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wisdom.

I would like to express my gratitude to the funding agencies behind my research. In

particular, to Agencia Nacional de Investigación y Desarrollo (ANID), through the doctoral

fellowship program Conicyt-PFCHA/Doctorado Nacional/2018-21181809 and Fondecyt

Regular 1171491, as well as by the Swedish Foundation for International Cooperation in

Research and Higher education (STINT) through project CS2018-7908 (El Nervio – Mod-

eling of Ephaptic Coupling of Myelinated Neurons).

Thanks to all friends and people that gave me their support during this time.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Peripheral axon modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Single axon modeling . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2. Axon bundles modeling . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Cell electropermeabilization modeling . . . . . . . . . . . . . . . . . . . 8

2. THEORY AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1. Homogenization theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Monotonicity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. MULTISCALE MODELING OF MYELINATED AXONS . . . . . . . . . . . 23

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1. Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2. Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3. Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3. A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4. Justification of macroscopic model . . . . . . . . . . . . . . . . . . . . . 38

3.5. Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



4. BIDOMAIN MODEL FOR BUNDLES OF AXONS . . . . . . . . . . . . . . 44

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Microscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3. Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1. Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2. Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4. Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1. A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2. Derivation of the macroscopic model . . . . . . . . . . . . . . . . . 63

4.5. Well-posedness of the macroscopic problem . . . . . . . . . . . . . . . . 76

4.6. Formal asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . . 79

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5. CELL ELECTROPERMEABILIZATION MODELING VIA MULTIPLE TRACES

FORMULATION AND TIME SEMI-IMPLICIT COUPLING . . . . . . . . . . 84

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2. Functional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3. Problem Statement and Boundary Integral Formulation . . . . . . . . . . 89

5.3.1. Cell Electropermeabilization Model . . . . . . . . . . . . . . . . . . 89

5.3.2. Boundary integral formulation . . . . . . . . . . . . . . . . . . . . . 94

5.4. Numerical Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.1. Semi-implicit time stepping scheme . . . . . . . . . . . . . . . . . . 102

5.4.2. Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.3. Fully discrete scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.1. Hardware and Code Implementation . . . . . . . . . . . . . . . . . . 113

5.5.2. Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.3. Numerical Results for a Single Cell with Nonlinear Dynamics . . . . . 127

5.5.4. Results with multiple cells . . . . . . . . . . . . . . . . . . . . . . . 133

5.6. Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 141

v



5.7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

vi



LIST OF TABLES

3.1 Geometric parameters in µm. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Results of the effective coefficient aeff for different values of l, the length of the

Ranvier node. l is in µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Results of the effective coefficient aeff for different values of the angle. The

angles are in degrees and the results presented with six significant digits. . . . 42

5.1 Parameters used in Section 5.5.2.1 for studying the convergence of the spherical

harmonics approximation of ϕe3 (5.33c). Values for σ0 comes from (Kavian,
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ABSTRACT

During the last decades, enormous progress has been achieved in biomedical appli-

cations thanks to the ability to model and computationally simulate complex underlying

phenomena. Indeed, the derivation and analysis of ever more realistic physiological mod-

els as well as suitable numerical methods to solve them has allowed the identification of

relevant variables and behavior patterns with immediate use for clinical practitioners and

biomedical specialists.

The present thesis proposes mathematical and computational models to study complex

electrophysiological phenomena at the cellular scale using integral boundary equations and

homogenization techniques. Specific applications considered are peripheral neural stimu-

lation and cell electropermeabilization.

We employ multiscale analysis and homogenization methods to obtain two reduced-

order models: (a) a non-linear cable equation for one myelinated axon that considers the

microstructure of it in three dimensions; and, (b) a non-linear bidomain model in three

dimensions, which describes the macroscopic behaviour of the electric potential in a bundle

of myelinated axons.

For the cell electropermeabilization process, we apply and develop a mathematical the-

oretical framework for the resolution of the phenomena at the cell scale in three dimensions

using the multiple traces boundary integral formulation with a semi-implicit time scheme.

We also present a numerical algorithm to simulate the process.

Keywords: multiscale analysis, asymptotic homogenization, boundary integral formula-

tions, myelinated axons, electropermeabilization, cell modeling, spectral methods, numer-

ical simulations, non-linear partial differential equations.
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RESUMEN

Durante las últimas décadas se ha logrado un enorme progreso en las aplicaciones

biomédicas gracias a la capacidad de modelar y simular computacionalmente fenómenos

complejos. De hecho, la derivación y análisis de modelos fisiológicos cada vez más realis-

tas, ası́ como métodos numéricos adecuados para resolverlos, ha permitido la identificación

de variables relevantes y patrones de comportamiento con uso inmediato para médicos y

especialistas biomédicos.

La presente tesis propone modelos matemáticos y computacionales para estudiar fe-

nómenos electrofisiológicos complejos a escala celular utilizando técnicas de ecuaciones

integrales de frontera y homogeneización. Las aplicaciones especı́ficas consideradas son la

estimulación neural periférica y la electropermeabilización celular.

Los métodos de homogeneización y análisis multi-escala se utilizarán para obtener dos

modelos de orden reducido: (a) una ecuación de cable no lineal para un axón mielinizado

que considera la microestructura del mismo en tres dimensiones; y, (b) un modelo de bido-

minio no lineal en tres dimensiones, que describe el comportamiento macroscópico del

potencial eléctrico en un manojo de axones mielinados.

Para el proceso de electropermeabilización, aplicamos y desarrollamos un marco teó-

rico para la resolución del fenómeno a escala celular en tres dimensiones usando la formu-

lación integral de múltiples trazas junto a un esquema temporal semi-implı́cito. También

presentamos un algoritmo numérico para simular el proceso.

Palabras Claves: análisis multiescala, homogenización asintótica, formulaciones inte-

grales de frontera, axones mielinados, electropermeabilización, electorporación, mode-

lamiento celular, métodos espectrales, simulaciones numéricas, ecuaciones diferenciales

parciales no lineales.
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1. INTRODUCTION

During the last decades, enormous progress has been achieved in biomedical appli-

cations thanks to the ability to model and computationally simulate complex underlying

phenomena (Maini, 2002; Mackey & Maini, 2015; Winslow, Trayanova, Geman, & Miller,

2012). Indeed, the derivation and analysis of ever more realistic physiological models, as

well as suitable numerical methods to solve them, has allowed the identification of relevant

variables and behavior patterns with immediate use for clinical practitioners and biomedi-

cal specialists.

The present doctoral thesis aims to study such mathematical models and numerical

methods for specific applications in electrophysiology. This branch of physiology studies

the electrical properties of biological cells and tissues. It involves measurements of voltage

changes or electric current or manipulations on a wide variety of scales from single ion

channel proteins to whole organs, like the heart. In neuroscience, it includes measurements

of the electrical activity of neurons, and, in particular, action potential activity. However,

there are other complex processes, such as electropermeabilization, that are less obvious

and showcase non-trivial cell reactions to electrical stimuli.

In particular, this work tackles two electrophysiological phenomena: (i) the transmis-

sion of electrical impulses along peripheral axons and the interaction in axon bundles; and,

(ii) electropermeabilization and electroporation in cells. These processes follow nonlinear

dynamics, the geometries are complex and involve several scales, which lead to a high

computational costs when trying to model and simulate them numerically. Then, is it pos-

sible to derived simplified models? How to reduce the computational complexity? In both

cases, rigorous mathematical models are derived along with the development of suitable

numerical methods to solve the corresponding problems.

Multiple applications of these processes can be found in the literature, as it will be

discussed below, but it helps to have in mind for (i) peripheral nerve stimulation used in

regional anesthesia, while for (ii) drug absorption in cancer treatment.
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The thesis is structured in the following way. First, basic electrophysiology elements as

well as a discussion on the state-of-the-art of the phenomena under study are given. Then,

key ideas of the homogenization theory and asymptotic analysis are introduced to be later

employed in two of the three main contributions of this manuscript. These are presented as

follows:

• Chapter 3, entitled Multiscale analysis of myelinated axons, published in Emerg-

ing Problems in the Homogenization of Partial Differential Equations, SEMA

SIMAI Springer Series, 10 (2021). Here, a nonlinear cable equation for periodi-

cally myelinated and unmyelinated segments is derived by asymptotic homoge-

nization takes into account the microstructure of the axon.

• Chapter 4, entitled Derivation of a Bidomain model for bundles of myelinated

axons, published in Nonlinear Analysis: Real World Applications, 70 (2023),

4:103789. The main result consists of a bidomain model describing macroscopic

behavior of the electric potential in a bundle of myelinated axons.

• Chapter 5, entitled Cell Electropermeabilization Modeling via Multiple Traces

Formulation and Time Semi-Implicit Coupling (submitted to SISC). In this chap-

ter, we apply and develop a mathematical theoretical framework for the resolu-

tion of cellular electro-permeabilization models in three dimensions using the

formulation of multiple traces together with a temporal scheme. A numerical

algorithm based on integral equations for a set of electrically stimulated cells is

proposed.

Finally, concluding remarks as well as future research directions are provided, as well

as bibliographic references for further reading.

1.1. Peripheral axon modeling

As stated, one of the main interests in electrophysiology is to better understand and

describe the transmission of electrical stimuli through nerves and other biological cells

making up tissues. This allows to more accurately model, for instance, nerve stimulation,
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which is nowadays a commonly used method for localizing nerves for regional anesthesia,

the treatment of chronic pain, and reducing symptoms in many neurological disorders, like

eliminating involuntary muscle activity in multiple sclerosis.

Nerve impulses can be seen as the transmission of information along nerve fibers,

which may trigger events to communicate with a different cell via chemical (synapse) or

electrical (gap junction) signals. It is the way a nerve cell communicates with another

cell and makes it act. For example, a signal from the nerve cell might make a muscle

cell to contract. Any disorder in the nervous system can result in a range of symptoms,

which include chronic pain, poor coordination, and loss of sensation. Electrical stimulation,

applied using implanted or surface electrodes, sometimes can avoke neuron activity, which

may restore the lost functions of the patients or relieve certain symptoms (Wahls, Reese,

Kaplan, & Darling, 2010).

Neurological diseases might be caused by various factors, as genetic factors, nerve in-

juries, environmental issues, or even malnutrition, but many of them have common features—

they are often difficult to identify and treat, and there is a clear need of new non-invasive

diagnose techniques as well as alternative treatment methods. For example, in multiple

sclerosis the immune system attacks the myelin sheath covering nerve fibers and causes

communication problems between the brain and the rest of the body. Though there is no

cure for multiple sclerosis and the cause is not known, it has been documented that elec-

trical stimulation leads to the augmentation of myelin development (Li & Li, 2017), and

helps also, for example, people with foot drop walk more normally (Wahls et al., 2010).

To be able to simulate nerve electrical stimulation, one needs a suitable model. The

process of excitability of nerve fibers and a mathematical model for the electrical currents

across the axon membrane was first properly studied in the famous work of Alan Lloyd

Hodgkin and Andrew Fielding Huxley (Hodgkin & Huxley, 1952), later on to be rewarded

the Nobel Prize in Physiology or Medicine jointly with Sir John Carew Eccles.
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FIGURE 1-1. Typical structure of a single myelinated neuron and a nerve. Sources:
”Anatomy and Physiology” by the US National Cancer Institute’s Surveillance,
Epidemiology and End Results (SEER) Program; www.tabers.com

1.1.1. Single axon modeling

A typical nerve contains several grouped fascicles, each of them containing many ax-

ons (see Figure 1-1). The jump of the potential across the membrane, i.e. the transmem-

brane potential or nerve impulse, of each individual axon can be modeled in the framework

of the Hodgkin-Huxley model, but the complex microstructure of the tissue as a whole

presents an obvious problem for those attempting to describe its macroscopic response to

the electrical stimulation. In order to model and simulate the nerve fiber response to elec-

trical stimulation, one needs to know both how signals propagate along single neurons and

how they influence each other in a bundle of axons.

When it comes to individual axons, a commonly adopted model for signal propagation

is the so-called cable equation:

∂V

∂t
= D

∂2V

∂x2
+ f(t, V ), (1.1)

where V (t, x) is the membrane potential, D is the diffusion coefficient, and f is a contin-

uous function representing the reaction term, depending on both membrane potential and

time. Note that it is a one-dimensional—in space variable—partial differential equation,

which is much easier to solve and analyze than a corresponding 3D model.

https://www.tabers.com/tabersonline/repview?type=539-30&name=N08
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A classical cable equation is derived by modeling dendrites and axons as cylinders

composed of segments with capacitances and resistances combined in parallel (Rattay,

1990; P. Basser, 1993; Meffin et al., 2014). The resistances of the cable equation can be

modeled as nonlinear resistors using the Hodgkin-Huxley mathematical formulation, and

the coefficients in equation (1.1) depend on the membrane resistances and capacitance of

Ranvier nodes and internodes—myelinated parts—, as well as on the length of nodes and

internodes. In (McIntyre, Richardson, & Grill, 2002), the authors present a computer-based

model for myelinated axons reproducing a wide range of experimental data. The models

developed in this study use an explicit representation of the Ranvier nodes, paranodal, and

internodal sections of the axon—21 nodes of Ranvier separated by 20 internodes— as well

as a finite impedance myelin sheath. The result is the accurate adjustment of the Hodgkin-

Huxley model to the experimental data.

Since classical continuum cable models are derived modeling neurons as electrical

circuits, the one-dimensional cable equation does not contain any information about the

geometry of the myelin sheath, of the axon itself, and, consequently is not able to predict

the effect of myelin defects on the impulse propagation. In the recent work (Jerez-Hanckes,

Pettersson, & Rybalko, 2020), the authors derived a one-dimensional nonlinear cable equa-

tion describing one single axon in the absence of external stimulation. In order to trace

the dependence of the time and space constants on the microstructure of neurons, a finite

resistivity of the myelin was assumed. In contrast to the case when myelin is assumed to be

a perfect insulator, the non-zero conductivity of the myelin sheath leads to the appearance

of an additional potential in the effective cable equation. This potential depends on the

geometry of the myelin sheath and on the conductivities of intra- and extracellular space.

The main contribution of Chapter 3 is the derivation of a one-dimensional nonlinear

cable equation for a single myelinated axon in the case of a varying cross-section and infi-

nite resistivity of the myelin. Assuming the homogeneous Neumann boundary conditions

on the myelin surface, we show that the geometrical assumptions on the myelin sheath such

as radial symmetry assumption and specific geometry near the points where myelin meets
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the intracellular domain, can be suppressed. We perform also numerical computations il-

lustrating the solution of the auxiliary cell problems, as well as analysing how the effective

coefficients vary with respect to the area of the Ranvier nodes.

1.1.2. Axon bundles modeling

Modeling a bundle of axons is more complicated. Traditionally, it was assumed that

interactions between neurons (ephaptic interactions) are negligible and neighboring axons

do not affect each other by current spread through the extracellular space (Barr & Plonsey,

1992). However, it is now commonly accepted that ephaptic interactions play an important

role, for example, in the electrical conductance of the heart (Lin & Keener, 2010) and in

the mammalian olfactory system (Bokil, Laaris, Blinder, Ennis, & Keller, 2001). Recently,

there has been a revival of interest in ephaptic interactions as they appear to impact brain

function at different scales from the synapse to cell networks (Anastassiou, Perin, Markram,

& Koch, 2011; Anastassiou & Koch, 2015). Although axon-to-axon effects in myelinated

fibers have not been clearly demonstrated, conduction velocity and perhaps other physio-

logical functions may be affected by axon-to-axon impulse coupling, despite the insulating

properties of myelin (Binczak, Eilbeck, & Scott, 2001; Henrı́quez & Jerez-Hanckes, 2018).

Further, in tightly packed bundles of unmyelinated fibers, an action potential from one axon

may evoke an action potential in a different axon by means of ephaptic coupling, which can

play a role in, for example, the olfactory code as the mammalian olfactory nerve presents

such anatomical structure (Bokil et al., 2001).

Ephaptic interactions might be modelled by coupling systems of large numbers of cable

equations (Bokil et al., 2001; Binczak et al., 2001), but a continuous mathematical model

would facilitate the numerical simulations.

The main contribution of Chapter 4 is a rigorous derivation of a continuum model for

signal propagation in bundles of myelinated neurons. Namely, we present a rigorous deriva-

tion of a macroscopic bidomain model describing the behavior of the electric potential in

the fascicle based on the FitzHugh–Nagumo membrane dynamics. The technique used

combines the two-scale convergence machinery and the method of monotone operators.
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In order to derive continuous models for signal propagation in individual axons and

axon bundles, the homogenization methods is used. Let us shortly explain the homog-

enization method in the situation when we have just one single axon. A more detailed

introduction to the homogenization theory is presented in Chapter 3.

Modeling of a myelinated neuron as a thin cylinder with alternating nodes and intern-

odes of small length leads us to an asymptotic analysis problem. Indeed, the thickness of

an axon and the distance between two neighboring nodes are of the same order and is very

small compared with the length of the axon. That is why it is natural to introduce a small

parameter ε > 0, the characteristic size of the microstructure (for example, the relation be-

tween the thickness and the length of the axon). The unknown potential solving a coupled

system of nonlinear partial differential equations will then depend on ε, and to derive a sim-

plified equation, one asks what happens with the domain and with the equations when the

domain shrinks into a segment and, at the same time, the microstructure (alternating nodes

and internodes) becomes finer and finer. Since the distance between the Ranvier nodes is

approximately the same, one can assume that the microstructure is periodic, and try to look

for the unknown functions (extra- and intracellular potentials, the potential in the myelin,

and the transmembrane potential) in the form of the ansatz

uε = u0(x1) + εu1
(
x1,

x

ε

)
+ ε2u2

(
x1,

x

ε

)
+ . . . ,

where the functions uk depend periodically on the second variable (much ”easier” depen-

dence on ε). The fact that the domain is thin and shrinks to a segment yields the dependence

on x1 only in the first (slow) variable. Substituting this ansatz into the three-dimensional

problem describing the potential distribution for an axon placed in an extracellular space,

and equating coefficients in front of different powers of ε one gets a cascade of equations

for the unknown functions uk. The equation satisfied by the leading term of the asymp-

totics u0 is called the effective (homogenized) equation. The form of the effective equation

as well as the domain where it is stated is different from the original ones. What is, how-

ever, important is that a certain (finite) number of terms in the ansatz is close in some

norm to the original solution. To make the whole procedure rigorous, one should prove the
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well-posedness of both original and effective problems, as well as the convergence of the

solutions of the original problem to the solution of the effective problem. This constitutes

the asymptotic analysis (or homogenization) of the problem; see, e.g. (V. Marchenko &

Khruslov, 2006; Bensoussan, Lions, & Papanicolaou, 2011; Allaire, 1992).

1.2. Cell electropermeabilization modeling

Electropermeabilization designates the use of short high-voltage or electric field pulses

to overcome the barrier of the cell membrane to increase its permeability (Kotnik, Rems,

Tarek, & Miklavčič, 2019; Rols, 2006). This process is used to deliver therapeutic molecules,

such as drugs and genes, into cells to treat cancer, perform genetic engineering, screen

drugs, among others applications; see (Kim & Lee, 2017) or (Choi, Khoo, & Hur, 2022,

Section 4), among other references.

Theoretically, several models having proposed to explain the reversible membrane

electropermeabilization mechanism and its potentiality to allow the access of non-permeant

molecules into the cell. However, no model has yet been rigorously proven to explain the

phenomenon. For instance, during electropermeabilization it is thought that aqueous pores

are formed along the membrane cell—a process known as electroporation—thereby in-

creasing the permeability of the membrane. Yet, this has not been experimentally observed

to occur for the voltage values commonly employed. The pores are too small to be observed

by optical microscopy and too fragile for electron microscopy. Only molecular dynamics

simulations have been able to provide a corroboration of the pore formation (Kotnik et al.,

2019, Section 3), (Choi et al., 2022, Section 2.1). Moreover, the application of external

electric pulses triggers other physical and chemical cell mechanisms, many of them not

fully understood, with complex interactions at multiple length scales, from nanometers at

the cell membrane to centimeters in tissues (Kotnik et al., 2019). “Therefore, while the

term electroporation is commonly used among biologists, the term electropermeabiliza-

tion should be preferred in order to prevent any molecular description of the phenomenon”

(Rols, 2006).
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Still, mathematical models and numerical methods have been used to gain a bet-

ter understanding of the different underlying phenomena. For instance, Neu and Kras-

sowska (J. C. Neu & Krassowska, 1999) consider a electroporation process by modeling

the nanoscale phenomena involved in the creation and resealing of the cell membrane pores,

and applying homogenization theory leading to nonlinear time dynamics occurring at the

membrane. Well-posedness of the Neu-Krassowska model and a new model including

anisotropies are derived in (Ammari, Widlak, & Zhang, 2016). Alternatively, in (Kavian

et al., 2014) the authors propose a phenomenological model that forgoes the ab initio un-

derstanding of the mechanisms involved, leading to a dynamical model with parameters

inferred experimentally. A more complete phenomenological model considers two differ-

ent stages in the electroporation process, conducting and permeable (Leguèbe, Silve, Mir,

& Poignard, 2014). This model also takes into account the diffusion and electric transport

of non-permeable molecules. In (Guittet, Poignard, & Gibou, 2017; Mistani et al., 2019),

the authors discard particle diffusion and transport in (Leguèbe et al., 2014) to then apply

the Voronoi Interface Method (Guittet, Lepilliez, Tanguy, & Gibou, 2015) for its compu-

tational approximation. Specifically, they construct a Voronoi mesh of the volume which

when coupled to a ghost fluid method (Liu, Fedkiw, & Kang, 2000) is able to capture

discontinuous boundary conditions. Further enhancements via parallelization are given in

(Mistani et al., 2019).

In Chapter 5, we apply the local Multiple Traces Formulation (MTF) (Hiptmair &

Jerez-Hanckes, 2012) to reduce the problem to boundary integral equations on cell mem-

branes. We simulate the electric potential response of a fixed number of disjoint cells

in three dimensions when they are subject to electric pulses. Spatially, the boundary un-

knowns are approximated by spherical harmonics, thereby allowing for spectral conver-

gence rates. The nonlinear dynamics of the cell membrane follow (Kavian et al., 2014).
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2. THEORY AND METHODS

2.1. Homogenization theory

In this section, we describe briefly the history and the main concepts of the homog-

enization theory, which is used in Papers A and B for multiscale modeling of myelinated

axons.

The mathematical theory of homogenization is a rigorous version of what is known in

mechanics as averaging. The main goal is to describe macroscopic (or effective) properties

of heterogeneous media. In a classical setting, one deals with some physical processes

in media with periodic microstructure. If the period of the microstructure is much smaller

than the size of a sample of the heterogeneous material, one can introduce a small parameter

ε > 0 as the ratio of these two scales. After that, the asymptotic analysis, as ε→ 0, is used

in order to derive the limit problem. The last, so-called homogenized problem, is stated in

a domain without microstructure, and, thus, is often easier to analyze numerically. In other

words, instead of analyzing one problem with a fixed ratio between the microstructure

period and the sample size, one considers a sequence of problems, parametrized by ε,

and pass to the limit as ε → 0 to derive a suitable approximation for the solutions in the

heterogeneous medium. One should ensure that a solution of the original problem is close

in some sense to a solution of the effective problem.

Interesting enough, in 1826, Poisson (Poisson, 1821) derived the effective conductivity

for a non-conductive matrix with conductive spherical inclusions. Also Maxwell (Maxwell,

1873) studied the effective conductivity of an array of spherical inclusions with different

conductivity i a matrix. The homogenization theory in the form it exists now started in the

60s. Marchenko and Khruslov (V. A. Marchenko & Khruslov, 1964) studied a Dirichlet

problem in domains with fine grained boundary. Their technique is based on the notion of

capacity and convergence of functionals. The effective conductivity of the checkerboard

was proved to be the geometric mean of the two conductivities by Keller in (Keller, 1964).

Time dependent problems were first considered by Freidlin in (Freidlin, 1964), where the
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author used probabilistic techniques. After these works the homogenization theory de-

veloped very rapidly, and it was applied to both stationary and time-dependent problems,

systems of equations, higher-order differential operators, in periodic, non-periodic, and

stochastic setting. We refer to (Bakhvalov & Panasenko, 1989), (Bensoussan et al., 2011),

(Jikov, Kozlov, & Oleinik, 2012). The Γ-convergence technique efficiently used to treat

nonlinear problems was introduced by De Giorgi (De Giorgi & Spagnolo, 1979). In Papers

A and B we use the two-scale convergence technique introduced by Nguetseng (Nguetseng,

1989) and developed by Allaire (Allaire, 1992).

One important contribution of the homogenization theory is a rigorous derivation of the

effective coefficients reflecting the macroscopic properties of the heterogeneous media. Let

us consider a one-dimensional example where the effective coefficients can be computed

explicitly as the geometric average of the original coefficient.

Given f ∈ L2(Ω), let uε be a unique solution of

d

dx

(
a
(x
ε

)duε
dx

)
= f(x) in (0, 1), (2.1)

uε(0) = uε(1) = 0,

where 0 < α ≤ a(y) ≤ C is 1-periodic. Next proposition provides the homogenization

result for this problem. The proof is classical, and can be found, for example, in (Jikov et

al., 2012).

PROPOSITION 2.1. Let uε be a unique solution of (2.1). Then uε converges weakly

to u0 in H1
0 (0, 1) where u0 is a unique solution to the following homogenized (effective)

problem:

d

dx

(
a0
du0
dx

)
= f(x) in (0, 1), (2.2)

u0(0) = u0(1) = 0,

with a0 = ⟨a−1⟩−1 =
( ∫ 1

0
a(y)−1 dy

)−1.
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PROOF. The first step is to derive a priori estimates. To this end, we multiply (2.1)

by uε and integrate by parts. By the positivity of the coefficient a(y) ≥ α > 0 and the

Schwartz inequality, we have

α
∥∥duε
dx

∥∥2
L2(0,1)

≤
∫ 1

0

a
(x
ε

)∣∣duε
dx

∣∣2dx ≤ ∥f∥L2(0,1)∥uε∥L2(0,1) ≤ C
∥∥duε
dx

∥∥
L2(0,1)

,

∥∥duε
dx

∥∥
L2(0,1)

≤ C.

Note that, since uε satisfies the homogeneous Dirichlet condition on the boundary of

Ω, by the Friedrichs inequality ∥uε∥L2(0,1) ≤ ∥duε
dx

∥, uε is uniformly bounded in H1
0 (0, 1)

and thus, up to a subsequence, has a weak limit u0 ∈ H1
0 (0, 1).

In the next step we identify the limit u0. Integrate (2.1) from 0 to x:

a
(x
ε

)duε
dx

=

∫ x

0

f(ξ)dξ + cε = F (x) + cε,

duε
dx

= a
(x
ε

)−1
(F (x) + cε).

Both a(y) and a(y)−1 are periodic, so a(x/ε)−1 converges to its mean value
∫ 1

0
a(y)−1 dy,

as ε→ 0. Since uε(0) = uε(1) = 0, we have

0 =

∫ 1

0

duε
dx

dx =

∫ 1

0

a
(x
ε

)−1
(F (x) + cε)dx −−→

ε→0
⟨a−1⟩

∫ 1

0

F (x)dx+ ⟨a−1⟩ lim
ε→0

cε.

Therefore

lim
ε→0

cε = −
∫ 1

0

F (x)dx.

In this way, we have the following weak limits in L2(Ω):

lim
ε→0

a
(x
ε

)duε
dx

= F (x)−
∫ 1

0

F (x)dx,

lim
ε→0

duε
dx

= ⟨a−1⟩
(
F (x)−

∫ 1

0

F (x)dx
)
≡ du0

dx
.
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Multiplying by ⟨a−1⟩−1 and differentiating both sides of the equality, we obtain

⟨a−1⟩−1du0
dx

= F (x)−
∫ 1

0

F (x)dx ⇒ d

dx

(
⟨a−1⟩−1du0

dx

)
= f(x).

Proposition 2.1 is proved.

□

The formula a0 = ⟨a−1⟩−1 for the effective conductivity can be understood intuitively

in terms of electrostatics. Indeed, given two resistors connected in series, the effective

conductance is known to be the geometric average Ceff = (C−1
1 + C−1

2 )−1 (see Figure

2-1). At the same time, the formula for the effective conductivity in a one-dimensional

heterogeneous material with a piecewise constant conductivity a(x/ε), as illustrated in

Figure 2-2, gives a0 = 2(a−1
1 + a−1

2 )−1.

C1 C2

Ceff = (C−1
1 + C−1

2 )−1

FIGURE 2-1. Resistors in series and effective conductance

a1 a2

ε 1

FIGURE 2-2. 1D-heterogeneous material with periodic conductivity a(x/ε)

The next step is to formulate a similar problem in higher dimensions, to derive the

effective coefficients and the macroscopic problem.

Let us consider a model problem of finding the effective conductivity of a composite

material consisting of two different homogeneous materials, where the matrix (background

material) has a large number of periodically distributed inclusions.
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Given a bounded domain Ω ⊂ Rn with a smooth boundary ∂Ω, consider the following

Dirichlet problem for a stationary heat equation in the domain with inclusions:

ε

Ω

−div
(
σ
(x
ε

)
∇uε

)
= f(x) in Ω, (2.3)

uε = 0 on ∂Ω.

We assume that the conductivity σ(y) > σ0 > 0 is a □-periodic function, where

□ = [0, 1)n is the periodicity cell. The positive parameter ε represents the size of the

microstructure, that is the scale on which the properties of the medium change. One can

think about a perforated domain or a domain with inclusions.

We want to understand how uε behaves for small ε, i.e. for ε much smaller than the

size of the domain.

The first method used for such kind of problems, used long before the rigorous homog-

enization techniques had been designed, is the method of formal asymptotic expansions.

We postulate the following two-scale asymptotic ansatz:

uε(x) ∼ u0
(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ εu2

(
x,
x

ε

)
+ . . . . (2.4)

Each term ui(x, y) is assumed to be □-periodic function in y. The chain rule yields

∇ui
(
x,
x

ε

)
= (∇xui(x, y) + +ε−1∇yu(x, y))

∣∣∣
y=x

ε

Now we substitute (2.4) into (2.3) and equate the coefficients in front of different pow-

ers of ε:

ε−2 : −divy(σ∇yu0) = 0

ε−1 : −divy(σ∇yu1) = divy(σ∇xu0) + divx(σ∇yu0)

ε0 : −divy(σ∇yu2) = divy(σ∇xu1) + divx(σ∇yu1) + divx(σ∇xu0) + f(x)
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. . .

All the problems are stated on the periodicity cell, and the Fredholm alternative holds.

The first problem is well-posed, and it has a unique, up to an additive constant, solution

which is constant in y, so u0(x, y) = u0(x). The second problem is obviously solvable

since the right-hand side is orthogonal to the kernel of the formally adjoint operator (con-

sisting of constants): ∫
Ω

divy(σ(y)∇xu0) dy = 0.

Applying the Fredholm alternative to the last problem for u2, we conclude that there

exists a periodic in y, defined up to an additive constant, function u2 ∈ H1
per(□) if and only

if

−div
( ∫

□
σ(y)(∇yu1 +∇xu0)dy

)
= f(x), x ∈ Ω.

In this way, we get a coupled system

− divy(σ∇yu1) = divy(σ∇xu0), y ∈ □, x ∈ Ω, (2.5)

− div
( ∫

□
σ(y)(∇yu1 +∇xu0)dy

)
= f(x), x ∈ Ω. (2.6)

Looking for a solution of (2.5) in the form of the right-hand side, we set

u1(x, y) = N(y) · ∇u0(x) + v1(x),

where N(y) is □-periodic vector valued function. The problems for Ni are called cell

problems:

−div σ(y)(ei +∇yNi(y)) = 0 in □, (2.7)

Ni is □-periodic.
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From (2.6) we obtain the homogenized equation:

−div(σeff∇u0) = f(x) in Ω, (2.8)

u0 = 0 on ∂Ω,

where, due to (2.7), the effective conductivity σeff is defined by

σeff
ij =

∫
□
σ(y)(ej +∇Nj) · (ei +∇Ni)dy. (2.9)

In this way, we have reduced a problem stated in a complex heterogeneous media

to two simpler ones: one problem with constant coefficients σeff stated in Ω, and a cell

problem on the periodicity cell □. The solution uε is then approximated by Uε(x) =

u0(x) + εN
(
x
ε

)
· ∇u0(x).

These computations are, however, formal, and one needs to prove the convergence of

the solutions uε to u0. One way is to insert the difference uε−Uε into the original problem,

estimate the right-hand side (will be small, as ε→ 0), and finally use the a priori estimates

to obtain an estimate for the norm of the difference uε−Uε. This method requires, however,

high regularity of the data, and is therefore not appropriate for problems with discontinuous

data.

Let us illustrate how the two-scale convergence technique (Nguetseng, 1989), (Allaire,

1992) works in our example (2.3). The weak formulation for problem (2.3) reads: Find

u(x) ∈ H1
0 (Ω) such that∫

Ω

σ
(x
ε

)
∇uε · ∇φ(x) dx =

∫
Ω

f(x)φ(x) dx, ∀φ ∈ H1
0 (Ω).

To approximate uε for small ε, we pass to the limit, as ε→ 0.

The first step, as in the one-dimensional case, is to obtain a priori estimates. We mul-

tiply (2.3) by uε, integrate by parts, and use the positiveness of σ:

α∥∇uε∥2L2(Ω) ≤
∫
Ω

σ
(x
ε

)
|∇uε|2dx =

∫
Ω

f(x)uε(x) dx
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≤ ∥f∥L2(Ω)∥uε∥L2(Ω) (Cauchy-Schwartz inequality)

≤ C∥f∥L2(Ω)∥∇uε∥L2(Ω) (Poincaré inequality).

Now we divide both sides by α∥∇uε∥ and obtain a uniform in ε estimate ∥∇uε∥L2(Ω) ≤
C. Due to the Poincaré inequality, uε is uniformly bounded in H1

0 (Ω), and thus, uε, up to a

subsequence, has a weak limit u0 ∈ H1
0 (Ω).

Next step is to pass to the limit in the weak formulation. To this end, we prove the so-

called averaging lemma, that gives the convergence of a periodically oscillating function to

its average.

Lemma 2.1 (Averaging Lemma). Let Ω ⊂ Rd be bounded, and g ∈ L2
loc(R

d) be

□-periodic, then

g
(x
ε

)
⇀ ⟨g⟩ = 1

|□|

∫
□
g(y)dy weakly in L2(Ω) as ε→ 0. (2.10)

Proof.

We start by proving that g(x/ε) is uniformly bounded in L2(Ω). Let us divide Ω into

(small) cells □ε
i = ε□ + xεi , translations of the rescaled cells ε□ to points xεi ∈ εZd ∩ Ω.

Then, ∫
Ω

∣∣g(x
ε

)∣∣2dx =
∑
i

∫
□ε

i∩Ω

∣∣g(x
ε

)∣∣2dx ≤ C

εd

∫
□
|g(y)|2dy = C∥g∥2L2(□).

Thus, g(x/ε) converges weakly in L2(Ω) to some limit, as ε→ 0.

The next step is to identify the limit of g(x/ε). For φ ∈ C∞
0 (Ω), consider piecewise

constant interpolation φε(x) = φ(xεi ), x ∈ □ε
i . One can show that ∥φ − φε∥L2(Ω) →

0, ε→ 0. For piecewise constant functions we have∫
Ω

g
(x
ε

)
φε(x)dx =

∑
i

∫
□ε

i

g
(x
ε

)
φε
i (x)dx = ⟨g⟩

∫
Ω

φε(x)dx.
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For arbitrary φ ∈ C∞
0 (Ω) we add and subtract its piecewise constant approximation

and obtain ∫
Ω

g
(x
ε

)
φ(x)dx =

∫
Ω

g
(x
ε

)
(φ− φε)dx+

∫
Ω

g
(x
ε

)
φε(x)dx

→ ⟨g⟩
∫
Ω

φ(x)dx, ε→ 0.

since ∫
Ω

|g
(x
ε

)
(φ− φε)|dx ≤ C∥g∥L2(□)∥φ− φε∥L2(Ω) → 0

⟨g⟩
∫
Ω

φε(x)dx→ ⟨g⟩
∫
Ω

φ(x)dx, ε→ 0.

The proof of the averaging lemma is complete.

We turn back to the weak formulation of (2.3):∫
Ω

σ
(x
ε

)
∇uε · ∇φ(x) dx =

∫
Ω

f(x)φ(x) dx, φ ∈ H1
0 (Ω).

Thanks to the averaging lemma, σ
(
x
ε

)
⇀ ⟨σ⟩ in L2(Ω). Due to the a priori estimates,

∇uε ⇀ ∇u0 in L2(Ω). However, we will see

σ
(x
ε

)
∇uε does not converge to ⟨σ⟩∇u0 in L2(Ω)d.

The main obstacle in passage to the limit is the lack of strong convergence for oscillat-

ing functions. Two-scale convergence, in contrast to weak convergence, takes into account

oscillations of the function. The definition is given below.

Definition 2.1. uε ∈ L2(Ω) is said to two-scale converge u0(x, y) ∈ L2(Ω × □) if

∥uε∥L2(Ω) < C, and, for any φ(x, y) ∈ C∞
0 (Ω;C∞

per(□)), it satisfies

lim
ε→0

∫
Ω

uε(x)φ
(
x,
x

ε

)
dx =

1

|□|

∫
Ω

∫
□
u0(x, y)φ(x, y) dy dx. (2.11)

The proof of the next lemma can be found in (Allaire, 1992).
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Lemma 2.2. Compactness theorem If ∥uε∥L2(Ω) < C, then it contains a subsequence

that two-scale converges to some u0(x, y) ∈ L2(Ω×□) , as ε→ 0.

Moreover, it can be proved (see (Allaire, 1992)) that

(i) For any smooth u(x, y) periodic in y we have u(x, x
ε
)

2
⇀ u(x, y).

(ii) If uε → u(x) strongly in L2(Ω), then uε(x)
2
⇀ u(x).

(iii) If uε(x)
2
⇀ u0(x, y), then uε ⇀

1

|□|

∫
□
u0(x, y)dy.

The above formulated properties are used when passing to the limit in integral equali-

ties.

The example below illustrates the relations between the strong, weak, and two-scale

convergence.

Example 2.1. Consider a rapidly oscillating function sin(x/ε). It is 2πε-periodic and

converges weakly to its average sin
(
x
ε

)
⇀ ⟨sin(y)⟩ = 0. On the other hand, by the prop-

erties of the two-scale convergence, sin
(
x
ε

) 2
⇀ sin(y). Thus, the two-scale convergence

captures the oscillations which are averaged out when passing to the weak limit.

Consider now another sequence (−1)n sin(nx) with n = 1/ε. It converges weakly to

⟨sin(y)⟩ = 0, but u2k
2
⇀ sin(y) and u2k+1

2
⇀ − sin(y), so the two-scale limit does not

exist.

Applying the two-scale convergence technique to problem (2.3), we obtain the effec-

tive problem (2.8). The passage to the limit relies on a clever choice of test functions. In

Chapter 4 and (5) we will apply this technique to a time-dependent nonlinear problem. The

method of formal asymptotic expansions serves often as a practical tool to make a right

choice of test functions, which is illustrated in the appendix in Chapter 4.
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2.2. Monotonicity method

The passage to the limit in the nonlinear microscopic problem requires us to adapt the

method of monotone operators due to G. Minty (Minty, 1962). The monotonicity method is

applied for passing to the limit in the microscopic problem in Chapter 4. The construction

of test functions and the proof itself is quite technical, and in order to extract the main

idea of the method we provide its brief description for a model case when the monotone

operator is independent of ε. In (Allaire, 1992), it is shown how to combine the method of

monotone operators and the two-scale convergence for a toy stationary problem.

Let A be a nonlinear continuous monotone operator in a Hilbert space H . The scalar

product in H will be denoted by (u, v). We consider a parabolic problem

∂tuε + A(uε) = fε, (2.12)

uε
∣∣
t=0

= V 0
ε .

Assume that we know that uε converges weakly to u0, ∂tuε converges weakly to ∂tu0,

and fε, V 0
ε converge strongly in H to f and V 0, respectively, as ε → 0. We aim to show

that u0 satisfies the limit equation ∂tu0 + A(u0) = f . Note that, because of the weak

convergence, we cannot pass to the limit in the nonlinear term A(uε) directly.

By monotonicity, for any w1, w2 ∈ D(A), one has

(A(w1)− A(w2), w1 − w2) ≥ 0.

Taking w1 = uε, w2 = u0 + δφ, with δ ∈ R and φ ∈ C1([0, T ];D(A)), and using

(2.12), we get

0 ≤
∫ t

0

(A(uε)− A(u0 + δφ), uε − (u0 + δφ))dτ.

=

∫ t

0

(fε, uε − (u0 + δφ))dτ −
∫ t

0

(∂τuε, uε)dτ +

∫ t

0

(∂τuε, (u0 + δφ))dτ. (2.13)

−
∫ t

0

(A(u0 + δφ), uε − (u0 + δφ))dτ.
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Integrating by parts, we get∫ t

0

(∂τuε, uε)dτ =
1

2

∫ t

0

d

dτ
∥uε∥2Hdτ =

1

2
∥uε(t, ·)∥2H − 1

2
∥V 0

ε ∥2H .

Then inequality (2.13) transforms into

1

2
∥uε(t, ·)∥2H − 1

2
∥u0(t, ·)∥2H − 1

2
∥V 0

ε ∥2H +
1

2
∥V 0∥2H

≤
∫ t

0

(fε, uε − (u0 + δφ))dτ −
∫ t

0

(∂τu0, u0)dτ (2.14)

+

∫ t

0

(∂τuε, (u0 + δφ))dτ −
∫ t

0

(A(u0 + δφ), uε − (u0 + δφ))dτ.

Passage to the limit, as ε→ 0, in (2.14) yields

0 ≤ 1

2
lim sup

ε→0

(
∥uε(t, ·)∥2H − ∥u0(t, ·)∥2H

)
≤ δ

∫ t

0

(−f + ∂τu0 + A(u0 + δφ), φ)dτ.

Since the left-hand side is positive and δ is arbitrary, that delivers the strong conver-

gence of uε

lim sup
ε→0

(
∥uε(t, ·)∥2H − ∥u0(t, ·)∥2H

)
= 0.

Furthermore, ∫ t

0

(∂τu0 + A(u0 + δφ)− f, δφ)dτ ≥ 0. (2.15)

Dividing (2.15) first by δ > 0 and passing to the limit, as δ → 0, we obtain∫ t

0

(∂τu0 + A(u0)− f, φ)dτ ≥ 0.
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Then, dividing (2.15) by δ < 0 and passing to the limit, as δ → 0, we have the opposite

inequality ∫ t

0

(∂τu0 + A(u0)− f, φ)dτ ≤ 0.

Thus, ∫ t

0

(∂τu0 + A(u0)− f, φ)dτ = 0.

The last equality holds for an arbitrary φ ∈ C1(0, T ;D(A)), so ∂tu0 + A(u0) = f .

This method is used for passing to the limit in the microscopic problem in Chapter 4,

where both the domain and the operator A depend on ε, and the test functions have a more

complicated two-scale structure.
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3. MULTISCALE MODELING OF MYELINATED AXONS

We start from a three-dimensional model for a myelinated neuron suspended in an

extracellular medium which includes Hodgkin-Huxley ordinary differential equations to

represent the membrane at the Ranvier nodes. Assuming periodic microstructure with al-

ternating myelinated parts and Ranvier nodes, we use homogenization methods to derive

a one-dimensional nonlinear cable equation describing the potential propagation along the

neuron. Since the resistivity of the intracellular and extracellular domains is much smaller

than the resistivity of the myelin, we assume that the myelin is a perfect insulator and

impose homogeneous Neumann boundary conditions on the boundary of the myelin. In

contrast to the case when the conductivity of the myelin is non-zero, no additional terms

appear in the one-dimensional limit equation, and the geometry of the model affects the

limit solution implicitly through an auxiliary cell problem used to compute the effective

coefficient.

The chapter is based on the paper: Jerez-Hanckes, C., Martı́nez, I. A., Pettersson, I.,

& Rybalko, V. (2021). Multiscale analysis of myelinated axons. In Emerging Problems in

the Homogenization of Partial Differential Equations (pp. 17-35). Springer, Cham.

3.1. Introduction

A nerve impulse is the movement of the so-called action potential along a nerve fiber

in response to a stimulus such as touch, pain, heat or cold. It is the way nerve cells

communicates with another cell so as to generate an adequate response. In their work

(Hodgkin & Huxley, 1952), Hodgkin and Huxley gave a plausible explanation of the phys-

iological process behind the excitability of nerve fibers, and provided a phenomenological

mathematical model describing electric currents across axon membranes in terms of ions

fluxes. The model describes how ionic currents nonlinear dynamic behavior depends on

the potential difference across neurons’ membranes and so-called gating variables, i.e. the

probability for different ionic channels to be open or closed. The jump of the potential

across the membrane of each individual axon can be modeled in the framework of the
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Hodgkin-Huxley (HH) model, but the alternating myelinated and unmyelinated parts of the

membrane present an obvious problem for those attempting to describe its macroscopic

response to the electrical stimulation. In order to model and simulate the response of bi-

ological tissues to electrical stimulation, one needs to know how signals propagate along

single neurons and, as the next step, how they influence each other in a bundle of axons.

Signal propagation along a neuron is portrayed by a cable equation usually derived

by modeling axons as cylinders composed of segments with capacitances and resistances

combined in parallel (Hodgkin & Huxley, 1952; Rall, 1969; Rattay, 1990; P. Basser, 1993;

Meffin et al., 2014). The coefficients in such equation depend on the resistances and ca-

pacitances of Ranvier nodes and myelinated parts, as well as some geometric parameters

of the neuron such as the diameter, nodal and inter-nodal lengths. In (P. Basser, 1993;

Meunier & d’Incamps, 2008), the authors apply a formal two-scale expansion to a one-

dimensional model in order to show that a myelinated neuron can be approximated by a

homogeneous cable equation. However, these works do not consider the derivation of the

one-dimensional equation nor they provide any justification of the formal approximations.

We derive a nonlinear cable equation for signal propagation along a myelinated axon

under the classical assumption that the conductivity of the myelin is zero, i.e. the myelin

is a perfect insulator. This assumption is justified by the fact that the resistivity of the

myelin is much larger than the resistivity of intracellular and extracellular domains. This

assumption does not lead to the appearance of a potential in the limit equation as in (Jerez-

Hanckes et al., 2020). Consequently, in this classical case, we can suppress the geometrical

assumptions on the myelin sheath such as radial symmetry assumption and specific fea-

tures at the points where myelin meets intracellular domain. Our proof is in some sense

simpler than the one in (Jerez-Hanckes et al., 2020), but since the intracellular domain is

not a straight cylinder any more, an additional cell problem appears (3.13). When the in-

tracellular domain is a straight cylinder –the first component of the normal vector is zero–,

the cell problem (3.13) has a trivial constant solution and the effective coefficient coincides

with one in (Jerez-Hanckes et al., 2020).
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The paper is organized as follows. In Section 3.2, we formulate our model problem and

present the main result in Theorem 3.1, with the rest of the paper devoted to its proof. Sec-

tion 3.3 presents a priori estimates for the potential uε and its jump across Ranvier nodes,

to then finally derive the one-dimensional effective problem in Section 3.4. Numerical so-

lutions of the auxiliary cell problem and effective coefficient aeff (see (3.11)) are provided

in Section 3.5. We also present computational results showing the dependence of the effec-

tive coefficient on the length of the Ranvier node and on the angle at which the myelin is

attached to the intracellular domain.

3.2. Problem setup

Let us consider a myelinated axon sparsely suspended in an extracellular medium. We

assume that the axon has a periodic structure, containing myelinated and unmyelinated

parts (nodes of Ranvier) as illustrated on Figure 3-3.

3.2.1. Geometry

Given a bounded Lipschitz domain ω ⊂ R2, we denote by Y (see Figure 3-3) a peri-

odicity cell:

Y :=
{
y = (y1, y

′) ∈ R3 : y1 ∈ T1, y′ ∈ ϕ(y1)ω
}
.

Here, T1 is the one-dimensional torus and ϕ ∈ C(T1). Let also ω0 be a compact subset

of ω in R2. The intracellular medium is defined as

Yi :=
{
y = (y1, y

′) ∈ R3 : y1 ∈ T1, y′ ∈ ϕ0(y1)ω0

}
,

where ϕ0 ∈ C(T1). We assume that the cell Y is decomposed into two disjoint nonempty

subdomains: an intracellular part Yi and an extracellular medium Ye as shown in the left-

hand side of Figure 3-3. The myelin sheath Ym – depicted as white areas – is supposed to

be perfectly insulating and modelled as voids. The extracellular part of the periodicity cell

Ye := Y \ (Yi ∪ Ym). The functions ϕ0 and ϕ are supposed to be such that the boundary of

Yi does not touch the boundary of Y .
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In case when ϕ(y1) and ϕ0(y1) are constant, both the intracellular medium Yi and

the periodicity cell have constant cross-sections, while the factors ϕ(y1), ϕ0(y1) allow the

cross-sections to vary.

Σε
Ωe,ε

Ωi,ε Γε
Ωm,ε

Yi

Ye

Ym

Γ

Γm

FIGURE 3-1. Simplified geometry of the cross-section of a myelinated axon and
the periodicity cell Y .

We denote by Γm the boundary of the myelin sheath, and by Γ the Ranvier node – the

unmyelinated part of the interface between Yi and Ye. The lateral boundary of Y is denoted

by Σ. We assume that the boundary of the myelin part Γm is Lipschitz continuous.

We rescale the periodicity cell by a small parameter ε > 0 and translate it along the x1-

axis to form a thin periodic cylinder of thickness of order ε suspended in the thin extracel-

lular medium with alternating myelinated and unmyelinated parts on the lateral boundary

(cf. Figure 3-3).

For simplicity, let us denote byL ∈ N an integer number of periods. The whole domain

Ωε :=
{
(x1, x

′) : x1 ∈ (0, L), x′ ∈ εϕ
(x1
ε

)
ω, ε > 0

}
is the union of the disjoint extracellular, intracellular domains, and Ranvier nodes: Ωε =

Ωi,ε ∪ Ωe,ε ∪ Γε, wherein

Ωi,ε =
{
(x1, x

′) : x1 ∈ (0, L), x′ ∈ εϕ0

(x1
ε

)
ω0

}
.

The lateral part of Ωε is denoted by Σε. Let Γε and Γm,ε denote the Ranvier nodes and

the boundary of the myelin respectively. Note that we plot a cross section of the domain
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Ωε. In R3, Ωe,ε is connected, while Γε and Ωm,ε consist of a finite number of connected

components.

Since the resistivity of intracellular and extracellular domains ( e.g. 5.47 × 10−2

kOhm·cm) is much smaller than the resistivity of the myelin sheath (e.g. 7.4×105 kOhm·cm),

a classical simplification is to assume that myelin is a perfect insulator. This implies that

the areas Ym constitute voids in our domain Y .

3.2.2. Governing equations

Let uiε, u
e
ε denote the electric potential in the intracellular and extracellular domains,

respectively. We assume that the electric potential satisfies homogeneous Neumann bound-

ary conditions on the lateral boundary Σε and homogeneous Dirichlet ones at the bases

Γε
0 = {x ∈ Ωε : x1 = 0} and Γε

L = {x ∈ Ωε : x1 = L}. Since we assume that the myelin

acts as a perfect insulator, we impose homogeneous Neumann boundary conditions on its

boundary.

The transmembrane potential is the potential jump across the axon membrane and will

be denoted by [uε] = uiε − ueε, and uε denotes the potential uε = ulε in Ωi,ε, l = i, e. We

assume conductivity to be a piecewise constant function σε = σl in Ωl,ε, l = e, i.

On Ranvier nodes, we assume continuity of currents (3.2) and HH dynamics for the

transmembrane potential (3.3). Thus, the current through the membrane is a sum of the

capacitive current cm∂t[uε], where cm is the membrane capacitance per unit area, and the

ionic current Iion([uε], gε) through the ion channels. The vector-function gε is a vector of

the so-called gating variables describing the probability of each particular ionic channel

to be open or closed. Due to this, the gating variables have nonegative components 0 ≤
(gε)j ≤ 1. The vector of gating variables satisfies an ordinary differential equation (ODE)

∂tgε = HH ([uε], gε). In the classical HH model (Hodgkin & Huxley, 1952) there are

three types of channels: a sodium (Na), a potassium (K), and a leakage channels, and,

consequently, three gating variables (see Section 3.5 for explicit expressions). We assume

that
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(H1) The function Iion(v, g) is linear w.r.t v and has the following form:

Iion(v, g) =
m∑
j=1

Hj(gj)(v − vr,j),

where g,j is the jth component of g, vr,j is the jthe component of the resting

potential vr, and Hj is positive, bounded, and Lipschitz continuous, i.e.

|Hj(g1)−Hj(g2)| ≤ L1|g1 − g2|.

The constant vr is the reference constant voltage, and gε is a gate variable vector

with nonnegative components 0 ≤ (gε)j ≤ 1, j = 1,m.

(H2) The vector function HH (g, v) = F (v) − αg, where F is a vector function with

positive Lipschitz continuous components, and α is a diagonal m × m matrix

with positive Lipschitz continuous entries.

(H3) G0 ∈ C(0, L)m with components taking values between zero and one (as the

corresponding gε).

We assume the homogeneous Dirichlet boundary condition for ueε and for uiε on the

bases of the domain, i.e. when x1 = 0 and x1 = L. On the lateral boundary of Ωε we

assume the homogeneous Neumann boundary condition, with ν the unit normal exterior to

Ωe,ε on Σ and exterior to Ωi,ε on Γε.

The dynamics of the electric potential and the gating variables is then described by the

following system of equations:

−div
(
σε∆uε

)
= 0, (t, x) ∈ (0, T )× Ωε \ Γε, (3.1)

σe∇ueε · ν = σi∇uiε · ν, (t, x) ∈ (0, T )× Γε, (3.2)

ε(cm∂t[uε] + Iion([uε], gε)) = −σi∇uiε · ν, (t, x) ∈ (0, T )× Γε, (3.3)

∂tgε = HH ([uε], gε), (t, x) ∈ (0, T )× Γε, (3.4)

[uε](x, 0) = 0, gε(x, 0) = G0(x1), x ∈ Γε, (3.5)

∇ueε · ν = 0, (t, x) ∈ (0, T )× (Γm,ε ∪ Σε), (3.6)



29

uε = 0, (t, x) ∈ (0, T )× (Γε
0 ∪ Γε

L). (3.7)

We will study the asymptotic behavior of uε, as ε → 0, and derive a one-dimensional

nonlinear cable equation describing the potential propagation along the axon.

To define a weak solution of (3.1)–(3.7), we will use test function ϕ ∈ L∞(0, T ;H1(Ωε\
Γε)), ∂t[ϕ] ∈ L2(0, T ;L2(Γε)) such that ϕ = 0 for x1 = 0 and x1 = L. The jump of ϕ

across the Ranvier nodes is denoted by [ϕ], [ϕ] = (ϕi−ϕe)
∣∣∣
Γε

. Then, the weak formulation

corresponding to (3.1)–(3.7) reads: find

uε ∈ L∞(0, T ;H1(Ωε \ Γε)), ∂t[uε] ∈ L2(0, T ;L2(Γε)),

satisfying uε = 0 for x1 = 0 and x1 = L and the initial condition [uε](0, x) = 0, such that,

for any test functions ϕ ∈ L∞(0, T ;H1(Ωε \ Γε)), ϕ = 0 for x1 = 0 and x1 = L, and for

almost all t ∈ (0, T ), it holds

ε

∫
Γε

cm∂t[uε][ϕ] ds+

∫
Ωε\Γε

σε∇uε · ∇ϕ dx+ ε

∫
Γε

Iion([uε], gε)[ϕ] ds = 0. (3.8)

The vector of gating variables gε solves the following ODE:

∂tgε = HH ([uε], gε), gε(0, x) = G0(x1).

Since HH is linear with respect to gε, we can solve the last ODE and obtain gε as a

function – integral functional – of the jump [uε]:

⟨gε, vε⟩ = e−
∫ t
0 α(vε(ζ,x))dζ

(
G0(x) +

∫ t

0

F (vε(τ, x))e
∫ τ
0 α(vε(ζ,x))dζ dτ

)
.

Substituting this expression into (3.8) we obtain the weak formulation of (3.1)–(3.7) in

terms of the potential uε and its jump vε = [uε] across Γε:

ε

∫
Γε

cm∂tvε[ϕ] ds+

∫
Ωε\Γε

σε∇uε · ∇ϕ dx+ ε

∫
Γε

Iion(vε, ⟨gε, vε⟩)[ϕ] ds = 0. (3.9)
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3.2.3. Main result

The main result of the paper is given by Theorem 3.1 describing the convergence of

the transmembrane potential [uε] and the gating variables gε to the unique solution of the

following one-dimensional effective problem:

cm∂tv0 + Iion(v0, g0) = aeff∂2x1x1
v0, (t, x1) ∈ (0, T )× (0, L),

∂tg0 = HH (v0, g0), (t, x1) ∈ (0, T )× (0, L), (3.10)

v0(t, 0) = v0(t, L) = 0, t ∈ (0, T ),

v0(0, x1) = 0, g0(0, x1) = G0(x1), x1 ∈ (0, L).

The effective coefficient aeff is given by

aeff =
1

|Γ|

((
σe

∫
Ye

(∂y1Ne + 1) dy
)−1

+
(
σi

∫
Yi

(∂y1Ni + 1) dy
)−1
)−1

, (3.11)

where the 1-periodic in y1 functions, Ne and Ni solve the auxiliary cell problems:

−∆Ne(y) = 0, y ∈ Ye,

∇Ne · ν = −ν1, y ∈ Γ ∪ Γm ∪ Σ, (3.12)

Ne(y1, y
′) is periodic in y1;

and

−∆Ni(y) = 0, y ∈ Yi,

∇Ni · ν = −ν1, y ∈ Γ ∪ Γm, (3.13)

Ni(y1, y
′) is periodic in y1.

Theorem 3.1. The solutions [uε] and gε of problem (3.1)–(3.7) converge to the solu-

tions v0 and g0 of (3.10) in the following sense:

sup
t∈(0,T )

ε−1

∫
Γε

|[uε]− v0|2ds→ 0, as ε→ 0,
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sup
t∈(0,T )

ε−1

∫
Γε

|gε − g0|2ds→ 0, as ε→ 0.

To prove Theorem 3.1 we first derive a priori estimates in Section 3.3 (Lemma 3.2),

then we prove the two-scale convergence of uε and its gradient (Lemma 3.3) and the con-

vergence of [uε] in appropriate spaces (Lemma 3.4). Finally, in Section 3.4 we pass to the

limit in the weak formulation and derive the limit problem (3.10).

3.3. A priori estimates

The existence and uniqueness of a solution of (3.1)–(3.7) follows from the classical

semigroup theory (see, for example, (Pazy, 2012)). Its regularity is addressed in (Matano

& Mori, 2011; Henrı́quez et al., 2017; Henrı́quez & Jerez-Hanckes, 2018). The proof of

Lemma 3.1 follows the lines of that in (Jerez-Hanckes et al., 2020) (see Lemma 3.1).

Lemma 3.1 (Existence result). There exists a unique

uε ∈ L∞(0, T ;H1(Ωε \ Γε)), ∂tvε = ∂t[uε] ∈ L2(0, T ;L2(Γε))

such that uε = 0 for x1 = 0 and x1 = L, for any test functions ϕ ∈ L∞(0, T ;H1(Ωε \Γε)),

ϕ = 0 for x1 = 0 and x1 = L, and for almost all t ∈ (0, T )

ε

∫
Γε

cm∂tvε[ϕ] ds+

∫
Ωε\Γε

σε∇uε · ∇ϕ dx+ ε

∫
Γε

Iion(vε, ⟨gε, vε⟩)[ϕ] ds = 0. (3.14)

In order to pass to the limit in the weak formulation, we need first to obtain a priori

estimates which will guarantee the compactness of the solution in appropriate spaces.

Lemma 3.2 (A priori estimates). Let (uε, gε) be a solution of (3.1)–(3.7). Denote

vε = [uε]. Then, the following estimates hold:

(i) ε−1

∫
Γε

|vε|2 ds ≤ C, t ∈ (0, T ).

(ii) ε−1

∫ t

0

∫
Γε

|∂τvε|2 ds dτ ≤ C, t ∈ (0, T ).
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(iii) ε−2

∫
Ωi,ε∪Ωe,ε

(|uε|2 + |∇uε|2) dx ≤ C, t ∈ (0, T ).

PROOF. We multiply (3.1) by uε and integrate by parts over Ωε \ Γε:

ε

2

d

dt

∫
Γε

cmv
2
εds+ ε

∫
Γε

Iion(vε, ⟨gε, vε⟩)vε ds+
∫
Ωε\Γε

σε|∇uε|2 dx = 0.

Integrating the last equality with respect to t and using (3.5) we get

ε

2

∫
Γε

cmv
2
εds+ ε

∫ t

0

∫
Γε

Iion(vε, ⟨gε, vε⟩)vε dsdτ +
∫ t

0

∫
Ωε\Γε

σε|∇uε|2 dxdτ = 0.

(3.15)

Dividing the resulting identity by ε2 (the scaling factor of the order |Ωε|) and recalling

the the positivity of H we get

ε−1

2

∫
Γε

cmv
2
εds+ ε−1

∫ t

0

∫
Γε

∑
j

H(⟨gε, vε⟩j)(vε − vr,j)vε ds dτ ≤ 0,

ε−1

2

∫
Γε

cmv
2
εds ≤

ε−1

2

∫ t

0

∫
Γε

∑
j

H(⟨gε, vε⟩j)(vr,j)2 ds dτ ≤ C.

In this way estimate (i) is proved. Next, we derive an integral estimate for ∇uε from

(3.15) and (i):

ε−2

∫ t

0

∫
Ωε\Γε

σε|∇uε|2 dxdτ ≤ C.

Let us now multiply (3.1) by ∂tuε and integrate by parts over Ωε \ Γε:

ε−1

∫
Γε

cm|∂tvε|2ds+ ε−1

∫
Γε

Iion(vε, ⟨gε, vε⟩)∂tvε ds

+
ε−2

2

d

dt

∫
Ωε\Γε

σε|∇uε|2 dx = 0.

Integrating with respect to t gives

ε−1

∫ t

0

∫
Γε

cm|∂τvε|2dsdτ + ε−1

∫ t

0

∫
Γε

Iion(vε, ⟨gε, vε⟩)∂τvε dsdτ
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+
ε−2

2

∫
Ωε

σε|∇uε|2 dx =
ε−2

2

∫
Ωε\Γε

σε|∇uε|2
∣∣∣
t=0

dx. (3.16)

Since vε is a strict solution, we can choose ϕ = uε and set t = 0 in (3.8). Then,

∇uε
∣∣
t=0

= 0. By (H1), the boundedness of H and the estimate (i), we derive

ε−1

∫ t

0

∫
Γε

cm|∂τvε|2dsdτ + ε−1

∫ t

0

∫
Γε

∑
j

H(⟨gε, vε⟩j)(vε − vr,j)∂τvε dsdτ ≤ 0,

ε−1

∫ t

0

∫
Γε

cm|∂τvε|2dsdτ ≤ Cε−1

∫ t

0

∫
Γε

(vε − vr,j)∂τvε dsdτ,

ε−1

∫ t

0

∫
Γε

|∂τvε|2dsdτ ≤ Cε−1

∫ t

0

∫
Γε

(vε − vr,j)
2 dsdτ ≤ C.

Estimate (ii) is proved. Estimates (3.16) and (ii) imply that

ε−2

∫
Ωε\Γε

σε|∇uε|2 dx ≤ C, t ∈ (0, T ). (3.17)

Since uε satisfies the homogeneous Dirichlet boundary condition for x1 = 0, the

Friedrichs inequality is valid for uε in Ωi
ε and Ωe

ε leading to (iii).

□

When passing to the limit, as ε → 0, we will use the notion of the two-scale conver-

gence. Let us recall the definition.

Definition 3.1. We say that uε(t, x) converges two-scale to u0(t, x1, y) inL2(0, T ;L2(Ωl,ε)),

l = i, e, if

(i) ε−2

∫ T

0

∫
Ωl,ε

|uε|2dx dt <∞.

(ii) For any ϕ(t, x1) ∈ C(0, T ;L2(0, L)), ψ(y) ∈ L2(Yl) we have

lim
ε→0

ε−2

∫ T

0

∫
Ωl,ε

uε(x)ϕ(t, x1)ψ
(x
ε

)
dx dt

=

∫ T

0

∫ L

0

∫
Yl

u0(t, x1, y)ϕ(t, x1)ψ(y) dy dx1 dt,
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for some function u0 ∈ L2(0, T ;L2((0, L)× Y )).

Definition 3.2. We say that vε(t, x) converges two-scale to v0(t, x1, y) in L2(0, T ;

L2(Γε)) if it holds that

(i) ε−1

∫ T

0

∫
Γε

v2ε ds dt <∞.

(ii) For any ϕ(t, x1) ∈ L∞(0, T ;L2(0, L)), ψ(y) ∈ L2(Γ) we have

lim
ε→0

ε−1

∫ T

0

∫
Γε

vε(x)ϕ(t, x1)ψ
(x
ε

)
dsx dt

=

∫ T

0

∫ L

0

∫
Γ

v0(t, x1, y)ϕ(t, x1)ψ(y) dsy dx1 dt

for some function v0 ∈ L2 (0, T ;L2((0, L)× Γ)).

Lemma 3.3. Let uε be a solution of (3.1)–(3.7). Denote by IΩl,ε
the characteristic

functions of Ωl,ε, l = i, e. Then, up to a subsequence,

(i) [uε] converges two-scale to v0(t, x1, y) in L2(0, T ;L2(Γε)).

(ii) ∂t[uε] converges two-scale to ∂tv0(t, x1, y) in L2(0, T ;L2(Γε)).

(iii) IΩl,ε
uε converges two-scale to |Yl|ul0(t, x1) in L2(0, T ;L2(Ωl,ε)).

(iv) IΩl,ε
∇uε converges two-scale to (∂x1u

l
0(t, x1)e1 +∇yw

l(t, x1, y)

in (L2(0, T ;L2(Ωl,ε))). Here e1 = (1, 0, 0) ∈ R3,

wl ∈ L2(0, T ;L2(0, L)×H1(Y )).

For the proof, we refer to (Allaire & Damlamian, 1995) for two-scale convergence on

periodic surfaces (on Γε), to (Zhikov, 2000) and (Pettersson, 2017) for two-scale conver-

gence in thin structures and dimension reduction.

One of the technical difficulties in the present paper is the passage to the limit in the in-

tegral over Γε containing a nonlinear function since we need to ensure a strong convergence

of vε in an appropriate sense. In the next lemma, we show that vε can be approximated by

a piecewise constant function ṽε(t, x1) which in its turn converges, up to a subsequence, to

a function v0(t, x1) ∈ L∞(0, T ;H1(0, L)) uniformly on [0, T ], as ε→ 0.
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Lemma 3.4. Let uε be a solution of (3.1)–(3.7). Then, there exists a function

ṽε(t, x1) ∈ L∞(0, T ;H1(0, L)) ∩H1(0, T ;L2(0, L))

such that, it holds

(i) For t ∈ (0, T ), the function ṽε approximates [uε]:∫
Γε

|ṽε − [uε]|2ds ≤ Cε

∫
Ωi,ε∪Ωe,ε

|∇uε|2dx.

(ii) There exists v0(t, x1) ∈ L∞(0, T ;L2(0, L)) such that along a subsequence ṽε

converges to v0(t, x1) uniformly on [0, T ], as ε→ 0.

PROOF. Let us cover Ωε by a union of overlapping cells εỸk as shown in Figure 3-

2 so that each cell contains two Ranvier nodes. The Ranvier node which belongs to the

intersection εỸk ∩ εỸk+1 is denoted by εΓk. The intra- and extracellular parts of Ỹk are

referred to as Ỹi,k and Ỹe,k, respectively.

εỸi,k εỸi,k+1

εỸe,k+1εỸe,k

εΓk

εYk+1εYk

FIGURE 3-2. Overlapping cells εỸk and εỸk+1 .

Let us show that the difference between the mean values of [uε] over εΓk and εΓk+1 is

small. Let

ūlε,k =
1

|εΓ|

∫
εΓk

ulεds, l = i, e.
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For each εỸl,k, l = i, e, due to the Poincaré inequality, we have∫
εỸl,k

|ulε − ūlε,k|2dx ≤ Cε2
∫
εỸl,k

|∇ulε|2dx,

with C independent of ε. Considering traces on Γk, by a simple scaling argument one has∫
εΓk

|ulε − ūlε,k|2ds ≤ Cε−1

(∫
εỸl,k

|ulε − ūlε,k|2dx+ ε2
∫
εỸl,k

|∇ulε|2dx
)

≤ Cε

∫
εỸl,k

|∇ulε|2dx, l = i, e.

(3.18)

Then, the difference between ūε,k and ūε,k+1 is estimated as follows∣∣ūlε,k − ūlε,k+1

∣∣2 ≤ 2

|εỸl,k ∩ εỸl,k+1|

∫
εỸl,k∩εỸl,k+1

(
|ulε − ūlε,k|2 + |ulε − ūlε,k+1|2

)
dx

≤ Cε−1

∫
εỸl,k∪εỸl,k+1

|∇ulε|2dx.

Adding up in k the above estimates, we obtain an estimate in Ωl
ε:∑

k

|ūlε,k − ūlε,k+1|2 ≤ Cε−1

∫
Ωl

ε

|∇ulε|2dx. (3.19)

Let us denote by

v̄ε,k = ūiε,k − ūeε,k =
1

|εΓ|

∫
εΓk

[uε]ds

the jump of the average across the membrane. Then, using (3.18) and (3.19) yields∫
εΓk

|[uε]− v̄ε,k|2 ds ≤ Cε

∫
εỸi,k∪εỸe,k

|∇uε|2dx,

∑
k

|v̄ε,k − v̄ε,k+1|2 ≤ Cε−1

∫
Ωi

ε∪Ωe
ε

|∇uε|2dx. (3.20)

Bounds (3.20) show that [uε] in each cell εỸk is close to a constant v̄ε,k, and the differ-

ence between v̄ε,k and v̄ε,k+1 is small due to (iii) in Lemma 3.2.
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Next, we construct a piecewise linear function ṽε(t, x1) interpolating values v̄ε,k lin-

early and show that ∫ L

0

|ṽε|2dx1 ≤ C, t ∈ (0, T ), (3.21)∫ L

0

|∂x1 ṽε|2dx1 ≤ C, t ∈ (0, T ), (3.22)∫ T

0

∫ L

0

|∂tṽε|2 dx1dt ≤ C. (3.23)

Indeed, (3.21) and (3.22) follow directly from (3.20) and (i), (ii) in Lemma 3.2:∫ L

0

|ṽε|2dx1 =
∑
k

∫ ε/2

−ε/2

∣∣ v̄ε,k + v̄ε,k+1

2
+ x1

v̄ε,k+1 − v̄ε,k
ε

∣∣2dx1
≤ C

∑
k

ε(|v̄ε,k|2 + |v̄ε,k+1|2) ≤ C
1

|εΓ|

∫
Γε

[uε]
2ds ≤ C. (3.24)

Estimate (3.22) is proved in a similar way using (3.20):∫ L

0

|∂x1 ṽε|2dx1 ≤ C
∑
k

∫ ε/2

−ε/2

∣∣ v̄ε,k − v̄ε,k+1

ε

∣∣2dx1
≤ Cε−1

∑
k

|v̄ε,k − v̄ε,k+1|2

≤ Cε−2

∫
Ωi

ε∪Ωe
ε

|∇uε|2dx ≤ C.

Let us prove (3.23). Differentiating v̄ε,k with respect to t, using the Cauchy-Schwarz

inequality yields

|∂tv̄ε,k|2 =
∣∣∣ 1

|εΓk|

∫
εΓk

∂t[uε] ds
∣∣∣2 ≤ 1

|εΓk|

∫
εΓk

(∂t[uε])
2 ds.

Similarly to (3.24), estimate (3.23) follows from the last bound and (ii) in Lemma 3.2.

Estimate (i) in the current lemma follows from (3.20).

The uniform convergence on (0, T ) of the constructed piecewise linear approximation

is given by the Arzelà-Ascoli theorem. Indeed, the precompactness is guaranteed for ṽε by
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(3.21) and (3.22), while the equicontinuity property follows from (3.23):

ṽε(t+∆t)− ṽε(t) =

∫ t+∆t

t

∂τ ṽε(τ)dτ,

ε−1

∫ L

0

|ṽε(t+∆t)− ṽε(t)|2dx ≤
∫ L

0

( ∫ t+∆t

t

∂τ ṽε(τ)dτ
)2
dx1

≤ ∆t

∫ L

0

∫ t+∆t

t

|∂τ ṽε(τ)|2dτdx1 ≤ ∆t.

The proof is complete. □

3.4. Justification of macroscopic model

Let us denote vε = [uε]. Using Lemmata 3.3 and 3.4, we will pass to the limit in the

weak formulation of (3.1)–(3.7):

ε−1

∫ T

0

∫
Γε

(cm∂tvε + Iion(vε, ⟨gε, vε⟩))[ϕ] dxdt

+ε−2

∫ T

0

∫
Ωε\Γε

σε∇uε · ∇ϕ dxdt = 0, (3.25)

where ϕ(t, x) ∈ L∞(0, T ;H1(Ωε \ Γε)) such that ϕ = 0 for x1 = 0 and x1 = L.

For the functionsUi(t, x1), Ue(t, x1) ∈ C(0, T ;C∞
0 (0, L)) and Vi, Ve(t, x1, y) ∈C(0, T ;

C∞
0 (0, L)×H1(Y )) we construct the following test function:

ϕε(t, x) = (Ui(t, x1) + εVi(t, x1, y))χΩi,ε
+ χΩe,ε(Ue(t, x1) + εVe

(
t, x1,

x

ε

)
),

where χΩl,ε
is the characteristic function of Ωl,ε, l = i, e.

Note that the jump of ϕε on Γε converges strongly in L2(Γε) to Ui(t, x1) − Ue(t, x1).

Substituting ϕε into (3.25) we get

ε−1

∫ T

0

∫
Γε

(cm∂tvε + Iion(vε, ⟨gε, vε⟩))[ϕε] dsdt (3.26)

+ε−2

∫ T

0

∫
Ωi,ε

σi∇uiε · (e1∂x1Ui + ε∇Vi
(
x1,

x

ε

)
)dxdt (3.27)
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+ε−2

∫ T

0

∫
Ωe,ε

σe∇ueε · (e1∂x1Ue + ε∇Ve
(
x1,

x

ε

)
)dxdt (3.28)

= I1ε + I2ε + I3ε = 0.

We will pass to the limit, as ε → 0, in each integral Ikε, k = 1, 2, 3 given by (3.26)-

(3.28).

Since [ϕε] on Γε converges strongly in L2(Γε) to Ui(t, x1) − Ue(t, x1) and ∂tvε con-

verges two-scale (weakly) in L2(0, T ;L2(Γε)) and uniformly on (0, T ) to v0(t, x1), we can

pass to the limit in (3.26) and obtain

I1ε = ε−1

∫ T

0

∫
Γε

(cm∂tvε + Iion(vε, ⟨gε, vε⟩))[ϕε] dsdt

−−→
ε→0

|Γ|
∫ T

0

∫ L

0

(cm∂tv0 + Iion(v0, ⟨g0, v0⟩))(Ui − Ue) dx1dt.

To pass to the two-scale limit in (3.27)–(3.28), we use (iv) in Lemma 3.3 and get

I2ε = ε−2

∫ T

0

∫
Ωi,ε

σi∇uiε · (e1∂x1Ui +∇yVi
(
x1,

x

ε

)
+ ε∂x1Vi

(
x1,

x

ε

)
)dxdt

−−→
ε→0

∫ T

0

∫ L

0

∫
Yi

σi(e1∂x1u
i
0 +∇yw

i) · (e1∂x1Vi(t, x1) +∇yVi(t, x1, y)) dy dx1dt.

I3ε = ε−2

∫ T

0

∫
Ωe,ε

σe∇ueε · (e1∂x1Ue +∇yVe
(
x1,

x

ε

)
+ ε∂x1Ve

(
x1,

x

ε

)
)dxdt

−−→
ε→0

∫ T

0

∫ L

0

∫
Ye

σe(e1∂x1u
e
0 +∇yw

e) · (e1∂x1Ve(t, x1) +∇yVe(t, x1, y)) dy dx1dt.

Thus, we obtain a weak formulation of the effective problem:

|Γ|
∫ T

0

∫ L

0

(cm∂tv0 + Iion(v0, ⟨g0, v0⟩))(Ui − Ue) dx1dt

+

∫ T

0

∫ L

0

∫
Yi

σi(e1∂x1u
i
0 +∇yw

i) · (e1∂x1Ui(t, x1) +∇yVi(t, x1, y)) dy dx1dt

+

∫ T

0

∫ L

0

∫
Ye

σe(e1∂x1u
e
0 +∇yw

e) · (e1∂x1Ue(t, x1) +∇yVe(t, x1, y)) dy dx1dt = 0.
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Ωe,ε Γm,ε

Γε

Ωi,ε

Σε

R0

0−1
2

1
2

Yi

Ye

r0
− l

2
l
2

r0 +m

αβ

FIGURE 3-3. The cross section of half of the periodic cell, where Y =
(
−1

2 ,
1
2

)
×

DR0 and Yi =
(
−1

2 ,
1
2

)
× Dr0 , with DR0 and Dr0 being the open disks in R2 of

radius R0 and r0, respectively.

Consequently, computing the variation of the left-hand side of the last equality with

respect to Vi, Ve, Ui and Ue gives the representations Vi(t, x1, y) = Ni(y)∂x1Ui(t, x1),

Ve(t, x1, y) = Ne(y)∂x1Ue(t, x1), the cell problems (3.12) and (3.13), and the two one-

dimensional equations

|Γ|(cm∂tv0 + Iion(v0, ⟨g0, v0⟩)) =
∫
Yi

σe|e1 +∇yNi|2 ∂2x1x1
ui0 dy, (3.29)

|Γ|(cm∂tv0 + Iion(v0, ⟨g0, v0⟩)) = −
∫
Ye

σe|e1 +∇yNe|2 ∂2x1x1
ue0 dy. (3.30)

Introducing (3.11) and adding up (3.30) and (3.29) yield (3.10). The proof of Theorem

3.1 is complete.

3.5. Numerical example

The goal of this numerical example is to see how the effective coefficient defined by

(3.11) varies with respect to the area of Γ. We consider a rotationally symmetric geometry

as illustrated in Fig. 3-3. Since the first component of the normal to Yi is zero in this case,

the problem reduces to solving the auxiliary cell problem (3.12) in the extracellular domain

Ye. For this, we use a finite element approximation. Having Ne, we compute the effective
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coefficient aeff , whose formula in this cylindrical geometry becomes

aeff =
1

|Γ|

((
σe

∫
Ye

(∂y1Ne + 1) dy
)−1

+
(
σi|Yi|

)−1
)−1

, (3.31)

as the cell problem (3.13) has a constant solution in this case and ∂y1Ni = 0. The effective

coefficient has units S · cm2, that is the units of the conductivity S/cm multiplied by cm3.

The conductivity of the extra- and intracellular domains are assumed to be σe = 20 mS/cm

and σi = 5 mS/cm. The node-node separation might vary between 500µm and 1500µm

(see (McIntyre et al., 2002)), and we will take the period L = 1250µm. To make the period

equal to one, we need to rescale the domain by L. For example, the radius of the node is

1.8µm, so r0 = 1.8/1250.

Table 3.1 contains the geometric parameters of the domain.

TABLE 3.1. Geometric parameters in µm.

R0L (r0 +m)L r0L l · L
9 5.75 1.8 1

The values for the effective coefficient aeff computed for angles α = β = π/2 (angles

of the myelin attachment) and for different values of the length of the Ranvier node l ·L are

shown in Table 3.2 and Fig. 3-4. It can be observed that aeff decreases when l increases.

TABLE 3.2. Results of the effective coefficient aeff for different values of l, the
length of the Ranvier node. l is in µm.

l · L 0.5 1 2 4 8 16
aeff 1.1 5.5 · 10−1 2.8 · 10−1 1.4 · 10−1 6.9 · 10−2 3.5 · 10−2

l · L 32 64 128 256 512 1024
aeff 1.7 · 10−2 8.6 · 10−3 4.3 · 10−3 2.2 · 10−3 1.1 · 10−3 5.4 · 10−4

We also analyze how the effective coefficient depends on the angles of the myelin

attachment. The results of the computations are presented in Table 3.3 and on Fig. 3-5.
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FIGURE 3-4. Effective coefficient aeff for different values of l, the length of the
Ranvier node. l is in µm.

One can see that the variation of aeff is not significant, but the effective coefficient cleary

decreases when the angles go to zero.

TABLE 3.3. Results of the effective coefficient aeff for different values of the angle.
The angles are in degrees and the results presented with six significant digits.

α◦ 0.4 0.5 1 2 5
aeff 0.555167 0.554720 0.553897 0.553516 0.553297
α◦ 10 20 46 95
aeff 0.553223 0.553187 0.553165 0.553153
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4. DERIVATION OF BIDOMAIN MODEL FOR BUNDLES OF AXONS

The chapter concerns the multiscale modeling of a nerve fascicle of myelinated axons.

We present a rigorous derivation of a macroscopic bidomain model describing the behavior

of the electric potential in the fascicle based on the FitzHugh-Nagumo membrane dynam-

ics. The approach is based on the two-scale convergence machinery combined with the

method of monotone operators.

The chapter is based on the paper: Jerez-Hanckes, C., Martı́nez, I. A., Pettersson, I., &

Rybalko, V.. Derivation of a bidomain model for bundles of myelinated axons (Nonlinear

Analysis: Real World Applications, in press).

4.1. Introduction

Modeling the electrical stimulation of nerves requires biophysically consistent descrip-

tions amenable also for computational purposes. A typical nerve in the peripheral nervous

system contains several grouped fascicles, each of them comprising hundreds of axons

(Standring, 2021). This complex microstructure of neural tissue presents an obvious prob-

lem for those attempting to desribe its macroscopic response to electrical excitation. Specif-

ically, one needs to know both how signals propagate along a single axon and how axons

influence each other in a bundle.

Electric currents along individual axons are usually modeled via cable theory, which

dates back to works of W. Thomson (Lord Kelvin). Fundamental insights into nerve cell

excitability were made by A. Hodgkin and A. Huxley, who proposed a model that describes

ionic mechanisms underlying the initiation and propagation of action potentials in axons

(Hodgkin & Huxley, 1952). Later a more simple model for nonlinear dynamics in axons

was introduced in (FitzHugh, 1955), known as the FitzHugh–Nagumo model.

Multiscale homogenization techniques were used in recent works (Jerez-Hanckes et

al., 2020; Jerez-Hanckes, Martı́nez, Pettersson, & Rybalko, 2021) to derive an effective
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cable equation describing propagation of signals in myelinated axons. Ideas of homoge-

nization theory can also be naturally applied to account for ephaptic coupling in bundles of

axons, where neighboring axons can communicate via current flow through the extracellu-

lar space. In 1978, experiments on giant squid axons were conducted (Ramon & Moore,

1978) revealing evidence of ephaptic events and their physiological importance. Ephaptic

interactions might be modelled by coupled systems of a large number of cable equations

(as, e.g., in (Bokil et al., 2001), (Binczak et al., 2001)), but a continuous mathematical

model for a fascicle of myelinated axons, to our best knowledge, has not been rigorously

derived. An analogous phenomenon of coupling is observed in the electrical conductance

of cardiac tissues (Lin & Keener, 2010), leading to the celebrated bidomain model. It was

first derived by J. Neu and W. Krassowska (J. Neu & Krassowska, 1993). In (Franzone

& Savaré, 2002) the authors study the well-posedness of the reaction-diffusion systems

modeling cardiac electric activity at the micro- and macroscopic level. They focus on

the FitzHugh-Nagumo model (with recovery variable), and present a formal derivation of

the effective bidomain model. The homogenization procedure is justified in (Pennacchio,

Savaré, & Franzone, 2005) where Γ-convergence is used for asymptotic analysis. Homog-

enization techniques based on two-scale convergence and unfolding are applied in, e.g.,

(Collin & Imperiale, 2018), (Bendahmane, Mroue, Saad, & Talhouk, 2019), (Grandelius &

Karlsen, 2019), (Amar, Andreucci, & Timofte, 2021) for modeling of syncytial tissues.

The multiscale analysis of syncytial tissues includes the well-posedness of the micro-

scopic problem, the homogenization procedure, and the well-posedness of the effective

bidomain model. The latter question is interesting by itself, with solvability proven using

different approaches depending on the nonlinearity. The solvability for a bidomain model

in (Franzone & Savaré, 2002) is based on a reformulation as a Cauchy problem for a vari-

ational evolution inequality in a properly chosen Sobolev space. This approach applies to

the case of the FitzHugh-Nagumo equations. In (Veneroni, 2006) existence and uniqueness

are given for solutions of a wide class of models, including the classical Hodgkin-Huxley

model, the first membrane model for ionic currents in an axon, and the Phase-I Luo-Rudy

(LR1) model. In (Bourgault, Coudiere, & Pierre, 2009) the authors reformulate the coupled
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parabolic and elliptic PDEs into a single parabolic PDE by the introduction of a bidomain

operator, which is a non-differential and non-local operator. This approach applies to fairly

general ionic models, such as the Aliev-Panfilov and MacCulloch models.

The asymptotic analysis of a nerve fascicle with a large number of axons also leads to

a bidomain model. It was suggested in (P. J. Basser & Roth, 2000) that bidomain models

provides a unified framework for modeling electrical stimulation of both peripheral nerves,

cortical neurons, and syncytical tissues. In (Mandonnet & Pantz, 2011) a linear model is

considered without recovery variables. Therein, it is hypothesized that the homogenization

procedure in (Pennacchio et al., 2005) leading to a macroscopic bidomain model for syn-

cytical tissues can also be carried out for a fascicle of unmyelinated axons. We extend this

result to a nonlinear case and rigorously derive a bidomain model for a fascicle of myeli-

nated axons. In particular, we consider the propagation of signals in a fascicle formed by

a large number of axons. The microstructure of the fascicle is depicted as a set of closely

packed thin cylinders (axons) with myelin sheaths arranged periodically in the surround-

ing extracellular matrix. The characteristic microscale of the structure is given by a small

parameter ε > 0. Distances between neighboring axons, their diameters and the spac-

ing of unmyelinated parts of the axon’s membrane—Ranvier nodes—are assumed to be of

order ε. By means of two-scale analysis we derive a bidomain model that describes the as-

ymptotic behavior of the transmembrane potential on Ranvier nodes when ε is sufficiently

small. We adopt the FitzHugh-Nagumo dynamics on the unmyelinated membrane. Main

technical difficulties come from the nonlinear dynamics and the lack of a priori estimates

ensuring strong convergence of the membrane potential on the Ranvier nodes. This lack

of compactness is caused by the fact that the axons form a disconnected microstructure

inside the fascicle, which stands in the contrast with connected microstructure of syncy-

tial tissues. In order to derive the homogenized problem we transform problem to a form

allowing us to combine two-scale convergence machinery with the method of monotone

operators. Well-posedness of the micro- and macroscopic problems are also shown via

reduction to parabolic equations with monotone operators.
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4.2. Microscopic model

4.3. Problem setup

A nerve fascicle is modeled by the cylinder Ω := (0, L)× ω ⊂ R3 with length L > 0

and cross section ω ⊂ R2, being a bounded domain in R2 with a Lipschitz boundary ∂ω (see

Figure 4-1). The lateral boundary of the cylinder is denoted by Σ := [0, L]×∂ω, with bases

S0 := {0} × ω, SL := {L} × ω. The bulk of the cylinder consists of an intracellular part

formed by thin cylinders (axons), an extracellular part, and myelin sheaths. To describe the

microstructure of the fascicle, we introduce a periodicity cell Y := [−1
2
, 1
2
)× [−R0, R0)

2,

consisting of three disjoint Lipschitz domains: (i) an intracellular part Yi := [−1
2
, 1
2
)×Dr0 ,

where Dr0 is the disk with radius 0 < r0 <
1
2
; (ii) a myelin sheath Ym; (iii) an extracellular

domain Ye. The real positive radii satisfy r0 < R0. We denote by Γmi := Yi ∩ Ym the

interface between Yi and Ym. The interface between the extracellular domain Ye and a

myelin sheath Ym is Γme := Ye ∩ Ym. The unmyelinated part of the boundary of Yi (the

Ranvier node) will be denoted by Γ = Yi∩Ye (see Figure 4-1). We will assume that Γ does

not degenerate, and, for simplicity, that Γ is connected.

The periodicity cell is translated by vertices of the lattice Z × (2R0Z)2 to form a Y -

periodic structure, and then scaled by a small parameter ε > 0. We take only those axons

that are entirely contained in Ω. As a result, the domain is the union of three disjoint

parts Ωi
ε,Ω

e
ε,Ω

m
ε , and their boundaries (see Figure 4-1). The unmyelinated part of the

boundary of Ωi
ε is denoted by Γε. The boundary of the myelin is denoted by Γm

ε . Let

Ωe
εΩi

ε
Σ Yi

Ye Γ
Γε

FIGURE 4-1. A fascicle of myelinated axons and the periodicity cell Y .



48

uε denotes the electric potential uε = ulε in Ωl
ε, l = i, e. We assume that uε satisfies

homogeneous Neumann boundary conditions on the boundary of the myelin sheath Γm
ε , i.e

the myelin sheath is assumed to be a perfect insulator (see (Jerez-Hanckes et al., 2020) for

other insulation assumptions). The transmembrane potential vε = [uε] = uiε − ueε is the

potential jump across the Ranvier nodes Γε. We assume that the conductivity is a piecewise

constant function:

aε =

 ae in Ωe
ε,

ai in Ωi
ε.

On Γε we further assume current continuity, and FitzHugh-Nagumo (FitzHugh, 1955;

Nagumo, Arimoto, & Yoshizawa, 1962) dynamics for the transmembrane potential. Namely,

the ionic current is described as

Iion(vε, gε) =
v3ε
3

− vε − gε,

where gε is the recovery variable whose evolution is governed by the ordinary differential

equation

∂tgε = θvε + a− bgε

with constant coefficients θ, a, b > 0. The recovery variable is introduced to eliminate the

excitability of the model after excitation has occurred (see (FitzHugh, 1955)).

We consider an arbitrary time interval (0, T ), T > 0. The electric activity in the bundle

Ω is described by the following system of equations for the unknowns vε and gε:

− div(aε∇uε) = 0, (t, x) ∈ (0, T )× (Ωi
ε ∪ Ωe

ε),

ae∇ueε · ν = ai∇uiε · ν, (t, x) ∈ (0, T )× Γε,

ε(cm∂t[uε] + Iion([uε], gε)) = −ai∇uiε · ν, (t, x) ∈ (0, T )× Γε,

∂tgε = θ[uε] + a− bgε, (t, x) ∈ (0, T )× Γε,

uε = 0, (t, x) ∈ (0, T )× (S0 ∪ SL), (4.1)
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ae∇ueε · ν = Je
ε (t, x), (t, x) ∈ (0, T )× Σ,

∇ueε · ν = 0, (t, x) ∈ (0, T )× Γm
ε ,

[uε](0, x) = V 0
ε (x), gε(0, x) = G0

ε(x), x ∈ Γε,

where ν denotes the unit normal on Γε, Γm
ε , and Σ, exterior to Ωi

ε, Ω
m
ε , and Ω, respectively.

The function Je
ε (t, x) models an external boundary excitation of the nerve fascicle. The

membrane capacity per unit area cm is assumed to be a positive constant. The myelin sheath

is assumed to be a perfect insulator implying that the electrical field does not penetrate

it, this leads to the homogeneous Neumann boundary condition on Γm
ε . That is why the

equation in the bulk is posed for x ∈ Ωi
ε ∪ Ωe

ε.

System (4.1), modeling the electrical conduction in nerves, arises from the Maxwell

equations in the quasi-stationary approximation. A derivation of (4.1) from the first princi-

ples is presented in (Jæger & Tveito, 2021). See also (Tveito et al., 2017) for a numerical

comparison of different models. On the membrane Γε we assume the continuity of fluxes

condition and the nonlinear FitzHugh dynamics for the potential jump (action potential)

[uε]. A similar model has been used for modeling the electric conduction in the cardiac

tissue (see e.g. (Franzone & Savaré, 2002), (Pennacchio et al., 2005), (Amar et al., 2021),

(Grandelius & Karlsen, 2019)). While the cardiac tissue models assume that both intracel-

lular and extracellular domains are connected, in the present model the intracellular domain

is formed by non-intersecting individual axons.

We study the asymptotic behavior of uε, as ε → 0, and derive a macroscopic model

describing the potential uε in the fascicle, under the following conditions:

(H1) The initial data is such that1 ∥V 0
ε ∥L4(Γε) ≤ C. Moreover, we assume that V 0

ε can

be extended to the whole Ω such that, keeping the same notation for the exten-

sion, ∥V 0
ε ∥H1(Ω) ≤ C and V 0

ε = 0 on S0 ∪ SL. We also assume that there exists

a weak limit V 0
ε ⇀ V 0 in H1(Ω).

1Throughout, C denotes a generic constant independent of ε, whose value may be different from line to line.
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(H2) There exists G0 ∈ L2(Ω), such that

• for any ϕ ∈ C(Ω), it holds that

lim
ε→0

ε

∫
Γε

G0
ε(x)ϕ(x) dσ =

|Γ|
|Y |

∫
Ω

G0(x)ϕ(x) dx;

• ε
∫
Γε

|G0
ε|2 dσ → |Γ|

|Y |

∫
Ω

|G0|2 dx, ε→ 0.

(H3) The external excitation Je
ε ∈ L2((0, T ) × Σ) converges weakly to Je(t, x), as

ε→ 0, and ∫ T

0

∫
Σ

|∂tJe
ε |2 dσdτ ≤ C.

REMARK 4.1. Hypothesis (H2) actually assumes strong two-scale convergence (cf.

Proposition 2.5 in (Allaire & Damlamian, 1995)). Hypothesis (H2) is satisfied if G0
ε is

sufficiently regular, e.g. continuous, and independent of ε. Note that hypotheses (H1), (H2)

are not satisfied for rapidly oscillating initial data.

REMARK 4.2. The scaling factor ε in the nonlinear equation for [uε] on Γε leads to

a limit bidomain model and a nontrivial coupling of the potentials in the individual axons

in the bundle through the extracellular currents. Different scaling factors in the equation

on the Ranvier nodes Γε might be considered. In (Amar, Andreucci, Bisegna, & Gianni,

2006) and (Amar, Andreucci, Bisegna, & Gianni, 2013), the authors address an hierarchy

of models for the electrical conduction of biological tissue in linear and nonlinear cases.

Namely, for εk, k = −1, 0, 1, the homogenization procedure yields different limit problems.

4.3.1. Main result

The main result of the paper (Theorem 4.1 below) shows that the asymptotic behavior

of solutions of the boundary value problem (4.1) is described by the following effective

bidomain model in Ω:

cm∂tv0 + Iion(v0, g0) = aeffi ∂
2
x1x1

ui0, (t, x) ∈ (0, T )× Ω,

cm∂tv0 + Iion(v0, g0) = −div(aeffe ∇ue0), (t, x) ∈ (0, T )× Ω,
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∂tg0 = θv0 + a− b g0, (t, x) ∈ (0, T )× Ω, (4.2)

ui,e0 (t, x) = 0, (t, x) ∈ (0, T )× (S0 ∪ SL),

aeffe ∇ue0 · ν = Je, (t, x) ∈ (0, T )× Σ,

v0(0, x) = V 0(x), g0(0, x) = G0(x), x ∈ Ω,

where v0 = ui0 − ue0. The effective scalar coefficient aeffi is

aeffi :=
|Yi|
|Γ| ai. (4.3)

The effective matrix aeffe ∈ R3×3 is given by

(aeffe )kl :=
1

|Γ|

∫
Ye

ae(∂lN
e
k(y) + δkl) dy, k, l = 1, 2, 3, (4.4)

with the functions N e
k , k = 1, 2, 3, solving the following auxiliary cell problems in Ye

−∆N e
k = 0, y ∈ Ye,

∇N e
k · ν = −νk, y ∈ Γ ∪ Γm,

N e
k(y) is Y − periodic.

Theorem 4.1. Under the hypothesis (H1)–(H3), the solutions vε = [uε], gε of the

microscopic problem (4.1) converge to the solutions v0 = ui0 − ue0, g0 of the macroscopic

one (4.2) in the following sense:

(i) For any ϕ(t, x) ∈ C([0, T ]× Ω), it holds that

lim
ε→0

ε

∫ T

0

∫
Γε

vε(t, x)ϕ(t, x) dσxdt =
|Γ|
|Y |

∫ T

0

∫
Ω

v0(t, x)ϕ(t, x) dxdt,

and for any t ∈ [0, T ] lim
ε→0

ε

∫
Γε

|vε|2 dσ =
|Γ|
|Y |

∫
Ω

|v0|2 dx.

(ii) For any ϕ(t, x) ∈ C([0, T ]× Ω),

lim
ε→0

ε

∫ T

0

∫
Γε

gε(t, x)ϕ(t, x) dσxdt =
|Γ|
|Y |

∫ T

0

∫
Ω

g0(t, x)ϕ(t, x) dxdt,
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and for any t ∈ [0, T ] lim
ε→0

ε

∫
Γε

|gε|2 dσ =
|Γ|
|Y |

∫
Ω

|g0|2 dx.

(iii) lim
ε→0

∫ T

0

∫
Ωi,e

ε

|ui,eε − ui,e0 |2 dxdt = 0.

REMARK 4.3. If v0 is continuous, the convergences (i), (ii) imply strong convergence

of vε. Namely, for any t ∈ [0, T ], one obtains

lim
ε→0

ε

∫
Γε

|vε − v0|2 dσ = 0.

In general, approximating v0 in L2(Ω) by v0δ ∈ C(Ω), we have

lim sup
δ→0

lim sup
ε→0

ε

∫
Γε

|vε − v0δ|2 dσ = 0.

REMARK 4.4. The result can be generalized to the case of a varying cross section, as

in (Jerez-Hanckes et al., 2021). In such case, the solution N i
1 of the cell problem (4.40) is

no longer constant, and the corresponding effective coefficient is given by

aeffi =
1

|Γ|

∫
Yi

ai(∂1N
i
1 + 1)dy.

REMARK 4.5. Hypothesis (H2) can be generalized to the case of an oscillating initial

function G0
ε. Namely, assume that there exists G0(x, y) ∈ L2(Ω× Γ), Y -periodic in y such

that

• for any ϕ(x, y) ∈ C(Ω× Y ), Y -periodic in y,

lim
ε→0

ε

∫
Γε

G0
ε(x)ϕ

(
x,
x

ε

)
dσx =

1

|Y |

∫
Ω

∫
Γ

G0(x, y)ϕ(x, y) dσydx;

• ε
∫
Γε

|G0
ε|2 dσ → 1

|Y |

∫
Ω

∫
Γ

|G0(x, y)|2 dσydx, ε→ 0.

Then, the two-scale limit g̃0(t, x, y) of gε does depend on the fast variable y, and de-

noting g0(t, x) =
1

|Γ|

∫
Γ

g̃0(t, x, y) dσy, the effective problem reads

cm∂tv0 + Iion(v0, g0) = aeffi ∂
2
x1x1

ui0, (t, x) ∈ (0, T )× Ω,

cm∂tv0 + Iion(v0, g0) = −div(aeffe ∇ue0), (t, x) ∈ (0, T )× Ω,
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∂tg̃0 = θv0 + a− b g̃0, (t, x, y) ∈ (0, T )× Ω× Y,

ui,e0 (t, x) = 0, (t, x) ∈ (0, T )× (S0 ∪ SL),

aeffe ∇ue0 · ν = Je, (t, x) ∈ (0, T )× Σ,

v0(0, x) = V 0(x), g̃0(0, x) = G0(x, y) x ∈ Ω, y ∈ Y.

Thanks to the linearity of the equation ∂tg̃0 = θv0 + a − b g̃0, averaging in y, yields

(4.2) with the initial condition g0(0, x) =
1

|Γ|

∫
Γ

G0(x, y) dσy.

4.3.2. Well-posedness

In order to show the well-posedness of the microscopic problem (4.1), we write it as a

Cauchy problem for an abstract parabolic equation.

We multiply (4.1) by a smooth function ϕ =

ϕ
i in Ωi

ε

ϕe in Ωe
ε

, ϕi,e = 0 on S0 ∪ SL, and

integrate by parts:

ε

∫
Γε

cm∂tvε[ϕ] dσ +

∫
Ωi

ε∪Ωe
ε

aε∇uε · ∇ϕ dx+ ε

∫
Γε

Iion(vε, gε)[ϕ] dσ =

∫
Σ

Je
εϕ dσ.

Let us introduce an auxiliary function qε solving the following problem:

−div(aε∇qε) = 0, x ∈ Ωi
ε ∪ Ωe

ε ∪ Γε,

∇qε · ν = 0, x ∈ Γm,ε, (4.5)

ae∇qε · ν = Je
ε (t, x), x ∈ Σ,

qε = 0, x ∈ (S0 ∪ SL).

Since the jump of qε through the Ranvier nodes Γε is zero, the change of unknown

ũε = uε − qε
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allows us to transfer the external excitation Je
ε from the lateral boundary Σ to the membrane

Γε. Namely, we get the following weak formulation for the new unknown function ũε:

ε

∫
Γε

cm∂tvε[ϕ] dσ +

∫
Ωi

ε∪Ωe
ε

aε∇ũε · ∇ϕ dx+ ε

∫
Γε

Iion(vε, gε)[ϕ] dσ

+

∫
Γε

(ai∇qε · ν)[ϕ] dσ = 0.

Let us define the subspace

H1
S0∪SL

(Ωi
ε ∪ Ωe

ε) :=
{
ϕ ∈ H1(Ωi

ε ∪ Ωe
ε) : ϕ

∣∣
S0∩SL

= 0
}
,

and introduce the operator Aε : D(Aε) ⊂ H1/2(Γε) → H−1/2(Γε) as follows

(Aεvε, [ϕ])L2(Γε) :=

∫
Ωi

ε∪Ωe
ε

aε∇ũε · ∇ϕ dx, ∀ ϕ ∈ H1
S0∪SL

(Ωi
ε ∪ Ωe

ε), (4.6)

where ũε ∈ H1(Ωi
ε ∪ Ωe

ε), for a given jump [ũε] = vε, solves the following problem:

− div(aε∇ũε) = 0, x ∈ Ωi
ε ∪ Ωe

ε,

ae∇ũeε · ν = ai∇ũiε · ν, x ∈ Γε,

ũiε − ũeε = vε, x ∈ Γε, (4.7)

aε∇ũε · ν = 0, x ∈ Γm,ε,

ae∇ũε · ν = 0, x ∈ Σ,

ũε = 0, x ∈ (S0 ∪ SL).

Thus, problem (4.1) can be rewritten in the following compact form:

εcm∂tvε + Aεvε + εIion(vε, gε) = −ai∇qε · ν, (4.8)

∂tgε + bgε − θvε = a
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on Γε. In order to reduce the problem to a monotone one, we perform the following change

of unknowns:

Wε =

wε

hε

 = e−λt

vε
gε

 , W 0
ε =

V 0
ε

G0
ε

 . (4.9)

with λ real positive. Substituting (4.9) into (4.8) yields

ε∂t


wε

hε

+


1

cm
Aεwε +

ε

cm

(
e2λt

3
w3

ε − wε − hε

)
+ ελwε

ε(b+ λ)hε − εθwε



= e−λt


− ai
cm

∇qε · ν

εa

 ,

which can be further rewritten as follows:

ε∂tWε + Aε(t,Wε) = Fε(t), (t, x) ∈ (0, T )× Γε, (4.10)

Wε(0, x) = W 0
ε (x), x ∈ Γε.

Aε(t,Wε) := B(1)
ε (t,Wε) +B(2)

ε (t,Wε), (4.11)

B(1)
ε (t,Wε) :=


1

cm
Aεwε + ε

(
λ− 1

cm

)
wε −

ε

cm
hε

ε(b+ λ)hε − εθwε

 , (4.12)

B(2)
ε (t,Wε) :=

ε
e2λt

3cm
w3

ε

0

 , Fε(t) := e−λt

− ai
cm

∇qε · ν

εa

 . (4.13)

Here the operator Aε is defined in (4.6).

The existence of a unique solution to problem (4.10) follows from Theorem 1.4 in

(Lions, 1969) and Remark 1.8 in Chapter 2 (see also Theorem 4.1 in (Showalter, 2013)).

For the reader’s convenience, we formulate the corresponding result below.
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Lemma 4.1. Let Vi, i = 1, . . . ,m, be reflexive Banach spaces, andH be a real Hilbert

space such that Vi ⊂ H ⊂ V ′
i . Let A(t) =

∑m
i=1Ai(t), and let {Ai(t); t ∈ [0, T ]},

i = 1, . . . ,m, be a family of nonlinear, monotone, and demi-continuous operators from Vi

to V ′
i that satisfy the following conditions:

(i) The function t 7→ Ai(t)u(t) ∈ V ′
i is measurable for every measurable function

u : [0, T ] → V .

(ii) There exists a seminorm [u] on Vi such that, for some constants α1 > 0 and

α2 > 0, we have that

[u] + α1∥u∥H ≥ α2∥u∥Vi
,

and for some c > 0 and pi > 1,

(Ai(t)u, u) ≥ c[u]pi , u ∈ Vi, t ∈ [0, T ].

(iii) For some C and the same pi > 1 as in (ii),

∥Ai(t)u∥V ′
i
≤ C(1 + ∥u∥pi−1

Vi
), u ∈ Vi, t ∈ [0, T ].

Then, for every u0 ∈ H and f ∈∑m
i=1 L

qi(0, T ;V ′
i ), 1/pi+1/qi = 1, there is a unique

absolutely continuous function u ∈ ∩m
i=1W

1,qi([0, T ];V ′
i ) that satisfies

u ∈ L∞([0, T ];H), u ∈ ∩m
i=1L

pi([0, T ];Vi),

du

dt
(t) + A(t)u(t) = f(t), a.e. t ∈ (0, T ),

u(0) = u0.

In order to apply Lemma 4.1, we introduce the necessary functional spaces:

H = L2(Γε)× L2(Γε),

H̃1/2(Γε) =
{
v = (ui − ue)

∣∣∣
Γε

: ul ∈ H1(Ωl
ε), u

l = 0 on S0 ∩ SL, l = i, e
}
,

V1 = H̃1/2(Γε)× L2(Γε), V ′
1 = H−1/2(Γε)× L2(Γε),
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V2 = L4(Γε)× L2(Γε), V ′
2 = L4/3(Γε)× L2(Γε).

As the operator A1(t, ·) : V1 → V ′
1 we take B(1)

ε (t, ·) given by (4.12); as the operator

A2(t, ·) : V2 → V ′
2 we take B(2)

ε (t, ·) given by (4.13). Let us check that the operator

Aε(t, ·) = B
(1)
ε + B

(2)
ε satisfies the assumptions of Lemma 4.1 with p1 = 2 and p2 = 4.

The right-hand side Fε satisfies clearly the assumptions of Lemma 4.1.

Lemma 4.2. For every t ∈ [0, T ], the linear operator B(1)
ε (t, ·) : V1 → V ′

1 has the

following properties:

(i) Monotonicity:

(B(1)
ε (t,W1)−B(1)

ε (t,W2),W1 −W2) ≥ 0, ∀W1,W2 ∈ V1.

(ii) Coercivity:

(B(1)
ε (t,W ),W ) ≥ C1∥W∥2V1

, ∀W ∈ V1.

(iii) Boundedness:

∥B(1)
ε (t,W )∥V ′

1
≤ C2∥W∥V1 , ∀W ∈ V1.

PROOF. (i) The monotonicity of the operator B(1)
ε follows from its linearity and coer-

civity properties (as shown below).

(ii) By (4.12), for any Wε ∈ H̃1/2(Γε)× L2(Γε), we have

(B(1)
ε (t,Wε),Wε) =

1

cm

∫
Ωi

ε∪Ωe
ε

aε|∇w̃ε|2 dx+ ε

(
λ− 1

cm

)∫
Γε

|wε|2 dσ

− ε

(
θ +

1

cm

)∫
Γε

hεwε dσ + ε(b+ λ)

∫
Γε

|hε|2 dσ.

Here w̃ε = e−λtuε solves (4.7) with the jump on Γε that equals to e−λtvε. Using the

trace inequality and choosing λ sufficiently large and independent of ε, we obtain

(B(1)
ε (t,Wε),Wε) ≥ Cε

1∥wε∥2H̃1/2(Γε)
+ Cε

2∥hε∥2L2(Γε)
= Cε∥Wε∥2V1

.
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Here Cε
1 , C

ε
2 , and Cε are positive constants.

(iii) Let us estimate the norm of B(1)
ε (t,W ). For any Wε ∈ V1 and a test function Φ =

([φ], ψ)T ∈ V1, by (4.11) we have

(B(1)
ε (t,Wε),Φ)L2(Γε)2 =

1

cm

∫
Ωi

ε∪Ωe
ε

aε∇w̃ε · ∇φdx+ ε

(
λ− 1

cm

)∫
Γε

wε[φ]dσ

− ε

cm

∫
Γε

hε[φ]dσ + ε(b+ λ)

∫
Γε

hεψdσ − εθ

∫
Γε

wεψdσ.

Here φ solves a stationary problem (4.7) with a given jump [φ] on Γε.

Clearly, ∥∇w̃ε∥L2(Ωi
ε∪Ωe

ε)
≤ C∥wε∥H̃1/2(Γε)

. The test function φ is estimated in a stan-

dard way in terms of ∥[φ]∥H̃1/2(Γε)
. Then, by the Cauchy-Schwartz inequality, one retrieves

(B(1)
ε (t,Wε),Φ)L2(Γε)2 ≤ C1∥wε∥H̃1/2(Γε)

∥[φ]∥H̃1/2(Γε)

+ C2(∥wε∥H̃1/2(Γε)
+ ∥hε∥H̃1/2(Γε)

)∥[Φ]∥V1 ,

which proves the estimate from above for ∥B(1)
ε (t,W )∥V ′

1
. □

Lemma 4.3. For every t ∈ [0, T ], the operator B(2)
ε (t, ·) : V2 → V ′

2 has the following

properties:

(i) Monotonicity:

(B(2)
ε (t,W1)−B(2)

ε (t,W2),W1 −W2) ≥ 0, ∀W1,W2 ∈ V2.

(ii) Coercivity: ∥ · ∥L4(Γε) defines a seminorm on V2 such that, for some constants

α1 > 0 and α2 > 0, we have

∥W∥L4(Γε) + α1∥W∥H ≥ α2∥W∥V2 ,

and

(B(2)
ε (t,W ),W ) ≥ C1∥W∥4V2

, ∀W ∈ V1.
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(iii) Boundedness:

∥B(2)
ε (t,W )∥V ′

2
≤ C2∥W∥3L4(Γε)

, ∀W ∈ V2.

PROOF. (i) The monotonicity ofB(2)
ε follows from the monotonicity of the cubic func-

tion f(u) = u3.

(ii) By definition (4.13), it holds that

(B(2)
ε (t,Wε),Wε) =

εe2λt

3cm

∫
Γε

|wε|4 dσ,

which proves (ii).

(iii) The boundedness follows from (4.13):

∥B(2)
ε (t,Wε)∥V ′

2
= ε

[∫
Γε

(
e2λt

3cm
(wε)

3

) 4
3

dσ

] 3
4

=
εe2λt

3cm
∥wε∥3L4(Γε)

≤ Cε∥Wε∥3V2
,

where Cε is a positive constant. □

Obviously, the function t 7→ Aε(t,W ) satisfies the measurability assumption of Lemma

4.1, and the demi-continuity property follows from the estimates in Lemmas 4.2 and 4.3.

4.4. Proof of Theorem 4.1

4.4.1. A priori estimates

The next lemma provides the estimates for (zε, hε) = e−λt(uε, gε), where [zε] = wε, at

time t = 0.

Lemma 4.4. Under hypotheses (H1)–(H3), at time t = 0 the following estimates hold

∫
Ωi

ε∪Ωe
ε

aε|∇zε|2 dx
∣∣∣
t=0

+

∫
Σ

|zε|2 dσ
∣∣∣
t=0

≤ C. (4.14)
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PROOF. One can see that the operator Aε given by (4.6) can be defined by means of

the minimization problem

(Aεwε, wε) = min
[ϕε]=wε

∫
Ωi

ε∪Ωe
ε

aε|∇ϕε|2 dx,

where the minimum is taken over the functions ϕε ∈ H1(Ωi
ε ∪ Ωe

ε) with the given jump

[ϕε] = wε on Γε. Consider the test function ϕε =

V
0
ε in Ωi

ε

0 in Ωe
ε

, then thanks to the assump-

tion (H1) we have∫
Ωi

ε∪Ωe
ε

aε|∇zε|2 dx
∣∣∣
t=0

= (Aεwε, wε)
∣∣∣
t=0

=

∫
Ωi

ε

ai|∇V 0
ε |2 dx ≤ C.

The proof of the lemma is completed by using an extension operator from Ωe
ε to Ω (see

(4.17) below) together with the trace inequality. □

Now we prove the a priori estimates for the solutions of (4.10).

Lemma 4.5 (A priori estimates). Let Wε = (wε, hε) be a solution of (4.10). Then, for

t ∈ [0, T ], the following estimates hold:

(i) ε
∫
Γε

|wε|4 dσ + ε

∫ t

0

∫
Γε

|∂τwε|2 dσ dτ ≤ C.

(ii) ε
∫
Γε

|hε|2 dσ + ε

∫ t

0

∫
Γε

|∂τhε|2 dσ dτ ≤ C.

(iii) Let zε = e−λtuε with the jump [zε] = wε on Γε. Then, one has that∫
Ωi

ε∪Ωe
ε

(|zε|2 + |∇zε|2) dx ≤ C,

for a constant C independent of ε and t, but depending on T and the norms of

initial functions ∥G0
ε∥L2(Γε), ∥V 0

ε ∥L4(Γε), ∥V l
ε ∥H1(Ω).

PROOF. We will work with the equation in vector form (4.10) and derive the a priori

estimates for the pair (wε, hε). Let zε be the solution of the stationary problem with the

jump wε:

− div(aε∇zε) = 0, x ∈ Ωi
ε ∪ Ωe

ε,
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ae∇zeε · ν = ai∇ziε · ν, x ∈ Γε,

ziε − zeε = wε, x ∈ Γε, (4.15)

aε∇zε · ν = 0, x ∈ Γm,ε,

ae∇zε · ν =
e−λt

cm
Je
ε , x ∈ Σ,

zε = 0, x ∈ (S0 ∪ SL).

We multiply (4.10) by Wε and integrate over Γε:

ε

2
∂t

∫
Γε

|wε|2 dσ +
1

cm

∫
Ωi

ε∪Ωe
ε

aε∇zε · ∇zε dx+
ε

cm

∫
Γε

e2λt

3
w4

ε dσ

+ ε

(
λ− 1

cm

)∫
Γε

|wε|2 dσ − ε

(
θ +

1

cm

)∫
Γε

hεwε dσ +
ε

2
∂t

∫
Γε

|hε|2 dσ (4.16)

+ ε(λ+ b)

∫
Γε

|hε|2 dσ =
e−λt

cm

∫
Σ

Je
εzε dσ + εae−λt

∫
Γε

hεdσ.

It is known (Acerbi, ChiadoPiat, Dal Maso, & Percivale, 1992) that there exists an

extension operator Pε from Ωe
ε to Ω such that ∥∇Pεz

e
ε∥L2(Ω) ≤ C∥∇zeε∥L2(Ωe

ε)
with a con-

stant C independent of ε. This result combined with the Friedrichs inequality (zε = 0 on

S0 ∪ SL) implies that

∥Pεz
e
ε∥H1(Ω) ≤ C∥∇zeε∥L2(Ωe

ε)
. (4.17)

By the trace inequality, the L2(Σ)-norm of zε is then bounded by ∥∇zeε∥L2(Ωe
ε)

. Using

the Young inequality with a parameter in (4.16) and (4.17), yields

∂t

(
ε

∫
Γε

|wε|2dσ + ε

∫
Γε

|hε|2dσ
)
+

∫
Ωi

ε∪Ωe
ε

|∇zε|2 dx+ ε

∫
Γε

|wε|4dσ

+

(
ε

∫
Γε

|wε|2dσ + ε

∫
Γε

|hε|2dσ
)

≤ C

∫
Σ

|Je
ε |2 dσ. (4.18)

Applying the Grönwall inequality in (4.18), we obtain the following estimate:

ε

∫
Γε

|wε|2dσ + ε

∫
Γε

|hε|2dσ ≤ C. (4.19)
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Integrating (4.18) with respect to t gives∫ t

0

∫
Ωi

ε∪Ωe
ε

|∇zε|2 dx+ ε

∫ t

0

∫
Γε

|wε|4dσ (4.20)

≤ C

(∫ t

0

∫
Σ

|Je
ε |2dσdτ + ε

∫
Γε

|V 0
ε |2 dσ + ε

∫
Γε

|G0
ε|2 dσ

)
.

Next, we derive the estimates for ∂tWε. To this end, we multiply (4.10) by ∂tWε and

integrate over (0, t)× Γε:

ε

2

∫ t

0

∫
Γε

|∂τwε|2 dσdτ +
ε

2

∫ t

0

∫
Γε

|∂τhε|2 dσdτ

+
1

2cm

∫
Ωi

ε∪Ωe
ε

aε|∇zε|2 dx−
1

2cm

∫
Ωi

ε∪Ωe
ε

aε|∇zε|2 dx
∣∣∣
t=0

+
ε

12cm
e2λt

∫
Γε

|wε|4 dσ − ε

12cm

∫
Γε

|V 0
ε |4 dσ

+
ε

2
(λ− 1

cm
)

∫
Γε

|wε|2 dσ − ε

2
(λ− 1

cm
)

∫
Γε

|V 0
ε |2 dσ

+
ε

2
(λ+ b)

∫
Γε

|hε|2 dσ − ε

2
(λ+ b)

∫
Γε

|G0
ε|2 dσ (4.21)

≤ 2λε

∫ t

0

e2λτ
∫
Γε

|wε|4 dσdτ

+ 2θ2ε

∫ t

0

∫
Γε

|wε|2 dσdτ +
2ε

c2m

∫ t

0

∫
Γε

|hε|2 dσdτ

+
e−λt

cm

∫
Σ

Je
εzε dσ − 1

cm

∫
Σ

Je
εzε dσ

∣∣∣
t=0

+
λ

cm

∫ t

0

e−λτ

∫
Σ

Je
εzε dσdτ −

∫ t

0

e−λτ

cm

∫
Σ

∂τJ
e
εzε dσdτ

+ εae−λt

∫
Γε

hε dσ − εa

∫
Γε

G0
ε dσ + εaλ

∫ t

0

e−λτ

∫
Γε

hε dσdτ.

Combining (4.19), (4.20), and (4.14) we get

ε

∫ t

0

∫
Γε

|∂τwε|2 dσdτ +
∫
Ωi

ε∪Ωe
ε

|∇zε|2 dx+ ε

∫
Γε

|wε|4 dσ ≤ C.
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Thanks to the homogeneous Dirichlet boundary condition on the bases S0 ∪ SL, the

L2-norm of zε is estimated in terms on the ∇zε. Namely,∫
Ωi

ε

|ziε|2 dx ≤ C

∫
Ωi

ε

|∂x1z
i
ε|2 dx,∫

Ωe
ε

|zeε |2 dx ≤ C

∫
Ωe

ε

|∇zeε |2 dx.

The proof of Lemma 4.5 is finally complete. □

4.4.2. Derivation of the macroscopic model

Since the axons inside the bundle are disconnected, a priori estimates provided by

Lemma 4.5 do not imply the strong convergence of the transmembrane potential vε on Γε.

In turn, this makes passing to the limit in the nonlinear term Iion problematic. We choose

to combine the two-scale convergence machinery with the method of monotone operators

due to G. Minty (Minty, 1962). For reader’s convenience we provide a brief description

of the method for a simple case in Appendix A, while its adaptation for problem (4.1) is

presented below. For passage to the limit, as ε→ 0, we will use the two-scale convergence

(Allaire, 1992). We refer to (Allaire & Damlamian, 1995) for two-scale convergence on

periodic surfaces (namely, on Γε).

Definition 4.1. We say that a sequence {ulε(t, x)} two-scale converges to the function

ul0(t, x, y) in L2(0, T ;L2(Ωl
ε)), l = i, e, as ε→ 0, and write

ulε(t, x)
2
⇀ul0(t, x, y),

if

(i)
∫ T

0

∫
Ωl

ε

|uε|2dx dt < C.

(ii) For any ϕ(t, x) ∈ C(0, T ;L2(Ω)), ψ(y) ∈ L2(Yl) we have

lim
ε→0

∫ T

0

∫
Ωl

ε

ulε(t, x)ϕ(t, x)ψ
(x
ε

)
dx dt
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=
1

|Y |

∫ T

0

∫
Ω

∫
Y l

ul0(t, x, y)ϕ(t, x)ψ(y) dy dx dt,

for some function ul0 ∈ L2(0, T ;L2(Ω× Y )).

Definition 4.2. A sequence {vε(t, x)} converges two-scale to the function v0(t, x, y) in

L2(0, T ;L2(Γε)), as ε→ 0, if

(i) ε
∫ T

0

∫
Γε

v2ε dσ dt < C.

(ii) For any ϕ(t, x) ∈ C([0, T ];C(Ω)), ψ(y) ∈ C(Γ) we have that

lim
ε→0

ε

∫ T

0

∫
Γε

vε(t, x)ϕ(t, x)ψ
(x
ε

)
dσx dt

= [(i)]
1

|Y |

∫ T

0

∫
Ω

∫
Γ

v0(t, x, y)ϕ(t, x)ψ(y) dσy dx dt

for some function v0 ∈ L2(0, T ;L2(Ω× Γ)).

(iii) We say that {vε} converges t-pointwise two-scale in L2(Γε) if, for any t ∈ [0, T ],

and for any ϕ(x) ∈ C(Ω), ψ(y) ∈ C(Γ) we have

lim
ε→0

ε

∫
Γε

vε(t, x)ϕ(x)ψ
(x
ε

)
dσx =

1

|Y |

∫
Ω

∫
Γ

v0(t, x, y)ϕ(x)ψ(y) dσy dx

for some function v0 ∈ L2(0, T ;L2(Ω× Γ)).

Lemma 4.6. Let Wε be a solution of (4.10), and let zε be a solution of problem

(4.15). Then there exist functions zl0 ∈ L2(0, T ;L2(Ω)), l = i, e, such that ∂x1z
i
0, ∂xj

ze0 ∈
L2(0, T ;L2(Ω)) (j = 1, 2, 3), w0 = zi0 − ze0 ∈ L4(0, T ;L4(Ω)), and up to a subsequence,

as ε→ 0, the following two-scale convergence holds:

(i) χl
(x
ε

)
zlε(t, x)

2
⇀ χl(y)zl0(t, x) in L2(0, T ;L2(Ωl

ε)), l = i, e.

(ii) χi
(x
ε

)
∇ziε(t, x)

2
⇀ χi(y)

[
e1∂x1z

i
0(t, x)+∇yz

i
1(t, x, y)

]
, where zi1(t, x, y) ∈

L2((0, T )× Ω;H1(Yi)) is 1-periodic in y1.
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(iii) χe
(x
ε

)
∇zeε(t, x)

2
⇀ χe(y)

[
∇ze0(t, x) + ∇yz

e
1(t, x, y)

]
, where ze1(t, x, y) ∈

L2((0, T )× Ω;H1(Ye)) is Y -periodic in y.

(iv) wε
2
⇀ w0(t, x) t–pointwise in L2(Γε), and w0 = (zi0 − ze0).

Moreover, ∂twε
2
⇀ ∂tw0 in L2(0, T ;L2(Γε)).

(v) hε
2
⇀ h̃0(t, x, y) t–pointwise in L2(Γε), and ∂thε

2
⇀ ∂th̃0

in L2(0, T ;L2(Γε)).

PROOF. From a priori estimates the two-scale convergence of zeε and ∇zeε is proved

applying standard arguments (see (Allaire, 1992)). When it comes to ziε and its gradient,

the main difficulty stems from the fact that Ωi
ε consists of many disconnected components.

Since ziε is bounded uniformly in ε (cf. Lemma 4.5) in L2((0, T ) × Ωi
ε), there exists a

subsequence—still denoted by {ziε}—such that χi(x
ε
)ziε(t, x) converging two-scale to some

χi(y)zi0(t, x, y) in L2(0, T ;L2(Ω × Y )). Similarly, due to (4.20), up to a subsequence,

χi
(
x
ε

)
∇ziε(t, x) converges two-scale to χi(y)pi(t, x, y). Let us show that zi0 = zi0(t, x).

Take a smooth test function Φ
(
t, x,

x

ε

)
= φ(t, x)ψ

(x
ε

)
, where φ ∈ C([0, T ];C∞

0 (Ω)),

and ψ ∈ (C∞(Yi))
3 is 1-periodic in y1 and such that ψ = 0 on Γmi ∪ Γ.

ε

∫ T

0

∫
Ωi

ε

∇ziε(t, x) · φ(t, x)ψ
(x
ε

)
dxdt

= −ε
∫ T

0

∫
Ωi

ε

ziε(t, x)∇φ(t, x) · ψ
(x
ε

)
dxdt

−
∫ T

0

∫
Ωi

ε

ziε(t, x)φ(t, x)divyψ
(x
ε

)
dxdt.

Passing to the limit, we derive

1

|Y |

∫ T

0

∫
Ω

∫
Yi

zi0(t, x, y)φ(t, x)divyψ(y) dydxdt = 0,

which implies that ∂yiz
i
0(t, x, y) = 0, i = 1, 2, 3. Thus, zi0 = zi0(t, x).
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Next we prove that ∂x1z
i
0 ∈ L2((0, T ) × Ω). Let us take a test function Φ

(
t, x, x

ε

)
=

φ(t, x)e1 + φ(t, x)∇yN
i
1

(
x
ε

)
such that

∆yN
i
1 = 0, Yi,

∇N i
1 · ν = −ν1, Γ ∪ Γmi, (4.22)

N i
1 is 1-periodic in y1.

Integrating by parts yields∫ T

0

∫
Ωi

ε

∇ziε(t, x) · Φ
(
t, x,

x

ε

)
dxdt

= −
∫ T

0

∫
Ωi

ε

ziε(t, x)
(
e1 +∇yN

i
1

(x
ε

))
· ∇φ(t, x) dxdt,

and passing to the limit, as ε→ 0, we obtain

1

|Y |

∫ T

0

∫
Ω

∫
Yi

pi(t, x, y) · φ(t, x)
(
e1 +∇yN

i
1(y)

)
dydxdt (4.23)

= − 1

|Y |

∫ T

0

∫
Ω

∫
Yi

zi0(t, x)∇φ(t, x) ·
(
e1 +∇yN

i
1(y)

)
dydxdt.

Let us observe that
∫
Yi
∂ykN

i
1(y) dy = 0 for k ̸= 1. Indeed, for k ̸= 1, yk can be taken

as a test function in (4.22):

0 = −
∫
Yi

∆N i
1(y)yk dy =

∫
Yi

∂ykN
i
1(y) dy.

Furthermore, it holds that

∫
Yi

(
δ1k + ∂ykN

i
1(y)

)
dy = δ1k|Γ|

aeffi
ai
.

Consequently, it is straightforward to check that

aeffi =
1

|Γ|

∫
Yi

ai
(
1 + ∂y1N

i
1(y)

)
dy =

1

|Γ|

∫
Yi

ai
(
1 + ∂y1N

i
1(y)

)2
dy > 0. (4.24)
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We turn back to (4.23). Due to (4.24), we have the estimate∣∣∣∣∫ T

0

∫
Ω

zi0(t, x)∂x1φ(t, x) dxdt

∣∣∣∣
=

∣∣∣∣ ai
(aeffi )11

∫ T

0

∫
Ω

∫
Yi

pi(t, x, y) · φ(t, x)
(
e1 +∇yN

i
1(y)

)
dydxdt

∣∣∣∣
≤ C∥φ∥L2((0,T )×Ω).

Next, we show that pi(t, x, y) = e1∂x1z
i
0(t, x) +∇yz

i
1(t, x, y) for some zi1 periodic in

y1. Take a smooth test function φ(t, x)ψ(y) such that divyψ = 0 in Yi, ψ ·ν = 0 on Γmi∪Γ,

and periodic in y1.∫ T

0

∫
Ωi

ε

∇ziε · φ(t, x)ψ
(x
ε

)
dxdt = −

∫ T

0

∫
Ωi

ε

ziε∇φ(t, x) · ψ
(x
ε

)
dxdt.

Passing to the limit, as ε→ 0 we obtain

1

|Y |

∫ T

0

∫
Ω

∫
Yi

pi · φ(t, x)ψ(y) dydxdt = − 1

|Y |

∫ T

0

∫
Ω

∫
Yi

zi0∇φ(t, x) · ψ(y) dydxdt.

Since
∫
Yi
ψk(y) dy = 0 for k ̸= 1,∫ T

0

∫
Ω

∫
Yi

pi(t, x, y) · φ(t, x)ψ(y) dydxdt =
∫ T

0

∫
Ω

∫
Yi

∂x1z
i
0(t, x)φ(t, x)ψ1(y) dydxdt,

and thus ∫ T

0

∫
Ω

∫
Yi

(
pi(x, y)− e1∂x1z

i
0(t, x)

)
φ(t, x) · ψ(y) dydxdt = 0.

Since ψ is solenoidal, there exists zi1(t, x, y) ∈ L2((0, T ) × Ω;H1(Yi)), 1-periodic in

y1, such that

pi(t, x, y) = e1∂x1z
i
0(t, x) +∇yz

i
1(t, x, y).
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Next we prove that the jump wε converges two-scale in L2(0, T ;L2(Γε)) to zi0− ze0. To

this end, for ψ ∈ H1/2(Γ), we consider test functions ψ̃l, l = i, e, solving

∆ψ̃l =
1

|Yl|

∫
Γ

ψ dσ, y ∈ Yl,

∇ψ̃l · νl = ψ, y ∈ Γ; ∇ψ̃l · νl = 0, y ∈ Γml,

ψ̃l is Y − periodic.

Integration by parts yields

ε

∫ T

0

∫
Γε

wε φ(t, x)ψ
(x
ε

)
dxdt

= ε

∫ T

0

∫
Ωi

ε

∇ziε · φ(t, x)∇yψ̃
i
(x
ε

)
dxdt+ ε

∫ T

0

∫
Ωi

ε

ziε ∇φ(t, x) · ∇yψ̃
i
(x
ε

)
dxdt

+
1

|Yi|

∫ T

0

∫
Ωi

ε

ziεφ(t, x)

∫
Γ

ψ(y) dσdxdt

− ε

∫ T

0

∫
Ωe

ε

∇zeε · φ(t, x)∇yψ̃
e
(x
ε

)
dxdt− ε

∫ T

0

∫
Ωe

ε

zeε∇φ(t, x) · ∇yψ̃
e
(x
ε

)
dxdt

− 1

|Ye|

∫ T

0

∫
Ωe

ε

zeεφ(t, x)

∫
Γ

ψ(y) dσdxdt.

Passing to the limit, as ε→ 0, we get

1

|Y |

∫ T

0

∫
Ω

∫
Γ

w0(t, x, y)φ(t, x)ψ(y) dσdxdt

=
1

|Y |

∫ T

0

∫
Ω

∫
Γ

(zi0 − ze0)φ(t, x)ψ(y) dσdxdt,

that proves the two-scale convergence of wε to the difference w0 = zi0 − ze0.

Note that the uniform bound of wε in L4((0, T ) × Γε)—by Lemma 4.5(i)—implies

w0 ∈ L4((0, T )× Ω). Indeed, for smooth φ(t, x), we have that

|Γ|
∫ T

0

∫
Ω

w0(t, x)φ(t, x) dxdt = lim
ε→0

ε|Y |
∫ T

0

∫
Γε

wε(t, x)φ(t, x) dσdt
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≤ |Y | lim
ε→0

(
ε

∫ T

0

∫
Γε

|wε|4 dσdt
) 1

4
(
ε

∫ T

0

∫
Γε

|φ(t, x)|4/3 dσdt
) 3

4

≤ C lim
ε→0

(
ε

∫ T

0

∫
Γε

|φ(t, x)| 43 dσxdt
) 3

4

= C

( |Γ|
|Y |

∫ T

0

∫
Ω

∫
Γ

|φ(t, x)| 43 dxdt
) 3

4

.

By density of smooth functions in L
4
3 ((0, T )× Ω), ∥w0∥L4((0,T )×Ω) ≤ C.

Thanks to the uniform in ε estimates (i), (ii) in Lemma 4.5, (iv) and (v) hold. Indeed,

for any t ∈ [0, T ] and any φ(t, x) ∈ C1([0, T ]× Ω), ψ(y) ∈ C(Γ), such that φ(0, x) = 0

ε

∫
Γε

wε(t, x)φ(t, x)ψ
(x
ε

)
dσ

= ε

∫ t

0

∫
Γε

(wε(τ, x)∂τφ(τ, x) + ∂τwε(τ, x)φ(τ, x))ψ
(x
ε

)
dσ

→ 1

|Y |

∫ t

0

∫
Ω

∫
Γ

(w0(τ, x)∂τφ(τ, x) + ∂τw0(τ, x)φ(τ, x))ψ(y)dσydxdτ

=
1

|Y |

∫
Ω

∫
Γ

w0(t, x)φ(t, x)ψ(y)dσydx, ε→ 0.

□

Lemma 4.7. Let the initial functions V 0
ε satisfy hypothesis (H1). Then V 0

ε
2
⇀ V 0 in

L2(Γε), and

lim sup
ε→0

ε

∫
Γε

|V 0
ε |2 dσ =

|Γ|
|Y |

∫
Ω

|V 0|2 dx.

PROOF. The weak two-scale convergence follows from Proposition 2.6 in (Allaire &

Damlamian, 1995). Approximating V 0 by smooth functions V 0
δ in H1(Ω), we find

ε

∫
Γε

|V 0
ε |2 dσ = ε

∫
Γε

|V 0
ε − V 0

δ |2 dσ + 2ε

∫
Γε

(V 0
ε − V 0

δ )V
0
δ dσ + ε

∫
Γε

|V 0
δ |2 dσ. (4.25)
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Applying the trace inequality in the rescaled periodicity cell εY , adding up over all the

cells in Ω, and using assumption (H1) leads to

ε

∫
Γε

|V 0
ε − V 0

δ |2 dσ ≤ Cε2
∫
Ω

|∇(V 0
ε − V 0

δ )|2 dx+ C

∫
Ω

|V 0
ε − V 0

δ |2 dx

≤ Cε2
∫
Ω

|∇(V 0
ε − V 0

δ )|2 dx+ C

∫
Ω

|V 0
ε − V 0|2 dx

+ C

∫
Ω

|V 0
δ − V 0|2 dx → 0, ε, δ → 0.

Then, since V 0
δ is smooth, it converges strongly two-scale, and passing to the limit as

ε→ 0 in (4.25) we obtain

lim
δ→0

lim sup
ε→0

ε

∫
Γε

|V 0
ε |2 dσ =

|Γ|
|Y |

∫
Ω

|V 0|2 dx,

as stated. □

We proceed with the Minty method for passing to the limit in the microscopic problem.

Consider arbitrary functions µl
0(t, x) ∈ C∞([0, T ]×Ω) and µl

1(t, x, y) ∈ C∞([0, T ]×Ω×
Y ), Y -periodic in y, and such that µl

0 = µl
1 = 0 when x ∈ S0 ∩ SL. Take the test function

Mε :=

[µε]

ρ

 , where ρ = ρ(t, x), and

µε(x) :=


µe
0(t, x) + εµe

1

(
t, x,

x

ε

)
, x ∈ Ωe

ε

µi
0(t, x) + εµi

1

(
t, x,

x

ε

)
, x ∈ Ωi

ε.

The monotonicity property of the operator Aε(t, ·) entails∫ t

0

∫
Γε

(Aε(τ,Wε)− Aε(τ,Mε)) · (Wε −Mε) dσdτ ≥ 0. (4.26)

By the definition of Aε (4.6),

(Aε([µε]− wε), ([µε]− wε))L2(Γε) ≤
∫
Ωi

ε∪Ωe
ε

aε∇(µε − zε) · ∇(µε − zε) dx,
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where zε solves (4.15). It follows then from (4.26), (4.10), and the definition of the operator

Aε(t, ·) that

ε

∫ t

0

∫
Γε

∂τwε([µε]− wε) dσdτ + ε

∫ t

0

∫
Γε

∂τhε(ρ− hε) dσdτ

+
1

cm

∫ t

0

∫
Ωe

ε∪Ωi
ε

aε∇µε · ∇(µε − zε) dxdτ + ε(λ− 1

cm
)

∫ t

0

∫
Γε

[µε]([µε]− wε) dσdτ

− ε

cm

∫ t

0

∫
Γε

ρ([µε]− wε) dσdτ + ε(b+ λ)

∫ t

0

∫
Γε

ρ(ρ− hε) dσdτ (4.27)

− εθ

∫ t

0

∫
Γε

[µε](ρ− hε) dσdτ + ε
1

3cm

∫ t

0

e2λτ
∫
Γε

[µε]
3([µε]− wε) dσdτ

+

∫ t

0

∫
Γε

e−λτ

cm
(ai∇qε · ν)([µε]− wε) dσdτ − εa

∫ t

0

∫
Γε

e−λτ (ρ− hε) dσdτ ≥ 0.

Consider the first two terms in (4.27), specifically integrals ε
∫ t

0

∫
Γε
wε∂τwε dσdτ and

ε
∫ t

0

∫
Γε
hε∂τhε dσdτ . Integrating by parts with respect to time, passing to the limit as ε→

0, and using the lower semi-continuity of L2-norm with respect to two-scale convergence

(Proposition 2.5, (Allaire & Damlamian, 1995)) and Lemma 4.7 renders

lim sup
ε→0

[
ε

∫ t

0

∫
Γε

wε∂τwε dσdτ −
|Γ|
|Y |

∫ t

0

∫
Ω

w0∂τw0 dxdτ
]

= lim sup
ε→0

[ε
2

∫
Γε

w2
ε dσ

∣∣∣
τ=t

− |Γ|
2|Y |

∫
Ω

w2
0 dx

]
+ lim

ε→0

[
− ε

2

∫
Γε

(V 0
ε )

2 dσ +
|Γ|
2|Y |

∫
Ω

(V 0)2 dx
]
≥ 0.

Similarly, for the integral of hε∂τhε, denoting the mean value of the two-scale limit

h̃0(t, x, y) in y by h0(t, x) = 1
|Γ|

∫
Γ
h̃0(t, x, y) dy, we get

lim sup
ε→0

[
ε

∫ t

0

∫
Γε

hε∂τhε dσdτ −
|Γ|
|Y |

∫ t

0

∫
Ω

h0∂τh0 dxdτ
]

= lim sup
ε→0

[ε
2

∫
Γε

h2ε dσ
∣∣∣
τ=t

− |Γ|
2|Y |

∫
Ω

h20 dx
∣∣∣
τ=t

]
+ lim

ε→0

[
− ε

2

∫
Γε

(G0
ε)

2 dσ +
|Γ|
2|Y |

∫
Ω

(G0)2 dx
]
≥ 0.
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For smooth µl
0(t, x) and µl

1(t, x, y), l = i, e, we use Lemma 4.6 to pass to the limit in

the third term:

1

cm

∫ t

0

∫
Ωe

ε∪Ωi
ε

aε∇µε · ∇(µε − zε) dxdτ

→ 1

cm|Y |

∫ t

0

∫
Ω

∫
Yi

ai(∇µi
0 +∇yµ

i
1) · (∇µi

0 +∇yµ
i
1 − ∂1z

i
0e1 −∇yz

i
1)dxdydτ

+
1

cm|Y |

∫ t

0

∫
Ω

∫
Ye

ae(∇µe
0 +∇yµ

e
1) · (∇µe

0 +∇yµ
e
1 −∇ze0 −∇yz

e
1)dxdydτ.

Taking the limit in (4.27) as ε→ 0 (along a subsequence) we obtain

lim sup
ε→0

[
ε

∫ t

0

∫
Γε

wε∂τwε dσdτ −
|Γ|
|Y |

∫ t

0

∫
Ω

w0∂τw0 dxdτ
]

+ lim sup
ε→0

[
ε

∫ t

0

∫
Γε

hε∂τhε dσdτ −
|Γ|
|Y |

∫ t

0

∫
Ω

h0∂τh0 dxdτ
]

≤ |Γ|
|Y |

∫ t

0

∫
Ω

∂τw0([µ0]− w0) dxdτ +
|Γ|
|Y |

∫ t

0

∫
Ω

∂τh0(ρ− h0) dxdτ

+
1

cm|Y |

∫ t

0

∫
Ω

∫
Yi

ai(∇µi
0 +∇yµ

i
1) · (∇µi

0 +∇yµ
i
1 − ∂1z

i
0e1 −∇yz

i
1)dxdydτ

+
1

cm|Y |

∫ t

0

∫
Ω

∫
Ye

ae(∇µe
0 +∇yµ

e
1) · (∇µe

0 +∇yµ
e
1 −∇ze0 −∇yz

e
1)dxdydτ

+ (λ− 1

cm
)
|Γ|
|Y |

∫ t

0

∫
Ω

[µ0]([µ0]− w0) dxdτ (4.28)

− |Γ|
|Y |cm

∫ t

0

∫
Ω

ρ([µ0]− w0) dxdτ + (b+ λ)
|Γ|
|Y |

∫ t

0

∫
Ω

ρ(ρ− h0) dxdτ

− θ
|Γ|
|Y |

∫ t

0

∫
Ω

[µ0](ρ− h0) dxdτ +
1|Γ|

3cm|Y |

∫ t

0

∫
Ω

e2λτ [µ0]
3([µ0]− w0) dxdτ

−
∫ t

0

∫
Σ

e−λτ

cm
Je(µe

0 − ze0) dσdτ − a
|Γ|
|Y |

∫ t

0

∫
Ω

e−λτ (ρ− h0) dσdτ,

where [µ0] = µi
0 − µe

0. Consider the spaces

Hi = {zi ∈ L2(Ω) : ∂x1z
i ∈ L2(Ω), zi = 0 on S0 ∪ SL},

He = {ze ∈ L2(Ω) : ∇ze ∈ L2(Ω)3, ze = 0 on S0 ∪ SL},
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with the standard H1-norm in He, and

∥z∥Hi
=

(∫
Ω

|z|4 dx
) 1

4

+

(∫
Ω

|∂x1z|2 dx
) 1

2

.

By density of smooth functions, inequality (4.28) still holds for test functions µl
1 ∈

L2((0, T )× Ω;H1(Yl)), and µl
0 ∈ L2(0, T ;Hl) such that [µ0] ∈ L4((0, T )× Ω).

Modifying the test function µi
1 by setting µi

1(x, y) = µ̃i
1(x, y)−∇x′µi

0 ·y′ we transform

the integrand in the fourth line of (4.28) to the form

ai(∂x1µ
i
0e1 +∇yµ̃

i
1) · (∂x1µ

i
0e1 +∇yµ̃

i
1 − ∂x1z

i
0e1 −∇yz

i
1).

Then, for smooth test functions ψl(t, x), φ(t, x) vanishing at x = 0, L, and Ψl(t, x, y)

periodic in y and equal to zero when x = 0, L, l = i, e, we can set

µl
0(t, x) = zl0(t, x) + δψl(t, x), l = i, e,

µe
1(t, x, y) = ze1(t, x, y) + δΨe(t, x, y),

µ̃i
1(t, x, y) = zi1(t, x, y) + δΨi(t, x, y),

ρ(t, x) = h0(t, x) + δφ(t, x),

where δ is a small auxiliary parameter. Setting [ψ] = ψi − ψe, we have that

lim sup
ε→0

[
ε

∫ t

0

∫
Γε

wε∂τwε dσdτ −
|Γ|
|Y |

∫ t

0

∫
Ω

w0∂τw0 dxdτ
]

+ lim sup
ε→0

[
ε

∫ t

0

∫
Γε

hε∂τhε dσdτ −
|Γ|
|Y |

∫ t

0

∫
Ω

h0∂τh0 dxdτ
]

≤ δ|Γ|
|Y |

∫ t

0

∫
Ω

∂τw0[ψ] dxdτ +
δ|Γ|
|Y |

∫ t

0

∫
Ω

∂τh0 φdxdτ

+
δ

cm|Y |

∫ t

0

∫
Ω

∫
Yi

ai(∂x1(z
i
0 + δψi)e1 +∇y(z

i
1 + δΨi)) · (∂x1ψ

ie1 +∇yΨ
i)dxdydτ

+
δ

cm|Y |

∫ t

0

∫
Ω

∫
Ye

ae(∇(ze0 + δψe) +∇y(z
e
1 + δΨe)) · (∇ψe +∇yΨ

e)dxdydτ

+ (λ− 1

cm
)
δ|Γ|
|Y |

∫ t

0

∫
Ω

(w0 + δ[ψ])[ψ] dxdτ (4.29)
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− δ|Γ|
|Y |cm

∫ t

0

∫
Ω

(h0 + δφ)[ψ] dxdτ + (b+ λ)
δ|Γ|
|Y |

∫ t

0

∫
Ω

(h0 + δφ)φdxdτ

− θ
δ|Γ|
|Y |

∫ t

0

∫
Ω

(w0 + δ[ψ])φdxdτ +
|Γ|

3cm|Y |δ
∫ t

0

∫
Ω

e2λτ (w0 + δ[ψ])3[ψ] dxdτ

− δ

cm

∫ t

0

∫
Σ

e−λτJeψe dσdτ − a
δ|Γ|
|Y |

∫ t

0

∫
Ω

e−λτφdσdτ.

Since the left-hand side of (4.29) is non-negative and δ is arbitrary, we obtain

lim sup
ε→0

[
ε

∫
Γε

|wε|2 dσ − |Γ|
|Y |

∫
Ω

|w0|2 dx
]
= 0,

lim sup
ε→0

[
ε

∫
Γε

|hε|2 dσ − |Γ|
|Y |

∫
Ω

|h0|2 dx
]
= 0.

Note that the last convergence implies that the two-scale limit h̃0 does not depend on

y. Indeed, by Proposition 2.5 in (Allaire & Damlamian, 1995), one has the estimate

lim sup
ε→0

ε

∫
Γε

|hε|2 dσ ≥ 1

|Y |

∫
Ω

∫
Γ

|h̃0|2 dσydx ≥ |Γ|
|Y |

∫
Ω

|h0|2 dx.

Thus, one can see that

1

|Γ|

∫
Ω

∫
Γ

|h̃0|2 dσydx =

∫
Ω

(
1

|Γ|

∫
Γ

h̃0 dσy

)2

dx.

Moreover, it is clear that

1

|Γ|

∫
Ω

∫
Γ

|h̃0|2 dσydx =
1

|Γ|

∫
Ω

∫
Γ

|h̃0 − h0|2 dσydx

+
2

|Γ|

∫
Ω

∫
Γ

(h̃0 − h0)h0 dσydx

+
1

|Γ|

∫
Ω

∫
Γ

|h0|2 dσydx =

∫
Ω

|h0|2 dx,

which yields

1

|Γ|

∫
Ω

∫
Γ

|h̃0 − h0|2 dσydx = 0 ⇒ h̃0 = h0(t, x).
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Now, dividing (4.29) by δ ̸= 0 and passing to the limit as δ → +0 and δ → −0, we

derive

|Γ|
|Y |

∫ t

0

∫
Ω

∂τw0[ψ] dxdτ +
|Γ|
|Y |

∫ t

0

∫
Ω

∂τh0 φdxdτ

+
1

cm|Y |

∫ t

0

∫
Ω

∫
Yi

ai(∂x1z
i
0e1 +∇yz

i
1) · (∂x1ψ

ie1 +∇yΨ
i)dydxdτ

+
1

cm|Y |

∫ t

0

∫
Ω

∫
Ye

ae(∇ze0 +∇yz
e
1) · (∇ψe +∇yΨ

e) dydxdτ

+ (λ− 1

cm
)
|Γ|
|Y |

∫ t

0

∫
Ω

w0[ψ] dxdτ −
|Γ|

|Y |cm

∫ t

0

∫
Ω

h0[ψ] dxdτ

+ (b+ λ)
|Γ|
|Y |

∫ t

0

∫
Ω

h0φdxdτ − θ
|Γ|
|Y |

∫ t

0

∫
Ω

w0φdxdτ

+
|Γ|

3cm|Y |

∫ t

0

∫
Ω

e2λτw3
0[ψ] dxdτ −

∫ t

0

∫
Σ

e−λτ

cm
Jeψe dσdτ

− a
|Γ|
|Y |

∫ t

0

∫
Ω

e−λτφdxdτ = 0.

Taking ψi = ψe = φ = 0, we obtain ze1(t, x, y) = N e(y) · ∇ze0(t, x), zi1(t, x, y) =

N i
1(y)∂x1z

i
0(t, x), where N e

k , N
i
1 solve the cell problems (4.39) and (4.40), respectively.

Note that in the case when Yi is a cylinder—constant cross-section—, N i
1(y) is constant.

Recalling the definition of the effective coefficients (aeffe )kl (4.4), and taking Ψl = 0, we

obtain ∫ t

0

∫
Ω

∂τw0[ψ] dxdτ +

∫ t

0

∫
Ω

∂τh0 φdxdτ

+
1

cm

∫ t

0

∫
Ω

aeffi ∂x1z
i
0 ∂x1ψ

idxdτ +
1

cm

∫ t

0

∫
Ω

aeffe ∇ze0 · ∇ψe dxdτ

+ (λ− 1

cm
)

∫ t

0

∫
Ω

w0[ψ] dxdτ −
1

cm

∫ t

0

∫
Ω

h0[ψ] dxdτ (4.30)

+ (b+ λ)

∫ t

0

∫
Ω

h0φdxdτ − θ

∫ t

0

∫
Ω

w0φdxdτ

+
1

3cm

∫ t

0

∫
Ω

e2λτw3
0[ψ] dxdτ
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=
|Y |
cm|Γ|

∫ t

0

∫
Σ

e−λτJeψe dσdτ + a

∫ t

0

∫
Ω

e−λτφdσdτ.

Performing the change of unknowns ul0 = eλτzl0, v0 = eλτw0, g0 = eλτh0, and tak-

ing the test functions e−λτφ and e−λτψ in place of φ and ψ in (4.30), we obtain a weak

formulation of (4.2):∫ t

0

∫
Ω

∂τv0[ψ] dxdτ

+
1

cm

∫ t

0

∫
Ω

aeffi ∂x1u
i
0 ∂x1ψ

idxdτ +
1

cm

∫ t

0

∫
Ω

aeffe ∇ue0 · ∇ψe dxdτ

+
1

cm

∫ t

0

∫
Ω

(1
3
v30 − v0 − g0

)
[ψ] dxdτ

+

∫ t

0

∫
Ω

(
∂τg0 + bg0 − θv0 − a

)
φdxdτ

=
|Y |
cm|Γ|

∫ t

0

∫
Σ

Jeψe dσdτ.

Note that in view of the well-posedness of the limit problem proved in the next sec-

tion, the convergence takes place for the whole sequence. The proof of Theorem 4.1 is

completed.

4.5. Well-posedness of the macroscopic problem

In order to prove the well-posedness of the homogenized problem given by its weak

formulation (4.30), we rewrite it in matrix form as an abstract parabolic equation. We

introduce q0 solving the auxiliary problem in Ω:

−div(aeffe ∇q0)− aeffi ∂
2
x1x1

q0 = 0, x ∈ Ω,

aeffe ∇q0 · ν =
|Y |
|Γ| J

e, x ∈ Σ, (4.31)

q0 = 0, x ∈ S0 ∪ SL.
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Here, the effective coefficient aeffi = |Yi|ai/|Γ|. Multiplication (4.31) by a smooth test

function ψe such that ψe = 0 on S0 ∪ SL leads to

|Y |
|Γ|

∫
Σ

Jeψe dσ =

∫
Ω

aeffe ∇q0 · ∇ψe dx+

∫
Ω

aeffi ∂x1q0∂x1ψ
e dx. (4.32)

Substituting (4.32) into (4.30), and introducing z̃l0 = zl0 − q0e
−λt, l = i, e, we have the

following weak formulation:∫ t

0

∫
Ω

∂τw0[ψ] dxdτ +

∫ t

0

∫
Ω

∂τh0 φdxdτ

+
1

cm

∫ t

0

∫
Ω

aeffi ∂x1 z̃
i
0 ∂x1ψ

idxdτ +
1

cm

∫ t

0

∫
Ω

aeffe ∇z̃e0 · ∇ψe dxdτ

+

(
λ− 1

cm

)∫ t

0

∫
Ω

w0[ψ] dxdτ −
1

cm

∫ t

0

∫
Ω

h0[ψ] dxdτ (4.33)

+ (b+ λ)

∫ t

0

∫
Ω

h0φdxdτ − θ

∫ t

0

∫
Ω

w0φdxdτ

+
1

3cm

∫ t

0

∫
Ω

e2λτw3
0[ψ] dxdτ

= a

∫ t

0

∫
Ω

e−λτφdσdτ +

∫ t

0

∫
Ω

e−λτaeffi ∂
2
x1x1

q0 [ψ] dxdτ.

We seek to rewrite the weak formulation (4.33) in matrix form as an abstract parabolic

equation. To this end, we first introduce the following functional spaces:

H0 = L2(Ω)× L2(Ω),

Hi = {zi ∈ L2(Ω) : ∂x1z
i ∈ L2(Ω), zi = 0 on S0 ∪ SL},

He = {ze ∈ L2(Ω) : ∇ze ∈ L2(Ω)3, ze = 0 on S0 ∪ SL},

X0 = {w = zi − ze : zi ∈ Hi, z
e ∈ He}.

The norm in Hi is given by

∥z∥2Hi
=

∫
Ω

|z|2 dx+
∫
Ω

|∂x1z|2 dx.
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For the one associated to He, we adopt the standard H1-norm. For each element w0 ∈
X0, we associate a unique pair (z̃i0, z̃

e
0) ∈ Hi ×He solving the following problem

−aeffi ∂2x1x1
z̃i0 = div(aeffe ∇z̃e0), x ∈ Ω,

z̃i0 − z̃e0 = w0, x ∈ Ω, (4.34)

aeffe ∇z̃e0 · ν = 0, x ∈ Σ,

z̃i0 = z̃e0 = 0, x ∈ S0 ∪ SL.

The pair (z̃i0, z̃
e
0) can be determined by solving the minimization problem

∥w0∥2W0
:= inf

{∫
Ω

aeffi |∂x1 z̃
i
0|2 dx+

∫
Ω

aeffe ∇z̃e0 · ∇z̃e0 dx
∣∣ z̃i0 ∈ Wi, z̃

e
0 ∈ We

}
.

Note that W0 is a Hilbert space with a scalar product given by

(w1, w2)W0 =

∫
Ω

aeffi ∂x1z
i
1 ∂x1z

i
2 dx+

∫
Ω

aeffe ∇ze1 · ∇ze2 dx,

where (zi1, z
e
1) and (zi2, z

e
2) solve (4.34) for w1, w2 given. Now (4.33) is written in the form

∂t


w0

h0

+


1

cm
Aeffw0 +

1

cm

(
e2λt

3
w3

0 − w0 − h0

)
+ λw0

(b+ λ)h0 − θw0

 = e−λt


aeffi ∂

2
x1x1

q0

a

 ,

where the operator Aeff defined on smooth functions w0 by

(Aeffw0, [ψ])L2(Ω) :=
1

cm

∫
Ω

aeffi ∂x1 z̃
i
0 ∂x1ψ

idx+
1

cm

∫
Ω

aeffe ∇z̃e0 · ∇ψe dx,

and (z̃i0, z̃
e
0) solve (4.34). In operator form one writes

∂tW0 + A0(t,W0) = F0(t), (t, x) ∈ (0, T )× Ω, (4.35)

W0(0, x) = W 0
0 (x), x ∈ Ω.

Therein, we have the following operators

A0(t,W0) := B
(1)
0 (t,W0) +B

(2)
0 (t,W0),
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B
(1)
0 (t,W0) :=


1

cm
Aeffw0 + (λ− 1

cm
)w0 −

1

cm
h0

(b+ λ)h0 − θw0

 ,

B
(2)
0 (t,W0) :=


e2λt

3cm
w3

0

0

 ,

F0(t) := e−λt

aeffi ∂2x1x1
q0

a

 .

Introducing the spaces

H0 = L2(Ω)× L2(Ω),

V1 = X0 × L2(Ω), V ′
1 = X ′

0 × L2(Ω),

V2 = L4(Ω)× L2(Ω), V ′
2 = L4/3(Ω)× L2(Ω),

we can prove the existence of a unique solution W0 ∈ L∞((0, T );H0) ∩ L2((0, T );V1) ∩
L4((0, T );V2) to problem (4.35). It follows, as in Section 4.3.2, from Theorem 1.4 in

(Lions, 1969) and Remark 1.8 in Chapter 2.

4.6. Formal asymptotic expansions

So as to provide an insight on how the effective coefficients and the corresponding

cell problems in (4.2) appear, we apply the formal asymptotic expansion method to the

stationary problem Aεvε = εf for some smooth function f = f(x). Specifically, we write

−div(aε∇uε) = 0, x ∈ Ωi
ε ∪ Ωe

ε,

ae∇ueε · ν = ai∇uiε · ν = εf(x), x ∈ Γε,

uiε − ueε = vε, x ∈ Γε, (4.36)

ae∇uε · ν = 0, x ∈ Γm
ε ∪ Σ,

uε = 0, x ∈ (S0 ∪ SL).
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Take

ulε(x) ∼ ul0(x, y) + εul1(x, y) + ε2ul2(x, y) + . . . , y =
x

ε
,

where x ∈ Ωl
ε and y ∈ Yl, l ∈ {i, e}. Then we get

div(al∇ulε) ∼
1

ε2
divy(al∇yu

l
0)

+
1

ε

(
divy(al∇xu

l
0) + divy(al∇yu

l
1) + divx(al∇yu

l
0)
)

+ divx(al∇xu
l
0) + divx(al∇yu

l
1) + divy(al∇xu

l
1) + divy(al∇yu

l
2)

+ ε
(
divx(al∇xu

l
1)) + divx(al∇yu

l
2)) + divy(al∇xu

l
2))
)

+ ε2divx(al∇xu
l
2).

Taking the terms of order ε−2 in the volume and the ones of order ε−1 on the boundary,

we obtain the following problem for ul0:

−divy(al∇yu
l
0) = 0, y ∈ Yl,

al∇yu
l
0 = 0 y ∈ Γ ∪ Γm,

ui0 is 1-periodic in y1,

and ue0 is Y -periodic.

The solution (defined up to an additive constant) does not depend on the fast variable

y:

ul0(x, y) = ul0(x), l = i, e. (4.37)

For the next step, we take the terms of order ε−1 in the volume and those of order 1 on

the boundary:

−divy(al∇yu
l
1) = 0, y ∈ Yl,

al∇yu
l
1 · ν = −al∇xu

l
0 · ν, y ∈ Γ ∪ Γm, (4.38)
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ui1 is 1-periodic in y1

and ue1 is Y -periodic.

The solvability condition reads −
∫
Γ

al∇xu
l
0 ·ν = 0, which is fulfilled thanks to (4.37).

By seeking a solution of (4.38) in the form ul1(x, y) = Nl(y) · ∇xu
l
0(x), we obtain

al∇yu
l
1(x, y) · ν = al∂yjN

l
i (y)νj∂xi

ul0(x),

where we assume summation over the repeated indexes. The boundary condition in (4.38)

yields a boundary condition for Ni on Γ ∪ Γm:(
∂yjN

l
i (y) + δi,j

)
νj = 0.

Then, the functions N e
k , k = 1, 2, 3, solve the cell problems:

−∆N e
k = 0, y ∈ Ye,

∇N e
k · ν = −νk, y ∈ Γ ∪ Γm, (4.39)

y 7→ N e
k(y) is Y − periodic;

For the functions N i
k, due to the periodicity in only one variable y1, one can see that

N i
k(y) = −yk for k ̸= 1, that yields ∂l ̸=kN

i
k = 0. The first component N i

1 solves the

problem

−∆N i
1 = 0, y ∈ Yi,

∇N i
1 · ν = −ν1, y ∈ Γ ∪ Γm, (4.40)

y 7→ N i
1(y) is 1− periodic;

Finally, taking the terms of order 1 in the volume and the ones of order ϵ1 on the

boundary, we obtain the following problem for ul2:

−divy(a
l∇yu

l
2) = divx(a

l∇xu
l
0) + divx(a

l∇yu
l
1) + divy(a

l∇xu
l
1), y ∈ Yl,
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al∇yu
l
2 · νl = −al∇xu

l
1 · νl + f(x), y ∈ Γ,

al∇yu
l
2 · ν = 0, y ∈ Γm,

ui2 is 1-periodic in y1

and ue2 is Y -periodic.

Here νl is the exterior unit normal, and νe = −νi on Γ. The solvability condition reads∫
Yl

(
divx(a

l∇xu
l
0) + divx(a

l∇yu
l
1) + divy(a

l∇xu
l
1)
)
dY −

∫
Γ

al∇xu
l
2 · νldσ = 0.

Integrating by parts in the third term of the volume integral, substituting the expression

ul1(x, y) = N l
i (y)∂xi

ul0(x), and taking into account that N i
k(y) = −yk and

∫
Yi
∂l ̸=1N

i
1dy =

0, we obtain

−∂kjue0(x)
∫
Ye

ae (∂jN
e
k(y) + δkj) dy = |Γ|f(x),

|Yi|ai∂11ui0(x) = |Γ|f(x).

Introducing the effective coefficient

(aeffe )kl =
1

|Γ|

∫
Ye

ae(∂lN
e
k(y) + δkl)dy, k, l = 1, 2, 3,

and adding the boundary conditions on S0 ∪ SL and Σ, we arrive at

|Yi|
|Γ| ai∂11u

i
0 = −aeffe ∆ue0 = f(x), x ∈ Ω,

ui,e0 = 0, x ∈ S0 ∪ SL,

aeffe ∇ue · ν = 0, x ∈ Σ.
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5. CELL ELECTROPERMEABILIZATION MODELING VIA MULTIPLE

TRACES FORMULATION AND TIME SEMI-IMPLICIT COUPLING

In the present chapter we simulate the response of biological cells to electrical stimu-

lation in the electropermeabilization process.

The chapter is based on the submitted article: Martı́nez, I. A., Jerez-Hanckes, C. and

Pettersson, I., Cell Electropermeabilization Modeling via Multiple Traces Formulation and

Time Semi-Implicit Coupling.

5.1. Introduction

Electropermeabilization designates the use of short high-voltage or electric field pulses

to increase the permeability of the cell membrane (Kotnik et al., 2019; Rols, 2006). This

process is used to deliver therapeutic molecules, such as drugs and genes, into cells to treat

cancer, perform genetic engineering, screen drugs, among others applications (Kim & Lee,

2017), (Choi et al., 2022, Section 4).

Theoretically, several models have been proposed to explain the reversible membrane

electropermeabilization mechanism and its potential to allow the access of non-permeant

molecules into the cell. However, none of these models has rigorously proven the phe-

nomenon. For instance, during electropermeabilization it is thought that aqueous pores are

formed along the cell membrane—a process known as electroporation—thereby increasing

the permeability of the membrane. Yet, this has not been experimentally observed to occur

for the commonly employed voltages. The pores are either too small to be seen by optical

microscopy and too fragile for electron imaging. Only molecular dynamics simulations

have been able to provide a corroboration of pore formation (Kotnik et al., 2019, Section

3), (Choi et al., 2022, Section 2.1). Moreover, the application of external electric pulses

triggers other physical and chemical cell mechanisms, many of them not fully understood,

with complex interactions at multiple length scales, from nanometers at the cell membrane

to centimeters in tissues (Kotnik et al., 2019). “Therefore, while the term electroporation
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is commonly used among biologists, the term electropermeabilization should be preferred

in order to prevent any molecular description of the phenomenon” (Rols, 2006).

Still, mathematical models and numerical methods have been used to gain a better un-

derstanding of the different underlying phenomena. For instance, Neu and Krassowska

(J. C. Neu & Krassowska, 1999) consider a pure electroporation process by modeling

the nanoscale phenomena involved in the creation and resealing of the cell membrane

pores, and apply homogenization theory to derive nonlinear time dynamics occurring at

the membrane. Well-posedness of the Neu-Krassowska model and a new model including

anisotropies are derived in (Ammari et al., 2016). Alternatively, in (Kavian et al., 2014) the

authors propose a phenomenological model that forgoes the ab initio understanding of the

mechanisms involved. A more complete phenomenological model considers two different

stages in the electroporation process: conducting and permeable (Leguèbe et al., 2014).

This model also takes into account the diffusion and electric transport of non-permeable

molecules. In (Guittet et al., 2017; Mistani et al., 2019), the authors discard particle dif-

fusion and transport in (Leguèbe et al., 2014) to then apply the Voronoi Interface Method

(Guittet et al., 2015) for its numerical approximation. Specifically, they construct a Voronoi

mesh of the volume which when coupled to a ghost fluid method (Liu et al., 2000) is able

to capture discontinuous boundary conditions. Further computational enhancements via

parallelization are given in (Mistani et al., 2019).

Instead of solving the volume boundary value problem, we reduce the problem to solv-

ing boundary integral equations onto cell membranes via the local Multiple Traces For-

mulation (MTF) (Hiptmair & Jerez-Hanckes, 2012; Claeys, Hiptmair, & Jerez-Hanckes,

2013; Hiptmair, Jerez-Hanckes, Lee, & Peng, 2014; Claeys, Hiptmair, Jerez-Hanckes, &

Pintarelli, 2015; Jerez-Hanckes, Pinto, & Tournier, 2015). Originally introduced to solve

acoustic wave transmission problems in heterogeneous scatterers, the local MTF considers

independent trace unknowns at either side of the subdomains’ boundaries to then enforce

continuity conditions weakly via Calderón identities. In (Henrı́quez et al., 2017; Henrı́quez

& Jerez-Hanckes, 2018) the method was successfully applied to model the electrical behav-

ior of neurons by coupling the Laplace boundary integral operators with Hodgkin-Huxley
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nonlinear dynamics. The volume Laplace equations in intra- and extracellular media arises

when assuming a quasi-static electromagnetic regime and one can show that for 2D and 3D

the model is well posed. Numerically, the authors prove stability and convergence of time

semi-implicit discretizations with low- and high (spectral) order spatial boundary unknown

representations. Furthermore, the numerical method proposed can be extended to model

other nonlinear dynamics.

Following (Henrı́quez et al., 2017; Henrı́quez & Jerez-Hanckes, 2018), we employ the

MTF to simulate the electric potential response of a fixed number of disjoint cells in three

dimensions when they are subject to electric pulses. Spatially, the boundary unknowns will

be approximated by spherical harmonics, thereby allowing for spectral convergence rates.

The nonlinear dynamics of the cell membrane follow (Kavian et al., 2014).

The rest of the paper is organized as follows. In Section 5.2 we introduce necessary

functional spaces. In Section 5.3 we formulate the problem and the corresponding non-

linear dynamic model, and derive its boundary integral MTF. In Section 5.4, we present

a numerical scheme for spatial and time-domain discretizations, as well as discuss ad-

vantages and limitations of the proposed method. Computational results are provided in

Section 5.5. Code validation experiments with analytic and overkill solutions confirm our

theoretical results and open new avenues of research.

5.2. Functional spaces

The scalar product of two vectors x = (x1, . . . , xd),y = (y1, . . . , yd) ∈ Rd, d = 2, 3, is

denoted by x · y, and ∥·∥2 denotes the Euclidean norm. We denote also by xt the transpose

of x. We write δm,l for the Kronecker delta.

Let Ω ⊂ Rd, d = 1, 2, 3, be an open non-empty domain with a Lipschitz boundary Γ.

In general, we will consider real-valued functional spaces. C0(Ω) is the space of contin-

uous functions, and C∞(Ω) is its subspace of infinitely differentiable functions in Ω. The

support of a function u ∈ C(Ω)0 is defined as supp(u) := {x ∈ Ω : u(x) ̸= 0}. Then,

C∞
0 (Ω) := {u ∈ C∞(Ω) : supp(u) ⋐ Ω}, and C∞

comp(Ω) := C∞
0 (Rd)|Ω (Sauter & Schwab,
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2010, Section 2.3). The dual of C∞
0 (Ω) is the space of distributions or linear functionals

on Ω, denoted D′(Ω).

Let φ ∈ C∞
0 (Ω) and α = (α1, α2..., αd) a multi-index with αi ≥ 0 integer numbers,

such that |α| =∑d
i=1 αi. With multi-index notation, we write the derivative as

Dαφ =
∂|α|φ

∂xα1
1 ∂x

α2
2 ...∂x

αd
d

.

We denote byLp(Ω) the class of measurable functions with a finiteLp-norm ∥u∥Lp(Ω) =( ∫
Ω
|u|p dx

) 1
p . We say that gα ∈ Lp(Ω) is a generalized derivative of u ∈ Lp(Ω) if∫

Ω

uDαφ dx = (−1)|α|
∫
Ω

gαφ dx, ∀φ ∈ C∞
0 (Ω),

and we write Dαu := gα. For m ∈ Z, m ≥ 1, and 1 ≤ p < ∞, the Sobolev spaces

Wm,p(Ω) can be defined as (Brezis, 2011, Section 9.1)

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ m} .

The norm for p = ∞ is defined by

∥f∥L∞(Ω) := inf{M ≥ 0 : |f | ≤M almost everywhere in Ω}.

Notice that L2(Ω) corresponds to W 0,2(Ω). For s ∈ R, we recall the standard Sobolev

spaces Hs(Ω), with H0(Ω) = L2(Ω) (Sauter & Schwab, 2010, Section 2.3). For s ≥ 0, the

space Hs
loc(Ω) consists of continuous linear functionals (distributions) on C∞

comp(Ω) whose

restriction to every compact set K ⊂ Ω lies in Hs(K) (Sauter & Schwab, 2010, Section

2.6). Also, we recall the following space (Hiptmair & Jerez-Hanckes, 2012, Section 2.2)

Hs
loc(∆,Ω) := {u ∈ Hs

loc(Ω) : ∆u ∈ L2
loc(Ω)}.

The duality product between a Banach spaceX and its dualX ′ is denoted by ⟨·, ·⟩X×X′ .

The inner product in a Hilbert spaceH is written (·, ·)H . We will also write I for the identity

operator mapping.
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For T > 0 and a Hilbert space H , Ck([0, T ];H), k ∈ N0, denotes the space of k-

times differentiable continuous functions in t with a bounded H-norm for all t ∈ [0, T ].

Lp([0, T ];H) is the space of Lebesgue measurable functions with

∥f∥pLp([0,T ];H) =

∫ T

0

∥f(t)∥pHdt <∞, p ∈ [1,∞).

These spaces are also referred to as a Bochner spaces.

For u ∈ C∞(Ω), Dirichlet and Neumann traces operators are defined as

γDu := u|Γ, γNu := ∇u|Γ · n̂,

where n̂ is the exterior unit normal. For a Lipschitz Γ, the Dirichlet trace has a unique

extension to a linear and continuous operator γD : H1
loc(Ω) → L2(Γ). The image of this

operator is dense and is denoted by H
1
2 (Γ). The norm is given by

∥v∥
H

1
2 (Γ)

:= {∥u∥H1(Ω) : γDu = v}.

The space of bounded linear functionals on H
1
2 (Γ) is denoted by H− 1

2 (Γ). One can

also show that the Neumann trace operator γN : H1
loc(∆,Ω) → H− 1

2 (Γ) is continuous

(see (Sauter & Schwab, 2010, Section 2.6 to 2.8)). H
1
2 (Γ) and H− 1

2 (Γ) are referred to as

Dirichlet and Neumann trace spaces, respectively (Sauter & Schwab, 2010, Sections 2.4,

2.6 and 2.7). The proof of the proposition below can be found in (Sauter & Schwab, 2010,

Proposition 2.5.2).

PROPOSITION 5.1. The triple

H
1
2 (Γ) ⊂ L2(Γ) ⊂ H− 1

2 (Γ)

is a Gelfand triple, i.e. the spaces are continuously and densely embedded. Therefore, the

inner product (·, ·)L2(Γ) can be continuously extended to dual pairings onH
1
2 (Γ)×H− 1

2 (Γ)

and H− 1
2 (Γ)×H

1
2 (Γ).
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5.3. Problem Statement and Boundary Integral Formulation

We now present a continuous model used for the electropermeabilization process. The

main reference for the nonlinear dynamics is (Kavian et al., 2014), while for the boundary

integral formulation used we follow (Hiptmair & Jerez-Hanckes, 2012; Henrı́quez & Jerez-

Hanckes, 2018; Henrı́quez et al., 2017).

We consider the electric interaction of N ∈ N disjoint spherical cells located at pj ∈
R3 with radii Rj ∈ R+, j ∈ {1, ...,N}. We define the interior space of the jth cell by

Ωj := {x ∈ R3 : ∥x− pj∥2 < Rj}, with its membrane being the boundary Γj := ∂Ωj =

{x ∈ R3 : ∥x− pj∥2 = Rj}. The extracellular medium is defined as the complement to

the intracellular domain:

Ω0 := R3 \
N⋃
j=1

Ωj.

An illustration of the geometry for three cells is presented in Figure 5-1.

5.3.1. Cell Electropermeabilization Model

We now describe a quasi-static electromagnetic problem in intra- and extracellular

domains coupled with non-linear dynamics at the cells’ membranes described below. This

coupling relies on enforcing adequate transmission conditions for potentials and currents

across the cells.

For j ∈ {0, ..., N}, each cell Ωj is assumed to have constant conductivity σj ∈ R+.

We consider a quasi-static electromagnetic regime, i.e. the frequency of the electric fields is

low enough to discard any time delay in electromagnetic wave propagation (cf. (Plonsey &

Heppner, 1967) and references therein). Thus, the Maxwell equations can be simplified in

the intra- and extracellular media, and the problem is reduced to a boundary-value problem

for electric potentials.

For T ∈ R+, let ϕe : [0, T ] × Ω0 → R be a given external potential, which represents

an external electric stimulation. Let u0 : [0, T ]× Ω0 → R be the electric potential without

excitation in the extracellular medium, so that total external potential is utot0 := u0 + ϕe.
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FIGURE 5-1. A system of three cells N = 3.

We denote uj : [0, T ] × Ωj → R, j ∈ {1, ...,N}, the electric potential inside the j:th

cell, as illustrated in Figure 5-1. On the cell membranes Γj , the potential is discontinuous,

and the difference vj := uj − u0 is called the membrane or transmembrane potential. At

the same time, the flux is assumed to be continuous. These assumptions are well known

in electrophysiological models (see (J. C. Neu & Krassowska, 1999; Ammari et al., 2016;

Henrı́quez & Jerez-Hanckes, 2018; Henrı́quez et al., 2017; Guittet et al., 2017; Mistani et

al., 2019; Leguèbe et al., 2014; Kavian et al., 2014). The assumption of the quasi-static

regime and the aforementioned transmission conditions yield

div (σj∇uj) = 0, (t,x) ∈ [0, T ]× Ωj, j ∈ {0, ...,N},

−γ0jD u0 + γjDuj = vj + γ0jD ϕe, (t,x) ∈ [0, T ]× Γj, j ∈ {1, ...,N},

σ0γ
0j
N u0 + σjγ

j
Nuj = −σ0γ0jN ϕe, (t,x) ∈ [0, T ]× Γj, j ∈ {1, ...,N}.

The Dirichlet and Neumann operators used in the last two equations are defined in

Section 5.2 for a general domain Ω with boundary Γ. One should keep in mind that they

only act in the spatial variable x. For a collection of spheres, we have added super-indices

to emphasize where the traces are taken from: 0j for the trace arising from Ω0 to Γj , and j

for the one from Ωj to Γj .

As mentioned in the introduction, there are different models of the nonlinear dynamics

for the electro-permeabilization process. We adopt the phenomenological model presented
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in (Kavian et al., 2014) at each cell j ∈ {1, ...,N}, which takes the form:

cm,j∂tvj + Iepj (vj, Zj) = −σjγjNuj on [0, T ]× Γj,

Iepj (vj, Zj) = vj(SL,j + Zj(t, vj(t,x))(Sir,j − SL,j)) on [0, T ]× Γj,

with cm,j denoting the membrane capacitance per unit area, and Iepj being the electroper-

meabilization current. This last quantity depends on the transmembrane potential vj and a

C1-function Zj : [0, T ] × Γj → [0, 1] (cf. (Kavian et al., 2014, Lemma 7)). For brevity,

and slightly abusing the notations, we write Zj(t,x) instead of Zj(t, vj(t,x)). The vari-

able Zj(t,x) “measures in some way the likelihood that a given infinitesimal portion of the

membrane is going to be electropermeabilized” (Kavian et al., 2014, p 247). Specifically,

Zj enforces the surface membrane conductivity to take values between two parameters:

the surface conductivity Sir,j for which the electropermeabilization process becomes irre-

versible, and the lipid surface conductivity SL,j . Indeed, when Zj = 0, the membrane con-

ductivity equals the lipid conductivity, and there is no electropermeabilization; if Zj = 1,

the membrane conductivity takes the maximal value above which electropermeabilization

is irreversible. Following (Kavian et al., 2014), Zj satisfies the ordinary differential equa-

tion:

∂

∂t
Zj(t, λ) = max

(
βj(λ)− Zj(t, λ)

τep,j
,
βj(λ)− Zj(t, λ)

τres,j

)
.

Here, βj ∈ W 1,∞(R; [0, 1]). If βj(vj) − Zj(t, vj) is positive, the electric pulse is suf-

ficiently high to enlarge the electropermeabilized region with a characteristic time τep,j .

Contrarily, if βj(vj) − Zj(t, vj) is negative, the pulse is not high enough to increase the

electropermeabilization and the membrane tries to return to its resting state, with a charac-

teristic resealing time τres,j . Experimental observations suggest that τres,j > τep,j .

REMARK 5.1. The model for the dynamics of Zj is similar to a sliding door model as,

instead of being either one or zero, the function can take any value in the interval [0, 1], as

well as the function βj .
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The function βj is defined by

βj(v) :=
1 + tanh(kep,j(|v| − Vrev,j))

2
, (5.1)

wherein two additional parameters are introduced: the electropermeabilization switch speed

kep,j between Sir,j and SL,j , and Vrev,j , the transmembrane potential threshold for electrop-

ermeabilization to occur. More generally, any function βj satisfying the following condi-

tions (Kavian et al., 2014) could be used in this model:

βj ∈ W 1,∞(R), (5.2a)

vβ′
j(v) ∈ L∞(R), (5.2b)

0 ≤ βj(v) ≤ 1, (5.2c)

βj is non decreasing in (0,∞), (5.2d)

lim
v→∞

βj(v) = 1. (5.2e)

The chosen βj (5.1) satisfies the above conditions. This can be checked by recalling the

properties of the hyperbolic functions tanh : R → [−1, 1] and sech : R → [0, 1] (Olver,

Lozier, Boisvert, Clark, & National Institute of Standards and Technology (U.S.), 2010,

Chapter 4):

tanh(x) =
ex − e−x

ex + e−x
,

d

dx
tanh(x) = sech2(x) =

4

(ex + e−x)2
> 0,

lim
x→∞

tanh(x) = 1, lim
x→−∞

tanh(x) = −1.

In Figure 5-2, βj is illustrated for two pairs of parameters.

REMARK 5.2. This model assumes that the threshold potential Vrev is constant through-

out the electropermeabilization process.

In summary, the electropermeabilization dynamic problem reads:
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−2 −1 0 1 2
vj [V]

0.2

0.4

0.6

β
j(
v j
)

(B) kep,j = 1V −1 and Vrev,j = 1.5V .

FIGURE 5-2. Values of βj(vj) for two pairs of parameters. The parameters used
in (a) are from (Kavian et al., 2014, Table 1), while the parameters used in (b) are
chosen to show what happens with a smaller value of kep,j .

PROBLEM 5.1. Given T ∈ R+, an external potential ϕe ∈ C([0, T ], H1
loc (Ω0)),

and the initial conditions u0j ∈ H1 (Ωj), and Z0
j ∈ H

1
2 (Γj), for j = 1, . . . ,N , we

seek uj ∈ C([0, T ], H1 (Ωj)), vj ∈ C([0, T ], H
1
2 (Γj)), and Zj ∈ C([0, T ], H

1
2 (Γj)) for

j ∈ {1, ...,N} such that for t ∈ [0, T ],

div (σ0∇u0) = 0 in Ω0, (5.3a)

div (σj∇uj) = 0 in Ωj, (5.3b)

−γ0jD u0 + γjDuj = vj + γ0jD ϕe on Γj, (5.3c)

σ0γ
0j
N u0 + σjγ

j
Nuj = −σ0γ0jN ϕe on Γj, (5.3d)

cm,j∂tvj + Iepj (vj, Zj) = −σjγjNuj on Γj, (5.3e)

uj(0,x) = u0j , Zj(0,x) = Z0
j in Ωj (5.3f)

u0(0,x) = u00 in Ω0, (5.3g)

u0 → O(∥x∥−1
2 ) as ∥x∥2 → ∞, (5.3h)
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with Iepj defined as:

Iepj (vj, Zj) = vj (SL,j + Zj(t, vj)(Sir,j − SL,j)) , (5.4)

where the Zj(t, λ) satisfy:

∂

∂t
Zj(t, λ) = max

(
βj(λ)− Zj(t, λ)

τep,j
,
βj(λ)− Zj(t, λ)

τres,j

)
(5.5)

with βj given by (5.1), and parameters τep,j, τres,j described above.

As above, we write Zj(x,x) = Zj(t, vj(t,x)).

Observe that (5.3h) is the standard decay condition for the Laplace problem in three

dimensions that guarantees that the problem is well posed.

REMARK 5.3. The parameters of each cell, cm,j , Vep,j , τep,j and τres,j might differ from

cell to cell. In practical applications, these parameters depend on the cell type, e.g., cancer

cells possess material properties different from healthy cells in the same tissue (Fernandez-

Aranzamendi et al., 2022; Onemli et al., 2022).

5.3.2. Boundary integral formulation

Due to the unboundedness of the domain as well as the constant conductivity values

inside intra- and extracellular domains, one can write Problem 5.1 using boundary integral

operators, thereby reducing the volume problem to a boundary one as in (Hiptmair & Jerez-

Hanckes, 2012; Henrı́quez et al., 2017; Henrı́quez & Jerez-Hanckes, 2018). To accomplish

this, we introduce boundary integral potentials and operators.

5.3.2.1. Boundary integral potential and operators

The free space fundamental solution of the Laplace equation for a source located at r′

((Jackson, 2013, Section 1.7)), satisfying the decay condition (5.3h) is

g (r, r′) :=
1

4π ∥r− r′∥2
, r ̸= r′.
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We recall the standard single and double layer operators defined for smooth densities:

DL0j (ψ) (r) :=

∫
Γj

ψ (r′)∇g (r, r′) · n̂0j dS
′, SL0j (ψ) (r) :=

∫
Γj

ψ (r′) g (r, r′) dS ′,

DLj (ψ) (r) :=

∫
Γj

ψ (r′)∇g (r, r′) · n̂j dS
′, SLj (ψ) (r) :=

∫
Γj

ψ (r′) g (r, r′) dS ′,

with the gradient being taken with respect to r′, n̂j being the exterior normal vector of Ωj ,

and n̂j = −n̂0j . It can be shown that these operators are linear and continuous (cf. (Sauter

& Schwab, 2010, Section 3.1), (Henrı́quez & Jerez-Hanckes, 2018, Section 3.1)), in the

following Sobolev spaces:

DL0j : H
1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
, SL0j : H

− 1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
,

DLj : H
1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
, SLj : H

− 1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
.

We will write uj in terms of these boundary potentials, and since we aim at rendering

Problem 5.1 onto the cells’ boundaries, we will take traces of these potentials. This leads

to boundary integral operators (BIOs), which are defined by taking the following averages

(Sauter & Schwab, 2010, Section 3.1.2):

V 0
i,j :=

1

2

(
γiDSL0j + γ0iDSL0j

)
, Vj :=

1

2

(
γ0jD SLj + γjDSLj

)
,

K0
i,j :=

1

2

(
γiDDL0j + γ0iDDL0j

)
, Kj :=

1

2

(
γ0jDDLj + γjDDLj

)
, (5.6)

K∗0
i,j :=

1

2

(
−γiNSL0j + γ0iNSL0j

)
, K∗

j :=
1

2

(
−γ0jN SLj + γjNSLj

)
,

W 0
i,j := −1

2

(
−γiNDL0j + γ0iNDL0j

)
, Wj := −1

2

(
−γ0jNDLj + γjNDLj

)
.

One can show that these operators are linear and continuous (Sauter & Schwab, 2010,

Theorem 3.1.16) in the following Sobolev spaces:

V 0
i,j : H

− 1
2 (Γj) → H

1
2 (Γi), Vj : H

− 1
2 (Γj) → H

1
2 (Γj),

W 0
i,j : H

1
2 (Γj) → H− 1

2 (Γi), Wj : H
1
2 (Γj) → H− 1

2 (Γj),

K0
i,j : H

1
2 (Γj) → H

1
2 (Γi), Kj : H

1
2 (Γj) → H

1
2 (Γj),
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K∗0
i,j : H

− 1
2 (Γj) → H− 1

2 (Γi), K∗
j : H− 1

2 (Γj) → H− 1
2 (Γj).

Since the domains are smooth, the jump relations for the potentials across a closed

boundary (Sauter & Schwab, 2010, Theorem 3.3.1) yield

V 0
i,j = γ0iDSL0j, Vj = γjDSLj,

W 0
i,j = −γ0iNDL0j, Wj = −γjNDLj,

K0
i,j = γ0iDDL0j with i ̸= j, K∗0

i,j = γ0iNSL0j with i ̸= j,

and

K0
j,j(ψ) =

1

2
ψ + γ0jDDL0j(ψ), Kj(ψ) =

1

2
ψ + γjDDLj(ψ),

K∗0
j,j(ψ) = −1

2
ψ + γ0jN SL0j(ψ), K∗

j (ψ) = −1

2
ψ + γjNSLj(ψ).

In the next theorem, we present the integral representation formulas for the electric

potentials uj and u0.

Theorem 5.2. ((Sauter & Schwab, 2010, Section 3)) The integral representation for-

mulas for uj ∈ H1(Ωj), u0 ∈ H1
loc(Ω0) with the single and double layer operators read

u0 = −
N∑
i=1

DL0i

(
γ0iDu0

)
+

N∑
i=1

SL0i

(
γ0iNu0

)
, (5.7a)

uj = −DLj

(
γjDuj

)
+ SLj

(
γjNuj

)
, ∀j ∈ {1, ...,N}. (5.7b)

where we extend uj by zero to the complement of Ωj .

The next step is to use the operators introduced in this section and the integral repre-

sentation formula to write the MTF of Problem 5.1 (cf. (Hiptmair & Jerez-Hanckes, 2012)

and later references).
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5.3.2.2. Multiple traces formulation for Problem 5.1

For j ∈ {1, ...,N}, we introduce the Cartesian product of Hilbert spaces Hj :=

H
1
2 (Γj)×H− 1

2 (Γj), with norm

∥ · ∥Hj
= ∥ · ∥

H
1
2 (Γj)

+ ∥ · ∥
H− 1

2 (Γj)
. (5.8)

Let be ϕ, ξ ∈ Hj , such that ϕ = (ϕD, ϕN) and ξ = (ξD, ξN). We introduce the

cross-product over Γj (Hiptmair & Jerez-Hanckes, 2012, Section 2.2.1) by

⟨ϕ, ξ⟩×,j := ⟨ϕD, ξN⟩j + ⟨ξD, ϕN⟩j,

where for brevity we denote ⟨ξD, ϕN⟩j := ⟨ξD, ϕN⟩H 1
2 (Γj)×H− 1

2 (Γj)
.

We define also the flip-sign operator Xj : Hj → Hj , γ0j : H1
loc(∆,Ω0) → Hj and

γj : H1(∆,Ωj) → Hj as:

Xj :=

I 0

0 −σ0

σj
I

 , γ0j :=

γ0jD
γ0jN

 and γj :=

γjD
γjN

 , j ∈ {1, ...,N}, (5.9)

with I being the identity operator in the corresponding functional space, and for simplic-

ity, we adopt the same notation for I in different spaces. Then, we write Dirichlet and

Neumamn boundary conditions, (5.3c) and (5.3d), respectively, succinctly as

−Xjγ
0ju0 + γjuj = Xj(vj, 0)

t + Xjγ
0jϕe, (5.10a)

γ0ju0 − X−1
j γjuj = −(vj, 0)

t − γ0jϕe. (5.10b)

Note that the two equations are equivalent.

Taking Dirichlet and Neumann traces of both (5.7a) and (5.7b), and rewriting the re-

sulting expressions in terms of BIOs, we obtain

γ0jD u0 = −
(
−1

2
I
(
γ0jD u0

)
+

n∑
i=1

K0
j,i

(
γ0iDu0

))
+

n∑
i=1

V 0
j,i

(
γ0iNu0

)
,
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γ0jN u0 =
n∑

i=1

W 0
j,i

(
γ0iDu0

)
+

(
1

2
I
(
γ0jN u0

)
+

n∑
i=1

K∗0
j,i

(
γ0iNu0

))
,

γjDuj = −
(
−1

2
I
(
γjDuj

)
+Kj

(
γjDuj

))
+ Vj

(
γjNuj

)
,

γjNuj = Wj

(
γjDuj

)
+

(
1

2
I
(
γjNuj

)
+K∗

j

(
γjNuj

))
.

After some algebra, one can write

γ0jD u0 = 2

(
n∑

i=1

−K0
j,i

(
γ0iDu0

)
+

n∑
i=1

V 0
j,i

(
γ0iNu0

))
,

γ0jN u0 = 2

(
n∑

i=1

W 0
j,i

(
γ0iDu0

)
+

n∑
i=1

K∗0
j,i

(
γ0iNu0

))
,

γjDuj = 2
(
−Kj

(
γjDuj

)
+ Vj

(
γjNuj

))
,

γjNuj = 2
(
Wj

(
γjDuj

)
+K∗

j

(
γjNuj

))
.

These expressions can be written in a simpler form:

γ0ju0 = 2
N∑
i=1

A0
j,i γ

0iu0, γjuj = 2Aj γ
juj, j ∈ {1, ...,N},

with

A0
j,i :=

−K0
j,i V 0

j,i

W 0
j,i K∗0

j,i

 , Aj :=

−Kj Vj

Wj K∗
j

 .
By replacing γ0ju0, γjuj into (5.10b) and (5.10a), we obtain

2
n∑

i=1

A0
j,i γ

0iu0 − X−1
j γjuj = −(vj, 0)

t − γ0jϕe,

−Xjγ
0ju0 + 2Aj γ

juj = Xj(vj, 0)
t + Xjγ

0jϕe on Γj.

We introduce Cartesian product space of multiple traces H := ΠN
j=1Hj and H(2) :=

H × H = ΠN
j=1Hj × ΠN

j=1Hj . For ϕ, ξ ∈ H(2), such that ϕ = (ϕ01, ...,ϕ0N ,ϕ1, ...,ϕN )
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and ξ = (ξ01, ..., ξ0N , ξ1, ..., ξN ), we define the cross-product of H(2) as

⟨ϕ, ξ⟩× =
N∑
j=1

⟨ϕ0j, ξ0j⟩×,j +
N∑
j=1

⟨ϕj, ξj⟩×,j.

We will also use the following multiple trace spaces reordering HD := ΠN
j=1H

1
2 (Γj),

HN := ΠN
j=1H

− 1
2 (Γj). Now, we can introduce the local Multiple Trace formulation (MTF)

operator (Hiptmair & Jerez-Hanckes, 2012, Section 3.2.3), MN : H(2) → H(2), for the

geometry presented in Section 5.3:

MN :=

2A0,N −X−1
N

−XN 2A1,N

 , with A0,N :=


A0
1,1 A0

1,2 ... A0
1,N

A0
2,1 A0

2,2 ... A0
2,N

... . . . ...

A0
N ,1 A0

N ,2 ... A0
N ,N

 , (5.11)

A1,N :=


A1 0 ... 0

0 A2 ... 0
... . . . ...

0 ... 0 AN

 and XN :=


X1 0 ... 0

0 X2 ... 0
... . . . ...

0 ... 0 XN

 .

With the MTF operator, the interface conditions (5.3b), (5.3c) and (5.3d) (Problem 5.1)

can be written as:

MN

γ0
u

γu

 =

 − I2N×N v

XN I2N×N v

+

 −γ0
ϕe

XN γ0
ϕe

 , (5.12)

where we use the notation:

γ0
u :=

(
γ01u0,γ

02u0, . . . ,γ
0Nu0

)t
,

γ0
ϕe

:=
(
γ01ϕe,γ

02ϕe, . . . ,γ
0Nϕe

)t
,

γu :=
(
γ1u1,γ

2u2, ...,γ
NuN

)t
, and
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v :=
(
v1, v2, v3, . . . , vN

)t
,

with superscript t denoting the transposition, and the operator I2N×N : HD → H is defined

as:

I2N×N :=



I 0 ... 0

0 0 ... 0

0 I ... 0

0 0 ... 0
...

...
...

0 0 ... I

0 0 ... 0


.

Notice that the identity operators act on the corresponding Dirichlet traces. The fol-

lowing result is a consequence of (Henrı́quez & Jerez-Hanckes, 2018, Proposition 3.9,

Proposition 3.10) along with the Fredholm alternative.

Theorem 5.3 (Existence, uniqueness and stability). The operator MN is a linear, in-

jective and coercive operator in H(2). For all ξ ∈ H(2), there exists a unique weak solution

λ ∈ H(2) of

(MNλ,ϕ)× = (ξ,ϕ)×, ∀ϕ ∈ H(2),

that satisfies the following stability estimate:

∥λ∥H(2) ≤ c∥ξ∥H(2) ,

for a constant c > 0.

5.3.2.3. Boundary integral formulation of Problem 5.1

Until this point, we have not introduced the membrane dynamics of Problem 5.1. In

the following, we will use the theory presented in (Henrı́quez et al., 2017; Henrı́quez &

Jerez-Hanckes, 2018) to combine the MTF with the nonlinear dynamics.
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Thanks to Theorem 5.3 we can take the inverse of the MTF operator, and (5.12) be-

comes γ0
u

γu

 = M−1
N

 − I2N×N v

XN I2N×N v

+M−1
N

 −γ0
ϕe

XN γ0
ϕe

 .

The even components of the vector γu (the interior Neumann traces), related to the

nonlinear dynamics of the problem by (5.3e), can be retrieved as follows:
σ1γ

1
N(u1)

σ2γ
2
N(u2)
...

σNγ
N
N (uN )

 = σN×4NM−1
N

 − I2N×N v

XN I2N×N v

+

 −γ0
ϕe

XN γ0
ϕe

 ,

where the dimensions of σN×4N are N × 4N , the first half containing only zeros:

σN×4N :=


0 ... 0 σ1I 0 0 ... 0

0 ... 0 0 0 σ2I ... 0
...

...
...

...
...

...

0 ... 0 0 0 0 ... σN I

 .

Now, we define the Dirichlet-to-Neumann operators JN : HD → HN , and Φ :

H1
loc(Ω0) → HN as

JN (v) := σN×4NM−1
N

 − I2N×N v

XN I2N×N v

 , and Φ(ϕe) := σN×4NMN

 −γ0
ϕe

XN γ0
ϕe

 .

(5.13)

Theorem 5.4. The operator JN : HD → HN is continuous and coercive.

This theorem is proved as in (Henrı́quez & Jerez-Hanckes, 2018, Lemma 4.3).
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REMARK 5.4. The MTF (5.11) is similar to one in (Henrı́quez & Jerez-Hanckes, 2018)

and (Henrı́quez et al., 2017). Specifically, (5.11) is multiplied by two, and the first row does

not have a factor σj as in (Henrı́quez et al., 2017) and (Henrı́quez & Jerez-Hanckes, 2018).

Now we can finally rewrite Problem 5.1 as an abstract parabolic equation on Γj .

PROBLEM 5.5. Given a final time T ∈ R+, the external potential ϕe ∈ C([0, T ], H1
loc (Ω0))

and the initial conditions vj(0) = v0 ∈ H
1
2 (Γj), Zj(0) = Z0

j ∈ H
1
2 (Γj), for j ∈

{1, ...,N}. We seek v = (v1, . . . , vN )t, with vj ∈ C([0, T ], H
1
2 (Γj)), and Z = (Z1, . . . , ZN )t,

Zj ∈ C([0, T ], H
1
2 (Γj)), for j ∈ {1, ...,N}, such that

Cm∂tv = −Iep(v,Z)− JN (v)− Φ(ϕe) on [0, T ]× Γj, (5.14)

where Cm is a diagonal matrix diag(cm,1, . . . , cm,N ); the operators JN (v) and Φ(ϕe) are

defined in (5.13). The vector Iep(v,Z) = (Iep1 (v1, Z1), . . . , I
ep
N (vN , ZN ))t satisfy (5.4),

(5.5) and (5.1).

5.4. Numerical Approximation

In this section we propose a numerical solution of Problem 5.5. We use a semi-implicit

time stepping scheme, similar to one used in (Henrı́quez et al., 2017; Henrı́quez & Jerez-

Hanckes, 2018) (see Section 5.4.1). For the space discretization, we follow an analogous

approach in the two-dimensional case employed in (Henrı́quez & Jerez-Hanckes, 2018),

using spherical harmonics as a spacial basis. Since we consider a three-dimensional case,

and do not work with complex valued functions, we employ real spherical harmonics to

approximate boundary unknowns.

5.4.1. Semi-implicit time stepping scheme

Let TS := {ts}Ss=0 denote the uniform partition of the time interval [0, T ], with T ∈ R+,

and S ∈ N, where the time step is τ = T/S, and ts = sτ . Write

ts+ 1
2
:= ts +

τ

2
, s ∈ {0, . . . , S − 1},
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for the midstep between ts and ts+1. For a time dependent quantity ϕ(t), we write ϕ(s) =

ϕ(ts), and we define the following quantities:

ϕ(s+ 1
2
) := ϕ(ts+ 1

2
), ϕ

(s+ 1
2
)
:=

ϕ(s+1) + ϕ(s)

2
,

ϕ̂(s+ 1
2
) :=

3ϕ(s) − ϕ(s−1)

2
, ∂ϕ(s) :=

ϕ(s+1) − ϕ(s)

τ
.

With these, we approximate in time (5.5) and (5.5) as follows:

Cm∂v
(s) = −Iep

(
v̂(s+ 1

2
), Ẑ(s+ 1

2
)
)
− JN

(
v(s+ 1

2
)
)
− Φ(ϕ

(s+ 1
2
)

e ),

∂
(s)
Zj = max

βj(v̂(s+ 1
2
)

j )− Ẑj

(s+ 1
2
)

τep,j
,
βj(v̂

(s+ 1
2
)

j )− Ẑj

(s+ 1
2
)

τres,j

 .

From these expressions, we can notice that

(i) At each iteration, the approximation at ts+1 requires two previous steps, ts and

ts−1, but we only have information about the time t0. Thus, we will estimate the

values for the time t1 with a predictor-corrector algorithm introduced later in this

Section.

(ii) Provided with values for the two previous time steps, unknowns for the next time

are obtained in terms of ∂v(s), v(s+ 1
2
) and ∂

(s)
, which are linear. Nonlinear terms

are evaluated with values already known, i.e. they are explicit terms, unlike the

others. For this reason, the time scheme is called semi-implicit.

(iii) At each time step, the discrete problem to be solved is linear. One could choose

time-domain schemes with implicit non-linear parts. Consequently, more in-

formation about Iep may be needed. In contrast, our semi-implicit time only

requires us to evaluate the function Iep.

(iv) The method is not fully implicit, and the time step τ needs to be small enough

for the scheme to converge.

The predictor-corrector algorithm can be found in detail in (Thomée, 2006, Chap-

ter 13), (Ganesh & Mustapha, 2007), (Henrı́quez & Jerez-Hanckes, 2018, Section 6.3) or
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(Henrı́quez et al., 2017, Algorithm 1). Set w(0) = v(0) and Q(0) = Z(0). Then, proceed as

follows:

(I) Predictor. First, construct predictions w(1) and Q(1) by solving the linear system:

Cm∂w
(0) = −Iep

(
w(0),Q(0)

)
− JN

(
w( 1

2
)
)
− Φ

(
ϕ
( 1
2
)

e

)
,

∂Q
(0)
j = max

(
βj(w

(0)
j )−Q

(0)
j

τep,j
,
βj(w

(0)
j )−Q

(0)
j

τres,j

)
∀j ∈ {1, ...,N}.

(II) Corrector. Then, correct w(1) and Q(1) to obtain final values for v(1) and Z(1)

through:

Cm∂v
(0) = −Iep

(
ŵ( 1

2
), Q̂( 1

2
)
)
− JN

(
v( 1

2
)
)
− Φ

(
ϕ
( 1
2
)

e

)
,

∂
(0)
Zj = max

βj(ŵ( 1
2
)

j )− Q̂j

( 1
2
)

τep,j
,
βj(ŵ

( 1
2
)

j )− Q̂j

( 1
2
)

τres,j

 ∀j ∈ {1, ...,N}.

From the corrector equations, v(1) and Z(1) are obtained implicitly. Finally, before

going to the spatial discretization, we recall the following result:

Theorem 5.6. (Henrı́quez et al., 2017, Lemma 7). Let ϕ ∈ C2([0, T ];L2(Γj)), j ∈
{1, . . . ,N} then it holds that∥∥∥ϕ(s+ 1

2
) − ϕ(s+ 1

2
)
∥∥∥
L2(Γj)

≤ τ 2

4
max

t∈[ts,ts+1]

∥∥∂2t ϕ(t)∥∥L2(Γj)
,∥∥∥ϕ̂(s+ 1

2
) − ϕ(s+ 1

2
)
∥∥∥
L2(Γj)

≤ 5τ 2

16
max

t∈[ts−1,ts+1]

∥∥∂2t ϕ(t)∥∥L2(Γj)
,

furthermore, if ϕ ∈ C3([0, T ];L2(Γj)),∥∥∥∂ϕ(s) − ∂tϕ
(s+ 1

2
)
∥∥∥
L2(Γj)

≤ τ 2

48
max

t∈[ts,ts+1]

∥∥∂3t ϕ(t)∥∥L2(Γj)
.

5.4.2. Spatial discretization

We now spatially discretize Problem 5.5. We start by introducing the real spherical

harmonics used as spatial basis for the Dirichlet and Neumann traces (5.20). Then, we

proceed with the BIOs discretization (see Theorem 5.10). Finally, the semi-explicit time



105

FIGURE 5-3. Illustration of spherical coordinates. Adapted from (Siriudie, n.d.).

method and the spatial discretization are combined into a fully discrete scheme (see Prob-

lem (5.11)).

5.4.2.1. Spherical coordinates and spherical harmonics

A vector is written as r = (r, φ, θ)t, with r ∈ [0,∞), φ ∈ [0, 2π) and θ ∈ [0, π], which

in Cartesian coordinates is equivalent to r = r (sin θ cosφ, sin θ sinφ, cos θ)t (Vollmer &

Yu, 2020, Appendix B). This is illustrated in Figure 5-3. Angles φ and θ are shown explic-

itly to avoid confusion, and the unitary vectors of the system are also sketched, which can

be written in Cartesian coordinates as

êr = (sin θ cosφ, sin θ sinφ, cos θ)t,

êθ = (cos θ cosφ, cos θ sinφ,− sin θ)t,

êφ = (− sinφ, cosφ, 0)t.

Lastly, we recall the form of the gradient operator in spherical coordinates:

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ (5.15)
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Spherical harmonics of degree l and orderm are defined using spherical coordinates as

(Wieczorek & Meschede, 2018, Section 2), (Freeden & Gutting, 2013, Example 4.3.33):

Yl,m (θ, φ) :=

√
(2− δm,0)

(2l + 1) (l −m)!

4π (l +m)!
Pm
l (cos θ) cosmφ, and (5.16a)

Yl,−m (θ, φ) :=

√
(2− δm,0)

(2l + 1) (l −m)!

4π (l +m)!
Pm
l (cos θ) sinmφ, (5.16b)

with l ∈ N0, m ∈ Z such that 0 ≤ m ≤ l. If m = 0, then δm,0 = 1, and it is zero otherwise.

Pm
l are the associated Legendre functions of degree l and order m defined as:

Pm
l (x) := (−1)m

(
1− x2

)m
2
dm

dxm
Pl(x), with Pl (x) :=

1

2ll!

dl

dxl
(x2 − 1)l. (5.17)

Here, the term (−1)m is the Condon-Shortley phase factor. The next result can be

found proven in (Gallier & Quaintance, 2020, Section 7.3 and 7.5), (Atkinson & Han,

2012, Section 2.8), (Nédélec, 2001, Theorem 2.4.4), (Colton & Kress, 2013, Section 2.3).

Theorem 5.7. Spherical harmonics are dense in C(S2), with S2 the surface of the unit

sphere, and form a complete orthonormal system in L2(S2) with respect to the internal

product defined by:

(ψ, ξ)L2(S2) =

∫ 2π

0

∫ π

0

ψ (θ, φ) ξ (θ, φ) sin (θ) dθdφ, (5.18)

They also are orthogonal in H1(S2).

Let be j ∈ {1, ...,N}. We define the reference system j as the one centered at pj with

the same orientation that the reference system centered in the origin (see Figure 5-4 for an

example with two spheres). Furthermore, we denote by Yl,m,j the spherical harmonic Yl,m

centered in the origin of the reference system j. Thus, if (rj, φj, θj) are the vector spherical

coordinates of rj in the reference system j, we have that Yl,m,j (rj) = Yl,m (θj, φj).

For L ∈ N0 and j ∈ {1, ...,N}, we define subspaces

YL (Γj) := span {Yl,m,j : l ∈ N0,m ∈ Z, l ≤ L, |m| ≤ l} , (5.19)
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x

y

z
p1

p2

(r1, θ1,ϕ1)

(r2, θ2,ϕ2)

d1,2 = p2 − p1

FIGURE 5-4. Illustration of the reference systems 1 and 2, for N spheres.

equipped with the L2(Γj)−norm. Notice that the dimension of each subspace is (L+ 1)2.

PROPOSITION 5.2 (Density). The sequence of subspaces {YL (Γj)}L∈N0 is dense in

H
1
2 (Γj) and in H− 1

2 (Γj).

PROOF. The result follows from the density of spherical harmonics in the spaces of

continuous functions (Atkinson & Han, 2012, Section 2.8) and Proposition 5.1. □

This last result justifies the discretization of all boundary Dirichlet and Neumann un-

knowns with spherical harmonics. At a given time t, for j ∈ {1, ...,N}, we write uLD,0j ,

uLN,0j , u
L
D,j , u

L
N,j , v

L
j and zLj in YL(Γj) for the approximations of γ0jD u0, γ

0j
N u0, γ

j
Duj , γ

j
Nuj ,

vj and Zj , respectively. They can be written as the following series expansions:

uLD,0j =
L∑
l=0

l∑
m=−l

ul,mD,0jYl,m,j, uLN,0j =
L∑
l=0

l∑
m=−l

ul,mN,0jYl,m,j, (5.20a)

uLD,j =
L∑
l=0

l∑
m=−l

ul,mD,jYl,m,j, uLN,j =
L∑
l=0

l∑
m=−l

ul,mN,jYl,m,j, (5.20b)

vLj =
L∑
l=0

l∑
m=−l

vl,mj Yl,m,j, zLj =
L∑
l=0

l∑
m=−l

zl,mj Yl,m,j, (5.20c)

with ul,mD,0j , u
l,m
N,0j , u

l,m
D,j , u

l,m
N,j , v

l,m
j , and zl,mj being constants in the space but varying in time.

Notice that the norm in YL (Γj) of any of these functions is the square root of the sum of
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squared coefficients times the radius of Γj , i.e.

∥∥vLj ∥∥YL(Γj)
= Rj

√√√√ L∑
l=0

l∑
m=−l

(vl,mj )2. (5.21)

Finally, let YL := ΠN
j=1YL(Γj), and define the following vectors in YL:

vL :=
(
vL1 , . . . , v

L
j , . . . , v

L
N

)t
, ZL :=

(
zL1 , . . . , z

L
j , . . . , z

L
N

)t
, (5.22a)

uL
D,0 :=

(
uLD,01, . . . , u

L
D,0j, . . . , u

L
D,0N

)t
, uL

D :=
(
uLD,1, . . . , u

L
D,j, . . . , u

L
D,N

)t
, (5.22b)

uL
N,0 :=

(
uLN,01, . . . , u

L
N,0j, . . . , u

L
N,0N

)t
, uL

D :=
(
uLN,1, . . . , u

L
N,j, . . . , u

L
N,N

)t
. (5.22c)

The norm for a function in YL, for example, vL, is

∥∥vL
∥∥
YL

=

√√√√ N∑
j=1

||vLj ||2YL(Γj)
.

5.4.2.2. BIOs discretization

The fundamental solution can be expanded using spherical harmonics (Freeden & Gut-

ting, 2013, Theorem 4.3.29, Lemma 4.4.1 and Remark 4.4.2) as the following result shows.

Theorem 5.8. Let r, r′ be vectors, whose spherical coordinates in the reference system

j are (rj, θj, φj) and
(
r′j, θ

′
j, φ

′
j

)
, respectively. For rj > r′j we have that

g (r, r′) =
∞∑
l=0

1

2l + 1

r
′l
j

rl+1
j

l∑
m=−l

Yl,m,j (r)Yl,m,j (r
′) . (5.23)

Moreover, the series (5.23) and its term by term first derivatives with respect to rj or r′j

are absolutely and uniformly convergent on compact subsets with rj > r′j (Colton & Kress,

2013, Section 2.3, p.23 and p.24).

Theorem 5.9. Let be j ∈ {1, . . . ,N}, and Rj the radius of Ωj .
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(i) Let r ∈ Ω0 and r = (r, θ, φ) be expressed in the jth spherical coordinate system,

then

DL0j(Yl,m,j)(r) = − l

2l + 1

(
Rj

r

)l+1

Yl,m(θ, φ),

SL0j(Yl,m,j)(r) =
Rj

2l + 1

(
Rj

r

)l+1

Yl,m(θ, φ).

(ii) Let r ∈ Ωj and r = (r, θ, φ) expressed in the jth spherical coordinate system,

then

DLj(Yl,m,j)(r) = − l + 1

2l + 1

(
r

Rj

)l

Yl,m(θ, φ),

SLj(Yl,m,j)(r) =
Rj

2l + 1

(
r

Rj

)l

Yl,m(θ, φ).

PROOF. The result follows from Theorem 5.8 and the orthonormality of spherical har-

monics. □

Theorem 5.10. The diagonal forms of the BIOs (5.6) are:

V 0
j,j (Yl,m,j) =

1

2l + 1
RjYl,m,j, Vj (Yl,m,j) =

1

2l + 1
RjYl,m,j,

K0
j,j (Yl,m,j) =

1

2(2l + 1)
Yl,m,j, Kj (Yl,m,j) = − 1

2(2l + 1)
Yl,m,j,

K∗0
j,j (Yl,m,j) =

1

2l + 1
Yl,m,j, K∗

j (Yl,m,j) = − 1

2(2l + 1)
Yl,m,j,

W 0
j,j (Yl,m,j) =

l(l + 1)

2l + 1

1

Rj

Yl,m,j, Wj (Yl,m,j) =
l(l + 1)

2l + 1

1

Rj

Yl,m,j.

PROOF. The result follows from Theorem 5.9 and the definitions of the BIOs presented

in (5.6). Similar diagonal forms can also be found in (Vico, Greengard, & Gimbutas, 2014,

Section 3 and Table 2), where the result is stated for complex spherical harmonics on the

unit sphere. □

Corollary 5.1. The following holds

(
V 0
j,j (Yl,m,j) , Yp,q,j

)
L2(Γj)

= (Vj (Yl,m,j) , Yp,q,j)L2(Γj)
=

R3
j

2l + 1
δl,pδm,q,
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(
K0

j,j (Yl,m,j) , Yp,q,j
)
L2(Γj)

= − (Kj (Yl,m,j) , Yp,q,j)L2(Γj)
=

R2
j

2(2l + 1)
δl,pδm,q,

(
K∗0

j,j (Yl,m,j) , Yp,q,j
)
L2(Γj)

= −
(
K∗

j (Yl,m,j) , Yp,q,j
)
L2(Γj)

=
R2

j

2(2l + 1)
δl,pδm,q,

(
W 0

j,j (Yl,m,j) , Yp,q,j
)
L2(Γj)

= (Wj (Yl,m,j) , Yp,q,j)L2(Γs)
=
l(l + 1)

2l + 1
Rjδl,pδm,q,

with δl,p, δm,q denoting the standard Kronecker deltas. Also, for the scalar identity opera-

tors presented in Section 5.3.2, it holds that

(I (Yl,m,j) , Yp,q,j)L2(Γj)
= R2

jδl,pδm,q.

Cross-interaction operators, e.g. V 0
i,j for i ̸= j, are non-singular and generally non

diagonalizable. The double and single layer operators analytic expressions presented in

Theorem 5.9 can be used to compute the non-singular integrals for i ̸= j:(
V 0
i,j (Yl,m,j) ;Yp,q,i

)
L2(Γi)

=

∫
Γi

SL0j(Yl,m,j)Yp,q,i dΓi, (5.24a)

(
K0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

=

∫
Γi

DL0j(Yl,m,j)Yp,q,i dΓi, (5.24b)

(
K∗0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

=

∫
Γi

n̂0i · ∇SL0j(Yl,m,j)Yp,q,i dΓi, (5.24c)

(
W 0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

= −
∫
Γi

n̂0i · ∇DL0j(Yl,m,j)Yp,q,i dΓi. (5.24d)

The gradients therein are expressed using (5.15). Approximations of the integrals

(5.24) are provided via Gauss-Legendre quadratures. Specifically, along θ, we use the

change of variable u = cos(θ). Then, variable functions are sampled at the zeros of the

Legendre Polynomial of degree Lc + 1, whereas the trapezoidal rule is applied to equally

spaced nodes in φ, with 2Lc + 1 points. If the function being integrated has a spheri-

cal harmonic expansion with coefficients equal to zero for degrees higher than Lc, then

the quadrature yields the exact result, assuming that there are not other sources of error

(Wieczorek & Meschede, 2018). Moreover, quadrature in φ can be computed using the

Fast Fourier Transform.
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REMARK 5.5. One would expect Lc to be greater than p and l in (5.24). Yet, without

further analysis, it is not known if a polynomial of degree Lc is a good approximation for

SL0j(Yl,m,j)Yp,q,i,DL0j(Yl,m,j)Yp,q,i, ∇SL0j(Yl,m,j)·n̂0i Yp,q,i and ∇SL0j(Yl,m,j)·n̂0i Yp,q,i,

since, as the translation theorems for spherical harmonics highlight, the translation of only

one spherical harmonic is expressed as another infinite series of spherical harmonics.

REMARK 5.6. Notice that (5.24) can also be computed using a translation theorem for

real spherical harmonics as in (Rico, López, Ema, & Ramı́rez, 2013; Aganin & Davletshin,

2018). In this case, the integral has an explicit expression and does not need to be computed

numerically. Instead, the computing efforts focus on calculating the coefficients given by

the translation theorem.

Corollary 5.2. The following holds(
V 0
i,j (Yl,m,j) ;Yp,q,i

)
L2(Γi)

=
(
V 0
j,i (Yp,q,i) ;Yl,m,j

)
L2(Γj)

,(
K0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

= − l

Rj

(
V 0
i,j (Yl,m,j) ;Yp,q,i

)
L2(Γi)

,(
K∗0

j,i (Yp,q,i) ;Yl,m,j

)
L2(Γj)

=
(
K0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

,(
W 0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

=
l

Rj

(
K∗0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

.

PROOF. The result follows from Theorem 5.9 along with the definition of the BIOs.

□

From this last corollary, it can be deduced that the integrals of all the cross-interactions

of a couple of spheres i and j (5.24) can be derived having the results of the expression

(5.24a) for all of the l, m, p and q needed, which avoids the need of computing numerically

the other integral expressions.

5.4.3. Fully discrete scheme.

Following the conventions introduced in Section 5.4.1, we state the semi-implicit in

time and space numerical discretization of Problem 5.5:
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PROBLEM 5.11. Let vL,(0) and ZL,(0) in YL be given. Then, for s ∈ {2, ..., S − 1}, we

seek vL,(s), ZL,(s) in YL solution of:(
Cm∂v

L,(s) + JN

(
vL,(s+ 1

2
)
)
+ Iep

(
v̂L,(s+ 1

2
), ẐL,(s+ 1

2
)
)
+ Φ

(
ϕ
(s+ 1

2
)

e

)
,y
)
YL

= 0

(5.25)

and

∂
(s)
ZL

j =max

βj(v̂L,(s+ 1
2
)

j )− Ẑj

L,(s+ 1
2
)

τep,j
,
βj(v̂

L,(s+ 1
2
)

j )− Ẑj

L,(s+ 1
2
)

τres,j

 , (5.26)

for all y ∈ YL. For s = 1 we use the equivalent weak formulation of the corrector-predictor

algorithm presented in 5.4.1.

In order to solve Problem 5.11, at each time step, with the exception of the predictor-

corrector algorithm, we solve the weak linear system equivalent to

[
4A0,N −2X−1

N I2N×N
−2XN 4A1,N −XN I2N×N

σN×4N
1
τ
Cm

]
u
L,(s+1/2)
D,0

u
L,(s+1/2)
N,0

u
L,(s+1/2)
D

u
L,(s+1/2)
N

vL,(s+1)

 =


−

2γ0

ϕ
L,(s+1

2 )
e

+I2N×NvL,(s)


XN

2γ0

ϕ
L,(s+1

2 )
e

+I2N×NvL,(s)


1
τ
CmvL,(s)−Iep

(
v̂L,(s+1

2 ),ẐL,(s+1
2 )

)

 , (5.27)

where the test function is in YL × YL × YL × YL × YL. Notice that we obtain mid-steps

(s+ 1/2) for traces of extra- and intracellular potentials, whereas only the transmembrane

potential is obtained at time steps s.

To retrieve the values of uL,(s)
D,0 , uL,(s)

N,0 , uL,(s)
D and u

L,(s)
N (5.22) at the time step s, the

following weak system can be used:MN


u
L,(s)
D,0

u
L,(s)
N,0

u
L,(s)
D

u
L,(s)
N

 ,


yD,0

yN,0

yD

yN




×

=


 − I2N×N vL,(s)

XN I2N×N vL,(s)

+

 −γ0

ϕ
(s)
e

XN γ0

ϕ
(s)
e

 ,


yD,0

yN,0

yD

yN




×

,

for all yD,0, yN,0, yD and yN in YL.
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REMARK 5.7. With the exception of the scalar operators inside of A0,N and Iep, which

are computed numerically, all other matrices are diagonalizable and analytic for the ge-

ometry here considered (Theorem 5.1). Thus, the discrete matrix used to solve at each time

step is almost entirely block diagonal.

REMARK 5.8. Note that if changing Iep without modifying the dynamics for the trans-

membrane potentials, leads to a modified right-hand side in the linear system of equation

(5.27).

5.5. Numerical Results

In this section, we verify and test the proposed computational scheme. To this end,

we first check the MTF implementation for single and multiple cells to then combine it

with the semi-implicit time-domain method. Next, we perform tests for linear and non-

linear dynamics. Physical parameters used thorough the Section are given in (Mistani et

al., 2019, Table 1) and (Kavian et al., 2014, Table 1).

5.5.1. Hardware and Code Implementation

Numerical results were obtained in a machine with Quad Core Intel Core i7-4770

(-MT MCP-), 1498 MHz, 31982.1 MiB RAM (90% available for computations), with op-

erating system Linux Mint 20.3 Una and Kernel: 5.4.0-131- generic x86 64. Simulation

codes were programmed on Python 3.10. Its installation was via the open-source platform

Anaconda1, Conda2 4.13.0, and using the conda-forge repository (conda-forge community,

2015).3 With the numpy library, we take advantage of vectorized computations (Harris et

al., 2020). Moreover, we only use direct solvers. The linear solvers and LU decomposition

in numpy and scipy are routines from LAPACK (Anderson et al., 1999). The code is

implemented sequentially, which gives space to parallelization and optimization. Lastly, in

the following experiments we do not implement any form of matrix compression.
1https://www.anaconda.com/products/distribution
2https://docs.conda.io/projects/conda/en/stable/
3The following packages were installed explicitly: pyshtools 4.10 (Wieczorek & Meschede, 2018),
(conda install pyshtools=4.10), numpy 1.23.1 (Harris et al., 2020), scipy 1.9.0 (Virtanen et al., 2020),
and matplotlib-base 3.5.2 (Hunter, 2007).

https://www.anaconda.com/products/distribution
https://docs.conda.io/projects/conda/en/stable/
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5.5.2. Code validation

In order to validate our code, we recall the properties which should be satisfied by

a solution at each time. Specifically, the numerical solution is required to fulfill discrete

Calderón identities at the boundaries, as well as discrete jump conditions. As the computed

results are per se approximations this properties do not hold exactly, thus we define the

following errors:

• Discrete Calderón exterior and interior errors respectively:∥∥∥∥(2A0,N − I)

(
u
L,(s+1)
D,0

u
L,(s+1)
N,0

)∥∥∥∥
YL×YL

,

∥∥∥∥(2A1,N − I)

(
u
L,(s+1)
D

u
L,(s+1)
N

)∥∥∥∥
YL×YL

. (5.28)

• Jump error:∥∥∥∥( u
L,(s+1)
D,0

u
L,(s+1)
N,0

)
−X−1

N

(
u
L,(s+1)
D

u
L,(s+1)
N

)
+ I2N×NvL + γ0jϕL

e

∥∥∥∥
YL×YL

≈ 0. (5.29)

Here the norm ∥ · ∥YL×YL
is computed as∥∥∥∥( u

L,(s+1)
D

u
L,(s+1)
N

)∥∥∥∥2
YL×YL

=
∥∥∥uL,(s+1)

D

∥∥∥2
YL

+
∥∥∥uL,(s+1)

N

∥∥∥2
YL

.

In what follows, we will use the following notations:

• Relative error in L2(Γj):

re2(ϕ1, ϕ2)j :=
∥ϕ1 − ϕ2∥L2(Γj)

∥ϕ1∥L2(Γj)

. (5.30)

This error is computed for spherical harmonics expansions when possible (5.21)

or using the numerical quadrature presented at the end of Section 5.4.2.2.

• Relative error in C0 ((0, T ), L2(Γ1)):

re∞,2(ϕ1, ϕ2)j :=
maxts∈Ts ∥ϕ1(ts + τ/2)− ϕ2(ts + τ/2)∥L2(Γj)

maxts∈Ts ∥ϕ1(ts + τ/2)∥L2(Γj)

. (5.31)

• Relative error in L2 ((0, T ), L2(Γ1)):

re2,2(ϕ1, ϕ2)j :=
∥ϕ1 − ϕ2∥L2((0,T ),L2(Γ1))

∥ϕ1∥L2((0,T ),L2(Γ1))

. (5.32)
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The approximation of the time integral is done by a composite trapezoidal rule

using the points of the computed time mid-steps.

5.5.2.1. Spectral Spatial Discretization

In what follows, we seek a minimum number of spherical harmonics (L) required to

yield a good approximation of ϕe on the surface of each sphere. As we will show, this

depends on ϕe, the geometric configuration, and in particular, on the distance between

cells.

Let be ϕL
e the projection of ϕe onto YL(Γ1) (5.19) at a given time. As a first approxima-

tion, we compute the relative error in L2(Γ1) numerically, i.e. re2(ϕe, ϕ
L
e )1 (5.30), where

Ω1 is centered at the origin of the coordinate system. Both functions can not be evaluated

exactly due to machine precision. Thus, the function ϕe used is the default approximation

of the original and not its spherical harmonics approximation. The evaluation of ϕL
e also

depends on the evaluation of the spherical harmonics, with an increasing error as a function

of L (Wieczorek & Meschede, 2018).

Approximation errors for the following three functions are computed

ϕe1(r) := 3.1, (5.33a)

ϕe2(x, y, z) := −3.1z, (5.33b)

ϕe3(r) :=
a

4πσ0 ∥r− p0∥2
, (5.33c)

with parameters for ϕe3 in Table 5.1. The function ϕe1 is constant, ϕe2 is linear and ϕe3 is a

point source at p0. The results obtained are presented in Figure 5-5. For the constant ϕe1

and linear ϕe2 one requires spherical harmonics of degree L = 0 or L = 1, respectively.

This is expected as any other coefficient is equal to zero.

For the point source ϕe3 , the spherical harmonic expansion is known and has infinite

number of non-zero terms (cf. Theorem 5.8). We perform computations for four different

distances from the point source. One can observe that the values of L needed to obtain a

small error depend on how close the source point p0 is to the surface of the sphere. This
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TABLE 5.1. Parameters used in Section 5.5.2.1 for studying the convergence of
the spherical harmonics approximation of ϕe3 (5.33c). Values for σ0 comes from
(Kavian et al., 2014, Table 1) and for R1 from (Mistani et al., 2019, Table 1).

Parameter Symbol Value Unit
Intensity a 1 µA
Source position p0 (0, 0, d) µm
Extracellular conductivity σ0 5 µS/µm
Cell radius R1 10 µm
External stimuli ϕe3 a/(4πσ0 ∥r− p0∥2) V

(A) Relative errors for constant ϕe1 and linear
ϕe2 . L = 0 and L = 1 are enough to obtain a
good approximation of the functions.

(B) Relative errors for ϕe3 (5.33c) for four dif-
ferent distances, d, from the point source to the
origin, the distance to the sphere is d − R1. At
close distance L needs to be high so as to main-
tain a given error. Parameter values are given in
Table 5.1.

FIGURE 5-5. Relative errors (5.30) computed in Section 5.5.2.1, between ϕe (5.33)
and its approximations in spherical harmonics ϕL

e in a sphere of radius 10 µm.

is shown by decreasing the distance d—the distance to the sphere being d − R1 from the

point source to the origin—and computing the relative error.

In general, if the discretization does not lead to a finite expansion, with zero coefficients

after from some index, ϕe is not represented exactly, and the accuracy might depend on the

geometry, as it is the case for ϕe3 .
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5.5.2.2. MTF Validation

As mentioned above, we verify first the MTF method without time evolution, by solv-

ing Problem 5.12 for four different geometrical configurations and sources. In all four

experiments, we set v = 0 and use the point source ϕe3 given in (5.33c).

• Example 1: One sphere centered at the origin with intracellular conductivity

σ1 = σ0 (phantom sphere).

• Example 2: One sphere centered at the origin with intracellular conductivity σ1

different from σ0.

• Example 3: Three (aligned) spheres. The first and the third one have conductiv-

ity σ0 (phantom sphere), while the one in the middle has a different conductivity

σ1.

• Example 4: 27 spheres arranged in a 3 × 3 lattice in three-dimensional space.

One of the spheres, the cell attached to the origin, has conductivity σ1, the rest

of the spheres have conductivity σ0 (phantom spheres).

The parameters used for validation for Examples 1 and 2 for a single sphere are pre-

sented in Table 5.2, for Example 3 in Table 5.4, and for Example 4 in Table 5.5. Due to the

results of the previous section (see Figure 5-5b), we choose L = 50, which we consider

sufficient for the case d = 20 in the first three Examples, while in Example 4 we use L = 23

as the point source is farther away. Discrete Calderón and jump errors (5.28), (5.29) are

presented in Table 5.3 for these four Examples.

In Example 1, the sphere has the same properties as the exterior medium, and we

expect the external traces to be zero, while the interior traces are equal to the traces of ϕe3 .

To check this, the following norms were computed:∥∥∥∥∥∥
u50

D,01

u50
N,01

∥∥∥∥∥∥
Y50×Y50

= 3.30 · 10−19 and

∥∥∥∥∥∥
u50

D,1 − γ01D ϕ
50
e

u50
N,1 + γ01N ϕ

50
e

∥∥∥∥∥∥
Y50×Y50

= 7.32 · 10−20,

where the quantities are approximated to three significant digits. The Calderón and jump

errors (5.28), (5.29) are of order of 10−19, and are presented in Table 5.3. We display four
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TABLE 5.2. Parameters used in Section 5.5.2.2 for Examples 1 and 2 for the MTF
validation. The point source potential ϕe3 is found in (5.33c). Conductivity values
are from (Kavian et al., 2014, Table 1), cell radius from (Mistani et al., 2019, Table
1).

Parameter Symbol Example 1 Example 2 Unit
Intensity a 1 1 µA
Source position p0 (0, 0, 20) (0, 0, 20) µm
Extracellular conductivity σ0 5 5 µS/µm
Intracellular conductivity σ1 5 0.455 µS/µm
Cell radius R1 10 10 µm
Maximum degree of spherical harmonics L 50 50

TABLE 5.3. Discrete Calderón errors and jump errors for Examples 1-4 from Sec-
tion 5.5.2.2. The first two Examaples cosider a only one sphere, Example 3 three
spheres and 27 spheres for Example 4. The values are approximated to three sig-
nificant digits.

Error Example 1 Example 2 Example 3 Example 4
Discrete Calderón exterior 3.59 · 10−19 2.61 · 10−17 2.38 · 10−16 6.28 · 10−17

Discrete Calderón interior 1.06 · 10−19 2.61 · 10−17 2.31 · 10−16 6.41 · 10−17

Jump error 4.20 · 10−19 2.61 · 10−17 2.38 · 10−16 3.41 · 10−17

plots of the volume potentials reconstructed from the traces (cf. Theorem 5.2) in Figures 5-6

and 5-7. For the field generated by ϕe3 , the intra- and extracellular potentials are practically

the same and cell the becomes invisible.

In Example 2, the sphere has a different conductivity than the extracellular space, and

an analytic solution can be obtained. In Figure 5-8 the relative errors in L2(Γ1) (5.30)

of the computed solutions for different L against the analytic solution are presented. The

image shows the expected exponential convergence with respect to the maximum degree

of the spectral basis L. The discrete Calderón and jump errors are given in Table 5.3. The

external field generated by the sphere is shown in Figure 5-9, where u500 is of order at most

10−4 near the sphere, which was not the case in Example 1 (see Figure 5-7).

Example 3 involves three spheres, two of those having the same properties as the ex-

ternal medium, while the one in the middle is different (see Figure 5-10). Therefore, the

traces of the latter should be equal to the ones computed without the first two, i.e. the same
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(A) Electric fields u500 and u501 plotted in the
plane y = 0. The field u501 is the same as
ϕe3 in that domain. Recall that ϕe3 is only
defined on the exterior of the sphere, so this
is the expected behaviour.

(B) Electric fields u500 plus ϕe3 in the exterior
of the sphere, and u501 in the interior plotted in
the plane y = 0. It can be observed that it is
like there is no sphere, which is the expected
behaviour.

(C) Electric fields u500 and u501 plotted in the
plane z = 0. Note that ϕe3 is only defined
on the exterior of the sphere, so this is the
expected behaviour.

(D) Electric fields u500 plus ϕe3 in the exterior
of the sphere, and u501 in the interior, plotted
in the plane z = 0. It can be observed that it is
like there is no sphere, which is the expected
behaviour.

FIGURE 5-6. Electric field plots in Example 1 of Section 5.5.2.2. Parameters used
are in Table 5.2.

as in Example 2. The relative L2(Γ1) error of the difference between the analytic solution

for the four traces and the numerical one corresponding to the sphere with different con-

ductivity, is 6.06 · 10−15. In Figure 5-10, u500 is plotted where the only sphere showing a

response to ϕe3 is the sphere in the middle that has different properties compared to the
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(A) Cut y = 0. (B) Cut z = 0.

FIGURE 5-7. External field u500 in Example 1, Section 5.5.2.2. Notice that the
values are of order 10−20, which we consider to be approximately zero. This is
showed for later comparison with Example 2, Figure 5-9. Parameters used are in
Table 5.2.

FIGURE 5-8. Error convergence for the traces in Example 2 (Section 5.5.2.2). The
relative error L2(Γ1) (5.30) is computed against the analytic solution, with expo-
nential convergence as L increases. Parameter values are given in Table 5.2.

external medium. Discrete Calderón and jump errors are given in Table 5.3, with errors of

order 10−16.

Lastly, we run Example 4, a simulation with 27 spheres with only one of them having a

conductivity different from the external one σ0. The cells are arranged in corners of a cubic
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(A) Plane y = 0. (B) Plane z = 0.

FIGURE 5-9. Field u500 in Example 2, Section 5.5.2.2 with parameters in Table 5.2.
Here, u500 is much larger compared with Example 1 (see Figure 5-7) and cannot be
considered to be zero. Note that in Example 3, with two phantom spheres, u500 in
Figure 5-10 in similar to the present case.

TABLE 5.4. Parameters used for the MTF verification with ϕe3 =
1/(4πσ0 ∥r− p0∥2) in Example 3, Section 5.5.2.2. Conductivities are given in
(Kavian et al., 2014, Table 1) and radii are in (Mistani et al., 2019, Table 1).

Parameter Symbol Value Unit
Source position p0 (0, 0, 20) µm
Extracellular conductivity σ0 5 µS/µm
Cell 1 intracellular conductivity σ1 0.455 µS/µm
Cell 2 and 3 intracellular conductivity σ2, σ3 5 µS/µm
Cell 1 radius R1 10 µm
Cell 2 radius R2 8 µm
Cell 3 radius R3 9 µm
Cell 1 center position p1 (0, 0, 0) µm
Cell 2 center position p2 (25, 0, 0) µm
Cell 3 center position p3 (-24, 0, 0) µm
Maximum degree of spherical harmonics L 50
Quadrature degree Lc 100

lattice, with parameters presented in Table 5.5. This time, the source position is located at

(0, 0,−50), and we choose L = 23 which is lower than in the previous examples.

We expect a similar behaviour for the electric potential as in Example 3, though with

a smaller response due the point source being further. Computed relative errors between
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(A) Plane y = 0. (B) Plane z = 0.
in Figure 5-9.

FIGURE 5-10. Field u500 of Example 3, Section 5.5.2.2 with parameters from Table
5.4. The resulting field is approximately the same as the one in Example 2, as it
can be seen

TABLE 5.5. Parameters used for the MTF verification with ϕe3 =
1/(4πσ0 ∥r− p0∥2) with 27 spheres in Example 4, Section 5.5.2.2. Param-
eters for the conductivities are given in (Kavian et al., 2014, Table 1) and radii are
in (Mistani et al., 2019, Table 1).

Parameter Symbol Value Unit
Source position p0 (0, 0, -50) µm
Extracellular conductivity σ0 5 µS/µm
Cell 1, intracellular conductivity σ1 0.455 µS/µm
Cell j (1 < j ≤ 27), intracellular conductivity σj 5 µS/µm
Cell j, radius Rj 10 µm
Cell 1, center position p1 (0, 0, 0) µm
Minimum distance between spheres 5 µm
Maximum degree of spherical harmonics L 23
Quadrature degree Lc 100

the four traces obtained and their analytic counterparts in the L2(Γ1)-norm is 3.14 · 10−15,

which we consider to be zero. In Figure 5-11 u230 is plotted, where it can be observed that

only the sphere in the down left corner is showing a response to ϕe3 . Discrete Calderón and

jump errors are of order 10−17 and presented in Table 5.3.
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(A) Plane y = 0. (B) Plane z = 0.

FIGURE 5-11. Field u230 in Example 3, Section 5.5.2.2 with parameters in Table
5.5. The only sphere showing a response is the one with different conductivity,
which is the expected result.

5.5.2.3. Semi-implicit time approximation validation: linear case

To validate the proposed time discretization, we solve problem (5.25) for a linear cur-

rent with only one cell:

cm,1∂tv1 +
1

rm,1

vj = −σ1γ1Nu1,

where instead of Iep1 (v1, Z1) we use 1
rm,1

vj . Additionally, we assume that ϕe can be factor-

ized ϕe(t, r) = ϕtime(t)ϕspace(r). If ϕspace is expanded in spherical harmonics, the coeffi-

cients for the equivalent expansion of v1, vl,m1 , can be obtained by solving

∂

∂t
vl,m1 + αl,m

1 vl,m1 = −βl,m
1 ϕtime(t),

with

αl,m
1 :=

1

cmRm

+
σ0σ1l(l + 1)

cmR1(σ0(l + 1) + σ1l)
,

βl,m
1 :=

σ0σ1l(bd,l,m(l + 1)− bn,l,mR1)

cmR1(σ0(l + 1) + σ1l)
,

where bd,l,m and bn,l,m are the coefficient of degree l and order m of the Dirichlet and

Neumann expansion of ϕspace on the cell membrane, respectively. Then, the spherical



124

harmonic expansion coefficients of v1 are

vl,m1 (t) = −βl,m
1 e−αl,m

1 t

∫ t

0

ϕtime(s)e
αl,m
1 sds+ vl,m1 (0)e−αl,m

1 t.

For ϕtime−exp(t) := e−t and initial condition v(0)1 = 0, the solution is

vl,m1 (t) = − βl,m
1

αl,m
1 − 1

(
e−t − e−αl,m

1 t
)
,

and for ϕtime−cte(t) := 1 and initial condition v(0)1 = 0, one has

vl,m1 (t) = −β
l,m
1

αl,m
1

(
1− e−αl,m

1 t
)
.

To approximate the first bound in Theorem 5.6, we compute the second derivative in

time of the analytic solution obtained. Specifically, for ϕtime−exp, the second derivative is

∂2t v
l,m
1 (t) = − βl,m

1

αl,m
1 − 1

(
e−t − (αl,m

1 )2e−αl,m
1 t
)
,

whereas for ϕtime−cte, one has

∂2t v
l,m
1 (t) = βl,m

1 αl,m
1 e−αl,m

1 t.

With these, we compare the approximated solution v251 with its analytic expression v1

and check if the first bound of Theorem 5.6 holds. We present simulation results for the

two different time parts of ϕe, ϕtime−exp and ϕtime−cte. We use a point source function for

the spatial part of ϕe. Parameters are presented in Table 5.6.

Figure 5-12 showcases values of the transmembrane potentials v251 (τ = 0.025 µs) and

v1 at the north pole of the cell (θ = 0). The approximated solutions are very close to the

analytic one for the scale presented with errors in Figure 5-13. In Figure 5-13, the absolute

error of the difference between v231 (τ = 0.025µs) and v1 in space is presented for each

mid-time step. We compute also τ2

4
∥∂2t v1∥L2(Γj)

to validate the first bound in Theorem 5.6.

For ϕtime−exp, the absolute error satisfies the first bound in Theorem 5.6 everywhere except
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TABLE 5.6. Parameters used for the time scheme validation in Section 5.5.2.3
where linear dynamics are assumed. The external potential is ϕe =
I(t)/(4πσ0 ∥r− p0∥2) and only one cell is considered. Conductivity values are
given in (Kavian et al., 2014, Table 1), the cell radius and the specific membrane
capacitance are given in (Mistani et al., 2019, Table 1), and the specific membrane
resistance is from (Henrı́quez et al., 2017, Table 1).

Parameter Symbol Values Unit
Intensity I(t) e−t and 1 µA
Source position p0 (0, 0, 50) µm
Extracellular conductivity σ0 5 µS/µm
Intracellular conductivity σ1 0.455 µS/µm
Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2 (=F/m2)
Specific membrane resistance rm,1 1 · 105 MΩ(µm)2

Cell Radius R1 7 µm
Length time step τ 0.025 µs
Final time T 2.5 µs
Maximum degree of spherical harmonics L 25

(A) ϕtime−ext(t) = e−t. (B) ϕtime−cte(t) = 1.

FIGURE 5-12. Evolution of v251 (discrete approximation with τ = 0.025µs) and
v1 (analytic solution) at the north pole of the cell (θ = 0) for the validation of the
time scheme in Section 5.5.2.3 for linear dynamics. Parameters employed are given
in Table 5.6.

for the range between 0.4 µs and 0.7 µs, caused by a too large τ . For ϕtime−cte the bound is

fulfilled at all times.
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(A) ϕtime(t) = e−t. (B) ϕtime(t) = 1.

FIGURE 5-13. Absolute error in L2(Γ1) between v251 (discrete approximation) and
v1 (analytic solution), as well as τ2

4

∥∥∂2
t v1(ts)

∥∥
L2(Γj)

, plotted to verify the bound
given by Theorem 5.6 for the time scheme from Section 5.5.2.3 where linear dy-
namics are assumed. Note that the plot of τ2

4

∥∥∂2
t v1(ts)

∥∥
L2(Γj)

is above the absolute
error. The length of the time step τ is 0.025 µs, the rest of the parameters used are
in Table 5.6.

(A) ϕtime−exp(t) = e−t. (B) ϕtime−cte(t) = 1.

FIGURE 5-14. Error convergence for diminishing time steps τ for the time scheme
in Section 5.5.2.3 where linear dynamics are assumed. The slope of the errors on
the log-log plot is approximately equal to two, i.e. error converges as τ2. Relative
errors re∞,2(v1, v

25
1 )1 and re2,2(v1, v

25
1 )1 are given in (5.31) and (5.32), respec-

tively. Simulation parameters can be found in Table 5.6.
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Finally, Figure 5-14 presents the relative error in time and space for decreasing values

of τ . We compute the error using two norms: an approximation of the C0 ((0, T ), L2(Γ1))-

norm taking the maximum value at each mid-step computed (5.31), and an approximation

of theL2 ((0, T ), L2(Γ1))-norm, using a composite trapezoidal rule with the computed mid-

steps (5.32). We observe that the slope of the errors in the log-log plot is close to two,

therefore the error decreases as τ 2.

5.5.3. Numerical Results for a Single Cell with Nonlinear Dynamics

After having verified our numerical scheme for the linear dynamics, we now we study

the nonlinear model for the electropermeabilization dynamics for a single cell (Problem

5.5). Note that in (Henrı́quez & Jerez-Hanckes, 2018, Theorem 6.14) the authors provide

error estimates by solving the nonlinear dynamical problem in 2D, where they use the

Hodgkin-Huxley dynamics to simulate the response of neurons. The estimates depend

on four terms: the first two are the norms of the difference between initial conditions and

approximated ones used in the computations; the third is related to the spatial discretization,

where a spectral basis in 2D is used, and this term is proved to decay exponentially with

the total number of functions in the spatial discretization basis; the fourth one is related to

the time approximation, and it decays as τ 2. In the present work, we do not derive error

estimate, but given this previous result, we expect a similar behavior. In other words, fixing

the maximum degree of spherical harmonics L used in the discretization and decreasing

the length of the time step τ , we expect to see the error converging to a constant depending

on L. Similarly, if we fix τ and increase L, we expect the error to converge to a constant

depending on τ .

5.5.3.1. Time convergence for a fixed L

We use the parameters presented in Table 5.7 to solve the non-linear discrete Problem

5.11, with external applied potential ϕe = 5z · 10−2, and initial conditions equal to zero.

Since we no longer possess an analytic solution for comparison, we check for convergence

as time steps become smaller. We remark that L is fixed.
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TABLE 5.7. Parameters used for the simulation of a single cell with non-linear
dynamics (5.3e) in Section 5.5.3.1 when studying the time convergence with fixed
L. Parameters used are found in (Kavian et al., 2014, Table 1).

Parameter Symbol Values Unit
Cell Radius R1 10 µm
Time part of ϕe ϕtime 1
Spatial part of ϕe ϕspatial 5 z · 10−2 V
Extracellular conductivity σ0 5 µS/µm
Intracellular conductivity σ1 0.455 µS/µm
Lipid surface conductivity SL,1 1.9 · 10−6 µS/(µm)2

Irreversible surface conductivity Sir,1 2.5 · 102 µS/(µm)2

Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2

Transmembrane potential threshold Vrev,1 1.5 V
Electropermeabilization switch speed kep,1 40 V−1

Characteristic time of electropermeabilization τep,1 1 µs
Characteristic resealing time τres,1 103 µs
Final time T 26 µs
Maximum degree of spherical harmonics L 1
Quadrature degree Lc 2

Table 5.8 displays the norms of the error between two successively refined solutions

for different time steps. These results show a convergence rate of one as the time step de-

creases, and thus we do not obtain the same as in (Henrı́quez & Jerez-Hanckes, 2018). This

is due to the lesser regularity in time of the functions used in the non-linear electroperme-

abilization model.

In Figure 5-15, we plot the evolution of the transmembrane potential v11 for three dif-

ferent values of τ . Though the solution shapes are similar, the signals peak at different

locations and coincide as the time step decreases. Specifically, between τ = 2.6 · 10−3µs

and τ = 2.6 · 10−4µs, there is a delay of less than 0.16 µs, while between τ = 2.6 · 10−4µs

and τ = 2.6 · 10−5µs the delay is less than 0.017 µs.

5.5.3.2. Spatial convergence with nonlinear dynamics

We now present numerical results for different maximum degrees of the spherical har-

monics, L = 51 and L ∈ [1, 2, ..., 36]. Given that we use a spectral discretization in space,
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TABLE 5.8. Error convergence of solutions obtained for the nonlinear problem
with one cell from Section 5.5.3.1 for fixed L. Computed norms are the difference
between two successive solutions. Parameters used are in Table 5.7.

τi Value [µs] maxt∈[0,T ] ||v1,τi+1

1 − v1,τi1 ||L2(Γ1) maxt∈[0,T ] ||Z1,τi+1

1 − Z1,τi
1 ||L2(Γ1)

τ1 2.6 · 10−3 - -
τ2 2.6 · 10−4 8.8 4.64 · 10−3

τ3 2.6 · 10−5 0.9 3.02 · 10−4

τ4 2.6 · 10−6 0.097 3.59 · 10−5

τ5 2.6 · 10−7 0.0097 3.15 · 10−6

FIGURE 5-15. Evolution of v11 at the north pole of the cell (θ = 0) for different
lengths of time step τ illustrating the time convergence for fixed L, Section 5.5.3.1.
The image at the right is zoomed near to the maximum value of v11 . Parameters
employed are given in Table 5.7.

we expect an exponential decrease in the error when increasing the maximum degree L—

recall that the number of spatial discretization functions basis is (L + 1)2)4. The external

applied potential is ϕe = 5z ·10−2 until t = 5 and equal to zero thereafter. Initial conditions

are set to zero.

First, we analyze the error convergence for the coefficients of vL1 , which are functions

only of time. For each result computed with the maximum degree of the spherical harmon-

ics being less than 37, we compare against the result with L = 51. For this, we calculate

the relative error of the coefficients vl,01 , for odd l, and for the different maximum degrees

4The parameters used are provided in Table 5.9. Notice that extra- and intracellular conductivities have
different values from the previous simulations, and were changed to obtain a response of the impulse sooner.
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TABLE 5.9. Parameters used in the numerical simulations with one cell to study
the convergence in space in Section 5.5.3.2, with the non-linar dynamics of the
electropermeabilization model. The specific choice of extra- and intracellular con-
ductivities, different from the previous simulations, allow us to obtain a response
of the impulse sooner in time. The rest of the parameters are from (Kavian et al.,
2014, Table 1). The external applied potential used is equal to zero after t = 5.

Parameter Symbol Values Unit
Cell Radius R1 10 µm
External applied potential ϕe 5 z · 10−2 V
Extracellular conductivity σ0 15 µS/µm
Intracellular conductivity σ1 1.5 µS/µm
Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2 (=F/m2)
Lipid surface conductivity SL,1 1.9 · 10−6 µS/(µm)2

Irreversible surface conductivity Sir,1 2.5 · 102 µS/(µm)2

Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2

Transmembrane potential threshold Vrev,1 1.5 V
Electropermeabilization switch speed kep,1 40 V−1

Characteristic time of electropermeabilization τep,1 1 µs
Characteristic resealing time τres,1 103 µs
Final time T 10 µs
Length time step τ ≈ 0.0024 µs
Quadrature degree Lc 150 µs

L, using the L2(0, T ) and C0(0, T ) norms. The results are shown in Figures 5-16 and 5-17,

where it can be seen than after L = 11 the coefficients start converging. For m ̸= 0 or l

even, the obtained coefficients are close to zero.

Second, we look at the convergence of the coefficients of ZL
1 . For this, we calculate

the relative error, using the L2(0, T ) and C0(0, T ) norms of the difference between the

coefficients Z l,0
1 , for l even and for the different maximum degrees L. Results are shown

in Figures 5-18 and 5-19, where we observe the norm tends to converge exponentially. For

m ̸= 0 or l odd, coefficients obtained vanish.

Next, we compute the relative error in C0 ((0, T ), L2(Γ1)) and L2 ((0, T ), L2(Γ1)) be-

tween vL1 and v511 , and between ZL
1 and Z51

1 . The results are shown in Figure 5-20. The

plots are in a log-linear scale, and the errors tends to form a straight line with the slope of

order −10−2, which suggests an exponential rate of convergence. Recall, that β (5.1) in
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FIGURE 5-16. For a fixed l, the relative error in L2(0, T ) between coefficients vl,01
of vL1 and v511 is plotted. The time step used is τ ≈ 0.0024 µs. The x−axis indicates
the maximum degree used for the discretization of vL1 , and the y−axis indicates the
error. After L = 11 the coefficients start to converge. Parameters used are in Table
5.9.

FIGURE 5-17. For a fixed l, the relative error in max(0,T ) between coefficients
vl,01 of vL1 and v511 is plotted. The x−axis indicates the maximum degree used for
the discretization of vL1 , and the y−axis indicates the error. After L = 11 the
ccoefficients start to converge. Parameters used are in Table 5.9.

our case is only continuous C0(R) due to the discontinuity of the derivative at the origin

worsening the rate of convergence.

While the obtained Z1 is an even function in space, v1 is an odd one. Thus, the nonlin-

ear current, is an odd function in space. The external applied potential is an odd function,
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FIGURE 5-18. For a fixed l, the relative error in L2((0, T )) between the co-
efficients Z l,0

1 of ZL
1 and Z51

1 is plotted. The length of the time step used is
τ ≈ 0.0024 µs. The x−axis indicates the maximum degree used for the discretiza-
tion o ZL

1 , and the y−axis indicates the error. The results show convergence. Pa-
rameters used are in Table 5.9.

FIGURE 5-19. Spatial convergence in the case of nonlinear dynamics in Section
5.5.3.2: for a fixed l, the relative error in C(0, T ) norm between the coefficients
Z l,0
1 of ZL

1 and Z51
1 is plotted. The length of the time step used is τ ≈ 0.0024 µs.

The x−axis indicates the maximum degree used for the discretization o ZL
1 , and

the y−axis indicates the error. Parameters used are in Table 5.9.

so we expect that v1 has an odd component, while Z1 is defined by an ordinary differential

equation that takes v1 in to an even function.
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(A) Relative norms for vL1 . (B) Relative norms for ZL
1 .

FIGURE 5-20. Spatial convergence for the nonlinear dynamics, Section 5.5.3.2.
Relative norms in space and time of computed solutions against an overkill of
L = 51. On the left, results for vL1 , while on the right ZL

1 is displayed with time
step τ ≈ 0.0024 µs. The relative error re∞,2(v1, v

51
1 )1 (5.31) is computed in the

C0
(
(0, T ), L2(Γ1)

)
-norm, and the error for re2,2(v1, v511 )1 (5.32) is computed in

the L2
(
(0, T ), L2(Γ1)

)
-norm. The x−axis indicates the maximum degree used for

the discretization of the solution, and the y−axis indicates the error. Convergence
starts from L = 11. Plots are in log-linear scale, and error tends to form a straight
line with slope of approximately −10−2, i.e. exponential rate of convergence. Pa-
rameters used are in Table 5.9.

Finally, in Figure 5-21 we plot the evolution in time of v171 , v241 , v351 , and v511 at the

north pole. The differences between the results are more noticeable after the peak of the

potential and when the cell tries to stabilize it.

5.5.4. Results with multiple cells

In previous sections, the convergence of the numerical method was studied for a single

cell. We proceed now with the case of multiple cells to perform five experiments in the

nonlinear case. The examples presented highlight how the distance among cells affects the

results as all cell conductivities are set to the same value σ1.

• Example 5: Three cells aligned along the x-axis and far from each other, with

distance between cells 18R1.
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(A) (B) Zoom at peak.

FIGURE 5-21. Evolution of the transmembrane potentials v171 , v241 , v351 and v511
at the north pole of the cell (θ = 0) obtained in Section 5.5.3.2 where the spatial
convergence for one cell in the nonlinear case is studied. The picture on the right
is a zoomed image of the transmembrane potential peak. The time step used is
τ ≈ 0.0024 µs, with parameters given in Table 5.9.

• Example 6: Three cells aligned along the x-axis, near from each other, with

distance between cells R1/2.

• Example 7: Three cells aligned along the z-axis, far from each other, with dis-

tance between them 18R1.

• Example 8: Three cells aligned along the z-axis, close from to other, with dis-

tance between cells R1/2.

• Example 9: Eight cells aligned in a cubic lattice, the nearest distance between

two cells is R1/2, the first sphere is at the origin.

Cell radii and physical parameters used for Examples 5–9 are presented in Table 5.10.

The extra- and intracellular conductivities have different values from the simulations of

other Sections, and were changed so as to obtain a response of the impulse sooner. Coor-

dinates of the cells’ center in Examples 5–8 are given in Table 5.11 and sketched in Figure

5-22, while cells’ centers in Example 9 are located at the corners of a cube of length 25
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TABLE 5.10. Parameters used in Examples 5–9 (multiple cells, nonlinear dynam-
ics) from Section 5.5.4. Parameters for the radii are from (Mistani et al., 2019,
Table 1), the electrical parameters are from (Kavian et al., 2014, Table 1), except
for extra- and intracellular conductivities that were changed to obtain a response of
the impulse sooner.

Parameter Symbol Value Unit
Extracellular conductivity σ0 15 µS/µm
Intracellular conductivity σj , j ≥ 1 1.5 µS/µm
Cell j radius R1 10 µm
Time part of ϕe ϕtime(t) 1
Spatial part of ϕe ϕspatial 5 z · 10−2 V
Lipid surface conductivity SL,1 1.9 · 10−6 µS/(µm)2

Irreversible surface conductivity Sir,1 2.5 · 102 µS/(µm)2

Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2

Transmembrane potential threshold Vrev,1 1.5 V
Electropermeabilization switch speed kep,1 40 V−1

Characteristic time of electropermeabilization τep,1 1 µs
Characteristic resealing time τres,1 103 µs
Final time T 10 µs

TABLE 5.11. Center positions for Examples 5–8 from Section 5.5.4, where non-
linear dynamics with three cells are simulated.

Center position Symbol Example 5 Example 6 Example 7 Example 8 Unit
Cell 1 p1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) µm
Cell 2 p2 (200, 0, 0) (25, 0, 0) (0, 0, 200) (0, 0, 25) µm
Cell 3 p3 (-200, 0, 0) (-25, 0, 0) (0, 0, -200) (0, 0, -25) µm

TABLE 5.12. Cells’ position in Examples 9 from Section 5.5.4, where nonlinear
dynamics with eight cells are simulated.

Center position Symbol Value in µm Center position Symbol Value in µm
Cell 1 p1 (0, 0, 0) Cell 5 p5 (0, 0, 25)
Cell 2 p2 (25, 0, 0) Cell 5 p6 (25, 0, 25)
Cell 3 p3 (0, 25, 0) Cell 7 p7 (0, 25, 25)
Cell 4 p4 (25, 25, 0) Cell 8 p8 (25, 25, 25)

µm, with one corner at the origin and other one at (25, 25, 25) (cf. Table 5.12). The exter-

nal applied potential in Examples 5–9 is ϕe = 5z · 10−2 until t = 5 µs and equal to zero

thereafter. Also, initial conditions are set to be zero.
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x

z
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φe = 5z · 10−2

Example 5
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z

R1

φe = 5z · 10−2
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R1 x

zExample 7
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FIGURE 5-22. Illustration for Examples 5–8 in Section 5.5.4.

In what follows, we present results for a time step τ ≈ 6.1·10−4. The maximum degree

of spherical harmonics used for Examples 5–8 is L = 35, while for Example 9 L = 25.

Quadrature degree used in all examples is Lc = 100. Figures 5-23, 5-24, 5-25, 5-26 and

5-27 showcase the evolution of the transmembrane potentials vLj and the variables ZL
j for

each cell at their north pole.

In Example 5, ϕe = 5z ·10−2 and thus, the perceived excitation for the three cells is the

same. Moreover, the cells are relatively far away from each other, therefore, there is almost

no interaction among them, and the potentials v35j and Z35
j look similar, for all j (see Figure

5-21).

In Example 6, we take the same parameters as in Example 5, except for reducing the

distance between cells, which is nowR1/2. Hence, the interaction between cells is stronger,

and the shapes of the potentials v35j and Z35
j change ( see Figure 5-24). One should compare

with the previous example in Figure 5-23). Note that, due to the symmetry and the form of

the external ϕe = 5z · 10−2, cells 2 and 3 should have the same response at the north pole.

They are, however, slightly different, hinting at further refinement.

Examples 7 and 8 are similar to Examples 5 and 6 except that the cells are now aligned

along the z-axis. Thus, the excitation ϕe = 5z ·10−2 is perceived differently by the cells. In

Example 8, the distance between cells is R1/2, and consequently, the interaction between
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(A) Evolution of the transmembrane potentials
v35j at
the north pole of each j cell (θ = 0).

(B) Evolution of the Z35
j at the north pole of each

j cell (θ = 0).

FIGURE 5-23. Example 5 in Section 5.5.4. Since cells are far from each other, they
interact weakly among them, and thus the perceived excitation for each of them is
the same. Consequently, the transmembrane potentials v35j and Z35

j are practically
equal for all cells. The time step is τ ≈ 6.1 · 10−4. Parameters employed are found
in Tables 5.10 and 5.11.

(A) Evolution of the transmembrane potentials
v35j at
the north pole of each j cell (θ = 0).

(B) Evolution of Z35
j at the north pole of each j

cell (θ = 0).

FIGURE 5-24. Example 6 from Section 5.5.4. Cells are near each other and the in-
teraction among them influences the transmbembrane potential v35j and Z35

j (cf. Ex-
ample 5 in contrast). Notice that the only difference between Example 5 and 6 is
the distance between successive cells. The time step is τ ≈ 6.1 · 10−4, and the
parameters employed are given in Tables 5.10 and 5.11.



138

(A) Evolution of the transmembrane potentials
v35j at
the north pole of each j cell (θ = 0).

(B) Evolution of Z35
j at the north pole of each j

cell (θ = 0).

FIGURE 5-25. Example 7 from Section 5.5.4. Cell centers are along the z axis and
far from each other while the external applied potential is perceived differently by
each cells. The time step is τ ≈ 6.1 · 10−4, and the parameters employed are given
in Tables 5.10 and 5.11.

(A) Evolution of the transmembrane potentials
v35j at
the north pole of each j cell (θ = 0).

(B) Evolution of Z35
j at the north pole of each j

cell (θ = 0).

FIGURE 5-26. Example 8 from Section 5.5.4. Cell centers are along the z axis and
close to each other, and thus the external applied potential is varies over each cell.
The time step is τ ≈ 6.1 · 10−4, and the parameters employed are given in Tables
5.10 and 5.11.
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(A) Evolution of the transmembrane potentials
v25j at the north pole of each j cell with j between
1 and 4.

(B) Evolution of the transmembrane potentials
v25j at the north pole of each j cell with j between
5 and 8.

(C) Evolution of Z25
j at the north pole of each j

cell between 1 and 4.
(D) Evolution of Z25

j at the north pole of each j
cell between 5 and 8.

FIGURE 5-27. Example 9 from Section 5.5.4. The first four cells are in the plane
z = 0, while the others are in the plane z = 25. The time step is τ ≈ 6.1 · 10−4,
and the parameters employed are given in Tables 5.10 and 5.11.

the cells leads to different transmembrane potentials compared to those of Example 7 (see

Figures 5-25 and 5-26). Specifically, the transmembrane potential at the cell located at p1

increases and reaches its maximum around 1.5 in Example 7, while in Example 8 it de-

creases and reaches a minimum value around −1.5, see Figure 5-25 and 5-26. In addition,

the excitation ϕe in this case coincides with the one for the middle cell in Examples 7 and
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(A) t = 5 µs. (B) t = 5.75 µs.

(C) t = 6 µs. (D) t = 6.25 µs.

(E) t = 6.5 µs. (F) t = 7 µs.

FIGURE 5-28. Transmembrane voltages v25j obtained in Example 9 of Section
5.5.4 at different times. The length of the time step is τ ≈ 6.1 · 10−4. Parame-
ters employed are given in Tables 5.10 and 5.11.
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8, so the difference in the behaviour is due to the smaller distance to the other two cells in

Example 8 when compared to the situation of Example 7.

Finally, in Example 9 eight cells close to each other are simulated. In Figure 5-27,

the corresponding transmembrane voltage v25j and Z25
j at the north pole are presented. The

cells with the centers in the plane z = 0 show similar response—see Table 5.12 for the

center position of each cell—, while the cells with centers in the plane z = 25 have similar

response too while differing from cells beneath them. Figure 5-28 shows six snapshots

of the transmembrane voltages for the eight cells. It can be seen that the transmembrane

voltage starts changing earlier in the parts of the surface close to the rest of the cells,

therefore the interaction between them is crucial.

5.6. Conclusions and future work

In this work, we consider the electropermeabilization of disjoint cells following the

nonlinear dynamics from (Kavian et al., 2014). Specifically, we recast the volume boundary

value problem via a MTF and obtain a parabolic system of boundary integral equations

on the cell membrane. This constitutes a significant extension of the numerical method

presented in (Henrı́quez & Jerez-Hanckes, 2018). For simplicity, we assumed that the cells

have spherical shape, although the method can be extended to cells with other shapes.

The semi-implicit time stepping scheme presented requires two previous steps, and

allows to evaluate explicitly the expression corresponding to the nonlinear dynamics, that

results in solving a linear system for each time iteration. A current the scheme only works

for relatively small time steps. The proposed method allows one to change the model for the

nonlinear dynamics in an amicable way, as long as it is only a change of the nonlinear term

and the variables that are not the transmembrane potential. In this case, only the right-hand

side of the system to be solved (5.27) and the equations corresponding to the additional

variables that are not the transmembrane potential change. This is one of the advantages of

the numerical method employed.
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Further improvements to the numerical method to be implemented in the future are

matrix compression and parallelization techniques, along with an efficient solver for linear

systems at each time step.
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6. CONCLUSIONS

The thesis concerns the mathematical modeling and numerical simulations of problems

arising in electrophysiology. There are two groups of problems addressed in the thesis.

The first one concerns the modeling of signal propagation in myelinated axons and

nerve fascicle. Modeling electrical stimulation in tissues faces many difficulties, includ-

ing the nonlinear dynamics and complex geometries. We use multiscale modeling, and

in particular the homogenization technique, to derive macroscopic models for the electric

potential. In the case of an individual axon, the behaviour of the potential is governed

by a nonlinear cable equation, while in the case of bundles, we obtain a bidomain model.

The technique being used combines the two-scale convergence method and the method of

monotone operators. The numerical computations are performed to illustrate the depen-

dence of the effective coefficients on the area of the unmyelinated part of the membrane.

In the second part of the thesis, we address the cellular electro-permeabilization, that

is changing the permeability of the cell membrane by applying electrical pulses. Using the

multiple traces formulation, we develop a mathematical framework for the numerical res-

olution of cellular electro-permeabilization models in three dimensions. Namely, reducing

the problem to boundary integral equations on cell membranes, we simulate the electric

potential response for a fixed number of disjoint spherical cells.

In our further work we will compare numerical solutions of the homogenized models

for individual axons and axon bundles with the solutions of microscopic three-dimensional

models. This allow us to study numerically the rate of convergence, as ε → 0, from the

microscopic models to the macroscopic one. Also, we will make improvements to the

numerical method implemented for the problem of electropermeabilization, among them

parallelizing and matrix compression techniques, and will continue exploring the model-

ing issues of the electro-permeabilization phenomena and implementing other nonlinear

dynamics for the process.
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