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ABSTRACT 

Real-time fMRI (rtfMRI) neurofeedback (NF) enables the volitional control of brain 

metabolic activity, potentially leading to behavioral changes. The learning process 

involved in achieving self-regulation of brain hemodynamics is presumed to be related 

to several factors such as type and contingency of feedback, reward, the use of mental 

imagery, duration or length of training, among others. Explicitly instructing participants 

to use mental imagery is a common practice in rtfMRI-NF experiments, under the 

assumption that this strategy will improve and accelerate the learning process. Likewise, 

giving monetary reward according to performance is assumed to reinforce and improve 

brain self-regulation. However, how to set an optimal strategy for improving volitional 

control remain unclear. To evaluate the differential effect of these factors on achieving 

brain self-regulation we assessed feedback, explicit instructions and monetary reward 

while training healthy individuals to up-regulate the blood-oxygen-level dependent 

(BOLD) signal in the Supplementary Motor Area (SMA). Four groups were trained in a 

two-day rtfMRI-NF protocol: GF with NF only, GF,I with NF+explicit instructions 

(motor imagery), GF,R with NF+monetary reward, and GF,I,R with NF+explicit 

instructions (motor imagery)+monetary reward. Our results showed that GF increased 

significantly their BOLD self- regulation from day-1 to day-2. GF,R showed the highest 

BOLD signal amplitude in SMA during the training, but it did not show significant 

change from day-1 to day-2. GF,I and GF,I,R did not show BOLD signal amplitudes 

significantly higher than GF  or significant change between the two days. Whole brain 

univariate analysis showed similar activations among the four training groups. Similarly, 

functional connectivity in the bilateral motor cortical and prefrontal regions of the brain 

showed common patterns among the four groups. On the other hand, the variation of 

functional connectivity during the training showed distinct patterns among the groups, 

representing the varied influences of feedback, reward and instructions on the brain. 

 Key words: Neurofeedback, real-time fMRI, learning, reward, mental strategy, 

motor imagery. 
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RESUMEN 

El uso de Neurofeedback (NF) con resonancia magnética funcional en tiempo real (Real-

time fMRI neurofeedback, rtfMRI) permite la auto-regulación de la actividad metabólica 

del cerebro. El control de la actividad cerebral puede generar cambios conductuales, lo 

cual abre nuevas oportunidades para potenciales aplicaciones tanto terapéuticas como de 

investigación en neurociencias. El proceso de aprendizaje involucrado en alcanzar auto-

regulación de la actividad hemodinámica del cerebro se cree que está relacionado a 

factores como el tipo y contingencia del feedback, recompensa, el uso de imaginería 

mental, la duración del entrenamiento, entre otros. Instruir explícitamente a los 

participantes a usar imaginería mental es una práctica común en experimentos de 

rtfMRI-NF, bajo el supuesto de que esta estrategia mejorará y acelerará el proceso de 

aprendizaje. Del mismo modo, se asume que la entrega de recompensa monetaria según 

desempeño refuerza y mejora la auto-regulación cerebral. Sin embargo, la estrategia 

óptima para mejorar el control voluntario de la actividad cerebral aún no está clara. Para 

evaluar el efecto de estos factores en la auto-regulación, el presente estudio consideró la 

influencia de feedback, instrucciones explícitas y recompensa monetaria en el proceso de 

entrenamiento de sujetos sanos para aumentar la señal BOLD (Blood Oxygen Level 

Dependent, Dependiente del Nivel de Oxígeno Sanguíneo) en el Área Motora 

Suplementaria. Cuatro grupos fueron entrenados en un protocolo de rtfMRI-NF durante 

dos días: GF sólo con NF, GF,I con NF + instrucciones explícitas (imaginería motora), 

GF,R con NF + recompensa monetaria, y GF,I,R con NF+ instrucciones explícitas 

(imaginería motora) + recompensa monetaria. Nuestros resultados muestran que GF 

aumentó significativamente su auto-regulación de la actividad BOLD entre el día 1 y el 

día 2. GF,R mostró la mayor amplitud en la señal BOLD en la región objetivo durante el 

entrenamiento, pero no mostró un cambio significante entre el día 1 y día 2. Tanto GF,I 

como GF,I,R (grupos con imaginería motora) no mostraron una amplitud de la señal 

BOLD significativamente mayor que GF ni tampoco cambios significativos entre el día 1 

y día 2. El análisis univariado del cerebro reveló activaciones similares entre los cuatro 
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grupos de entrenamiento. Igualmente, la conectividad funcional en regiones corticales 

motoras bilaterales y prefrontales mostró patrones comunes entre los cuatro grupos. Por 

otro lado, la variación de la conectividad funcional durante el entrenamiento presentó 

patrones distintos entre los grupos, representando las variadas influencias en el cerebro 

del feedback, recompensa e instrucciones. 

Palabras claves: Neurofeedback, real-time fMRI, aprendizaje, recompensa, 

estrategia mental, imaginería motora.
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CONTEXT 

Brain computer interface (BCI) is a system that measures activity in the Central Nervous 

System (CNS), in circumscribed or extended regions, to interpret, process and transform 

it into an output signal to improve or replace the natural output from CNS (Wolpaw & 

Winter-Wolpaw, 2012). BCI has a wide spectrum of applications: prosthetic limb 

control, word-spellers for locked-in patients, videogames, emotional detectors, among 

others (Morimoto & Kawato, 2015; Birbaumer and Cohen, 2007; Haynes & Rees, 2006; 

Sitaram et al., 2011; Pfurtscheller et al., 2008). Neurofeedback (NF) is a core part of 

BCI that enables subjects to interact with their self-generated functional brain signal in 

real time through sensory input such as visual, auditory, etc. The objective is to develop 

voluntary control or self-regulation of the brain activity, generating changes based in 

plasticity and brain functional reorganization after a training period. In this way, NF 

appears as a potential alternative to standard options in rehabilitation therapy and 

treatment of neurological/psychiatric conditions, usually related to dysfunctional brain 

activations, avoiding invasive approaches such as pharmacological therapies or surgical 

intervention.  

Electroencephalography (EEG) is the most common way to acquire brain electrical 

signals for NF due to its non-invasive nature, comparatively cheap equipment and high 

temporal resolution. However, EEG lacks of spatial resolution and has only cortical 

coverage. Alternative non-invasive techniques have been used to overcome some of 

these constraints. Functional magnetic resonance imaging (fMRI) is a technique that 

measures brain hemodynamic/metabolic changes, i.e. fluctuations in the blood 

oxygenation level dependent (BOLD) signal contrasting magnetic properties of 

hemoglobin in blood (Fox and Raichle, 1986; Ogawa et al., 1990; Kwong et al., 1992). 

When hemoglobin has oxygen saturation (oxyhemoglobin) it behaves as a diamagnetic 

substance, in turn, low oxygen attached to hemoglobin molecule (deoxyhemoglobin) 

shows paramagnetic properties. Therefore, MRI signal is more intense in those voxels 

with higher concentration of oxyhemoglobin. Correlation between neuronal electric 
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activity and hemodynamic changes has been demonstrated (Logothetis, 2008). If neural 

activity in a particular brain region rises, it is observed an increment in oxygenated 

blood flow bigger than the oxygen metabolic consumption due to neuron activity, 

increasing signal intensity in those regions. To measure these changes, fMRI acquires 

brain volumes with 'voxels' that represent BOLD signal observed in part of the brain 

tissue during a particular time period (usually in the range of seconds). Sequences of 

brain volumes are acquired producing time series of brain activity. Thus, fMRI is a 

technique that indirectly obtains neuronal signals with higher spatial resolution, whole 

brain coverage, although with lower temporal resolution than EEG. Despite this 

temporal drawback, real time fMRI (rtfMRI) has been implemented for NF training. 

It has been shown that particular brain regions get activated in response to executive or 

cognitive processes, such as emotional, visual, auditory, etc. Using rtfMRI-NF training, 

metabolic brain signals (BOLD signals) in these areas can be self-regulated in healthy 

and pathological populations (Sulzer et al., 2013a). As an external sign of brain self-

regulation, behavioral changes can be generated after successful modulation of brain 

activity (as demonstrated in studies of patients with schizophrenia, Parkinson’s disease, 

chronic pain and depression; Ruiz et al., 2014). For instance, Parkinson patients can be 

trained to increase activity in their motor cortex using rtfMRI-NF, leading to an 

improved performance in a finger-tapping test (Subramanian et al., 2011). rtfMRI-NF 

appears as a promising therapeutic technique, however, many aspects in the design of 

training protocols are still unclear. 

In rtfMRI-NF experiments, self-regulation is measured comparing the BOLD signal  

between an "active" self-regulation period (can be up or down-regulation depending of 

the purpose of the experiment) and an "inactive" baseline period (participant are asked to 

relax). In "active" periods participants have to voluntarily increase or decrease their 

brain activity guided by contingent feedback (often visual) that shows the instantaneous 

change of BOLD signal. At the beginning of the training process, it is expected that 

participants may not be able to generate differences ("active" vs. "inactive") in BOLD 
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signal. After getting familiar with the "feedback control" and practicing they may be 

able to obtain higher changes in BOLD signal, usually with the help of some kind of 

internal mechanism (i.e. achieving a calm state, remembering old memories, 

concentrating, imagining, etc.; Sulzer et al., 2013a). Therefore, the magnitude of the  

BOLD change can be used to rate the degree of successfulness of brain self-regulation.  

In the present study, additional factors, i.e. monetary reward and explicit mental 

imagery, have been included in NF experiments. These factors have been proposed in 

NF literature as alternatives to improve brain self-regulation: giving money incentives 

may increment the rewarding value of obtaining "good" feedback (desirable brain 

activation) and mental imagery related to its proposed function may help to activate the 

region of interest (e.g. the insula cortex, an "emotional" region, may get activated with 

autobiographical with happy memories). However, the effectiveness of such factors has 

not been demonstrated yet.  

Another open question in rtfMRI-NF is the neural substrates or brain regions (or 

networks) needed to achieve brain self-regulation (Sulzer et al. 2013a). Based on that 

purpose some studies have looked for complementary regions that activate when 

participants try to control their brain activity (Caria et al., 2007; Linden et al., 2012; 

Subramanian et al., 2011; Yoo et al., 2008) or connectivity patterns that could be related 

to brain self-regulation (Rota et al., 2011; Ruiz et al., 2013a; Zotev et al., 2011).  
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INTRODUCTION 

During the last decade, several studies have demonstrated that brain’s metabolic signals 

can be voluntarily controlled by healthy individuals and patients by means of 

neurofeedback (NF; Birbaumer et al., 2007a; Birbaumer et al., 2013). In the NF studies 

using the Blood Oxygen-level Dependent (BOLD) signal, real-time Near Infrared 

Spectroscopy (rtfNIRS; Mihara et al., 2013; Naseer et al., 2015; Sitaram et al., 2007b) 

and Functional Magnetic Resonance (rtfMRI) have been used; the latter being the most 

informative because of its higher spatial resolution and whole-brain coverage (Caria et 

al., 2007; deCharms et al., 2005; Haller et al., 2013; Hamilton et al., 2011; Lawrence et 

al., 2013; Yoo et al., 2008; Young et al., 2014; Zotev et al., 2011). Volitional control of 

brain metabolism can lead to behavioral changes (deCharms et al., 2005; Linden et al., 

2012; Ruiz et al., 2013a; Subramanian et al., 2011; Young et al., 2014), therefore 

opening new opportunities for potential therapeutic and research applications (Lee et al., 

2011; Ruiz et al., 2013b; Sitaram et al. 2007a; Sitaram et al. 2011; Sitaram et al. 2014; 

Weiskopf et al., 2012).  

The magnitude of self-regulation typically expressed as percentage difference in the 

hemodynamic signal between the regulation and baseline trials, and the learning effect, 

expressed as change in the magnitude of self-regulation over time during neurofeedback 

training (deCharms et al., 2005), are two important measures of a participant’s 

performance during neurofeedback training. Both the magnitude of self-regulation and 

the learning effect can be influenced by several factors such as type of feedback, reward, 

instructed mental strategies, session duration, among others (Schwartz and Andrasik, 

2003; Sulzer et al., 2013a). Volitional control depends on contingent feedback, as has 

been demonstrated by the inclusion of control conditions, such as, non-contingent 

feedback (sham-feedback) and mental imagery in the absence of feedback (Caria et al., 

2007; Caria et al., 2012; deCharms et al., 2005, Hamilton et al., 2011; Rota et al., 2009; 

Zotev et al., 2011).  In the majority of rtfMRI-NF studies so far participants were 

instructed to control the feedback related to the BOLD signal extracted from the region 
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of interest (Caria et al., 2007; deCharms et al., 2005; Lawrence et al., 2014; Scheinost et 

al., 2013; Sokunbi et al., 2014). In these cases, contingent (visual) stimuli may 

intrinsically represent a reward or reinforcement since it guides the desired response 

based on the internal motivation of the experimental subjects (Fetz et al., 2006; Ruiz et 

al. 2014; Strehl, 2014).  

Furthermore, instructing participants to use certain kind of mental imagery is a common 

practice, employed with the aim to enhance the efficiency of the learning process (Caria 

et al., 2007; Hwang et al., 2009; Lawrence et al., 2013; Ray et al., 2015; Rota et al., 

2009; Scharnoswski et al., 2012; Sitaram et al., 2011; Subramanian et al., 2011; Sulzer 

et al., 2013b; Yoo et al., 2008; Young et al., 2014; Zilverstand et al., 2015).  

However, opposing views have been raised about the importance of these strategies, 

particularly in electroencephalography NF (EEG-NF; Kober et al., 2013; Strehl et al., 

2014) and rtfMRI-NF studies (Shibata et al., 2011; Sulzer et al., 2013a; Birbaumer et al., 

2013). In fact, learning to self-regulate brain activity has been proposed as a process of 

operant conditioning (Birbaumer et al., 2013) since the early reports of brain signal 

control in non-human animals (Carmena et al., 2003; Fetz, 1969; Fetz and Finocchio, 

1971; Koralek, 2012; Philippens and Vanwersch, 2010; Schafer and Moore, 2011; 

Shinkman et al., 1974; Sterman et al., 1978). Based on this outlook, explicit and 

conscious strategies may not be necessary and may even hinder efficient learning (Kober 

et al., 2013; Witte et al., 2013). Recently, human studies using rtfMRI-NF have also 

started to consider this aspect in their experimental design, increasing the relevance of 

reward in the training process. Monetary reward, proportional to the desired change in 

the brain signal, has been used in studies as another factor to reinforce learning 

(Buyukturkoglu et al. 2015; Bray et al. 2007; Shibata et al. 2011; Megumi et al., 2015), 

often with protocols in which the participants are not informed or aware of the meaning 

of the feedback signal (Bray et al., 2007; Megumi et al.,2015; Shibata et al.,2011)  

Unravelling the underlying psychobiological process of learning of self-regulation is one 

of the most important open issues in the field of neurofeedback and Brain-Computer 
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Interfaces (Emert et al., 2015; Sulzer et al. 2013a; Ruiz et al., 2014). Finding an optimal 

strategy to enhance brain self-regulation is of fundamental importance for the 

development of neurofeedback for clinical interventions.  

For this purpose, we focused our study on testing and comparing three factors presumed 

to influence learning brain self-regulation: contingent feedback, explicit instructions 

related to the activity of the region of interest (ROI), i.e. motor imagery, and monetary 

reward. The first aim of the current study was to compare the efficiency of motor 

imagery and monetary reward as complementary strategies to contingent feedback. 

We trained four groups of healthy individuals using different combinations of these 

factors, to achieve volitional control of supplementary motor area (SMA). We chose 

SMA as the ROI, as it has an important role in planning and execution of motor activity 

and its dysfunction has been related to motor deficits observed post stroke and 

movement disorders, such as, Parkinson’s disease (Jahanshahi et al., 1995; Nachev et al., 

2008; Radman et al., 2013; Roland et al., 1980). Additionally, the function of SMA has 

been extensively studied during motor imagery (Gerardin et al., 2000; Guillot et al., 

2012; Kasess et al., 2008; Lafleur et al., 2002; Lotze & Halsband, 2006) and also 

through fMRI-NF studies (Scharnowski et al. 2015), particularly as a potential 

intervention for treating Parkinson’s disease (Buyukturkoglu et al., 2013; Subramanian 

et al., 2011).  

We evaluated the magnitude of self-regulation (rSMA), expressed as percentage 

difference in the hemodynamic signal between the regulation and baseline trials, and the 

learning effect (ΔrSMA), expressed as change in the magnitude of self-regulation over 

time during neurofeedback training (deCharms et al., 2005). Further, we explored 

changes in the brain across the different experimental groups with both univariate 

analysis and functional connectivity (FC) analysis. First, we used univariate analysis by 

Statistical Parametric Mapping (SPM) to find differences in brain activations in the four 

experimental groups. Additionally, FC analysis was performed to compare the 

functional connectivity changes due feedback, motor imagery and monetary reward. 
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MATERIALS AND METHODS 

1. Participants 

Twenty male, right handed volunteers, aged 18-35 years (22.75 ± 1.6) and without any 

history of previous psychiatric or neurological disorders were included in the study. 

Exclusion criteria included the presence of electronic or ferromagnetic body implants 

and prior history of claustrophobia or panic attacks. All participants in the study were 

naïve to NF and fMRI experiments. The experimental protocol was approved by the 

ethics committee of Pontificia Universidad Católica de Chile. Each participant signed a 

written informed consent on each day of the study. 

Participants underwent two days of NF training to achieve volitional control of SMA 

(ROI 1). To evaluate the effects of the different factors, namely, feedback, motor 

imagery and reward, on NF training, participants were randomly distributed in 4 groups 

of equal size (n=5), matched by age.  

The following were the four groups of participants (figure 1): 

Group GF: Participants of this group received only contingent feedback (F) from SMA. 

No further instructions or strategies to self-regulate were given.  

Group GF,I: In addition to contingent feedback, participants of this group were instructed 

that feedback was proportional to the activity of a movement related area of the brain, 

and hence participants could use mental imagery of movement (i.e., motor imagery, I) 

without performing actual movement, for self-regulation.  

Group GF,R: Participants were given contingent feedback and monetary reward (R) 

proportional to the increase in the BOLD signal in the SMA at the end of each up-

regulation block. 

Group GF,I,R: Participants were given contingent feedback, monetary reward and 

instructions for motor imagery.   
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Every group received contingent visual feedback from SMA by means of a graphical 

thermometer. The bars presented in the thermometer reflected the BOLD signal-level in 

SMA. The thermometer was regularly updated at intervals of 1.5 s. All participants were 

instructed to observe the thermometer display and to increase the thermometer bars 

knowing that it was related to their brain activity. Participants were additionally 

informed to consider the delay in the feedback signal due to the tardiness of the brain 

hemodynamic response as well as due to restrictions imposed by data acquisition and 

processing.  

2.  MR acquisition 

The rtfMRI system was implemented using a Philips Achieva 1.5T MR scanner (Philips 

Heathcare, Best, The Netherlands) at the Biomedical Imaging Center of the Pontificia 

Universidad Católica de Chile. A standard 8-channel head coil was used. Functional 

image acquisition used FFE-EPI sequence with TR/TE=1500/45 ms, matrix size=64x64, 

flip angle α=70°, FOV: RL = 210 mm; AP = 210 mm; FH = 79 mm. Sixteen slices 

(voxel size=3.2x3.3x4 mm
3
, gap= 1 mm) oriented with AC/PC alignment and 150 scans 

(10 dummy scans) were used in each run. Anatomical T1-weighted brain volumes were 

acquired each training day using T1W-3D TFE sequence with TR/TE=7.4/3.4 ms, 

matrix size =208x227, α=8°, 317 partitions, voxels size=1.1x1.1x0.6 mm
3
, TI=868.7ms. 

To prevent discomfort during MRI sessions, pads and air cushions were used to fix the 

head. 

3.  Real-time fMRI system  

To implement the rtfMRI system a typical setup used in rtfMRI-NF experiments was 

assembled (Caria et al., 2012; Ruiz et al.,2014; Weiskopf et al. 2004; figure S2 and S12). 

At the beginning of each measurement, participants were positioned in the scanner and 

reference scans were acquired. Later, using an EPI sequence (see MR acquisition) 

functional brain volumes were generated. During image acquisition, brain volumes were 

transferred in real-time directly from the scanner's image reconstruction system using the 
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Direct Reconstructor Interface (DRIN) application (Philips Heathcare, Best, The 

Netherlands) to a PC (BCI PC) which had the necessary software to analyze it in real 

time. No modifications were done to the scanner’s image reconstruction system, as 

described by Sitaram et al. (2011). 

A standard PC running Turbo Brain Voyager 3.0 (TBV-PC) rtfMRI software (Brain 

Innovations, The Netherlands) read the incoming ANALYZE (.img/.hdr) brain volumes 

to perform real-time 3D motion correction and statistical analysis (Weiskopf et al., 

2003). TBV parameters were set to match parameters of the EPI acquisition and to 

obtain BOLD signal information coming from the two selected ROIs after each 

repetition time (TR) of the scans. Custom MATLAB scripts used ROI information to 

compute the feedback (thermometer bars) by comparing between up-regulation and 

baseline blocks (details below). The feedback output was stored in a shared file (text 

file) in the TBV-PC to be accessed from another computer (Presentation-PC) in the local 

network. Presentation® 17.1 software (Neurobehavioral Systems, USA) read the 

feedback file continuously and refreshed the images on the screen, corresponding to the 

calculation of the thermometer bars, on a MR-compatible visual display system 

(NordicNeuroLab AS, Norway).  
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4. Experimental protocol  

Table 1. Experimental Protocol      

Day 1 Explanation and instructions to participants 

Training Session 1 

ROI localizer run 

Neurofeedback training runs (4) 

Transfer run 

Anatomical MRI acquisition 

Day 2 Training Session 2 

ROI localizer run 

Neurofeedback training runs (4) 

Transfer run 

Anatomical MRI acquisition 

Day 3 Debriefing 

 

 

4.1 Training sessions 

Each training session consisted of a functional localizer, 4 training runs and a transfer 

run. Training was conducted in 2 days, with at least one day of gap (with no training) 

between days 1 and 2 (figure S3). 

4.1.1 Region of interest (ROI) localizer trials 

SMA (ROI 1) was delineated using both a functional localizer and anatomical 

references. During the functional localizer, participants performed overt motor 

execution.  To ensure that GF and GF,R (groups without motor imagery) do not get any 
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hint that the self-regulation task that follows the localizer might be related to movement 

or motor activity, the functional localizer was implemented as a 2-back task (Conway et 

al., 2003; Kirchner, 1958)  in which participants were presented a sequence of stimuli, 

and the required task was to report (with a button) if the current stimulus and the 

stimulus observed ‘2’ steps earlier in the sequence were the same. Although, typically 

the n-back tasks are used to evaluate working memory, in this experiment we used the 

task to ensure frequent button presses to elicit activations in the motor areas. The 

localizer run included four baseline blocks and three 2-back blocks, so that each block 

was presented for 30 s. For anatomical reference, the superior part of the posterior 

frontal lobe around the perpendicular line to anterior commissure (AC; y=0) was used. A 

volume inside Broadmann Area 6 was selected, whose location was later validated in an 

offline analysis. ROI 1 was delineated as two contiguous slices, each one of 4x4 voxels 

in a transversal brain section. The reference ROI (ROI 2), delineated as a single slice 

around anterior part of the third ventricle, was selected to cancel effects of global 

activation (figure S4). 

4.1.2 Neurofeedback training runs 

Eight training runs were equally distributed in two scanning days (four runs per day). 

Each run of 150 brain volumes included first 10 dummy scans (15 s) to reach T1 steady 

state (which were later discarded), followed by alternating baseline (4) and up-regulation 

(3) blocks (20 volumes, 30 s per block). During baseline blocks, volunteers were asked 

to remain in rest, and the image of the thermometer remained static. During up-

regulation blocks, contingent feedback was provided. Groups GF,R and GF,I,R were 

visually presented the value of their monetary reward, in the last 3 seconds (2 volumes) 

of the block, using an image indicating the amount of money earned corresponding to 

the increase in the BOLD signal in the previous up-regulation block.  
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4.1.3. Feedback calculation 

As in other previous studies (Caria et al. 2007; Lawrence et al. 2013; Ninaus et al., 2013; 

Ruiz et al., 2013a), graphical depiction of a thermometer was used as visual feedback of 

BOLD signal changes, with moving bars showing the increments (red bars rising over 

middle point) or decrements (blue bars under the middle point) of the BOLD signal in 

SMA, in comparison to the immediately preceding baseline block, using the following 

formula:  

F = (BOLDUpreg–BOLDBase)ROI1 - (BOLDUpreg–BOLDBase)ROI2  (1),  

where F is the feedback value, BOLDUpreg is the BOLD signal in ROI1 or ROI2 

during a moving average calculated from the last 3 scans during the up-regulation block, 

and BOLDBase the average BOLD signal during the entire immediately preceding 

baseline block (figure S5). Subsequently, F was rounded-off to the closest integer. In 

case of abrupt changes (considered if greater than 8 points in this study) in the F-value, 

potentially due to movement artifacts, swallowing, etc., an online correction was applied 

by replacing the spurious value by the F-value from the previous TR. 

In groups with monetary reward (GF,R and GF,I,R), the amount of money given to 

each participant was calculated in proportion to the mean increase in BOLD in the up-

regulation block in comparison to that of the baseline block. To ensure correspondence 

between real-time feedback (thermometer bars) and monetary reward, the equation (2) 

was used for calculating the amount of monetary rewarded: 

R = F' * M    (2), 

 where R is the reward value and M the monetary units per 1 unit of F'. F' 

(equation 2) was computed using the same formula as F (equation 1), but considering the 

percentage BOLD increase in all the up-regulation block compared to the previous 

baseline block. The maximum permissible reward for each block was 3 USD. The total 

reward given to participant was the sum of the amount of money earned in each reward 
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block with a total maximum of 60 USD for the whole training. If the calculation of the 

monetary reward resulted in a negative number, the value was fixed to zero.  

5. Self-reports and subjective ratings 

At the end of the two training days, participants were asked about their comfort during 

training, subjective appreciation about the level of control over the feedback signal and 

descriptions of mental strategies used to control the thermometer. The questionnaire 

responses were assessed using a five-point Likert scale (1: completely disagree/difficult; 

5: fully agree/easy). 

6. Transfer run 

At the end of both training days, an additional run was included during which 

participants were instructed to perform the same up-regulation/baseline paradigm 

described previously, but without receiving feedback. The aim of transfer runs was to 

test if participants can maintain volitional control of the BOLD signal after training. A 

further aim is to test if magnitude of self-regulation can be maintained in a context 

different from a NF experiment. The number and duration of blocks was the same as that 

of the NF training runs, with the only difference that the thermometer (feedback) was 

not shown.  Unlike previous studies with transfer runs performed only once and during 

the last day (Caria et al., 2007; Ruiz et al., 2013a; Zotev et al., 2011), here a transfer run 

was included at the end of each day. The objective was to familiarize the participant 

with the transfer, avoiding novelty effect over the results. For the final analysis, only the 

transfer run of the second day was used.   
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7. Offline processing 

7.1. Preprocessing 

For brain imagining analysis, a spatial pre-processing step using SPM 8 (Wellcome 

Department of Imaging Neuroscience, London, UK) was performed, involving motion 

correction, realignment and slice-timing correction. Functional EPI images were 

coregistered with the anatomical images of the same day. Normalization to Montreal 

Neurological Institute (MNI) space was done in anatomical and functional EPI volumes. 

Smoothing with a Gaussian kernel of FWHM of 8x8x8 was applied over all functional 

volumes. 

To execute 1st level analysis, general linear model (GLM) was defined to evaluate 

regions responsive to self-regulation, considering two conditions (up-regulation and 

baseline). Convolution of the regressor with canonical hemodynamic response function 

(HRF) was performed. Six generated motion confounds were added to the model. After 

estimating the 1st level model, whole brain analysis was performed at group level to find 

other areas responsive to up-regulation (defined contrast = 1 -1, i.e., up-regulation - 

baseline) using 2nd level analysis in SPM. One-sample t-test was performed for each 

group taking data from the second day only, in order to find significant brain activation 

of learned self-regulation and the different factors.  Whole brain map (figure 4) shows 

significant t-values (threshold of p<0.001 and FDR p<0.01, cluster size = 10) and are 

visualized using the xjView toolbox (http://www.alivelearn.net/xjview). Brain regions 

defined in the AAL atlas (Tzourio-Mazoyer et al., 2002) were used to find the location 

of activation. Repeated measures ANOVA was used to determine regions particularly 

activated for each one of the tested factors (explicit instructions (motor imagery) vs 

monetary reward). 

 

 

http://www.alivelearn.net/xjview
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7.2 SMA-ROI self-regulation progress  

To determine the effect of BOLD self-regulation in the target region, smoothed 

normalized brain volumes were used. The analysis was performed in an 8 mm
3
 ROI in 

the SMA (MNI coordinate limits: x: -8, 8; y: -8, 8; z: 52, 68). This region was selected 

comprising a wide area in the SMA, including the regions named in the literature as pre-

SMA and SMA proper (Mayka et al., 2006). Using mean BOLD values across each run 

(including training and transfer runs) the Percentage BOLD (rSMA) was computed as 

below:  

rSMA = 100 ∗
Mean(BOLDUpReg) − Mean(BOLDBase)

Mean(BOLDBase)
   (3) 

where 𝐵𝑂𝐿𝐷𝑈𝑝𝑅𝑒𝑔 and 𝐵𝑂𝐿𝐷𝐵𝑎𝑠𝑒  are vectors with the mean BOLD signal time 

series in the SMA-ROI during up-regulation and baseline blocks. Group comparison of 

self-regulation levels was done using one-way ANOVA. To measure the participant's 

learning effect (∆rSMA) in terms of his improvement in increasing the BOLD signal in 

the up-regulation condition compared to the baseline condition over the two days of 

training, we considered the difference of the mean 𝑟𝑆𝑀𝐴 in the 4 runs of second day 

minus the mean rSMA of the 4 runs of first day. All data was checked for normality and 

non-parametrical tests were used when appropriate.   

Additionally, to determine if inter-subject rSMA variability can be affected by the 

inclusion of training factors (i.e. feedback, motor imagery and monetary reward) 

standard deviation (SD) of the group rSMA for each run was calculated. In this case, 

Kruskal-Wallis test was used to check for group effect, U Mann-Whitney test was used 

as post-hoc and Bonferroni correction was considered. Intra-subject variability was also 

analyzed by group. For this purpose, rSMA for each up-regulation TR was calculated for 

each subject and the variance of rSMA (using SD) was calculated for each run. With SD 

values for each run and participant, repeated measures ANOVA test was calculated. 

Additionally, significant run effect was tested in each group using Friedman test. A 
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measure of functional SNR, defined as the ratio of the signal difference between the 

experimental conditions to their combined noise (Huettel, Song & McCarthy, 2014), was 

calculated using the Fisher Score (FS; Bishop, 1995; Lal et al., 2004; Ruiz et al., 2013a) 

as follows: 

FS= 
[Mean(BOLDUpReg)−Mean(BOLDBase)]

2

Var(BOLDUpReg)+Var(BOLDBase)
   (4) 

FS was calculated for each subject, run and block. Repeated measures ANOVA was 

used to compare the FS across groups, runs and blocks. Significant run effect was tested 

in each group using Friedman test. 

The relationship between intra-subject variability and delivered monetary reward was 

also evaluated using linear regression from the GF,R data. 

In all cases, Spearman correlation coefficient was used to test dependence of 

variability/FS and run progress. 

7.3 Functional connectivity analysis 

FC analysis was performed to recognize network changes during up-regulation in SMA 

in different experimental groups. For this purpose, correlation coefficients were 

computed to measure the linear relationship between BOLD activity in different voxels 

or regions (Friston, 2011). To perform ROI to ROI FC analysis, the CONN toolbox was 

used (Whitfield-Gabrieli & Nieto-Castanon, 2012) after the following pre-processing 

steps were performed: denoising using bandpass-filtering (0.008Hz-0.09Hz), inclusion 

of estimated head motion parameters, white matter and CSF as covariates, and linear 

detrending and despiking before calculating regression. Regions inside the field of view 

were selected from the AAL atlas (Tzourio-Mazoyer et al., 2002) (please see 

supplementary table S1) for grouping the brain voxels inside these areas to calculate the 

ROI to ROI BOLD signal correlations. Additionally, a customized ROI of Nucleus 
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Accumbens was included in the analysis due its relevance in reward processing 

(Ikemoto et al., 1999; Knutson et al., 2001). 

ROI to ROI bivariate correlations were calculated for up-regulation blocks. Each ROI 

pair (seed-target) was considered as independent from other pairs (i.e. calculation of the 

correlation coefficient (r) in isolation). Correlation coefficient was calculated according 

to the formula (Whitfield-Gabrieli & Nieto-Castanon, 2012): 

r = (xtx)−
1
2  (xty)(yty)−

1
2       (5)  

where x and y are vectors of the BOLD time-series for seed ROI and target ROI. 

CONN analysis produced one FC Z matrix (51x51 in this case) for each study group (4) 

and run (8). FC Z matrix contained Fisher-transformed correlation coefficients zFC (i,j)  

(zFC(i,j)= atan(r(i,j))) between all the i and j ROI pairs. In our analysis, zFC was used to 

report the FC values between ROIs. 

To assess the similarities and differences of FC in the brain among the groups, FC 

patterns in different groups were compared with the FC pattern of the group GF 

(reference group). In the following sections, two different ways of selecting the ROIs for 

the above analysis are described. In the two cases, brain regions in GF are sorted 

according to two different criteria, namely, 1) Mean pairwise correlation coefficients of 

functional connectivity (mean zFC values), from all the training runs, between the top 6 

regions, and 2) Rate of change, slope, of the the zFC values between the top 6 regions 

over the course of neurofeedback training. Additionally, 4 extra regions were selected 

for each of the two criteria described above but with restriction of SMA as the seed 

region (i.e. the selected region needs to be connected with SMA). Finally, right and left 

SMAs were also included in the analysis for both cases. Therefore, the complete analysis 

considered 12 regions for each criterion. 
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7.3.1 Mean FC changes among groups 

As the first criterion, mean zFC values across runs were considered to unveil functional 

connections that could be relevant during the NF training process. Considering the FC 

data of the reference group, the 3 pairs of regions with the top mean zFC values taking in 

consideration all regions in FC Z matrix (hereafter called the "whole-brain connectivity 

matrix") were selected. To give relevance to SMA as the target region in our NF 

training, the 4 regions with top mean zFC values and (right or left) SMA as seed area 

were additionally selected. Left and right SMAs were also included in the analysis. In 

total, mean zFC analysis included 12 regions (top mean whole-brain connectivity matrix 

(n=6) + top mean SMA-seeded (n=4) + R&L-SMA (n=2)). 

Plots were generated (figure 5) considering the 12 selected regions for each group, by 

presenting significant functional connections (|zFC|≥0.26, p<0.001) among them. For the 

purpose of visualization, the thickness of the lines connecting the ROIs is represented to 

be proportional to the magnitude of zFC, and the lines are drawn in red color for positive 

and blue for negative zFC values. 

7.3.2 Slope FC changes among groups 

As a second criterion for analysis we used the rate of change of zFC values across the NF 

training process, i.e. we considered the slope of zFC curve across the 8 training runs. 

Similar to the previous method used in the analysis of mean FC changes among groups 

(with GF as the reference), 3 pairs of regions with the top zFC slope from the whole-brain 

connectivity matrix were selected. Four additional regions with the top zFC slope,  

considering SMA as the seed region, were selected. Again, left and right SMAs were 

included in the analysis. In total, this analysis included 12 regions (top slope whole-brain 

connectivity matrix (n=6) + top slope SMA-seeded (n=4) + R&L-SMA (n=2)). 

The 12 selected regions and the changes between mean zFC of day 2 minus the mean 

zFC of day 1 (∆zFC = |zFC,2 − zFC,1|> 0.15) for each group are presented here (figure 6). 
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In this case, the thickness of line is proportional to the magnitude of ∆𝑧𝐹𝐶. The red 

colour of the line was chosen for positive ∆zFC values and the blue colour for negative 

∆zFC values.  

Additionally, a correlation change index (CCI) was calculated considering the 12 

selected regions (a connectivity matrix with only these regions was generated) and the 

"whole-brain connectivity matrix". CCI summarizes in one value how the brain’s 

functional connectivity changed in the selected network.  

CCIincr =
∑ ∑ |zFC,2(i, j) −  zFC,1(i, j)|ji

Ntotal
 with (zFC,2(i, j) −  zFC,1(i, j)) > 0   (6) 

CCIdecr =
∑ ∑ |zFC,2(i, j) −  zFC,1(i, j)|ji

Ntotal
 with (zFC,2(i, j) −  zFC,1(i, j)) < 0  (7) 

With zFC,X(i, j) being the mean value of zFC between regions i and j during day X, and 

Ntotal being the total number of possible bi-regional functional connections (66 for the 

selected 12 regions, and 1275 for whole-brain connectivity matrix). Since the FC Z 

matrix is symmetrical, and to avoid unnecessary duplication of the calculus, only one 

permutation of the pair of ROI i-j was considered in the summation (see equations 5 and 

6). Only half of FC Z matrix was considered to calculate CCI. Consequently, CCIincr and 

CCIdecr express the mean zFC increase and decrease (between training days 1 and 2), 

respectively, observed in the network. CCIincr and CCIdecr were calculated for each 

group.   
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RESULTS 

1. Strategies for self-regulation and self-reported performance  

During participants’ self-reports the strategies or methods that generated the best control 

of feedback signal were collected. Participants of groups GF,I and GF,I,R used motor 

imagery as expected, including running, moving hands, dancing, among others. In the 

case of Groups GF and GF,R, although participants were not instructed to use mental 

imagery at all, during the debriefing at the end of all the training runs, they reported the 

use of a variety of mental strategies for self-regulation (meditation, relaxation, sequential 

thinking, focusing, etc.) but quite different from motor imagery.  Please see table 2. 

Similar levels of comfort were reported across groups (Kruskal Wallis non parametric 

test, day 1: H (3) =1.09, p>0.05, ns; day 2: H (3) =3.33, p>0.05, ns). Participants were 

asked to rate a Likert scale (5 top performance) their perceived success in controlling the 

feedback signal (i.e., thermometer) during days 1 and 2 of training. Taking all groups 

together, a significant increase in ratings was observed during the second day (reported 

day 1 Mdn=3; day 2 Mdn=4, paired Wilcoxon signed rank test, Z=-2.98, p<0.01). No 

significant differences between groups were found in self-report of performance 

(Kruskal Wallis non parametric test, day 1: H (3) = 6.55, p>0.05; day 2: H (3) = 2.39, 

p>0.05, ns).  
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Table 2. Reported strategies during the rtfMRI-NF training sessions. 

 
Strategy reported  

 

GF (Feedback) 

Relaxing (nature environment related to rest: beach, forest, vacation) 

Remembering (trying to remember details of friends and trips) 

Meditation (concentration in one body point free of other thoughts) 

Positive mood (encouraging himself to increase the thermometer bars)  

Focusing (heat from a fire, movement of a flame, concentration on a white 

background) 

GF,I 

 (Feedback + 

instructed 

imagery) 

Motor imagery (a very active rock concert) 

Motor imagery (aggressive movements to get released from the scanner) 

Motor imagery (running, fast movements in scanner) 

Motor imagery (fast and intense movements while playing basketball) 

Motor imagery (playing piano and rugby) 

GF,R  

(Feedback + 

Monetary 

Reward) 

Recalling (remembering topics and linking them to new ones)  

Sequences (repeat 3 words sequences, chosen at the moment, not necessarily 

related) 

“Speaking in his brain” (inner speaking) and recalling important 

autobiographical memories 

Concentrating on increasing the bars of the feedback thermometer. Thinking 

about videogames 

Relaxing and focusing on increasing the bars of the feedback thermometer 

GF,I,R 

 (Feedback + 

Monetary 

Reward + 

Instructed 

Imagery) 

Motor imagery (funk dancing)  

Motor imagery (pumping activity or repetitive movement) 

Motor imagery (simple first person actions, i.e. move right hand to touch left 

elbow) 

Motor imagery (skate tricks)  

Motor imagery (swimming, running, boxing) 
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2. SMA-ROI self-regulation 

2.1 SMA BOLD activation levels 

First, we compared self-regulation of the BOLD signal of the SMA in the four groups of 

participants across the two days of training. Percent BOLD change (rSMA) during a 

feedback run was used as an indicator of the amplitude of self-regulation. All groups had 

a significant mean increase in BOLD activity for each day, (one-sample t-test, compared 

to zero; GF d1: M=0.10, t(19)=2.87, p=0.01;  GF d2: M=0.15, t(19)=4.31, p<0.001;  GF,I d1: 

M=0.11, t(19)=2.49, p<0.05; GF,I d2: M=0.19, t(19)=3.52, p<0.01; GF,R d1: M=0.30, 

t(19)=5.03, p<0.001; GF,R d2: M=0.29, t(19)=4.75, p<0.001; GF,I,R d1: M=0.22, t(19)=4.62, 

p<0.001; GF,I,R d2: M=0.20, t(19)=3.37, p<0.01). Figure 1 (figure S6 and supplementary 

table S2) shows the values for up-regulation during the training runs of days 1 and 2. 

Group differences were tested using one-way ANOVA among the total number of 

training runs in each one of the 4 groups (40 total runs by group). A significant group 

factor appears in this case (F3-156=4.643; p<0.01). In Games-Howell post-hoc test for 

multiple comparisons GF,R showed a significant mean difference with groups GF and GF,I 

(p<0.01 & p<0.05; respectively). Analysis by day also showed a significant group effect  

(F7-152 = 2.205; p<0.05), although in the post-hoc analysis no significant difference was 

found between the groups. 

To test if subjective perception of feedback control and magnitude of SMA self-

regulation were correlated, a comparison of self-report ratings of day 1 and day 2 with 

the BOLD signal difference (rSMA) were performed. A significant positive correlation 

was found between 𝑟𝑆𝑀𝐴 and self-report rating for each day (day 1: r(18)=.48, p<0.05; 

day 2: r(18)=. 53, p<0.05). 
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Figure 1. Mean BOLD signal change (rSMA) for the first and second day training runs in 

the SMA-ROI (MNI x=0, y=0, z=60) for each group. A significant difference was found 

between days 1 and 2 for Group GF. From ANOVA analysis, Group GR was 

significantly different from 1 and 2. Standard deviation bars and SMA-ROI are shown 

(** = p<0.01; * = p<0.05). 

 

2.2 Self-regulation learning 

The learning effect in SMA self-regulation throughout the training days was analysed as 

the difference between mean values of 𝑟𝑆𝑀𝐴 in days 1 and 2 (ΔrSMA). ΔrSMA was defined 

as our measure of learning self-regulation of the SMA (deCharms et al 2005). A 

significant difference between day 1 and day 2 was found only for GF (∆𝑟𝑆𝑀𝐴, five 

values one-sample Wilcoxon signed-rank test for median difference from 0, GF: ∆𝑟𝑆𝑀𝐴 
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Mdn=0.064, Z=-2.023, p<0.05; GF,I: ∆𝑟𝑆𝑀𝐴 Mdn=0.025, Z=-0.674, p>0.05, ns; 

GF,R:∆𝑟𝑆𝑀𝐴 Mdn=0.016, Z=-0.135, p>0.05,ns; GF,I,R: ∆𝑟𝑆𝑀𝐴 Mdn=-0.091, Z=-0.674, 

p>0.05,ns). Similarly, observing the progress of the mean value of rSMA run by run in 

each group, a positive linear tendency (increased magnitude of self-regulation through 

training runs) was found for GF (rs=.55; p=0.16; supplementary figure S1). For group 

comparisons of ∆rSMA, non-significant differences were found (Kruskal Wallis non-

parametric test, Mdn: G1=0.064, G2=0.025, G3=0.016, G4=-0.091; H(3)=-0.58, p>0.05, 

n.s.).  

2.3 Transfer Runs 

Whether participants maintained the capability to self-regulate after training was 

evaluated in the transfer runs, in which discriminative stimuli for up-regulation and 

baseline were presented as in the feedback training runs but no feedback of the ROI 

signal was provided. Day 2 transfer run was used in the analysis to avoid the novelty 

effect during the transfer run of day 1 (figure 2). One-sample Wilcoxon signed rank test 

was performed to verify that participants could up-regulate their activity during the 

transfer run. All groups presented a magnitude of self-regulation (rSMA) significantly 

different from zero during the transfer runs (one-sample Wilcoxon signed-rank test for 

median difference from 0; GF: Mdn= 0.269, GF,I: Mdn= 0.234, GF,R: Mdn= 0.10, GF,I,R: 

Mdn= 0.15; Z=-2.023, p<0.05 in all groups). No significant differences in transfer rSMA 

were found among groups (Kruskal Wallis non parametric test, H(3)= 2.109,p>0.1, ns). 

The magnitude of self-regulation (rSMA) in the transfer run was not significantly different 

from training day 2 in the 4 groups (Wilcoxon signed-rank test, GF:  Z=-1.753, p>0.05 

(p=0.08), ns, GF,I: Z=-0.944, p>0.05,ns, GF,R: Z=-1.753, p>0.05 (p=0.08), ns, GF,I,R: Z=-

0.135, p>0.05,ns).  
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Figure 2. Box plot showing results of the transfer run for all groups on day 2. The y-axis 

shows rSMA values presented in the brain region centered at MNI: x=0, y=0, z=60, and 

the x-axis indicates the 4 groups. No significant differences between the groups were 

found. All groups presented significant increases in SMA BOLD during the up-

regulation blocks of the transfer runs.   

2.4 Variability analysis 

High level of variability in the data was observed in all the groups. To analyze if 

variability can be related to the experimental factors, namely, feedback, motor imagery 

or reward, we compared the inter-subject variability using the standard deviation (SD) of 

the signals among the groups (figure 3). Kruskal-Wallis test reported a significant group 

effect among the inter-subject SD of rSMA in the training runs (Group SD GF:  

Mdn=0.157; GF,I: Mdn=0.224; GF,R: Mdn=0.263; GF,I,R: Mdn=0.270; 

H(3)=21.463,p=.006). Subsequent post-hoc test found significant differences, after 

applying Bonferroni correction, between GF and GF,R (corrected α=0.5/6=0.0083; GF vs 

GF,I: Z=-2.310 ,p=0.021, ns; GF vs GF,R : Z=-3.151, p = 0.002 ; GF vs GF,I,R: Z=-2.415, p 

= 0.016, ns; GF,I vs GF,R : Z= -1.365, p > 0.1, ns; GF,I vs GF,I,R : Z= -1.155 , p > 0.1, ns; 
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GF,R vs GF,I,R: Z= -0.525, p> 0.1, ns). Linear regression of group inter-subject variability 

across runs  showed no significant linear trend across runs (GF:  -0,0001x + 0,1634, rs=-

.071, p>0.1, ns ; GF,I: y = 0,0025x + 0,2052, rs=.024, p>0.1, n.s.; GF,R: -0,0088x + 0,321, 

rs=-.357, p>0.1, ns; GF,I,R: y = 0,0111x + 0,1974, rs=.262, p>0.1, ns). Analyses of intra-

subject variability vs functional SNR and intra-subject variability vs reward, both by 

group and feedback run, showed no significant effects (please refer to figures S7, S8, S9, 

S10 and S11).  

3. Whole brain univariate analysis 

To examine activations in other brain regions during the up-regulation blocks, group 

level, univariate, whole-brain analysis was performed using Statistical Parametric 

Mapping (SPM) (figure 4). Only the data from the second day’s training was used to 

focus our analysis on brain activations resulting on late stages of training.  The 

calculations were done considering the contrasts up-regulation > baseline blocks ([1 -1]). 

The results showed that SMA activation was present in all groups. Other brain regions 

that were consistently activated in all study groups were bilateral precentral gyrus, insula 

and supramarginal gyrus. From the 2-way ANOVA (considering the factors effects, 

groups and runs) no major differences in activations were found except some clusters of 

scattered activations (e.g. group GF,R has only a significantly increased cluster of kE=19 

at right precentral gyrus after applying FWE a p<0.05) (please refer to supplementary 

table S3). 
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Figure 3. Box plot showing  the inter-subject variability by groups. The presented 

distribution considers standard deviation of the mean (SD group rSMA) for each one of 

the 8 NF training runs by group.  
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Figure 4. Activation maps during the up-regulation of SMA obtained from whole-brain 

statistical parametric mapping (SPM) during day 2 with one-sample t-test, (FDR p<0.01, 

cluster size = 10). SMA activity is present in all groups.  
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4. Functional connectivity analysis 

4.1 Comparison of mean FC changes among groups 

The 12 selected regions of this analysis, based on the AAL atlas (Tzourio-Mazoyer  et 

al., 2002), were: Precentral (precentral gyrus) L, Precentral R, Frontal Sup (superior 

frontal gyrus) L, Frontal Sup R , Frontal Mid (middle frontal gyrus) L, Frontal Mid R, 

Supp Motor Area (SMA) L, Supp Motor Area R, Cingulum Ant (anterior cingulate 

cortex) L, Cingulum Ant R, Cingulum Mid R, and Paracentral Lobule L. FC patterns for 

the 12 selected regions by group are presented in figure 5. Despite the slight differences 

observed in FC patterns, a consistent pattern of correlations was found across all groups. 

Regions that appear with zFC,T (mean zFC during the 8 training runs, zFC,T) are: middle 

frontal gyrus and superior frontal gyrus in right and left hemispheres, left and right 

anterior cingulate gyrus, left and right SMA, left and right precentral gyrus, left SMA 

and precentral gyrus (supplementary table S4). In general, two zones of correlated 

regions can be observed, one frontal and a posterior-motor functional network. Only for 

Group GF a path between these two zones (left  superior frontal gyrus and SMA)  

appears with higher correlation.  
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GF: Contingent NF 

 

 

GF,I: Contingent NF + Motor Imagery 
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GF,R: Contingent NF + Monetary Reward  

 

GF,I,R: Contingent NF + Motor Imagery + Monetary Reward  

 

Figure 5. FC values for the selected 12 brain regions with the highest mean correlation 

values across all the NF training runs. The effect of the different experimental factors 

(feedback, motor imagery and reward) on FC patterns was analysed in comparison to the 

 0.33

 0.41

 0.28

 0.33

 0.27

 0.33

 0.76
 0.3

 0.59
 0.28 0.76

 0.59

 0.41

 0.52

 0.27

 0.52

 0.3
 0.68

 0.28
 0.68

 0.28
 0.33

  L-PreC
  R-PreC

  L-SFG

  R-SFG
  L-MFG   R-MFG

  L-SMA   R-SMA

  L-ACing
  R-ACing

  R-MCing

  L-ParaC

 0.44

 0.39

 0.35

 0.44

 0.38  0.37

 0.43

 0.64
 0.74

 0.64
 0.74

 0.39
 0.38

 0.58

 0.29

 0.37

 0.58

 0.29

 0.27

 0.72 0.72

 0.29

 0.35
 0.43

 0.29  0.27

  L-PreC
  R-PreC

  L-SFG

  R-SFG
  L-MFG   R-MFG

  L-SMA   R-SMA

  L-ACing
  R-ACing

  R-MCing

  L-ParaC



 
 

32 
 

 

group GF as the reference group (see section 7.3 for details on the method). The 

thickness of lines is proportional to zFC (zFC values shown on the line). FC patterns 

across groups were found to be similar to each other. (Precentral L = L-PreC;  Precentral 

R = R-PreC;  Frontal Sup L = L-SFG; Frontal Sup R = R-SFG; Frontal Mid L = L-MFG;  

Frontal Mid R  = R-MFG; Supp Motor Area L  = L-SMA;  Supp Motor Area R = R-

SMA;   Cingulum Ant L   =  L-ACing;  Cingulum Ant R  = R-ACing;  Cingulum Mid R  

= R-MCing;  Paracentral Lobule L   =  L-ParaC ). 

 

4.2 Comparison of slopes of FC changes among groups 

The selected 12 regions with the highest slope values were Supp Motor Area R, Supp 

Motor Area L, Precentral R, Frontal Mid L, Frontal Inf Oper R (inferior frontal gyrus 

par opercularis, Broca area BA 44), Frontal Sup Medial L (medial superior frontal gyrus, 

MFG), Parietal Inf L (inferior parietal excluding supramarginal and angular gyrus), 

Angular L (angular gyrus), Precuneus L, Precuneus R, Putamen R and Pallidum R. 

Figure 6 presents the increases and decreases (red and blue respectively) in zFC between 

days 1 and 2. Inspection of the figure 6 indicates that Groups GF and GF,R have higher 

number of regions that increased their FC between days 1 and 2. On the other hand, 

groups GF,I and GF,I,R have less regions with increases in FC values and more regions 

that display decreases in FC values. Additionally, bilateral precuneus  in GF,R increased 

its connections across training (ΔzFC (L-precuneus, L-MFG)= .23, ΔzFC (R-precuneus, L-

MFG)= .34 ; zFC(L-precuneus, L-MFG)=0.38 during last training run).  
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GF: Contingent NF  

 

 

GF,I: Contingent NF + Motor Imagery  
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GF,R: Contingent NF + Monetary Reward  

 

GF,I,R: Contingent NF + Motor Imagery + Monetary Reward  

 

Figure 6. FC increases/decreases between 12 brain regions with the highest change rate 

(slope) across NF. The thickness of each line is proportional to the corresponding ∆zFC  

for the connection (increases with red lines, decreases with blue and zFC values shown 

on the line). Groups without motor imagery presented higher FC increases than imagery 
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groups (Supp Motor Area R = R-SMA; Supp Motor Area L = L-SMA; Precentral R = R-

PreC; Frontal Mid L = L-MFG; Frontal Inf Oper R = R-FIO; Frontal Sup Medial L = L-

MSFG; Parietal Inf L = L-IPar; Angular L = L-ANG; Precuneus L = L-PREC; 

Precuneus R = R-PREC; Putamen R = R-PTMN; Pallidum R = R-PLLD). 

 

Furthermore, CCI (mean FC increases (CCIincr) or decreases (CCIdecr) in a network from 

day 1 to day 2) was used as complementary information to FC slope plots to express the 

changes in FC from day 1 to day 2. Hence, for each group CCIincr and CCIdecr were 

calculated from the connectivity matrix of the 12 selected regions (supplementary table 

S5) and the "whole-brain connectivity matrix” (supplementary table S6). As can be 

inferred from the connectivity plots, Group GF and GF,R have higher increases in zFC 

(higher CCIincr values) and lower decreases in zFC (lower CCIdecr values) compared to 

other groups, i.e. these groups showed more increments and less decrements in 

correlation values on the second day of training compared to the first day. However, 

considering "whole-brain connectivity matrix”, GF,R alone had the greatest increase in 

correlation coefficients (higher CCIincr) during the second day of training.   
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DISCUSSION 

The first aim of the current study was to compare the effects of three different factors 

that are expected to influence the capability of learning volitional control of brain 

activity, i.e. contingent feedback, motor imagery and monetary reward. For this purpose, 

we trained four experimental groups using a combination of these 3 factors in a rtfMRI 

NF experiment.  

We used two measures to study self-regulation proficiency in the ROI: 1) rSMA, which 

expresses the magnitude of self-regulation of SMA during the NF training, and 2) ΔrSMA 

that indicates the improvement in the magnitude of self-regulation, namely, the learning 

effect, through the training process.  

In most of the NF studies so far participants were provided instructions to use mental 

imagery to control brain activity, in addition to contingent feedback (Caria et al., 2007; 

Hwang et al., 2009; Lawrence et al., 2013; Rota et al., 2009; Scharnoswski et al., 2012; 

Sitaram et al., 2011; Subramanian et al., 2011; Yoo et al., 2008; Young et al., 2014; 

Zilverstand et al., 2015). Although monetary reward has not been used extensively, 

successful self-regulation in rtfMRI without instructing mental imagery have also been 

recently reported (Bray et al. 2007; Buyukturkoglu et al. 2015; Shibata et al. 2011; 

Megumi et al., 2015). In our study, all the groups, irrespective of whether they were 

given instructions or not, were able to up-regulate the BOLD signal in the SMA 

throughout the experiment. Interestingly, when the magnitude of up-regulation in SMA 

was compared among the groups, the group in which monetary reward was given 

showed the highest amplitude of self-regulation during the training period, in 

comparison with no-reward groups (GF and GF,I). Most significantly, the groups in which 

motor imagery (GF,I and GF,I,R) was used showed reduced magnitude of self-regulation 

compared with the group that was solely provided reward (GR), as well as reduced 

learning effect compared with the group that only used contingent feedback alone (GF). 

Furthermore, the detrimental effect of motor imagery can be seen when comparing the 
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group that received contingent feedback and reward (GF,R) with the group that received 

feedback, reward and instruction to perform motor imagery (GF,I,R). Results suggest that 

the inclusion of motor imagery degrades the magnitude of up-regulation in spite of the 

contingent presentation of reward.  

While evaluating the learning effect across training days (ΔrSMA), it is apparent that the 

only group in which learning was observed was the group that was given only 

contingent feedback (GF). Considering that group GF,R had the highest level of SMA up-

regulation already on day 1, it is possible that the lack of learning effect in this group 

could be due to a ceiling effect (achievement of a very high-level up-regulation already 

on day 1). An alternate explanation is that the learning curve for this group is more 

gradual and cannot be recognized clearly in two training days.  

The results indicating that the inclusion of explicit instructions to perform motor 

imagery do not improve up-regulation might be counterintuitive considering the 

widespread use of such instructions in NF experiments (Caria et al., 2007; Lawrence et 

al., 2013; Rota et al., 2009; Scharnoswski et al., 2012; Sitaram et al., 2011; Subramanian 

et al., 2011; Sulzer et al., 2013b; Yoo et al., 2008; Young et al., 2014; Zilverstand et al., 

2015). For this reason, we emphasize the need to examine the mechanisms involved in 

learning brain self-regulation, which are still far from being totally elucidated 

(Scharnowski et al., 2012). Our results may also be construed as supporting the proposal 

that operant conditioning can play an important role for successful learning of brain 

hemodynamics control (Birbaumer et al., 2013). In operant conditioning, desirable 

responses are positively reinforced and negative ones discouraged leading finally to an 

automatized skill achieved through a "trial-and-error" process (Strehl, 2014). In the 

present experiment, the desirable response, i.e. BOLD signal increase in SMA, is 

reinforced by the rising bars of the thermometer during the training runs, assuming that 

participants assign reward values to the thermometer bars.  

However, the self-reports of the participants at the end of NF training indicate that even 

when participants were not instructed any motor imagery (in groups GF and GF,R) they 
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did indeed use some form of mental imagery although not always related to motor 

imagery. This opens an important point that NF training in humans even in the absence 

of explicit instructions can induce participants to incorporate some form of mental 

strategy to learn volitional control of their brain signals. In the group GF,R, an additional 

factor, namely monetary reward was provided to the already existing feedback 

information, generating a stronger reinforcement with the consequential rise in brain 

activations.  

One of the major features in this kind of learning is the secondary place of the conscious 

involvement of the participant in performing the requested task, i.e., moving the 

thermometer bars (Birbaumer et al. 2013). In fact, similar to our experiment (for groups 

GF and GF,R) , Bray et al. (2007) and Shibata et al. (2011) did not inform the participants 

about the exact meaning or the contingency of the delivered feedback signal, yet 

demonstrated learned volitional control.  Some studies from EEG-NF also support this 

view, leading to a speculation that use of mental imagery and conscious brain resources 

thereof can impair an efficient mechanism of brain control (Kober et al., 2013; Witte et 

al., 2013). 

The “Dual process theory” proposed by Lacroix (1986) states that both "feedforward” 

and “feedback" processes are involved in the control of the desired signal. Feedforward 

processes are active when verbal instructions enable participants to retrieve existing 

behavioral programs to effectively perform the task, e.g. a motor imagery program of 

moving the right hand. The aim of the NF training then is to find the program (or a 

combination of programs) that generates the best control of the feedback signal. On the 

other hand, "feedback processes" are active when participants do not receive verbal 

instructions about the bodily signal they have to control, and consequently, need to 

construct a new behavioral program through determination of the properties of the 

system (interoception) by trial and error, based on contingent feedback. Therefore, the 

dual-process theory suggests that giving explicit verbal information about the potentially 

relevant behavioral programs that control the selected body signal can help participants 
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to reduce the time needed for constructing a new program. In other words, verbal 

instruction to use mental imagery can be seen as a “shortcut” for helping to achieve self-

regulation. Through NF training, further refinements of the selected behavioral program 

is achieved using the feedback signal to reach an optimal response.  However, learning 

to self-regulate brain signals can be impaired when: 1) the behavioral program to 

perform self-regulation is not retrieved because it simply does not exist, i.e. it is not in 

the subject's behavioral repertoire; 2) participants may possess behavioral programs that 

work only partially, therefore maintaining the use of an ill-fitted strategy through the 

course of NF training. In these scenarios, the theory proposes that subjects end up 

relying on feedback processes to control the signal, presumably through operant 

conditioning processes. 

Previous biofeedback studies evaluated the effects of reward in addition to contingent 

feedback  (Bennet et al., 1978; Blanchard et al., 1974; Bouchard & Granger, 1980).  

Blanchard et al. (1974) studied the additive effects of monetary reward and feedback to 

train voluntary increase of heart rate. A non-consistent advantage of delivering monetary 

reward in comparison to using a feedback-only scheme was found. In contrast, Bennet et 

al. (1978) found an increase in heart rate score in the groups with reward in comparison 

to the non-reward group. Additionally, Bennet et al. (1978) also studied the effect of the 

cognitive strategies on learning to increase heart rate. Various mental strategies (e.g. 

frightening or sexual thoughts) were reported, indicating that a wide variety of imagery 

can be used to control heart rate.  

In the present study, successful up-regulation of SMA was achieved in participants of 

the groups GF and GF,R despite not using motor imagery (as usually instructed in the 

previous rtfMRI-NF studies). However, the participants of the above two groups used 

other mental strategies even when they were not instructed (See Table 2). This outcome 

could be explained by the role of SMA on non-movement related brain activity (Chung 

et al., 2005; Nachev et al., 2008) that might have been used by the participants included 

in the non-imagery groups. Further, there was a noticeable lack of learning effect in the 
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groups which were provided explicit instructions of motor imagery (GF,I and GF,I,R). 

This outcome could be due to the sub-optimal levels of BOLD increase due to the use of 

motor imagery while more flexible exploration of other forms of mental imagery could 

have produced greater signal increases in SMA. Alternately, the above outcome may 

also be due to the inability of the current real-time fMRI approach to precisely localize 

the SMA sub-clusters pertaining to movement of a specific body part. Future progress in 

fMRI signal acquisition (e.g., Multiplexed EPI sequences for sub-second whole brain 

fMRI, Feinberg et al 2011) and real-time pattern classification (e.g.,  Cox et al., 2003; 

Rana et al., 2013; Sitaram et al., 2011; Zheng et al., 2013) may allow precise feedback 

of the brain activity pertaining to a specific brain function that is being addressed.   

In the transfer runs, when no contingent feedback was presented, all the four 

experimental groups were able to up-regulate SMA. However, it is interesting to note 

that the performance of GF,R in transfer runs was similar to the other groups, and this 

group did not show the greater increase in self-regulation magnitude in the transfer runs 

as was earlier observed during the training runs. Hence, although the use of monetary 

reward in NF training has a positive effect on learning, the removal of the reward signal 

during the transfer runs reduced the magnitude of self-regulation leading to an extinction 

of the learning effect. Further work should carefully assess the effect of different reward 

schedules on learning and its extinction with time. 

The large variability we observe in rSMA values during the training runs in all the groups 

may be due the small group sizes in our study, but can also be explained by the large 

intra- and inter-subject variability that has been generally observed in fMRI studies 

(Gaxiola-Valdez et al., 2012; Kannurpati et al., 2010; Lund et al., 2005). Alternatively, it 

is possible that the large variability in the data may represent the exploratory trial and 

error process in which participants use different types of mental imagery to achieve self-

regulation  (Galea et al., 2013; Pekny et al., 2015; Wolpert et al., 2011).  

We evaluated whether the variability in the SMA signal during NF training could have 

been generated due to the differential effects of feedback, motor imagery and reward. 
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We found a significant increase in inter-subject variability in the group GF,R in 

comparison to group GF. The inclusion of reward as an additional factor tended to 

increase both the amplitude and the variability of the magnitude of self-regulation 

(rSMA). A possibility is that the inclusion of monetary reward amplifies the desired 

response (rSMA), as observed in our results, and consequently enhances the already high 

inter-subject variability. Previous studies on operant conditioning have shown that when 

the value or strength of the reinforcement is increased (e.g. giving more food pellets to a 

rat), the desired response tends to increase the magnitude or the speed in reaching the 

asymptote of the learning curve (Bower & Trapold, 1959; Bower & Miller, 1960). 

However, it was also reported that learning is dependent on the maintenance of the 

reward and is prone to extinction when the reinforcer is taken out. This supports our 

observation of a noticeable decrease in the SMA up-regulation in the transfer runs in 

comparison to the training runs in the reward group. Finally, the presentation of reward 

in GF,R could have introduced an additional source of variability to the problem due to 

the individual differences in participants’ response towards reward (Cohen et al., 2005; 

Peters & Büchel, 2011).  

In our experiment, we assume that when participants receive only feedback (GF), they 

have an intrinsic motivation to achieve volitional control. On the other hand, with the 

inclusion of the monetary incentives, the extrinsic reward starts to have a prominent role 

as a motivational factor for learning self-regulation. Previous studies have found that 

although extrinsic reward may generate better results initially, in the long term, the 

intrinsic motivation is undermined and the initial, positive results can diminish when the 

explicit reward is retired (Birch et al., 1984; Deci et al., 1971; Deci et al., 1999). 

Therefore, reinforcing intrinsic motivations can be a more reliable approach for long-

term training. The inclusion of reward can be helpful, particularly during the initial 

stages of NF training, but the maintenance of this factor for longer duration should be 

carefully evaluated to maintain the beneficial effects in brain self-regulation. 
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The second aim of our study was to explore neural substrates of brain hemodynamic 

control. For this purpose we conducted univariate analysis and FC analysis of the whole 

brain. The analysis of magnitude of self-regulation showed differences between groups. 

However, this difference did not persist when we looked at the spatial brain activation 

elicited during up-regulation. The results of univariate, whole brain analysis showed that 

brain activations were strikingly similar across the groups. Similarly, from the 

comparison of mean FC changes among groups, we found a core network of connections 

that is observed in the all four groups. This similarity in brain activations and FC 

patterns among the groups can be due the fact that contingent feedback was given to all 

the groups. 

Our results indicating the common activations in insula, left supramarginal gyrus and 

precentral gyrus have been reported in previous NF studies. Ninaus et al. (2013) asked 

participants to control the feedback signal (a thermometer) during a covert sham-

feedback experiment in fMRI. The reported regions of significant activation, when 

participants tried to get control of thermometer bars in contrast to only watching the 

moving bars, were the insula, supramarginal gyrus, precentral gyrus, anterior cingulate 

gyrus, middle frontal gyrus, thalamus and SMA. Another study, a meta-analysis of 12 

rtfMRI studies by Emmert et al. (2015) also found similar activations, particularly, in the 

anterior insula and tempo-parietal areas along prefrontal cortex (dorsolateral and 

ventrolateral).  

The active regions during the up-regulation blocks in our study have been previously 

linked to different brain processes. Insula has been related to driving attention to inner 

states (Haller et al., 2013; Ninaus et al., 2013) in NF tasks. Supramarginal gyrus has 

been reported to participate in inner speech and language production (Geva et al., 2011; 

Hartwigsen et al., 2015). SMA as part of the motor network has well documented 

connections with precentral gyrus (Kasess et al., 2008; Solodkin et al., 2004). 

The analysis of mean FC values shows that the FC patterns were similar among groups, 

and can be roughly divided in two spatial groups: frontal and motor areas. However, this 
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separation could be partially favored by the method used to select the regions involved 

in the analysis: we selected "whole-brain connectivity matrix" and "SMA-seeded" 

regions. From the FC analysis, we found a strong frontal network with connections 

between superior frontal gyrus and middle frontal gyrus across groups. Prefrontal 

involvement has been previously reported in NF studies (Emmert et al., 2015). Superior 

and middle frontal regions have also been associated with attentional processes 

(Corbetta & Schulman, 2002) and motor imagery (Halder et al., 2011).  

In contrast, from the analysis of changes (or slope) in FC through the training, we found 

that different factors, namely, feedback, motor imagery and reward, had different effects 

on the functional connections. Groups that were instructed to use motor imagery tended 

to have relatively less enhancement of the connection strengths (correlation coefficients) 

from day 1 to day 2, due to training, in comparison to groups without it (table S5, figure 

6). FC increases were also found between precuneus and parietal regions (inferior 

parietal and angular gyrus) particularly in groups with contingent feedback and 

monetary reward (groups GF and GF,R). Furthermore, the highest increase in FC was 

observed between precuneus and middle frontal gyrus in group GF,R. Precuneus has been 

linked with autobiographical memory (Eustache et al., 2004; Rauchs et al., 2013), 

imagery and self-processing operations (Cavanna & Trimble, 2006).  

Our study has a few technical and scientific limitations. High inter- and intra-subject 

variability (in terms of standard deviation of the BOLD signal in the SMA) due to small 

group size and limited training period (2 days of 4 training runs per day) are two major 

limitations.  It is still an open question as to how many days of training is required for 

successful learning, especially in the context of inter-subject variability (Sulzer et al., 

2013a). Due to restrictions of scanning time and cost, it is difficult to incorporate 

extensive training in order to attain clear asymptotic levels of BOLD self-regulation. In 

the present study, it is conceivable that significant learning effect was not attained in the 

group of contingent NF and reward, because of the short period of training. However, it 

should be also noted that previous NF studies have performed training with similar 
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durations of training (Caria et al., 2007; Hamilton et al., 2011; Lawrence et al., 2013; 

Rota et al., 2011; Young et al., 2014) and reported successful brain self-regulation. 

Future work should investigate the effect of training time on changes in the brain and 

behavior.  
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CONCLUSION 

The present study provides first evidence for the differential effects of three factors, 

namely feedback, motor imagery and monetary reward, on learning brain self-regulation 

of the SMA. The results indicate that the explicit instruction to the participants to use 

motor imagery may not necessarily have a beneficial effect on learning. In contrast, the 

presentation of contingent feedback alone produced a significant learning effect. Further, 

when monetary reward was provided to the participants in proportion to their 

performance, a tendency for higher magnitudes of self-regulation was observed, 

although no learning effect was noticed during the course of the training. Results of the 

univariate and functional connectivity analyses show a remarkable similarity in brain 

activations and functional connectivity across all groups, indicating that similar neural 

processes may be involved in self-regulation despite differences in the way participants 

were trained. However, differences in the mean functional connectivity values and their 

change over time (slope) in the groups also indicate differences in the effect of feedback, 

motor imagery and reward on the dynamic changes in brain during the training period.  
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APPENDIX A. SUPPLEMENTARY INFORMATION 

Table S1. Included brain regions for functional connectivity analysis (AAL atlas 

references  

001-Precentral L  

002-Precentral R  

003-Frontal Sup L  

004-Frontal Sup R  

007-Frontal Mid L  

008-Frontal Mid R  

011-Frontal Inf Oper L  

012-Frontal Inf Oper R  

013-Frontal Inf Tri L  

014-Frontal Inf Tri R  

017-Rolandic Oper L  

018-Rolandic Oper R  

019-Supp Motor Area L  

020-Supp Motor Area R  

023-Frontal Sup Medial 

L  

024-Frontal Sup Medial 

R  

029-Insula L  

030-Insula R  

031-Cingulum Ant L  

032-Cingulum Ant R  

033-Cingulum Mid L  

034-Cingulum Mid R  

035-Cingulum Post L  

036-Cingulum Post R  

057-Postcentral L  

058-Postcentral R  

059-Parietal Sup L  

060-Parietal Sup R  

061-Parietal Inf L  

062-Parietal Inf R  

063-SupraMarginal L  

064-SupraMarginal R  

065-Angular L  

066-Angular R  

067-Precuneus L  

068-Precuneus R  

069-Paracentral Lobule 

L  

070-Paracentral Lobule 

R  

071-Caudate L  

072-Caudate R  

073-Putamen L  

074-Putamen R  

075-Pallidum L  

076-Pallidum R  

077-Thalamus L  

078-Thalamus R  

079-Heschl L  

080-Heschl R  

081-Temporal Sup L  

082-Temporal Sup R  

117-N Accumbens  

(custom) 
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Table S2. BOLD changes expressed as rSMA [%] across SMA self-regulation training, 

values plotted in figure above.  

 

Total Day 1 Day 2 

 

Mean [%] SD Mean [%] SD Mean [%] SD 

GF 0,124 0,140 0,099 0,154 0,148 0,137 

GF,I 0,148 0,188 0,111 0,174 0,185 0,215 

GF,R 0,294 0,249 0,297 0,260 0,291 0,269 

GF,I,R 0,208 0,192 0,220 0,154 0,195 0,242 

 

Table S3. Significantly activated regions in the whole brain, univariate analysis, 

considering all groups. FWE correction was used. Two-way ANOVA using 4 groups 

and 4 runs of the second day as factors.  

 

  peak peak cluster cluster 

   

AAL region T p(FWE-corr) equivk P (FWE-corr) 

x,y,z 

{mm} x,y,z {mm} x,y,z {mm} 

Precentral L 9.83 1.4801E-10 208 6.6613E-16 -45.20 -0.48 40.00 

Frontal Inf Oper L 4.93 0.03197132     -58.32 15.92 25.00 

Frontal Inf Oper R 8.27 7.7242E-08 336 0 53.20 12.64 20.00 

Precentral R 8.00 2.2827E-07     46.64 6.08 30.00 

Insula R 7.54 1.4684E-06     33.52 22.48 5.00 

SupraMarginal R 7.60 1.1735E-06 127 5.2534E-12 59.76 -30.00 45.00 

SupraMarginal R 6.59 6.9798E-05     59.76 -33.28 30.00 

Parietal Inf R 6.31 0.00021555     33.52 -43.12 45.00 

SMA R 6.86 2.3838E-05 102 1.1986E-10 4.00 6.08 60.00 

SMA L 6.81 2.909E-05     -2.56 2.80 65.00 

SupraMarginal L 6.05 0.00059491 21 5.0183E-05 -55.04 -39.84 25.00 

Insula R 5.95 0.00090142 32 5.3075E-06 -35.36 22.48 0.00 

Insula L 5.31 0.0094958     -28.80 19.20 10.00 

Parietal Inf L  5.41 0.00687267 7 0.00183168 -61.60 -36.56 45.00 

Frontal Mid R 5.32 0.00902333 12 0.00043411 46.64 42.16 15.00 
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Table S4. Regions with high mean FC during NF training across the groups. zFC,T values 

presented with standard deviation in the parentheses (Precentral L = L-PreC;  Precentral 

R = R-PreC;  Frontal Sup L = L-SFG; Frontal Sup R = R-SFG; Frontal Mid L = L-MFG;  

Frontal Mid R  = R-MFG; Supp Motor Area L  = L-SMA;  Supp Motor Area R = R-

SMA;   Cingulum Ant L   =  L-ACing;  Cingulum Ant R  = R-ACing;  Cingulum Mid R  

= R-MCing;  Paracentral Lobule L   =  L-ParaC ). 

 

 zFC,T 

ROI 1 / ROI 2 GF GF,I GF,R GF,I,R 

R-MFG/R-SFG .75 (0.14) .62 (0.10) .59 (0.07) .74 (0.12) 

L-MFG/L-SFG .77 (0.13) .72 (0.16) .76 (0.13) .64 (0.16) 

L-Acing/R-ACing .79 (0.09) .72 (0.13) .68 (0.12) .72 (0.13) 

L-SMA/R-SMA .48 (0.15) .45 (0.20) .52 (0.10) .58 (0.12) 

L-PreC/R-PreC .30 (0.12) .33 (0.10) .33 (0.08) .44 (0.19) 

L-PreC/L-SMA .33 (0.12) .39 (0.12) .41 (0.12) .39 (0.16) 

 

Table  S5. CCI values calculated from the connectivity matrix for FC slope comparison 

 

 

GF GF,I GF,R GF,I,R 

CCIincr 0,0573 0,0363 0,0527 0,0246 

CCIdecr 0,0267 0,0365 0,0230 0,0475 

 

Tables S6. CCI values calculated from the original connectivity matrix (" whole-brain 

connectivity matrix ")  

 

 

GF GF,I GF,R GF,I,R 

CCIincr 0,0338 0,0326 0,0442 0,0333 

CCIdecr 0,0461 0,0459 0,0307 0,0459 
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Figure S1. rtfMRI setup 

 

 

 

 

 



 
 

67 
 

 

 

 

Figure S2. Four groups of participants were included in this study for comparing the 

influence of the three following factors on volitional regulation of SMA, namely, 

contingent feedback, verbal instruction to perform mental imagery, and monetary 

reward. The experimental protocol consisted of alternating baseline (rest) and up-

regulation blocks. Group GF was provided only with contingent visual feedback. GF,I 

was provided with verbal instructions to use motor imagery of one's choice. GF,R 

received monetary reward proportional to the increase in the BOLD signal during the 

up-regulation period in comparison to the baseline period (yellow blocks show the 

amount of money awarded). GF,I,R was provided with all three factors: contingent 

feedback, verbal instruction and monetary reward. 
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a)

 

b) 

 

Figure S3. Training sesion (a). Training each day considers a ROI localizer test 

followed by 4 training runs and 1 transfer runs. Anatomical T1-weighted volume is 

acquired at the end of the session. Total training involves two training sessions. Training 

run (b) considers a preparation window (15 s) which appears during the acquisition of 

the dummy scans. Later, 4 baseline and 3 up-regulation blocks are repeated interleaved. 

Voluntaries are check for their comfort into the MR scanner and strategies/methods to 

control their brain signal during the time-out between runs.  
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Figure S4. SMA ROI localization using Turbo Brain Voyager. In red, selected area 

comprising SMA is depicted (ROI 1). In green, reference region is selected around an 

area no responding to motor action pointing to pick general changes in brain BOLD 

signal (ROI 2). 
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Figure S5. Feedback calculation. Information of ROI 1 (SMA) and ROI 2 (reference ) 

are integrated to deliver feedback information (number of bars in the thermometer). 

Mean sliding window moving during up-regulation blocks (BOLDUpreg) and mean of 

baseline during the previous baseline block (BOLDBase) are used in equation 1 to 

calculate the feedback (F).  
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Figure S6. Mean BOLD signal change (rSMA) for each training run in SMA-ROI (MNI 

x=0, y=0, z=60) and group. No significant linear trend was found, although a positive 

trend (increased magnitude of self-regulation through training runs) was found for GF 

(rs=.55; p=0.16) and negative trend for GF,I,R (rs=-.57; p=0.13). Standard deviation bars 

are shown.
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Figure S7. Intra-subject variability. Box plot showing the intra-subject variability by 

groups. The presented distribution considers group rSMA’s standard deviation of the 

mean (SD) for each one of the 8 NF training runs by subject. To compare the groups we 

used repeated measures ANOVA. The results show that study groups do not present 

significant differences at intra-subject variability level, F3,16 = 2.743, p=0.077 (p>0.05). 

 



 
 

73 
 

 

 

Figure S8. Intra-subject variability. Linear regression of intra-subject variability (SD) 

through the training runs, by group. Each dot corresponds to the SD in a run of an 

individual subject. No significant linear correlation was found for the variability during 

the training (GF:  0.0036x + 0.398,rs=.127, p=0.436 ; GF,I: y = 0,0138x + 0,448 , rs=.184, 

p=0.25  ; GF,R: 0,0018x + 0,4301, rs=.058, p=0.724  ; GF,I,R: y = 0,0095x + 0,417 , 

rs=.206, p=0.202). To test if there is a significant influence of runs (significant change in 

SD along the training session) we tested the run effect by group using Friedman test. No 

significant run effect appeared in any of the groups (GF: χ
2
(7)= 9.667,  p=0.208; GF,I,: 

χ
2
(7)=1.467,  p=0.983; GF,R: χ

2
(7)= 3.933,  p=0.787; GF,I,R: χ

2
(7)= 3.467,  p=0.839). 
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Figure S9. Functional signal to noise ratio (SNR). Box plot showing functional SNR, 

measured using the Fisher Score (FS), by groups. The presented distribution considers 

group FS for each one of the 8 NF training runs by subject. To compare differences 

among the groups repeated measures ANOVA were used. Results show that study 

groups do not present significant differences in FS, F(3,16) =0.781, p=0.522 (p>0.05). 
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Figure S10. Variability vs Reward (Block level). With the purpose of exploring the 

influence of reward in intra-subject variability, linear correlation between the data of  

monetary reward delivered during a block within a training run and BOLD signal 

standard deviation (SD) in the same block was calculated. Only data from GF,R was used 

for this analysis. Non-significant linear correlation was found (y=1,59*10
-5

x+0,352; 

rs=0,1537; p=0,094).  
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Figure S11. Variability vs Reward (Run level). Linear correlation between the data of 

monetary reward delivered during a training run and BOLD signal standard deviation 

(SD) in the same run. Only data from GF,R was used for this analysis. Non significant 

linear correlation was found (y=6*10
-6

x+0,0323; rs=0,418; p=0,23).  
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Figure S12. Setup used in experiments real-time fMRI/EEG experiments. Additionally 

connections for simultaneous EEG acquisition (violet lines) and power lines to (yellow 

lines) are presented. The current study included the acquisition of simultaneous EEG 

data during all the experiment (all days and runs). MR trigger and clock wires for 

synchronization and network connections are shown  (green lines). Router connected to 

MR scanner network allow transference of fMRI volumes through Direct Reconstructor 

Interface (DRIN, Philips Heathcare, Best, The Netherlands). Connections among the 

devices that participate in the presentation of stimulus system and its synchronization are 

shown (light blue segmented line). Equipment is briefly described in the following table. 
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Table S7. Available equipment for real-time fMRI/EEG acquisition in PUC Biomedical 

Imaging Center BCI lab. Stimulus presentation system and EEG system brands are 

NordicNeuroLab AS (Norway) and Compumedics Neuroscan (Australia), respectively. 

 

Equipment Description 

TBV-PC 

 

Laptop PC to analyse fMRI data using 

TBV software, calculate feedback and 

send it to Presentation-PC. 

 

EEG-PC 
Laptop PC to acquire EEG data using 

Curry 7 software. 

Presentation-PC 

Laptop PC to run Presentation 

experiments, read and show feedback 

information in NNL stimulus 

presentation system. 

1.Devices 

1.1 Stimulus presentation 

Headphones 

Headphones with noise suppression, 

allowing communication with the 

experimenter and auditory stimulus 

presentation.  

Ear Plugs 

Earphone for communication with the 

experimenter and auditory stimulus 

presentation. 
 

Response Grip 

Four buttons available for experimental 

interaction and response. Optic fiber 

transmission. 
 

EyeTracker 
Camera to record eye movement. Set in 

Visual System (Googles)  
 

Visual System 

(Googles) 

Binocular screen for visual stimulus 

presentation. 

 



 
 

79 
 

 

LCD 
LCD screen 32” for stimulus 

presentation. 

 
1.2 EEG 

EEG Cap EEG electrode cap with 64 channels.  

 
2. Power supply units 

2.1 Stimulus presentation 

SIU 1  

Shielded Interface Unit: power supply  

ResponseGrip, Googles, 

Headphones/EarPlug and EyeTacker. 

Reception of optic fiber with stimulus 

information (audio/video) to 

presentation in VisualSystem (googles) 

or headphones/earplug. Also, SIU 1 

transforms eye-tracker video to optic 

fiber signals.  
 

SIU 2  

Shielded Interface Unit: LCD screen 

power supply and intermediary (optic 

fiber to shielded wire) for video 

presentation.  

 
2.1 EEG 

Power Unit EEG Power supply to EEG system devices. 
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3.Consoles and Connectors 

3.1 Stimulus presentation 

Communication 

Console 

Audio stimulus input, communication 

and volume control (15V). 

 

Sync Box 

Console that receives scanner trigger 

pulse and ResponseGrip output and sent 

it to other devices (9V). 

 

Fiber Transmitter 

Electrical signal of audio and video 

stimulus transformed to optic fiber 

signals (15V). 

 

ResponseGrip 

Box 

Receive (and shows) response given 

through ResponseGrip. Connected to 

Sync Box (9V). 

 

Eye tracker 

beamer 

Eye tracker's fiber optic reception  and 

conversion to BNC. 

 

Eye tracker BNC-

USB (Arrington 

Research) 

BNC to USB transformer (PC 

connection). 
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Optical DVI 

extender 
DVI to optic fiber transformer. 

 
3.2 EEG 

SynAmps RT 

Amplifier 

Signal reception from electrodes and 

amplification. Connection to  

SystemBox. 

 

System Box 

Reception of amplifier signal and 

additional stimulus information (Cedrus 

StimTracker) and clock. 

 

SynAmps2 MRI 

Interface 

Reception of scanner trigger signal and 

connection to Cedrus StimTracker. 

 

Cedrus 

StimTracker  

Device that allows recognition of 

stimulus (Presentation codes) and 

signals (MR trigger) and integration to 

EEG data (through System Box). 
 

Pulse-oximeter 
Device to measure pulse of subject in 

the scanner. Optic fiber wire. 
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Pulse-oximeter 

interface 

Pulse-oximeter signal reception and 

connection to amplifier. 

 

CAP Adapter 

Adapter connected in-between cap and 

amplifier. For experiments out of 

scanner. 

 

Analog Filter 
Filter located in-between cap and 

amplifier, through Faraday cage. 

 

  


