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Abstract—Agricultural production must double by 2050 in
order to meet the expected food demand due to population
growth. Precision agriculture is the key to improve productivity
and efficiency in the use of resources, thus helping to achieve this
goal under the diverse challenges currently faced by agriculture
mainly due to climate changes, land degradation, availability of
farmable land, labor force shortage and increasing costs. To
face these challenges, precision agriculture uses and develops
sensing methodologies that provide information about the crop
growth and health indicators. This paper presents a survey of
the state of the art in optical visible and near-visible spectrum
sensors and techniques to estimate phenotyping variables from
intensity, spectral and volumetric measurements. The sensing
methodologies are classified into three areas according to the
purpose of the measurements: (i) plant structural characteriza-
tion, (ii) plant/fruit detection, (iii) plant physiology assessment.
This article also discusses the progress in data processing methods
and the current open challenges in agricultural tasks in which
the development of innovative sensing methodologies is required,
such as pruning, fertilizer and pesticide management, crop
monitoring and automated harvesting.

Index Terms—Precision agriculture, advanced sensing in agri-
culture, phenotyping, morphology characterization, physiology
assessment, fruit detection.

I. INTRODUCTION

Precision farming has evolved towards an information ap-
proach, whose aim is to acquire as much data from the crop
as possible to perform a customized management according
to its needs. In this way, precision agriculture (PA) could be
seen as a big control loop, where the machinery and the farm
workers are the actuators which maintain a sustainable and
profitable production. The farmers are in charge of taking
the corrective actions according to both: the production needs
and the environmental care. Sensing of the crop or the farm
fields allows their status and health assessment, providing the
loop feedback and therefore the loop closure. The latter is
a cornerstone of any information process, since it provides
the means to acquire data upon which any corrective action
can be performed. There are several ways to assess the status
of crops and plants, however, their morphology and physical
description (e.g., volume, leaf area index, reflectance) have
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arisen as widely used parameters for these purposes. The non-
invasive and non-destructive framework of crop sensing and
characterizing in terms of these two features (morphology
and physical description) provides a suitable approach for
evaluating the vegetation conditions. In this context, three main
applications can be recognized for agricultural phenotyping:

o Structural characterization: the estimation of parameters
such as: canopy volume, plant height, leaf area coverage,
biomass, among others, leads to take decisions in order
to enhance the agricultural process. For example, canopy
volume has been used to improve the spraying of phy-
tosanitary products (i.e., pesticides and fertilizers) on fruit
trees in terms of inputs saving and environmental costs [1],
[2]. Additionally, the leaf area coverage has been used for
crop growth monitoring and yield estimation since it reflects
many aspects of the physiological processes of vegetation
[3]. Further, biomass mapping and monitoring provide the
means for detecting changes in the plantation status due to
storms, drought or plagues [4], [5]. Moreover, since bio-
energy obtained from specific crops has become one of the
most frequently used power sources, estimating its biomass
arises as a productivity evaluation parameter [6].

« Plant/Fruit detection: successful results in automated activ-
ities such as pruning, harvesting, seeding, among others,
depend on an accurate localization of the object of interest
within the environment. To achieve this aim, several features
and properties of plants and fruits have been used, namely:
color, shape and temperature. In robotic fruit harvesting,
color is an attribute which can be used to identify the product
within the canopy [7], [8] or in the crop field [9]. Moreover,
for automatized robotic pruning, the shape of the stems is the
feature which in most cases provides the cutting directives
[10].

« Physiology assessment: the physical response of the canopy
to sunlight results in characteristic spectral signatures, which
provide insights about the physiological status of the plant.
In this way, several indices based on the spectral responses
of the crop have been developed to assess parameters such
as: nitrogen deficiencies, chlorophyll concentration, water
stress, pest infestation, among others[11], [12]. Additionally,
other sensing devices (e.g., Infra-red gas analyzers) provide
the means to measure directly a number of physiological
parameters of the plants. Much of them require a direct con-
tact with the crop, which results in more accurate readings,
however, the measuring process follows an individualized
path, which makes this approach time consuming in most
cases [13].
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A classification of the sensors based on the previously-
discussed applications is graphically depicted in Figure 1.

This manuscript reviews the most used sensors and sensing
systems for crop phenotyping in terms of its morphology and
physical appearance, along with the agricultural implications
of the parameters estimated. The variety of approaches here
revisited are intended to describe the integration of these
sensing devices with mechanic designs in order to develop
phenotyping applications such as sensing equipments or au-
tomated robots. Finally, it is noteworthy that previous notable
works provided a review of sensing and robotics in PA, focus-
ing on 3D imaging sensors [14], [15], challenges in robotic
harvesting [16], and fruit detection [17]. In contrast, this
work focuses on advanced phenotyping methods and a wide
range of sensing methods, which allow the analysis of various
agronomic implications and applications. This approach, along
with the interpretation of the sensing systems in PA as the loop
feedback in a classic control scheme represent the novelty of
our work.
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Fig. 1. Applications and sensors for morphological characterization, detection
of plants and physiology assessment.

II. SENSING FOR DETECTION AND MORPHOLOGICAL
CHARACTERIZATION OF VEGETATION

Several sensors and sensing systems provide relevant in-
formation which allows a characterization of the vegetation.
Phenotyping is then addressed from the estimated or measured
variables by finding a relationship between the characterization
obtained and the status of the plants or crops. In this section we
provide a discussion of the sensors used for: i) morphological
characterization of crops, and ii) plant or fruit detection.
According to the characteristics and measurement principles,
such sensing devices can be divided in two broad categories:
range and artificial vision sensors.

A. Range Sensors

1) Ultrasound: This type of sensor works by emitting an
acoustic pulse of high frequency and short duration which
propagates trough the air, impacts to the target and returns
in form of echo. Electronics inside the sensor calculates the

distance based on the time between the emission of the sound
and receiving the echo signal. Ultrasonic sensors were widely
used in the past, but the improvement and cost reduction of
other sensing technologies have made their use less common.
In this scenario, according to [18], there are some important
drawbacks that made ultrasonic sensors less competitive: (i)
when impacting against tilted surfaces, the sound diverts
causing inaccuracies in the measurements; (ii) the interference
produced when using sensors very close to each other, (iii)
the measurement resolution, and (iv) the relatively slowness
of sampling. However, the main advantages of this sensor are
its low price and its robustness against fog and dust.

Despite of the disadvantages of this sensor, several works
report its application to estimate geometric parameters of the
crop such as volume, density, height width, among others.
Specifically, in [19] is proposed a real time system to estimate
the canopy density on apple trees and grapevines using four
ultrasonic sensors mounted on a tractor. Previous works used
the same measurement framework for estimating tree volumes,
which provided information to adjust the dosing parameters of
automatic spraying machines [20].

2) Time of Flight (ToF) Cameras: This type of range
sensor provides 3D measurements of distance and intensity
by using an array of detectors and a source of light. Due to
its capabilities of accuracy, compactness and frame rate these
sensors have been used in diverse applications. Concretely, in
agricultural research, the structural characterization detection
of plants or fruits have been addressed using these cameras.
For example in [21] and [22] it is presented the use of a ToF
camera for extracting geometrical variables of the plant that al-
lows the modellling and monitoring of individual leaves. Both
research works were carried indoors, in laboratory conditions,
since field operation conditions (i.e., sunlight presence) can
cause the saturation of the detectors, and therefore a poor
performance, as reported in [23].

Incorporating color information provides important im-
provements for plant characterization and detection (Fig. 2).
For example, the fusion of color and depth data to detect
red sweet pepper in greenhouses is reported in [24]. The
main processing is performed to RGB images; however, depth
information was used to improve the detection accuracy,
obtaining up to 90.9% of true positive rates when using natural
light. Further, in [8] is detailed the use of depth and RGB
cameras mounted in a mobile platform that acquires data
in an over-the-row path within apple orchards. The sensing
platform provided ideal illumination conditions so that the
sensors would have good performance. The main processing
of this work is performed on the color images, whereas depth
information was used to filter duplicate detections; reporting
up to 82% of detection accuracy. Having color and depth
images obtained by different sensors allows an improvement in
characterization and detection; however, when both are given
by a single sensor, the sensing scheme becomes smoother. In
this way, in [25] it is reported the use of a videogaming device
(capable of providing color, depth and intensity of reflectance)
to obtain a 3D reconstruction and modelling of apple trees.

3) LiDAR: Light Detection and Ranging is a non-
destructive laser technology for measuring distances, which
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Fig. 2. Color image and its corresponding colorized 3D point cloud acquired
with a commercial Time of Flight camera in a pear orchard. The blue points
represent the absence of color information due to the limited vertical field of
view of the color camera. Image courtesy of the Research Group in AgrolCT
& Precision Agriculture, University of Lleida, Spain.

has been used in agricultural research to estimate structural
parameters of the crop such as volume, leaf area coverage,
height, among others [4], [26]. Within the LiDAR sensors,
two types of laser scanners can be distinguished: 3D and 2D;
however, the latter are more used since they are cheaper and
can be employed to get 3D measurements (with the appro-
priate hardware). Further, according to the distance measuring
method, there are two types of laser scanners: (i) Time of
Flight LiDAR, which employs the time that takes to the laser
pulse to travel between the sensor and the target; and (ii)
Phase-Shift LIDAR, which uses the phase difference between
the incident and reflected laser beams.

The versatility for acquiring fast accurate measurements and
quantifying the spatial variations of the vegetation have posi-
tioned LiDAR as a widely used sensing device for agricultural
purposes. In this way, terrestrial and aerial applications have
been reported to classify vegetation in large scenes or to obtain
a geometric description of the crop [27], [28]. Regarding aerial
applications, in [29] is reported the use of a full-waveform
airborne laser scanner to classify orange trees, grass and
ground based on the backscattering properties of the landscape.
Additionally, in [30] returns from a full waveform LiDAR are
used to build allometric models for estimating the stem volume
and biomass of individual pine trees. The authors compared
these models with others which do not rely on the waveform
information and found that this parameter does not have a
positive influence in the volume estimations. However, the ac-
curacy of the biomass estimations was improved. Furthermore,
the effects of the flying altitude and sensor configurations in
the estimation of specific biophysical forestry parameters (i.e.,
Lorey’s mean height and timber volume) of the canopies by
using a small footprint aerial LiDAR is presented in [31].

A number of research works report the use of point clouds
obtained from 2D or 3D terrestrial LIDAR to infer structural
information of the canopy, such as the volume, area, leaf
density, branch dimensions, among others. Some of them took
place in laboratory or controlled environments emphasizing the
data processing techniques or the validation of new LiDAR-
based technologies [6], [12], [32]. However, once the method
is validated in laboratory, the challenge lies in performing field
experimentations. In order to sense large areas of the farm
fields, laser scanners are usually placed over automatized or
manually driven platforms, which allow the scanning of entire

crops efficiently. In this way, a localization system, along with
a 2D LiDAR mounted on such vehicles can be employed to
generate a 3D point cloud of the environment, which can in
turn be used to determine the structural variables of the canopy
(Fig. 3). For example, in [33] this method of data acquisition is
used to estimate the volume of fully and partially scanned pear
trees in real time. Further, the leaf area coverage of plum trees
was estimated using data from a 2D LiDAR placed in a tractor
which offered a top view of the orchard in [34]. The results
were compared with camera-based estimations, showing a
strong correlation between both sensing systems. However,
when comparing with hand-measured values, the correlation
decreased in some extent, which implies that the proposed
methodology could only partially describe the leaf area of the
trees. Moreover, in [35] is described the relationship between
canopy volume and leaf area density, both estimated from 3D
data acquired applying the previously described measurement
framework to vineyards, apple and pear trees. A non-linear
relationship was obtained via logarithmic fitting of volume and
leaf area estimations, obtaining a mean correlation coefficient
of 0.87, and as high as 0.98 for the best case.

The use of moving 3D laser scanners have also been
addressed for tree modelling. Particularly, in [36] is reported
the geometric modelling and reconstruction of urban trees
skeletal structures. The authors used a method based on a
series of global least squares optimizations in order to fit
the points to the resulting graphs, and thus automatically
reconstruct the skeletal structure of the trees. In contrast,
placing the laser scanners (especially 3D LiDAR) at fixed
positions also allows the inference of important characteristics
of trees or field farms. Specifically, in [28] is used a full
waveform 3D LiDAR for detecting post harvest grown in a
winter barley farm. Using the reflectance of the field, the
authors corrected the range measurements and obtained up to
99% accuracy. Further, in [37] 3D data is employed to estimate
the biomass of low-stature Arctic shrubs. To achieve such aim,
two approaches were used: voxelization of the point cloud and
a volumetric approximation, obtaining high correspondences
between hand measured values and both methods. Regarding
forestry applications, the detection of tree structural parameters
(e.g., trunk diameter, leaf density) and biomass using LiDAR-
based scanning systems mounted on a tripod have been studied
with promising results [6].

Due to the versatility and good performance of LiDAR
sensors, several improvements (much of them still in devel-
opment) have been proposed. Particularly, the most novel,
and still under research is the so-called Hyperspectral LiDAR
(HL). This equipment is intended to join the benefits of the
classical laser scanners with the capability of recognize mul-
tiple wavelengths [38]. The use of this sensor to agricultural
applications have been studied in [39], where it is reported
the using a HL to assess the status of vegetation in controlled
environments. The results demonstrated the potential of using
this type of LiDAR in spectral analysis of vegetation. Further,
the estimation of parameters like nitrogen content (usually
performed with spectral cameras or spectrometers) is possible
with HL, as shown in [12] for rice leaves.

Table I summarizes the main characteristics of range sen-
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Fig. 3. Color image of an ornamental tree and its corresponding 3D point
cloud acquired with a moving 2D LiDAR.

sors, highlighting their capabilities.

B. Artificial Vision Sensors

1) Structured Light Cameras: These sensors provide ac-
curate measurement of distances by projecting an IR pattern
over the scene and inspecting the distortion of the pattern
received back. Structured light cameras are intended to work
indoors, therefore for agricultural research they are mostly
employed in laboratory conditions or greenhouses [41]. In [42]
a leaf segmentation approach is presented using data from
a commercial structured light camera (originally designed
for videogaming purposes). This work also provides several
crop monitoring applications of the leaf segmentation method
proposed. Furthermore, the same sensor has also been used
for detecting structural parameters including size, height and
volume. Concretely, the characterization of sweet onions and
cauliflowers is proposed in [43] and [44], respectively. Results
shown good consistency and accuracy in both cases, proving
to be suitable methods for quality assessment and harvesting
directives. However, in both works is stated that illumina-
tion conditions seriously affect the sensor performance. In
addition, in [45] a complete description of the application
of structured light cameras for a variety of agricultural and
livestock purposes is presented. This work provides a complete
characterization of these sensors in changing illumination
conditions (typical of farm fields), obtaining an inverse re-
lationship between the number of points acquired and the
illuminance received by the sensor.

2) Color Cameras: Color cameras have been widely used
in agricultural detection and characterization. From the color
information provided, additional parameters such as texture
and geometrical features can be also obtained, which have
proved to be suitable in certain applications (e.g., detection,
positioning, guidance). However, the main drawback of using
this type of sensors is the influence of the varying ambient
lighting conditions, especially in outdoor environments. De-
spite this fact, when the conditions are suitable, they have
proved to perform well in field conditions. For example, the
detection of fruits or vegetables within the canopy using color
cameras can be applied in automated harvesting tasks. In
this context, a recent work reported the use of a number of
segmentation techniques based on color features and shape to
detect immature green citrus [46]. The results of this work
showed an accuracy of 83.4% in the detection of 308 units,
which is promising taking into account that the dataset was

acquired with different illumination conditions. Furthermore, a
real time guidance system for apple harvesting was developed
in [7] for robotic harvesting activities. In this work, color
and shape features extracted from color images were used,
along with a supervised classifier, which resulted in 89%
of successful detections. Additionally, a color camera with
artificial illumination was used in [47], to present a system
capable of detecting berries in a vineyard, for later estimating
the yield of the crop. Results showed a high amount of true
positive detections and the yield prediction with an error of
maximum 11.5%.

Other classification and characterization activities also re-
port the use of color cameras as the main sensing device. For
example, a camera placed on an aerial vehicle was used in
[29] to classify the land into orange trees, grass and ground,
providing the ground truth for the main experiment which used
a laser scanner. Furthermore, in [48] a method is presented for
identifying plant diseases, based on color histograms of the
training images and a supervised classifier. Maturity of fruits
can also be assessed by using color images, as shown in [49]
for mangoes. The authors developed a system to automatically
sort the fruit in base of a correlation of fruit color features
and their maturity. A conveyor belt and solenoid valves were
used to store the mangoes according to the detected condition.
Results of the proposed method were compared with ground
truth provided by human expert workers, obtaining up to
93.10% of accuracy.

Three dimensional reconstruction of the environment is
mostly addressed by using stereo vision systems. However,
using a single camera and image registration algorithms (e.g.,
Structure from Motion) can provide 3D information of the
environment. Specifically, in [50] it is described the estimation
of height, diameter and volume of linden, walnut and maple
trees from images acquired with a single hand-held camera.
The authors report acceptable accuracies when comparing
with hand measured values, proving the suitability of the
proposed approach for assessing the structural parameters of
small trees. Additionally, a camera placed on a manually
driven platform was used in [51] to estimate height and leaf
area of different plant species. The results were compared
with destructive hand-measured values, obtaining a strong
linear correlation. Nevertheless, the main drawback of these
registration algorithms lies in the need of static structures to be
reconstructed, since slight displacements (e.g., wind moving
the trees or plants) of the objects cause poor 3D alignments.

3) Stereo Vision: This is a sensing system capable of
providing a 3D color reconstruction of the environment, by
using two or more monocular cameras in a fixed configuration.
The level of description varies depending on the resolution of
the camera; however, high resolution images results in a large
amount of data to be stored, which make real-time applica-
tions a challenging task. The outcome of this measurement
system is a 3D point cloud that renders the scene, similar to
the approaches that use a color camera and a depth sensor
together. In this way the applications in agricultural research
are similar to those described earlier, by estimating structural
parameters, representing the morphology of the plants and
detecting plant or fruits. With this respect, in [52] it is reported
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TABLE I
RANGE SENSORS: ADVANTAGES AND DISADVANTAGES IN MORPHOLOGICAL CHARACTERIZATION AND DETECTION
Sensor Accuracy Range Advantages Limitations References
Provide one range measurement per sensor
Low cost Substancial accuracy reduction when increasing [18], [20]
Ultrasound From 60 mm Up to 50 m Robust in presence of dust, fog, water, sunlight the distance to the object [19]’ [40]
Null influence of the optical properties of the target — Accuracy reduction whith changes in target’s ’
orientation
Provides multi echo readings plus intensity returns Sensitive to dust, fog and water
in some cases Large amount of data is required to
Time of Flight LiDAR 2D: from 10 mm 2D: up to 250 m  Can work during day and night characterize entire crops or large farm fields [33], [35]
co g 3D: from 1.2 mm  3D:up to 6 Km  2D: Versatility to acquire 3D measurements with Trade-off between accuracy and maximum [36], [37]
the proper setup range
3D: Provides raw 3D measurements 3D: High cost
High accuracy at large ranges
Provides multi-echo readings and in some cases High Cost
Phase-Shift LiDAR from 2 mm Up to 330 m intensity returns Only 3D sensors commercially available [27]
Can work during day and night Sensitive to dust, fog and water
Provides raw 3D measurements
Provides depth information for each pixel Limited range
Time of Flight Cameras ~ From 10 mm Up to 8 m Measure also the return intensity 2 [8], [24], [25]

Do not have mechanical moving parts

Sensitive to dust, fog water and sunlight

the comparison of time of flight cameras and stereo vision
systems for leaf imaging purposes under different illumination
conditions. Fruit detection applications have also been studied
using stereoscopic vision, as reported in [53] for red and green
apples. The authors used image processing techniques based
on the color information to detect the fruits in individual
images. Depth information is used to remove duplicates based
on the distance between two estimations. Results showed
good accuracy, reporting errors of 3.2% when detecting red
apples and 1.2% for green apples. Additionally, an example of
blossom detection within the canopy of peach trees is reported
in [54], obtaining an accurate positioning.

Table II summarizes the strengths and limitations of the vi-
sion systems described, including thermal cameras, described
in the next Section.

III. SENSING FOR PHYSIOLOGICAL ASSESSMENT OF
VEGETATION

A. Thermal Cameras

Temperature have proven to be an important parameter
for some agricultural activities like crop diagnosing and fruit
detection. For example, Fig. 4 shows the thermal character-
ization of an ornamental tree, which can provide means to
segment the tree from the rest of the scene, and later assess
the status of the canopy. Furthermore, the plant temperature
has been recognized as an indicator of plant water availability
[56], which would allow the development of site-specific
irrigation technology based on the temperature of the plant.
The relationship between temperature of the leaves and water
stress or transpiration in the plant using thermal cameras have
also been addressed, as reported in [11]. However, in the
same work it is stated that the relation is not one to one
since the modification in those physiological parameters of
the crop also depends on other variables such as: ambient
temperature, quality of the air and soil, etc. Hence, the water
stress diagnosis of the crop requires the application of a multi-
sensor approach.

Another use of thermal cameras is fruit detection, since
fruits absorb and irradiate the solar radiation in a different

Fig. 4. Color image of an ornamental tree and its thermal view.

way compared with leaves and trunks, allowing the design
of accurate classification methods. Specifically, in [55] a
thermal camera along with RGB imagery was used to detect
green apples by applying image processing approaches. The
authors reported an accuracy up to 74% when using together
thermal and color camera images in the processing. Within
this framework, one of the most important applications of
fruit recognition on trees is the development of automated
harvesting systems, as the reported in [7], for red apples. In
addition, thermal imaging also represents an attractive solution
to identify human operators or animals, especially when they
are partially occluded or hidden in high vegetation [57].

B. Multi-spectral and Hyper-spectral Cameras

Absorption and reflection of radiation in certain bands of
the electromagnetic spectrum are well related with a number
of physiological variables such as, water stress, chlorophyll
content, nitrogen deficiencies, among others. For example, the
chlorophyll pigment absorbs light in the red (long wavelength)
and the blue (short wavelength), whereas the green light
is reflected. Furthermore, the reflectance in the mid-infrared
(MIR) band is influenced by the water content of the crop.
This reflectance information of the canopy can be measured
by spectrometers and cameras. However, the additional spa-
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TABLE I
REMARKABLE CHARACTERISTICS OF THE MAIN ARTIFICIAL VISION SYSTEMS USED FOR AGRICULTURAL CHARACTERIZATION AND DETECTION

Sensor Advantages Limitations References
Structured Light Low cost Sensitive to variable illumination conditions
& Provide color and depth information Limited Range [42], [44], [45]
Cameras . . -
Provide good accuracy Provide low resolution images
Low cost Sensitive to changing in illumination conditions
Color Cameras . .. Lo Need stable daylight conditions [46], [47], [49]
Provide color, texture and geometric information in 2D .
Unknown scale in raw data
Sensitive to changing in illumination conditions
Stereo Vision Provide color, texture and geometric information in 3D Need stable daylight conditions [52]-[54]
Provide a big amount of data to process
Thermal Cameras Do not rely on color attributes Need calibration to return accurate measurements (551, [56]

Provide also physiological insights of the plants

Affected by the reflectance of the target object

tial information also provided by a camera makes it more
suitable for vegetation analysis. According to the span of
the electromagnetic spectrum covered and the resolution and
quantity of the bands that they are capable of measure, these
sensing devices can be catalogued as multi-spectral (MS) and
hyper-spectral (HS). Multi-spectral imagery can quantify the
reflectance of the scene in a few broad bands, which are
not necessarily contiguous, for example: Visible (VIS, 400-
700 nm wavelength), Near Infra-Red (NIR, 700-1000 nm
wavelength), Short Wave Infra-Red (SWIR, 1000-2500 nm
wavelength), among others. On the other hand, hyper-spectral
cameras allows a sort of continuous measurement of the
spectrum, providing reflectance readings in contiguous narrow
bands. In this context, Fig. 5 illustrates this difference between
MS and HS imaging. Another important difference between
these sensing systems lies in the amount of information to
be processed. The level of spectral detail obtained with HS
cameras produces larger quantities of data.

Satellite, aerial and terrestrial methodologies have been
employed to collect MS and HS imagery for a number of
applications [58], [59]. From this spectral information several
broad and narrow band indices have proved to be suitable
for evaluating specific physiological aspects of the canopy.
A complete list of such indicators, its definition and the
variables that they measure is detailed in [60]. Multi-spectral
imagery along with aerial methods have been very popular to
evaluate the status of the canopy using these indices. Water
variability, vigour chlorophyll detection, crop yield, nitrogen
stress and weed infestation are some of the aspects that have
been evaluated using unmanned aerial vehicles [56], [61], [62].

Despite the good results obtained when using MS data, in
some cases it can not provide conclusive information about
the status of the vegetation. This is mainly because certain
characteristics of the canopy are more correlated with its
response in narrow bands, which are obtained with HS data.
However, due to its high dimensionality, the bands that do not
contribute with information are usually excluded from analysis
by using statistical (e.g., Principal Component Analysis) [63]
or Machine Learning techniques [64]. In this way, a number of
works report the use of hyper-spectral vegetation indices for
PA. Water and plant stress, pest infestation and soil properties
are some of the characteristics that can be assessed employing
HS imagery [65]-[67]. Furthermore, in [68] is detailed a

review of the recent works about agricultural applications of
HS imagery.

Multi-spectral and hyper-spectral information acquired with
terrestrial methodologies have similar agricultural applications
as explained before (e.g., nitrogen uptake levels, weed detec-
tion, pest infestation), as reported in various scientific works
[69], [70]. However, fruit localization and quality evaluation
are specific applications which can be better addressed using
proximal sensing. For example, in [71] it is reported the use
of a motorized HS camera to detect green citrus. The camera
was moved by an electrically-driven pan head in order to cover
more space. The results obtained high true positive detections
for fruit located in the periphery of the canopy (up to 100%)
and promising true detections when the fruit was occluded
by the leaves of the trees (up to 79%). In addition, in [72]
is presented a system capable of detecting skin imperfections
in peaches. The sensing system consisted on a HS camera
pointing to the fruit in a chamber illuminated by halogen
lights. The results showed accuracies greater than 86% when
classifying 9 types of peach skins. These spectral sensing
systems could be used for yield estimation or to be part of
harvesting units.

Figure 6 shows the evolution of range and vision sensing
systems in the last fifty years, and their main contributions.
Surprisingly, thermal and multispectral sensing are “old” so-
lutions that were already proposed in the late sixties. Recently,
the decreasing in the technology costs and the availability
of powerful processing systems have arisen new interest and
opened new applications including PA. The most recent sen-
sors are structured-light cameras that represented a huge leap
forward due to their high performance/cost ratio.

Table III provide a summary about the phenotype feature
that can be measured or estimated using the sensors and
sensing systems surveyed.

IV. PROCESSING TECHNIQUES

Sensors in most cases provide raw data, which must be
organized and processed in order to extract the information
of interest for the specific application. For example, in [33],
the volume of the canopy is estimated using four different
approaches: convex hull, segmented convex hull, cylinder-
based modelling and voxelization. In contrast, this parameter is
calculated in [35] using the volume of the solid obtained when
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Fig. 5. Schematic representation of the measurements provided by multi-spectral and hyper-spectral cameras. MS imagery allows to determine reflectance in
discrete broad bands of the electromagnetic spectrum, whereas HS imagery provides spectral information for narrow and contiguous bands.
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Fig. 6. Evolution in the use of range and artificial vision sensors for morphological characterization and fruit/plant detection. The years report the first use

of these sensing systems for agricultural purposes.

TABLE III
SENSING SYSTEMS COMMONLY USED TO ESTIMATE MOST OF THE
IMPORTANT PHENOTYPE FEATURES

Feature Type Phenotype Feature  Appropriate Sensor/Sensing System

Leaf area 2D-3D LiDAR, ultrasonic, stereo

coverage vision, color cameras
Morphological

Foliage Densit 2D-3D LiDAR, ultrasonic, stereo

oliage Density vision, structured light cameras

Stems shape 2D-3D LiDAR, stereo vision

and size

Plant heieht 2D-3D LiDAR, ultrasonic, color

g and structured light cameras

Nutrient content HS LiDAR, MS and HS cameras

Physiological

Water stress Thermal, MS and HS cameras

Biomass MS and HS cameras

Fruit Maturity Color, thermal, MS and HS cameras

intersecting two scans from the front and the back of each
tree. Moreover, when range sensors are used, clustering and
matching techniques are most commonly applied to segment

objects of interest and to obtain a representation of the entire
scene or single objects, respectively [25], [36]. For data
acquired from cameras, results are obtained using a wide
range of processing techniques from the copmuter vision liter-
ature. Color-based features, color space transformation, image
filtering, morphological operations, foreground segmentation,
among others are the computer vision tools which have been
used for detection and characterization [7], [47], [48].

An alternative set of approaches employ Machine Learning
techniques, which by means of supervised and un-supervised
classifiers provide adaptation and learning capabilities. K-
means is a popular algorithm for unsupervised learning which
is used for clustering and segmentation. This technique, along
with neural networks, was used in [55] for detecting apples
from color and thermal images. Regarding supervised classi-
fiers, in [73] k-nearest neighbor and support vector machines
algorithms were employed to distinguish 16 classes in HS
satellite images of agricultural landscapes. In addition, a
supervised classifier is also used in [74] to detect potato plants
in a sugar beet crop by using color cameras under changing
natural lighting conditions. Another example can be found in
[75] where a self-learning classification approach based on
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radar readings is used for scene understanding. Nevertheless,
a deeper description of the techniques and algorithms used in
our review goes beyond the scope of this work.

V. AGRICULTURAL CHALLENGES

The sensing of the morphology and structural distribution of
the plants allows the automation of a number of agricultural
tasks. Automatic mechatronic platforms capable to navigate
and to perform activities of pruning, phytosanitary dosage,
harvesting, among others, within the environment represent an
improvement in the farming processes in terms of cost savings,
environmental care and production rates. In plenty of cases,
the automation is not an option but also a requirement due to
the lack of human labor force since other activities are better
paid and also offer more comfortable working conditions. This
section focuses on the agricultural challenges that have been
faced by using the sensing systems previously described.

A. Fertilizer and pesticide management

Supplying the optimal treatments according to the orchard
characteristics provides an efficient management of the crop or
farms. This approach allows a reduction in the environmental
impacts produced by the agricultural activity. Mounting the
sensors over tractors in order to estimate such features enables
an efficient canopy characterization that can be used to con-
figurate the sprayers (e.g., nozzles type, flow rates, pressure).
In this way, plenty of the research has been carried out in the
last years by fully developing (from laboratory design, to field
tests) complete spraying systems mounted on manually driven
vehicles. These systems are capable to characterize specific
orchards and spray the product in real time according to the
area or volume of the canopy [2], [40], [76]. However, the
development of fully autonomous spraying vehicles is a topic
still under study since the characteristics of the agricultural
environment in much cases difficult the guidance and naviga-
tion tasks. Occlusion of GPS signal by the vegetation, reduced
mobility, low-traction, deformable and steep-hill terrains, are
some issues which can quickly degenerate the quality of the
positioning and compromise the task execution.

B. Pruning directives

Performing an adequate pruning task provides a number
of benefits to the orchard in terms of health and production,
namely: avoids the growing of branches with poor health,
encourages the renovation of branches, allows a good illumina-
tion of the tree and prevents harvesting difficulties. Identifying
the correct branches to prune is usually done by specialized
people; however, in large farms this task is especially time
consuming. Thus, pruning automation arises as an alternative;
for example, obtaining a three dimensional model of the
tree from data acquired with different sensing systems is an
approach which seems suitable to infer pruning directives [36].
Nevertheless, specific works report the characterization of trees
for pruning activities. For example, in [10] a ToF camera was
used to identify pruning branches in apple trees.

Despite of the advances in this topic, automatic pruning of
plants and trees is still a challenging topic of research. The

variability of the tree structure, the actuators needed to perform
the cuts within the canopy and the accuracy of the pruning
points detection are some of the main issues to be addressed.

C. Crop monitoring

The intensive information nature of PA technologies allows
a constant control of the crop status. Crop monitoring can be
seen as a consequence of the feedback provided by the sensors
or sensing systems. Moreover, the physiological status of the
crop, inferred from the information acquired can also be used
to determine external parameters to the crop itself. Quality
of the soil, illumination conditions, irrigation level, disease
prevention, yield supervision are some of the variables and
applications which can be addressed using the sensing systems
reviewed. In this way, a correct and efficient management of
a farm field must be capable of monitoring the crop in a long
term (i.e., trough the seeding, the growing and the harvesting)
using these developments. For example, in [77] is reported
the use of radio transmitters and receivers along with GPS
measurements in order to manually tag the locations of fruits
when they are harvested by field workers. This information can
be later used by the farmer to build yield maps of the crop
based on the quantity of the production and its distribution
within the canopy foliage. In this framework, building a
database of the crop physiological and spatial parameters
during the growing stages and the corresponding season would
allow an integral management of the farm fields.

D. Breeding

In parallel to the applications that investigate the improve-
ment of crop management during food production, plant
phenotyping technologies are being used also to improve plant
breeding. This application, in general, seeks to understand the
mapping from the genetics of a plant (known as genotype), the
physical characteristics of the plant (known as phenotype), and
the environment to some plant performance phenotype such as
yield or disease resistance. The standard practice to addressing
this problem uses large scale experiments, where breeders
use their experience and understanding of the plant genetics
to create new plant varieties (known as accessions), which
they then plant and observe over the course of successive
growing cycles. The primary limiting factor in this type of
breeding approach is the number of plants that a specialist can
evaluate each growing cycle. Automated data collection has
the potential to alleviate this bottleneck, increasing the quantity
and quality of phenotype and environmental measurements
collected throughout the growing cycle and hence accelerating
the overall breeding process. This is commonly referred to
as high throughput phenotyping, or HTP, and researchers are
exploring its application within the PA framework. In this
scenario, a number of works report the development of systems
for automated field phenotyping from ground vehicles ([78])
as well as from umanned aerial vehicles ([79]).

VI. CONCLUSIONS

This paper presented a survey of the main sensing systems
in Precision Agriculture for plant structural characterization,
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plant/fruit detection, and plant physiology assessment. Sensing
methods for structural characterization rely mainly on color
cameras, structured light cameras, 2D and 3D LiDAR sensors,
time-of-flight cameras, stereoscopic vision or ultrasonic sen-
sors for volumetric and morphological measurements. Some
plant and fruit detection techniques employ color cameras
and range sensors such as LiDAR, time-of-flight and stereo-
scopic cameras, but also include capacitive and photoelectric
sensors, MS, HS and thermal cameras. The methodologies
thus far developed for non-invasive plant physiology assess-
ment employ photosynthesis and fluorescence measurement
systems, as well as MS and thermal sensors. The accuracy
of the approaches has improved significantly over the last
decade, thanks to the improvement of the sensor’s resolution
and the decreasing in costs. The accuracy of the different
approaches for morphological analysis, plant/fruit detection,
and physiology measurement is in general above 80%. Pro-
vided that environmental conditions can be isolated or made
comparable, the accuracy of each sensing methodology is
often associated to the characteristics of the plant, such as
stem/branch complexity, foliar density and contrast between
fruits, leaves, and branches. Some challenges in precision
agriculture which can benefit from the development of new
sensing methodologies and the improvement of the process
models include the measurement of the effectiveness of the
spraying process of phytosanitary products, the development of
automated perception methods for pruning that are capable of
handling the variability and complexity of the branch structure
of shrubs and trees, and the improvement of crop monitoring
techniques and inference models not only for yield estimation,
but also to manage irrigation, soil and illumination conditions,
growth rates, plant nutrient uptake and assimilation. Novel
mechatronic systems, including ground and aerial robotic
platforms, for high throughput phenotyping will require im-
provements in the speed of algorithms and their ability to cope
robustly with plant and environmental variability.
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