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ABSTRACT

Panoramic distance maps can provide valuable information for mobile robot naviga-

tion. An approach to obtain such distance maps is to implement a stereoscopic system

using two hyperboloidal catadioptric sensors. This document analyzes the effects over dis-

tance estimation of two typical arrangements of the mirrors. In one of the arrangements

the mirrors are placed along a vertical axis, while in the other configuration the sensors are

located on plane. Both configurations may yield similar distance estimation errors for an

adequately chosen baseline and given measurement range of interest. However, depending

on the application, some aspects can make one arrangement preferable over the other. In the

vertical configuration, the epipolar lines correspond to radial lines in the omnidirectional

image, and hence, the stereoscopic correspondence problemcan be solved in a standard

and simple way, but a drawback of this arrangement is the space required, which in the case

of mobile robot and vehicular application translates into areduced vertical clearance and

poorer aerodynamics. The horizontal arrangement, on the other hand, requires less space

if mounted on a mobile robot, a vehicle’s roof or its lateral mirrors, but involves complex

parabolic, elliptic or hyperbolic epipolar curves that make the solution of the stereo corre-

spondence problem computationally more expensive. Despite the evident implementation

advantages and drawbacks of each approach, not enough quantitative information exits in

the literature about which of the two configurations provides in general the most accurate

3D reconstruction of the environment.

Keywords: panoramic stereoscopy, catadioptric system, omnidirectional hyperbolic

vision sensor.
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RESUMEN

Los mapas de distancia panorámicos proveen información valiosa para navegación de

robots móviles. Una opción para obtener tal mapa de distancia es implementar un sistema

estereoscópico usando dos espejos hiperbólicos. El presente trabajo analiza el efecto sobre

la estimación de distancia para dos configuraciones tı́picas de los espejos. En una de las

configuraciones los espejos están ubicados a lo largo del eje vertical, mientras que en la

otra, los sensores están dispuestos de forma horizontal. Ambas configuraciones deberı́an

proporcionar errores similares de estimación en la distancia para una adecuada separación

de los sensores y una apropiada medida del rango de interés.Aunque, dependiendo de la

aplicación, algunos aspectos pueden hacer una configuración más adecuada que la otra. En

la configuración vertical, las lı́neas epipolares corresponden a lı́neas radiales en la imagen

omnidireccional, por lo tanto, el problema de la correspondencia estereoscópica puede ser

resuelto de manera simple y tradicional, pero una desventaja de esta configuración es el es-

pacio que requiere, en el caso de robots móviles y aplicaciones en vehı́culos se traduce en

una menor resolución vertical y una aerodinámica más pobre. El arreglo horizontal, por otra

parte, requiere menos espacio si se monta en un robot móvil,en el techo de un vehı́culo

o sus espejos laterales, pero implica complejas curvas epipolares parabólicas, elı́pticas o

hiperbólicas que hacen que la solución del problema de la búsqueda de correspondencias

en el sistema estéreo tenga un mayor costo computacional. Apesar de las evidentes ven-

tajas y desventajas en la implementación de cada configuración, no suficiente información

cuantitativa en la literatura sobre cual de estas dos configuraciones provee, en general, la

más precisa reconstrucción 3D.

Palabras Claves:estereoscopı́a panorámica, sistema catadióptrico, sistema de visión

omnidireccional hiperbólico.
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1. INTRODUCTION

Visual panoramic information is extremely useful in a wide range of applications from

mobile robot navigation to surveillance and teleconferencing (Benosman & Kang, 2001).

In particular, the ability to measure distances 360◦ around a moving platform is essential

not only for autonomous navigation, but also for driver assistance systems that must an-

ticipate possible collisions to other vehicles on the road.Dense range measurements can

be obtained using sensors based on time-of-flight measurements, such as laser scanners,

or employing several cameras to solve distance by triangulation (Bertozzi et al., 2002;

Bertozzi & Broggi, 1998). Although laser scanners can be extremely accurate and reli-

able, few scanners exist which can obtain 3D dense panoramicrange measurements (e.g.

Velodyne and Ibeo) and they can cost between $ 60,000-100,000 USD, thus not being eco-

nomically viable for passenger car manufacturers. On the other hand, digital cameras can

cost less than $ 1,000 USD and therefore can provide an attractive alternative to perform

stereoscopic analysis and to obtain distance information.Stereoscopic binocular systems

traditionally employ standard perspective cameras mounted so that their optical axes are

parallel. With this arrangement the field-of-view is less than the field-of-view of each sep-

arate camera (typically around 50◦) and decreases as the baseline increases. Therefore, for

a 360◦ coverage it would be necessary to employ several binocular arrangements or a ro-

tating system, unless conic, hyperbolic, parabolic, or spherical mirrors are employed (see

fig. 1.1).

The purpose of this thesis is precisely to study the construction of depth maps using

two hyperboloidal catadioptric sensors and assess the quality of distance estimation under

two typical arrangements of the mirrors. In one of the arrangements the mirrors are placed

along a vertical axis, while in the other configuration the sensors are located on a plane.

Both configurations may yield similar distance estimation errors for an adequately chosen

baseline and given measurement range of interest. However,depending on the application,

some aspects can make one arrangement preferable over the other. In the vertical con-

figuration, the epipolar lines correspond to radial lines inthe omnidirectional image, and

1



hence, the stereoscopic correspondence problem can be solved in a standard and simple

way, but a drawback of this arrangement is the space required, which in the case of mobile

robot and vehicular application translates into a reduced vertical clearance and poorer aero-

dynamics. The horizontal arrangement, on the other hand, requires less space if mounted

on a mobile robot, a vehicle’s roof or its lateral mirrors, but involves complex parabolic,

elliptic or hyperbolic epipolar curves that make the solution of the stereo correspondence

problem computationally more expensive. Despite the evident implementation advantages

and drawbacks of each approach, not enough quantitative information exits in the literature

about which of the two configurations provides in general themost accurate 3D reconstruc-

tion of the environment.

1.1. Problem Definition

Consider a camera with a mirror as shown in figs. 1.1 or 2.1, if two of these cameras are

arranged vertically as in fig. 2.2 or horizontally as in fig. 2.3, the first problem is to find the

equations that yield the distancedP from the catadioptric system to a given pointP in space.

Once the equations are derived, a practical problem arises,which is to determine where

does pointP projects on each image. This problem is the so-called matching problem

or correspondence search problem. For an effective solution of the matching problem it

is essential to derive algebraically or at least numerically compute the geometry of the

epipolar curves determining which part of the space must be searched for correspondences.

Summarizing, the problem is threefold:

• finding the projective geometry of the stereoscopic omnidirectional hyperbolic

sensors,

• finding the epipolar curves and solving the matching problem, and

• assessing the accuracy and expected error levels occurringunder each of the two

main possible configurations, the horizontal and the vertical arrangements.

2



1.2. Existing Approaches Using Catadioptric Systems

In the area of autonomous ground robots and vehicles, a wide variety of sensors is

often employed, among which vision sensors based on perspective cameras is arguably the

most common (Desouza & Kak, 2002). Thus, developing vision sensors with a panoramic

field of view has received much interest, particularly sincethe pioneering works (Nayar,

1988; Yagi & Yachida, 1991; Yamazawa, Yagi, & Yachida, 1993;Yagi, Kawato, & Tsuji,

1994), for an in-depth review see (Benosman & Kang, 2001). Some omnidirectional sen-

sors achieve panoramic views employing an array of detectors on a polyhedron or sphere,

others involve rotating sensors, while a third group rely ona combination of mirrors with

conventional imaging systems often referred to ascatadioptric systems(Baker & Nayar,

1999; Benosman & Kang, 2001). The latter has received special interest during recent

years as they do not involve additional data bandwidth requirements nor moving parts.

Catadioptric systems may be implemented using planar, conical, spherical, ellipsoidal, hy-

perboloidal or paraboloidal mirrors (see fig. 1.1 for an example). However, only the hyper-

boloidal and parabolic mirrors produce a panoramic view with a single effective viewpoint,

which is a requirement for the generation of true perspective panoramic images (Baker &

Nayar, 1999), as well as distance maps when arrangements of two or more catadioptric sys-

tems are employed. For this reason, and the lack of results concerning optimal arrangement

design, in this document we consider a stereoscopic arrangement of two omnidirectional

cameras based on hyperboloidal mirrors. In one of the arrangements the catadioptric cam-

eras are aligned along a vertical axis, while in the other setup the cameras are located on a

horizontal plane.

From a computational point of view, the advantage of the vertical arrangement is that

the epipolar curves are simple radial lines in the omnidirectional image (Svoboda & Pajdla,

2002). This facilitates the search for correspondences andthe solution of the stereoscopic

triangulation problem for distance estimation. In the caseof the horizontal arrangement,

the epipolar curves can be an arc segment of any conic (Svoboda & Pajdla, 2002), depend-

ing on the position of the observed point. This fact makes thesolution of the stereoscopic

3



matching problem computationally more difficult and prone to errors whenever the epipo-

lar curve is not calculated accurately. However, the horizontal configuration is often more

convenient for mounting on a mobile robot or vehicle (Gandhi& Trivedi, 2005, 2006). De-

spite the advantages and drawbacks of each arrangement, it is not clear which configuration

allows a more accurate distance estimation, which configuration is less sensitive to match-

ing errors and which are the computational costs associatedin each case. This investigation

provides answers to these fundamental questions, and thus can be valuable to researchers

and engineers in the fields of robotics and computer vision.

1.3. Summary of Contributions

The contributions of this work are summarized in:

(i) A detailed derivation of the optical geometry of the omnidirectional hyperboloidal

stereoscopic system.

(ii) An analysis of the distance estimation errors under each camera-mirror arrange-

ment.

(iii) The implementation of an algorithm to numerically compute the epipolar curve

by back-projection of reference points onto the optical plane of the target system.

(iv) The development of a procedure to select the most adequate arrangement for a

given operating distance and level of acceptable error in the distance estimation.

(v) The analytic quantification of the computational cost associated to the solution

of the matching problem under both camera-mirror arrangements.

(vi) The construction of a camera rig which can be mounted on avehicle and allows

performing experiments with different camera positions.

(vii) Implementation in C/C++ using OpenCV and Matlab of dewarping and stereo-

scopic matching algorithms for omnidirectional hyperbolic images.

4



FIGURE 1.1. Omnidirectional hyperboloidal system.

1.4. Thesis Outline

This thesis is organized as follows. Chapter 2 presents the basic ray optics geometry

required to formulate the projection equations from pointsin 3D space to points on the

optical plane. The triangulation equations required to compute the distance to a point in the

world from a given pair of corresponding points on each omnidirectional image are devel-

oped in section 2.3. The distance estimation errors under each configuration and arrange-

ment selection are discussed in chapter 3. The feasibility of each arrangement is validated

by computing distances for a synthetic scenario; and the experiments and results obtained

with synthetic images and in real urban roads are discussed in chapter 4. Finally, chap-

ter 5 presents the conclusions of this work and discusses some issues concerning ongoing

research.

5



2. BASIC ASSUMPTIONS, FACTS AND PRELIMINARY RESULTS

2.1. Basic Assumptions

The basic assumptions in the analysis and design of stereoscopic omnidirectional sys-

tem using hyperboloidal mirrors are:

(i) The intrinsic and extrinsic parameters of the system geometry are known.

(ii) The real system is calibrated and the calibration errors are negligible.

(iii) There is a working distance range, i.e. the system willonly measure the distance

to objects withing the operating distance interval.

(iv) When the system is mounted on a vehicle or moving platform, the ground can

be assumed to be a plane and the cameras distance from the plane is fixed, thus

the ground plane provides an upper bound for the operating distance interval.

(v) The matching problem can be solved for most points in the scene, i.e. illumi-

nation and texture levels are adequate, there are few repetitive patterns and few

occlusions.

2.2. Hyperboloidal Catadioptric Sensor Geometry

For simplicity of the derivation, consider a cross section of the hyperbolic mirror, cor-

responding to a hyperbola that may be written as:

y2

b2
− x2

a2
= 1

with focal pointsc = (0, c) andc′ = (0,−c), c2 = a2 + b2. For the reader’s convenience,

a summary of the notation employed in the derivation of the catadioptric system equations

is included in table 2.1.

Let α be the angle of the incoming ray measured with respect to an horizontal axis

(parallel tox passing throughc, as shown in fig. 2.1). It can be shown that the angle

between the tangent to the hyperbola at a pointp = (x, y) and line segmentcp is equal

to the angle between the tangent atp and the line segmentc′p. Therefore, the incoming

6



SYMBOL DESCRIPTION

P point in the world

a, b, c hyperbolic mirror parameters

c upper focal point with coordinates(0, c)

c′ lower focal point with coordinates(0,−c)

f focal distance between the focal pointc′ and the CCD

p point of intersection between the hyperbolic mirror and the
incident ray

φ angle of the incident and reflected rays with respect to the
normal atp

αi angle between the line segmentc′p and the horizontal plane
throughc′ containing thex axis

βi angle between the incoming ray and the horizontal plane
throughc containing thex axis

(u1, v1) coordinates in the first (reference) image

(u2, v2) coordinates in the second image

ℓi distance betweenP andc of systemi

(ri, θi) polar coordinates of a point in the world with respect to the
upper focal point of the mirror systemi

(ρi, θi) polar coordinates on the CCD for point(ri, θi)

di distance between pointP and upper focal point of systemi

dP radial distance between the arrangement’s vertical axis and a
point in the world

dc distance between cameras

TABLE 2.1. Notation for the catadioptric system equations.

ray passing throughp andc is reflected as a ray fromp to c′. This is consistent with the

physical law stating that the angle of reflection with respect to the surface’s normal is equal

to the angle of incidence. Letφ denote the angle of the incident and reflected rays with

respect to the normal atp (see fig. 2.1), thenγ
def
= π/2 − φ is the angle betweenc′p and

the tangent atp, which is, by the property just mentioned, equal to the anglebetweenc′p

and the tangent atp. Therefore, ifβ defines the angle of the reflected ray and an horizontal

7



axis throughc′, then:

2γ = α + β (2.1)

2(π/2 − φ) = α + β (2.2)

Defining the angleδ
def
= π/2− β, corresponding to the angle of the incoming ray projected

on the optical plane with respect to the camera axis, then

φ = 180◦ − (α + β) (2.3)

= 180◦ − (α + π/2 − δ) = π/2 + δ − α (2.4)

It will be shown next thatα can be computed as a function ofδ, and therefore, it is possible

to find an expression ofφ in terms ofδ. This is useful for finding a new representation for

the omnidirectional image as a type of standard rectangularpanoramic image.

Sinceδ is the orthogonal complement ofβ, findingα in termsδ, is equivalent to finding

α in terms ofβ. The latter allows for a simpler derivation of the relevant equations. We

now proceed as follows. First, define the length of the line segments from the focic, c′ to

pointp = (x, y) on the hyperbola respectively asℓ1 = ‖cp‖ a ℓ2 = ‖c′p‖, then from the

geometrical properties of the hyperbola:

ℓ2 − ℓ1 = 2b (2.5)

ℓ1 sin(α) + ℓ2 sin(β) = 2c (2.6)

By the Law of Sines:

ℓ1

cos(β)
=

ℓ2

cos(α)
, (2.7)

while by the Law of Cosines:

ℓ2

1 = 4c2 + ℓ2

2 − 4cℓ2 sin(β). (2.8)
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From (2.6) and (2.7), respectively:

sin(α) =
2c − ℓ2 sin(β)

ℓ1

, (2.9)

cos(α) =
ℓ2

ℓ1

cos(β). (2.10)

Dividing (2.9) by (2.10) yields

tan(α) =
2c − ℓ2 sin(β)

ℓ2 cos(β)
(2.11)

Replacingℓ1 from (2.5) into (2.8):

(ℓ2 − 2b)2 = 4c2 + ℓ2

2 − 4cℓ2 sin(β), (2.12)

which after rearranging yields

ℓ2 =
c2 − b2

c sin(β) − b
(2.13)

The last equation replaced into (2.11) yields after simplification the following expression

for α in terms ofβ:

α = arctan

(

(c2 + b2) sin(β) − 2bc

(c2 − b2) cos(β)

)

(2.14)

In a similar way, but employing the Law of Cosines equation equivalent to (2.8) for the

angle at cornerc of triangle△cpc′, theβ angle in terms ofα is found to be:

β = arctan

(

(c2 + b2) sin(α) + 2bc

(c2 − b2) cos(α)

)

(2.15)

If (u, v) is a point in a coordinate system whose origin is located at the center of the

optical plane andf is the focal distance of the camera lens, then equation (2.14) together

with

β =
π

2
− arctan

(√
u2 + v2

f

)

, (2.16)
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FIGURE 2.1. Hyperbolic mirror.

complete the projection equations relating the angleα of the incident ray with a given

optical plane pixel(u, v).

2.3. Distance Estimation with the Panoramic Stereoscopic Arrangements

Since the epipolar lines in the vertical arrangement correspond to radial line segments

in the omnidirectional image, while in the horizontal configuration the epipolar lines corre-

spond to the projection of conic sections on the hyperbola onto the optical plane (Svoboda

& Pajdla, 2002), we consider first, the simpler vertical configuration and then, the horizon-

tal one.
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2.3.1. Vertical Arrangement

Consider the vertical arrangement of the mirrors shown in fig. 2.2. The cameras are at a

distancedc, which is equivalent to the so-calledbaselinein a standard parallel perspective

camera configuration. Denote byd1 andd2 the distance from the foci of the upper and

lower mirrors, respectively, to a pointP in the world, and letα1, α2 be the angles of the

corresponding incident rays. The 3D coordinates of pointP are found as follows.

From the geometry of the arrangement,

d1 sin(α1) = d2 sin(α2) + dc,

d1 cos(α1) = d2 cos(α2) = dP .

Combining these equations, the value ofd1 can be found as:

d1 =
dc cos(α2)

sin (α1 − α2)
.

Hence, the distancedP between the symmetry axis and the pointP is given by:

dP =
dC cos(α1) cos(α2)

sin(α1 − α2)
(2.17)

The distancedo from the baseline’s mid-point toP may be found in different ways. By the

Law of Cosines,d2
0 = (dc/2+c)2 +d2

1−2(dc/2+c)d1 sin(α1), or by Pythagoras’ theorem,

d0 =
√

d2
P + (d2 sin(α2) + (dc/2 − c))2. Both expressions, together with the previous

equations, allow the computation ofd0 in terms ofα1 andα2. The angleα0 between an

horizontal axis and the line segment joining pointP to the baseline’s mid-point can be

computed asα0 = arctan((d1 sin(α1) − (dc/2 + c))/dP ) or asα0 = arccos(dP/d0).

2.3.2. Horizontal Arrangement

Consider now the horizontal arrangement of the mirrors shown in fig. 2.3, in which

the cameras are at a distancedc (baseline), and the pointP in the world has polar coordi-

nates(r1, θ1), and(r2, θ2) with respect to the origin of the right and left camera coordinate

11



FIGURE 2.2. Lateral view of the vertical arrangement.

systems, respectively. Then from the geometry of the arrangement:

r1 sin(θ1) = r2 sin(θ2) = dP sin(θ0) (2.18)

r2 cos(θ2) = dc + r1 cos(θ1) (2.19)

dP cos(θ0) =
dc

2
+ r1 cos(θ1) (2.20)

Combining (2.18) and (2.19), allows to expressr1 in terms ofθ1 andθ2 as

r1 =
dC sin(θ2)

sin(θ1 − θ2)
(2.21)
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FIGURE 2.3. Top view of the horizontal arrangement.

Replacingr1 into (2.18) and (2.20) the expressions forsin(θ0) y cos(θ0):

sin(θ0) =
dc

dP

sin(θ1) sin(θ2)

sin (θ1 − θ2)
, (2.22)

cos(θ0) =
dc

dP

(

1

2
+

sin(θ2)cos(θ1)

sin (θ1 − θ2)

)

, (2.23)

which can be used to calculatetan(θ0), and therefore

θ0 = arctan

(

cos(θ1 − θ2) − cos(θ1 + θ2)

sin(θ1 + θ2)

)

(2.24)

For the computed value ofθ0 from (2.24), the distance to pointP from the baseline’s mid-

point is calculated employing (2.22) as

dP =
dc sin(θ1) sin(θ2)

sin(θ1 − θ2) sin(θ0)
, (2.25)

or directly in terms ofθ1 andθ2 as

dP =
dc (cos2(θ1 − θ2) + 2 cos(θ1 − θ2) cos(θ1 + θ2) + 1)

2 sin (θ1 − θ2)
,

by solving fordP from the addition of the squared equations (2.22) and (2.23).
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2.3.3. Computation of the Points on the Epipolar Curves

In order to compute points of an epipolar curve on the left camera for a point on

the optical plane of the right camera with Cartesian coordinates(u1, v1) the direction of

the incident ray defined byα1 is first computed using equations (2.14) and (2.16). To

completely establish the orientation of the incident ray, the value ofθ1 is computed as

θ1 = arctan(v1/x1). The orientation of the incident ray on the left mirror defined by an-

glesα2 andθ2 can be computed for a given value ofr1. Thus, for varying values ofr1 the

epipolar curve on the left mirror can be found numerically. It is to be noted that the epipolar

curve is the locus of the points resulting from the intersection of a plane containing the tri-

angle△c1Pc2 and the hyperboloid surface of the mirrors. These intersections correspond

to a collection of conic sections for different locations ofthe pointP in the 3D world.

Although it is possible to find analytic expressions for the conic sections, the resulting ex-

pressions would have to be evaluated at incremental steps along the curve and the points

projected onto the optical plane to find the matching point onthe other camera. Hence, a

numerically simpler approach is to find different values of the incident ray anglesα2, θ2 for

varying values ofr1, and then for the computedα2, θ2 find the angleβ2 using (2.15) and

the corresponding coordinates(u2, v2) on the second optical plane. To this end,θ2 in terms

of r1 is computed as

θ2 = arctan

(

r1 sin(θ1)

dc + cos(θ1)

)

(2.26)

as can be verified from the geometry of the arrangement shown in fig. 2.3.

To find the location of the corresponding point on the opticalplane, first the distance

r2 from the pointP to the origin of the left camera is computed, recalling (2.21) as

r2 =
dc sin(θ1)

sin(θ1 − θ2)
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Now from the geometry,tan(α1) = PZ/r1 andtan(α2) = PZ/r2, for the pointP with

vertical positionPZ. Thus

α2 = arctan

(

r1 tan(α1)

r2

)

. (2.27)

Using equation (2.15) it is possible to obtainβ2 with the value ofα2 just computed. Defin-

ing ρ2 =
√

u2
2 + v2

2, by (2.16),

ρ2 = f tan
(

β − π

2

)

=
f

tan(β)
. (2.28)

Finally, the Cartesian coordinates(u2, v2) are simply given by(ρ2 cos(θ2), ρ2 sin(θ2)).

2.4. Weighted Correlation

In order to reduce the warping effect produced by the hyperboloidal mirrors, which

causes a nonlinear size reduction to objects as they stand farther away from the camera, the

correlation is computed using weighting coefficients. The purpose of the coefficients is to

reduce the level of importance of those pixels close to the boundaries of the block, while

given more attention to the central pixel. By doing this, large and more reliable blocks can

be employed without being significantly affected by the factthat one of the sliding blocks

may consider regions of the image which are far away, therefore significantly distorted

with respect to the central region of the reference block. The computation of the weighted

cross-correlation employes the(i, j) weights matrix:

Mw =























w1,1 · · · w1,q+1 · · · w1,2q+1

...
...

...

wq+1,1 · · · wq+1,q+1 · · · wq+1,2q+1

...
...

...

w2q+1,1 · · · w2q+1,q+1 · · · w2q+1,2q+1























Which contains the weighting coefficients of each pixel within the correlation window.

If the upper-left corner of the correlation block is considered as the origin, then pixel with
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coordinates(row, col) = (i, j) is weighted by elementwi,j of the matrixMw. Matrix Mw is

constructed by assigning a unitary value to the central element at(row, col) = (q+1, q+1),

and decreasing values towards the edges until a minimum valuewMin ∈ [0, 1] is reached at

each corner of the matrixMw. The expression for the computation ofwi,j is given by:

wi,j = 1 − (1 − wMin) ·
‖(i, j) − (q + 1, q + 1)‖

q
√

2
(2.29)

In order to obtain a normalized correlation value in the interval [−1, 1], normalized

weightsw̃i,j are employed instead ofwi,j. The normalized weights are computed as:

w̃i,j =
wi,j

∑

2q+1

i=1

∑

2q+1

j=1
wi,j

(2.30)

The weighting matrices are illustrated for different values of wMin and block sizes in

table 2.2, in which the values of each weight are representedin terms of an intensity level

in gray scale (0 =black,1 =white).

The weighted cross-correlation between blocks A and B can then be computed as:

Corrw =

∑

2q+1

i=1

∑

2q+1

j=1
w̃i,j

(

Ai,j − Ā
) (

Bi,j − B̄
)

√

∑

2q+1

i=1

∑

2q+1

j=1
w̃i,j

(

Ai,j − Ā
)2∑2q+1

i=1

∑

2q+1

j=1
w̃i,j

(

Bi,j − B̄
)2

(2.31)

WhereĀ andB̄ are the mean intensity values for each block.

2.5. Computational Cost

The computational cost of the algorithm implemented to obtain the distance maps

arises from the calculation of anglesα1 andθ1, together with the cost of fetching an image
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TABLE 2.2. Weight matrices.

Size of the correlation block[pixel] × [pixel] Weight

wMin 5 × 5 7 × 7 9 × 9 color bar

0.2

→
↓u

v →
↓u

v →
↓u

v

0.4

→
↓u

v →
↓u

v →
↓u

v

0.6

→
↓u

v →
↓u

v →
↓u

v

0.8

→
↓u

v →
↓u

v →
↓u

v

block of (2q + 1) × (2q + 1) pixels for each pixel in the reference image. In addition to

the previous cost, the computational effort involved in thecalculation of the epipolar curve

and the matching process must also be included. In the case ofthe horizontal arrangement,

the epipolar curve is explored for increments ofr1 in the interval[rMin, rMax] using steps

proportional toCP in each iteration. In other words, the value ofr1 at iterationk denoted

by r1(k) is computed as:

r1(k) = Cpr1(k − 1), k = 1, 2, ..., K

with

r1(0) = rMin

17



therefore

r1(k) = rMinCk
p

and the value ofk = K whenr1(K) = rMax is given by

rMax = rMinCK
p ⇒ K = logCp

rMax

rMin

This numberK is the number of times that the correlation between the reference and

sought block have to be computed. In the case of the vertical arrangement, the cost as-

sociated to the search along a radial epipolar line is limited to the calculation of lower and

upper bounds for the search radius, the same idea of backprojection implemented in the

algorithm of sec. 2.3.3, and the necessary operations to compute the points in the inter-

val incrementally without using the backprojection strategy of the algorithm in sec. 2.3.3.

Traversing the epipolar line in the vertical arrangement isdone by incrementingρ2 in the

interval [ρMin, ρMax] for eachθ2 = θ1 in steps∆ρ2 per iteration. The bounds of interval

[ρMin, ρMax] are obtained from the lower and upper bounds of the working distance values

dMin anddMax by solving the backprojetion equations ford1 = dMin andd1 = dMax (in

the reference image), respectively. In order to obtain a more accurate distance estimation,

the peak in the correlation curve is approximated at the subpixel level using bidimensional

quadratic interpolation. To compute the parameters of the interpolating paraboloid, the

correlation values found before and after the maximum are also stored together with their

correponding locations on the epipolar curve.

Finally, the cost of solving the distance equations for the maximum correlation point

must also be added to obtain the total computational cost. Thus the cost for anN × N

image can be respectively expressed for the vertical and horizontal arrangement as follows:

CV ertical = N2 (41C1 + 28C2 + 2C3 + 74C4 + 5C5 + Cv)

+N2

(

ρMax − ρMin

∆ρ

)

(3C1 + 2C2 + 2C3 + 4C4 + Cv + Cc)
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CHorizontal = N2 (33C1 + 18C2 + 2C3 + 56C4 + 3C5 + Cv)

+N2 logCp

(

rMax

rMin

)

(6C1 + 7C2 + 2C3 + 13C4 + C5 + Cv + Cc)

WhereC1, C2, C3, C4 andC5 are the number of CPU cycles required to computed

sums/subtractions, trascendental functions, rounding operations, multiplications/divisions,

and algebraic functions, respectively. The costCv is associated to the cost of fetching a

block of size(2q + 1) × (2q + 1), while Cc is the cost of computing the correlation for a

block of the same dimension.

If the computation of the distance is not done with subpixel accuracy the main com-

putational effort is that of multiplications/divisions, can be reduce by1/2 for the vertical

arrangement, while the reduction factor is1/3 in the case of the horizontal configuration.

In each case, the computational cost without subpixel accuracy is given by:

CV ertical = N2 (18C1 + 23C2 + 2C3 + 37C4 + 4C5 + Cv)

+N2

(

ρMax − ρMin

∆ρ

)

(3C1 + 2C2 + 2C3 + 4C4 + Cv + Cc)

CHorizontal = N2 (10C1 + 13C2 + 2C3 + 19C4 + 2C5 + Cv)

+N2 logCp

(

rMax

rMin

)

(6C1 + 7C2 + 2C3 + 13C4 + C5 + Cv + Cc)

A detailed flow diagram of the algorithm for panoramic stereoscopic computation has

been included in the Appendix A, together with the associated computational cost of each

step. Careful study of the process flow and loops allows to obtain the expressions for the

computational cost just derived.
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3. DISTANCE ESTIMATION ERRORS AND ARRANGEMENT SELECTION

3.1. Distance Estimation Errors

Employing the equations derived in the previous section, itis possible to compute the

distance estimation error for (i) errors in the parameters of the system or (ii) errors in the

computation of the corresponding pixel coordinate on the other camera for a given point

P in the world. The first type of error can be avoided by an adequate construction of the

system and corrected with standard calibration techniques(Micusik & Pajdla, 2004), while

mitigating errors of the second kind is more difficult as these do not depend only on the

matching technique, but also on the visual properties of thescene (e.g. presence of texture,

edges, periodic patterns or illumination changes). For these reasons, we limit our attention

to the analysis of distance estimation errors under pixel matching errors.

In the previous section it was shown that for a given pointP in the world with projec-

tion coordinates(u1, v1) on the optical plane of the first camera, the corresponding angles

α1, β1 can be found in terms of(u1, v1). Also, α2, β2, as well as(u2, v2), can be found in

terms of the matching point(u1, v1) for a given value of the distancedP . If dP is solved

as a function of(u1, v1) and the matching(u2, v2), i.e. dP = f(u1, v1, u2, v2), then for an

error of one pixel in finding the location of(u2, v2), i.e. (ũ2, ṽ2) = (u2 + ∆u2, v2 + ∆v2),

such that‖(∆u2, ∆v2)‖ = 1 and(ũ2, ṽ2) ∈ Ce, whereCe denotes the epipolar curve, the

average distance estimation error can be computed as:

∆dP =
1

2
(|f(u1, v1, u2, v2) − f(u1, v1, u2 − ∆u2, v2 − ∆v2)|

+ |f(u1, v1, u2, v2) − f(u1, v1, u2 + ∆u2, v2 + ∆v2)|) (3.1)

Here(−∆u2,−∆v2) and(+∆u2, +∆v2) must be understood as the bounding endpoints of

the epipolar curve segment around the matching location(u2, v2). In other words, the error

is computed as the average of the errors obtained when the mismatch is due to an error in

locating the corresponding pixel by one pixel in excess or due to falling short by one pixel.
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FIGURE 3.1. Working distance circle and estimation error margins for dc = 0.5m
anddP = 5m

The error intervals for different working distancesdP and looking anglesθ0 appear

as semi-circles around the true distance, as shown in figs 3.1– 3.4. It is possible to see

that the error interval becomes larger as the working distance increases from5 m (fig. 3.1),

10 m(fig. 3.2),15 m (fig. 3.3) to20 m (fig. 3.4), independently of whether the horizontal or

vertical configuration is being used. However, for looking anglesθ0 = 0 or θ0 = π, the

error under the horizontal configuration becomes larger more rapidly than for the vertical

arrangement.This is because equations for the horizontal configuration become singular at

looking anglesθ0 = 0 or θ0 = π.

21



−3 −2 −1 0 1 2 3

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4 Vertical Configuration

X [m]

Z
 [m

]

 

 
Error +1
d

P
 = 10[m]

Error −1

−3 −2 −1 0 1 2 3

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4 Horizontal Configuration

X [m]

Z
 [m

]

 

 
Error +1
d

P
 = 10[m]

Error −1

FIGURE 3.2. Working distance circle and estimation error margins for dc = 0.5m
anddP = 10m

Another way to analyze the distance estimation error under each configuration is by

ploting the average error∆dP , which is approximately half the width of the error band,

for different looking directions and baseline values. These error curves are shown in

figs. 3.5(a)-3.5(d) for both camera configurations and observation anglesθ0 = π/6, π/4,

π/3, π/2. Each figure shows different error curves for the vertical configuration (lines with

circle markers) and for the horizontal configuration (dotted lines) at different baselines

dc = 0.5, 1.0, 1.5 m. These curves can be obtained for a range of values of the observa-

tion angleθ0, which are not presented here due to space. Comparing the curves for each

configuration is possible to conclude that:
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FIGURE 3.3. Working distance circle and estimation error margins for dc = 0.5m
anddP = 15m

• The distance estimation error increases more rapidly for smaller baselines as in

the case of a stereoscopic system with standard perspectivecameras.

• For a given distance, there is not much difference between the horizontal or

vertical configuration if the observation angle consideredis θ0 = π/2 (forward

looking) (fig. 3.5(a)). As the observation angle decreases,i.e. looking to the

sides, the error in the horizontal configuration rapidly becomes larger than that

in the vertical configuration.
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FIGURE 3.4. Working distance circle and estimation error margins for dc = 0.5m
anddP = 20m

• Considering that smaller distance estimation errors are obtained for larger base-

lines, the horizontal configuration becomes more convenient for mounting on a

mobile platform or vehicle.

3.2. Camera Arrangement and Baseline Selection Procedure

The error curves presented in the previous section give us some insight into the cri-

teria for selecting the most convenient configuration for a given application. Figure 3.6

shows a selection procedure diagram that will allow designers to choose the most conve-

nient arrangement and the appropriate baseline given the acceptable depth estimation error.

24



0 10 20 30 40 50
0

10

20

30

40

50

60

d
P
 [m]

E
rr

or
 [m

]

 

 
V. d

c
 = 0.5 [m]

H. d
c
 = 0.5 [m]

V. d
c
 = 1.0 [m]

H. d
c
 = 1.0 [m]

V. d
c
 = 1.5 [m]

H. d
c
 = 1.5 [m]

(a) θ0 = π/2.

0 10 20 30 40 50
0

10

20

30

40

50

60

d
P
 [m]

E
rr

or
 [m

]

 

 
V. d

c
 = 0.5 [m]

H. d
c
 = 0.5 [m]

V. d
c
 = 1.0 [m]

H. d
c
 = 1.0 [m]

V. d
c
 = 1.5 [m]

H. d
c
 = 1.5 [m]

(b) θ0 = π/3.

0 10 20 30 40 50
0

10

20

30

40

50

60

d
P
 [m]

E
rr

or
 [m

]

 

 
V. d

c
 = 0.5 [m]

H. d
c
 = 0.5 [m]

V. d
c
 = 1.0 [m]

H. d
c
 = 1.0 [m]

V. d
c
 = 1.5 [m]

H. d
c
 = 1.5 [m]

(c) θ0 = π/4.

0 10 20 30 40 50
0

10

20

30

40

50

60

d
P
 [m]

E
rr

or
 [m

]

 

 
V. d

c
 = 0.5 [m]

H. d
c
 = 0.5 [m]

V. d
c
 = 1.0 [m]

H. d
c
 = 1.0 [m]

V. d
c
 = 1.5 [m]

H. d
c
 = 1.5 [m]

(d) θ0 = π/6.

FIGURE 3.5. Distance error at differentθ0 values.

In the first step the user must check if his or her system has similar geometry parameters.

If so, then figs. 3.5(a)– 3.5(d) showing the expected error atversus working distance for

different baselines, can be used to select the smallest baseline that guarantees an acceptable

level of error for the specified working distance. If the system has significantly different

intrinsic parameters, differing more than5% in one or more of the parameters, then the de-

signer must redo the error curves using the projective geometry equations and the epipolar

curve computation procedure presented in the previous sections (see sec. 2.2 and 2.3). It

is possible that under certain conditions, both arrangements satisfy the acceptable levels of

error for a given baseline. If this situation occurs then thedesigner should prefer the verti-

cal configuration over the horizontal arrangement because the vertical arrangement yields
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full 360◦ panoramic distance maps free from singularities. On the other hand, the vertical

configuration involves a simpler stereo matching process because the epipolar curves are

simple straight lines, and moreover, the estimation error does not depend on the looking

directionθ0. When both arrangement comply with the aceptable error, theonly reason for

not prefering the vertical configuration would be if there are space constraints. Finally,

if the error requirements cannot be archived by neither of the arrangements, the designer

must check if the design of the catadioptric system has adequate parameters (i.e. intrinsic

parameters, such as camera resolution, focal distance, hyperbola parameters).
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FIGURE 3.6. Camera arrangement and baseline selection procedure
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4. EXPERIMENTAL RESULTS

4.1. Experimental Validation Using Synthetic Images

A synthetic world is used to evaluate the distance estimation accuracy under each ar-

rangement. The virtual world is a cube (e.g. a room) to which textures have been mapped

onto each wall in order to ensure the solvability of the stereoscopic matching problem. Fig-

ure 4.1 (a) shows a perspective view of the virtual world. Since our purpose is to evaluate

the accuracy of each configuration, rather than the performance of the stereoscopic match-

ing procedure, the actual textures employed are derived from fractal and synthetic random

patterns (see fig. 4.9).

The cylinder in the middle of the cube in fig. 4.1 (a) represents the omnidirectional

vision sensor. In the vertical configuration both cameras are located along a vertical axis

through the center of the cube. In the horizontal configuration the cameras are on a plane

parallel to the ground plane and offset to the right and left of the vertical central axis along

a horizontal axis, which intersects the vertical axis and runs parallel to two opposite lateral

faces of the cube. The omnidirectional image as projected onto the optical plane of the

camera is shown in fig. 4.1 (b). The latter translates into a panoramic image as shown

in fig. 4.1 (c). The corresponding distance ground truth measured from the center of the

omnidirectional vision sensor is shown as a panoramic distance map in fig. 4.1 (d).

Figures 4.9 (a) and (b) show the right and left omnidirectional images for the horizon-

tal configuration. The regions shown as blue disc segments infig. 4.9 (a) correspond to

the reference pixels considered for matching, while the regions in fig. 4.9 (b) correspond

to the matched pixels found. Not all pixels where successfully matched and thus there are

some holes in the regions of fig. 4.9 (b). It is worth noting that unlike the case of standard

parallel stereoscopic system with perspective cameras, the epipolar constraint for the hori-

zontal configuration with hyperboloiodal mirrors imposes acorresponding region that does

not preserve shape similarity with respect to the original reference region, and hence, the

difficulty in finding correspondences in the horizontal configuration.
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(a) Perspective view. (b) Omnidirectional image.

(c) Panoramic image.

(d) Panoramic distance map.

FIGURE 4.1. The test cube and its projections as an omnidirectionaland
panoramic images.
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Given the complexity of the epipolar curves arising in the horizontal configuration,

it is worth verifying the validity of the equations derived in section 2.3.3. To this end,

four points are selected in the synthetic omnidirectional test image (left camera view), as

shown in fig. 4.2(a). Then the corresponding epipolar curveson the second image (right

camera view) are computed using the ecuations of section 2.3.3 and plotted, as shown in the

fig. 4.2(b). It can be observed in fig. 4.2(b) that the epipolarcurves in the target image pass

through points that were selected in the reference image, thus confirming the validity of

the equations. The same can be observed from the epipolar curves traced on the panoramic

view of the target (secondary) image.

In order to compare the accuracy of the distance estimation under each configuration

in a “controlled environment”, each face of the synthetic test cube is covered using a chess-

board pattern image (see fig. 4.4) in which each square corresponds to a100 × 100 mm2

square in real world units. The colors of the chessboard pattern correspond to randomly

chosen intensity levels of the grayscale palette, with the exception of the central squares

and those at the corners of the chessboard. This facilitatesthe matching procedure for the

points at the corners of each square within the chessboard. Figures 4.6 and 4.5 show the

set of omnidirectional images obtained for the horizontal and vertical arrangement with

dc = 120 mm, respectively. The analysis of the depth estimation accuracy considers only

corner points in each view of the chessboard that satisfy that:

• Their projection is visible in each view of the left-right ortop-bottom pair of the

horizontal or vertical arrangement respectively,

• the angleθ0 ∈ [π/15, 14π/15] or intervalθ0 ∈ [16π/15, 29π/15].

The second constraint is employed to make the results from both configurations com-

parable by avoiding the singularities of the horizontal arrangement occurring atθ0 = 0

andθ0 = π. Fig. 4.7(a) shows points in the right omnidirectional viewthat satisfy the

above constraints, while fig. 4.7(b) shows the matched points in the left omnidirectional

image. Similarly, fig. 4.8(a) shows the reference points in the top omnidirectional view.
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(a) Test points in the left omnidirectional image (reference)
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(b) Epipolar curves in the right camera omnidirectional image (target)

FIGURE 4.2. Epipolar curves in the right camera omnidirectional image (target).
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FIGURE 4.3. Test points and epipolar curves using synthetic images.

FIGURE 4.4. Chessboard pattern.

The corresponding matched points found in the bottom omnidirectional view are shown in

fig. 4.8(b).

If d0i denotes the real distance between the origin of the system and the control point

Pi, andd̂0i denotes the distance found by solving the matching problem,then the absolute

value of the distance error is given byei =
∣

∣

∣
d̂0i − d0i

∣

∣

∣
, and the average absolute error is

ē = 1

M

∑M

i=1
ei = 1

N

∑N

i=1

∣

∣

∣
d̂0i − d0i

∣

∣

∣
, whereM is the number of selected reference points.

Computinḡe for different values of the block size(2q+1)×(2q+1), wMin and baselinedc
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(a) Right camera view

(b) Left camera view

FIGURE 4.5. Synthetic omnidirectional stereoscopic image pair ofthe cube with
chessboard pattern for the horizontal arrangement withdc = 120mm.
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(a) Top camera view

(b) Bottom camera view

FIGURE 4.6. Synthetic omnidirectional stereoscopic image pair ofthe cube with
chessboard pattern for the vertical arrangement withdc = 120mm.
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(a) Reference points in the right camera view
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(b) Matched points in the left camera view

FIGURE 4.7. Stereoscopic matching for the vertical arrangement using the syn-
thetic test cube with chessboard pattern.
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(a) Reference points in the top camera view
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(b) Matched points in the bottom camera view

FIGURE 4.8. Stereoscopic matching for the horizontal arrangementusing the syn-
thetic test cube with chessboard pattern.
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allows to determine the optimal block size. The result of theexperiments for the horizontal

and vertical configurations are summarized in tables 4.1 and4.2, respectively.

TABLE 4.1. Simulation results for the horizontal configuration.

dc ē σ(e) eiMax (2q + 1) × (2q + 1) wMin

[mm] [mm] [mm] [mm] [pixel] × [pixel] [%]

20 65.8 52.1 350.3 13×13 90

40 55.0 41.5 271.2 13×13 20

60 36.7 28.5 136.8 17×17 0

80 27.0 22.9 105.6 9×9 10

100 23.9 19.5 80.1 9×9 90

120 21.2 16.8 86.1 13×13 70

140 16.9 12.9 58.0 13×13 50

160 15.2 12.4 58.4 13×13 30

180 15.0 12.3 73.8 13×13 30

The estimation errors were computed for different values ofthe baselinedc in incre-

ments of20 mm, with dc ∈ [20, 180] mm. As predicted from the error curves presented

in sec. 3.1, the average error decreases when the separationbetween cameras increases.

Equivalent trends may be observed for the error’s standard deviation and the maximum

error. Comparing tables 4.1 and 4.2 for both arrangements, it is possible to conclude that

for a given baseline the vertical arrangement has on averagea slightly large average esti-

mation error. This is due to the reduced effective resolution along the radial direction of

the camera-mirror system. As far the optimal block size is concerned, it is possible to ob-

serve that under the vertical configuration, larger baseline requires larger block sizes, while

the optimal window size for the horizontal configuration remains about the same regard-

less of the distance between the cameras. Dense distance maps computed for another pair

of synthetic omnidirectional images (see figs. 4.9(a) and 4.9(b)) using standard normalized

cross-correlation to solve the stereoscopic correspondence problem are shown in figs. 4.9(c)

and 4.9(d) for the horizontal and vertical configurations, respectively. In both cases, the
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TABLE 4.2. Simulation results for the vertical configuration.

dc ē σ(e) eiMax (2q + 1) × (2q + 1) wMin

[mm] [mm] [mm] [mm] [pixel] × [pixel] [%]

20 72.3 63.8 248.8 9×9 50

40 60.3 60.3 279.5 5×5 100

60 42.3 48.2 257.8 13×13 20

80 37.8 48.8 262.3 9×9 60

100 33.3 46.6 266.9 13×13 20

120 31.5 46.9 271.4 17×17 10

140 27.5 39.5 191.4 21×21 50

160 26.8 45.5 197.5 21×21 70

180 25.1 38.8 197.5 21×21 70

arrangement was centered about the origin of the global (world) coordinate frame. The

baseline distance between focal points of each hyperboloidal mirror was20 mm. The dis-

parity search range for the horizontal configuration corresponds to that defined by a point

200 mm away from the mirror onℓ1 the linecP in 10 mm steps until no significant change

in the corresponding point projection is achieved for 10 iterations in a row. The vertical

configuration uses a disparity search range which spans the current reference point position

up to 90% the radius of the circle inscribed in the CCD. The experiments consider mirror

parameters shown in fig. 2.1 and a cube of800 mm by side.

Considering only the correctly matched points, the relative 3D reconstruction (RMS/true

distance) is 5.32% and 7.89% for the horizontal and verticalconfigurations, respectively.

However, for observation anglesθ0 ≈ 0 or θ0 ≈ π, the distance estimation error in the

horizontal configuration is appreciably larger.
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(a) Reference area in the right omni-
directional image

(b) Matched area in the left omnidirectional image

(c) Distance maps for the horizontal configuration.

(d) Distance maps for the vertical configuration.

FIGURE 4.9. Dense distance maps for the synthetic test cube with random pattern.

4.2. Experiments with a Real Vehicle

A panoramic stereoscopic system can be very useful in the implementation of collision

alert useful in the implementation of a collision alert system for autonomous mobile robots

or standard human driven vehicles. Therefore it is important to assess the performance of

proposed catadioptric sensor arrangements in real world scenes with varying illumination

conditions and different levels of texture in order to determine the practical feasibility of

39



the system. This section explains the experiments carried out with the sensing arrangement

mounted on a standard car driven in urban areas and presents the distance estimation results

obtained.

4.2.1. Defining the Working Distance

Defining the operational range of the omnidirectional stereoscopic arrangement to be

mounted on a vehicle must consider safe driving distances toother vehicles. A safe driving

distance depends on several aspects, such as the driving speed, visibility, road material

and conditions, vehicle type, driver skills, reaction timeand fatigue, to name a few. Due

to the diversity of aspects which can affect the driver’s reaction time, the breaking time

(the time elapsed between the driver’s action and the momentthe vehicle comes to a full

stop) and the breaking distance, here we will rely on criteria for determining safe driving

distances provided by (The Official Highway Code For Northern Ireland, 2008). Basically,

the criteria establishes from experimental studies that a standard passenger vehicle in a

urban road at50 km/h requires a total breaking distance of23 m, of which9 m are due to

the driver’s reaction time and14 m are the typical breaking distance for a passenger car.

If in addition a safety distance of8 m corresponding to the length of two vehicles is also

considered, then the working distance amount is31 m.

4.2.2. Mounting the Cameras on the Vehicle and Selecting theArrangement

Once the operating distance has been determined the level ofacceptable error must be

defined in order to employ the arrangement selection procedure. Considering that at the

operating distance of31 m, an acceptable error would be±2.5 m (the length of one car),

i.e. less than10% of the length of the operating range, then with this level of tolerable

distance estimation error fig. 3.5(a) indicates that at31 m both the horizontal and vertical

arrangements with baselinesdc = 1 m or dc = 1.5 m, satisfy the application requirements.

Using the selection procedure of fig. 3.6 the vertical optionwould be preferable unless there

are space constraints. Although it would be possible to mount the vertical arrangement on
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the roof of a vehicle extending1.5 m above its standard height (see fig. 4.10) practical con-

siderations make the horizontal arrangement (see fig. 4.11)more convenient. In fact, prior

work by (Bertozzi et al., 2002) consider that one of the basicrequirements of any driver as-

sistance system is that it should be compact in size and affect as less as possible the vehicle

structure. Some authors as (Bensrhair et al., 2002) have suggested mounting the cameras

inside the vehicle, while others like (McCall & Trivedi, 2006) position the sensing arrange-

ment on top of the roof with system mounted at lower heights, recommending to mount the

cameras on the lateral rear-view mirrors. The latter work mentions as additional advantages

of mounting the cameras on the lateral rear-view mirrors: the possibility of studying the

driver’s behavior, the larger baseline and the compactnessof the system. A disadvantage,

however, is that the covered area is smaller than the area visible using the system mounted

on the roof, which offers a better view of the road. The cameras mounted on the rear-view

mirrors mostly include the view of the vehicle on which they are mounted, instead of the

surrounding road. Due to these reasons, including the in depth study by (Gandhi & Trivedi,

2005, 2006), and the possibility of mounting the cameras with variable baselines, it was

decided that the most convenient location for experimentalevaluation purpose would be to

mount the cameras on the roof of the vehicle as shown in figs. 4.10 and 4.11 show the rig

mounted on hatchback and sedan versions of the Toyota car Yaris model. Figures 4.12(b)

and 4.12(b) show the right and left camera omnidirectional view for the horizontal arrange-

ment configuration. The cameras were mounted82 cm apart, i.e.dc = 82 cm.

Cameras in vertical configurationStructure

FIGURE 4.10. Structure and vertical cameras arrangement in the vehicle
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Cameras in horizontal configuration

Structure

FIGURE 4.11. Structure and horizontal cameras arrangement in the vehicle
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(a) Right camera view

(b) Left camera view

FIGURE 4.12. Street view using the omnidirectional stereoscopic pair in the hori-
zontal arrangement withdc = 82 cm
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(a) Right camera view

(b) Left camera view

FIGURE 4.13. Panoramic view obtained from the omnidirectional stereoscopic
pair of fig. 4.12.

4.2.3. System Calibration

System calibration was done manually using a calibration pattern. The first step con-

sisted in aligning the cameras with respect to the pattern until crosshairs matched the align-

ment marks. By doing so it is possible to reduce the source of error in the posterior estima-

tion of intrinsic and extrinsic parameters. Since manual alignment can practically eliminate

axial misalignment, and relative rotation of one camera with respect to the other. Only a

few parameters need to be estimated. These parameters are the focal lengthf , the baseline

(dc), and the hyperbola constantsa,b. To this end, marks of another calibration pattern

similar to cylinder employed by (Matuszyk, Zelinsky, Nilsson, & Rilbe, 2004) are used

to align the symmetric axis for the camera and the mirror. Then, another pattern (see

figs. 4.14 and 4.15) are matched and the values of the parameters are adjusted until their

projections on both cameras match their actual locations inthe image, i.e. the norm of the

error between the projected points and the points on the image is minimized. This simple

calibration approach relying on calibration tools similarto those of (Matuszyk et al., 2004)

proved to be sufficient for our purposes. More automated calibration approaches exist in the

literature; the reader is referred to (Hartley & Zisserman,2000) for an in depth discussion

on calibration techniques. Another interesting work is theone by (Scaramuzza, Martinelli,

44



& Siegwart, 2006), the author shows in his website an omnidirectional camera calibration

toolbox for Matlab calledOCamCalib.

FIGURE 4.14. Cameras and calibration pattern.

FIGURE 4.15. Camera view of calibration pattern.

The correctness of the alignment and calibration steps can also be verified manually by

simple procedures. First, if the cylindrical pattern is used correctly aligned cameras should

provide panoramic images that show perfectly horizontal lines when the omnidireccional

image is dewarped (mapped onto cylinder much like a Mercatorprojection). Secondly,
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when tracing the epipolar curves corresponding to the reference points in the primary im-

ages, the curves in the target image should contain the projection of associated points.

Fig. 4.19(a) shows four manually selected points and fig. 4.16(b) shows the corresponding

epipolar curves traced on the target image. It is possible toobserve that the corresponding

points in the target images are contained by the respective epipolar curves, and therefore

the system parameters have been estimated with a sufficiently good accuracy. Fig. 4.17

shows a panoramic view corresponding to the omnidirectional image 4.16(b) in which it is

also possible to see that the reference points are containedby the epipolar curves.
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(a) Reference points in the right omnidirectional camera view
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(b) Epipolar curves for the reference points in the left omnidirectional

camera view

FIGURE 4.16. Epipolar curves for the omnidirectional view of the road using the
horizontal arrangement.
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FIGURE 4.17. Epipolar curves on the panoramic view of the road.

4.2.4. Correspondence Search Range

Adjusting the length of the epipolar curve on which correspondence are sought is par-

ticularly important for real world applications because the chances of erroneous match

increase when an excessively long search range is considered likely due to lack of texture

or the presence of periodic patterns. As mentioned in section 4.1, adjusting the length of

the epipolar curve is done considering the lower and upper bounds of the working distance

interval. Some characteristics of the application considered here allow us to obtain tighter

constraints on the correspondence search range. More specifically, by assuming that the

vehicle moves on a plane, then the points of the epipolar curve must correspond to points

laying on the ground plane or before, i.e. the epipolar curves will be limited by points cor-

responding to the projection of points in space belonging tothe ground plane as depicted in

fig. 4.18. For all points below the horizon, i.e.α1 > 0 using our convention (see fig. 4.18)

there is anrMax associated to the orthogonal projection of the intersection between the ray

from the origins of the coordinate system and the ground plane onto theXZ-plane. Dis-

tancesr1 from the coordinate origin to any object in the scene will be at mostrMax, hence

r1 ≤ rMax. By simple geometry:

rMax =
h

tan(α1)
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whereh is the distance from the origin of the primary system to the ground plane.

Comparing figs. 4.16(b) and 4.19(b) it is possible to see thatthe epipolar curves are sig-

nificantly shortened in the latter and that the shorter curves still contain the points corre-

sponding to the reference points shown in fig. 4.19(a). The projection of the epipolar curves

considering the ground plane constraint onto the panoramicimage are shown in fig. 4.20.

Once gain the reader may verify that the shorter epipolar curves contain the reference points

of interest.

h

r
1

x1

y1

z1

x2

y2

z2

α
Max

FIGURE 4.18. Maximum search distance for the system mounted on a vehicle.
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(a) Reference points in the right omnidirectional camera view
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(b) Epipolar curves for the reference points in the left omnidirectional

camera view

FIGURE 4.19. Constrained epipolar curves for the omnidirectionalview of the
road using the horizontal arrangement. 50



FIGURE 4.20. Constrained epipolar curves on the panoramic view of the road.

4.2.5. Matching and Dense Distance Map Results

Before computing a dense panoramic distance map, the correctness of the matching

process is verified using a selection of reference points shown on the right image of the

omnidirectional stereoscopic pair of fig. 4.21. With the exception of a few points on areas

without much texture, the majority of the points are matchedcorrectly to points in the left

image, as may be verified by following the connecting lines infig. 4.21.

FIGURE 4.21. Matched points in the omnidirectional images.

Repeating the correspondence search for every point in the reference image and em-

ploying the distance equations derived in sec. 2.3 is possible to obtain a panoramic dense
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distance map. Fig. 4.22(b) shows the reference region employed for the matching, which

considers a160◦ field-of-view towards front and160◦ field-of-view towards the rear side

of the vehicle. The resulting matched points on the target image are shown in fig. 4.22(a).

It is possible to observe that the matching for the front region is more dense because of the

richer texture. Figures 4.23(a) and 4.23(b) show the panoramic view of the front regions

as seen by the right and left cameras, respectively. The dense distance map for this pair

of views is presented in fig. 4.23, which shows the presence ofthe car ahead at3.8 m. In

a darker intensity of gray, the columms of the metropolitan railway platform can also be

seen. Regions in the distance map closer to the vehicle, suchas the road pavement can be

seen in lighter shades of gray right at the lower middle area of the image. However, due to

the lack of texture on the right side, wrongly matched pointsappear as very closer points to

the vehicle. This problem unfortunately is frequent when attempting dense distance maps

using stereoscopic matching techniques applied to scenes with little texture or repetitive

patterns (Zitnick & Kanade, 2000). A possible way to eliminate these regions is to use

confidence measures as proposed by (Torres & Guesalaga, 1999).

(a) Matched points on the target image (b) Reference points

FIGURE 4.22. Matched areas for the reference regions of interest (front and rear
160

◦ field-of-view).
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(a) Right camera view

(b) Left camera view

(c) Distance map

FIGURE 4.23. Frontal panoramic road view and distance map.
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5. CONCLUSION AND FUTURE RESEARCH

An analysis of two omnidirectional stereo configurations using hyperboloidal mirrors

was presented. In one of the system configurations the mirrors were arranged vertically,

while on the other, the mirrors where arranged horizontally. Both configurations may yield

similar distance estimation errors for an adequately chosen baseline and given measurement

range of interest. However, depending on the application, space constraints can make one

arrangement preferable over the other.

Considering the numerical results for synthetic images, the horizontal configuration

provides on average of about a2% more accurate reconstruction if the strictly lateral view

under which there is sensor occlusion and singularity are excluded. The solution to the

matching problem is more difficult, but space constraints onmobile robots is another strong

reason for preferring the horizontal arrangement. Application of the matching algorithm to

real world urban road scenes did not yield results as good as those obtained for synthetic

images, mainly due to lack of textures and oclusions. Another practical aspect that limits

the use of panoramic distance maps obtained using catadioptric systems is the loss of actual

resolution, and given the lowering price of cameras, a more reliable solution would be to

use several pair of perspective cameras, especially if the system is intended for navgation

applications requiring distance measurements laser rangescanners still remain the most

reliable solution. However, the price of3D scanners is above$50.000 USD, therefore it is

important to continue dedicating efforts to the improvement of computer vision and image

understanding techniques.

To summarize, the main contributions of this investigationare the:

(i) detailed derivation of the optical geometry of the omnidirectional hyperboloidal

stereoscopic system

(ii) analysis of the distance estimation errors under each configuration

(iii) implementation of an algorithm to numerically compute the epipolar curve by

back-projection of reference points onto the optical planeof the target system

(iv) generation of procedure to select an adequate arrangement
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(v) analytic quantification of the computational cost associated to the solution of the

matching problem under both arrangements.

The derivation of the equations in a clear manner has a tutorial value to a wide audi-

ence of researchers in the fields of robotics and computer vision considering the application

of omnidirectional vision sensors to environment perception, pedestrian detection and nav-

igation problems, to name a few. The analysis of the estimation errors provides general

guidelines for system design and implementation. The procedure exploits the geometrical

and epipolar constraints to numerically compute the pointsof the epipolar line, without

requiring the analytic solution of the intersection problem between the epipolar plane and

the hyperbolic mirrors, which would yield an elliptic curvethat would then have to be

reprojected onto the optical planes of each camera. This procedure proved to be computa-

tionally effective. Ongoing research is concerned with automating the system calibration

procedure and introducing confidence measures to discard incorrectly matched points due

to occlusions or lack of textures.
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APPENDIX A. COMPUTATIONAL COST ESTIMATION

• N × N : Image size in pixels

• (2q + 1) × (2q + 1): Correlation block size in pixels

• (u1, v1): Coordinates in the first (reference) image

• (u2, v2): Coordinates in the second image

• (u2Bef , v2Bef ): Coordinates of the corresponding point in the second imagecom-

puted in the previus cycle

• αi: Angle between the incoming ray and the horizontal plane to coordinate sys-

temi

• (ri, θi): Polar coordinates of a point in the world with respect to theupper focal

point of the mirror systemi

• (ρi, θi): Polar coordinates on the CCD for point(ri, θi)

• dP : Radial distance between the arrangement’s vertical axis and a point in the

world

• corrAct: Correlation between blocks 1 and 2

• corrMax: Maximum correlation value between blocks

• corrMaxBef : Correlation value one iteration before finding the maximumcorre-

lation

• corrMaxAft: Correlation value one iteration after finding the maximum correla-

tion

• C1: Additions and sustractions cost

• C2: Trascendental functions cost

• C3: Rounding cost

• C4: Multiplication and divisions cost

• C5: Algebraic functions cost

• Cv: (2q + 1) × (2q + 1) block fetching cost

• Cc: (2q + 1) × (2q + 1) block correlation cost
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FIGURE A.1. Flow diagram and computational cost for the distance estimation
process under the horizontal arrangement
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FIGURE A.2. Flow diagram and computational cost for the distance estimation
process under the vertical arrangement
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FIGURE A.3. Flow diagram and computational cost for the distance estimation
process under the horizontal arrangement
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FIGURE A.4. Flow diagram and computational cost for the distance estimation
process under the vertical arrangement
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APPENDIX B. WORKING DISTANCE CIRCLE AND STIMATION ERROR

MARGINS
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FIGURE B.1. Working distance circle and estimation error margins for dc = 1m
anddP = 5m
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