi_{\text {time-cte }}$ the bound is fulfilled at all times.

Figure 5-13. Absolute error in $L^{2}\left(\Gamma_{1}\right)$ between \bar{v}_{1}^{25} (discrete approximation) and v_{1} (analytic solution), as well as $\frac{\tau^{2}}{4}\left\|\partial_{t}^{2} v_{1}\left(t_{s}\right)\right\|_{L^{2}\left(\Gamma_{j}\right)}$, plotted to verify the bound given by Theorem 5.6 for the time scheme from Section 5.5.2.3 where linear dynamics are assumed. Note that the plot of $\frac{\tau^{2}}{4}\left\|\partial_{t}^{2} v_{1}\left(t_{s}\right)\right\|_{L^{2}\left(\Gamma_{j}\right)}$ is above the absolute error. The length of the time step τ is $0.025 \mu \mathrm{~s}$, the rest of the parameters used are in Table 5.6.

Figure 5-14. Error convergence for diminishing time steps τ for the time scheme in Section 5.5.2.3 where linear dynamics are assumed. The slope of the errors on the $\log -\log$ plot is approximately equal to two, i.e. error converges as τ^{2}. Relative errors $r e_{\infty, 2}\left(v_{1}, v_{1}^{25}\right)_{1}$ and $r e_{2,2}\left(v_{1}, v_{1}^{25}\right)_{1}$ are given in (5.31) and (5.32), respectively. Simulation parameters can be found in Table 5.6.

Finally, Figure 5-14 presents the relative error in time and space for decreasing values of τ. We compute the error using two norms: an approximation of the $C^{0}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$ norm taking the maximum value at each mid-step computed (5.31), and an approximation of the $L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$-norm, using a composite trapezoidal rule with the computed midsteps (5.32). We observe that the slope of the errors in the $\log -\log$ plot is close to two, therefore the error decreases as τ^{2}.

5.5.3. Numerical Results for a Single Cell with Nonlinear Dynamics

After having verified our numerical scheme for the linear dynamics, we now we study the nonlinear model for the electropermeabilization dynamics for a single cell (Problem 5.5). Note that in (Henríquez \& Jerez-Hanckes, 2018, Theorem 6.14) the authors provide error estimates by solving the nonlinear dynamical problem in 2D, where they use the Hodgkin-Huxley dynamics to simulate the response of neurons. The estimates depend on four terms: the first two are the norms of the difference between initial conditions and approximated ones used in the computations; the third is related to the spatial discretization, where a spectral basis in 2D is used, and this term is proved to decay exponentially with the total number of functions in the spatial discretization basis; the fourth one is related to the time approximation, and it decays as τ^{2}. In the present work, we do not derive error estimate, but given this previous result, we expect a similar behavior. In other words, fixing the maximum degree of spherical harmonics L used in the discretization and decreasing the length of the time step τ, we expect to see the error converging to a constant depending on L. Similarly, if we fix τ and increase L, we expect the error to converge to a constant depending on τ.

5.5.3.1. Time convergence for a fixed L

We use the parameters presented in Table 5.7 to solve the non-linear discrete Problem 5.11, with external applied potential $\phi_{e}=5 z \cdot 10^{-2}$, and initial conditions equal to zero. Since we no longer possess an analytic solution for comparison, we check for convergence as time steps become smaller. We remark that L is fixed.

Table 5.7. Parameters used for the simulation of a single cell with non-linear dynamics (5.3e) in Section 5.5.3.1 when studying the time convergence with fixed L. Parameters used are found in (Kavian et al., 2014, Table 1).

Parameter	Symbol	Values	Unit
Cell Radius	R_{1}	10	$\mu \mathrm{~m}$
Time part of ϕ_{e}	$\phi_{\text {time }}$	1	
Spatial part of ϕ_{e}	$\phi_{\text {spatial }}$	$5 z \cdot 10^{-2}$	V
Extracellular conductivity	σ_{0}	5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Intracellular conductivity	σ_{1}	0.455	$\mu \mathrm{~S} / \mu \mathrm{m}$
Lipid surface conductivity	$S_{L, 1}$	$1.9 \cdot 10^{-6}$	$\mu \mathrm{~S} /(\mu \mathrm{m})^{2}$
Irreversible surface conductivity	$S_{\text {ir }, 1}$	$2.5 \cdot 10^{2}$	$\mu \mathrm{~S} /(\mu \mathrm{m})^{2}$
Specific membrane capacitance	$c_{m, 1}$	$9.5 \cdot 10^{-3}$	$\mathrm{pF} /(\mu \mathrm{m})^{2}$
Transmembrane potential threshold	$V_{\text {rev }, 1}$	1.5	V
Electropermeabilization switch speed	$k_{e p, 1}$	40	$\mathrm{~V}^{-1}$
Characteristic time of electropermeabilization	$\tau_{e p, 1}$	1	$\mu \mathrm{~s}$
Characteristic resealing time	$\tau_{r e s, 1}$	10^{3}	$\mu \mathrm{~s}$
Final time	T	26	$\mu \mathrm{~s}$
Maximum degree of spherical harmonics	L	1	
Quadrature degree	L_{c}	2	

Table 5.8 displays the norms of the error between two successively refined solutions for different time steps. These results show a convergence rate of one as the time step decreases, and thus we do not obtain the same as in (Henríquez \& Jerez-Hanckes, 2018). This is due to the lesser regularity in time of the functions used in the non-linear electropermeabilization model.

In Figure 5-15, we plot the evolution of the transmembrane potential v_{1}^{1} for three different values of τ. Though the solution shapes are similar, the signals peak at different locations and coincide as the time step decreases. Specifically, between $\tau=2.6 \cdot 10^{-3} \mu \mathrm{~s}$ and $\tau=2.6 \cdot 10^{-4} \mu \mathrm{~s}$, there is a delay of less than $0.16 \mu \mathrm{~s}$, while between $\tau=2.6 \cdot 10^{-4} \mu \mathrm{~s}$ and $\tau=2.6 \cdot 10^{-5} \mu \mathrm{~s}$ the delay is less than $0.017 \mu \mathrm{~s}$.

5.5.3.2. Spatial convergence with nonlinear dynamics

We now present numerical results for different maximum degrees of the spherical harmonics, $L=51$ and $L \in[1,2, \ldots, 36]$. Given that we use a spectral discretization in space,

TAbLE 5.8. Error convergence of solutions obtained for the nonlinear problem with one cell from Section 5.5.3.1 for fixed L. Computed norms are the difference between two successive solutions. Parameters used are in Table 5.7.

τ_{i}	Value $[\mu \mathrm{s}]$	$\max _{t \in[0, T]}\left\\|v_{1}^{1, \tau_{i+1}}-v_{1}^{1, \tau_{i}}\right\\|_{L^{2}\left(\Gamma_{1}\right)}$	$\max _{t \in[0, T]}\left\\|Z_{1}^{1, \tau_{i+1}}-Z_{1}^{1, \tau_{i}}\right\\|_{L^{2}\left(\Gamma_{1}\right)}$
τ_{1}	$2.6 \cdot 10^{-3}$	-	-
τ_{2}	$2.6 \cdot 10^{-4}$	8.8	$4.64 \cdot 10^{-3}$
τ_{3}	$2.6 \cdot 10^{-5}$	0.9	$3.02 \cdot 10^{-4}$
τ_{4}	$2.6 \cdot 10^{-6}$	0.097	$3.59 \cdot 10^{-5}$
τ_{5}	$2.6 \cdot 10^{-7}$	0.0097	$3.15 \cdot 10^{-6}$

Figure 5-15. Evolution of v_{1}^{1} at the north pole of the cell $(\theta=0)$ for different lengths of time step τ illustrating the time convergence for fixed L, Section 5.5.3.1. The image at the right is zoomed near to the maximum value of v_{1}^{1}. Parameters employed are given in Table 5.7.
we expect an exponential decrease in the error when increasing the maximum degree L recall that the number of spatial discretization functions basis is $\left.(L+1)^{2}\right)^{4}$. The external applied potential is $\phi_{e}=5 z \cdot 10^{-2}$ until $t=5$ and equal to zero thereafter. Initial conditions are set to zero.

First, we analyze the error convergence for the coefficients of v_{1}^{L}, which are functions only of time. For each result computed with the maximum degree of the spherical harmonics being less than 37 , we compare against the result with $L=51$. For this, we calculate the relative error of the coefficients $v_{1}^{l, 0}$, for odd l, and for the different maximum degrees

[^2]Table 5.9. Parameters used in the numerical simulations with one cell to study the convergence in space in Section 5.5.3.2, with the non-linar dynamics of the electropermeabilization model. The specific choice of extra- and intracellular conductivities, different from the previous simulations, allow us to obtain a response of the impulse sooner in time. The rest of the parameters are from (Kavian et al., 2014, Table 1). The external applied potential used is equal to zero after $t=5$.

Parameter	Symbol	Values	Unit
Cell Radius	R_{1}	10	$\mu \mathrm{~m}$
External applied potential	ϕ_{e}	$5 z \cdot 10^{-2}$	V
Extracellular conductivity	σ_{0}	15	$\mu \mathrm{~S} / \mu \mathrm{m}$
Intracellular conductivity	σ_{1}	1.5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Specific membrane capacitance	$c_{m, 1}$	$9.5 \cdot 10^{-3}$	$\mathrm{pF} /(\mu \mathrm{m})^{2}\left(=\mathrm{F} / \mathrm{m}^{2}\right)$
Lipid surface conductivity	$S_{L, 1}$	$1.9 \cdot 10^{-6}$	$\mu \mathrm{~S} /(\mu \mathrm{m})^{2}$
Irreversible surface conductivity	$S_{i r, 1}$	$2.5 \cdot 10^{2}$	$\mu \mathrm{~S} /(\mu \mathrm{m})^{2}$
Specific membrane capacitance	$c_{m, 1}$	$9.5 \cdot 10^{-3}$	$\mathrm{pF} /(\mu \mathrm{m})^{2}$
Transmembrane potential threshold	$V_{r e v, 1}$	1.5	V
Electropermeabilization switch speed	$k_{e p, 1}$	40	$\mathrm{~V}^{-1}$
Characteristic time of electropermeabilization	$\tau_{e p, 1}$	1	$\mu \mathrm{~s}$
Characteristic resealing time	$\tau_{r e s, 1}$	10^{3}	$\mu \mathrm{~s}$
Final time	T	10	$\mu \mathrm{~s}$
Length time step	τ	≈ 0.0024	$\mu \mathrm{~s}$
Quadrature degree	L_{c}	150	$\mu \mathrm{~s}$

L, using the $L^{2}(0, T)$ and $C^{0}(0, T)$ norms. The results are shown in Figures 5-16 and 5-17, where it can be seen than after $L=11$ the coefficients start converging. For $m \neq 0$ or l even, the obtained coefficients are close to zero.

Second, we look at the convergence of the coefficients of Z_{1}^{L}. For this, we calculate the relative error, using the $L^{2}(0, T)$ and $C^{0}(0, T)$ norms of the difference between the coefficients $Z_{1}^{l, 0}$, for l even and for the different maximum degrees L. Results are shown in Figures 5-18 and 5-19, where we observe the norm tends to converge exponentially. For $m \neq 0$ or l odd, coefficients obtained vanish.

Next, we compute the relative error in $C^{0}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$ and $L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$ between v_{1}^{L} and v_{1}^{51}, and between Z_{1}^{L} and Z_{1}^{51}. The results are shown in Figure 5-20. The plots are in a log-linear scale, and the errors tends to form a straight line with the slope of order -10^{-2}, which suggests an exponential rate of convergence. Recall, that β (5.1) in

Figure 5-16. For a fixed l, the relative error in $L^{2}(0, T)$ between coefficients $v_{1}^{l, 0}$ of v_{1}^{L} and v_{1}^{51} is plotted. The time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$. The x-axis indicates the maximum degree used for the discretization of v_{1}^{L}, and the y-axis indicates the error. After $L=11$ the coefficients start to converge. Parameters used are in Table 5.9.

Figure 5-17. For a fixed l, the relative error in $\max _{(0, T)}$ between coefficients $v_{1}^{l, 0}$ of v_{1}^{L} and v_{1}^{51} is plotted. The $x-$ axis indicates the maximum degree used for the discretization of v_{1}^{L}, and the y-axis indicates the error. After $L=11$ the ccoefficients start to converge. Parameters used are in Table 5.9.
our case is only continuous $C^{0}(\mathbb{R})$ due to the discontinuity of the derivative at the origin worsening the rate of convergence.

While the obtained Z_{1} is an even function in space, v_{1} is an odd one. Thus, the nonlinear current, is an odd function in space. The external applied potential is an odd function,

Figure 5-18. For a fixed l, the relative error in $L^{2}((0, T))$ between the coefficients $Z_{1}^{l, 0}$ of Z_{1}^{L} and Z_{1}^{51} is plotted. The length of the time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$. The x-axis indicates the maximum degree used for the discretization o Z_{1}^{L}, and the y-axis indicates the error. The results show convergence. Parameters used are in Table 5.9.

Figure 5-19. Spatial convergence in the case of nonlinear dynamics in Section 5.5.3.2: for a fixed l, the relative error in $C(0, T)$ norm between the coefficients $Z_{1}^{l, 0}$ of Z_{1}^{L} and Z_{1}^{51} is plotted. The length of the time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$. The x-axis indicates the maximum degree used for the discretization o Z_{1}^{L}, and the y-axis indicates the error. Parameters used are in Table 5.9.
so we expect that v_{1} has an odd component, while Z_{1} is defined by an ordinary differential equation that takes v_{1} in to an even function.

Figure 5-20. Spatial convergence for the nonlinear dynamics, Section 5.5.3.2. Relative norms in space and time of computed solutions against an overkill of $L=51$. On the left, results for v_{1}^{L}, while on the right Z_{1}^{L} is displayed with time step $\tau \approx 0.0024 \mu \mathrm{~s}$. The relative error $r e_{\infty, 2}\left(v_{1}, v_{1}^{51}\right)_{1}(5.31)$ is computed in the $C^{0}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$-norm, and the error for $r e_{2,2}\left(v_{1}, v_{1}^{51}\right)_{1}$ (5.32) is computed in the $L^{2}\left((0, T), L^{2}\left(\Gamma_{1}\right)\right)$-norm. The x-axis indicates the maximum degree used for the discretization of the solution, and the y-axis indicates the error. Convergence starts from $L=11$. Plots are in log-linear scale, and error tends to form a straight line with slope of approximately -10^{-2}, i.e. exponential rate of convergence. Parameters used are in Table 5.9.

Finally, in Figure 5-21 we plot the evolution in time of $v_{1}^{17}, v_{1}^{24}, v_{1}^{35}$, and v_{1}^{51} at the north pole. The differences between the results are more noticeable after the peak of the potential and when the cell tries to stabilize it.

5.5.4. Results with multiple cells

In previous sections, the convergence of the numerical method was studied for a single cell. We proceed now with the case of multiple cells to perform five experiments in the nonlinear case. The examples presented highlight how the distance among cells affects the results as all cell conductivities are set to the same value σ_{1}.

- Example 5: Three cells aligned along the x-axis and far from each other, with distance between cells $18 R_{1}$.

Figure 5-21. Evolution of the transmembrane potentials $v_{1}^{17}, v_{1}^{24}, v_{1}^{35}$ and v_{1}^{51} at the north pole of the cell $(\theta=0)$ obtained in Section 5.5.3.2 where the spatial convergence for one cell in the nonlinear case is studied. The picture on the right is a zoomed image of the transmembrane potential peak. The time step used is $\tau \approx 0.0024 \mu \mathrm{~s}$, with parameters given in Table 5.9.

- Example 6: Three cells aligned along the x-axis, near from each other, with distance between cells $R_{1} / 2$.
- Example 7: Three cells aligned along the z-axis, far from each other, with distance between them $18 R_{1}$.
- Example 8: Three cells aligned along the z-axis, close from to other, with distance between cells $R_{1} / 2$.
- Example 9: Eight cells aligned in a cubic lattice, the nearest distance between two cells is $R_{1} / 2$, the first sphere is at the origin.

Cell radii and physical parameters used for Examples 5-9 are presented in Table 5.10. The extra- and intracellular conductivities have different values from the simulations of other Sections, and were changed so as to obtain a response of the impulse sooner. Coordinates of the cells' center in Examples 5-8 are given in Table 5.11 and sketched in Figure 5-22, while cells' centers in Example 9 are located at the corners of a cube of length 25

Table 5.10. Parameters used in Examples 5-9 (multiple cells, nonlinear dynamics) from Section 5.5.4. Parameters for the radii are from (Mistani et al., 2019, Table 1), the electrical parameters are from (Kavian et al., 2014, Table 1), except for extra- and intracellular conductivities that were changed to obtain a response of the impulse sooner.

Parameter	Symbol	Value	Unit
Extracellular conductivity	σ_{0}	15	$\mu \mathrm{~S} / \mu \mathrm{m}$
Intracellular conductivity	$\sigma_{j}, j \geq 1$	1.5	$\mu \mathrm{~S} / \mu \mathrm{m}$
Cell j radius	R_{1}	10	$\mu \mathrm{~m}$
Time part of ϕ_{e}	$\phi_{\text {time }}(t)$	1	
Spatial part of ϕ_{e}	$\phi_{\text {spatial }}$	$5 z \cdot 10^{-2}$	V
Lipid surface conductivity	$S_{L, 1}$	$1.9 \cdot 10^{-6}$	$\mu \mathrm{~S} /(\mu \mathrm{m})^{2}$
Irreversible surface conductivity	$S_{i r, 1}$	$2.5 \cdot 10^{2}$	$\mu \mathrm{~S} /(\mu \mathrm{m})^{2}$
Specific membrane capacitance	$c_{m, 1}$	$9.5 \cdot 10^{-3}$	$\mathrm{pF} /(\mu \mathrm{m})^{2}$
Transmembrane potential threshold	$V_{\text {rev }, 1}$	1.5	V
Electropermeabilization switch speed	$k_{e p, 1}$	40	$\mathrm{~V}^{-1}$
Characteristic time of electropermeabilization	$\tau_{e p, 1}$	1	$\mu \mathrm{~s}$
Characteristic resealing time	$\tau_{\text {res }, 1}$	10^{3}	$\mu \mathrm{~s}$
Final time	T	10	$\mu \mathrm{~s}$

Table 5.11. Center positions for Examples 5-8 from Section 5.5.4, where nonlinear dynamics with three cells are simulated.

Center position	Symbol	Example 5	Example 6	Example 7	Example 8	Unit
Cell 1	\mathbf{p}_{1}	$(0,0,0)$	$(0,0,0)$	$(0,0,0)$	$(0,0,0)$	$\mu \mathrm{m}$
Cell 2	\mathbf{p}_{2}	$(200,0,0)$	$(25,0,0)$	$(0,0,200)$	$(0,0,25)$	$\mu \mathrm{m}$
Cell 3	\mathbf{p}_{3}	$(-200,0,0)$	$(-25,0,0)$	$(0,0,-200)$	$(0,0,-25)$	$\mu \mathrm{m}$

Table 5.12. Cells' position in Examples 9 from Section 5.5.4, where nonlinear dynamics with eight cells are simulated.

Center position	Symbol	Value in $\mu \mathrm{m}$	Center position	Symbol	Value in $\mu \mathrm{m}$
Cell 1	$\mathbf{p}_{\mathbf{1}}$	$(0,0,0)$	Cell 5	$\mathbf{p}_{\mathbf{5}}$	$(0,0,25)$
Cell 2	$\mathbf{p}_{\mathbf{2}}$	$(25,0,0)$	Cell 5	$\mathbf{p}_{\mathbf{6}}$	$(25,0,25)$
Cell 3	$\mathbf{p}_{\mathbf{3}}$	$(0,25,0)$	Cell 7	$\mathbf{p}_{\mathbf{7}}$	$(0,25,25)$
Cell 4	$\mathbf{p}_{\mathbf{4}}$	$(25,25,0)$	Cell 8	$\mathbf{p}_{\mathbf{8}}$	$(25,25,25)$

$\mu \mathrm{m}$, with one corner at the origin and other one at $(25,25,25)$ (cf. Table 5.12). The external applied potential in Examples 5-9 is $\phi_{e}=5 z \cdot 10^{-2}$ until $t=5 \mu \mathrm{~s}$ and equal to zero thereafter. Also, initial conditions are set to be zero.

Figure 5-22. Illustration for Examples 5-8 in Section 5.5.4.
In what follows, we present results for a time step $\tau \approx 6.1 \cdot 10^{-4}$. The maximum degree of spherical harmonics used for Examples 5-8 is $L=35$, while for Example $9 L=25$. Quadrature degree used in all examples is $L_{c}=100$. Figures 5-23, 5-24, 5-25, 5-26 and 5-27 showcase the evolution of the transmembrane potentials v_{j}^{L} and the variables Z_{j}^{L} for each cell at their north pole.

In Example 5, $\phi_{e}=5 z \cdot 10^{-2}$ and thus, the perceived excitation for the three cells is the same. Moreover, the cells are relatively far away from each other, therefore, there is almost no interaction among them, and the potentials v_{j}^{35} and Z_{j}^{35} look similar, for all j (see Figure 5-21).

In Example 6, we take the same parameters as in Example 5, except for reducing the distance between cells, which is now $R_{1} / 2$. Hence, the interaction between cells is stronger, and the shapes of the potentials v_{j}^{35} and Z_{j}^{35} change (see Figure 5-24). One should compare with the previous example in Figure 5-23). Note that, due to the symmetry and the form of the external $\phi_{e}=5 z \cdot 10^{-2}$, cells 2 and 3 should have the same response at the north pole. They are, however, slightly different, hinting at further refinement.

Examples 7 and 8 are similar to Examples 5 and 6 except that the cells are now aligned along the z-axis. Thus, the excitation $\phi_{e}=5 z \cdot 10^{-2}$ is perceived differently by the cells. In Example 8, the distance between cells is $R_{1} / 2$, and consequently, the interaction between

(A) Evolution of the transmembrane potentials(B) Evolution of the Z_{j}^{35} at the north pole of each v_{j}^{35} at j cell $(\theta=0)$.
the north pole of each j cell $(\theta=0)$.
Figure 5-23. Example 5 in Section 5.5.4. Since cells are far from each other, they interact weakly among them, and thus the perceived excitation for each of them is the same. Consequently, the transmembrane potentials v_{j}^{35} and Z_{j}^{35} are practically equal for all cells. The time step is $\tau \approx 6.1 \cdot 10^{-4}$. Parameters employed are found in Tables 5.10 and 5.11.

(A) Evolution of the transmembrane potentials(в) Evolution of Z_{j}^{35} at the north pole of each j v_{j}^{35} at cell $(\theta=0)$.
the north pole of each j cell $(\theta=0)$.
Figure 5-24. Example 6 from Section 5.5.4. Cells are near each other and the interaction among them influences the transmbembrane potential v_{j}^{35} and Z_{j}^{35} (cf. Example 5 in contrast). Notice that the only difference between Example 5 and 6 is the distance between successive cells. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11.

(A) Evolution of the transmembrane potentials(в) Evolution of Z_{j}^{35} at the north pole of each j v_{j}^{35} at cell $(\theta=0)$.
the north pole of each j cell $(\theta=0)$.
Figure 5-25. Example 7 from Section 5.5.4. Cell centers are along the z axis and far from each other while the external applied potential is perceived differently by each cells. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11.

(A) Evolution of the transmembrane potentials(B) Evolution of Z_{j}^{35} at the north pole of each j v_{j}^{35} at cell $(\theta=0)$. the north pole of each j cell $(\theta=0)$.

Figure 5-26. Example 8 from Section 5.5.4. Cell centers are along the z axis and close to each other, and thus the external applied potential is varies over each cell. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11.

(A) Evolution of the transmembrane potentials(B) Evolution of the transmembrane potentials v_{j}^{25} at the north pole of each j cell with j between v_{j}^{25} at the north pole of each j cell with j between 1 and 4.
 5 and 8 .
(c) Evolution of Z_{j}^{25} at the north pole of each j (D) Evolution of Z_{j}^{25} at the north pole of each j cell between 1 and 4 .
cell between 5 and 8 .

Figure 5-27. Example 9 from Section 5.5.4. The first four cells are in the plane $z=0$, while the others are in the plane $z=25$. The time step is $\tau \approx 6.1 \cdot 10^{-4}$, and the parameters employed are given in Tables 5.10 and 5.11.
the cells leads to different transmembrane potentials compared to those of Example 7 (see Figures 5-25 and 5-26). Specifically, the transmembrane potential at the cell located at \mathbf{p}_{1} increases and reaches its maximum around 1.5 in Example 7, while in Example 8 it decreases and reaches a minimum value around -1.5 , see Figure 5-25 and 5-26. In addition, the excitation ϕ_{e} in this case coincides with the one for the middle cell in Examples 7 and

Figure 5-28. Transmembrane voltages v_{j}^{25} obtained in Example 9 of Section 5.5.4 at different times. The length of the time step is $\tau \approx 6.1 \cdot 10^{-4}$. Parameters employed are given in Tables 5.10 and 5.11.

8, so the difference in the behaviour is due to the smaller distance to the other two cells in Example 8 when compared to the situation of Example 7.

Finally, in Example 9 eight cells close to each other are simulated. In Figure 5-27, the corresponding transmembrane voltage v_{j}^{25} and Z_{j}^{25} at the north pole are presented. The cells with the centers in the plane $z=0$ show similar response-see Table 5.12 for the center position of each cell—, while the cells with centers in the plane $z=25$ have similar response too while differing from cells beneath them. Figure 5-28 shows six snapshots of the transmembrane voltages for the eight cells. It can be seen that the transmembrane voltage starts changing earlier in the parts of the surface close to the rest of the cells, therefore the interaction between them is crucial.

5.6. Conclusions and future work

In this work, we consider the electropermeabilization of disjoint cells following the nonlinear dynamics from (Kavian et al., 2014). Specifically, we recast the volume boundary value problem via a MTF and obtain a parabolic system of boundary integral equations on the cell membrane. This constitutes a significant extension of the numerical method presented in (Henríquez \& Jerez-Hanckes, 2018). For simplicity, we assumed that the cells have spherical shape, although the method can be extended to cells with other shapes.

The semi-implicit time stepping scheme presented requires two previous steps, and allows to evaluate explicitly the expression corresponding to the nonlinear dynamics, that results in solving a linear system for each time iteration. A current the scheme only works for relatively small time steps. The proposed method allows one to change the model for the nonlinear dynamics in an amicable way, as long as it is only a change of the nonlinear term and the variables that are not the transmembrane potential. In this case, only the right-hand side of the system to be solved (5.27) and the equations corresponding to the additional variables that are not the transmembrane potential change. This is one of the advantages of the numerical method employed.

Further improvements to the numerical method to be implemented in the future are matrix compression and parallelization techniques, along with an efficient solver for linear systems at each time step.

5.7. Acknowledgements

The authors acknowledge the support of Agencia Nacional de Investigación y Desarrollo (ANID), through the doctoral fellowship program:

Conicyt-PFCHA/Doctorado Nacional/2018-21181809 and Fondecyt Regular 1231112.

6. CONCLUSIONS

The thesis concerns the mathematical modeling and numerical simulations of problems arising in electrophysiology. There are two groups of problems addressed in the thesis.

The first one concerns the modeling of signal propagation in myelinated axons and nerve fascicle. Modeling electrical stimulation in tissues faces many difficulties, including the nonlinear dynamics and complex geometries. We use multiscale modeling, and in particular the homogenization technique, to derive macroscopic models for the electric potential. In the case of an individual axon, the behaviour of the potential is governed by a nonlinear cable equation, while in the case of bundles, we obtain a bidomain model. The technique being used combines the two-scale convergence method and the method of monotone operators. The numerical computations are performed to illustrate the dependence of the effective coefficients on the area of the unmyelinated part of the membrane.

In the second part of the thesis, we address the cellular electro-permeabilization, that is changing the permeability of the cell membrane by applying electrical pulses. Using the multiple traces formulation, we develop a mathematical framework for the numerical resolution of cellular electro-permeabilization models in three dimensions. Namely, reducing the problem to boundary integral equations on cell membranes, we simulate the electric potential response for a fixed number of disjoint spherical cells.

In our further work we will compare numerical solutions of the homogenized models for individual axons and axon bundles with the solutions of microscopic three-dimensional models. This allow us to study numerically the rate of convergence, as $\varepsilon \rightarrow 0$, from the microscopic models to the macroscopic one. Also, we will make improvements to the numerical method implemented for the problem of electropermeabilization, among them parallelizing and matrix compression techniques, and will continue exploring the modeling issues of the electro-permeabilization phenomena and implementing other nonlinear dynamics for the process.

References

Acerbi, E., ChiadoPiat, V., Dal Maso, G., \& Percivale, D. (1992). An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Analysis: Theory, Methods \& Applications, 18(5), 481-496.

Aganin, A. A., \& Davletshin, A. I. (2018, April). Transformation of Irregular Solid Spherical Harmonics with Parallel Translation of the Coordinate System. Lobachevskii Journal of Mathematics, 39(3), 433-438. doi: 10.1134/S1995080218030022

Allaire, G. (1992). Homogenization and two-scale convergence. SIAM Journal on Mathematical Analysis, 23(6), 1482-1518.

Allaire, G., \& Damlamian, A. (1995). Two-scale convergence on periodic surfaces and applications. In A. Bourgeat, C. Carasso, L. S, \& Mikelić (Eds.), Mathematical modelling of flow through porous media. World Scientific.

Amar, M., Andreucci, D., Bisegna, P., \& Gianni, R. (2006). On a hierarchy of models for electrical conduction in biological tissues. Mathematical Methods in the Applied Sciences, 29(7), 767-787.

Amar, M., Andreucci, D., Bisegna, P., \& Gianni, R. (2013). A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: the nonlinear case. Differential and Integral Equations, 26(9/10), 885-912.

Amar, M., Andreucci, D., \& Timofte, C. (2021). Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure and Applied Analysis, 20(5), 1755-1782.

Ammari, H., Widlak, T., \& Zhang, W. (2016, July). Towards monitoring critical microscopic parameters for electropermeabilization. Quarterly of Applied Mathematics, 75(1), 1-17. doi: 10.1090/qam/1449

Anastassiou, C. A., \& Koch, C. (2015). Ephaptic coupling to endogenous electric field activity: why bother? Current opinion in neurobiology, 31, 95-103.

Anastassiou, C. A., Perin, R., Markram, H., \& Koch, C. (2011). Ephaptic coupling of cortical neurons. Nature neuroscience, 14(2), 217.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., ... Sorensen, D. (1999). LAPACK users' guide (Third ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

Atkinson, K., \& Han, W. (2012). Spherical harmonics and approximations on the unit sphere: an introduction (Vol. 2044). Springer Science \& Business Media.

Bakhvalov, N., \& Panasenko, G. (1989). Homogenisation: Mathematical problems in the mechanics of composite materials. Springer Netherlands.

Barr, R. C., \& Plonsey, R. (1992). Electrophysiological interaction through the interstitial space between adjacent unmyelinated parallel fibers. Biophysical journal, 61(5), 1164-1175.

Basser, P. (1993). Cable equation for a myelinated axon derived from its microstructure. Medical \& biological engineering \& computing, 31(1), S87-S92.

Basser, P. J., \& Roth, B. J. (2000). New currents in electrical stimulation of excitable tissues. Annual Review of Biomedical Engineering, 2(1), 377-397.

Bendahmane, M., Mroue, F., Saad, M., \& Talhouk, R. (2019). Unfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology. Nonlinear Analysis: Real World Applications, 50, 413-447.

Bensoussan, A., Lions, J.-L., \& Papanicolaou, G. (2011). Asymptotic analysis for periodic structures (Vol. 374). American Mathematical Soc.

Binczak, S., Eilbeck, J., \& Scott, A. C. (2001). Ephaptic coupling of myelinated nerve fibers. Physica D: Nonlinear Phenomena, 148(1-2), 159-174.

Bokil, H., Laaris, N., Blinder, K., Ennis, M., \& Keller, A. (2001). Ephaptic interactions in the mammalian olfactory system. Journal of Neuroscience, 21(20), RC173RC173.

Bourgault, Y., Coudiere, Y., \& Pierre, C. (2009). Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Applications, 10(1), 458-482.

Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations (First ed.). Springer New York, NY. doi: 10.1007/978-0-387-70914-7

Choi, S.-E., Khoo, H., \& Hur, S. C. (2022, June). Recent Advances in Microscale Electroporation. Chemical Reviews, acs.chemrev.1c00677. doi: 10.1021/acs.chemrev.1c00677

Claeys, X., Hiptmair, R., \& Jerez-Hanckes, C. (2013). Multitrace boundary integral equations. In Direct and inverse problems in wave propagation and applications (Vol. 14, pp. 51-100). De Gruyter, Berlin.

Claeys, X., Hiptmair, R., Jerez-Hanckes, C., \& Pintarelli, S. (2015). Novel multitrace boundary integral equations for transmission boundary value problems. In A. S. Fokas \& B. Pelloni (Eds.), Unified transform for boundary value problems: Applications and advances (pp. 227-258). Philadelphia, SIAM.

Collin, A., \& Imperiale, S. (2018). Mathematical analysis and 2-scale convergence of a heterogeneous microscopic bidomain model. Mathematical Models and Methods in Applied Sciences, 28(05), 979-1035.

Colton, D., \& Kress, R. (2013). Inverse acoustic and electromagnetic scattering theory (third ed., Vol. 93). Springer Science \& Business Media New York.
conda-forge community. (2015, July). The conda-forge Project: Community-based Software Distribution Built on the conda Package Format and Ecosystem. Zenodo. Retrieved from https://doi.org/10.5281/zenodo. 4774216 doi: 10.5281/zenodo. 4774216

De Giorgi, E., \& Spagnolo, S. (1979). Convergence problems for functionals and operators. Ennio De Giorgi, 487.

Fernandez-Aranzamendi, E., San-Román, E., Castillo-Araníbar, P., Luz-Ventura, González-Posadas, V., \& Segovia-Vargas, D. (2022, May). Breast tumor classification by age and size based on analysis of dielectric properties performed on in vivo and ex vivo measurements. In 2022 International Workshop on Antenna Technology (iWAT) (pp. 192-195).

FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. The Bulletin of Mathematical Biophysics, 17(4), 257-278.

Franzone, P. C., \& Savaré, G. (2002). Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level. In Evolution equations, semigroups and functional analysis (pp. 49-78). Springer.

Freeden, W., \& Gutting, M. (2013). Special Functions of Mathematical (Geo)Physics. Basel: Springer Basel. doi: 10.1007/978-3-0348-0563-6

Freidlin, M. (1964). Dirichlet's problem for an equation with periodic coefficients depending on a small parameter. Theory of Probability \& Its Applications, 9(1), 121125.

Gallier, J., \& Quaintance, J. (2020). Spherical harmonics and linear representations of lie groups. In Differential geometry and lie groups (pp. 265-360). Springer.

Ganesh, M., \& Mustapha, K. (2007, February). A fully discrete H 1-Galerkin method with quadrature for nonlinear advection-diffusion-reaction equations. $N u$ merical Algorithms, 43(4), 355-383. doi: 10.1007/s11075-007-9066-6

Grandelius, E., \& Karlsen, K. H. (2019). The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 14(1), 173-204.

Guittet, A., Lepilliez, M., Tanguy, S., \& Gibou, F. (2015, October). Solving elliptic problems with discontinuities on irregular domains - the Voronoi Interface Method. Journal of Computational Physics, 298, 747-765. doi: 10.1016/j.jcp.2015.06.026

Guittet, A., Poignard, C., \& Gibou, F. (2017, March). A Voronoi Interface approach to cell aggregate electropermeabilization. Journal of Computational Physics, 332, 143-159. doi: 10.1016/j.jcp.2016.11.048

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... Oliphant, T. E. (2020, September). Array programming with NumPy. Nature, 585(7825), 357-362. Retrieved from https://doi.org/10.1038/ s41586-020-2649-2 doi: 10.1038/s41586-020-2649-2

Henríquez, F., \& Jerez-Hanckes, C. (2018). Multiple traces formulation and semiimplicit scheme for modelling biological cells under electrical stimulation. ESAIM Mathematical Modelling and Numerical Analysis, 52(2), 659-703. Retrieved from https://doi.org/10.1007/s00211-016-0835-9 doi: 10.1007/s00211-016-0835-9

Henríquez, F., Jerez-Hanckes, C., \& Altermatt, F. (2017). Boundary integral formulation and semi-implicit scheme coupling for modeling cells under electrical stimulation. Numer. Math., 136(1), 101-145. Retrieved from https://doi.org/ $10.1007 / \mathrm{s} 00211-016-0835-9$ doi: 10.1007/s00211-016-0835-9

Hiptmair, R., \& Jerez-Hanckes, C. (2012). Multiple traces boundary integral formulation for helmholtz transmission problems. Advances in Computational Mathematics, 37(1), 39-91.

Hiptmair, R., Jerez-Hanckes, C., Lee, J.-F., \& Peng, Z. (2014). Domain decomposition for boundary integral equations via local multi-trace formulations. In Domain decomposition methods in science and engineering xxi (p. 43-57). Springer International Publishing.

Hodgkin, A. L., \& Huxley, A. F. (1952, August). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science \& Engineering, 9(3), 90-95. doi: 10.1109/MCSE.2007.55

Jackson, J. D. (2013). Classical electrodynamics (3. ed., repr. 2013, student ed ed.). Hoboken, NY: Wiley.

Jæger, K. H., \& Tveito, A. (2021). Derivation of a cell-based mathematical model of excitable cells. In Modeling excitable tissue (pp. 1-13). Springer, Cham.

Jerez-Hanckes, C., Martínez, I. A., Pettersson, I., \& Rybalko, V. (2021). Multiscale analysis of myelinated axons. In Emerging problems in the homogenization of partial differential equations (pp. 17-35). Springer.

Jerez-Hanckes, C., Pettersson, I., \& Rybalko, V. (2020, March). Derivation of cable equation by multiscale analysis for a model of myelinated axons. Discrete and Continuous Dynamical Systems-Series B, 25(3), 815-839.

Jerez-Hanckes, C., Pinto, J., \& Tournier, S. (2015). Local multiple traces formulation for high-frequency scattering problems. J. Comput. Appl. Math., 289, 306-321.

Jikov, V. V., Kozlov, S. M., \& Oleinik, O. A. (2012). Homogenization of differential operators and integral functionals. Springer Science \& Business Media.

Kavian, O., Leguèbe, M., Poignard, C., \& Weynans, L. (2014, January). Electropermeabilization Modeling at the Cell Scale. Journal of Mathematical Biology, 68(1-2), 235-265. doi: 10.1007/s00285-012-0629-3

Keller, J. B. (1964). A theorem on the conductivity of a composite medium. Journal of Mathematical Physics, 5(4), 548-549.

Kim, K., \& Lee, W. G. (2017). Electroporation for nanomedicine: A review. Journal of Materials Chemistry B, 5(15), 2726-2738. doi: 10.1039/C7TB00038C

Kotnik, T., Rems, L., Tarek, M., \& Miklavčič, D. (2019, May). Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annual Review of Biophysics, 48(1), 63-91. doi: 10.1146/annurev-biophys-052118-115451

Leguèbe, M., Silve, A., Mir, L. M., \& Poignard, C. (2014, November). Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments. Journal of Theoretical Biology, 360, 83-94. doi: 10.1016/j.jtbi.2014.06.027

Li, D. C., \& Li, Q. (2017). Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal cord. Neural regeneration research, 12(10), 1613.

Lin, J., \& Keener, J. P. (2010). Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling. Proceedings of the National Academy of Sciences, 107(49), 20935-20940.

Lions, J.-L. (1969). Quelques méthodes de résolution de problemes aux limites non linéaires. Dunod.

Liu, X.-D., Fedkiw, R. P., \& Kang, M. (2000, May). A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains. Journal of Computational Physics, 160(1), 151-178. doi: 10.1006/jcph.2000.6444

Mackey, M. C., \& Maini, P. K. (2015, May). What Has Mathematics Done for Biology? Bulletin of Mathematical Biology, 77(5), 735-738.

Maini, P. K. (2002). Making Sense of Complex Phenomena in Biology. In G. Bock \& J. A. Goode (Eds.), In silico’ simulation of biological processes (1st ed., Vol. 247, pp. 53-65). John Wiley \& Sons, Ltd.

Mandonnet, E., \& Pantz, O. (2011). The role of electrode direction during axonal bipolar electrical stimulation: a bidomain computational model study. Acta Neurochirurgica, 153(12), 2351-2355.

Marchenko, V., \& Khruslov, E. (2006). Homogenization of partial differential equations (Vol. 46). Boston, MA: Birkhäuser Boston Inc. (Translated from the 2005 Russian original by M. Goncharenko and D. Shepelsky)

Marchenko, V. A., \& Khruslov, E. Y. (1964). Boundary-value problems with finegrained boundary. Matematicheskii Sbornik, 107(3), 458-472.

Matano, H., \& Mori, Y. (2011). Global existence and uniqueness of a threedimensional model of cellular electrophysiology. Discrete Contin. Dyn. Syst, 29, 1573-1636.

Maxwell, J. C. (1873). A treatise on electricity and magnetism (Vol. 1). Clarendon press.

McIntyre, C. C., Richardson, A. G., \& Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. Journal of neurophysiology, 87(2), 995-1006.

Meffin, H., Tahayori, B., Sergeev, E. N., Mareels, I. M., Grayden, D. B., \& Burkitt, A. N. (2014). Modelling extracellular electrical stimulation: Iii. derivation and interpretation of neural tissue equations. Journal of neural engineering, 11(6), 065004.

Meunier, C., \& d'Incamps, B. L. (2008). Extending cable theory to heterogeneous dendrites. Neural Computation, 20(7), 1732-1775.

Minty, G. (1962). Monotone (nonlinear) operators in hilbert space. Duke Math. J., 29, 341-346.

Mistani, P., Guittet, A., Poignard, C., \& Gibou, F. (2019, March). A parallel Voronoi-based approach for mesoscale simulations of cell aggregate electropermeabilization. Journal of Computational Physics, 380, 48-64. doi: 10.1016/j.jcp.2018.12.009

Nagumo, J., Arimoto, S., \& Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061-2070.

Nédélec, J.-C. (2001). Acoustic and electromagnetic equations: integral representations for harmonic problems (Vol. 144). Springer Science \& Business Media.

Neu, J., \& Krassowska, W. (1993). Homogenization of syncytial tissues. Critical reviews in biomedical engineering, 21(2), 137—199.

Neu, J. C., \& Krassowska, W. (1999, March). Asymptotic model of electroporation. Physical Review E, 59(3), 3471-3482. doi: 10.1103/PhysRevE.59.3471

Nguetseng, G. (1989). A general convergence result for a functional related to the theory of homogenization. SIAM Journal on Mathematical Analysis, 20(3), 608623.

Olver, F. W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W., \& National Institute of Standards and Technology (U.S.) (Eds.). (2010). NIST handbook of mathematical functions. Cambridge ; New York: Cambridge University Press : NIST.

Onemli, E., Joof, S., Aydinalp, C., Pastaci Özsobaci, N., Ateş Alkan, F., Kepil, N., ... Yilmaz, T. (2022, December). Classification of rat mammary carcinoma with large scale in vivo microwave measurements. Scientific Reports, 12(1), 349.

Pazy, A. (2012). Semigroups of linear operators and applications to partial differential equations (Vol. 44). Springer Science \& Business Media.

Pennacchio, M., Savaré, G., \& Franzone, P. C. (2005). Multiscale modeling for the bioelectric activity of the heart. SIAM Journal on Mathematical Analysis, 37(4), 1333-1370.

Pettersson, I. (2017). Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary. Differential Equations \& Applications, 9(3), 393-412. doi: 10.7153/dea-2017-09-28

Plonsey, R., \& Heppner, D. B. (1967, December). Considerations of quasistationarity in electrophysiological systems. The Bulletin of Mathematical Biophysics, 29(4), 657-664. doi: 10.1007/BF02476917

Poisson, S.-D. (1821). Memoires sur ia theorie du magnetisme. Memoires le l'Academie Sciences de France, 5, 247-338.

Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9(12), 1483-1508. Retrieved from http://www.sciencedirect.com/science/article/pii/ S0006349569864672 doi: https://doi.org/10.1016/S0006-3495(69)86467-2

Ramon, F., \& Moore, J. W. (1978). Ephaptic transmission in squid giant axons. American Journal of Physiology-Cell Physiology, 234(5), 162-169.

Rattay, F. (1990). Electrical nerve stimulation. Springer.

Rico, J. F., López, R., Ema, I., \& Ramírez, G. (2013, May). Translation of real solid spherical harmonics. International Journal of Quantum Chemistry, 113(10), 15441548. doi: 10.1002/qua. 24356

Rols, M.-P. (2006). Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(3), 423-428.

Sauter, S. A., \& Schwab, C. (2010). Boundary Element Methods (Vol. 39). Berlin, Heidelberg: Springer Berlin Heidelberg.

Showalter, R. E. (2013). Monotone operators in banach space and nonlinear partial differential equations (Vol. 49). American Mathematical Soc.

Siriudie. (n.d.). https://commons.wikimedia.org/wiki/File: GB_3102.11_Figure_5.svg. (Accessed on 10 September 2022)

Standring, S. (2021). Gray's anatomy e-book: the anatomical basis of clinical practice. Elsevier Health Sciences.

Thomée, V. (2006). Galerkin finite element methods for parabolic problems (2nd ed ed.) (No. v. 25). Berlin ; New York: Springer.

Tveito, A., Jæger, K. H., Lines, G. T., Paszkowski, Ł., Sundnes, J., Edwards, A. G., ... Einevoll, G. T. (2017). An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons. Frontiers in computational neuroscience, 11, 27.

Veneroni, M. (2006). Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Methods Appl. Sci., 29(14), 1631-1661.

Vico, F., Greengard, L., \& Gimbutas, Z. (2014). Boundary integral equation analysis on the sphere. Numerische Mathematik, 128(3), 463-487.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261-272. doi: 10.1038/s41592-019-0686-2

Vollmer, F., \& Yu, D. (2020). Optical whispering gallery modes for biosensing: From physical principles to applications. Cham: Springer.

Wahls, T. L., Reese, D., Kaplan, D., \& Darling, W. G. (2010). Rehabilitation with neuromuscular electrical stimulation leads to functional gains in ambulation in patients with secondary progressive and primary progressive multiple sclerosis: A case series report. The Journal of Alternative and Complementary Medicine, 16(12), 1343-1349.

Wieczorek, M. A., \& Meschede, M. (2018). SHTools: Tools for Working with Spherical Harmonics. Geochemistry, Geophysics, Geosystems, 19(8), 2574-2592. doi: 10.1029/2018GC007529

Winslow, R. L., Trayanova, N., Geman, D., \& Miller, M. I. (2012, October). Computational Medicine: Translating Models to Clinical Care. Science Translational Medicine, 4(158), 1-11.

Zhikov, V. (2000). On an extension and an application of the twoscale convergence method. Mat. Sb., 191(7), 31-72. Retrieved from http://dx.doi.org/10.1070/SM2000v191n07ABEH000491 doi: 10.1070/SM2000v191n07ABEH000491

[^0]: ${ }^{1}$ Throughout, C denotes a generic constant independent of ε, whose value may be different from line to line.

[^1]: ${ }^{1}$ https://www.anaconda.com/products/distribution
 ${ }^{2}$ https://docs.conda.io/projects/conda/en/stable/
 ${ }^{3}$ The following packages were installed explicitly: pyshtools 4.10 (Wieczorek \& Meschede, 2018), (conda install pyshtools=4.10), numpy 1.23.1 (Harris et al., 2020), scipy 1.9.0 (Virtanen et al., 2020), and matplotlib-base 3.5.2 (Hunter, 2007).

[^2]: $\overline{{ }^{4} \text { The parameters used are provided in Table 5.9. Notice that extra- and intracellular conductivities have }}$ different values from the previous simulations, and were changed to obtain a response of the impulse sooner.

