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 RESUMEN 

 

La evapotranspiración (ET) es un proceso hidrológico relevante en regiones áridas, donde 

el agua es vital para el desarrollo de comunidades locales y ecosistemas. Históricamente, 

realizar estimaciones de ET ha sido un gran desafío en estas áreas, debido a que sus 

paisajes se componen principalmente de vegetación dispersa adaptada a las condiciones 

de sequía, lo que se contradice con muchas de las suposiciones usadas en los métodos 

tradicionales de estimación de ET. Sin embargo, existen varios estudios realizados en 

zonas áridas que han mostrado buenos resultados cuando se implementan fórmulas 

empíricas de regresión que, a pesar de su simplicidad, son comparables en exactitud con 

modelos más complejos. Aunque existen muchos tipos de fórmulas de regresión para 

estimar ET, no existe un consenso respecto a qué variables se deben considerar en el 

análisis. En esta investigación se usaron algoritmos de aprendizaje automático para 

encontrar las principales variables que predicen la ET diaria y mensual en regiones áridas 

mediante el uso de ecuaciones de regresión lineal. Se utilizó como datos de entrada en las 

estimaciones mensuales solo información meteorológica y luego combinada con índices 

vegetacionales de percepción remota (VI’s). Se recolectaron datos meteorológicos y flujos 

de ET de 10 sitios en Chile, Australia y Estados Unidos. Las estimaciones diarias y 

mensuales fueron evaluadas en tres sitios de validación, uno por país, en donde se obtuvo 

desempeños diferentes. Los resultados obtenidos indican que la energía disponible es la 

principal variable que predice la ET en los sitios de estudio, incluso cuando las regiones 

áridas son típicamente descritas como ambientes con agua limitada. El VI que representa 

mejor la ET es el Índice de Agua de Diferencia Normalizada (NDWI) que, a diferencia de 

otros VI’s, representa la disponibilidad de agua en plantas y el suelo en vez de la actividad 

de la vegetación. El mejor desempeño obtenido en las ecuaciones de regresión se obtuvo 

en la estimación mensual con la incorporación de un VI el sitio de validación de E.E.U.U. 

(R2 = 0.82), mientras que el peor se obtuvo en la estimación mensual del sitio de validación 

de Australia cuando solo se consideró el uso de información meteorológica. Incorporar 

información de percepción remota resulta en mejores estimaciones de ET, en contraste a 

cuando solo se incluye información meteorológica en el análisis.  



 

 

Palabras claves: Evapotranspiración, percepción remota, aprendizaje automático, 

regiones áridas. 

  



 

 

ABSTRACT 

 

Evapotranspiration (ET) is a relevant hydrological process in arid regions where water is 

vital for the development of local communities and ecosystems. ET estimations in arid 

regions have been historically a great challenge, because these landscapes mainly consist 

of sparse vegetation adapted to drought conditions, which do not comply with many of 

the assumptions used in traditional ET estimation methods. Nevertheless, in arid areas 

several studies have shown good results when implementing empirical regression 

formulas that, despite their simplicity, are comparable in accuracy to more complex 

models. Although many types of regression formulas to estimate ET exist, there is no 

consensus on what variables must be included in the analysis. In this research, I used 

machine learning algorithms to find the main variables that predicts daily and monthly ET 

in arid regions using linear regression equations. Meteorological data alone and then 

combined with remote sensing vegetation indices (VI’s) were used as input in monthly 

estimations. In-situ ET fluxes and meteorological data were obtained from ten sites in 

Chile, Australia and United States. Daily and monthly ET estimations were evaluated in 

three validation sites, one from each country, obtaining different performance. My results 

indicate that the available energy is the main meteorological variable that predicts ET 

fluxes in the assessed sites, even when arid regions are typically described as water-limited 

environments. The VI that represents better the in-situ ET fluxes is the Normalized 

Difference Water Index (NDWI), which unlike other VI’s, represents water availability in 

plants and soil instead of vegetation activity. The best performance of the linear regression 

equations was obtained for monthly estimates with the incorporation of VI’s at the U.S. 

validation site (R2 = 0.82), whereas the worst performance of these equations was obtained 

for monthly ET estimates at the Australia validation site when only meteorological data 

are considered. The incorporation of remote-sensing information results in better ET 

estimations in contrast with estimations obtained when only meteorological data are 

included in the analysis. 

Keywords: Evapotranspiration, remote sensing, machine learning, arid regions. 
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1. INTRODUCTION 

 

Arid and semi-arid regions cover approximately 41% of the world’s land and are inhabited 

by more than 2.500 million people. These regions are expected to expand following land 

degradation due to unsustainable land and water use, as well as climate change that 

exacerbates desertification (Gaur & Squires, 2018). In this context, an accurate 

quantification of evapotranspiration (ET), a relevant hydrological process, is important for 

water resources management to ensure availability for human and environmental needs 

(Bunting et al., 2014; Carter & Liang, 2018; Gaur & Squires, 2018; Nagler et al., 2005). 

ET is mainly driven by energy exchange and water availability, but there are several 

meteorological and vegetational characteristics that determine its magnitude, making its 

estimations more complex (Allen et al., 2011; Allen et al., 1998). Major challenges in ET 

estimation are those that make the process even more dynamic over time and variable in 

space. In arid regions, a large proportion of the low and sporadic precipitation returns to 

the atmosphere, whereas a small proportion infiltrates on soil., Also, the plant available 

water depends of the nature, the hydraulic properties and the water retention capacity of 

the soil Further, the varying vegetation density, tree height and physiological plant 

adaptations due to water stress influences the transpiration process (Allen et al., 2011; 

Jovanovic & Israel, 2012). 

Several direct and indirect methods have been developed to improve ET estimations. 

Lysimeters, eddy covariance systems (EC) and scintillometers are classified as direct ET 

estimations methods, which have been cataloged as the most accurate approaches by 

several authors (Carter & Liang, 2018; Meijninger et al., 2004; Nagler et al., 2005). 

However, these methods are often expensive and can only be fully operated by trained 

personnel. Also, they have limited footprints in the order of hundreds of meters or a few 

kilometers, which limit their applicability in basin or regional studies (Carter & Liang, 

2018). Nevertheless, they are important for the evaluation of indirect methods (Allen et 

al., 1998). 
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Indirect ET estimation methods are empirical o semi-empirical formulas computed from 

meteorological data. The Penman-Monteith is the most used formula to estimate potential 

evapotranspiration (ETo) under standard conditions (Allen et al., 1998). From ETo, actual 

evapotranspiration (ETa) can be estimated for different crops through the use of a crop 

coefficient (Kc), i.e., ETa = Kc ∙ ETo, where Kc represent four effects that distinguish the 

crop from reference grass: aerodynamic resistance, albedo, surface resistance and soil 

evaporation (Allen et al., 1998). Since state agencies usually provides Kc values for several 

crops, this method is widely used by farmers to estimate crop irrigation in a simple way. 

The crop coefficient method provides good results for agronomic applications since the 

inherent assumptions of the method are typically met, i.e. the crops are fully irrigated 

(Allen et al., 1998; Mata-González et al., 2005). Nevertheless, arid lands are vastly 

different than irrigated farms and do not satisfy this assumptions, especially because arid 

lands native vegetation displays high resistance to transpiration and low ground cover, and 

are normally under drought conditions (Mata-González et al., 2005). Recently, remote 

sensing methods have been developed to estimate ETa and have been positioned as the 

only feasible method for wide areas of mixed landscapes, allowing to improve water 

balance estimations over basin and regional scales (El Masri et al., 2019; Glenn et al.,  

2010; Nagler et al., 2001).  

The most common remote sensing ETa approaches are based on the surface energy balance 

(SEB) equation, where sensible heat (H) is estimated using land surface temperature 

(LST) derived from thermal infrared (TIR) sensor on satellites (Glenn et al., 2010). 

Although these methods have been cataloged as operational, there are difficulties on their 

implementation: small errors in the estimation of the LST translate into large errors in H 

estimates, and only few sensors offer open source TIR data (Glenn et al., 2010; Yebra et 

al., 2013). Also, TIR bands are always coarser than visible (VIS) and infrared bands (IR) 

which limit field-scale implementation (Bisquert et al., 2016). For example, Landsat TIR 

band have a 60 m spatial resolution, whereas its VIS and IR bands have 30 m. Landsat has 

a better spatial resolution than MODIS and Sentinel-3 TIR bands (60 m vs 1 km spatial 
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resolution), however it has a poorer time frequency (Bisquert et al., 2016; Prikaziuk & van 

der Tol, 2019). 

Vegetation index (VI)-based methods to estimate ET were developed to take advantage 

of remote sensing avoiding the disadvantages associated with the methods based on SEB. 

VI’s were developed for vegetation monitoring, due to spectral reflectance signature 

reveal information about the state, biogeochemical composition, and structure of a leaf 

and canopy, but VI’s can also give information about water and carbon cycles (Huete, 

2012). ET estimation methods based on VI’s depend on an estimate of the density of green 

vegetation over the landscape, as measured by VI’s or related products that combine the 

VIS and IR bands (Glenn et al., 2010). For example, the Normalized Difference 

Vegetation Index (NDVI), one of the most common VI’s, captures the contrast in light  

reflection from green leaves between the red and near infrared (NIR) bands, because red 

light is strongly absorbed by chlorophyll and nearly all the NIR is transmitted (Glenn et 

al., 2011). The Enhance Vegetation Index (EVI) and the Soil Adjusted Vegetation Index 

(SAVI) (Glenn et al., 2010) were developed to improve vegetation signal, whereas the 

Normalized Difference Water Index (NDWI) aimed to be sensitive to other properties, 

e.g., leaf water content (Ji et al., 2011). NDWI is a VI that is capable to represent both, 

canopy and soil water content. Thus, it is able to represent plant water stress. (Huang, et 

al., 2016; Sriwongsitanon et al., 2016). It is also less sensitive to atmospheric scattering 

effects than NDVI, but it does not remove completely the effects of soil background 

reflectance. An advantage of the NDWI over other VI’s is that it represent the natural 

interaction between rainfall, soil moisture and leave water content (Sriwongsitanon et al., 

2015). VI’s have several advantages for use in ET algorithms: they are available from 

multiple sensors, VI’s change on time scales of weeks to months, so is feasible to 

interpolate VI values with observations obtained several days apart, and VI methods are 

usually simple and resilient in the presence of data gaps (Carter & Liang, 2018). 

In the context of precision agriculture, VI’s were used to improve the crop coefficient 

method in order to represent the actual state of single or multiple crop canopies during 

development (Glenn et al., 2011). For this reason, VI’s have been applied to natural 
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ecosystems reaching good results as shown by Groeneveld et al. (2007) and Nagler et al. 

(2013). Nevertheless, Mata-González et. al. (2005) ensure that crop coefficient methods 

are not suitable for determining ETa of vegetation adapted to arid conditions, because 

transpiration is overestimated when plants encounter suboptimal conditions of soil water, 

as a result of not considering stomatal regulation and plant adaptations to drought. 

With the intention of making ET data more accessible, global ET data sets were derived 

from satellite information. Two of the most used operational ET data products are MOD16 

and LSA-SAF. MOD16, based on MODIS information, is available since 2010 and has a 

1 km resolution at 8-day, monthly, and annual intervals (Hu et al., 2015; Mu et al., 2013). 

LSA-SAF, derived from Meteosat Second Generation (MSG) satellite, has 30 min and 

daily ET observations with a spatial resolution of 3 km. However, it only covers Europe, 

Africa and the eastern part of South America (DHI-GRAS, 2020; Hu et al., 2015). Hu et 

al. (2015) compared the MOD16 and LSA-SAF products with EC measurements, 

concluding that LSA-SAF have a better performance than MOD16. However, neither 

products can capture ETa in a water-limited region. ET data can also be obtained from the 

USDA-ARS ET dataset and the data provided from ECMWF or GLDAS models (DHI-

GRAS, 2020). However, their spatial resolution are even coarser than that of MOD16 and 

LSA-SAF datasets (DHI-GRAS, 2020). Nowadays, the European Space Agency (ESA) is 

developing an open-source software application for ET modeling at high (tens of meters) 

and medium (1 km) spatial resolutions with the observations of Sentinel-2 and Sentinel-3 

for field-scale applications named Sen-ET. First validation procedure in latent heat flux 

results in a correlation of 0.76 with the best performance obtained in croplands (DHI-

GRAS, 2020). More detailed validation results are available in the “Prototype 

benchmarking and description” document (Nieto et al., 2019). 

Several studies have demonstrated the potential to combine site-specific ET data with 

remotely sensed and meteorological parameters to develop empirical models based on 

statistical correlations for regional-scale ET estimates (Bunting et al., 2014; Glenn et al., 

2010; Granata, 2019). Despite their simplicity, empirical regression formulas can produce 

ETa values that are comparable in accuracy to more complex models, without as much 
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computational requirements for specific expertise (Carter & Liang, 2018). However, the 

estimation of ETa with a higher degree of accuracy and over extended time scales has 

forced researchers to look for techniques such as machine learning (Torres et al., 2011). 

In machine learning, a computer first learns to perform a task by studying a training set of 

examples. The computer then performs the same task with data it has not used before 

(Louridas & Ebert, 2016). This process allows making predictions of complex systems, 

such as the hydrological cycle and its components. Granata (2019) named some examples 

of  machine learning applications in hydrology and mentions some researches related to 

ET. However, he states that these investigations are limited and the knowledge on the 

topic is still partial and fragmented. Besides, studies that use empirical regression formulas 

and basic machine learning concepts usually focus in the form of the formulas that predict 

ET instead of the factors that drives ET (Carter & Liang, 2018; Yebra et al., 2013). 

The aim of this research is to determine the main factors that predict ETa in arid cold 

regions through implementation of empirical regression formulas using machine learning 

algorithms with meteorological and remote sensing input data and, also, to compare the 

performance of these formulas when remote sensing data are included. 

1.1.  Objectives 

The main objective of this study is to determine the main variables that predict ETa in arid 

cold regions with machine learning algorithms. The specifics objectives are: (i) to 

represent ETa in arid areas through empirical formulas based on regressions; (ii) to 

determine the main variables that conform each of the regression formulas in different 

arid cold sites; and (iii) to determine the impact of incorporating VI’s to these empirical 

formulas.  

1.2. Hypothesis  

A machine learning algorithm can identify the main variables that predict ETa in arid 

regions: availability of energy, expressed as the difference between net radiation and soil 
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heat flux, and the availability of water, expressed as soil water content or as the 

Normalized Difference Water Index (NDWI). 

2. MATERIALS AND METHODS 

2.1. Study sites 

In this study, I used 10 sites located around the world that, according to the Köeppen 

climate classification system correspond to arid cold climate (BSk and BWk) (Kottek et 

al., 2006). Three of them are located in the Chilean Altiplano, two in Australia and five in 

the United States. Figure 2.1 presents the location of the study sites and Table 2.1  shows 

their main characteristics. Chilean sites are classified as desert cold climates, while other 

sites are cold steppe. Also, the Chilean sites are located above 4,000 m.a.s.l., whereas the 

sites in Australia and United States are located between 125 and 1,530 m.a.s.l. The study 

sites represent different ecosystems of arid cold environments, which includes grasslands, 

savannah and shrubland. A general description of each site is presented in Appendix A. 
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Figure 2.1: Study sites. Panel a shows the location of study sites, where red stars correspond to 

the sites used to validate ETa estimates. The bottom of the figure shows pictures of the 

environment of the study sites; (b) CH-AT1,  (c) CH-AT2, (d) CH-AT3, (e) AU-Cpr (TERN, 

2017a), (f) AU-Ync (TERN, 2017b), (g) US-Cop (Google Earth, n.d.), (h) US-SRG (Scott, 2012), 

(I) US-SRM (Scott, 2014), (j) US-Whs (Scott, 2017) and (k) US-Wkg (Scott, 2015). 
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Table 2.1: Name, country, vegetation type and period of measure of each sites (Beringer 

& Walker, 2015; D. Bowling, 2015; Meyer et al., 2015; ORNL DAAC, 2017; SCM El 

Abra, 2016; Scott, 2015a, 2015b, 2015c, 2015d). 

 
Site Country Location Vegetation 

type 
Time period 

Latitude 
(°) 

Longitude 
(°) 

Start date End date 

CH-AT1 Chile -22.0268 -68.0478 Grassland 
with 
presence of 
hydrophytes 
and some 
shrubs 

18/01/2018 29/05/2019 

CH-AT2 Chile -22.0136 -68.0456 Grassland 22/02/2018 25/04/2019 
CH-AT3 Chile -22.5247 -68.0179 Grassland 

with 
presence of 
hydrophytes 

19/04/2018 28/05/2019 

AU-Cpr Australia -34.0021 140.5891 Savannah 01/01/2019 31/12/2014 
AU-Ync Australia -34.9893 146.2907 Grassland 01/01/2012 31/12/2014 

US-Cop United 
States 

38.09 -109.39 Grassland 01/01/2001 31/12/2007 

US-SRG United 
States 

31.789379 -
110.827675 

Grassland 01/01/2008 31/12/2014 

US-SRM United 
States 

31.8214 -110.8661 Woody 
savannah 

01/01/2004 31/12/2014 

US-Whs United 
States 

31.7438 -110.0522 Open 
shrubland 

01/01/2007 31/12/2014 

US-Wkg United 
States 

31.7365 -109.9419 Grassland 01/01/2004 31/12/2014 
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2.2. ETa fluxes and meteorological data 

ETa data in the Chilean sites were obtained from three Eddy Covariance systems 

(IRGASON, Campbell Sci., UT, USA), each one having a meteorological station that 

allowed measuring net radiation (Rn) (CNR4, Kipp & Zonen, The Netherlands), soil heat 

flux (G) (HFP01SC, Hukseflux, The Netherlands), precipitation (PPT) (TE525, Campbell 

Sci., Logan, UT, USA), atmospheric pressure (P) (PTB110, Vaisala, Helsinki, Finland), 

air temperature (T) and relative humidity (RH) (CS215, Campbell Sci., Logan, UT, USA), 

soil temperature (Ts) (TCAV, Campbell Sci., Logan, UT, USA) and soil’s volumetric 

water content (VWC) (CS655, Campbell Sci., Logan, UT, USA). Vapor pressure deficit 

(VPD) was estimated using the previous meteorological data, and the wind speed (WS) in 

these sites was calculated using the measurements of the Eddy covariance sonic 

anemometer. On the other hand, the data from Australia and the United States were 

obtained from the FLUXNET 2015 dataset (Beringer & Walker, 2015; Bowling, 2015; 

Meyer et al., 2015; Scott, 2015a, 2015b, 2015c, 2015d). 

To incorporate the remote sensing data, as described below, it is important to estimate the 

footprint of the ETa measurements. Here, I approximated the footprint to a circle which 

radius correspond to the fetch, following the Schuepp approach (1990).  

𝑥 =
𝑢
𝑢*

(𝑧 − 𝑑)
2𝜅  

where xmax correspond to the fetch (m), u is the average wind speed (m/s), u* is the average 

friction velocity (m/s), z is the measuring height (m), d is the displacement height (m) and 

k is the von Kármán constant (Leclerc et al., 2014). The footprint was calculated for each 

month with data from each site. This approximation was chosen instead of a more complex 

approach such as the Kljun et al. (2015) model, for one principal reason: the required 

information for more complex footprint models is not available in the FLUXNET dataset, 

e.g. the crosswind distance standard deviation (σy) (Kljun et al., 2015). The performance 

of the Schuepp et al. (1990) approximation was assessed by comparing the area and VI’s 

values obtained with this model and with the 80% flux footprint calculated with the  Kljun 
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et al. (2015) approach in the Chilean sites, where all the required information was 

available (Figure 2.2). 

2.3. Remote sensing and vegetation indices 

Reflectance images were obtained from the Landsat 7 satellite mission and then analyzed 

through Google Earth Engine (Gorelick et al., 2017) to estimate different VI’s to be 

incorporated into the ETa estimates. Every selected image corresponded to the less cloudy 

image of each month. 

Figure 2.2: (a) Example of footprint calculation with the Schuepp et al. (1990) and the Kljun et al. 

(2015) approaches. The monthly footprint were calculated at CH-AT3 during November 2019. The 

Kljun et al. (2015) approach results in a series of irregular but consistent footprints. The Schuepp et 

al. (1990) approach estimate the monthly footprint as a circle that agrees with the Kljun et al. (2015) 

footprint in the N-S direction. (b) Wind rose for November 2019 at the CH-AT3, which determines 

the trend of the Kljun et al. (2015) footprint. 
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For every selected image, the following VI’s were calculated: Normalized Difference 

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Enhance Vegetation 

Index (EVI), Normalized Difference Water Index (NDWI) and Normalized Difference 

Greenness Index (NDGI). Then, the average of each VI was obtained in the footprint area.   

The NDVI is the most utilized VI because it is strongly correlated with several biophysical 

characteristics and physiological processes of plants, including ET (Glenn et al., 2011). 

NDVI range between -1 to 1, where negative values correspond to water pixels, positives 

values but near 0 correspond to bare soil and values near 1 are related to dense canopy. 

NDVI is calculated as (Glenn et al., 2010, 2011): 

𝑁𝐷𝑉𝐼 =
휌 − 휌RED

휌 + 휌RED
 

where ρNIR correspond to the reflectance of the NIR band (0.77 - 0.90 μm) and ρRED (0.63 

– 0.69 μm) is the reflectance of the visible red band (USGS, 2019). 

SAVI is a VI derived from the NDVI that includes a correction factor L, which minimizes 

the variations produced by the soil presence in heterogeneous surfaces. This index is 

calculated as (Glenn et al., 2011): 

𝑆𝐴𝑉𝐼 =
휌N I R − 휌RED

휌N I R + 휌RED + L (1 + 𝐿) 

The optimal value of L decreases as vegetation cover increases, i.e., L=1 when the density 

is low, L = 0.5 for intermediate vegetation cover and L=0.25 for high density. For this 

investigation L=0.5 was used because this value has shown good performance reducing 

the noise produced by the presence of bare soil in a great range of vegetation cover 

densities (Odi-Lara et al., 2016) . 

The EVI was developed to improve the sensitivity of the signal in high-biomass regions 

and to reduce the atmosphere influence. EVI responds better than NDVI to structural 

changes in plants and extend the range over which the NDVI respond to increases in 

foliage density (Glenn et al., 2010; Yebra et al., 2013). EVI is calculated as: 
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𝐸𝑉𝐼 = 𝐺
휌N I R − 휌RED

휌N I R + 𝐶1휌RED + 𝐶2휌BLUE + 𝐿  

where C1 and C2 area correction coefficients used to account for aerosol resistance, which 

uses the blue band to correct the influence of the aerosol in the red band. ρBLUE (0.45 - 0.52 

μm) is the reflectance of the blue band (USGS, 2019), Gf is the gain factor (set as 2.5; 

Glenn et al., 2011) and Lc is the canopy background adjustment (set to 1; Glenn et al., 

2011). C1 and C2 were set as 6 and -7.5, respectively (Glenn et al., 2011). 

The NDWI, unlike the others VI’s, focuses on identifying trends in the humidity of the 

studied surface, combining the water content of bare soil and vegetation. The NDWI is 

defined as (Jovanovic et al., 2014) : 

𝑁𝐷𝑊𝐼 =
휌N I R − 휌SWIR

휌N I R + 휌SWIR
 

where ρSWIR is the reflectance of the short wave infrared (SWIR) band (1.55 - 1.75 µm) 

(USGS, 2019). Ji et al. (2011) suggested to name this index as Normalized Difference 

Infrared Index (NDII) because  NDWI was first used in MODIS, which SWIR band is 

between 1.23–1.25 µm. However, in this study I prefer to use NDWI. 

Finally, the NDGI is a VI developed to minimize variations between background 

reflectance of different surfaces and to maximize the contrast between vegetation and 

other background components, in order to prevent the effects of snow in phenology 

estimation (Yang et al., 2019). NDGI is calculated as follows (Yang et al., 2019): 

𝑁𝐷𝐺𝐼 =
𝜀휌GREEN + (1 − 𝜀)휌NIR − 휌RED

𝜀휌GREEN + (1 − 𝜀)휌NIR + 휌RED
 

where ρGREEN is the reflectance of the green band (0.52 – 1.75 Pm), and ε is a coefficient 

that depends on the satellite (H = 0.63 for Landsat 7). 
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2.4. Determination of main variables and ETa estimates using machine learning 

 

The general procedure to generate ET estimates is shown in Figure 2.3. Remote sensing, 

meteorological and flux data were used as an input in the Exhaustive Feature Selection 

(EFS) algorithm (Yildirim et al. 2013) to determine the main variables that predicts  ET. 

The EFS algorithm selects the subset of the original features that achieves better an 

objective, usually finding the high value of a performance metric given by an arbitrary 

regressor or classifier (Raschka, 2019). The EFS algorithm is the most computationally 

expensive feature selection method, because its needs to evaluated all possible M-feature 

combinations of the original N features, with M the number of features that are wanted to 

be selected (Wang et al., 2016). However, the EFS is the optimal feature selection method 

when the size of dataset and the number of required features allow this method to be 

computationally feasible (Schadl et al., 2018) In this research, a subset of 4 features were 

selected and a maximum of 18 features were evaluated (Table 2.2). The coefficient of 

determination (R²) of the linear regression was chosen as the performance metric. 
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Figure 2.3: Flowchart of methods. Remote sensing, and flux and meteorological data area used to 

obtain the main variables and ETa estimate formulas by the application of machine learning 

algorithms. 
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Table 2.2: Variables analyzed in this study and its respective units of measure. 

 
Variable Symbol Units 
Available energy (net radiation minus soil heat flux) Rn – G  MJ m-²d-1 

Precipitation PPT mm d-1 and 
mm month-1 

Mean temperature T °C 
Minimum temperature Tmin °C 
Maximum temperature Tmax °C 

Soil temperature Ts °C 
Minimum soil temperature Tsmin °C 

Maximum soil temperature Tsmax °C 
Relative humidity RH - 

Volumetric water content VWC - 
Vapor pressure deficit VPD kPa 

Wind speed WS m s-1 

Potential evapotranspiration ETo mm d-1 and 
mm month-1 

Normalized difference vegetation index NDVI - 

Soil-adjusted vegetation index SAVI - 
Enhanced vegetation index EVI - 

Normalized difference water index NDWI - 

Normalized difference greenness index NDGI - 

 

A linear equation to estimate ET was constructed using the main variables found with the 

EFS algorithm. The regression coefficients were found with the Ordinary Least Squares 

method, which minimized the squared distance between the measured data and the 

estimated line (Stoyan & Baran, 2016). To find the main variables and the regression 

coefficients, the input data were normalized, i.e., each one of the inputs variables ranged 

between 0 and 1. This normalization ensured that the EFS choses the main variables for 

their contribution to the ETa variability and not because of its magnitude. 
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Data were separated into two groups: the training data (CH-AT2, CH-AT, AU-Cpr, US-

Cop, US-SRG, US-SRM and US-Wkg) and the validation data (CH-AT1, AU-Ync and 

US-Wkg). The training data were used to generate a “global” estimation that could fit for 

all sites. The performance of this equation was evaluated with the validation data. Also, 

site-specific formulas were constructed with the data of each site. Global and site-specific 

equations were found for daily and monthly time scales, both of them expressed as 

mm/day, with only meteorological data. Then, VI’s were incorporated in monthly 

estimations to evaluate the relevance of incorporating remote sensing data into estimations 

that consider places with different cover types, but the same climate. 

3. RESULTS  

3.1. Footprints 

Figure 3.1 shows the footprint areas calculated with the Kljun et al. (2015) and the 

Schuepp et al. (1990) approaches. The Kljun et al. (2015) footprints are larger than the 

Schuepp et al. (1990) footprints at CH-AT1 and CH-AT3, whereas the opposite is true at 

CH-AT2. Bigger differences between areas occur in summer months in CH-AT2. For all 

sites a high correlation was found (R² > 0.84 and RMSE < 0.17) between VI’s values 

calculated with both footprint approach, despite the difference in the footprints areas 

(Table 3.1). Hence, even when the Schuepp et al. (1990) approach may not represent 

precisely the footprint, it allows estimating VI’s that agree with those calculated with a 

more sophisticated footprint method, such as the Kljun et al. (2015) approach.  
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Figure 3.1: Footprints areas calculated with the Kljun et al. (2015) approach and the 

Schuepp et al. (1990) approach for (a) CH-AT1, (b) CH-AT2 and (c) CH-AT3 sites. 
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Table 3.1: Comparison between VI’s values obtained with the footprints calculated with 
the Kljun et al. (2015) and the Schuepp et al. (1990) approaches. The mean values of 
each VI calculated with both approaches in the study period are presented. Also, the R² 
and RMSE of correlations calculated with the Kljun et al. (2015) and the Schuepp et al. 
(1990) approaches are shown. 
 
  NDVI SAVI EVI NDWI NDGI 

CH-AT1 Kljun mean 0.09 0.14 0.20 -0.03 -0.04 

Schuepp 
mean 

0.08 0.12 0.19 -0.03 -0.04 

R² 0.91 0.92 0.94 0.88 0.84 

RMSE 0.01 0.02 0.03 0.03 0.01 

CH-AT2 Kljun mean 0.04 0.07 0.08 0.00 -0.06 

Schuepp 
mean 

0.05 0.07 0.09 0.01 -0.06 

R² 0.96 0.96 0.95 0.99 0.93 

RMSE 0.00 0.01 0.01 0.01 0.00 

CH-AT3 Kljun mean 0.15 0.22 0.27 0.16 0.00 

Schuepp 
mean 

0.22 0.33 0.41 0.25 0.05 

R² 0.99 0.99 0.99 0.87 0.99 

RMSE 0.09 0.14 0.17 0.10 0.06 
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3.2. Remote sensing information 

Unlike other studies, in which a high correlation between VI’s and ETa is reported, 

(Bunting et al., 2014; Groeneveld et al., 2007; Nagler et al., 2013; Yebra et al., 2013), in 

this research I found that monthly ETa and VI’s are poorly correlated when trying to find 

a “global” estimation that could be used in all sites. In the case where the “global” monthly 

ETa is correlated with VI values, Pearson correlation (corr) ranged between 0.08 and 0.25. 

However, when the same procedure is performed for each site, the highest corr was of 

0.54, which corresponds to NDGI in CH-AT3 (Table 3.2). In many of the cases, VI’s have 

a low variability in relation to the ETa, with exception of EVI, whose values in some cases 

exceed the range of -1 and 1 (Figure 3.2). However, when the VI’s temporal evolution is 

studied, it is observed that ETa peaks are typically accompanied by peaks in the VI’s 

(Figure 3.2, Figure 3.3 and Figure 3.4). However, most important ETa peaks, which are 

usually the result of more water availability due to rainfall events, are only accompanied 

by peaks in EVI and NDWI. 
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Table 3.2: Pearson correlation between measured ETa and VI’s values. 
 
 NDVI NDWI SAVI EVI NDGI 

Global 0.08 0.21 0.08 0.17 0.25 

AU-Cpr 0.38 0.01 0.38 0.21 0.41 

AU-Ync 0.37 0.51 0.37 0.19 0.39 

CH-AT1 0.41 0.28 0.41 0.44 0.38 

CH-AT2 0.01 0.15 0.01 0.05 0.0010 

CH-AT3 0.52 0.07 0.5258 0.53 0.54 

US-Cop 0.10 0.21 0. 10 0.00 0.14 

US-SRG 0.02 0. 11 0.02 0.07 0.25 

US-SRM 0.0111 0.12 0.11 0.10 0.17 

US-Whs 0.08 0.24 0.08 0.17 0.12 

US-Wkg 0.01 0.32 0.01 0.22 0.25 
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Figure 3.2: Temporal evolution of monthly precipitation (a), monthly ETa (b), and monthly VI’s (c) 

in US-Wkg 
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Figure 3.3: Temporal evolution of monthly precipitation (a), monthly ETa (b), and monthly VI’s (c) 

in AU-Ync. 
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Figure 3.2 shows the temporal evolution of ETa, precipitation and VI’s on the US-Wkg 

validation site. Here, ETa responds to water availability determined by the amount of 

precipitation. Also, VI’s respond in the same way as ETa, except for SAVI and NDVI, 

whose values decrease drastically in the presence of precipitation events. This behavior is 

not common for all the sites, for example, Figure 3.3 shows the temporal evolution of 

ETa, precipitation and VI’s in the AU-Ync validation site. Here, the relationship between 

precipitation and ETa weak. However, it seems that ETa responds to water availability, 

Figure 3.4: Temporal evolution of monthly precipitation (a), monthly ETa (b), and monthly VI’s (c) 

in CH-AT1. 
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represented as the NDWI. Also, EVI explains some of the ETa peaks. In the CH-AT1 

validation site, no relationship between VI’s and ETa was found (Figure 3.4). 

3.3. Variables predicting ETa 

For both the daily and monthly “global” equations, the main variables that influence ETa 

are Rn – G, ETo, Tmin and Tsmax. In both cases Rn – G is the variable that has the highest 

regression coefficients, and hence, is the variable that can represent better temporal 

evolution of ETa. In the case where remote sensing information is used, the main variables 

are Rn-G, PPT, NDGI and NDWI. The variable with the greatest contribution to this 

equation is the NDGI and with the lowest was the Rn-G. 

Table 3.3 shows the occurrence of the main variables found for all the sites for the site-

specifics equations. For the daily estimates, the most important variables are Rn – G, VWC 

and ETo, which show that daily ETa depends on both, energy and water availability. In the 

case of the monthly estimations, the main variables are Rn – G, T and Ts. The monthly 

estimates that includes VI’s have VPD and NDWI as the principal variables. Unlike daily 

site-specific estimates, monthly site-specific estimates do not have a regular behavior; in 

both cases only two variables are repeated in more than five sites. At daily timescale, the 

principal variables give information about energy availability, whereas at the monthly 

timescale, the main variables are related to water availability. 
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Table 3.3: Number of times that every factor is selected in a site-specific equation for 

daily, monthly and monthly with VI estimates. 

 
Factor Daily Monthly Monthly with VI 
Rn-G 8 7 4 
VPD 3 3 5 
VWC 6 2 2 
RH 1 2 2 

T 5 5 4 

Tmin 2 2 1 
Tmax 1 1 0 
Ts 3 6 3 
Tsmin 1 1 0 

Tsmax 3 1 1 
PPT 0 3 4 
ETo 6 4 3 
WS 1 3 1 

NDVI - - 0 
NDWI - - 8 
SAVI - - 0 
EVI - - 0 

NDGI - - 2 

 

3.4. ET estimate formulas 

The daily “global” equation developed with the seven sites of the training data reached 

an R² of 0.56 and an RMSE of 0.64 mm/day. When this equation is applied to each 

one of the ten sites, the R² ranges between 0.00 and 0.69, corresponding to the sites 

CH-AT2 and US-Wkg, respectively. At the same time, at a monthly timescale and only 
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considering meteorological information, the “global” equation developed with the 

training sites reaches an R² of 0.70 and an RMSE of 0.47 mm/day. For each of the ten 

sites, the R² of this equation varies between 0.00 and 0.82. The monthly “global” 

equation that does include VI’s reaches an R² of 0.67 and an RMSE of 0.49 mm/day 

(Figure 3.5). When this equation is applied to each one of the ten sites, the R² ranges 

from 0.16 to 0.82, corresponding to the sites AU-Ync and US-Whs, respectively. The 

linear regression formulas developed with the training data set are shown in Table 3.4. 

In all cases, monthly estimations were more accurate than daily estimations, especially 

because monthly averages are able to mask outliers. In general, the equation that only 

considers meteorological information performs better than the equation that includes 

VI’s. However, when the site-specific equation is applied to each one of the sites, the 

equation that includes the VI’s results in better outcomes. 
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 Figure 3.5: Regression formulas for the training data set. (a) Daily estimates; (b) monthly 

estimates only taking into account meteorological data; (c) monthly estimates considering 

meteorological data and VI’s. Each panel includes the main variable selected for the 

construction of each formula, the RMSE, and the R². 
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Table 3.4: Linear regression formulas developed with the training data set. Each 

variable was previously normalized, consequently they are dimensionless. Original units 

of measure from each variable are shown in Table 2.2.  

 

In the validation sites, only acceptable results were obtained for the US-Wkg cases, most 

likely because a large amount of the training data came from a site located near US-Wkg. 

Figure 3.6 shows the R² and RMSE values for the three validation sites. Daily estimations 

were usually less accurate than monthly estimates, except for the AU-Ync site. Also, 

estimations that include a VI performed better than those that only considered 

meteorological information. The case with the best performance corresponds to the 

monthly estimate that includes a VI in US-Wkg (R² of 0.82 and RMSE of 0.42 mm/day). 

 

Type of “global” 

estimation 

Linear regression formulas 

Daily 10.25 𝑅 − 𝐺 − 2.86 𝐸𝑇 + 5.17 𝑇 − 4.17 𝑇𝑠 − 3.31 

Monthly 4.26 𝑅 − 𝐺 − 3.46 𝐸𝑇 + 3.21 𝑇 − 2.26 𝑇𝑠 − 0.07 

Monthly with VI 1.17 𝑅 − 𝐺 + 2.36 𝑃𝑃𝑇 + 2.41 𝑁𝐷𝐺𝐼 + 1.95 𝑁𝐷𝑊𝐼 − 2.14 
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Figure 3.6: Performance of the “global” formulas in the validation sites. CH-AT1, AU-Ync 

and US-Wkg are shown from left to right. Daily, monthly and VI monthly formulas are shown 

from the top to the bottom. Each panel includes the main variable selected for the construction 

of each formula, the RMSE, and R². 
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4. DISCUSSION 

A comparison of ET estimation formulas between studies is difficult due to the many 

differences between them: (1) calibration and validation procedures; (2) data selection and 

processing; (3) temporal scale of estimates; (4) number and characteristic of the variables 

used; and (5) number and location of field sites considered (Yebra et al., 2013).   However, 

in this section, the results obtained in other studies that have used regression formulas or 

machine learning algorithms to estimate ETa are discussed and compared to my results. 

Carter & Liang (2018) evaluated seven regression algorithms for daily ETa estimations 

with meteorological and/or remote sensing data of different cover types, reaching R² 

between 0.43 to 0.52 for all sites, similar to the R² obtained in this study for daily 

estimations considering the training data. The algorithms evaluated by Carter & Liang 

(2018) correspond to simple linear equations, such as the Yebra et al. (2013) formula, to 

more complex equations, such as that developed by Wang et al. (2010). Granata (2019) 

fitted three daily ETa estimations models that include different meteorological data with 

four different machine learning algorithms in a subtropical humid site located in Florida. 

All of them reached R² values over 0.92. However, better results were obtained in the 

model with a greater number of variables. 

Studies in natural arid zones landscapes are scarce compared to studies performed in 

agricultural lands located in mesic environments (Mupenzi et al., 2012). Investigations 

performed in the western of the U.S. have provided the basis for better estimating ET in 

arid and semi-arid environments (Bunting et al., 2014; Glenn et al., 2013; Jarchowet al., 

2017; Nagler et al., 2013;  2009;  2005). Bunting et al. (2014) evaluated three regression 

equations that estimates ETa in a period of 16 days in riparian and upland sites in 

California. One of the equations is a multiple linear regression that includes MODIS EVI 

and precipitation data (R²=0.70). Nagler et al. (2013; 2005) developed two different 

regression equations that require meteorological and MODIS EVI information to estimate 

ETa in riparian environments of the Colorado, Rio Grande and San Pedro rivers in 

Colorado, U.S. Both equations are based on the relationship between leaf area index (LAI) 

and light absorption by the canopy, and the linear relationship between EVI and LAI. Both 
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equations have good predictive capability (R² = 0.73 and 0,74, respectively). Performance 

of the best results obtained in this research are comparable to the studies reviewed. 

Different arid cold climate sites were used to generate linear regression formulas to 

estimate ETa. Nevertheless, better results could be reached if only sites with one 

vegetation cover are selected, instead of one climate type. According to Yebra et al. (2013) 

a global ET model across land cover types cannot be fitted based on the relationships 

between observed ET and VI’s, as opposed to fitting other variables such as stomatal 

conductance. However, very different performance in daily, monthly and monthly with 

VI’s estimations were obtained in sites with the same vegetation cover, such as in the case 

of AU-Ync and US-Wkg, where both of them correspond to grassland (R²  = 0.03, 0.00, 

0.16 and R²  = 0.69, 0.78, 0.82, respectively). The linear formulation of the regression 

formulas should not be an important source of error. Carter & Liang (2018) demonstrated 

that different regression formulas, with different theoretical bases and same input data, 

have similar performance. 

According to Allen et al. (1998), the main meteorological variables affecting ETa are 

radiation, air temperature, air humidity and wind speed. Several researches have studied 

the relative importance of this variables in ET processes in arid regions. However, these 

researches normally focused in the behavior of ETo instead of ETa, so they do not consider 

the effects of water stress. For example, Adnan et al. (2017) and Eslamian, et al. (2011) 

studied the influence of meteorological variables on ETo estimations in semi-arid, arid and 

hyper-arid climates (Pakistan and Iran) using the Penman-Monthieth formulation. Both 

studies concluded that air temperature and humidity are the most important meteorological 

variables affecting ETo. One of the few studies that analyze the sensitivity of ETa 

estimations to variations in meteorological and remote sensing data in a semi-arid region 

is that performed by Mokhtari et al. (2013). They analyzed the sensitivity of METRIC 

(Mapping Evapotranspiration at High Resolution with Internalized Calibration), an ETa 

estimation model based in the surface energy balance algorithm for land (SEBAL). 

Mokhtari et al. (2013) concluded that METRIC is highly sensitive to surface temperature, 
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net radiation and air temperature, and it is less sensitive to LAI, SAVI, and WS (excepting 

WS at low level of vegetation cover). 

My results indicate that available energy is the main variable that predicts ETa, which 

agrees with previous researches that studied ETa components in most climate and 

vegetation cover types as possible. For example, Wang et al. (2007) correlated ETa 

measurements with radiation, air and land surface temperature, EVI and NDVI, and soil 

moisture. They concluded that correlation coefficients between Rn and ET are the highest, 

followed by T’s and VI’s. Carter & Liang (2018) also note that Rn is the most significant 

variable, which is consistent with the findings of Badgley et al. (2015) and Wang & Liang 

(2008). 

In this research, of the four most important meteorological variables, only wind speed was 

not decisive to estimate ETa in any of the cases studied. This fact agree with  the findings 

of Granata (2019), who proved that is possible to generate accurate and precise estimates 

of daily ETa through machine learning algorithms only with mean temperature, net solar 

radiation and relative humidity data, pointing out that the incorporation of wind speed 

does not improve the ET estimations compared to the case when it is not accounted for. 

However, he analyzed ET in a subtropical humid climate, where number of sunshine hours 

is considered to be the more dominant variable, whereas wind speed is an important 

variable in arid climates (Shahidian et al., 2012; Suárez et al., 2020). Irmak et al. (2008) 

compared 11 ET models in a crop field in Nebraska, USA, to study their complexity in 

hourly, daily and seasonal scales. They concluded that wind speed, and other 

meteorological variables such as temperature, gained importance in daily and hourly 

calculations, while in seasonal scales radiation is the dominant variable (Shahidian et al., 

2012). As shown in these studies, it was expected that wind speed was an important 

variable in daily ET estimations, though, the method and the number of variables chosen 

in this research could mask its effects: EFS select the most important meteorological 

variable or variables that explain ET, in this case Rn-G and NDWI, accompanied with 

variables which their unique objective is to make the equation work numerically; and WS 

influence could be well represented in ETo, so Rn-G, VWC and T’s are variables that bring 
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more information about ET variability than WS itself. In arid regions, WS has an important 

role when advection of dry air enhance evaporation and affect the energy balance by 

horizontal transport of latent heat (Kool, Ben-Gal, & Agam, 2018; Lobos et al., under 

review.; Suárez et al., 2020). However, when the landscape under study is the same as or 

similar to the landscape for the surrounding region and experiences similar water inputs, 

as most of the sites studied in this research with exception of CH-AT1 and CH-AT3, then 

no advection can occur (Irmak et al., 2012), and other variables are more important 

predicting ET. 

Atmospheric demand and available energy determine ET when water supply is sufficient, 

whereas soil moisture becomes an important factor predicting ET after soil water supply 

is deficient (Salvucci, 1997; Wang & Liang, 2008). Bunting et al. (2014) proved that ET 

estimations in semi-arid upland sites using multiple linear regression improve with the 

incorporation of a moisture input. However, variables such as precipitation and soil 

moisture are not usually used for several reasons: (1) surface precipitation and soil 

moisture measurements are point measurements, limiting the possibilities for upscaling; 

(2) a lag effect must be considered with precipitation; and (3) soil moisture remote sensing 

products are difficult to process and its resolution is of several kilometers (Carter & Liang, 

2018). In this context, it is expected that in this research few equations incorporated PPT 

and VWC in the four most important variables, but when remote sensing information was 

added several considered NDWI. Unlike others VI’s, NDWI is capable to indicate trends 

in soil and vegetation wetness (Gao, 1996; Sriwongsitanon et al., 2015), so it is a valid 

water availability input that do not have the  same disadvantages of PPT and VWC, as 

mentioned above. 

The use of remote sensing information is fundamental to estimate ETa for regional scale 

and in heterogeneous landscapes (Glenn et al., 2010). This research proved that the 

incorporation of VI’s helps to extrapolate global equations to each one of the sites. 

However, it has been proven that VI’s are not enough to accurately estimate ETa (Yebra 

et al., 2013). Carter & Liang (2018) note that, at minimum, ETa estimates with VI’s require 
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the inclusion of radiation data, although, is preferable to increase the number of input 

variables. My results demonstrate that acceptable results are achieved with four variables. 

Although the contribution of the VI's to the improvement of the ET estimations at the 

regional level is indisputable, there are several sources or error that must be addresses. 

One of the most important is the influence of bare soil in the reflectance response, 

especially in high-resolution satellites, such as Landsat. Jarchow et al., (2018) compared 

Landsat 5 and Landsat 8 EVI values to MODIS EVI in a riparian zone of the Colorado 

River, Mexico, finding low correlations over bare soil and sparsely vegetated areas. Also, 

they suggest being cautious when high-resolution Landsat EVI data are analyzed over 

heterogeneous areas with low vegetation densities, such as those commonly encountered 

in arid and semi-arid environments, because soil presence contribute to increased 

variability in the response of the NIR and red bands. 

The low correlations obtained in this study between VI’s and ETa could be explained by 

several factors. Firstly, as mentioned before, the presence of bare soil can perturb the 

calculation of VI’s (Jarchow et al., 2018). Secondly, in this research only ETa outliers 

were extracted, whereas other studies selected data that accomplished some 

characteristics. For example, Yebra et al. (2013) selected data of days where only 

transpiration was expected to be dominant, and Scott et al. (2009) excluded data from 

precipitation events and outliers of meteorological variables. In presence of important 

rainfall events, most of the VI’s considered in this study, with the exception of NDWI and 

EVI, have negative values. This values of the VI’s indicate that there should be a lower 

ET rate when it rains, since it actually increases. VI’s values obtained in this research are 

different than those reported in previous studies, probably because the Landsat 7 satellite 

was used,  which is not recommended  in arid areas to its high spatial resolution, and 

because data was poorly selected Meyer et al., 2015; Restrepo-Coupe et al., 2016; Scott 

et al., 2010). However, they are different from each other, highlighting the importance of 

the satellite selection. 
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5. CONCLUSIONS 

In this study I generated linear regression formulas to estimate daily and monthly ETa in 

arid cold sites. Different performances were obtained for every site. However the 

following trends were identified: (1) better results were obtained for monthly than for 

daily estimates; (2) incorporation of remote sensing information allows to extrapolate 

formulas to other sites to get better results than estimations with only meteorological data; 

(3) the available energy is the most important meteorological variable in ETa estimations 

for the sites evaluated in this research; and (4) in arid regions is important to incorporate 

estimations of water availability. As precipitation and soil moisture are point 

measurements that do not allow to extrapolate estimations in wide areas, the NDWI could 

be incorporated as a proxy for water availability in heterogeneous landscapes. Also, more 

studies that analyze variables predicting ETa in arid natural landscapes are needed, 

because ET in drylands is exposed to different factors than in more humid environments, 

such as water stress, advection and vegetation with adaptations to drought. Global ETo 

researches cannot study the complexity of ETa in arid regions in deep. 
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1. APPENDIX A: SITES DESCRIPTION 

 

CH-AT1 (Figure A. 1): this site corresponds to a riparian wetland located in the Chilean 

Andean Plateau (22.02°S, 68.05°W, elevation: 4182 m.a.s.l.). The annual precipitation is 

concentrated in summer months due to the effect of the South American monsoon and is 

of ~78 mm (2007-2016 time period), whereas annual mean temperature is of ~5.8° C 

(1969-1987 time period) (Centro de Ciencias del Clima y la Resiliencia, 2019). The area 

is dominated by the presence of the reed Oxychloe andina and a grass Deyeuxia sp. The  

Parastrephia sp. shrub and some hydrophytes, such as Lilaeopsis macloviana and 

Myriophyllum quitense, are also present. 

                                                                                                                                                                                                                             

CH-AT2 (Figure A. 2): this site is located 1500 m north of AT-CH1 (22.00°S, 68.05°W, 

elevation: 4330 m.a.s.l.). Unlike the riparian wetland, only grass and some shrubs are 

present at this site, where the dominant species is a grass of Festuca genera. Because CH-

AT1 and CH-AT2 are near to each other, the climate characterization of CH-AT2 is the 

same as in the riparian wetland (CH-AT1). 

Figure A. 1: the CH-AT1 site                                                                                                                                                                                                                                
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CH-AT3 (Figure A. 3): this site is the Putana wetland, which is located in the Altiplano 

of the Antofagasta Region, Chile (22.55°S, 68.02°W, elevation: 4255 m.a.s.l). The annual 

precipitation is of ~106 mm (2008-2017 time period), also concentrated in the summer 

months, and the mean annual temperature is of ~ 1.7° C (2013-2016 time period) (Centro 

de Ciencias del Clima y la Resiliencia, 2019; Dirección General de Aguas [DGA], 2004). 

The presence of water in the wetland is due to contributions of the Putana River and 

groundwater upwelling (SCM El Abra, 2016). The vegetation in the study site is classified 

as perennial grassland dominated by Oxychloe andina and some grass of the Festuca and 

Deyeuxia genera. There are also some hydrophytes, such as Ranunculus uniflorus and 

Azolla filiculoides. 

Figure A. 2: the CH-AT2 site 
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AU-Cpr (Figure A. 4): This study site is located 25 km north of Renmark in South 

Australia at Calperum Station (34.00°S, 140.59°E, elevation: ~166 m.a.s.l.). The mean 

annual precipitation is approximately 250 mm. More rainfall is generally expected in the 

cooler winter and spring periods, but occasional summer rainfall events occur. Mean 

annual temperature is 18° C ranging between -3 and 45°C. The vegetation is dominated 

by several species of Eucalyptus, but also it is possible to find mid-storey species 

belonging to Eremophila, Hakea, Olearia, Senna and Melaleuca genera (W. S. Meyer et 

al., 2015). 

Figure A. 3: the CH-AT3 site 
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AU-Ync (Figure A. 5): The site is located in the Yanco Study Area (35.00°S, 146.29°E, 

elevation: ~125 m), which is situated within the western plains of the Murrumbidgee River 

catchment, in New South Wales, Australia. Precipitation is distributed evenly aceoss all 

months reaching 419 mm per year. Daily mean temperatures vary significantly from 34° 

C in January to 14.2° C in July. The site consists of a homogeneous flat grassland that is 

used for the grazing of livestock. The grassland is dominated by perennial tussock grasses, 

such as kangaroo and wallaby grasses (Yee et al., 2015). 

Figure A. 4: the Au-Cpr site (TERN, 2017a) 
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US-Cop (Figure A. 6): this site, named Corral Pocket, is a semiarid grassland located in 

southeast Utah, USA (38.09°N, 109.39°W, elevation: 1520 m.a.s.l.). Mean annual 

precipitation and temperature are 216 mm and 12° C, respectively. About 33% of the 

precipitation occurs during summer. The vegetation is dominated by the perennial  Hilaria 

jamesii and Stipa hymenoides bunch-grasses and the Coleogyne ramosissima shrub, with 

other grasses and annuals making up a small percentage of total plant cover (Bowling et. 

al., 2011). 

Figure A. 5: the AU-Ync site (TERN, 2017b) 
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US-SRG (Figure A. 7): this site correspond to Santa Rita Grassland, wich  is located in 

the Santa Rita Experimental Range, 45 km south of Tucson, Arizona, USA (31.79°N, 

110.83°W, elevation: 1290 m.a.s.l.). Mean annual precipitation is 377 mm. Due to the 

effect of the North American monsoon, about 50% of rainfall ocurs during summer. Mean 

air temperature is 19°C, with ranges that produce winter freezes in November and daytime 

maxima that exceed 35° in June (Scott, et al., 2009; 2015). This site is dominated by the 

South African warm season bunchgrass, Lehmann Lovegrass (Eragrostis lehmanniana) 

and it has a 11% cover of mesquite (Prosopis velutina) (Scott et al., 2015). 

Figure A. 6: Monticello, 3km apart of US-Cop site (Google Earth, n.d.). 
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US-SRM (Figure A. 8): this site correspond to the Santa Rita mesquite savanna site, 

which is also located on the Santa Rita Experimental Range, USA, 5km apart of Santa 

Rita Mesquite site (31.82°N, 110.87°W, elevation: 1116 m.a.s.l.). Site vegetation consist 

of the leguminous tree Prosopis velutina (35% of the vegetation cover) growing in a 

matrix of native and nonnative perennial grasses, subshrubs and scattered succulents (R. 

Scott et al., 2009). 

 

US-Whs (Figure A. 9): this site correspond to the Lucky Hills Shrubland, in the U.S. 

Department of Agriculture Agricultural Research Service (USDA-ARS) Walnut Gulch 

Experimental Watershed. It is located 80 km east of Santa Rita sites (31.74°N, 110.05°W, 

Figure A. 7: the US-SRG site (Scott, 2012) 

Figure A. 8: the US-SRM site (Scott, 2014) 
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elevation: 1370 m.a.s.l.). Annual precipitation is lower than that in the Santa Rita sites, 

reaching 285 mm. The mean air temperature is also quite lower, reaching 17,6°C. This 

site has a large diversity of shrubs that are typically found throughout the Sonoran and 

Chihuahuan Deserts, such as Parthenium incanum, Acacia constricta, Larrea tridentata, 

and Flourensia cernua (R. Scott et al., 2015). 

 

US-Wkg (Figure A. 10): this site correspond to the Walnut Gulch Kendall Grasslands, 

which is located 10 km apart of US-Whs, also in the USDA-ARS Walnut Gulch 

Experimental Watershed (31-74°N, 109.94°W, elevation: 1530 m.a.s.l.).  In the period of 

2005 to 2014 a mean annual temperature of 17.3°C and an annual precipitation of 294 mm 

have been reported. The dominant species are Eragrostis lehmanniana, Bouteloua 

eripoda, and Aristida spp, all of them belonging to the Poaceae family. It is also possible 

to see woody species as Ephedra viridis and Artemisa filifolia (Scott et al., 2015) . 

Figure A. 9: the US-Whs site (R. Scott, 2017) 
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Figure A. 10: the US-Wkg site (Scott, 2015). 


